hash
stringlengths
64
64
content
stringlengths
0
1.51M
e315de4ce9be4a1a98ffc1717946b6d49e32405e91494f93ae2cbb3bde276db5
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Handles the "FITS" unit format. """ import copy import keyword import operator import numpy as np from . import core, generic, utils class Fits(generic.Generic): """ The FITS standard unit format. This supports the format defined in the Units section of the `FITS Standard <https://fits.gsfc.nasa.gov/fits_standard.html>`_. """ name = 'fits' @staticmethod def _generate_unit_names(): from astropy import units as u names = {} deprecated_names = set() # Note about deprecated units: before v2.0, several units were treated # as deprecated (G, barn, erg, Angstrom, angstrom). However, in the # FITS 3.0 standard, these units are explicitly listed in the allowed # units, but deprecated in the IAU Style Manual (McNally 1988). So # after discussion (https://github.com/astropy/astropy/issues/2933), # these units have been removed from the lists of deprecated units and # bases. bases = [ 'm', 'g', 's', 'rad', 'sr', 'K', 'A', 'mol', 'cd', 'Hz', 'J', 'W', 'V', 'N', 'Pa', 'C', 'Ohm', 'S', 'F', 'Wb', 'T', 'H', 'lm', 'lx', 'a', 'yr', 'eV', 'pc', 'Jy', 'mag', 'R', 'bit', 'byte', 'G', 'barn' ] deprecated_bases = [] prefixes = [ 'y', 'z', 'a', 'f', 'p', 'n', 'u', 'm', 'c', 'd', '', 'da', 'h', 'k', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y'] special_cases = {'dbyte': u.Unit('dbyte', 0.1*u.byte)} for base in bases + deprecated_bases: for prefix in prefixes: key = prefix + base if keyword.iskeyword(key): continue elif key in special_cases: names[key] = special_cases[key] else: names[key] = getattr(u, key) for base in deprecated_bases: for prefix in prefixes: deprecated_names.add(prefix + base) simple_units = [ 'deg', 'arcmin', 'arcsec', 'mas', 'min', 'h', 'd', 'Ry', 'solMass', 'u', 'solLum', 'solRad', 'AU', 'lyr', 'count', 'ct', 'photon', 'ph', 'pixel', 'pix', 'D', 'Sun', 'chan', 'bin', 'voxel', 'adu', 'beam', 'erg', 'Angstrom', 'angstrom' ] deprecated_units = [] for unit in simple_units + deprecated_units: names[unit] = getattr(u, unit) for unit in deprecated_units: deprecated_names.add(unit) return names, deprecated_names, [] @classmethod def _validate_unit(cls, unit, detailed_exception=True): if unit not in cls._units: if detailed_exception: raise ValueError( "Unit '{}' not supported by the FITS standard. {}".format( unit, utils.did_you_mean_units( unit, cls._units, cls._deprecated_units, cls._to_decomposed_alternative))) else: raise ValueError() if unit in cls._deprecated_units: utils.unit_deprecation_warning( unit, cls._units[unit], 'FITS', cls._to_decomposed_alternative) @classmethod def _parse_unit(cls, unit, detailed_exception=True): cls._validate_unit(unit, detailed_exception=detailed_exception) return cls._units[unit] @classmethod def _get_unit_name(cls, unit): name = unit.get_format_name('fits') cls._validate_unit(name) return name @classmethod def to_string(cls, unit): # Remove units that aren't known to the format unit = utils.decompose_to_known_units(unit, cls._get_unit_name) parts = [] if isinstance(unit, core.CompositeUnit): base = np.log10(unit.scale) if base % 1.0 != 0.0: raise core.UnitScaleError( "The FITS unit format is not able to represent scales " "that are not powers of 10. Multiply your data by " "{:e}.".format(unit.scale)) elif unit.scale != 1.0: parts.append(f'10**{int(base)}') pairs = list(zip(unit.bases, unit.powers)) if len(pairs): pairs.sort(key=operator.itemgetter(1), reverse=True) parts.append(cls._format_unit_list(pairs)) s = ' '.join(parts) elif isinstance(unit, core.NamedUnit): s = cls._get_unit_name(unit) return s @classmethod def _to_decomposed_alternative(cls, unit): try: s = cls.to_string(unit) except core.UnitScaleError: scale = unit.scale unit = copy.copy(unit) unit._scale = 1.0 return f'{cls.to_string(unit)} (with data multiplied by {scale})' return s @classmethod def parse(cls, s, debug=False): result = super().parse(s, debug) if hasattr(result, 'function_unit'): raise ValueError("Function units are not yet supported for " "FITS units.") return result
e3e58728c8c3f4b01b6101e344a55350629be010798fa5237dbf8f602a555122
# Licensed under a 3-clause BSD style license - see LICENSE.rst # The idea for this module (but no code) was borrowed from the # quantities (http://pythonhosted.org/quantities/) package. """Helper functions for Quantity. In particular, this implements the logic that determines scaling and result units for a given ufunc, given input units. """ from fractions import Fraction import numpy as np from astropy.units.core import ( UnitConversionError, UnitsError, UnitTypeError, dimensionless_unscaled, get_current_unit_registry, unit_scale_converter) from . import UFUNC_HELPERS, UNSUPPORTED_UFUNCS def _d(unit): if unit is None: return dimensionless_unscaled else: return unit def get_converter(from_unit, to_unit): """Like Unit._get_converter, except returns None if no scaling is needed, i.e., if the inferred scale is unity.""" converter = from_unit._get_converter(to_unit) return None if converter is unit_scale_converter else converter def get_converters_and_unit(f, unit1, unit2): converters = [None, None] # By default, we try adjusting unit2 to unit1, so that the result will # be unit1 as well. But if there is no second unit, we have to try # adjusting unit1 (to dimensionless, see below). if unit2 is None: if unit1 is None: # No units for any input -- e.g., np.add(a1, a2, out=q) return converters, dimensionless_unscaled changeable = 0 # swap units. unit2 = unit1 unit1 = None elif unit2 is unit1: # ensure identical units is fast ("==" is slow, so avoid that). return converters, unit1 else: changeable = 1 # Try to get a converter from unit2 to unit1. if unit1 is None: try: converters[changeable] = get_converter(unit2, dimensionless_unscaled) except UnitsError: # special case: would be OK if unitless number is zero, inf, nan converters[1-changeable] = False return converters, unit2 else: return converters, dimensionless_unscaled else: try: converters[changeable] = get_converter(unit2, unit1) except UnitsError: raise UnitConversionError( "Can only apply '{}' function to quantities " "with compatible dimensions" .format(f.__name__)) return converters, unit1 # SINGLE ARGUMENT UFUNC HELPERS # # The functions below take a single argument, which is the quantity upon which # the ufunc is being used. The output of the helper function should be two # values: a list with a single converter to be used to scale the input before # it is being passed to the ufunc (or None if no conversion is needed), and # the unit the output will be in. def helper_onearg_test(f, unit): return ([None], None) def helper_invariant(f, unit): return ([None], _d(unit)) def helper_square(f, unit): return ([None], unit ** 2 if unit is not None else dimensionless_unscaled) def helper_reciprocal(f, unit): return ([None], unit ** -1 if unit is not None else dimensionless_unscaled) one_half = 0.5 # faster than Fraction(1, 2) one_third = Fraction(1, 3) def helper_sqrt(f, unit): return ([None], unit ** one_half if unit is not None else dimensionless_unscaled) def helper_cbrt(f, unit): return ([None], (unit ** one_third if unit is not None else dimensionless_unscaled)) def helper_modf(f, unit): if unit is None: return [None], (dimensionless_unscaled, dimensionless_unscaled) try: return ([get_converter(unit, dimensionless_unscaled)], (dimensionless_unscaled, dimensionless_unscaled)) except UnitsError: raise UnitTypeError("Can only apply '{}' function to " "dimensionless quantities" .format(f.__name__)) def helper__ones_like(f, unit): return [None], dimensionless_unscaled def helper_dimensionless_to_dimensionless(f, unit): if unit is None: return [None], dimensionless_unscaled try: return ([get_converter(unit, dimensionless_unscaled)], dimensionless_unscaled) except UnitsError: raise UnitTypeError("Can only apply '{}' function to " "dimensionless quantities" .format(f.__name__)) def helper_dimensionless_to_radian(f, unit): from astropy.units.si import radian if unit is None: return [None], radian try: return [get_converter(unit, dimensionless_unscaled)], radian except UnitsError: raise UnitTypeError("Can only apply '{}' function to " "dimensionless quantities" .format(f.__name__)) def helper_degree_to_radian(f, unit): from astropy.units.si import degree, radian try: return [get_converter(unit, degree)], radian except UnitsError: raise UnitTypeError("Can only apply '{}' function to " "quantities with angle units" .format(f.__name__)) def helper_radian_to_degree(f, unit): from astropy.units.si import degree, radian try: return [get_converter(unit, radian)], degree except UnitsError: raise UnitTypeError("Can only apply '{}' function to " "quantities with angle units" .format(f.__name__)) def helper_radian_to_dimensionless(f, unit): from astropy.units.si import radian try: return [get_converter(unit, radian)], dimensionless_unscaled except UnitsError: raise UnitTypeError("Can only apply '{}' function to " "quantities with angle units" .format(f.__name__)) def helper_frexp(f, unit): if not unit.is_unity(): raise UnitTypeError("Can only apply '{}' function to " "unscaled dimensionless quantities" .format(f.__name__)) return [None], (None, None) # TWO ARGUMENT UFUNC HELPERS # # The functions below take a two arguments. The output of the helper function # should be two values: a tuple of two converters to be used to scale the # inputs before being passed to the ufunc (None if no conversion is needed), # and the unit the output will be in. def helper_multiplication(f, unit1, unit2): return [None, None], _d(unit1) * _d(unit2) def helper_division(f, unit1, unit2): return [None, None], _d(unit1) / _d(unit2) def helper_power(f, unit1, unit2): # TODO: find a better way to do this, currently need to signal that one # still needs to raise power of unit1 in main code if unit2 is None: return [None, None], False try: return [None, get_converter(unit2, dimensionless_unscaled)], False except UnitsError: raise UnitTypeError("Can only raise something to a " "dimensionless quantity") def helper_ldexp(f, unit1, unit2): if unit2 is not None: raise TypeError("Cannot use ldexp with a quantity " "as second argument.") else: return [None, None], _d(unit1) def helper_copysign(f, unit1, unit2): # if first arg is not a quantity, just return plain array if unit1 is None: return [None, None], None else: return [None, None], unit1 def helper_heaviside(f, unit1, unit2): try: converter2 = (get_converter(unit2, dimensionless_unscaled) if unit2 is not None else None) except UnitsError: raise UnitTypeError("Can only apply 'heaviside' function with a " "dimensionless second argument.") return ([None, converter2], dimensionless_unscaled) def helper_two_arg_dimensionless(f, unit1, unit2): try: converter1 = (get_converter(unit1, dimensionless_unscaled) if unit1 is not None else None) converter2 = (get_converter(unit2, dimensionless_unscaled) if unit2 is not None else None) except UnitsError: raise UnitTypeError("Can only apply '{}' function to " "dimensionless quantities" .format(f.__name__)) return ([converter1, converter2], dimensionless_unscaled) # This used to be a separate function that just called get_converters_and_unit. # Using it directly saves a few us; keeping the clearer name. helper_twoarg_invariant = get_converters_and_unit def helper_twoarg_comparison(f, unit1, unit2): converters, _ = get_converters_and_unit(f, unit1, unit2) return converters, None def helper_twoarg_invtrig(f, unit1, unit2): from astropy.units.si import radian converters, _ = get_converters_and_unit(f, unit1, unit2) return converters, radian def helper_twoarg_floor_divide(f, unit1, unit2): converters, _ = get_converters_and_unit(f, unit1, unit2) return converters, dimensionless_unscaled def helper_divmod(f, unit1, unit2): converters, result_unit = get_converters_and_unit(f, unit1, unit2) return converters, (dimensionless_unscaled, result_unit) def helper_clip(f, unit1, unit2, unit3): # Treat the array being clipped as primary. converters = [None] if unit1 is None: result_unit = dimensionless_unscaled try: converters += [(None if unit is None else get_converter(unit, dimensionless_unscaled)) for unit in (unit2, unit3)] except UnitsError: raise UnitConversionError( "Can only apply '{}' function to quantities with " "compatible dimensions".format(f.__name__)) else: result_unit = unit1 for unit in unit2, unit3: try: converter = get_converter(_d(unit), result_unit) except UnitsError: if unit is None: # special case: OK if unitless number is zero, inf, nan converters.append(False) else: raise UnitConversionError( "Can only apply '{}' function to quantities with " "compatible dimensions".format(f.__name__)) else: converters.append(converter) return converters, result_unit # list of ufuncs: # https://numpy.org/doc/stable/reference/ufuncs.html#available-ufuncs UNSUPPORTED_UFUNCS |= { np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.invert, np.left_shift, np.right_shift, np.logical_and, np.logical_or, np.logical_xor, np.logical_not, np.isnat, np.gcd, np.lcm} # SINGLE ARGUMENT UFUNCS # ufuncs that do not care about the unit and do not return a Quantity # (but rather a boolean, or -1, 0, or +1 for np.sign). onearg_test_ufuncs = (np.isfinite, np.isinf, np.isnan, np.sign, np.signbit) for ufunc in onearg_test_ufuncs: UFUNC_HELPERS[ufunc] = helper_onearg_test # ufuncs that return a value with the same unit as the input invariant_ufuncs = (np.absolute, np.fabs, np.conj, np.conjugate, np.negative, np.spacing, np.rint, np.floor, np.ceil, np.trunc, np.positive) for ufunc in invariant_ufuncs: UFUNC_HELPERS[ufunc] = helper_invariant # ufuncs that require dimensionless input and and give dimensionless output dimensionless_to_dimensionless_ufuncs = (np.exp, np.expm1, np.exp2, np.log, np.log10, np.log2, np.log1p) # Default numpy does not ship an "erf" ufunc, but some versions hacked by # intel do. This is bad, since it means code written for that numpy will # not run on non-hacked numpy. But still, we might as well support it. if isinstance(getattr(np.core.umath, 'erf', None), np.ufunc): dimensionless_to_dimensionless_ufuncs += (np.core.umath.erf,) for ufunc in dimensionless_to_dimensionless_ufuncs: UFUNC_HELPERS[ufunc] = helper_dimensionless_to_dimensionless # ufuncs that require dimensionless input and give output in radians dimensionless_to_radian_ufuncs = (np.arccos, np.arcsin, np.arctan, np.arccosh, np.arcsinh, np.arctanh) for ufunc in dimensionless_to_radian_ufuncs: UFUNC_HELPERS[ufunc] = helper_dimensionless_to_radian # ufuncs that require input in degrees and give output in radians degree_to_radian_ufuncs = (np.radians, np.deg2rad) for ufunc in degree_to_radian_ufuncs: UFUNC_HELPERS[ufunc] = helper_degree_to_radian # ufuncs that require input in radians and give output in degrees radian_to_degree_ufuncs = (np.degrees, np.rad2deg) for ufunc in radian_to_degree_ufuncs: UFUNC_HELPERS[ufunc] = helper_radian_to_degree # ufuncs that require input in radians and give dimensionless output radian_to_dimensionless_ufuncs = (np.cos, np.sin, np.tan, np.cosh, np.sinh, np.tanh) for ufunc in radian_to_dimensionless_ufuncs: UFUNC_HELPERS[ufunc] = helper_radian_to_dimensionless # ufuncs handled as special cases UFUNC_HELPERS[np.sqrt] = helper_sqrt UFUNC_HELPERS[np.square] = helper_square UFUNC_HELPERS[np.reciprocal] = helper_reciprocal UFUNC_HELPERS[np.cbrt] = helper_cbrt UFUNC_HELPERS[np.core.umath._ones_like] = helper__ones_like UFUNC_HELPERS[np.modf] = helper_modf UFUNC_HELPERS[np.frexp] = helper_frexp # TWO ARGUMENT UFUNCS # two argument ufuncs that require dimensionless input and and give # dimensionless output two_arg_dimensionless_ufuncs = (np.logaddexp, np.logaddexp2) for ufunc in two_arg_dimensionless_ufuncs: UFUNC_HELPERS[ufunc] = helper_two_arg_dimensionless # two argument ufuncs that return a value with the same unit as the input twoarg_invariant_ufuncs = (np.add, np.subtract, np.hypot, np.maximum, np.minimum, np.fmin, np.fmax, np.nextafter, np.remainder, np.mod, np.fmod) for ufunc in twoarg_invariant_ufuncs: UFUNC_HELPERS[ufunc] = helper_twoarg_invariant # two argument ufuncs that need compatible inputs and return a boolean twoarg_comparison_ufuncs = (np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal, np.equal) for ufunc in twoarg_comparison_ufuncs: UFUNC_HELPERS[ufunc] = helper_twoarg_comparison # two argument ufuncs that do inverse trigonometry twoarg_invtrig_ufuncs = (np.arctan2,) # another private function in numpy; use getattr in case it disappears if isinstance(getattr(np.core.umath, '_arg', None), np.ufunc): twoarg_invtrig_ufuncs += (np.core.umath._arg,) for ufunc in twoarg_invtrig_ufuncs: UFUNC_HELPERS[ufunc] = helper_twoarg_invtrig # ufuncs handled as special cases UFUNC_HELPERS[np.multiply] = helper_multiplication if isinstance(getattr(np, 'matmul', None), np.ufunc): UFUNC_HELPERS[np.matmul] = helper_multiplication UFUNC_HELPERS[np.divide] = helper_division UFUNC_HELPERS[np.true_divide] = helper_division UFUNC_HELPERS[np.power] = helper_power UFUNC_HELPERS[np.ldexp] = helper_ldexp UFUNC_HELPERS[np.copysign] = helper_copysign UFUNC_HELPERS[np.floor_divide] = helper_twoarg_floor_divide UFUNC_HELPERS[np.heaviside] = helper_heaviside UFUNC_HELPERS[np.float_power] = helper_power UFUNC_HELPERS[np.divmod] = helper_divmod # Check for clip ufunc; note that np.clip is a wrapper function, not the ufunc. if isinstance(getattr(np.core.umath, 'clip', None), np.ufunc): UFUNC_HELPERS[np.core.umath.clip] = helper_clip del ufunc
dbbee6c4f882ec9153739ca4957fd506ffed83e064d6387b4641666fadc3edc5
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Converters for Quantity.""" import threading import numpy as np from astropy.units.core import ( UnitConversionError, UnitsError, UnitTypeError, dimensionless_unscaled) __all__ = ['can_have_arbitrary_unit', 'converters_and_unit', 'check_output', 'UFUNC_HELPERS', 'UNSUPPORTED_UFUNCS'] class UfuncHelpers(dict): """Registry of unit conversion functions to help ufunc evaluation. Based on dict for quick access, but with a missing method to load helpers for additional modules such as scipy.special and erfa. Such modules should be registered using ``register_module``. """ def __init__(self, *args, **kwargs): self.modules = {} self.UNSUPPORTED = set() # Upper-case for backwards compatibility self._lock = threading.RLock() super().__init__(*args, **kwargs) def register_module(self, module, names, importer): """Register (but do not import) a set of ufunc helpers. Parameters ---------- module : str Name of the module with the ufuncs (e.g., 'scipy.special'). names : iterable of str Names of the module ufuncs for which helpers are available. importer : callable Function that imports the ufuncs and returns a dict of helpers keyed by those ufuncs. If the value is `None`, the ufunc is explicitly *not* supported. """ with self._lock: self.modules[module] = {'names': names, 'importer': importer} def import_module(self, module): """Import the helpers from the given module using its helper function. Parameters ---------- module : str Name of the module. Has to have been registered beforehand. """ with self._lock: module_info = self.modules.pop(module) self.update(module_info['importer']()) def __missing__(self, ufunc): """Called if a ufunc is not found. Check if the ufunc is in any of the available modules, and, if so, import the helpers for that module. """ with self._lock: # Check if it was loaded while we waited for the lock if ufunc in self: return self[ufunc] if ufunc in self.UNSUPPORTED: raise TypeError(f"Cannot use ufunc '{ufunc.__name__}' with quantities") for module, module_info in list(self.modules.items()): if ufunc.__name__ in module_info['names']: # A ufunc with the same name is supported by this module. # Of course, this doesn't necessarily mean it is the # right module. So, we try let the importer do its work. # If it fails (e.g., for `scipy.special`), then that's # fine, just raise the TypeError. If it succeeds, but # the ufunc is not found, that is also fine: we will # enter __missing__ again and either find another # module or get the TypeError there. try: self.import_module(module) except ImportError: # pragma: no cover pass else: return self[ufunc] raise TypeError("unknown ufunc {}. If you believe this ufunc " "should be supported, please raise an issue on " "https://github.com/astropy/astropy" .format(ufunc.__name__)) def __setitem__(self, key, value): # Implementation note: in principle, we could just let `None` # mean that something is not implemented, but this means an # extra if clause for the output, slowing down the common # path where a ufunc is supported. with self._lock: if value is None: self.UNSUPPORTED |= {key} self.pop(key, None) else: super().__setitem__(key, value) self.UNSUPPORTED -= {key} UFUNC_HELPERS = UfuncHelpers() UNSUPPORTED_UFUNCS = UFUNC_HELPERS.UNSUPPORTED def can_have_arbitrary_unit(value): """Test whether the items in value can have arbitrary units Numbers whose value does not change upon a unit change, i.e., zero, infinity, or not-a-number Parameters ---------- value : number or array Returns ------- bool `True` if each member is either zero or not finite, `False` otherwise """ return np.all(np.logical_or(np.equal(value, 0.), ~np.isfinite(value))) def converters_and_unit(function, method, *args): """Determine the required converters and the unit of the ufunc result. Converters are functions required to convert to a ufunc's expected unit, e.g., radian for np.sin; or to ensure units of two inputs are consistent, e.g., for np.add. In these examples, the unit of the result would be dimensionless_unscaled for np.sin, and the same consistent unit for np.add. Parameters ---------- function : `~numpy.ufunc` Numpy universal function method : str Method with which the function is evaluated, e.g., '__call__', 'reduce', etc. *args : `~astropy.units.Quantity` or ndarray subclass Input arguments to the function Raises ------ TypeError : when the specified function cannot be used with Quantities (e.g., np.logical_or), or when the routine does not know how to handle the specified function (in which case an issue should be raised on https://github.com/astropy/astropy). UnitTypeError : when the conversion to the required (or consistent) units is not possible. """ # Check whether we support this ufunc, by getting the helper function # (defined in helpers) which returns a list of function(s) that convert the # input(s) to the unit required for the ufunc, as well as the unit the # result will have (a tuple of units if there are multiple outputs). ufunc_helper = UFUNC_HELPERS[function] if method == '__call__' or (method == 'outer' and function.nin == 2): # Find out the units of the arguments passed to the ufunc; usually, # at least one is a quantity, but for two-argument ufuncs, the second # could also be a Numpy array, etc. These are given unit=None. units = [getattr(arg, 'unit', None) for arg in args] # Determine possible conversion functions, and the result unit. converters, result_unit = ufunc_helper(function, *units) if any(converter is False for converter in converters): # for multi-argument ufuncs with a quantity and a non-quantity, # the quantity normally needs to be dimensionless, *except* # if the non-quantity can have arbitrary unit, i.e., when it # is all zero, infinity or NaN. In that case, the non-quantity # can just have the unit of the quantity # (this allows, e.g., `q > 0.` independent of unit) try: # Don't fold this loop in the test above: this rare case # should not make the common case slower. for i, converter in enumerate(converters): if converter is not False: continue if can_have_arbitrary_unit(args[i]): converters[i] = None else: raise UnitConversionError( "Can only apply '{}' function to " "dimensionless quantities when other " "argument is not a quantity (unless the " "latter is all zero/infinity/nan)" .format(function.__name__)) except TypeError: # _can_have_arbitrary_unit failed: arg could not be compared # with zero or checked to be finite. Then, ufunc will fail too. raise TypeError("Unsupported operand type(s) for ufunc {}: " "'{}'".format(function.__name__, ','.join([arg.__class__.__name__ for arg in args]))) # In the case of np.power and np.float_power, the unit itself needs to # be modified by an amount that depends on one of the input values, # so we need to treat this as a special case. # TODO: find a better way to deal with this. if result_unit is False: if units[0] is None or units[0] == dimensionless_unscaled: result_unit = dimensionless_unscaled else: if units[1] is None: p = args[1] else: p = args[1].to(dimensionless_unscaled).value try: result_unit = units[0] ** p except ValueError as exc: # Changing the unit does not work for, e.g., array-shaped # power, but this is OK if we're (scaled) dimensionless. try: converters[0] = units[0]._get_converter( dimensionless_unscaled) except UnitConversionError: raise exc else: result_unit = dimensionless_unscaled else: # methods for which the unit should stay the same nin = function.nin unit = getattr(args[0], 'unit', None) if method == 'at' and nin <= 2: if nin == 1: units = [unit] else: units = [unit, getattr(args[2], 'unit', None)] converters, result_unit = ufunc_helper(function, *units) # ensure there is no 'converter' for indices (2nd argument) converters.insert(1, None) elif method in {'reduce', 'accumulate', 'reduceat'} and nin == 2: converters, result_unit = ufunc_helper(function, unit, unit) converters = converters[:1] if method == 'reduceat': # add 'scale' for indices (2nd argument) converters += [None] else: if method in {'reduce', 'accumulate', 'reduceat', 'outer'} and nin != 2: raise ValueError(f"{method} only supported for binary functions") raise TypeError("Unexpected ufunc method {}. If this should " "work, please raise an issue on" "https://github.com/astropy/astropy" .format(method)) # for all but __call__ method, scaling is not allowed if unit is not None and result_unit is None: raise TypeError("Cannot use '{1}' method on ufunc {0} with a " "Quantity instance as the result is not a " "Quantity.".format(function.__name__, method)) if (converters[0] is not None or (unit is not None and unit is not result_unit and (not result_unit.is_equivalent(unit) or result_unit.to(unit) != 1.))): # NOTE: this cannot be the more logical UnitTypeError, since # then things like np.cumprod will not longer fail (they check # for TypeError). raise UnitsError("Cannot use '{1}' method on ufunc {0} with a " "Quantity instance as it would change the unit." .format(function.__name__, method)) return converters, result_unit def check_output(output, unit, inputs, function=None): """Check that function output can be stored in the output array given. Parameters ---------- output : array or `~astropy.units.Quantity` or tuple Array that should hold the function output (or tuple of such arrays). unit : `~astropy.units.Unit` or None, or tuple Unit that the output will have, or `None` for pure numbers (should be tuple of same if output is a tuple of outputs). inputs : tuple Any input arguments. These should be castable to the output. function : callable The function that will be producing the output. If given, used to give a more informative error message. Returns ------- arrays : ndarray view or tuple thereof The view(s) is of ``output``. Raises ------ UnitTypeError : If ``unit`` is inconsistent with the class of ``output`` TypeError : If the ``inputs`` cannot be cast safely to ``output``. """ if isinstance(output, tuple): return tuple(check_output(output_, unit_, inputs, function) for output_, unit_ in zip(output, unit)) # ``None`` indicates no actual array is needed. This can happen, e.g., # with np.modf(a, out=(None, b)). if output is None: return None if hasattr(output, '__quantity_subclass__'): # Check that we're not trying to store a plain Numpy array or a # Quantity with an inconsistent unit (e.g., not angular for Angle). if unit is None: raise TypeError("Cannot store non-quantity output{} in {} " "instance".format( (f" from {function.__name__} function" if function is not None else ""), type(output))) q_cls, subok = output.__quantity_subclass__(unit) if not (subok or q_cls is type(output)): raise UnitTypeError( "Cannot store output with unit '{}'{} " "in {} instance. Use {} instance instead." .format(unit, (f" from {function.__name__} function" if function is not None else ""), type(output), q_cls)) # check we can handle the dtype (e.g., that we are not int # when float is required). Note that we only do this for Quantity # output; for array output, we defer to numpy's default handling. # Also, any structured dtype are ignored (likely erfa ufuncs). # TODO: make more logical; is this necessary at all? if inputs and not output.dtype.names: result_type = np.result_type(*inputs) if not (result_type.names or np.can_cast(result_type, output.dtype, casting='same_kind')): raise TypeError("Arguments cannot be cast safely to inplace " "output with dtype={}".format(output.dtype)) # Turn into ndarray, so we do not loop into array_wrap/array_ufunc # if the output is used to store results of a function. return output.view(np.ndarray) else: # output is not a Quantity, so cannot obtain a unit. if not (unit is None or unit is dimensionless_unscaled): raise UnitTypeError("Cannot store quantity with dimension " "{}in a non-Quantity instance." .format("" if function is None else "resulting from {} function " .format(function.__name__))) return output
5f2ce3ec27fe23b15507b46cb5c5c3c49e8932ff30fafdf963603c1474246059
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Quantity helpers for the ERFA ufuncs.""" # Tests for these are in coordinates, not in units. from erfa import dt_eraASTROM, dt_eraLDBODY, dt_pv from erfa import ufunc as erfa_ufunc from astropy.units.core import UnitsError, UnitTypeError, dimensionless_unscaled from astropy.units.structured import StructuredUnit from . import UFUNC_HELPERS from .helpers import ( _d, get_converter, helper_invariant, helper_multiplication, helper_twoarg_invariant) erfa_ufuncs = ('s2c', 's2p', 'c2s', 'p2s', 'pm', 'pdp', 'pxp', 'rxp', 'cpv', 'p2pv', 'pv2p', 'pv2s', 'pvdpv', 'pvm', 'pvmpv', 'pvppv', 'pvstar', 'pvtob', 'pvu', 'pvup', 'pvxpv', 'rxpv', 's2pv', 's2xpv', 'starpv', 'sxpv', 'trxpv', 'gd2gc', 'gc2gd', 'ldn', 'aper', 'apio', 'atciq', 'atciqn', 'atciqz', 'aticq', 'atioq', 'atoiq') def has_matching_structure(unit, dtype): dtype_fields = dtype.fields if dtype_fields: return (isinstance(unit, StructuredUnit) and len(unit) == len(dtype_fields) and all(has_matching_structure(u, df_v[0]) for (u, df_v) in zip(unit.values(), dtype_fields.values()))) else: return not isinstance(unit, StructuredUnit) def check_structured_unit(unit, dtype): if not has_matching_structure(unit, dtype): msg = {dt_pv: 'pv', dt_eraLDBODY: 'ldbody', dt_eraASTROM: 'astrom'}.get(dtype, 'function') raise UnitTypeError(f'{msg} input needs unit matching dtype={dtype}.') def helper_s2c(f, unit1, unit2): from astropy.units.si import radian try: return [get_converter(unit1, radian), get_converter(unit2, radian)], dimensionless_unscaled except UnitsError: raise UnitTypeError("Can only apply '{}' function to " "quantities with angle units" .format(f.__name__)) def helper_s2p(f, unit1, unit2, unit3): from astropy.units.si import radian try: return [get_converter(unit1, radian), get_converter(unit2, radian), None], unit3 except UnitsError: raise UnitTypeError("Can only apply '{}' function to " "quantities with angle units" .format(f.__name__)) def helper_c2s(f, unit1): from astropy.units.si import radian return [None], (radian, radian) def helper_p2s(f, unit1): from astropy.units.si import radian return [None], (radian, radian, unit1) def helper_gc2gd(f, nounit, unit1): from astropy.units.si import m, radian if nounit is not None: raise UnitTypeError("ellipsoid cannot be a quantity.") try: return [None, get_converter(unit1, m)], (radian, radian, m, None) except UnitsError: raise UnitTypeError("Can only apply '{}' function to " "quantities with length units" .format(f.__name__)) def helper_gd2gc(f, nounit, unit1, unit2, unit3): from astropy.units.si import m, radian if nounit is not None: raise UnitTypeError("ellipsoid cannot be a quantity.") try: return [None, get_converter(unit1, radian), get_converter(unit2, radian), get_converter(unit3, m)], (m, None) except UnitsError: raise UnitTypeError("Can only apply '{}' function to lon, lat " "with angle and height with length units" .format(f.__name__)) def helper_p2pv(f, unit1): from astropy.units.si import s if isinstance(unit1, StructuredUnit): raise UnitTypeError("p vector unit cannot be a structured unit.") return [None], StructuredUnit((unit1, unit1 / s)) def helper_pv2p(f, unit1): check_structured_unit(unit1, dt_pv) return [None], unit1[0] def helper_pv2s(f, unit_pv): from astropy.units.si import radian check_structured_unit(unit_pv, dt_pv) ang_unit = radian * unit_pv[1] / unit_pv[0] return [None], (radian, radian, unit_pv[0], ang_unit, ang_unit, unit_pv[1]) def helper_s2pv(f, unit_theta, unit_phi, unit_r, unit_td, unit_pd, unit_rd): from astropy.units.si import radian time_unit = unit_r / unit_rd return [get_converter(unit_theta, radian), get_converter(unit_phi, radian), None, get_converter(unit_td, radian / time_unit), get_converter(unit_pd, radian / time_unit), None], StructuredUnit((unit_r, unit_rd)) def helper_pv_multiplication(f, unit1, unit2): check_structured_unit(unit1, dt_pv) check_structured_unit(unit2, dt_pv) result_unit = StructuredUnit((unit1[0] * unit2[0], unit1[1] * unit2[0])) converter = get_converter(unit2, StructuredUnit( (unit2[0], unit1[1] * unit2[0] / unit1[0]))) return [None, converter], result_unit def helper_pvm(f, unit1): check_structured_unit(unit1, dt_pv) return [None], (unit1[0], unit1[1]) def helper_pvstar(f, unit1): from astropy.units.astrophys import AU from astropy.units.si import arcsec, day, km, radian, s, year return [get_converter(unit1, StructuredUnit((AU, AU/day)))], ( radian, radian, radian / year, radian / year, arcsec, km / s, None) def helper_starpv(f, unit_ra, unit_dec, unit_pmr, unit_pmd, unit_px, unit_rv): from astropy.units.astrophys import AU from astropy.units.si import arcsec, day, km, radian, s, year return [get_converter(unit_ra, radian), get_converter(unit_dec, radian), get_converter(unit_pmr, radian/year), get_converter(unit_pmd, radian/year), get_converter(unit_px, arcsec), get_converter(unit_rv, km/s)], (StructuredUnit((AU, AU/day)), None) def helper_pvtob(f, unit_elong, unit_phi, unit_hm, unit_xp, unit_yp, unit_sp, unit_theta): from astropy.units.si import m, radian, s return [get_converter(unit_elong, radian), get_converter(unit_phi, radian), get_converter(unit_hm, m), get_converter(unit_xp, radian), get_converter(unit_yp, radian), get_converter(unit_sp, radian), get_converter(unit_theta, radian)], StructuredUnit((m, m/s)) def helper_pvu(f, unit_t, unit_pv): check_structured_unit(unit_pv, dt_pv) return [get_converter(unit_t, unit_pv[0]/unit_pv[1]), None], unit_pv def helper_pvup(f, unit_t, unit_pv): check_structured_unit(unit_pv, dt_pv) return [get_converter(unit_t, unit_pv[0]/unit_pv[1]), None], unit_pv[0] def helper_s2xpv(f, unit1, unit2, unit_pv): check_structured_unit(unit_pv, dt_pv) return [None, None, None], StructuredUnit((_d(unit1) * unit_pv[0], _d(unit2) * unit_pv[1])) def ldbody_unit(): from astropy.units.astrophys import AU, Msun from astropy.units.si import day, radian return StructuredUnit((Msun, radian, (AU, AU/day)), erfa_ufunc.dt_eraLDBODY) def astrom_unit(): from astropy.units.astrophys import AU from astropy.units.si import rad, year one = rel2c = dimensionless_unscaled return StructuredUnit((year, AU, one, AU, rel2c, one, one, rad, rad, rad, rad, one, one, rel2c, rad, rad, rad), erfa_ufunc.dt_eraASTROM) def helper_ldn(f, unit_b, unit_ob, unit_sc): from astropy.units.astrophys import AU return [get_converter(unit_b, ldbody_unit()), get_converter(unit_ob, AU), get_converter(_d(unit_sc), dimensionless_unscaled)], dimensionless_unscaled def helper_aper(f, unit_theta, unit_astrom): check_structured_unit(unit_astrom, dt_eraASTROM) unit_along = unit_astrom[7] # along if unit_astrom[14] is unit_along: # eral result_unit = unit_astrom else: result_units = tuple((unit_along if i == 14 else v) for i, v in enumerate(unit_astrom.values())) result_unit = unit_astrom.__class__(result_units, names=unit_astrom) return [get_converter(unit_theta, unit_along), None], result_unit def helper_apio(f, unit_sp, unit_theta, unit_elong, unit_phi, unit_hm, unit_xp, unit_yp, unit_refa, unit_refb): from astropy.units.si import m, radian return [get_converter(unit_sp, radian), get_converter(unit_theta, radian), get_converter(unit_elong, radian), get_converter(unit_phi, radian), get_converter(unit_hm, m), get_converter(unit_xp, radian), get_converter(unit_xp, radian), get_converter(unit_xp, radian), get_converter(unit_xp, radian)], astrom_unit() def helper_atciq(f, unit_rc, unit_dc, unit_pr, unit_pd, unit_px, unit_rv, unit_astrom): from astropy.units.si import arcsec, km, radian, s, year return [get_converter(unit_rc, radian), get_converter(unit_dc, radian), get_converter(unit_pr, radian / year), get_converter(unit_pd, radian / year), get_converter(unit_px, arcsec), get_converter(unit_rv, km / s), get_converter(unit_astrom, astrom_unit())], (radian, radian) def helper_atciqn(f, unit_rc, unit_dc, unit_pr, unit_pd, unit_px, unit_rv, unit_astrom, unit_b): from astropy.units.si import arcsec, km, radian, s, year return [get_converter(unit_rc, radian), get_converter(unit_dc, radian), get_converter(unit_pr, radian / year), get_converter(unit_pd, radian / year), get_converter(unit_px, arcsec), get_converter(unit_rv, km / s), get_converter(unit_astrom, astrom_unit()), get_converter(unit_b, ldbody_unit())], (radian, radian) def helper_atciqz_aticq(f, unit_rc, unit_dc, unit_astrom): from astropy.units.si import radian return [get_converter(unit_rc, radian), get_converter(unit_dc, radian), get_converter(unit_astrom, astrom_unit())], (radian, radian) def helper_aticqn(f, unit_rc, unit_dc, unit_astrom, unit_b): from astropy.units.si import radian return [get_converter(unit_rc, radian), get_converter(unit_dc, radian), get_converter(unit_astrom, astrom_unit()), get_converter(unit_b, ldbody_unit())], (radian, radian) def helper_atioq(f, unit_rc, unit_dc, unit_astrom): from astropy.units.si import radian return [get_converter(unit_rc, radian), get_converter(unit_dc, radian), get_converter(unit_astrom, astrom_unit())], (radian,)*5 def helper_atoiq(f, unit_type, unit_ri, unit_di, unit_astrom): from astropy.units.si import radian if unit_type is not None: raise UnitTypeError("argument 'type' should not have a unit") return [None, get_converter(unit_ri, radian), get_converter(unit_di, radian), get_converter(unit_astrom, astrom_unit())], (radian, radian) def get_erfa_helpers(): ERFA_HELPERS = {} ERFA_HELPERS[erfa_ufunc.s2c] = helper_s2c ERFA_HELPERS[erfa_ufunc.s2p] = helper_s2p ERFA_HELPERS[erfa_ufunc.c2s] = helper_c2s ERFA_HELPERS[erfa_ufunc.p2s] = helper_p2s ERFA_HELPERS[erfa_ufunc.pm] = helper_invariant ERFA_HELPERS[erfa_ufunc.cpv] = helper_invariant ERFA_HELPERS[erfa_ufunc.p2pv] = helper_p2pv ERFA_HELPERS[erfa_ufunc.pv2p] = helper_pv2p ERFA_HELPERS[erfa_ufunc.pv2s] = helper_pv2s ERFA_HELPERS[erfa_ufunc.pvdpv] = helper_pv_multiplication ERFA_HELPERS[erfa_ufunc.pvxpv] = helper_pv_multiplication ERFA_HELPERS[erfa_ufunc.pvm] = helper_pvm ERFA_HELPERS[erfa_ufunc.pvmpv] = helper_twoarg_invariant ERFA_HELPERS[erfa_ufunc.pvppv] = helper_twoarg_invariant ERFA_HELPERS[erfa_ufunc.pvstar] = helper_pvstar ERFA_HELPERS[erfa_ufunc.pvtob] = helper_pvtob ERFA_HELPERS[erfa_ufunc.pvu] = helper_pvu ERFA_HELPERS[erfa_ufunc.pvup] = helper_pvup ERFA_HELPERS[erfa_ufunc.pdp] = helper_multiplication ERFA_HELPERS[erfa_ufunc.pxp] = helper_multiplication ERFA_HELPERS[erfa_ufunc.rxp] = helper_multiplication ERFA_HELPERS[erfa_ufunc.rxpv] = helper_multiplication ERFA_HELPERS[erfa_ufunc.s2pv] = helper_s2pv ERFA_HELPERS[erfa_ufunc.s2xpv] = helper_s2xpv ERFA_HELPERS[erfa_ufunc.starpv] = helper_starpv ERFA_HELPERS[erfa_ufunc.sxpv] = helper_multiplication ERFA_HELPERS[erfa_ufunc.trxpv] = helper_multiplication ERFA_HELPERS[erfa_ufunc.gc2gd] = helper_gc2gd ERFA_HELPERS[erfa_ufunc.gd2gc] = helper_gd2gc ERFA_HELPERS[erfa_ufunc.ldn] = helper_ldn ERFA_HELPERS[erfa_ufunc.aper] = helper_aper ERFA_HELPERS[erfa_ufunc.apio] = helper_apio ERFA_HELPERS[erfa_ufunc.atciq] = helper_atciq ERFA_HELPERS[erfa_ufunc.atciqn] = helper_atciqn ERFA_HELPERS[erfa_ufunc.atciqz] = helper_atciqz_aticq ERFA_HELPERS[erfa_ufunc.aticq] = helper_atciqz_aticq ERFA_HELPERS[erfa_ufunc.aticqn] = helper_aticqn ERFA_HELPERS[erfa_ufunc.atioq] = helper_atioq ERFA_HELPERS[erfa_ufunc.atoiq] = helper_atoiq return ERFA_HELPERS UFUNC_HELPERS.register_module('erfa.ufunc', erfa_ufuncs, get_erfa_helpers)
2b7989b438fca672dccbed5470e1938557d4d2337a830af464c9f6a8882df556
# Licensed under a 3-clause BSD style license. See LICENSE.rst except # for parts explicitly labelled as being (largely) copies of numpy # implementations; for those, see licenses/NUMPY_LICENSE.rst. """Helpers for overriding numpy functions. We override numpy functions in `~astropy.units.Quantity.__array_function__`. In this module, the numpy functions are split in four groups, each of which has an associated `set` or `dict`: 1. SUBCLASS_SAFE_FUNCTIONS (set), if the numpy implementation supports Quantity; we pass on to ndarray.__array_function__. 2. FUNCTION_HELPERS (dict), if the numpy implementation is usable after converting quantities to arrays with suitable units, and possibly setting units on the result. 3. DISPATCHED_FUNCTIONS (dict), if the function makes sense but requires a Quantity-specific implementation 4. UNSUPPORTED_FUNCTIONS (set), if the function does not make sense. For the FUNCTION_HELPERS `dict`, the value is a function that does the unit conversion. It should take the same arguments as the numpy function would (though one can use ``*args`` and ``**kwargs``) and return a tuple of ``args, kwargs, unit, out``, where ``args`` and ``kwargs`` will be will be passed on to the numpy implementation, ``unit`` is a possible unit of the result (`None` if it should not be converted to Quantity), and ``out`` is a possible output Quantity passed in, which will be filled in-place. For the DISPATCHED_FUNCTIONS `dict`, the value is a function that implements the numpy functionality for Quantity input. It should return a tuple of ``result, unit, out``, where ``result`` is generally a plain array with the result, and ``unit`` and ``out`` are as above. If unit is `None`, result gets returned directly, so one can also return a Quantity directly using ``quantity_result, None, None``. """ import functools import operator import numpy as np from numpy.lib import recfunctions as rfn from astropy.units.core import UnitsError, UnitTypeError, dimensionless_unscaled from astropy.utils import isiterable from astropy.utils.compat import NUMPY_LT_1_20, NUMPY_LT_1_23 # In 1.17, overrides are enabled by default, but it is still possible to # turn them off using an environment variable. We use getattr since it # is planned to remove that possibility in later numpy versions. ARRAY_FUNCTION_ENABLED = getattr(np.core.overrides, 'ENABLE_ARRAY_FUNCTION', True) SUBCLASS_SAFE_FUNCTIONS = set() """Functions with implementations supporting subclasses like Quantity.""" FUNCTION_HELPERS = {} """Functions with implementations usable with proper unit conversion.""" DISPATCHED_FUNCTIONS = {} """Functions for which we provide our own implementation.""" UNSUPPORTED_FUNCTIONS = set() """Functions that cannot sensibly be used with quantities.""" SUBCLASS_SAFE_FUNCTIONS |= { np.shape, np.size, np.ndim, np.reshape, np.ravel, np.moveaxis, np.rollaxis, np.swapaxes, np.transpose, np.atleast_1d, np.atleast_2d, np.atleast_3d, np.expand_dims, np.squeeze, np.broadcast_to, np.broadcast_arrays, np.flip, np.fliplr, np.flipud, np.rot90, np.argmin, np.argmax, np.argsort, np.lexsort, np.searchsorted, np.nonzero, np.argwhere, np.flatnonzero, np.diag_indices_from, np.triu_indices_from, np.tril_indices_from, np.real, np.imag, np.diagonal, np.diagflat, np.empty_like, np.compress, np.extract, np.delete, np.trim_zeros, np.roll, np.take, np.put, np.fill_diagonal, np.tile, np.repeat, np.split, np.array_split, np.hsplit, np.vsplit, np.dsplit, np.stack, np.column_stack, np.hstack, np.vstack, np.dstack, np.amax, np.amin, np.ptp, np.sum, np.cumsum, np.prod, np.product, np.cumprod, np.cumproduct, np.round, np.around, np.fix, np.angle, np.i0, np.clip, np.isposinf, np.isneginf, np.isreal, np.iscomplex, np.average, np.mean, np.std, np.var, np.median, np.trace, np.nanmax, np.nanmin, np.nanargmin, np.nanargmax, np.nanmean, np.nanmedian, np.nansum, np.nancumsum, np.nanstd, np.nanvar, np.nanprod, np.nancumprod, np.einsum_path, np.trapz, np.linspace, np.sort, np.msort, np.partition, np.meshgrid, np.common_type, np.result_type, np.can_cast, np.min_scalar_type, np.iscomplexobj, np.isrealobj, np.shares_memory, np.may_share_memory, np.apply_along_axis, np.take_along_axis, np.put_along_axis, np.linalg.cond, np.linalg.multi_dot} # Implemented as methods on Quantity: # np.ediff1d is from setops, but we support it anyway; the others # currently return NotImplementedError. # TODO: move latter to UNSUPPORTED? Would raise TypeError instead. SUBCLASS_SAFE_FUNCTIONS |= {np.ediff1d} # Nonsensical for quantities. UNSUPPORTED_FUNCTIONS |= { np.packbits, np.unpackbits, np.unravel_index, np.ravel_multi_index, np.ix_, np.cov, np.corrcoef, np.busday_count, np.busday_offset, np.datetime_as_string, np.is_busday, np.all, np.any, np.sometrue, np.alltrue} # Could be supported if we had a natural logarithm unit. UNSUPPORTED_FUNCTIONS |= {np.linalg.slogdet} # TODO! support whichever of these functions it makes sense to support TBD_FUNCTIONS = { rfn.drop_fields, rfn.rename_fields, rfn.append_fields, rfn.join_by, rfn.apply_along_fields, rfn.assign_fields_by_name, rfn.merge_arrays, rfn.find_duplicates, rfn.recursive_fill_fields, rfn.require_fields, rfn.repack_fields, rfn.stack_arrays } UNSUPPORTED_FUNCTIONS |= TBD_FUNCTIONS # The following are not just unsupported, but so unlikely to be thought # to be supported that we ignore them in testing. (Kept in a separate # variable so that we can check consistency in the test routine - # test_quantity_non_ufuncs.py) IGNORED_FUNCTIONS = { # I/O - useless for Quantity, since no way to store the unit. np.save, np.savez, np.savetxt, np.savez_compressed, # Polynomials np.poly, np.polyadd, np.polyder, np.polydiv, np.polyfit, np.polyint, np.polymul, np.polysub, np.polyval, np.roots, np.vander, # functions taking record arrays (which are deprecated) rfn.rec_append_fields, rfn.rec_drop_fields, rfn.rec_join, } if NUMPY_LT_1_20: # financial IGNORED_FUNCTIONS |= {np.fv, np.ipmt, np.irr, np.mirr, np.nper, np.npv, np.pmt, np.ppmt, np.pv, np.rate} if NUMPY_LT_1_23: IGNORED_FUNCTIONS |= { # Deprecated, removed in numpy 1.23 np.asscalar, np.alen, } UNSUPPORTED_FUNCTIONS |= IGNORED_FUNCTIONS class FunctionAssigner: def __init__(self, assignments): self.assignments = assignments def __call__(self, f=None, helps=None, module=np): """Add a helper to a numpy function. Normally used as a decorator. If ``helps`` is given, it should be the numpy function helped (or an iterable of numpy functions helped). If ``helps`` is not given, it is assumed the function helped is the numpy function with the same name as the decorated function. """ if f is not None: if helps is None: helps = getattr(module, f.__name__) if not isiterable(helps): helps = (helps,) for h in helps: self.assignments[h] = f return f elif helps is not None or module is not np: return functools.partial(self.__call__, helps=helps, module=module) else: # pragma: no cover raise ValueError("function_helper requires at least one argument.") function_helper = FunctionAssigner(FUNCTION_HELPERS) dispatched_function = FunctionAssigner(DISPATCHED_FUNCTIONS) @function_helper(helps={ np.copy, np.asfarray, np.real_if_close, np.sort_complex, np.resize, np.fft.fft, np.fft.ifft, np.fft.rfft, np.fft.irfft, np.fft.fft2, np.fft.ifft2, np.fft.rfft2, np.fft.irfft2, np.fft.fftn, np.fft.ifftn, np.fft.rfftn, np.fft.irfftn, np.fft.hfft, np.fft.ihfft, np.linalg.eigvals, np.linalg.eigvalsh}) def invariant_a_helper(a, *args, **kwargs): return (a.view(np.ndarray),) + args, kwargs, a.unit, None @function_helper(helps={np.tril, np.triu}) def invariant_m_helper(m, *args, **kwargs): return (m.view(np.ndarray),) + args, kwargs, m.unit, None @function_helper(helps={np.fft.fftshift, np.fft.ifftshift}) def invariant_x_helper(x, *args, **kwargs): return (x.view(np.ndarray),) + args, kwargs, x.unit, None # Note that ones_like does *not* work by default since if one creates an empty # array with a unit, one cannot just fill it with unity. Indeed, in this # respect, it is a bit of an odd function for Quantity. On the other hand, it # matches the idea that a unit is the same as the quantity with that unit and # value of 1. Also, it used to work without __array_function__. # zeros_like does work by default for regular quantities, because numpy first # creates an empty array with the unit and then fills it with 0 (which can have # any unit), but for structured dtype this fails (0 cannot have an arbitrary # structured unit), so we include it here too. @function_helper(helps={np.ones_like, np.zeros_like}) def like_helper(a, *args, **kwargs): subok = args[2] if len(args) > 2 else kwargs.pop('subok', True) unit = a.unit if subok else None return (a.view(np.ndarray),) + args, kwargs, unit, None @function_helper def sinc(x): from astropy.units.si import radian try: x = x.to_value(radian) except UnitsError: raise UnitTypeError("Can only apply 'sinc' function to " "quantities with angle units") return (x,), {}, dimensionless_unscaled, None @dispatched_function def unwrap(p, discont=None, axis=-1): from astropy.units.si import radian if discont is None: discont = np.pi << radian p, discont = _as_quantities(p, discont) result = np.unwrap.__wrapped__(p.to_value(radian), discont.to_value(radian), axis=axis) result = radian.to(p.unit, result) return result, p.unit, None @function_helper def argpartition(a, *args, **kwargs): return (a.view(np.ndarray),) + args, kwargs, None, None @function_helper def full_like(a, fill_value, *args, **kwargs): unit = a.unit if kwargs.get('subok', True) else None return (a.view(np.ndarray), a._to_own_unit(fill_value)) + args, kwargs, unit, None @function_helper def putmask(a, mask, values): from astropy.units import Quantity if isinstance(a, Quantity): return (a.view(np.ndarray), mask, a._to_own_unit(values)), {}, a.unit, None elif isinstance(values, Quantity): return (a, mask, values.to_value(dimensionless_unscaled)), {}, None, None else: raise NotImplementedError @function_helper def place(arr, mask, vals): from astropy.units import Quantity if isinstance(arr, Quantity): return (arr.view(np.ndarray), mask, arr._to_own_unit(vals)), {}, arr.unit, None elif isinstance(vals, Quantity): return (arr, mask, vals.to_value(dimensionless_unscaled)), {}, None, None else: raise NotImplementedError @function_helper def copyto(dst, src, *args, **kwargs): from astropy.units import Quantity if isinstance(dst, Quantity): return ((dst.view(np.ndarray), dst._to_own_unit(src)) + args, kwargs, None, None) elif isinstance(src, Quantity): return ((dst, src.to_value(dimensionless_unscaled)) + args, kwargs, None, None) else: raise NotImplementedError @function_helper def nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None): nan = x._to_own_unit(nan) if posinf is not None: posinf = x._to_own_unit(posinf) if neginf is not None: neginf = x._to_own_unit(neginf) return ((x.view(np.ndarray),), dict(copy=True, nan=nan, posinf=posinf, neginf=neginf), x.unit, None) def _as_quantity(a): """Convert argument to a Quantity (or raise NotImplementedError).""" from astropy.units import Quantity try: return Quantity(a, copy=False, subok=True) except Exception: # If we cannot convert to Quantity, we should just bail. raise NotImplementedError def _as_quantities(*args): """Convert arguments to Quantity (or raise NotImplentedError).""" from astropy.units import Quantity try: return tuple(Quantity(a, copy=False, subok=True) for a in args) except Exception: # If we cannot convert to Quantity, we should just bail. raise NotImplementedError def _quantities2arrays(*args, unit_from_first=False): """Convert to arrays in units of the first argument that has a unit. If unit_from_first, take the unit of the first argument regardless whether it actually defined a unit (e.g., dimensionless for arrays). """ # Turn first argument into a quantity. q = _as_quantity(args[0]) if len(args) == 1: return (q.value,), q.unit # If we care about the unit being explicit, then check whether this # argument actually had a unit, or was likely inferred. if not unit_from_first and (q.unit is q._default_unit and not hasattr(args[0], 'unit')): # Here, the argument could still be things like [10*u.one, 11.*u.one]), # i.e., properly dimensionless. So, we only override with anything # that has a unit not equivalent to dimensionless (fine to ignore other # dimensionless units pass, even if explicitly given). for arg in args[1:]: trial = _as_quantity(arg) if not trial.unit.is_equivalent(q.unit): # Use any explicit unit not equivalent to dimensionless. q = trial break # We use the private _to_own_unit method here instead of just # converting everything to quantity and then do .to_value(qs0.unit) # as we want to allow arbitrary unit for 0, inf, and nan. try: arrays = tuple((q._to_own_unit(arg)) for arg in args) except TypeError: raise NotImplementedError return arrays, q.unit def _iterable_helper(*args, out=None, **kwargs): """Convert arguments to Quantity, and treat possible 'out'.""" from astropy.units import Quantity if out is not None: if isinstance(out, Quantity): kwargs['out'] = out.view(np.ndarray) else: # TODO: for an ndarray output, we could in principle # try converting all Quantity to dimensionless. raise NotImplementedError arrays, unit = _quantities2arrays(*args) return arrays, kwargs, unit, out @function_helper def concatenate(arrays, axis=0, out=None, **kwargs): # TODO: make this smarter by creating an appropriately shaped # empty output array and just filling it. arrays, kwargs, unit, out = _iterable_helper(*arrays, out=out, axis=axis, **kwargs) return (arrays,), kwargs, unit, out @dispatched_function def block(arrays): # We need to override block since the numpy implementation can take two # different paths, one for concatenation, one for creating a large empty # result array in which parts are set. Each assumes array input and # cannot be used directly. Since it would be very costly to inspect all # arrays and then turn them back into a nested list, we just copy here the # second implementation, np.core.shape_base._block_slicing, since it is # shortest and easiest. (arrays, list_ndim, result_ndim, final_size) = np.core.shape_base._block_setup(arrays) shape, slices, arrays = np.core.shape_base._block_info_recursion( arrays, list_ndim, result_ndim) # Here, one line of difference! arrays, unit = _quantities2arrays(*arrays) # Back to _block_slicing dtype = np.result_type(*[arr.dtype for arr in arrays]) F_order = all(arr.flags['F_CONTIGUOUS'] for arr in arrays) C_order = all(arr.flags['C_CONTIGUOUS'] for arr in arrays) order = 'F' if F_order and not C_order else 'C' result = np.empty(shape=shape, dtype=dtype, order=order) for the_slice, arr in zip(slices, arrays): result[(Ellipsis,) + the_slice] = arr return result, unit, None @function_helper def choose(a, choices, out=None, **kwargs): choices, kwargs, unit, out = _iterable_helper(*choices, out=out, **kwargs) return (a, choices,), kwargs, unit, out @function_helper def select(condlist, choicelist, default=0): choicelist, kwargs, unit, out = _iterable_helper(*choicelist) if default != 0: default = (1 * unit)._to_own_unit(default) return (condlist, choicelist, default), kwargs, unit, out @dispatched_function def piecewise(x, condlist, funclist, *args, **kw): from astropy.units import Quantity # Copied implementation from numpy.lib.function_base.piecewise, # taking care of units of function outputs. n2 = len(funclist) # undocumented: single condition is promoted to a list of one condition if np.isscalar(condlist) or ( not isinstance(condlist[0], (list, np.ndarray)) and x.ndim != 0): condlist = [condlist] if any(isinstance(c, Quantity) for c in condlist): raise NotImplementedError condlist = np.array(condlist, dtype=bool) n = len(condlist) if n == n2 - 1: # compute the "otherwise" condition. condelse = ~np.any(condlist, axis=0, keepdims=True) condlist = np.concatenate([condlist, condelse], axis=0) n += 1 elif n != n2: raise ValueError( f"with {n} condition(s), either {n} or {n + 1} functions are expected" ) y = np.zeros(x.shape, x.dtype) where = [] what = [] for k in range(n): item = funclist[k] if not callable(item): where.append(condlist[k]) what.append(item) else: vals = x[condlist[k]] if vals.size > 0: where.append(condlist[k]) what.append(item(vals, *args, **kw)) what, unit = _quantities2arrays(*what) for item, value in zip(where, what): y[item] = value return y, unit, None @function_helper def append(arr, values, *args, **kwargs): arrays, unit = _quantities2arrays(arr, values, unit_from_first=True) return arrays + args, kwargs, unit, None @function_helper def insert(arr, obj, values, *args, **kwargs): from astropy.units import Quantity if isinstance(obj, Quantity): raise NotImplementedError (arr, values), unit = _quantities2arrays(arr, values, unit_from_first=True) return (arr, obj, values) + args, kwargs, unit, None @function_helper def pad(array, pad_width, mode='constant', **kwargs): # pad dispatches only on array, so that must be a Quantity. for key in 'constant_values', 'end_values': value = kwargs.pop(key, None) if value is None: continue if not isinstance(value, tuple): value = (value,) new_value = [] for v in value: new_value.append( tuple(array._to_own_unit(_v) for _v in v) if isinstance(v, tuple) else array._to_own_unit(v)) kwargs[key] = new_value return (array.view(np.ndarray), pad_width, mode), kwargs, array.unit, None @function_helper def where(condition, *args): from astropy.units import Quantity if isinstance(condition, Quantity) or len(args) != 2: raise NotImplementedError args, unit = _quantities2arrays(*args) return (condition,) + args, {}, unit, None @function_helper(helps=({np.quantile, np.nanquantile})) def quantile(a, q, *args, _q_unit=dimensionless_unscaled, **kwargs): if len(args) >= 2: out = args[1] args = args[:1] + args[2:] else: out = kwargs.pop('out', None) from astropy.units import Quantity if isinstance(q, Quantity): q = q.to_value(_q_unit) (a,), kwargs, unit, out = _iterable_helper(a, out=out, **kwargs) return (a, q) + args, kwargs, unit, out @function_helper(helps={np.percentile, np.nanpercentile}) def percentile(a, q, *args, **kwargs): from astropy.units import percent return quantile(a, q, *args, _q_unit=percent, **kwargs) @function_helper def count_nonzero(a, *args, **kwargs): return (a.value,) + args, kwargs, None, None @function_helper(helps={np.isclose, np.allclose}) def close(a, b, rtol=1e-05, atol=1e-08, *args, **kwargs): from astropy.units import Quantity (a, b), unit = _quantities2arrays(a, b, unit_from_first=True) # Allow number without a unit as having the unit. atol = Quantity(atol, unit).value return (a, b, rtol, atol) + args, kwargs, None, None @function_helper def array_equal(a1, a2): args, unit = _quantities2arrays(a1, a2) return args, {}, None, None @function_helper def array_equiv(a1, a2): args, unit = _quantities2arrays(a1, a2) return args, {}, None, None @function_helper(helps={np.dot, np.outer}) def dot_like(a, b, out=None): from astropy.units import Quantity a, b = _as_quantities(a, b) unit = a.unit * b.unit if out is not None: if not isinstance(out, Quantity): raise NotImplementedError return tuple(x.view(np.ndarray) for x in (a, b, out)), {}, unit, out else: return (a.view(np.ndarray), b.view(np.ndarray)), {}, unit, None @function_helper(helps={np.cross, np.inner, np.vdot, np.tensordot, np.kron, np.correlate, np.convolve}) def cross_like(a, b, *args, **kwargs): a, b = _as_quantities(a, b) unit = a.unit * b.unit return (a.view(np.ndarray), b.view(np.ndarray)) + args, kwargs, unit, None @function_helper def einsum(subscripts, *operands, out=None, **kwargs): from astropy.units import Quantity if not isinstance(subscripts, str): raise ValueError('only "subscripts" string mode supported for einsum.') if out is not None: if not isinstance(out, Quantity): raise NotImplementedError else: kwargs['out'] = out.view(np.ndarray) qs = _as_quantities(*operands) unit = functools.reduce(operator.mul, (q.unit for q in qs), dimensionless_unscaled) arrays = tuple(q.view(np.ndarray) for q in qs) return (subscripts,) + arrays, kwargs, unit, out @function_helper def bincount(x, weights=None, minlength=0): from astropy.units import Quantity if isinstance(x, Quantity): raise NotImplementedError return (x, weights.value, minlength), {}, weights.unit, None @function_helper def digitize(x, bins, *args, **kwargs): arrays, unit = _quantities2arrays(x, bins, unit_from_first=True) return arrays + args, kwargs, None, None def _check_bins(bins, unit): from astropy.units import Quantity check = _as_quantity(bins) if check.ndim > 0: return check.to_value(unit) elif isinstance(bins, Quantity): # bins should be an integer (or at least definitely not a Quantity). raise NotImplementedError else: return bins @function_helper def histogram(a, bins=10, range=None, weights=None, density=None): if weights is not None: weights = _as_quantity(weights) unit = weights.unit weights = weights.value else: unit = None a = _as_quantity(a) if not isinstance(bins, str): bins = _check_bins(bins, a.unit) if density: unit = (unit or 1) / a.unit return ((a.value, bins, range), {'weights': weights, 'density': density}, (unit, a.unit), None) @function_helper(helps=np.histogram_bin_edges) def histogram_bin_edges(a, bins=10, range=None, weights=None): # weights is currently unused a = _as_quantity(a) if not isinstance(bins, str): bins = _check_bins(bins, a.unit) return (a.value, bins, range, weights), {}, a.unit, None @function_helper def histogram2d(x, y, bins=10, range=None, weights=None, density=None): from astropy.units import Quantity if weights is not None: weights = _as_quantity(weights) unit = weights.unit weights = weights.value else: unit = None x, y = _as_quantities(x, y) try: n = len(bins) except TypeError: # bins should be an integer (or at least definitely not a Quantity). if isinstance(bins, Quantity): raise NotImplementedError else: if n == 1: raise NotImplementedError elif n == 2 and not isinstance(bins, Quantity): bins = [_check_bins(b, unit) for (b, unit) in zip(bins, (x.unit, y.unit))] else: bins = _check_bins(bins, x.unit) y = y.to(x.unit) if density: unit = (unit or 1) / x.unit / y.unit return ((x.value, y.value, bins, range), {'weights': weights, 'density': density}, (unit, x.unit, y.unit), None) @function_helper def histogramdd(sample, bins=10, range=None, weights=None, density=None): if weights is not None: weights = _as_quantity(weights) unit = weights.unit weights = weights.value else: unit = None try: # Sample is an ND-array. _, D = sample.shape except (AttributeError, ValueError): # Sample is a sequence of 1D arrays. sample = _as_quantities(*sample) sample_units = [s.unit for s in sample] sample = [s.value for s in sample] D = len(sample) else: sample = _as_quantity(sample) sample_units = [sample.unit] * D try: M = len(bins) except TypeError: # bins should be an integer from astropy.units import Quantity if isinstance(bins, Quantity): raise NotImplementedError else: if M != D: raise ValueError( 'The dimension of bins must be equal to the dimension of the ' ' sample x.') bins = [_check_bins(b, unit) for (b, unit) in zip(bins, sample_units)] if density: unit = functools.reduce(operator.truediv, sample_units, (unit or 1)) return ((sample, bins, range), {'weights': weights, 'density': density}, (unit, sample_units), None) @function_helper def diff(a, n=1, axis=-1, prepend=np._NoValue, append=np._NoValue): a = _as_quantity(a) if prepend is not np._NoValue: prepend = _as_quantity(prepend).to_value(a.unit) if append is not np._NoValue: append = _as_quantity(append).to_value(a.unit) return (a.value, n, axis, prepend, append), {}, a.unit, None @function_helper def gradient(f, *varargs, **kwargs): f = _as_quantity(f) axis = kwargs.get('axis', None) if axis is None: n_axis = f.ndim elif isinstance(axis, tuple): n_axis = len(axis) else: n_axis = 1 if varargs: varargs = _as_quantities(*varargs) if len(varargs) == 1 and n_axis > 1: varargs = varargs * n_axis if varargs: units = [f.unit / q.unit for q in varargs] varargs = tuple(q.value for q in varargs) else: units = [f.unit] * n_axis if len(units) == 1: units = units[0] return (f.value,) + varargs, kwargs, units, None @function_helper def logspace(start, stop, *args, **kwargs): from astropy.units import LogQuantity, dex if (not isinstance(start, LogQuantity) or not isinstance(stop, LogQuantity)): raise NotImplementedError # Get unit from end point as for linspace. stop = stop.to(dex(stop.unit.physical_unit)) start = start.to(stop.unit) unit = stop.unit.physical_unit return (start.value, stop.value) + args, kwargs, unit, None @function_helper def geomspace(start, stop, *args, **kwargs): # Get unit from end point as for linspace. (stop, start), unit = _quantities2arrays(stop, start) return (start, stop) + args, kwargs, unit, None @function_helper def interp(x, xp, fp, *args, **kwargs): from astropy.units import Quantity (x, xp), _ = _quantities2arrays(x, xp) if isinstance(fp, Quantity): unit = fp.unit fp = fp.value else: unit = None return (x, xp, fp) + args, kwargs, unit, None @function_helper def unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None): unit = ar.unit n_index = sum(bool(i) for i in (return_index, return_inverse, return_counts)) if n_index: unit = [unit] + n_index * [None] return (ar.value, return_index, return_inverse, return_counts, axis), {}, unit, None @function_helper def intersect1d(ar1, ar2, assume_unique=False, return_indices=False): (ar1, ar2), unit = _quantities2arrays(ar1, ar2) if return_indices: unit = [unit, None, None] return (ar1, ar2, assume_unique, return_indices), {}, unit, None @function_helper(helps=(np.setxor1d, np.union1d, np.setdiff1d)) def twosetop(ar1, ar2, *args, **kwargs): (ar1, ar2), unit = _quantities2arrays(ar1, ar2) return (ar1, ar2) + args, kwargs, unit, None @function_helper(helps=(np.isin, np.in1d)) def setcheckop(ar1, ar2, *args, **kwargs): # This tests whether ar1 is in ar2, so we should change the unit of # a1 to that of a2. (ar2, ar1), unit = _quantities2arrays(ar2, ar1) return (ar1, ar2) + args, kwargs, None, None @dispatched_function def apply_over_axes(func, a, axes): # Copied straight from numpy/lib/shape_base, just to omit its # val = asarray(a); if only it had been asanyarray, or just not there # since a is assumed to an an array in the next line... # Which is what we do here - we can only get here if it is a Quantity. val = a N = a.ndim if np.array(axes).ndim == 0: axes = (axes,) for axis in axes: if axis < 0: axis = N + axis args = (val, axis) res = func(*args) if res.ndim == val.ndim: val = res else: res = np.expand_dims(res, axis) if res.ndim == val.ndim: val = res else: raise ValueError("function is not returning " "an array of the correct shape") # Returning unit is None to signal nothing should happen to # the output. return val, None, None @dispatched_function def array_repr(arr, *args, **kwargs): # TODO: The addition of "unit='...'" doesn't worry about line # length. Could copy & adapt _array_repr_implementation from # numpy.core.arrayprint.py cls_name = arr.__class__.__name__ fake_name = '_' * len(cls_name) fake_cls = type(fake_name, (np.ndarray,), {}) no_unit = np.array_repr(arr.view(fake_cls), *args, **kwargs).replace(fake_name, cls_name) unit_part = f"unit='{arr.unit}'" pre, dtype, post = no_unit.rpartition('dtype') if dtype: return f"{pre}{unit_part}, {dtype}{post}", None, None else: return f"{no_unit[:-1]}, {unit_part})", None, None @dispatched_function def array_str(arr, *args, **kwargs): # TODO: The addition of the unit doesn't worry about line length. # Could copy & adapt _array_repr_implementation from # numpy.core.arrayprint.py no_unit = np.array_str(arr.value, *args, **kwargs) return no_unit + arr._unitstr, None, None @function_helper def array2string(a, *args, **kwargs): # array2string breaks on quantities as it tries to turn individual # items into float, which works only for dimensionless. Since the # defaults would not keep any unit anyway, this is rather pointless - # we're better off just passing on the array view. However, one can # also work around this by passing on a formatter (as is done in Angle). # So, we do nothing if the formatter argument is present and has the # relevant formatter for our dtype. formatter = args[6] if len(args) >= 7 else kwargs.get('formatter', None) if formatter is None: a = a.value else: # See whether it covers our dtype. from numpy.core.arrayprint import _get_format_function with np.printoptions(formatter=formatter) as options: try: ff = _get_format_function(a.value, **options) except Exception: # Shouldn't happen, but possibly we're just not being smart # enough, so let's pass things on as is. pass else: # If the selected format function is that of numpy, we know # things will fail if 'numpy' in ff.__module__: a = a.value return (a,) + args, kwargs, None, None @function_helper def diag(v, *args, **kwargs): # Function works for *getting* the diagonal, but not *setting*. # So, override always. return (v.value,) + args, kwargs, v.unit, None @function_helper(module=np.linalg) def svd(a, full_matrices=True, compute_uv=True, hermitian=False): unit = a.unit if compute_uv: unit = (None, unit, None) return ((a.view(np.ndarray), full_matrices, compute_uv, hermitian), {}, unit, None) def _interpret_tol(tol, unit): from astropy.units import Quantity return Quantity(tol, unit).value @function_helper(module=np.linalg) def matrix_rank(M, tol=None, *args, **kwargs): if tol is not None: tol = _interpret_tol(tol, M.unit) return (M.view(np.ndarray), tol) + args, kwargs, None, None @function_helper(helps={np.linalg.inv, np.linalg.tensorinv}) def inv(a, *args, **kwargs): return (a.view(np.ndarray),)+args, kwargs, 1/a.unit, None @function_helper(module=np.linalg) def pinv(a, rcond=1e-15, *args, **kwargs): rcond = _interpret_tol(rcond, a.unit) return (a.view(np.ndarray), rcond) + args, kwargs, 1/a.unit, None @function_helper(module=np.linalg) def det(a): return (a.view(np.ndarray),), {}, a.unit ** a.shape[-1], None @function_helper(helps={np.linalg.solve, np.linalg.tensorsolve}) def solve(a, b, *args, **kwargs): a, b = _as_quantities(a, b) return ((a.view(np.ndarray), b.view(np.ndarray)) + args, kwargs, b.unit / a.unit, None) @function_helper(module=np.linalg) def lstsq(a, b, rcond="warn"): a, b = _as_quantities(a, b) if rcond not in (None, "warn", -1): rcond = _interpret_tol(rcond, a.unit) return ((a.view(np.ndarray), b.view(np.ndarray), rcond), {}, (b.unit / a.unit, b.unit ** 2, None, a.unit), None) @function_helper(module=np.linalg) def norm(x, ord=None, *args, **kwargs): if ord == 0: from astropy.units import dimensionless_unscaled unit = dimensionless_unscaled else: unit = x.unit return (x.view(np.ndarray), ord)+args, kwargs, unit, None @function_helper(module=np.linalg) def matrix_power(a, n): return (a.value, n), {}, a.unit ** n, None @function_helper(module=np.linalg) def cholesky(a): return (a.value,), {}, a.unit ** 0.5, None @function_helper(module=np.linalg) def qr(a, mode='reduced'): if mode.startswith('e'): units = None elif mode == 'r': units = a.unit else: from astropy.units import dimensionless_unscaled units = (dimensionless_unscaled, a.unit) return (a.value, mode), {}, units, None @function_helper(helps={np.linalg.eig, np.linalg.eigh}) def eig(a, *args, **kwargs): from astropy.units import dimensionless_unscaled return (a.value,)+args, kwargs, (a.unit, dimensionless_unscaled), None @function_helper(module=np.lib.recfunctions) def structured_to_unstructured(arr, *args, **kwargs): """ Convert a structured quantity to an unstructured one. This only works if all the units are compatible. """ from astropy.units import StructuredUnit target_unit = arr.unit.values()[0] def replace_unit(x): if isinstance(x, StructuredUnit): return x._recursively_apply(replace_unit) else: return target_unit to_unit = arr.unit._recursively_apply(replace_unit) return (arr.to_value(to_unit), ) + args, kwargs, target_unit, None def _build_structured_unit(dtype, unit): """Build structured unit from dtype Parameters ---------- dtype : `numpy.dtype` unit : `astropy.units.Unit` Returns ------- `astropy.units.Unit` or tuple """ if dtype.fields is None: return unit return tuple(_build_structured_unit(v[0], unit) for v in dtype.fields.values()) @function_helper(module=np.lib.recfunctions) def unstructured_to_structured(arr, dtype, *args, **kwargs): from astropy.units import StructuredUnit target_unit = StructuredUnit(_build_structured_unit(dtype, arr.unit)) return (arr.to_value(arr.unit), dtype) + args, kwargs, target_unit, None
fb64a76d63b3543a2d918e5d40fd1eeccc478f6d02cf21323a8d9d33991a57f3
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Quantity helpers for the scipy.special ufuncs. Available ufuncs in this module are at https://docs.scipy.org/doc/scipy/reference/special.html """ import numpy as np from astropy.units.core import UnitsError, UnitTypeError, dimensionless_unscaled from . import UFUNC_HELPERS from .helpers import ( get_converter, helper_cbrt, helper_dimensionless_to_dimensionless, helper_two_arg_dimensionless) # ufuncs that require dimensionless input and give dimensionless output. dimensionless_to_dimensionless_sps_ufuncs = ( 'erf', 'erfc', 'erfcx', 'erfi', 'erfinv', 'erfcinv', 'gamma', 'gammaln', 'loggamma', 'gammasgn', 'psi', 'rgamma', 'digamma', 'wofz', 'dawsn', 'entr', 'exprel', 'expm1', 'log1p', 'exp2', 'exp10', 'j0', 'j1', 'y0', 'y1', 'i0', 'i0e', 'i1', 'i1e', 'k0', 'k0e', 'k1', 'k1e', 'itj0y0', 'it2j0y0', 'iti0k0', 'it2i0k0', 'ndtr', 'ndtri') scipy_special_ufuncs = dimensionless_to_dimensionless_sps_ufuncs # ufuncs that require input in degrees and give dimensionless output. degree_to_dimensionless_sps_ufuncs = ('cosdg', 'sindg', 'tandg', 'cotdg') scipy_special_ufuncs += degree_to_dimensionless_sps_ufuncs # ufuncs that require 2 dimensionless inputs and give dimensionless output. # note: 'jv' and 'jn' are aliases in some scipy versions, which will # cause the same key to be written twice, but since both are handled by the # same helper there is no harm done. two_arg_dimensionless_sps_ufuncs = ( 'jv', 'jn', 'jve', 'yn', 'yv', 'yve', 'kn', 'kv', 'kve', 'iv', 'ive', 'hankel1', 'hankel1e', 'hankel2', 'hankel2e') scipy_special_ufuncs += two_arg_dimensionless_sps_ufuncs # ufuncs handled as special cases scipy_special_ufuncs += ('cbrt', 'radian') def helper_degree_to_dimensionless(f, unit): from astropy.units.si import degree try: return [get_converter(unit, degree)], dimensionless_unscaled except UnitsError: raise UnitTypeError("Can only apply '{}' function to " "quantities with angle units" .format(f.__name__)) def helper_degree_minute_second_to_radian(f, unit1, unit2, unit3): from astropy.units.si import arcmin, arcsec, degree, radian try: return [get_converter(unit1, degree), get_converter(unit2, arcmin), get_converter(unit3, arcsec)], radian except UnitsError: raise UnitTypeError("Can only apply '{}' function to " "quantities with angle units" .format(f.__name__)) def get_scipy_special_helpers(): import scipy.special as sps SCIPY_HELPERS = {} for name in dimensionless_to_dimensionless_sps_ufuncs: # In SCIPY_LT_1_5, erfinv and erfcinv are not ufuncs. ufunc = getattr(sps, name, None) if isinstance(ufunc, np.ufunc): SCIPY_HELPERS[ufunc] = helper_dimensionless_to_dimensionless for ufunc in degree_to_dimensionless_sps_ufuncs: SCIPY_HELPERS[getattr(sps, ufunc)] = helper_degree_to_dimensionless for ufunc in two_arg_dimensionless_sps_ufuncs: SCIPY_HELPERS[getattr(sps, ufunc)] = helper_two_arg_dimensionless # ufuncs handled as special cases SCIPY_HELPERS[sps.cbrt] = helper_cbrt SCIPY_HELPERS[sps.radian] = helper_degree_minute_second_to_radian return SCIPY_HELPERS UFUNC_HELPERS.register_module('scipy.special', scipy_special_ufuncs, get_scipy_special_helpers)
d3adfed999e4d5f4a53f7bb0eb8cb5f7c8a59f5da6c99464c33507d376248550
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Separate tests specifically for equivalencies.""" import numpy as np # THIRD-PARTY import pytest from numpy.testing import assert_allclose # LOCAL from astropy import constants from astropy import units as u from astropy.tests.helper import assert_quantity_allclose from astropy.units.equivalencies import Equivalency from astropy.utils.exceptions import AstropyDeprecationWarning def test_dimensionless_angles(): # test that the angles_dimensionless option allows one to change # by any order in radian in the unit (#1161) rad1 = u.dimensionless_angles() assert u.radian.to(1, equivalencies=rad1) == 1. assert u.deg.to(1, equivalencies=rad1) == u.deg.to(u.rad) assert u.steradian.to(1, equivalencies=rad1) == 1. assert u.dimensionless_unscaled.to(u.steradian, equivalencies=rad1) == 1. # now quantities assert (1.*u.radian).to_value(1, equivalencies=rad1) == 1. assert (1.*u.deg).to_value(1, equivalencies=rad1) == u.deg.to(u.rad) assert (1.*u.steradian).to_value(1, equivalencies=rad1) == 1. # more complicated example I = 1.e45 * u.g * u.cm**2 # noqa Omega = u.cycle / (1.*u.s) Erot = 0.5 * I * Omega**2 # check that equivalency makes this work Erot_in_erg1 = Erot.to(u.erg, equivalencies=rad1) # and check that value is correct assert_allclose(Erot_in_erg1.value, (Erot/u.radian**2).to_value(u.erg)) # test built-in equivalency in subclass class MyRad1(u.Quantity): _equivalencies = rad1 phase = MyRad1(1., u.cycle) assert phase.to_value(1) == u.cycle.to(u.radian) @pytest.mark.parametrize('log_unit', (u.mag, u.dex, u.dB)) def test_logarithmic(log_unit): # check conversion of mag, dB, and dex to dimensionless and vice versa with pytest.raises(u.UnitsError): log_unit.to(1, 0.) with pytest.raises(u.UnitsError): u.dimensionless_unscaled.to(log_unit) assert log_unit.to(1, 0., equivalencies=u.logarithmic()) == 1. assert u.dimensionless_unscaled.to(log_unit, equivalencies=u.logarithmic()) == 0. # also try with quantities q_dex = np.array([0., -1., 1., 2.]) * u.dex q_expected = 10.**q_dex.value * u.dimensionless_unscaled q_log_unit = q_dex.to(log_unit) assert np.all(q_log_unit.to(1, equivalencies=u.logarithmic()) == q_expected) assert np.all(q_expected.to(log_unit, equivalencies=u.logarithmic()) == q_log_unit) with u.set_enabled_equivalencies(u.logarithmic()): assert np.all(np.abs(q_log_unit - q_expected.to(log_unit)) < 1.e-10*log_unit) doppler_functions = [u.doppler_optical, u.doppler_radio, u.doppler_relativistic] @pytest.mark.parametrize(('function'), doppler_functions) def test_doppler_frequency_0(function): rest = 105.01 * u.GHz velo0 = rest.to(u.km/u.s, equivalencies=function(rest)) assert velo0.value == 0 @pytest.mark.parametrize(('function'), doppler_functions) def test_doppler_wavelength_0(function): rest = 105.01 * u.GHz q1 = 0.00285489437196 * u.m velo0 = q1.to(u.km/u.s, equivalencies=function(rest)) np.testing.assert_almost_equal(velo0.value, 0, decimal=6) @pytest.mark.parametrize(('function'), doppler_functions) def test_doppler_energy_0(function): rest = 105.01 * u.GHz q1 = 0.0004342864648539744 * u.eV velo0 = q1.to(u.km/u.s, equivalencies=function(rest)) np.testing.assert_almost_equal(velo0.value, 0, decimal=6) @pytest.mark.parametrize(('function'), doppler_functions) def test_doppler_frequency_circle(function): rest = 105.01 * u.GHz shifted = 105.03 * u.GHz velo = shifted.to(u.km/u.s, equivalencies=function(rest)) freq = velo.to(u.GHz, equivalencies=function(rest)) np.testing.assert_almost_equal(freq.value, shifted.value, decimal=7) @pytest.mark.parametrize(('function'), doppler_functions) def test_doppler_wavelength_circle(function): rest = 105.01 * u.nm shifted = 105.03 * u.nm velo = shifted.to(u.km / u.s, equivalencies=function(rest)) wav = velo.to(u.nm, equivalencies=function(rest)) np.testing.assert_almost_equal(wav.value, shifted.value, decimal=7) @pytest.mark.parametrize(('function'), doppler_functions) def test_doppler_energy_circle(function): rest = 1.0501 * u.eV shifted = 1.0503 * u.eV velo = shifted.to(u.km / u.s, equivalencies=function(rest)) en = velo.to(u.eV, equivalencies=function(rest)) np.testing.assert_almost_equal(en.value, shifted.value, decimal=7) values_ghz = (999.899940784289, 999.8999307714406, 999.8999357778647) @pytest.mark.parametrize(('function', 'value'), list(zip(doppler_functions, values_ghz))) def test_30kms(function, value): rest = 1000 * u.GHz velo = 30 * u.km/u.s shifted = velo.to(u.GHz, equivalencies=function(rest)) np.testing.assert_almost_equal(shifted.value, value, decimal=7) bad_values = (5, 5*u.Jy, None) @pytest.mark.parametrize(('function', 'value'), list(zip(doppler_functions, bad_values))) def test_bad_restfreqs(function, value): with pytest.raises(u.UnitsError): function(value) @pytest.mark.parametrize(('z', 'rv_ans'), [(0, 0 * (u.km / u.s)), (0.001, 299642.56184583 * (u.m / u.s)), (-1, -2.99792458e8 * (u.m / u.s))]) def test_doppler_redshift(z, rv_ans): z_in = z * u.dimensionless_unscaled rv_out = z_in.to(u.km / u.s, u.doppler_redshift()) z_out = rv_out.to(u.dimensionless_unscaled, u.doppler_redshift()) assert_quantity_allclose(rv_out, rv_ans) assert_quantity_allclose(z_out, z_in) # Check roundtrip def test_doppler_redshift_no_cosmology(): from astropy.cosmology.units import redshift with pytest.raises(u.UnitConversionError, match='not convertible'): (0 * (u.km / u.s)).to(redshift, u.doppler_redshift()) def test_massenergy(): # The relative tolerance of these tests is set by the uncertainties # in the charge of the electron, which is known to about # 3e-9 (relative tolerance). Therefore, we limit the # precision of the tests to 1e-7 to be safe. The masses are # (loosely) known to ~ 5e-8 rel tolerance, so we couldn't test to # 1e-7 if we used the values from astropy.constants; that is, # they might change by more than 1e-7 in some future update, so instead # they are hardwired here. # Electron, proton, neutron, muon, 1g mass_eV = u.Quantity([510.998928e3, 938.272046e6, 939.565378e6, 105.6583715e6, 5.60958884539e32], u.eV) mass_g = u.Quantity([9.10938291e-28, 1.672621777e-24, 1.674927351e-24, 1.88353147e-25, 1], u.g) # Test both ways assert np.allclose(mass_eV.to_value(u.g, equivalencies=u.mass_energy()), mass_g.value, rtol=1e-7) assert np.allclose(mass_g.to_value(u.eV, equivalencies=u.mass_energy()), mass_eV.value, rtol=1e-7) # Basic tests of 'derived' equivalencies # Surface density sdens_eV = u.Quantity(5.60958884539e32, u.eV / u.m**2) sdens_g = u.Quantity(1e-4, u.g / u.cm**2) assert np.allclose(sdens_eV.to_value(u.g / u.cm**2, equivalencies=u.mass_energy()), sdens_g.value, rtol=1e-7) assert np.allclose(sdens_g.to_value(u.eV / u.m**2, equivalencies=u.mass_energy()), sdens_eV.value, rtol=1e-7) # Density dens_eV = u.Quantity(5.60958884539e32, u.eV / u.m**3) dens_g = u.Quantity(1e-6, u.g / u.cm**3) assert np.allclose(dens_eV.to_value(u.g / u.cm**3, equivalencies=u.mass_energy()), dens_g.value, rtol=1e-7) assert np.allclose(dens_g.to_value(u.eV / u.m**3, equivalencies=u.mass_energy()), dens_eV.value, rtol=1e-7) # Power pow_eV = u.Quantity(5.60958884539e32, u.eV / u.s) pow_g = u.Quantity(1, u.g / u.s) assert np.allclose(pow_eV.to_value(u.g / u.s, equivalencies=u.mass_energy()), pow_g.value, rtol=1e-7) assert np.allclose(pow_g.to_value(u.eV / u.s, equivalencies=u.mass_energy()), pow_eV.value, rtol=1e-7) def test_is_equivalent(): assert u.m.is_equivalent(u.pc) assert u.cycle.is_equivalent(u.mas) assert not u.cycle.is_equivalent(u.dimensionless_unscaled) assert u.cycle.is_equivalent(u.dimensionless_unscaled, u.dimensionless_angles()) assert not (u.Hz.is_equivalent(u.J)) assert u.Hz.is_equivalent(u.J, u.spectral()) assert u.J.is_equivalent(u.Hz, u.spectral()) assert u.pc.is_equivalent(u.arcsecond, u.parallax()) assert u.arcminute.is_equivalent(u.au, u.parallax()) # Pass a tuple for multiple possibilities assert u.cm.is_equivalent((u.m, u.s, u.kg)) assert u.ms.is_equivalent((u.m, u.s, u.kg)) assert u.g.is_equivalent((u.m, u.s, u.kg)) assert not u.L.is_equivalent((u.m, u.s, u.kg)) assert not (u.km / u.s).is_equivalent((u.m, u.s, u.kg)) def test_parallax(): a = u.arcsecond.to(u.pc, 10, u.parallax()) assert_allclose(a, 0.10, rtol=1.e-12) b = u.pc.to(u.arcsecond, a, u.parallax()) assert_allclose(b, 10, rtol=1.e-12) a = u.arcminute.to(u.au, 1, u.parallax()) assert_allclose(a, 3437.746770785, rtol=1.e-12) b = u.au.to(u.arcminute, a, u.parallax()) assert_allclose(b, 1, rtol=1.e-12) val = (-1 * u.mas).to(u.pc, u.parallax()) assert np.isnan(val.value) val = (-1 * u.mas).to_value(u.pc, u.parallax()) assert np.isnan(val) def test_parallax2(): a = u.arcsecond.to(u.pc, [0.1, 2.5], u.parallax()) assert_allclose(a, [10, 0.4], rtol=1.e-12) def test_spectral(): a = u.AA.to(u.Hz, 1, u.spectral()) assert_allclose(a, 2.9979245799999995e+18) b = u.Hz.to(u.AA, a, u.spectral()) assert_allclose(b, 1) a = u.AA.to(u.MHz, 1, u.spectral()) assert_allclose(a, 2.9979245799999995e+12) b = u.MHz.to(u.AA, a, u.spectral()) assert_allclose(b, 1) a = u.m.to(u.Hz, 1, u.spectral()) assert_allclose(a, 2.9979245799999995e+8) b = u.Hz.to(u.m, a, u.spectral()) assert_allclose(b, 1) def test_spectral2(): a = u.nm.to(u.J, 500, u.spectral()) assert_allclose(a, 3.972891366538605e-19) b = u.J.to(u.nm, a, u.spectral()) assert_allclose(b, 500) a = u.AA.to(u.Hz, 1, u.spectral()) b = u.Hz.to(u.J, a, u.spectral()) c = u.AA.to(u.J, 1, u.spectral()) assert_allclose(b, c) c = u.J.to(u.Hz, b, u.spectral()) assert_allclose(a, c) def test_spectral3(): a = u.nm.to(u.Hz, [1000, 2000], u.spectral()) assert_allclose(a, [2.99792458e+14, 1.49896229e+14]) @pytest.mark.parametrize( ('in_val', 'in_unit'), [([0.1, 5000.0, 10000.0], u.AA), ([1e+5, 2.0, 1.0], u.micron ** -1), ([2.99792458e+19, 5.99584916e+14, 2.99792458e+14], u.Hz), ([1.98644568e-14, 3.97289137e-19, 1.98644568e-19], u.J)]) def test_spectral4(in_val, in_unit): """Wave number conversion w.r.t. wavelength, freq, and energy.""" # Spectroscopic and angular out_units = [u.micron ** -1, u.radian / u.micron] answers = [[1e+5, 2.0, 1.0], [6.28318531e+05, 12.5663706, 6.28318531]] for out_unit, ans in zip(out_units, answers): # Forward a = in_unit.to(out_unit, in_val, u.spectral()) assert_allclose(a, ans) # Backward b = out_unit.to(in_unit, ans, u.spectral()) assert_allclose(b, in_val) @pytest.mark.parametrize('wav', (3500 * u.AA, 8.5654988e+14 * u.Hz, 1 / (3500 * u.AA), 5.67555959e-19 * u.J)) def test_spectraldensity2(wav): # flux density flambda = u.erg / u.angstrom / u.cm ** 2 / u.s fnu = u.erg / u.Hz / u.cm ** 2 / u.s a = flambda.to(fnu, 1, u.spectral_density(wav)) assert_allclose(a, 4.086160166177361e-12) # integrated flux f_int = u.erg / u.cm ** 2 / u.s phot_int = u.ph / u.cm ** 2 / u.s a = f_int.to(phot_int, 1, u.spectral_density(wav)) assert_allclose(a, 1.7619408e+11) a = phot_int.to(f_int, 1, u.spectral_density(wav)) assert_allclose(a, 5.67555959e-12) # luminosity density llambda = u.erg / u.angstrom / u.s lnu = u.erg / u.Hz / u.s a = llambda.to(lnu, 1, u.spectral_density(wav)) assert_allclose(a, 4.086160166177361e-12) a = lnu.to(llambda, 1, u.spectral_density(wav)) assert_allclose(a, 2.44728537142857e11) def test_spectraldensity3(): # Define F_nu in Jy f_nu = u.Jy # Define F_lambda in ergs / cm^2 / s / micron f_lambda = u.erg / u.cm ** 2 / u.s / u.micron # 1 GHz one_ghz = u.Quantity(1, u.GHz) # Convert to ergs / cm^2 / s / Hz assert_allclose(f_nu.to(u.erg / u.cm ** 2 / u.s / u.Hz, 1.), 1.e-23, 10) # Convert to ergs / cm^2 / s at 10 Ghz assert_allclose(f_nu.to(u.erg / u.cm ** 2 / u.s, 1., equivalencies=u.spectral_density(one_ghz * 10)), 1.e-13, 10) # Convert to F_lambda at 1 Ghz assert_allclose(f_nu.to(f_lambda, 1., equivalencies=u.spectral_density(one_ghz)), 3.335640951981521e-20, 10) # Convert to Jy at 1 Ghz assert_allclose(f_lambda.to(u.Jy, 1., equivalencies=u.spectral_density(one_ghz)), 1. / 3.335640951981521e-20, 10) # Convert to ergs / cm^2 / s at 10 microns assert_allclose(f_lambda.to(u.erg / u.cm ** 2 / u.s, 1., equivalencies=u.spectral_density(u.Quantity(10, u.micron))), 10., 10) def test_spectraldensity4(): """PHOTLAM and PHOTNU conversions.""" flam = u.erg / (u.cm ** 2 * u.s * u.AA) fnu = u.erg / (u.cm ** 2 * u.s * u.Hz) photlam = u.photon / (u.cm ** 2 * u.s * u.AA) photnu = u.photon / (u.cm ** 2 * u.s * u.Hz) wave = u.Quantity([4956.8, 4959.55, 4962.3], u.AA) flux_photlam = [9.7654e-3, 1.003896e-2, 9.78473e-3] flux_photnu = [8.00335589e-14, 8.23668949e-14, 8.03700310e-14] flux_flam = [3.9135e-14, 4.0209e-14, 3.9169e-14] flux_fnu = [3.20735792e-25, 3.29903646e-25, 3.21727226e-25] flux_jy = [3.20735792e-2, 3.29903646e-2, 3.21727226e-2] flux_stmag = [12.41858665, 12.38919182, 12.41764379] flux_abmag = [12.63463143, 12.60403221, 12.63128047] # PHOTLAM <--> FLAM assert_allclose(photlam.to( flam, flux_photlam, u.spectral_density(wave)), flux_flam, rtol=1e-6) assert_allclose(flam.to( photlam, flux_flam, u.spectral_density(wave)), flux_photlam, rtol=1e-6) # PHOTLAM <--> FNU assert_allclose(photlam.to( fnu, flux_photlam, u.spectral_density(wave)), flux_fnu, rtol=1e-6) assert_allclose(fnu.to( photlam, flux_fnu, u.spectral_density(wave)), flux_photlam, rtol=1e-6) # PHOTLAM <--> Jy assert_allclose(photlam.to( u.Jy, flux_photlam, u.spectral_density(wave)), flux_jy, rtol=1e-6) assert_allclose(u.Jy.to( photlam, flux_jy, u.spectral_density(wave)), flux_photlam, rtol=1e-6) # PHOTLAM <--> PHOTNU assert_allclose(photlam.to( photnu, flux_photlam, u.spectral_density(wave)), flux_photnu, rtol=1e-6) assert_allclose(photnu.to( photlam, flux_photnu, u.spectral_density(wave)), flux_photlam, rtol=1e-6) # PHOTNU <--> FNU assert_allclose(photnu.to( fnu, flux_photnu, u.spectral_density(wave)), flux_fnu, rtol=1e-6) assert_allclose(fnu.to( photnu, flux_fnu, u.spectral_density(wave)), flux_photnu, rtol=1e-6) # PHOTNU <--> FLAM assert_allclose(photnu.to( flam, flux_photnu, u.spectral_density(wave)), flux_flam, rtol=1e-6) assert_allclose(flam.to( photnu, flux_flam, u.spectral_density(wave)), flux_photnu, rtol=1e-6) # PHOTLAM <--> STMAG assert_allclose(photlam.to( u.STmag, flux_photlam, u.spectral_density(wave)), flux_stmag, rtol=1e-6) assert_allclose(u.STmag.to( photlam, flux_stmag, u.spectral_density(wave)), flux_photlam, rtol=1e-6) # PHOTLAM <--> ABMAG assert_allclose(photlam.to( u.ABmag, flux_photlam, u.spectral_density(wave)), flux_abmag, rtol=1e-6) assert_allclose(u.ABmag.to( photlam, flux_abmag, u.spectral_density(wave)), flux_photlam, rtol=1e-6) def test_spectraldensity5(): """ Test photon luminosity density conversions. """ L_la = u.erg / (u.s * u.AA) L_nu = u.erg / (u.s * u.Hz) phot_L_la = u.photon / (u.s * u.AA) phot_L_nu = u.photon / (u.s * u.Hz) wave = u.Quantity([4956.8, 4959.55, 4962.3], u.AA) flux_phot_L_la = [9.7654e-3, 1.003896e-2, 9.78473e-3] flux_phot_L_nu = [8.00335589e-14, 8.23668949e-14, 8.03700310e-14] flux_L_la = [3.9135e-14, 4.0209e-14, 3.9169e-14] flux_L_nu = [3.20735792e-25, 3.29903646e-25, 3.21727226e-25] # PHOTLAM <--> FLAM assert_allclose(phot_L_la.to( L_la, flux_phot_L_la, u.spectral_density(wave)), flux_L_la, rtol=1e-6) assert_allclose(L_la.to( phot_L_la, flux_L_la, u.spectral_density(wave)), flux_phot_L_la, rtol=1e-6) # PHOTLAM <--> FNU assert_allclose(phot_L_la.to( L_nu, flux_phot_L_la, u.spectral_density(wave)), flux_L_nu, rtol=1e-6) assert_allclose(L_nu.to( phot_L_la, flux_L_nu, u.spectral_density(wave)), flux_phot_L_la, rtol=1e-6) # PHOTLAM <--> PHOTNU assert_allclose(phot_L_la.to( phot_L_nu, flux_phot_L_la, u.spectral_density(wave)), flux_phot_L_nu, rtol=1e-6) assert_allclose(phot_L_nu.to( phot_L_la, flux_phot_L_nu, u.spectral_density(wave)), flux_phot_L_la, rtol=1e-6) # PHOTNU <--> FNU assert_allclose(phot_L_nu.to( L_nu, flux_phot_L_nu, u.spectral_density(wave)), flux_L_nu, rtol=1e-6) assert_allclose(L_nu.to( phot_L_nu, flux_L_nu, u.spectral_density(wave)), flux_phot_L_nu, rtol=1e-6) # PHOTNU <--> FLAM assert_allclose(phot_L_nu.to( L_la, flux_phot_L_nu, u.spectral_density(wave)), flux_L_la, rtol=1e-6) assert_allclose(L_la.to( phot_L_nu, flux_L_la, u.spectral_density(wave)), flux_phot_L_nu, rtol=1e-6) def test_spectraldensity6(): """ Test surface brightness conversions. """ slam = u.erg / (u.cm ** 2 * u.s * u.AA * u.sr) snu = u.erg / (u.cm ** 2 * u.s * u.Hz * u.sr) wave = u.Quantity([4956.8, 4959.55, 4962.3], u.AA) sb_flam = [3.9135e-14, 4.0209e-14, 3.9169e-14] sb_fnu = [3.20735792e-25, 3.29903646e-25, 3.21727226e-25] # S(nu) <--> S(lambda) assert_allclose(snu.to( slam, sb_fnu, u.spectral_density(wave)), sb_flam, rtol=1e-6) assert_allclose(slam.to( snu, sb_flam, u.spectral_density(wave)), sb_fnu, rtol=1e-6) @pytest.mark.parametrize( ('from_unit', 'to_unit'), [(u.ph / u.cm ** 2 / u.s, (u.cm * u.cm * u.s) ** -1), (u.ph / u.cm ** 2 / u.s, u.erg / (u.cm * u.cm * u.s * u.keV)), (u.erg / u.cm ** 2 / u.s, (u.cm * u.cm * u.s) ** -1), (u.erg / u.cm ** 2 / u.s, u.erg / (u.cm * u.cm * u.s * u.keV))]) def test_spectraldensity_not_allowed(from_unit, to_unit): """Not allowed to succeed as per https://github.com/astropy/astropy/pull/10015 """ with pytest.raises(u.UnitConversionError, match='not convertible'): from_unit.to(to_unit, 1, u.spectral_density(1 * u.AA)) # The other way with pytest.raises(u.UnitConversionError, match='not convertible'): to_unit.to(from_unit, 1, u.spectral_density(1 * u.AA)) def test_equivalent_units(): from astropy.units import imperial with u.add_enabled_units(imperial): units = u.g.find_equivalent_units() units_set = set(units) match = { u.M_e, u.M_p, u.g, u.kg, u.solMass, u.t, u.u, u.M_earth, u.M_jup, imperial.oz, imperial.lb, imperial.st, imperial.ton, imperial.slug} assert units_set == match r = repr(units) assert r.count('\n') == len(units) + 2 def test_equivalent_units2(): units = set(u.Hz.find_equivalent_units(u.spectral())) match = { u.AU, u.Angstrom, u.Hz, u.J, u.Ry, u.cm, u.eV, u.erg, u.lyr, u.lsec, u.m, u.micron, u.pc, u.solRad, u.Bq, u.Ci, u.k, u.earthRad, u.jupiterRad} assert units == match from astropy.units import imperial with u.add_enabled_units(imperial): units = set(u.Hz.find_equivalent_units(u.spectral())) match = { u.AU, u.Angstrom, imperial.BTU, u.Hz, u.J, u.Ry, imperial.cal, u.cm, u.eV, u.erg, imperial.ft, imperial.fur, imperial.inch, imperial.kcal, u.lyr, u.m, imperial.mi, u.lsec, imperial.mil, u.micron, u.pc, u.solRad, imperial.yd, u.Bq, u.Ci, imperial.nmi, u.k, u.earthRad, u.jupiterRad} assert units == match units = set(u.Hz.find_equivalent_units(u.spectral())) match = { u.AU, u.Angstrom, u.Hz, u.J, u.Ry, u.cm, u.eV, u.erg, u.lyr, u.lsec, u.m, u.micron, u.pc, u.solRad, u.Bq, u.Ci, u.k, u.earthRad, u.jupiterRad} assert units == match def test_trivial_equivalency(): assert u.m.to(u.kg, equivalencies=[(u.m, u.kg)]) == 1.0 def test_invalid_equivalency(): with pytest.raises(ValueError): u.m.to(u.kg, equivalencies=[(u.m,)]) with pytest.raises(ValueError): u.m.to(u.kg, equivalencies=[(u.m, 5.0)]) def test_irrelevant_equivalency(): with pytest.raises(u.UnitsError): u.m.to(u.kg, equivalencies=[(u.m, u.l)]) def test_brightness_temperature(): omega_B = np.pi * (50 * u.arcsec) ** 2 nu = u.GHz * 5 tb = 7.052587837212582 * u.K np.testing.assert_almost_equal( tb.value, (1 * u.Jy).to_value( u.K, equivalencies=u.brightness_temperature(nu, beam_area=omega_B))) np.testing.assert_almost_equal( 1.0, tb.to_value( u.Jy, equivalencies=u.brightness_temperature(nu, beam_area=omega_B))) def test_swapped_args_brightness_temperature(): """ #5173 changes the order of arguments but accepts the old (deprecated) args """ omega_B = np.pi * (50 * u.arcsec) ** 2 nu = u.GHz * 5 tb = 7.052587837212582 * u.K with pytest.warns(AstropyDeprecationWarning) as w: result = (1*u.Jy).to( u.K, equivalencies=u.brightness_temperature(omega_B, nu)) roundtrip = result.to( u.Jy, equivalencies=u.brightness_temperature(omega_B, nu)) assert len(w) == 2 np.testing.assert_almost_equal(tb.value, result.value) np.testing.assert_almost_equal(roundtrip.value, 1) def test_surfacebrightness(): sb = 50*u.MJy/u.sr k = sb.to(u.K, u.brightness_temperature(50*u.GHz)) np.testing.assert_almost_equal(k.value, 0.650965, 5) assert k.unit.is_equivalent(u.K) def test_beam(): # pick a beam area: 2 pi r^2 = area of a Gaussina with sigma=50 arcsec omega_B = 2 * np.pi * (50 * u.arcsec) ** 2 new_beam = (5*u.beam).to(u.sr, u.equivalencies.beam_angular_area(omega_B)) np.testing.assert_almost_equal(omega_B.to(u.sr).value * 5, new_beam.value) assert new_beam.unit.is_equivalent(u.sr) # make sure that it's still consistent with 5 beams nbeams = new_beam.to(u.beam, u.equivalencies.beam_angular_area(omega_B)) np.testing.assert_almost_equal(nbeams.value, 5) # test inverse beam equivalency # (this is just a sanity check that the equivalency is defined; # it's not for testing numerical consistency) (5/u.beam).to(1/u.sr, u.equivalencies.beam_angular_area(omega_B)) # test practical case # (this is by far the most important one) flux_density = (5*u.Jy/u.beam).to(u.MJy/u.sr, u.equivalencies.beam_angular_area(omega_B)) np.testing.assert_almost_equal(flux_density.value, 13.5425483146382) def test_thermodynamic_temperature(): nu = 143 * u.GHz tb = 0.0026320501262630277 * u.K eq = u.thermodynamic_temperature(nu, T_cmb=2.7255 * u.K) np.testing.assert_almost_equal( tb.value, (1 * (u.MJy / u.sr)).to_value(u.K, equivalencies=eq)) np.testing.assert_almost_equal( 1.0, tb.to_value(u.MJy / u.sr, equivalencies=eq)) def test_equivalency_context(): with u.set_enabled_equivalencies(u.dimensionless_angles()): phase = u.Quantity(1., u.cycle) assert_allclose(np.exp(1j*phase), 1.) Omega = u.cycle / (1.*u.minute) assert_allclose(np.exp(1j*Omega*60.*u.second), 1.) # ensure we can turn off equivalencies even within the scope with pytest.raises(u.UnitsError): phase.to(1, equivalencies=None) # test the manager also works in the Quantity constructor. q1 = u.Quantity(phase, u.dimensionless_unscaled) assert_allclose(q1.value, u.cycle.to(u.radian)) # and also if we use a class that happens to have a unit attribute. class MyQuantityLookalike(np.ndarray): pass mylookalike = np.array(1.).view(MyQuantityLookalike) mylookalike.unit = 'cycle' # test the manager also works in the Quantity constructor. q2 = u.Quantity(mylookalike, u.dimensionless_unscaled) assert_allclose(q2.value, u.cycle.to(u.radian)) with u.set_enabled_equivalencies(u.spectral()): u.GHz.to(u.cm) eq_on = u.GHz.find_equivalent_units() with pytest.raises(u.UnitsError): u.GHz.to(u.cm, equivalencies=None) # without equivalencies, we should find a smaller (sub)set eq_off = u.GHz.find_equivalent_units() assert all(eq in set(eq_on) for eq in eq_off) assert set(eq_off) < set(eq_on) # Check the equivalency manager also works in ufunc evaluations, # not just using (wrong) scaling. [#2496] l2v = u.doppler_optical(6000 * u.angstrom) l1 = 6010 * u.angstrom assert l1.to(u.km/u.s, equivalencies=l2v) > 100. * u.km / u.s with u.set_enabled_equivalencies(l2v): assert l1 > 100. * u.km / u.s assert abs((l1 - 500. * u.km / u.s).to(u.angstrom)) < 1. * u.km/u.s def test_equivalency_context_manager(): base_registry = u.get_current_unit_registry() def just_to_from_units(equivalencies): return [(equiv[0], equiv[1]) for equiv in equivalencies] tf_dimensionless_angles = just_to_from_units(u.dimensionless_angles()) tf_spectral = just_to_from_units(u.spectral()) # <=1 b/c might have the dimensionless_redshift equivalency enabled. assert len(base_registry.equivalencies) <= 1 with u.set_enabled_equivalencies(u.dimensionless_angles()): new_registry = u.get_current_unit_registry() assert (set(just_to_from_units(new_registry.equivalencies)) == set(tf_dimensionless_angles)) assert set(new_registry.all_units) == set(base_registry.all_units) with u.set_enabled_equivalencies(u.spectral()): newer_registry = u.get_current_unit_registry() assert (set(just_to_from_units(newer_registry.equivalencies)) == set(tf_spectral)) assert (set(newer_registry.all_units) == set(base_registry.all_units)) assert (set(just_to_from_units(new_registry.equivalencies)) == set(tf_dimensionless_angles)) assert set(new_registry.all_units) == set(base_registry.all_units) with u.add_enabled_equivalencies(u.spectral()): newer_registry = u.get_current_unit_registry() assert (set(just_to_from_units(newer_registry.equivalencies)) == set(tf_dimensionless_angles) | set(tf_spectral)) assert (set(newer_registry.all_units) == set(base_registry.all_units)) assert base_registry is u.get_current_unit_registry() def test_temperature(): from astropy.units.imperial import deg_F, deg_R t_k = 0 * u.K assert_allclose(t_k.to_value(u.deg_C, u.temperature()), -273.15) assert_allclose(t_k.to_value(deg_F, u.temperature()), -459.67) t_k = 20 * u.K assert_allclose(t_k.to_value(deg_R, u.temperature()), 36.0) t_k = 20 * deg_R assert_allclose(t_k.to_value(u.K, u.temperature()), 11.11, atol=0.01) t_k = 20 * deg_F assert_allclose(t_k.to_value(deg_R, u.temperature()), 479.67) t_k = 20 * deg_R assert_allclose(t_k.to_value(deg_F, u.temperature()), -439.67) t_k = 20 * u.deg_C assert_allclose(t_k.to_value(deg_R, u.temperature()), 527.67) t_k = 20 * deg_R assert_allclose(t_k.to_value(u.deg_C, u.temperature()), -262.039, atol=0.01) def test_temperature_energy(): x = 1000 * u.K y = (x * constants.k_B).to(u.keV) assert_allclose(x.to_value(u.keV, u.temperature_energy()), y.value) assert_allclose(y.to_value(u.K, u.temperature_energy()), x.value) def test_molar_mass_amu(): x = 1 * (u.g/u.mol) y = 1 * u.u assert_allclose(x.to_value(u.u, u.molar_mass_amu()), y.value) assert_allclose(y.to_value(u.g/u.mol, u.molar_mass_amu()), x.value) with pytest.raises(u.UnitsError): x.to(u.u) def test_compose_equivalencies(): x = u.Unit("arcsec").compose(units=(u.pc,), equivalencies=u.parallax()) assert x[0] == u.pc x = u.Unit("2 arcsec").compose(units=(u.pc,), equivalencies=u.parallax()) assert x[0] == u.Unit(0.5 * u.pc) x = u.degree.compose(equivalencies=u.dimensionless_angles()) assert u.Unit(u.degree.to(u.radian)) in x x = (u.nm).compose(units=(u.m, u.s), equivalencies=u.doppler_optical(0.55*u.micron)) for y in x: if y.bases == [u.m, u.s]: assert y.powers == [1, -1] assert_allclose( y.scale, u.nm.to(u.m / u.s, equivalencies=u.doppler_optical(0.55 * u.micron))) break else: assert False, "Didn't find speed in compose results" def test_pixel_scale(): pix = 75*u.pix asec = 30*u.arcsec pixscale = 0.4*u.arcsec/u.pix pixscale2 = 2.5*u.pix/u.arcsec assert_quantity_allclose(pix.to(u.arcsec, u.pixel_scale(pixscale)), asec) assert_quantity_allclose(pix.to(u.arcmin, u.pixel_scale(pixscale)), asec) assert_quantity_allclose(pix.to(u.arcsec, u.pixel_scale(pixscale2)), asec) assert_quantity_allclose(pix.to(u.arcmin, u.pixel_scale(pixscale2)), asec) assert_quantity_allclose(asec.to(u.pix, u.pixel_scale(pixscale)), pix) assert_quantity_allclose(asec.to(u.pix, u.pixel_scale(pixscale2)), pix) def test_pixel_scale_invalid_scale_unit(): pixscale = 0.4 * u.arcsec pixscale2 = 0.4 * u.arcsec / u.pix ** 2 with pytest.raises(u.UnitsError, match="pixel dimension"): u.pixel_scale(pixscale) with pytest.raises(u.UnitsError, match="pixel dimension"): u.pixel_scale(pixscale2) def test_pixel_scale_acceptable_scale_unit(): pix = 75 * u.pix v = 3000 * (u.cm / u.s) pixscale = 0.4 * (u.m / u.s / u.pix) pixscale2 = 2.5 * (u.pix / (u.m / u.s)) assert_quantity_allclose(pix.to(u.m / u.s, u.pixel_scale(pixscale)), v) assert_quantity_allclose(pix.to(u.km / u.s, u.pixel_scale(pixscale)), v) assert_quantity_allclose(pix.to(u.m / u.s, u.pixel_scale(pixscale2)), v) assert_quantity_allclose(pix.to(u.km / u.s, u.pixel_scale(pixscale2)), v) assert_quantity_allclose(v.to(u.pix, u.pixel_scale(pixscale)), pix) assert_quantity_allclose(v.to(u.pix, u.pixel_scale(pixscale2)), pix) def test_plate_scale(): mm = 1.5*u.mm asec = 30*u.arcsec platescale = 20*u.arcsec/u.mm platescale2 = 0.05*u.mm/u.arcsec assert_quantity_allclose(mm.to(u.arcsec, u.plate_scale(platescale)), asec) assert_quantity_allclose(mm.to(u.arcmin, u.plate_scale(platescale)), asec) assert_quantity_allclose(mm.to(u.arcsec, u.plate_scale(platescale2)), asec) assert_quantity_allclose(mm.to(u.arcmin, u.plate_scale(platescale2)), asec) assert_quantity_allclose(asec.to(u.mm, u.plate_scale(platescale)), mm) assert_quantity_allclose(asec.to(u.mm, u.plate_scale(platescale2)), mm) def test_equivelency(): ps = u.pixel_scale(10*u.arcsec/u.pix) assert isinstance(ps, Equivalency) assert isinstance(ps.name, list) assert len(ps.name) == 1 assert ps.name[0] == "pixel_scale" assert isinstance(ps.kwargs, list) assert len(ps.kwargs) == 1 assert ps.kwargs[0] == dict({'pixscale': 10*u.arcsec/u.pix}) def test_add_equivelencies(): e1 = u.pixel_scale(10*u.arcsec/u.pixel) + u.temperature_energy() assert isinstance(e1, Equivalency) assert e1.name == ["pixel_scale", "temperature_energy"] assert isinstance(e1.kwargs, list) assert e1.kwargs == [dict({'pixscale': 10*u.arcsec/u.pix}), dict()] e2 = u.pixel_scale(10*u.arcsec/u.pixel) + [1, 2, 3] assert isinstance(e2, list) def test_pprint(): pprint_class = u.UnitBase.EquivalentUnitsList equiv_units_to_Hz = u.Hz.find_equivalent_units() assert pprint_class.__repr__(equiv_units_to_Hz).splitlines() == [ ' Primary name | Unit definition | Aliases ', '[', ' Bq | 1 / s | becquerel ,', ' Ci | 3.7e+10 / s | curie ,', ' Hz | 1 / s | Hertz, hertz ,', ']' ] assert pprint_class._repr_html_(equiv_units_to_Hz) == ( '<table style="width:50%">' '<tr><th>Primary name</th><th>Unit definition</th>' '<th>Aliases</th></tr>' '<tr><td>Bq</td><td>1 / s</td><td>becquerel</td></tr>' '<tr><td>Ci</td><td>3.7e+10 / s</td><td>curie</td></tr>' '<tr><td>Hz</td><td>1 / s</td><td>Hertz, hertz</td></tr></table>' )
34869b71d27c185cee841bc50d604338d2f608acb3577327155943d5a8483b10
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Test setting and adding unit aliases.""" import pytest import astropy.units as u trials = [ ({"Angstroms": u.AA}, "Angstroms", u.AA), ({"counts": u.count}, "counts/s", u.count / u.s), ({"ergs": u.erg, "Angstroms": u.AA}, "ergs/(s cm**2 Angstroms)", u.erg / (u.s * u.cm**2 * u.AA))] class TestAliases: def teardown_method(self): u.set_enabled_aliases({}) def teardown_class(self): assert u.get_current_unit_registry().aliases == {} @pytest.mark.parametrize('format_', [None, 'fits', 'ogip', 'vounit', 'cds']) @pytest.mark.parametrize('aliases,bad,unit', trials) def test_set_enabled_aliases_context_manager(self, aliases, bad, unit, format_): if format_ == 'cds': bad = bad.replace(' ', '.').replace('**', '') with u.set_enabled_aliases(aliases): assert u.get_current_unit_registry().aliases == aliases assert u.Unit(bad) == unit assert u.get_current_unit_registry().aliases == {} with pytest.raises(ValueError): u.Unit(bad) @pytest.mark.parametrize('aliases,bad,unit', trials) def test_add_enabled_aliases_context_manager(self, aliases, bad, unit): with u.add_enabled_aliases(aliases): assert u.get_current_unit_registry().aliases == aliases assert u.Unit(bad) == unit assert u.get_current_unit_registry().aliases == {} with pytest.raises(ValueError): u.Unit(bad) def test_set_enabled_aliases(self): for i, (aliases, bad, unit) in enumerate(trials): u.set_enabled_aliases(aliases) assert u.get_current_unit_registry().aliases == aliases assert u.Unit(bad) == unit for _, bad2, unit2 in trials: if bad2 == bad or bad2 in aliases: assert u.Unit(bad2) == unit2 else: with pytest.raises(ValueError): u.Unit(bad2) def test_add_enabled_aliases(self): expected_aliases = {} for i, (aliases, bad, unit) in enumerate(trials): u.add_enabled_aliases(aliases) expected_aliases.update(aliases) assert u.get_current_unit_registry().aliases == expected_aliases assert u.Unit(bad) == unit for j, (_, bad2, unit2) in enumerate(trials): if j <= i: assert u.Unit(bad2) == unit2 else: with pytest.raises(ValueError): u.Unit(bad2) def test_cannot_alias_existing_unit(self): with pytest.raises(ValueError, match='already means'): u.set_enabled_aliases({'pct': u.Unit(1e-12*u.count)}) def test_cannot_alias_existing_alias_to_another_unit(self): u.set_enabled_aliases({'counts': u.count}) with pytest.raises(ValueError, match='already is an alias'): u.add_enabled_aliases({'counts': u.adu})
e54dc05ac60e249c13b7d407dbbdb244bc2bf3fd9bdc09f9595948727668ce87
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Test utilities for `astropy.units`. """ import numpy as np from numpy import finfo from astropy.units.quantity import Quantity from astropy.units.utils import quantity_asanyarray, sanitize_scale _float_finfo = finfo(float) def test_quantity_asanyarray(): array_of_quantities = [Quantity(1), Quantity(2), Quantity(3)] quantity_array = quantity_asanyarray(array_of_quantities) assert isinstance(quantity_array, Quantity) assert np.issubdtype(quantity_array.dtype, np.inexact) array_of_integers = [1, 2, 3] np_array = quantity_asanyarray(array_of_integers) assert isinstance(np_array, np.ndarray) assert np.issubdtype(np_array.dtype, np.integer) np_array = quantity_asanyarray(array_of_integers, dtype=np.inexact) assert np.issubdtype(np_array.dtype, np.inexact) def test_sanitize_scale(): assert sanitize_scale(complex(2, _float_finfo.eps)) == 2 assert sanitize_scale(complex(_float_finfo.eps, 2)) == 2j
cbb0b7055a078f4c47e0f45108db946092de7296321667e852b1a6c7b2ea1645
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Regression tests for deprecated units or those that are "soft" deprecated because they are required for VOUnit support but are not in common use.""" import pytest from astropy import units as u from astropy.units import deprecated, required_by_vounit def test_emu(): with pytest.raises(AttributeError): u.emu assert u.Bi.to(deprecated.emu, 1) == 1 with deprecated.enable(): assert u.Bi.compose()[0] == deprecated.emu assert u.Bi.compose()[0] == u.Bi # test that the earth/jupiter mass/rad are also in the deprecated bunch for body in ('earth', 'jupiter'): for phystype in ('Mass', 'Rad'): # only test a couple prefixes to same time for prefix in ('n', 'y'): namewoprefix = body + phystype unitname = prefix + namewoprefix with pytest.raises(AttributeError): getattr(u, unitname) assert (getattr(deprecated, unitname).represents.bases[0] == getattr(u, namewoprefix)) def test_required_by_vounit(): # The tests below could be replicated with all the various prefixes, but it # seems unnecessary because they all come as a set. So we only use nano for # the purposes of this test. with pytest.raises(AttributeError): # nano-solar mass/rad/lum shouldn't be in the base unit namespace u.nsolMass u.nsolRad u.nsolLum # but they should be enabled by default via required_by_vounit, to allow # the Unit constructor to accept them assert u.Unit('nsolMass') == required_by_vounit.nsolMass assert u.Unit('nsolRad') == required_by_vounit.nsolRad assert u.Unit('nsolLum') == required_by_vounit.nsolLum # but because they are prefixes, they shouldn't be in find_equivalent_units assert required_by_vounit.nsolMass not in u.solMass.find_equivalent_units() assert required_by_vounit.nsolRad not in u.solRad.find_equivalent_units() assert required_by_vounit.nsolLum not in u.solLum.find_equivalent_units()
48836c53007cdb2f52301492b11c4f31c3a0529c999e51c9029ab203e3951230
# Licensed under a 3-clause BSD style license - see LICENSE.rst # STDLIB import sys import typing as T # THIRD PARTY import pytest # LOCAL from astropy import units as u from astropy.units import Quantity from astropy.units._typing import HAS_ANNOTATED, Annotated def test_ignore_generic_type_annotations(): """Test annotations that are not unit related are ignored. This test passes if the function works. """ # one unit, one not (should be ignored) @u.quantity_input def func(x: u.m, y: str): return x, y i_q, i_str = 2 * u.m, "cool string" o_q, o_str = func(i_q, i_str) # if this doesn't fail, it worked. assert i_q == o_q assert i_str == o_str @pytest.mark.skipif(not HAS_ANNOTATED, reason="need `Annotated`") class TestQuantityUnitAnnotations: """Test Quantity[Unit] type annotation.""" def test_simple_annotation(self): @u.quantity_input def func(x: Quantity[u.m], y: str): return x, y i_q, i_str = 2 * u.m, "cool string" o_q, o_str = func(i_q, i_str) assert i_q == o_q assert i_str == o_str # checks the input on the 1st arg with pytest.raises(u.UnitsError): func(1 * u.s, i_str) # but not the second o_q, o_str = func(i_q, {"not": "a string"}) assert i_q == o_q assert i_str != o_str def test_multiple_annotation(self): @u.quantity_input def multi_func(a: Quantity[u.km]) -> Quantity[u.m]: return a i_q = 2 * u.km o_q = multi_func(i_q) assert o_q == i_q assert o_q.unit == u.m @pytest.mark.skipif(not HAS_ANNOTATED, reason="need `Annotated`") def test_optional_and_annotated(self): @u.quantity_input def opt_func(x: T.Optional[Quantity[u.m]] = None) -> Quantity[u.km]: if x is None: return 1 * u.km return x i_q = 250 * u.m o_q = opt_func(i_q) assert o_q.unit == u.km assert o_q == i_q i_q = None o_q = opt_func(i_q) assert o_q == 1 * u.km @pytest.mark.skipif(not HAS_ANNOTATED, reason="need `Annotated`") def test_union_and_annotated(self): # Union and Annotated @u.quantity_input def union_func(x: T.Union[Quantity[u.m], Quantity[u.s], None]): if x is None: return None else: return 2 * x i_q = 1 * u.m o_q = union_func(i_q) assert o_q == 2 * i_q i_q = 1 * u.s o_q = union_func(i_q) assert o_q == 2 * i_q i_q = None o_q = union_func(i_q) assert o_q is None def test_not_unit_or_ptype(self): with pytest.raises(TypeError, match="unit annotation is not"): Quantity["definitely not a unit"] @pytest.mark.skipif(HAS_ANNOTATED, reason="requires py3.8 behavior") def test_not_unit_or_ptype(): """ Same as above test, but different behavior for python 3.8 b/c it passes Quantity right through. """ with pytest.warns(Warning): annot = Quantity[u.km] assert annot == u.km @pytest.mark.parametrize("solarx_unit,solary_unit", [ (u.arcsec, u.arcsec), ('angle', 'angle')]) def test_args3(solarx_unit, solary_unit): @u.quantity_input def myfunc_args(solarx: solarx_unit, solary: solary_unit): return solarx, solary solarx, solary = myfunc_args(1*u.arcsec, 1*u.arcsec) assert isinstance(solarx, Quantity) assert isinstance(solary, Quantity) assert solarx.unit == u.arcsec assert solary.unit == u.arcsec @pytest.mark.parametrize("solarx_unit,solary_unit", [ (u.arcsec, u.arcsec), ('angle', 'angle')]) def test_args_noconvert3(solarx_unit, solary_unit): @u.quantity_input() def myfunc_args(solarx: solarx_unit, solary: solary_unit): return solarx, solary solarx, solary = myfunc_args(1*u.deg, 1*u.arcmin) assert isinstance(solarx, Quantity) assert isinstance(solary, Quantity) assert solarx.unit == u.deg assert solary.unit == u.arcmin @pytest.mark.parametrize("solarx_unit", [ u.arcsec, 'angle']) def test_args_nonquantity3(solarx_unit): @u.quantity_input def myfunc_args(solarx: solarx_unit, solary): return solarx, solary solarx, solary = myfunc_args(1*u.arcsec, 100) assert isinstance(solarx, Quantity) assert isinstance(solary, int) assert solarx.unit == u.arcsec @pytest.mark.parametrize("solarx_unit,solary_unit", [ (u.arcsec, u.eV), ('angle', 'energy')]) def test_arg_equivalencies3(solarx_unit, solary_unit): @u.quantity_input(equivalencies=u.mass_energy()) def myfunc_args(solarx: solarx_unit, solary: solary_unit): return solarx, solary+(10*u.J) # Add an energy to check equiv is working solarx, solary = myfunc_args(1*u.arcsec, 100*u.gram) assert isinstance(solarx, Quantity) assert isinstance(solary, Quantity) assert solarx.unit == u.arcsec assert solary.unit == u.gram @pytest.mark.parametrize("solarx_unit,solary_unit", [ (u.arcsec, u.deg), ('angle', 'angle')]) def test_wrong_unit3(solarx_unit, solary_unit): @u.quantity_input def myfunc_args(solarx: solarx_unit, solary: solary_unit): return solarx, solary with pytest.raises(u.UnitsError) as e: solarx, solary = myfunc_args(1*u.arcsec, 100*u.km) str_to = str(solary_unit) assert str(e.value) == f"Argument 'solary' to function 'myfunc_args' must be in units convertible to '{str_to}'." @pytest.mark.parametrize("solarx_unit,solary_unit", [ (u.arcsec, u.deg), ('angle', 'angle')]) def test_not_quantity3(solarx_unit, solary_unit): @u.quantity_input def myfunc_args(solarx: solarx_unit, solary: solary_unit): return solarx, solary with pytest.raises(TypeError) as e: solarx, solary = myfunc_args(1*u.arcsec, 100) assert str(e.value) == "Argument 'solary' to function 'myfunc_args' has no 'unit' attribute. You should pass in an astropy Quantity instead." def test_decorator_override(): @u.quantity_input(solarx=u.arcsec) def myfunc_args(solarx: u.km, solary: u.arcsec): return solarx, solary solarx, solary = myfunc_args(1*u.arcsec, 1*u.arcsec) assert isinstance(solarx, Quantity) assert isinstance(solary, Quantity) assert solarx.unit == u.arcsec assert solary.unit == u.arcsec @pytest.mark.parametrize("solarx_unit,solary_unit", [ (u.arcsec, u.deg), ('angle', 'angle')]) def test_kwargs3(solarx_unit, solary_unit): @u.quantity_input def myfunc_args(solarx: solarx_unit, solary, myk: solary_unit=1*u.arcsec): return solarx, solary, myk solarx, solary, myk = myfunc_args(1*u.arcsec, 100, myk=100*u.deg) assert isinstance(solarx, Quantity) assert isinstance(solary, int) assert isinstance(myk, Quantity) assert myk.unit == u.deg @pytest.mark.parametrize("solarx_unit,solary_unit", [ (u.arcsec, u.deg), ('angle', 'angle')]) def test_unused_kwargs3(solarx_unit, solary_unit): @u.quantity_input def myfunc_args(solarx: solarx_unit, solary, myk: solary_unit=1*u.arcsec, myk2=1000): return solarx, solary, myk, myk2 solarx, solary, myk, myk2 = myfunc_args(1*u.arcsec, 100, myk=100*u.deg, myk2=10) assert isinstance(solarx, Quantity) assert isinstance(solary, int) assert isinstance(myk, Quantity) assert isinstance(myk2, int) assert myk.unit == u.deg assert myk2 == 10 @pytest.mark.parametrize("solarx_unit,energy", [ (u.arcsec, u.eV), ('angle', 'energy')]) def test_kwarg_equivalencies3(solarx_unit, energy): @u.quantity_input(equivalencies=u.mass_energy()) def myfunc_args(solarx: solarx_unit, energy: energy=10*u.eV): return solarx, energy+(10*u.J) # Add an energy to check equiv is working solarx, energy = myfunc_args(1*u.arcsec, 100*u.gram) assert isinstance(solarx, Quantity) assert isinstance(energy, Quantity) assert solarx.unit == u.arcsec assert energy.unit == u.gram @pytest.mark.parametrize("solarx_unit,solary_unit", [ (u.arcsec, u.deg), ('angle', 'angle')]) def test_kwarg_wrong_unit3(solarx_unit, solary_unit): @u.quantity_input def myfunc_args(solarx: solarx_unit, solary: solary_unit=10*u.deg): return solarx, solary with pytest.raises(u.UnitsError) as e: solarx, solary = myfunc_args(1*u.arcsec, solary=100*u.km) str_to = str(solary_unit) assert str(e.value) == f"Argument 'solary' to function 'myfunc_args' must be in units convertible to '{str_to}'." @pytest.mark.parametrize("solarx_unit,solary_unit", [ (u.arcsec, u.deg), ('angle', 'angle')]) def test_kwarg_not_quantity3(solarx_unit, solary_unit): @u.quantity_input def myfunc_args(solarx: solarx_unit, solary: solary_unit=10*u.deg): return solarx, solary with pytest.raises(TypeError) as e: solarx, solary = myfunc_args(1*u.arcsec, solary=100) assert str(e.value) == "Argument 'solary' to function 'myfunc_args' has no 'unit' attribute. You should pass in an astropy Quantity instead." @pytest.mark.parametrize("solarx_unit,solary_unit", [ (u.arcsec, u.deg), ('angle', 'angle')]) def test_kwarg_default3(solarx_unit, solary_unit): @u.quantity_input def myfunc_args(solarx: solarx_unit, solary: solary_unit=10*u.deg): return solarx, solary solarx, solary = myfunc_args(1*u.arcsec) def test_return_annotation(): @u.quantity_input def myfunc_args(solarx: u.arcsec) -> u.deg: return solarx solarx = myfunc_args(1*u.arcsec) assert solarx.unit is u.deg def test_return_annotation_none(): @u.quantity_input def myfunc_args(solarx: u.arcsec) -> None: pass solarx = myfunc_args(1*u.arcsec) assert solarx is None def test_return_annotation_notUnit(): @u.quantity_input def myfunc_args(solarx: u.arcsec) -> int: return 0 solarx = myfunc_args(1*u.arcsec) assert solarx == 0 def test_enum_annotation(): # Regression test for gh-9932 from enum import Enum, auto class BasicEnum(Enum): AnOption = auto() @u.quantity_input def myfunc_args(a: BasicEnum, b: u.arcsec) -> None: pass myfunc_args(BasicEnum.AnOption, 1*u.arcsec)
6d4fb0cf91440a44b4baf3cb3a50aa73e4bb995b2752b85271d7dc2323c1b1e4
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Tests for the photometric module. Note that this is shorter than might be expected because a lot of the relevant tests that deal with magnidues are in `test_logarithmic.py` """ from astropy.tests.helper import assert_quantity_allclose from astropy.units import AA, ABflux, Jy, Magnitude, STflux, cm, erg, mgy, nmgy, s, zero_point_flux def test_maggies(): assert_quantity_allclose(1e-9*mgy, 1*nmgy) assert_quantity_allclose(Magnitude((1*nmgy).to(mgy)).value, 22.5) def test_maggies_zpts(): assert_quantity_allclose((1*nmgy).to(ABflux, zero_point_flux(1*ABflux)), 3631e-9*Jy, rtol=1e-3) ST_base_unit = erg * cm**-2 / s / AA stmgy = (10*mgy).to(STflux, zero_point_flux(1*ST_base_unit)) assert_quantity_allclose(stmgy, 10*ST_base_unit) mgyst = (2*ST_base_unit).to(mgy, zero_point_flux(0.5*ST_base_unit)) assert_quantity_allclose(mgyst, 4*mgy) nmgyst = (5.e-10*ST_base_unit).to(mgy, zero_point_flux(0.5*ST_base_unit)) assert_quantity_allclose(nmgyst, 1*nmgy)
507fe5650dc67d4b6fa192363ece5158384b3b9cb5bb24dacf65c2754233c451
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Regression tests for the units.format package """ import warnings from contextlib import nullcontext from fractions import Fraction import numpy as np import pytest from numpy.testing import assert_allclose from astropy import units as u from astropy.constants import si from astropy.units import UnitsWarning, core, dex from astropy.units import format as u_format from astropy.units.utils import is_effectively_unity @pytest.mark.parametrize('strings, unit', [ (["m s", "m*s", "m.s"], u.m * u.s), (["m/s", "m*s**-1", "m /s", "m / s", "m/ s"], u.m / u.s), (["m**2", "m2", "m**(2)", "m**+2", "m+2", "m^(+2)"], u.m ** 2), (["m**-3", "m-3", "m^(-3)", "/m3"], u.m ** -3), (["m**(1.5)", "m(3/2)", "m**(3/2)", "m^(3/2)"], u.m ** 1.5), (["2.54 cm"], u.Unit(u.cm * 2.54)), (["10+8m"], u.Unit(u.m * 1e8)), # This is the VOUnits documentation, but doesn't seem to follow the # unity grammar (["3.45 10**(-4)Jy"], 3.45 * 1e-4 * u.Jy) (["sqrt(m)"], u.m ** 0.5), (["dB(mW)", "dB (mW)"], u.DecibelUnit(u.mW)), (["mag"], u.mag), (["mag(ct/s)"], u.MagUnit(u.ct / u.s)), (["dex"], u.dex), (["dex(cm s**-2)", "dex(cm/s2)"], u.DexUnit(u.cm / u.s**2)), ]) def test_unit_grammar(strings, unit): for s in strings: print(s) unit2 = u_format.Generic.parse(s) assert unit2 == unit @pytest.mark.parametrize('string', ['sin( /pixel /s)', 'mag(mag)', 'dB(dB(mW))', 'dex()']) def test_unit_grammar_fail(string): with pytest.raises(ValueError): print(string) u_format.Generic.parse(string) @pytest.mark.parametrize('strings, unit', [ (["0.1nm"], u.AA), (["mW/m2"], u.Unit(u.erg / u.cm ** 2 / u.s)), (["mW/(m2)"], u.Unit(u.erg / u.cm ** 2 / u.s)), (["km/s", "km.s-1"], u.km / u.s), (["10pix/nm"], u.Unit(10 * u.pix / u.nm)), (["1.5x10+11m"], u.Unit(1.5e11 * u.m)), (["1.5×10+11m"], u.Unit(1.5e11 * u.m)), (["m2"], u.m ** 2), (["10+21m"], u.Unit(u.m * 1e21)), (["2.54cm"], u.Unit(u.cm * 2.54)), (["20%"], 0.20 * u.dimensionless_unscaled), (["10+9"], 1.e9 * u.dimensionless_unscaled), (["2x10-9"], 2.e-9 * u.dimensionless_unscaled), (["---"], u.dimensionless_unscaled), (["ma"], u.ma), (["mAU"], u.mAU), (["uarcmin"], u.uarcmin), (["uarcsec"], u.uarcsec), (["kbarn"], u.kbarn), (["Gbit"], u.Gbit), (["Gibit"], 2 ** 30 * u.bit), (["kbyte"], u.kbyte), (["mRy"], 0.001 * u.Ry), (["mmag"], u.mmag), (["Mpc"], u.Mpc), (["Gyr"], u.Gyr), (["°"], u.degree), (["°/s"], u.degree / u.s), (["Å"], u.AA), (["Å/s"], u.AA / u.s), (["\\h"], si.h), (["[cm/s2]"], dex(u.cm / u.s ** 2)), (["[K]"], dex(u.K)), (["[-]"], dex(u.dimensionless_unscaled))]) def test_cds_grammar(strings, unit): for s in strings: print(s) unit2 = u_format.CDS.parse(s) assert unit2 == unit @pytest.mark.parametrize('string', [ '0.1 nm', 'solMass(3/2)', 'km / s', 'km s-1', 'pix0.1nm', 'pix/(0.1nm)', 'km*s', 'km**2', '5x8+3m', '0.1---', '---m', 'm---', '--', '0.1-', '-m', 'm-', 'mag(s-1)', 'dB(mW)', 'dex(cm s-2)', '[--]']) def test_cds_grammar_fail(string): with pytest.raises(ValueError): print(string) u_format.CDS.parse(string) def test_cds_dimensionless(): assert u.Unit('---', format='cds') == u.dimensionless_unscaled assert u.dimensionless_unscaled.to_string(format='cds') == "---" def test_cds_log10_dimensionless(): assert u.Unit('[-]', format='cds') == u.dex(u.dimensionless_unscaled) assert u.dex(u.dimensionless_unscaled).to_string(format='cds') == "[-]" # These examples are taken from the EXAMPLES section of # https://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/docs/general/ogip_93_001/ @pytest.mark.parametrize('strings, unit', [ (["count /s", "count/s", "count s**(-1)", "count / s", "count /s "], u.count / u.s), (["/pixel /s", "/(pixel * s)"], (u.pixel * u.s) ** -1), (["count /m**2 /s /eV", "count m**(-2) * s**(-1) * eV**(-1)", "count /(m**2 * s * eV)"], u.count * u.m ** -2 * u.s ** -1 * u.eV ** -1), (["erg /pixel /s /GHz", "erg /s /GHz /pixel", "erg /pixel /(s * GHz)"], u.erg / (u.s * u.GHz * u.pixel)), (["keV**2 /yr /angstrom", "10**(10) keV**2 /yr /m"], # Though this is given as an example, it seems to violate the rules # of not raising scales to powers, so I'm just excluding it # "(10**2 MeV)**2 /yr /m" u.keV**2 / (u.yr * u.angstrom)), (["10**(46) erg /s", "10**46 erg /s", "10**(39) J /s", "10**(39) W", "10**(15) YW", "YJ /fs"], 10**46 * u.erg / u.s), (["10**(-7) J /cm**2 /MeV", "10**(-9) J m**(-2) eV**(-1)", "nJ m**(-2) eV**(-1)", "nJ /m**2 /eV"], 10 ** -7 * u.J * u.cm ** -2 * u.MeV ** -1), (["sqrt(erg /pixel /s /GHz)", "(erg /pixel /s /GHz)**(0.5)", "(erg /pixel /s /GHz)**(1/2)", "erg**(0.5) pixel**(-0.5) s**(-0.5) GHz**(-0.5)"], (u.erg * u.pixel ** -1 * u.s ** -1 * u.GHz ** -1) ** 0.5), (["(count /s) (/pixel /s)", "(count /s) * (/pixel /s)", "count /pixel /s**2"], (u.count / u.s) * (1.0 / (u.pixel * u.s)))]) def test_ogip_grammar(strings, unit): for s in strings: print(s) unit2 = u_format.OGIP.parse(s) assert unit2 == unit @pytest.mark.parametrize('string', [ 'log(photon /m**2 /s /Hz)', 'sin( /pixel /s)', 'log(photon /cm**2 /s /Hz) /(sin( /pixel /s))', 'log(photon /cm**2 /s /Hz) (sin( /pixel /s))**(-1)', 'dB(mW)', 'dex(cm/s**2)']) def test_ogip_grammar_fail(string): with pytest.raises(ValueError): print(string) u_format.OGIP.parse(string) class RoundtripBase: deprecated_units = set() def check_roundtrip(self, unit, output_format=None): if output_format is None: output_format = self.format_ with warnings.catch_warnings(): warnings.simplefilter('ignore') # Same warning shows up multiple times s = unit.to_string(output_format) if s in self.deprecated_units: with pytest.warns(UnitsWarning, match='deprecated') as w: a = core.Unit(s, format=self.format_) assert len(w) == 1 else: a = core.Unit(s, format=self.format_) # No warning assert_allclose(a.decompose().scale, unit.decompose().scale, rtol=1e-9) def check_roundtrip_decompose(self, unit): ud = unit.decompose() s = ud.to_string(self.format_) assert ' ' not in s a = core.Unit(s, format=self.format_) assert_allclose(a.decompose().scale, ud.scale, rtol=1e-5) class TestRoundtripGeneric(RoundtripBase): format_ = 'generic' @pytest.mark.parametrize('unit', [ unit for unit in u.__dict__.values() if (isinstance(unit, core.UnitBase) and not isinstance(unit, core.PrefixUnit))]) def test_roundtrip(self, unit): self.check_roundtrip(unit) self.check_roundtrip(unit, output_format='unicode') self.check_roundtrip_decompose(unit) class TestRoundtripVOUnit(RoundtripBase): format_ = 'vounit' deprecated_units = u_format.VOUnit._deprecated_units @pytest.mark.parametrize('unit', [ unit for unit in u_format.VOUnit._units.values() if (isinstance(unit, core.UnitBase) and not isinstance(unit, core.PrefixUnit))]) def test_roundtrip(self, unit): self.check_roundtrip(unit) if unit not in (u.mag, u.dB): self.check_roundtrip_decompose(unit) class TestRoundtripFITS(RoundtripBase): format_ = 'fits' deprecated_units = u_format.Fits._deprecated_units @pytest.mark.parametrize('unit', [ unit for unit in u_format.Fits._units.values() if (isinstance(unit, core.UnitBase) and not isinstance(unit, core.PrefixUnit))]) def test_roundtrip(self, unit): self.check_roundtrip(unit) class TestRoundtripCDS(RoundtripBase): format_ = 'cds' @pytest.mark.parametrize('unit', [ unit for unit in u_format.CDS._units.values() if (isinstance(unit, core.UnitBase) and not isinstance(unit, core.PrefixUnit))]) def test_roundtrip(self, unit): self.check_roundtrip(unit) if unit == u.mag: # Skip mag: decomposes into dex, which is unknown to CDS. return self.check_roundtrip_decompose(unit) @pytest.mark.parametrize('unit', [u.dex(unit) for unit in (u.cm/u.s**2, u.K, u.Lsun)]) def test_roundtrip_dex(self, unit): string = unit.to_string(format='cds') recovered = u.Unit(string, format='cds') assert recovered == unit class TestRoundtripOGIP(RoundtripBase): format_ = 'ogip' deprecated_units = u_format.OGIP._deprecated_units | {'d'} @pytest.mark.parametrize('unit', [ unit for unit in u_format.OGIP._units.values() if (isinstance(unit, core.UnitBase) and not isinstance(unit, core.PrefixUnit))]) def test_roundtrip(self, unit): if str(unit) in ('d', '0.001 Crab'): # Special-case day, which gets auto-converted to hours, and mCrab, # which the default check does not recognize as a deprecated unit. with pytest.warns(UnitsWarning): s = unit.to_string(self.format_) a = core.Unit(s, format=self.format_) assert_allclose(a.decompose().scale, unit.decompose().scale, rtol=1e-9) else: self.check_roundtrip(unit) if str(unit) in ('mag', 'byte', 'Crab'): # Skip mag and byte, which decompose into dex and bit, resp., # both of which are unknown to OGIP, as well as Crab, which does # not decompose, and thus gives a deprecated unit warning. return power_of_ten = np.log10(unit.decompose().scale) if abs(power_of_ten - round(power_of_ten)) > 1e-3: ctx = pytest.warns(UnitsWarning, match='power of 10') elif str(unit) == '0.001 Crab': ctx = pytest.warns(UnitsWarning, match='deprecated') else: ctx = nullcontext() with ctx: self.check_roundtrip_decompose(unit) def test_fits_units_available(): u_format.Fits._units def test_vo_units_available(): u_format.VOUnit._units def test_cds_units_available(): u_format.CDS._units def test_cds_non_ascii_unit(): """Regression test for #5350. This failed with a decoding error as μas could not be represented in ascii.""" from astropy.units import cds with cds.enable(): u.radian.find_equivalent_units(include_prefix_units=True) def test_latex(): fluxunit = u.erg / (u.cm ** 2 * u.s) assert fluxunit.to_string('latex') == r'$\mathrm{\frac{erg}{s\,cm^{2}}}$' def test_new_style_latex(): fluxunit = u.erg / (u.cm ** 2 * u.s) assert f"{fluxunit:latex}" == r'$\mathrm{\frac{erg}{s\,cm^{2}}}$' def test_latex_scale(): fluxunit = u.Unit(1.e-24 * u.erg / (u.cm ** 2 * u.s * u.Hz)) latex = r'$\mathrm{1 \times 10^{-24}\,\frac{erg}{Hz\,s\,cm^{2}}}$' assert fluxunit.to_string('latex') == latex def test_latex_inline_scale(): fluxunit = u.Unit(1.e-24 * u.erg / (u.cm ** 2 * u.s * u.Hz)) latex_inline = (r'$\mathrm{1 \times 10^{-24}\,erg' r'\,Hz^{-1}\,s^{-1}\,cm^{-2}}$') assert fluxunit.to_string('latex_inline') == latex_inline @pytest.mark.parametrize('format_spec, string', [ ('generic', 'erg / (cm2 s)'), ('s', 'erg / (cm2 s)'), ('console', ' erg \n ------\n s cm^2'), ('latex', '$\\mathrm{\\frac{erg}{s\\,cm^{2}}}$'), ('latex_inline', '$\\mathrm{erg\\,s^{-1}\\,cm^{-2}}$'), ('>20s', ' erg / (cm2 s)')]) def test_format_styles(format_spec, string): fluxunit = u.erg / (u.cm ** 2 * u.s) assert format(fluxunit, format_spec) == string def test_flatten_to_known(): myunit = u.def_unit("FOOBAR_One", u.erg / u.Hz) assert myunit.to_string('fits') == 'erg Hz-1' myunit2 = myunit * u.bit ** 3 assert myunit2.to_string('fits') == 'bit3 erg Hz-1' def test_flatten_impossible(): myunit = u.def_unit("FOOBAR_Two") with u.add_enabled_units(myunit), pytest.raises(ValueError): myunit.to_string('fits') def test_console_out(): """ Issue #436. """ u.Jy.decompose().to_string('console') def test_flexible_float(): assert u.min._represents.to_string('latex') == r'$\mathrm{60\,s}$' def test_fits_to_string_function_error(): """Test function raises TypeError on bad input. This instead of returning None, see gh-11825. """ with pytest.raises(TypeError, match='unit argument must be'): u_format.Fits.to_string(None) def test_fraction_repr(): area = u.cm ** 2.0 assert '.' not in area.to_string('latex') fractional = u.cm ** 2.5 assert '5/2' in fractional.to_string('latex') assert fractional.to_string('unicode') == 'cm⁵⸍²' def test_scale_effectively_unity(): """Scale just off unity at machine precision level is OK. Ensures #748 does not recur """ a = (3. * u.N).cgs assert is_effectively_unity(a.unit.scale) assert len(a.__repr__().split()) == 3 def test_percent(): """Test that the % unit is properly recognized. Since % is a special symbol, this goes slightly beyond the round-tripping tested above.""" assert u.Unit('%') == u.percent == u.Unit(0.01) assert u.Unit('%', format='cds') == u.Unit(0.01) assert u.Unit(0.01).to_string('cds') == '%' with pytest.raises(ValueError): u.Unit('%', format='fits') with pytest.raises(ValueError): u.Unit('%', format='vounit') def test_scaled_dimensionless(): """Test that scaled dimensionless units are properly recognized in generic and CDS, but not in fits and vounit.""" assert u.Unit('0.1') == u.Unit(0.1) == 0.1 * u.dimensionless_unscaled assert u.Unit('1.e-4') == u.Unit(1.e-4) assert u.Unit('10-4', format='cds') == u.Unit(1.e-4) assert u.Unit('10+8').to_string('cds') == '10+8' with pytest.raises(ValueError): u.Unit(0.15).to_string('fits') assert u.Unit(0.1).to_string('fits') == '10**-1' with pytest.raises(ValueError): u.Unit(0.1).to_string('vounit') def test_deprecated_did_you_mean_units(): with pytest.raises(ValueError) as exc_info: u.Unit('ANGSTROM', format='fits') assert 'Did you mean Angstrom or angstrom?' in str(exc_info.value) with pytest.raises(ValueError) as exc_info: u.Unit('crab', format='ogip') assert 'Crab (deprecated)' in str(exc_info.value) assert 'mCrab (deprecated)' in str(exc_info.value) with pytest.warns(UnitsWarning, match=r'.* Did you mean 0\.1nm, Angstrom ' r'\(deprecated\) or angstrom \(deprecated\)\?') as w: u.Unit('ANGSTROM', format='vounit') assert len(w) == 1 assert str(w[0].message).count('0.1nm') == 1 with pytest.warns(UnitsWarning, match=r'.* 0\.1nm\.') as w: u.Unit('angstrom', format='vounit') assert len(w) == 1 @pytest.mark.parametrize('string', ['mag(ct/s)', 'dB(mW)', 'dex(cm s**-2)']) def test_fits_function(string): # Function units cannot be written, so ensure they're not parsed either. with pytest.raises(ValueError): print(string) u_format.Fits().parse(string) @pytest.mark.parametrize('string', ['mag(ct/s)', 'dB(mW)', 'dex(cm s**-2)']) def test_vounit_function(string): # Function units cannot be written, so ensure they're not parsed either. with pytest.raises(ValueError), warnings.catch_warnings(): warnings.simplefilter('ignore') # ct, dex also raise warnings - irrelevant here. u_format.VOUnit().parse(string) def test_vounit_binary_prefix(): u.Unit('KiB', format='vounit') == u.Unit('1024 B') u.Unit('Kibyte', format='vounit') == u.Unit('1024 B') u.Unit('Kibit', format='vounit') == u.Unit('1024 B') with pytest.warns(UnitsWarning) as w: u.Unit('kibibyte', format='vounit') assert len(w) == 1 def test_vounit_unknown(): assert u.Unit('unknown', format='vounit') is None assert u.Unit('UNKNOWN', format='vounit') is None assert u.Unit('', format='vounit') is u.dimensionless_unscaled def test_vounit_details(): with pytest.warns(UnitsWarning, match='deprecated') as w: assert u.Unit('Pa', format='vounit') is u.Pascal assert len(w) == 1 # The da- prefix is not allowed, and the d- prefix is discouraged assert u.dam.to_string('vounit') == '10m' assert u.Unit('dam dag').to_string('vounit') == '100g.m' # Parse round-trip with pytest.warns(UnitsWarning, match='deprecated'): flam = u.erg / u.cm / u.cm / u.s / u.AA x = u.format.VOUnit.to_string(flam) assert x == 'Angstrom**-1.cm**-2.erg.s**-1' new_flam = u.format.VOUnit.parse(x) assert new_flam == flam @pytest.mark.parametrize('unit, vounit, number, scale, voscale', [('nm', 'nm', 0.1, '10^-1', '0.1'), ('fm', 'fm', 100.0, '10+2', '100'), ('m^2', 'm**2', 100.0, '100.0', '100'), ('cm', 'cm', 2.54, '2.54', '2.54'), ('kg', 'kg', 1.898124597e27, '1.898124597E27', '1.8981246e+27'), ('m/s', 'm.s**-1', 299792458.0, '299792458', '2.9979246e+08'), ('cm2', 'cm**2', 1.e-20, '10^(-20)', '1e-20')]) def test_vounit_scale_factor(unit, vounit, number, scale, voscale): x = u.Unit(f'{scale} {unit}') assert x == number * u.Unit(unit) assert x.to_string(format='vounit') == voscale + vounit def test_vounit_custom(): x = u.Unit("'foo' m", format='vounit') x_vounit = x.to_string('vounit') assert x_vounit == "'foo'.m" x_string = x.to_string() assert x_string == "foo m" x = u.Unit("m'foo' m", format='vounit') assert x.bases[1]._represents.scale == 0.001 x_vounit = x.to_string('vounit') assert x_vounit == "m.m'foo'" x_string = x.to_string() assert x_string == 'm mfoo' def test_vounit_implicit_custom(): # Yikes, this becomes "femto-urlong"... But at least there's a warning. with pytest.warns(UnitsWarning) as w: x = u.Unit("furlong/week", format="vounit") assert x.bases[0]._represents.scale == 1e-15 assert x.bases[0]._represents.bases[0].name == 'urlong' assert len(w) == 2 assert 'furlong' in str(w[0].message) assert 'week' in str(w[1].message) @pytest.mark.parametrize('scale, number, string', [('10+2', 100, '10**2'), ('10(+2)', 100, '10**2'), ('10**+2', 100, '10**2'), ('10**(+2)', 100, '10**2'), ('10^+2', 100, '10**2'), ('10^(+2)', 100, '10**2'), ('10**2', 100, '10**2'), ('10**(2)', 100, '10**2'), ('10^2', 100, '10**2'), ('10^(2)', 100, '10**2'), ('10-20', 10**(-20), '10**-20'), ('10(-20)', 10**(-20), '10**-20'), ('10**-20', 10**(-20), '10**-20'), ('10**(-20)', 10**(-20), '10**-20'), ('10^-20', 10**(-20), '10**-20'), ('10^(-20)', 10**(-20), '10**-20'), ]) def test_fits_scale_factor(scale, number, string): x = u.Unit(scale + ' erg/(s cm**2 Angstrom)', format='fits') assert x == number * (u.erg / u.s / u.cm ** 2 / u.Angstrom) assert x.to_string(format='fits') == string + ' Angstrom-1 cm-2 erg s-1' x = u.Unit(scale + '*erg/(s cm**2 Angstrom)', format='fits') assert x == number * (u.erg / u.s / u.cm ** 2 / u.Angstrom) assert x.to_string(format='fits') == string + ' Angstrom-1 cm-2 erg s-1' def test_fits_scale_factor_errors(): with pytest.raises(ValueError): x = u.Unit('1000 erg/(s cm**2 Angstrom)', format='fits') with pytest.raises(ValueError): x = u.Unit('12 erg/(s cm**2 Angstrom)', format='fits') x = u.Unit(1.2 * u.erg) with pytest.raises(ValueError): x.to_string(format='fits') x = u.Unit(100.0 * u.erg) assert x.to_string(format='fits') == '10**2 erg' def test_double_superscript(): """Regression test for #5870, #8699, #9218; avoid double superscripts.""" assert (u.deg).to_string("latex") == r'$\mathrm{{}^{\circ}}$' assert (u.deg**2).to_string("latex") == r'$\mathrm{deg^{2}}$' assert (u.arcmin).to_string("latex") == r'$\mathrm{{}^{\prime}}$' assert (u.arcmin**2).to_string("latex") == r'$\mathrm{arcmin^{2}}$' assert (u.arcsec).to_string("latex") == r'$\mathrm{{}^{\prime\prime}}$' assert (u.arcsec**2).to_string("latex") == r'$\mathrm{arcsec^{2}}$' assert (u.hourangle).to_string("latex") == r'$\mathrm{{}^{h}}$' assert (u.hourangle**2).to_string("latex") == r'$\mathrm{hourangle^{2}}$' assert (u.electron).to_string("latex") == r'$\mathrm{e^{-}}$' assert (u.electron**2).to_string("latex") == r'$\mathrm{electron^{2}}$' @pytest.mark.parametrize('power,expected', ( (1., 'm'), (2., 'm2'), (-10, '1 / m10'), (1.5, 'm(3/2)'), (2/3, 'm(2/3)'), (7/11, 'm(7/11)'), (-1/64, '1 / m(1/64)'), (1/100, 'm(1/100)'), (2/101, 'm(0.019801980198019802)'), (Fraction(2, 101), 'm(2/101)'))) def test_powers(power, expected): """Regression test for #9279 - powers should not be oversimplified.""" unit = u.m ** power s = unit.to_string() assert s == expected assert unit == s @pytest.mark.parametrize('string,unit', [ ('\N{MICRO SIGN}g', u.microgram), ('\N{GREEK SMALL LETTER MU}g', u.microgram), ('g\N{MINUS SIGN}1', u.g**(-1)), ('m\N{SUPERSCRIPT MINUS}\N{SUPERSCRIPT ONE}', 1 / u.m), ('m s\N{SUPERSCRIPT MINUS}\N{SUPERSCRIPT ONE}', u.m / u.s), ('m\N{SUPERSCRIPT TWO}', u.m**2), ('m\N{SUPERSCRIPT PLUS SIGN}\N{SUPERSCRIPT TWO}', u.m**2), ('m\N{SUPERSCRIPT THREE}', u.m**3), ('m\N{SUPERSCRIPT ONE}\N{SUPERSCRIPT ZERO}', u.m**10), ('\N{GREEK CAPITAL LETTER OMEGA}', u.ohm), ('\N{OHM SIGN}', u.ohm), # deprecated but for compatibility ('\N{MICRO SIGN}\N{GREEK CAPITAL LETTER OMEGA}', u.microOhm), ('\N{ANGSTROM SIGN}', u.Angstrom), ('\N{ANGSTROM SIGN} \N{OHM SIGN}', u.Angstrom * u.Ohm), ('\N{LATIN CAPITAL LETTER A WITH RING ABOVE}', u.Angstrom), ('\N{LATIN CAPITAL LETTER A}\N{COMBINING RING ABOVE}', u.Angstrom), ('m\N{ANGSTROM SIGN}', u.milliAngstrom), ('°C', u.deg_C), ('°', u.deg), ('M⊙', u.Msun), # \N{CIRCLED DOT OPERATOR} ('L☉', u.Lsun), # \N{SUN} ('M⊕', u.Mearth), # normal earth symbol = \N{CIRCLED PLUS} ('M♁', u.Mearth), # be generous with \N{EARTH} ('R♃', u.Rjup), # \N{JUPITER} ('′', u.arcmin), # \N{PRIME} ('R∞', u.Ry), ('Mₚ', u.M_p), ]) def test_unicode(string, unit): assert u_format.Generic.parse(string) == unit assert u.Unit(string) == unit @pytest.mark.parametrize('string', [ 'g\N{MICRO SIGN}', 'g\N{MINUS SIGN}', 'm\N{SUPERSCRIPT MINUS}1', 'm+\N{SUPERSCRIPT ONE}', 'm\N{MINUS SIGN}\N{SUPERSCRIPT ONE}', 'k\N{ANGSTROM SIGN}', ]) def test_unicode_failures(string): with pytest.raises(ValueError): u.Unit(string) @pytest.mark.parametrize('format_', ('unicode', 'latex', 'latex_inline')) def test_parse_error_message_for_output_only_format(format_): with pytest.raises(NotImplementedError, match='not parse'): u.Unit('m', format=format_) def test_unknown_parser(): with pytest.raises(ValueError, match=r"Unknown.*unicode'\] for output only"): u.Unit('m', format='foo')
0abf905e4639c4fc4ad449d88a8ee31e662733beb187022b54603b9e48ef9108
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Regression tests for the units package.""" import pickle from fractions import Fraction import numpy as np import pytest from numpy.testing import assert_allclose from astropy import constants as c from astropy import units as u from astropy.units import utils def test_initialisation(): assert u.Unit(u.m) is u.m ten_meter = u.Unit(10.*u.m) assert ten_meter == u.CompositeUnit(10., [u.m], [1]) assert u.Unit(ten_meter) is ten_meter assert u.Unit(10.*ten_meter) == u.CompositeUnit(100., [u.m], [1]) foo = u.Unit('foo', (10. * ten_meter)**2, namespace=locals()) assert foo == u.CompositeUnit(10000., [u.m], [2]) assert u.Unit('m') == u.m assert u.Unit('') == u.dimensionless_unscaled assert u.one == u.dimensionless_unscaled assert u.Unit('10 m') == ten_meter assert u.Unit(10.) == u.CompositeUnit(10., [], []) assert u.Unit() == u.dimensionless_unscaled def test_invalid_power(): x = u.m ** Fraction(1, 3) assert isinstance(x.powers[0], Fraction) x = u.m ** Fraction(1, 2) assert isinstance(x.powers[0], float) # Test the automatic conversion to a fraction x = u.m ** (1. / 3.) assert isinstance(x.powers[0], Fraction) def test_invalid_compare(): assert not (u.m == u.s) def test_convert(): assert u.h._get_converter(u.s)(1) == 3600 def test_convert_fail(): with pytest.raises(u.UnitsError): u.cm.to(u.s, 1) with pytest.raises(u.UnitsError): (u.cm / u.s).to(u.m, 1) def test_composite(): assert (u.cm / u.s * u.h)._get_converter(u.m)(1) == 36 assert u.cm * u.cm == u.cm ** 2 assert u.cm * u.cm * u.cm == u.cm ** 3 assert u.Hz.to(1000 * u.Hz, 1) == 0.001 def test_str(): assert str(u.cm) == "cm" def test_repr(): assert repr(u.cm) == 'Unit("cm")' def test_represents(): assert u.m.represents is u.m assert u.km.represents.scale == 1000. assert u.km.represents.bases == [u.m] assert u.Ry.scale == 1.0 and u.Ry.bases == [u.Ry] assert_allclose(u.Ry.represents.scale, 13.605692518464949) assert u.Ry.represents.bases == [u.eV] bla = u.def_unit('bla', namespace=locals()) assert bla.represents is bla blabla = u.def_unit('blabla', 10 * u.hr, namespace=locals()) assert blabla.represents.scale == 10. assert blabla.represents.bases == [u.hr] assert blabla.decompose().scale == 10 * 3600 assert blabla.decompose().bases == [u.s] def test_units_conversion(): assert_allclose(u.kpc.to(u.Mpc), 0.001) assert_allclose(u.Mpc.to(u.kpc), 1000) assert_allclose(u.yr.to(u.Myr), 1.e-6) assert_allclose(u.AU.to(u.pc), 4.84813681e-6) assert_allclose(u.cycle.to(u.rad), 6.283185307179586) assert_allclose(u.spat.to(u.sr), 12.56637061435917) def test_units_manipulation(): # Just do some manipulation and check it's happy (u.kpc * u.yr) ** Fraction(1, 3) / u.Myr (u.AA * u.erg) ** 9 def test_decompose(): assert u.Ry == u.Ry.decompose() def test_dimensionless_to_si(): """ Issue #1150: Test for conversion of dimensionless quantities to the SI system """ testunit = ((1.0 * u.kpc) / (1.0 * u.Mpc)) assert testunit.unit.physical_type == 'dimensionless' assert_allclose(testunit.si, 0.001) def test_dimensionless_to_cgs(): """ Issue #1150: Test for conversion of dimensionless quantities to the CGS system """ testunit = ((1.0 * u.m) / (1.0 * u.km)) assert testunit.unit.physical_type == 'dimensionless' assert_allclose(testunit.cgs, 0.001) def test_unknown_unit(): with pytest.warns(u.UnitsWarning, match='FOO'): u.Unit("FOO", parse_strict='warn') def test_multiple_solidus(): with pytest.warns(u.UnitsWarning, match="'m/s/kg' contains multiple " "slashes, which is discouraged"): assert u.Unit("m/s/kg").to_string() == 'm / (kg s)' with pytest.raises(ValueError): u.Unit("m/s/kg", format="vounit") # Regression test for #9000: solidi in exponents do not count towards this. x = u.Unit("kg(3/10) * m(5/2) / s", format="vounit") assert x.to_string() == 'kg(3/10) m(5/2) / s' def test_unknown_unit3(): unit = u.Unit("FOO", parse_strict='silent') assert isinstance(unit, u.UnrecognizedUnit) assert unit.name == "FOO" unit2 = u.Unit("FOO", parse_strict='silent') assert unit == unit2 assert unit.is_equivalent(unit2) unit3 = u.Unit("BAR", parse_strict='silent') assert unit != unit3 assert not unit.is_equivalent(unit3) # Also test basic (in)equalities. assert unit == "FOO" assert unit != u.m # next two from gh-7603. assert unit != None # noqa assert unit not in (None, u.m) with pytest.raises(ValueError): unit._get_converter(unit3) _ = unit.to_string('latex') _ = unit2.to_string('cgs') with pytest.raises(ValueError): u.Unit("BAR", parse_strict='strict') with pytest.raises(TypeError): u.Unit(None) def test_invalid_scale(): with pytest.raises(TypeError): ['a', 'b', 'c'] * u.m def test_cds_power(): unit = u.Unit("10+22/cm2", format="cds", parse_strict='silent') assert unit.scale == 1e22 def test_register(): foo = u.def_unit("foo", u.m ** 3, namespace=locals()) assert 'foo' in locals() with u.add_enabled_units(foo): assert 'foo' in u.get_current_unit_registry().registry assert 'foo' not in u.get_current_unit_registry().registry def test_in_units(): speed_unit = u.cm / u.s _ = speed_unit.in_units(u.pc / u.hour, 1) def test_null_unit(): assert (u.m / u.m) == u.Unit(1) def test_unrecognized_equivalency(): assert u.m.is_equivalent('foo') is False assert u.m.is_equivalent('pc') is True def test_convertible_exception(): with pytest.raises(u.UnitsError, match=r'length.+ are not convertible'): u.AA.to(u.h * u.s ** 2) def test_convertible_exception2(): with pytest.raises(u.UnitsError, match=r'length. and .+time.+ are not convertible'): u.m.to(u.s) def test_invalid_type(): class A: pass with pytest.raises(TypeError): u.Unit(A()) def test_steradian(): """ Issue #599 """ assert u.sr.is_equivalent(u.rad * u.rad) results = u.sr.compose(units=u.cgs.bases) assert results[0].bases[0] is u.rad results = u.sr.compose(units=u.cgs.__dict__) assert results[0].bases[0] is u.sr def test_decompose_bases(): """ From issue #576 """ from astropy.constants import e from astropy.units import cgs d = e.esu.unit.decompose(bases=cgs.bases) assert d._bases == [u.cm, u.g, u.s] assert d._powers == [Fraction(3, 2), 0.5, -1] assert d._scale == 1.0 def test_complex_compose(): complex = u.cd * u.sr * u.Wb composed = complex.compose() assert set(composed[0]._bases) == {u.lm, u.Wb} def test_equiv_compose(): composed = u.m.compose(equivalencies=u.spectral()) assert any([u.Hz] == x.bases for x in composed) def test_empty_compose(): with pytest.raises(u.UnitsError): u.m.compose(units=[]) def _unit_as_str(unit): # This function serves two purposes - it is used to sort the units to # test alphabetically, and it is also use to allow pytest to show the unit # in the [] when running the parametrized tests. return str(unit) # We use a set to make sure we don't have any duplicates. COMPOSE_ROUNDTRIP = set() for val in u.__dict__.values(): if (isinstance(val, u.UnitBase) and not isinstance(val, u.PrefixUnit)): COMPOSE_ROUNDTRIP.add(val) @pytest.mark.parametrize('unit', sorted(COMPOSE_ROUNDTRIP, key=_unit_as_str), ids=_unit_as_str) def test_compose_roundtrip(unit): composed_list = unit.decompose().compose() found = False for composed in composed_list: if len(composed.bases): if composed.bases[0] is unit: found = True break elif len(unit.bases) == 0: found = True break assert found # We use a set to make sure we don't have any duplicates. COMPOSE_CGS_TO_SI = set() for val in u.cgs.__dict__.values(): # Can't decompose Celsius if (isinstance(val, u.UnitBase) and not isinstance(val, u.PrefixUnit) and val != u.cgs.deg_C): COMPOSE_CGS_TO_SI.add(val) @pytest.mark.parametrize('unit', sorted(COMPOSE_CGS_TO_SI, key=_unit_as_str), ids=_unit_as_str) def test_compose_cgs_to_si(unit): si = unit.to_system(u.si) assert [x.is_equivalent(unit) for x in si] assert si[0] == unit.si # We use a set to make sure we don't have any duplicates. COMPOSE_SI_TO_CGS = set() for val in u.si.__dict__.values(): # Can't decompose Celsius if (isinstance(val, u.UnitBase) and not isinstance(val, u.PrefixUnit) and val != u.si.deg_C): COMPOSE_SI_TO_CGS.add(val) @pytest.mark.parametrize('unit', sorted(COMPOSE_SI_TO_CGS, key=_unit_as_str), ids=_unit_as_str) def test_compose_si_to_cgs(unit): # Can't convert things with Ampere to CGS without more context try: cgs = unit.to_system(u.cgs) except u.UnitsError: if u.A in unit.decompose().bases: pass else: raise else: assert [x.is_equivalent(unit) for x in cgs] assert cgs[0] == unit.cgs def test_to_si(): """Check units that are not official derived units. Should not appear on its own or as part of a composite unit. """ # TODO: extend to all units not listed in Tables 1--6 of # https://physics.nist.gov/cuu/Units/units.html # See gh-10585. # This was always the case assert u.bar.si is not u.bar # But this used to fail. assert u.bar not in (u.kg/(u.s**2*u.sr*u.nm)).si._bases def test_to_cgs(): assert u.Pa.to_system(u.cgs)[1]._bases[0] is u.Ba assert u.Pa.to_system(u.cgs)[1]._scale == 10.0 def test_decompose_to_cgs(): from astropy.units import cgs assert u.m.decompose(bases=cgs.bases)._bases[0] is cgs.cm def test_compose_issue_579(): unit = u.kg * u.s ** 2 / u.m result = unit.compose(units=[u.N, u.s, u.m]) assert len(result) == 1 assert result[0]._bases == [u.s, u.N, u.m] assert result[0]._powers == [4, 1, -2] def test_compose_prefix_unit(): x = u.m.compose(units=(u.m,)) assert x[0].bases[0] is u.m assert x[0].scale == 1.0 x = u.m.compose(units=[u.km], include_prefix_units=True) assert x[0].bases[0] is u.km assert x[0].scale == 0.001 x = u.m.compose(units=[u.km]) assert x[0].bases[0] is u.km assert x[0].scale == 0.001 x = (u.km/u.s).compose(units=(u.pc, u.Myr)) assert x[0].bases == [u.pc, u.Myr] assert_allclose(x[0].scale, 1.0227121650537077) with pytest.raises(u.UnitsError): (u.km/u.s).compose(units=(u.pc, u.Myr), include_prefix_units=False) def test_self_compose(): unit = u.kg * u.s assert len(unit.compose(units=[u.g, u.s])) == 1 def test_compose_failed(): unit = u.kg with pytest.raises(u.UnitsError): unit.compose(units=[u.N]) def test_compose_fractional_powers(): # Warning: with a complicated unit, this test becomes very slow; # e.g., x = (u.kg / u.s ** 3 * u.au ** 2.5 / u.yr ** 0.5 / u.sr ** 2) # takes 3 s x = u.m ** 0.5 / u.yr ** 1.5 factored = x.compose() for unit in factored: assert x.decompose() == unit.decompose() factored = x.compose(units=u.cgs) for unit in factored: assert x.decompose() == unit.decompose() factored = x.compose(units=u.si) for unit in factored: assert x.decompose() == unit.decompose() def test_compose_best_unit_first(): results = u.l.compose() assert len(results[0].bases) == 1 assert results[0].bases[0] is u.l results = (u.s ** -1).compose() assert results[0].bases[0] in (u.Hz, u.Bq) results = (u.Ry.decompose()).compose() assert results[0].bases[0] is u.Ry def test_compose_no_duplicates(): new = u.kg / u.s ** 3 * u.au ** 2.5 / u.yr ** 0.5 / u.sr ** 2 composed = new.compose(units=u.cgs.bases) assert len(composed) == 1 def test_long_int(): """ Issue #672 """ sigma = 10 ** 21 * u.M_p / u.cm ** 2 sigma.to(u.M_sun / u.pc ** 2) def test_endian_independence(): """ Regression test for #744 A logic issue in the units code meant that big endian arrays could not be converted because the dtype is '>f4', not 'float32', and the code was looking for the strings 'float' or 'int'. """ for endian in ['<', '>']: for ntype in ['i', 'f']: for byte in ['4', '8']: x = np.array([1, 2, 3], dtype=(endian + ntype + byte)) u.m.to(u.cm, x) def test_radian_base(): """ Issue #863 """ assert (1 * u.degree).si.unit == u.rad def test_no_as(): # We don't define 'as', since it is a keyword, but we # do want to define the long form (`attosecond`). assert not hasattr(u, 'as') assert hasattr(u, 'attosecond') def test_no_duplicates_in_names(): # Regression test for #5036 assert u.ct.names == ['ct', 'count'] assert u.ct.short_names == ['ct', 'count'] assert u.ct.long_names == ['count'] assert set(u.ph.names) == set(u.ph.short_names) | set(u.ph.long_names) def test_pickling(): p = pickle.dumps(u.m) other = pickle.loads(p) assert other is u.m new_unit = u.IrreducibleUnit(['foo'], format={'baz': 'bar'}) # This is local, so the unit should not be registered. assert 'foo' not in u.get_current_unit_registry().registry # Test pickling of this unregistered unit. p = pickle.dumps(new_unit) new_unit_copy = pickle.loads(p) assert new_unit_copy is not new_unit assert new_unit_copy.names == ['foo'] assert new_unit_copy.get_format_name('baz') == 'bar' # It should still not be registered. assert 'foo' not in u.get_current_unit_registry().registry # Now try the same with a registered unit. with u.add_enabled_units([new_unit]): p = pickle.dumps(new_unit) assert 'foo' in u.get_current_unit_registry().registry new_unit_copy = pickle.loads(p) assert new_unit_copy is new_unit # Check that a registered unit can be loaded and that it gets re-enabled. with u.add_enabled_units([]): assert 'foo' not in u.get_current_unit_registry().registry new_unit_copy = pickle.loads(p) assert new_unit_copy is not new_unit assert new_unit_copy.names == ['foo'] assert new_unit_copy.get_format_name('baz') == 'bar' assert 'foo' in u.get_current_unit_registry().registry # And just to be sure, that it gets removed outside of the context. assert 'foo' not in u.get_current_unit_registry().registry def test_pickle_between_sessions(): """We cannot really test between sessions easily, so fake it. This test can be changed if the pickle protocol or the code changes enough that it no longer works. """ hash_m = hash(u.m) unit = pickle.loads( b'\x80\x04\x95\xd6\x00\x00\x00\x00\x00\x00\x00\x8c\x12' b'astropy.units.core\x94\x8c\x1a_recreate_irreducible_unit' b'\x94\x93\x94h\x00\x8c\x0fIrreducibleUnit\x94\x93\x94]\x94' b'(\x8c\x01m\x94\x8c\x05meter\x94e\x88\x87\x94R\x94}\x94(\x8c\x06' b'_names\x94]\x94(h\x06h\x07e\x8c\x0c_short_names' b'\x94]\x94h\x06a\x8c\x0b_long_names\x94]\x94h\x07a\x8c\x07' b'_format\x94}\x94\x8c\x07__doc__\x94\x8c ' b'meter: base unit of length in SI\x94ub.') assert unit is u.m assert hash(u.m) == hash_m @pytest.mark.parametrize('unit', [ u.IrreducibleUnit(['foo'], format={'baz': 'bar'}), u.Unit('m_per_s', u.m/u.s)]) def test_pickle_does_not_keep_memoized_hash(unit): """ Tests private attribute since the problem with _hash being pickled and restored only appeared if the unpickling was done in another session, for which the hash no longer was valid, and it is difficult to mimic separate sessions in a simple test. See gh-11872. """ unit_hash = hash(unit) assert unit._hash is not None unit_copy = pickle.loads(pickle.dumps(unit)) # unit is not registered so we get a copy. assert unit_copy is not unit assert unit_copy._hash is None assert hash(unit_copy) == unit_hash with u.add_enabled_units([unit]): # unit is registered, so we get a reference. unit_ref = pickle.loads(pickle.dumps(unit)) if isinstance(unit, u.IrreducibleUnit): assert unit_ref is unit else: assert unit_ref is not unit # pickle.load used to override the hash, although in this case # it would be the same anyway, so not clear this tests much. assert hash(unit) == unit_hash def test_pickle_unrecognized_unit(): """ Issue #2047 """ a = u.Unit('asdf', parse_strict='silent') pickle.loads(pickle.dumps(a)) def test_duplicate_define(): with pytest.raises(ValueError): u.def_unit('m', namespace=u.__dict__) def test_all_units(): from astropy.units.core import get_current_unit_registry registry = get_current_unit_registry() assert len(registry.all_units) > len(registry.non_prefix_units) def test_repr_latex(): assert u.m._repr_latex_() == u.m.to_string('latex') def test_operations_with_strings(): assert u.m / '5s' == (u.m / (5.0 * u.s)) assert u.m * '5s' == (5.0 * u.m * u.s) def test_comparison(): assert u.m > u.cm assert u.m >= u.cm assert u.cm < u.m assert u.cm <= u.m with pytest.raises(u.UnitsError): u.m > u.kg def test_compose_into_arbitrary_units(): # Issue #1438 from astropy.constants import G G.decompose([u.kg, u.km, u.Unit("15 s")]) def test_unit_multiplication_with_string(): """Check that multiplication with strings produces the correct unit.""" u1 = u.cm us = 'kg' assert us * u1 == u.Unit(us) * u1 assert u1 * us == u1 * u.Unit(us) def test_unit_division_by_string(): """Check that multiplication with strings produces the correct unit.""" u1 = u.cm us = 'kg' assert us / u1 == u.Unit(us) / u1 assert u1 / us == u1 / u.Unit(us) def test_sorted_bases(): """See #1616.""" assert (u.m * u.Jy).bases == (u.Jy * u.m).bases def test_megabit(): """See #1543""" assert u.Mbit is u.Mb assert u.megabit is u.Mb assert u.Mbyte is u.MB assert u.megabyte is u.MB def test_composite_unit_get_format_name(): """See #1576""" unit1 = u.Unit('nrad/s') unit2 = u.Unit('Hz(1/2)') assert (str(u.CompositeUnit(1, [unit1, unit2], [1, -1])) == 'nrad / (Hz(1/2) s)') def test_unicode_policy(): from astropy.tests.helper import assert_follows_unicode_guidelines assert_follows_unicode_guidelines( u.degree, roundtrip=u.__dict__) def test_suggestions(): for search, matches in [ ('microns', 'micron'), ('s/microns', 'micron'), ('M', 'm'), ('metre', 'meter'), ('angstroms', 'Angstrom or angstrom'), ('milimeter', 'millimeter'), ('ångström', 'Angstrom, angstrom, mAngstrom or mangstrom'), ('kev', 'EV, eV, kV or keV')]: with pytest.raises(ValueError, match=f'Did you mean {matches}'): u.Unit(search) def test_fits_hst_unit(): """See #1911.""" with pytest.warns(u.UnitsWarning, match='multiple slashes') as w: x = u.Unit("erg /s /cm**2 /angstrom") assert x == u.erg * u.s ** -1 * u.cm ** -2 * u.angstrom ** -1 assert len(w) == 1 def test_barn_prefixes(): """Regression test for https://github.com/astropy/astropy/issues/3753""" assert u.fbarn is u.femtobarn assert u.pbarn is u.picobarn def test_fractional_powers(): """See #2069""" m = 1e9 * u.Msun tH = 1. / (70. * u.km / u.s / u.Mpc) vc = 200 * u.km/u.s x = (c.G ** 2 * m ** 2 * tH.cgs) ** Fraction(1, 3) / vc v1 = x.to('pc') x = (c.G ** 2 * m ** 2 * tH) ** Fraction(1, 3) / vc v2 = x.to('pc') x = (c.G ** 2 * m ** 2 * tH.cgs) ** (1.0 / 3.0) / vc v3 = x.to('pc') x = (c.G ** 2 * m ** 2 * tH) ** (1.0 / 3.0) / vc v4 = x.to('pc') assert_allclose(v1, v2) assert_allclose(v2, v3) assert_allclose(v3, v4) x = u.m ** (1.0 / 101.0) assert isinstance(x.powers[0], float) x = u.m ** (3.0 / 7.0) assert isinstance(x.powers[0], Fraction) assert x.powers[0].numerator == 3 assert x.powers[0].denominator == 7 x = u.cm ** Fraction(1, 2) * u.cm ** Fraction(2, 3) assert isinstance(x.powers[0], Fraction) assert x.powers[0] == Fraction(7, 6) # Regression test for #9258. x = (u.TeV ** (-2.2)) ** (1/-2.2) assert isinstance(x.powers[0], Fraction) assert x.powers[0] == Fraction(1, 1) def test_sqrt_mag(): sqrt_mag = u.mag ** 0.5 assert hasattr(sqrt_mag.decompose().scale, 'imag') assert (sqrt_mag.decompose())**2 == u.mag def test_composite_compose(): # Issue #2382 composite_unit = u.s.compose(units=[u.Unit("s")])[0] u.s.compose(units=[composite_unit]) def test_data_quantities(): assert u.byte.is_equivalent(u.bit) def test_compare_with_none(): # Ensure that equality comparisons with `None` work, and don't # raise exceptions. We are deliberately not using `is None` here # because that doesn't trigger the bug. See #3108. assert not (u.m == None) # noqa assert u.m != None # noqa def test_validate_power_detect_fraction(): frac = utils.validate_power(1.1666666666666665) assert isinstance(frac, Fraction) assert frac.numerator == 7 assert frac.denominator == 6 def test_complex_fractional_rounding_errors(): # See #3788 kappa = 0.34 * u.cm**2 / u.g r_0 = 886221439924.7849 * u.cm q = 1.75 rho_0 = 5e-10 * u.solMass / u.solRad**3 y = 0.5 beta = 0.19047619047619049 a = 0.47619047619047628 m_h = 1e6*u.solMass t1 = 2 * c.c / (kappa * np.sqrt(np.pi)) t2 = (r_0**-q) / (rho_0 * y * beta * (a * c.G * m_h)**0.5) result = ((t1 * t2)**-0.8) assert result.unit.physical_type == 'length' result.to(u.solRad) def test_fractional_rounding_errors_simple(): x = (u.m ** 1.5) ** Fraction(4, 5) assert isinstance(x.powers[0], Fraction) assert x.powers[0].numerator == 6 assert x.powers[0].denominator == 5 def test_enable_unit_groupings(): from astropy.units import cds with cds.enable(): assert cds.geoMass in u.kg.find_equivalent_units() from astropy.units import imperial with imperial.enable(): assert imperial.inch in u.m.find_equivalent_units() def test_unit_summary_prefixes(): """ Test for a few units that the unit summary table correctly reports whether or not that unit supports prefixes. Regression test for https://github.com/astropy/astropy/issues/3835 """ from astropy.units import astrophys for summary in utils._iter_unit_summary(astrophys.__dict__): unit, _, _, _, prefixes = summary if unit.name == 'lyr': assert prefixes elif unit.name == 'pc': assert prefixes elif unit.name == 'barn': assert prefixes elif unit.name == 'cycle': assert prefixes == 'No' elif unit.name == 'spat': assert prefixes == 'No' elif unit.name == 'vox': assert prefixes == 'Yes' def test_raise_to_negative_power(): """Test that order of bases is changed when raising to negative power. Regression test for https://github.com/astropy/astropy/issues/8260 """ m2s2 = u.m ** 2 / u.s ** 2 spm = m2s2 ** (-1 / 2) assert spm.bases == [u.s, u.m] assert spm.powers == [1, -1] assert spm == u.s / u.m
fe6f3843d96882edac814aac2fc72fa006b4f79e0ee2d2472b6baafefb0fed27
# The purpose of these tests are to ensure that calling quantities using # array methods returns quantities with the right units, or raises exceptions. import sys import numpy as np import pytest from numpy.testing import assert_array_equal from astropy import units as u from astropy.utils.compat import NUMPY_LT_1_20, NUMPY_LT_1_21_1, NUMPY_LT_1_22 class TestQuantityArrayCopy: """ Test whether arrays are properly copied/used in place """ def test_copy_on_creation(self): v = np.arange(1000.) q_nocopy = u.Quantity(v, "km/s", copy=False) q_copy = u.Quantity(v, "km/s", copy=True) v[0] = -1. assert q_nocopy[0].value == v[0] assert q_copy[0].value != v[0] def test_to_copies(self): q = u.Quantity(np.arange(1., 100.), "km/s") q2 = q.to(u.m/u.s) assert np.all(q.value != q2.value) q3 = q.to(u.km/u.s) assert np.all(q.value == q3.value) q[0] = -1.*u.km/u.s assert q[0].value != q3[0].value def test_si_copies(self): q = u.Quantity(np.arange(100.), "m/s") q2 = q.si assert np.all(q.value == q2.value) q[0] = -1.*u.m/u.s assert q[0].value != q2[0].value def test_getitem_is_view(self): """Check that [keys] work, and that, like ndarray, it returns a view, so that changing one changes the other. Also test that one can add axes (closes #1422) """ q = u.Quantity(np.arange(100.), "m/s") q_sel = q[10:20] q_sel[0] = -1.*u.m/u.s assert q_sel[0] == q[10] # also check that getitem can do new axes q2 = q[:, np.newaxis] q2[10, 0] = -9*u.m/u.s assert np.all(q2.flatten() == q) def test_flat(self): q = u.Quantity(np.arange(9.).reshape(3, 3), "m/s") q_flat = q.flat # check that a single item is a quantity (with the right value) assert q_flat[8] == 8. * u.m / u.s # and that getting a range works as well assert np.all(q_flat[0:2] == np.arange(2.) * u.m / u.s) # as well as getting items via iteration q_flat_list = [_q for _q in q.flat] assert np.all(u.Quantity(q_flat_list) == u.Quantity([_a for _a in q.value.flat], q.unit)) # check that flat works like a view of the real array q_flat[8] = -1. * u.km / u.s assert q_flat[8] == -1. * u.km / u.s assert q[2, 2] == -1. * u.km / u.s # while if one goes by an iterated item, a copy is made q_flat_list[8] = -2 * u.km / u.s assert q_flat_list[8] == -2. * u.km / u.s assert q_flat[8] == -1. * u.km / u.s assert q[2, 2] == -1. * u.km / u.s class TestQuantityReshapeFuncs: """Test different ndarray methods that alter the array shape tests: reshape, squeeze, ravel, flatten, transpose, swapaxes """ def test_reshape(self): q = np.arange(6.) * u.m q_reshape = q.reshape(3, 2) assert isinstance(q_reshape, u.Quantity) assert q_reshape.unit == q.unit assert np.all(q_reshape.value == q.value.reshape(3, 2)) def test_squeeze(self): q = np.arange(6.).reshape(6, 1) * u.m q_squeeze = q.squeeze() assert isinstance(q_squeeze, u.Quantity) assert q_squeeze.unit == q.unit assert np.all(q_squeeze.value == q.value.squeeze()) def test_ravel(self): q = np.arange(6.).reshape(3, 2) * u.m q_ravel = q.ravel() assert isinstance(q_ravel, u.Quantity) assert q_ravel.unit == q.unit assert np.all(q_ravel.value == q.value.ravel()) def test_flatten(self): q = np.arange(6.).reshape(3, 2) * u.m q_flatten = q.flatten() assert isinstance(q_flatten, u.Quantity) assert q_flatten.unit == q.unit assert np.all(q_flatten.value == q.value.flatten()) def test_transpose(self): q = np.arange(6.).reshape(3, 2) * u.m q_transpose = q.transpose() assert isinstance(q_transpose, u.Quantity) assert q_transpose.unit == q.unit assert np.all(q_transpose.value == q.value.transpose()) def test_swapaxes(self): q = np.arange(6.).reshape(3, 1, 2) * u.m q_swapaxes = q.swapaxes(0, 2) assert isinstance(q_swapaxes, u.Quantity) assert q_swapaxes.unit == q.unit assert np.all(q_swapaxes.value == q.value.swapaxes(0, 2)) @pytest.mark.xfail(sys.byteorder == 'big' and NUMPY_LT_1_21_1, reason="Numpy GitHub Issue 19153") def test_flat_attributes(self): """While ``flat`` doesn't make a copy, it changes the shape.""" q = np.arange(6.).reshape(3, 1, 2) * u.m qf = q.flat # flat shape is same as before reshaping assert len(qf) == 6 # see TestQuantityArrayCopy.test_flat for tests of iteration # and slicing and setting. Here we test the properties and methods to # match `numpy.ndarray.flatiter` assert qf.base is q # testing the indices -- flat and full -- into the array assert qf.coords == (0, 0, 0) # to start assert qf.index == 0 # now consume the iterator endindices = [(qf.index, qf.coords) for x in qf][-2] # next() oversteps assert endindices[0] == 5 assert endindices[1] == (2, 0, 1) # shape of q - 1 # also check q_flat copies properly q_flat_copy = qf.copy() assert all(q_flat_copy == q.flatten()) assert isinstance(q_flat_copy, u.Quantity) assert not np.may_share_memory(q_flat_copy, q) class TestQuantityStatsFuncs: """ Test statistical functions """ def test_mean(self): q1 = np.array([1., 2., 4., 5., 6.]) * u.m assert_array_equal(np.mean(q1), 3.6 * u.m) assert_array_equal(np.mean(q1, keepdims=True), [3.6] * u.m) def test_mean_inplace(self): q1 = np.array([1., 2., 4., 5., 6.]) * u.m qi = 1.5 * u.s qi2 = np.mean(q1, out=qi) assert qi2 is qi assert qi == 3.6 * u.m @pytest.mark.xfail(NUMPY_LT_1_20, reason="'where' keyword argument not supported for numpy < 1.20") def test_mean_where(self): q1 = np.array([1., 2., 4., 5., 6., 7.]) * u.m assert_array_equal(np.mean(q1, where=q1 < 7 * u.m), 3.6 * u.m) def test_std(self): q1 = np.array([1., 2.]) * u.m assert_array_equal(np.std(q1), 0.5 * u.m) assert_array_equal(q1.std(axis=-1, keepdims=True), [0.5] * u.m) def test_std_inplace(self): q1 = np.array([1., 2.]) * u.m qi = 1.5 * u.s np.std(q1, out=qi) assert qi == 0.5 * u.m @pytest.mark.xfail(NUMPY_LT_1_20, reason="'where' keyword argument not supported for numpy < 1.20") def test_std_where(self): q1 = np.array([1., 2., 3.]) * u.m assert_array_equal(np.std(q1, where=q1 < 3 * u.m), 0.5 * u.m) def test_var(self): q1 = np.array([1., 2.]) * u.m assert_array_equal(np.var(q1), 0.25 * u.m ** 2) assert_array_equal(q1.var(axis=0, keepdims=True), [0.25] * u.m ** 2) def test_var_inplace(self): q1 = np.array([1., 2.]) * u.m qi = 1.5 * u.s np.var(q1, out=qi) assert qi == 0.25 * u.m ** 2 @pytest.mark.xfail(NUMPY_LT_1_20, reason="'where' keyword argument not supported for numpy < 1.20") def test_var_where(self): q1 = np.array([1., 2., 3.]) * u.m assert_array_equal(np.var(q1, where=q1 < 3 * u.m), 0.25 * u.m ** 2) def test_median(self): q1 = np.array([1., 2., 4., 5., 6.]) * u.m assert np.median(q1) == 4. * u.m def test_median_inplace(self): q1 = np.array([1., 2., 4., 5., 6.]) * u.m qi = 1.5 * u.s np.median(q1, out=qi) assert qi == 4 * u.m def test_min(self): q1 = np.array([1., 2., 4., 5., 6.]) * u.m assert np.min(q1) == 1. * u.m def test_min_inplace(self): q1 = np.array([1., 2., 4., 5., 6.]) * u.m qi = 1.5 * u.s np.min(q1, out=qi) assert qi == 1. * u.m def test_min_where(self): q1 = np.array([0., 1., 2., 4., 5., 6.]) * u.m assert np.min(q1, initial=10 * u.m, where=q1 > 0 * u.m) == 1. * u.m def test_argmin(self): q1 = np.array([6., 2., 4., 5., 6.]) * u.m assert np.argmin(q1) == 1 @pytest.mark.skipif(NUMPY_LT_1_22, reason='keepdims only introduced in numpy 1.22') def test_argmin_keepdims(self): q1 = np.array([[6., 2.], [4., 5.]]) * u.m assert_array_equal(q1.argmin(axis=0, keepdims=True), np.array([[1, 0]])) def test_max(self): q1 = np.array([1., 2., 4., 5., 6.]) * u.m assert np.max(q1) == 6. * u.m def test_max_inplace(self): q1 = np.array([1., 2., 4., 5., 6.]) * u.m qi = 1.5 * u.s np.max(q1, out=qi) assert qi == 6. * u.m def test_max_where(self): q1 = np.array([1., 2., 4., 5., 6., 7.]) * u.m assert np.max(q1, initial=0 * u.m, where=q1 < 7 * u.m) == 6. * u.m def test_argmax(self): q1 = np.array([5., 2., 4., 5., 6.]) * u.m assert np.argmax(q1) == 4 @pytest.mark.skipif(NUMPY_LT_1_22, reason='keepdims only introduced in numpy 1.22') def test_argmax_keepdims(self): q1 = np.array([[6., 2.], [4., 5.]]) * u.m assert_array_equal(q1.argmax(axis=0, keepdims=True), np.array([[0, 1]])) def test_clip(self): q1 = np.array([1., 2., 4., 5., 6.]) * u.km / u.m c1 = q1.clip(1500, 5.5 * u.Mm / u.km) assert np.all(c1 == np.array([1.5, 2., 4., 5., 5.5]) * u.km / u.m) def test_clip_inplace(self): q1 = np.array([1., 2., 4., 5., 6.]) * u.km / u.m c1 = q1.clip(1500, 5.5 * u.Mm / u.km, out=q1) assert np.all(q1 == np.array([1.5, 2., 4., 5., 5.5]) * u.km / u.m) c1[0] = 10 * u.Mm/u.mm assert np.all(c1.value == q1.value) def test_conj(self): q1 = np.array([1., 2., 4., 5., 6.]) * u.km / u.m assert np.all(q1.conj() == q1) def test_ptp(self): q1 = np.array([1., 2., 4., 5., 6.]) * u.m assert np.ptp(q1) == 5. * u.m def test_ptp_inplace(self): q1 = np.array([1., 2., 4., 5., 6.]) * u.m qi = 1.5 * u.s np.ptp(q1, out=qi) assert qi == 5. * u.m def test_round(self): q1 = np.array([1.253, 2.253, 3.253]) * u.kg assert np.all(np.round(q1) == np.array([1, 2, 3]) * u.kg) assert np.all(np.round(q1, decimals=2) == np.round(q1.value, decimals=2) * u.kg) assert np.all(q1.round(decimals=2) == q1.value.round(decimals=2) * u.kg) def test_round_inplace(self): q1 = np.array([1.253, 2.253, 3.253]) * u.kg qi = np.zeros(3) * u.s a = q1.round(decimals=2, out=qi) assert a is qi assert np.all(q1.round(decimals=2) == qi) def test_sum(self): q1 = np.array([1., 2., 6.]) * u.m assert np.all(q1.sum() == 9. * u.m) assert np.all(np.sum(q1) == 9. * u.m) q2 = np.array([[4., 5., 9.], [1., 1., 1.]]) * u.s assert np.all(q2.sum(0) == np.array([5., 6., 10.]) * u.s) assert np.all(np.sum(q2, 0) == np.array([5., 6., 10.]) * u.s) def test_sum_inplace(self): q1 = np.array([1., 2., 6.]) * u.m qi = 1.5 * u.s np.sum(q1, out=qi) assert qi == 9. * u.m def test_sum_where(self): q1 = np.array([1., 2., 6., 7.]) * u.m where = q1 < 7 * u.m assert np.all(q1.sum(where=where) == 9. * u.m) assert np.all(np.sum(q1, where=where) == 9. * u.m) @pytest.mark.parametrize('initial', [0, 0*u.m, 1*u.km]) def test_sum_initial(self, initial): q1 = np.array([1., 2., 6., 7.]) * u.m expected = 16*u.m + initial assert q1.sum(initial=initial) == expected assert np.sum(q1, initial=initial) == expected def test_sum_dimensionless_initial(self): q1 = np.array([1., 2., 6., 7.]) * u.one assert q1.sum(initial=1000) == 1016*u.one @pytest.mark.parametrize('initial', [10, 1*u.s]) def test_sum_initial_exception(self, initial): q1 = np.array([1., 2., 6., 7.]) * u.m with pytest.raises(u.UnitsError): q1.sum(initial=initial) def test_cumsum(self): q1 = np.array([1, 2, 6]) * u.m assert np.all(q1.cumsum() == np.array([1, 3, 9]) * u.m) assert np.all(np.cumsum(q1) == np.array([1, 3, 9]) * u.m) q2 = np.array([4, 5, 9]) * u.s assert np.all(q2.cumsum() == np.array([4, 9, 18]) * u.s) assert np.all(np.cumsum(q2) == np.array([4, 9, 18]) * u.s) def test_cumsum_inplace(self): q1 = np.array([1, 2, 6]) * u.m qi = np.ones(3) * u.s np.cumsum(q1, out=qi) assert np.all(qi == np.array([1, 3, 9]) * u.m) q2 = q1 q1.cumsum(out=q1) assert np.all(q2 == qi) def test_nansum(self): q1 = np.array([1., 2., np.nan]) * u.m assert np.all(q1.nansum() == 3. * u.m) assert np.all(np.nansum(q1) == 3. * u.m) q2 = np.array([[np.nan, 5., 9.], [1., np.nan, 1.]]) * u.s assert np.all(q2.nansum(0) == np.array([1., 5., 10.]) * u.s) assert np.all(np.nansum(q2, 0) == np.array([1., 5., 10.]) * u.s) def test_nansum_inplace(self): q1 = np.array([1., 2., np.nan]) * u.m qi = 1.5 * u.s qout = q1.nansum(out=qi) assert qout is qi assert qi == np.nansum(q1.value) * q1.unit qi2 = 1.5 * u.s qout2 = np.nansum(q1, out=qi2) assert qout2 is qi2 assert qi2 == np.nansum(q1.value) * q1.unit @pytest.mark.xfail(NUMPY_LT_1_22, reason="'where' keyword argument not supported for numpy < 1.22") def test_nansum_where(self): q1 = np.array([1., 2., np.nan, 4.]) * u.m initial = 0 * u.m where = q1 < 4 * u.m assert np.all(q1.nansum(initial=initial, where=where) == 3. * u.m) assert np.all(np.nansum(q1, initial=initial, where=where) == 3. * u.m) def test_prod(self): q1 = np.array([1, 2, 6]) * u.m with pytest.raises(u.UnitsError) as exc: q1.prod() with pytest.raises(u.UnitsError) as exc: np.prod(q1) q2 = np.array([3., 4., 5.]) * u.Unit(1) assert q2.prod() == 60. * u.Unit(1) assert np.prod(q2) == 60. * u.Unit(1) def test_cumprod(self): q1 = np.array([1, 2, 6]) * u.m with pytest.raises(u.UnitsError) as exc: q1.cumprod() with pytest.raises(u.UnitsError) as exc: np.cumprod(q1) q2 = np.array([3, 4, 5]) * u.Unit(1) assert np.all(q2.cumprod() == np.array([3, 12, 60]) * u.Unit(1)) assert np.all(np.cumprod(q2) == np.array([3, 12, 60]) * u.Unit(1)) def test_diff(self): q1 = np.array([1., 2., 4., 10.]) * u.m assert np.all(q1.diff() == np.array([1., 2., 6.]) * u.m) assert np.all(np.diff(q1) == np.array([1., 2., 6.]) * u.m) def test_ediff1d(self): q1 = np.array([1., 2., 4., 10.]) * u.m assert np.all(q1.ediff1d() == np.array([1., 2., 6.]) * u.m) assert np.all(np.ediff1d(q1) == np.array([1., 2., 6.]) * u.m) def test_dot_meth(self): q1 = np.array([1., 2., 4., 10.]) * u.m q2 = np.array([3., 4., 5., 6.]) * u.s q3 = q1.dot(q2) assert q3.value == np.dot(q1.value, q2.value) assert q3.unit == u.m * u.s def test_trace_func(self): q = np.array([[1., 2.], [3., 4.]]) * u.m assert np.trace(q) == 5. * u.m def test_trace_meth(self): q1 = np.array([[1., 2.], [3., 4.]]) * u.m assert q1.trace() == 5. * u.m cont = u.Quantity(4., u.s) q2 = np.array([[3., 4.], [5., 6.]]) * u.m q2.trace(out=cont) assert cont == 9. * u.m def test_clip_func(self): q = np.arange(10) * u.m assert np.all(np.clip(q, 3 * u.m, 6 * u.m) == np.array([3., 3., 3., 3., 4., 5., 6., 6., 6., 6.]) * u.m) def test_clip_meth(self): expected = np.array([3., 3., 3., 3., 4., 5., 6., 6., 6., 6.]) * u.m q1 = np.arange(10) * u.m q3 = q1.clip(3 * u.m, 6 * u.m) assert np.all(q1.clip(3 * u.m, 6 * u.m) == expected) cont = np.zeros(10) * u.s q1.clip(3 * u.m, 6 * u.m, out=cont) assert np.all(cont == expected) class TestArrayConversion: """ Test array conversion methods """ def test_item(self): q1 = u.Quantity(np.array([1, 2, 3]), u.m / u.km, dtype=int) assert q1.item(1) == 2 * q1.unit q1.itemset(1, 1) assert q1.item(1) == 1000 * u.m / u.km q1.itemset(1, 100 * u.cm / u.km) assert q1.item(1) == 1 * u.m / u.km with pytest.raises(TypeError): q1.itemset(1, 1.5 * u.m / u.km) with pytest.raises(ValueError): q1.itemset() q1[1] = 1 assert q1[1] == 1000 * u.m / u.km q1[1] = 100 * u.cm / u.km assert q1[1] == 1 * u.m / u.km with pytest.raises(TypeError): q1[1] = 1.5 * u.m / u.km def test_take_put(self): q1 = np.array([1, 2, 3]) * u.m / u.km assert q1.take(1) == 2 * u.m / u.km assert all(q1.take((0, 2)) == np.array([1, 3]) * u.m / u.km) q1.put((1, 2), (3, 4)) assert np.all(q1.take((1, 2)) == np.array([3000, 4000]) * q1.unit) q1.put(0, 500 * u.cm / u.km) assert q1.item(0) == 5 * u.m / u.km def test_slice(self): """Test that setitem changes the unit if needed (or ignores it for values where that is allowed; viz., #2695)""" q2 = np.array([[1., 2., 3.], [4., 5., 6.]]) * u.km / u.m q1 = q2.copy() q2[0, 0] = 10000. assert q2.unit == q1.unit assert q2[0, 0].value == 10. q2[0] = 9. * u.Mm / u.km assert all(q2.flatten()[:3].value == np.array([9., 9., 9.])) q2[0, :-1] = 8000. assert all(q2.flatten()[:3].value == np.array([8., 8., 9.])) with pytest.raises(u.UnitsError): q2[1, 1] = 10 * u.s # just to be sure, repeat with a dimensionfull unit q3 = u.Quantity(np.arange(10.), "m/s") q3[5] = 100. * u.cm / u.s assert q3[5].value == 1. # and check unit is ignored for 0, inf, nan, where that is reasonable q3[5] = 0. assert q3[5] == 0. q3[5] = np.inf assert np.isinf(q3[5]) q3[5] = np.nan assert np.isnan(q3[5]) def test_fill(self): q1 = np.array([1, 2, 3]) * u.m / u.km q1.fill(2) assert np.all(q1 == 2000 * u.m / u.km) def test_repeat_compress_diagonal(self): q1 = np.array([1, 2, 3]) * u.m / u.km q2 = q1.repeat(2) assert q2.unit == q1.unit assert all(q2.value == q1.value.repeat(2)) q2.sort() assert q2.unit == q1.unit q2 = q1.compress(np.array([True, True, False, False])) assert q2.unit == q1.unit assert all(q2.value == q1.value.compress(np.array([True, True, False, False]))) q1 = np.array([[1, 2], [3, 4]]) * u.m / u.km q2 = q1.diagonal() assert q2.unit == q1.unit assert all(q2.value == q1.value.diagonal()) def test_view(self): q1 = np.array([1, 2, 3], dtype=np.int64) * u.m / u.km q2 = q1.view(np.ndarray) assert not hasattr(q2, 'unit') q3 = q2.view(u.Quantity) assert q3._unit is None # MaskedArray copies and properties assigned in __dict__ q4 = np.ma.MaskedArray(q1) assert q4._unit is q1._unit q5 = q4.view(u.Quantity) assert q5.unit is q1.unit def test_slice_to_quantity(self): """ Regression test for https://github.com/astropy/astropy/issues/2003 """ a = np.random.uniform(size=(10, 8)) x, y, z = a[:, 1:4].T * u.km/u.s total = np.sum(a[:, 1] * u.km / u.s - x) assert isinstance(total, u.Quantity) assert total == (0.0 * u.km / u.s) def test_byte_type_view_field_changes(self): q1 = np.array([1, 2, 3], dtype=np.int64) * u.m / u.km q2 = q1.byteswap() assert q2.unit == q1.unit assert all(q2.value == q1.value.byteswap()) q2 = q1.astype(np.float64) assert all(q2 == q1) assert q2.dtype == np.float64 q2a = q1.getfield(np.int32, offset=0) q2b = q1.byteswap().getfield(np.int32, offset=4) assert q2a.unit == q1.unit assert all(q2b.byteswap() == q2a) def test_sort(self): q1 = np.array([1., 5., 2., 4.]) * u.km / u.m i = q1.argsort() assert not hasattr(i, 'unit') q1.sort() i = q1.searchsorted([1500, 2500]) assert not hasattr(i, 'unit') assert all(i == q1.to( u.dimensionless_unscaled).value.searchsorted([1500, 2500])) def test_not_implemented(self): q1 = np.array([1, 2, 3]) * u.m / u.km with pytest.raises(NotImplementedError): q1.choose([0, 0, 1]) with pytest.raises(NotImplementedError): q1.tolist() with pytest.raises(NotImplementedError): q1.tostring() with pytest.raises(NotImplementedError): q1.tobytes() with pytest.raises(NotImplementedError): q1.tofile(0) with pytest.raises(NotImplementedError): q1.dump('a.a') with pytest.raises(NotImplementedError): q1.dumps() class TestRecArray: """Record arrays are not specifically supported, but we should not prevent their use unnecessarily""" def setup(self): self.ra = (np.array(np.arange(12.).reshape(4, 3)) .view(dtype=('f8,f8,f8')).squeeze()) def test_creation(self): qra = u.Quantity(self.ra, u.m) assert np.all(qra[:2].value == self.ra[:2]) def test_equality(self): qra = u.Quantity(self.ra, u.m) qra[1] = qra[2] assert qra[1] == qra[2]
7eabb6b6898ed1fecc424038fad9d8795dddb2baf9065f46072e7204180aede9
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Test the Logarithmic Units and Quantities """ import itertools import pickle import numpy as np import pytest from numpy.testing import assert_allclose from astropy import constants as c from astropy import units as u from astropy.tests.helper import assert_quantity_allclose lu_units = [u.dex, u.mag, u.decibel] lu_subclasses = [u.DexUnit, u.MagUnit, u.DecibelUnit] lq_subclasses = [u.Dex, u.Magnitude, u.Decibel] pu_sample = (u.dimensionless_unscaled, u.m, u.g/u.s**2, u.Jy) class TestLogUnitCreation: def test_logarithmic_units(self): """Check logarithmic units are set up correctly.""" assert u.dB.to(u.dex) == 0.1 assert u.dex.to(u.mag) == -2.5 assert u.mag.to(u.dB) == -4 @pytest.mark.parametrize('lu_unit, lu_cls', zip(lu_units, lu_subclasses)) def test_callable_units(self, lu_unit, lu_cls): assert isinstance(lu_unit, u.UnitBase) assert callable(lu_unit) assert lu_unit._function_unit_class is lu_cls @pytest.mark.parametrize('lu_unit', lu_units) def test_equality_to_normal_unit_for_dimensionless(self, lu_unit): lu = lu_unit() assert lu == lu._default_function_unit # eg, MagUnit() == u.mag assert lu._default_function_unit == lu # and u.mag == MagUnit() @pytest.mark.parametrize('lu_unit, physical_unit', itertools.product(lu_units, pu_sample)) def test_call_units(self, lu_unit, physical_unit): """Create a LogUnit subclass using the callable unit and physical unit, and do basic check that output is right.""" lu1 = lu_unit(physical_unit) assert lu1.physical_unit == physical_unit assert lu1.function_unit == lu1._default_function_unit def test_call_invalid_unit(self): with pytest.raises(TypeError): u.mag([]) with pytest.raises(ValueError): u.mag(u.mag()) @pytest.mark.parametrize('lu_cls, physical_unit', itertools.product( lu_subclasses + [u.LogUnit], pu_sample)) def test_subclass_creation(self, lu_cls, physical_unit): """Create a LogUnit subclass object for given physical unit, and do basic check that output is right.""" lu1 = lu_cls(physical_unit) assert lu1.physical_unit == physical_unit assert lu1.function_unit == lu1._default_function_unit lu2 = lu_cls(physical_unit, function_unit=2*lu1._default_function_unit) assert lu2.physical_unit == physical_unit assert lu2.function_unit == u.Unit(2*lu2._default_function_unit) with pytest.raises(ValueError): lu_cls(physical_unit, u.m) def test_lshift_magnitude(self): mag = 1. << u.ABmag assert isinstance(mag, u.Magnitude) assert mag.unit == u.ABmag assert mag.value == 1. # same test for an array, which should produce a view a2 = np.arange(10.) q2 = a2 << u.ABmag assert isinstance(q2, u.Magnitude) assert q2.unit == u.ABmag assert np.all(q2.value == a2) a2[9] = 0. assert np.all(q2.value == a2) # a different magnitude unit mag = 10. << u.STmag assert isinstance(mag, u.Magnitude) assert mag.unit == u.STmag assert mag.value == 10. def test_ilshift_magnitude(self): # test in-place operation and conversion mag_fnu_cgs = u.mag(u.erg/u.s/u.cm**2/u.Hz) m = np.arange(10.0) * u.mag(u.Jy) jy = m.physical m2 = m << mag_fnu_cgs assert np.all(m2 == m.to(mag_fnu_cgs)) m2 = m m <<= mag_fnu_cgs assert m is m2 # Check it was done in-place! assert np.all(m.value == m2.value) assert m.unit == mag_fnu_cgs # Check it works if equivalencies are in-place. with u.add_enabled_equivalencies(u.spectral_density(5500*u.AA)): st = jy.to(u.ST) m <<= u.STmag assert m is m2 assert_quantity_allclose(m.physical, st) assert m.unit == u.STmag def test_lshift_errors(self): m = np.arange(10.0) * u.mag(u.Jy) with pytest.raises(u.UnitsError): m << u.STmag with pytest.raises(u.UnitsError): m << u.Jy with pytest.raises(u.UnitsError): m <<= u.STmag with pytest.raises(u.UnitsError): m <<= u.Jy def test_predefined_magnitudes(): assert_quantity_allclose((-21.1*u.STmag).physical, 1.*u.erg/u.cm**2/u.s/u.AA) assert_quantity_allclose((-48.6*u.ABmag).physical, 1.*u.erg/u.cm**2/u.s/u.Hz) assert_quantity_allclose((0*u.M_bol).physical, c.L_bol0) assert_quantity_allclose((0*u.m_bol).physical, c.L_bol0/(4.*np.pi*(10.*c.pc)**2)) def test_predefined_reinitialisation(): assert u.mag('STflux') == u.STmag assert u.mag('ABflux') == u.ABmag assert u.mag('Bol') == u.M_bol assert u.mag('bol') == u.m_bol # required for backwards-compatibility, at least unless deprecated assert u.mag('ST') == u.STmag assert u.mag('AB') == u.ABmag def test_predefined_string_roundtrip(): """Ensure round-tripping; see #5015""" assert u.Unit(u.STmag.to_string()) == u.STmag assert u.Unit(u.ABmag.to_string()) == u.ABmag assert u.Unit(u.M_bol.to_string()) == u.M_bol assert u.Unit(u.m_bol.to_string()) == u.m_bol def test_inequality(): """Check __ne__ works (regression for #5342).""" lu1 = u.mag(u.Jy) lu2 = u.dex(u.Jy) lu3 = u.mag(u.Jy**2) lu4 = lu3 - lu1 assert lu1 != lu2 assert lu1 != lu3 assert lu1 == lu4 class TestLogUnitStrings: def test_str(self): """Do some spot checks that str, repr, etc. work as expected.""" lu1 = u.mag(u.Jy) assert str(lu1) == 'mag(Jy)' assert repr(lu1) == 'Unit("mag(Jy)")' assert lu1.to_string('generic') == 'mag(Jy)' with pytest.raises(ValueError): lu1.to_string('fits') with pytest.raises(ValueError): lu1.to_string(format='cds') lu2 = u.dex() assert str(lu2) == 'dex' assert repr(lu2) == 'Unit("dex(1)")' assert lu2.to_string() == 'dex(1)' lu3 = u.MagUnit(u.Jy, function_unit=2*u.mag) assert str(lu3) == '2 mag(Jy)' assert repr(lu3) == 'MagUnit("Jy", unit="2 mag")' assert lu3.to_string() == '2 mag(Jy)' lu4 = u.mag(u.ct) assert lu4.to_string('generic') == 'mag(ct)' latex_str = r'$\mathrm{mag}$$\mathrm{\left( \mathrm{ct} \right)}$' assert lu4.to_string('latex') == latex_str assert lu4.to_string('latex_inline') == latex_str assert lu4._repr_latex_() == latex_str lu5 = u.mag(u.ct/u.s) assert lu5.to_string('latex') == (r'$\mathrm{mag}$$\mathrm{\left( ' r'\mathrm{\frac{ct}{s}} \right)}$') latex_str = (r'$\mathrm{mag}$$\mathrm{\left( \mathrm{ct\,s^{-1}} ' r'\right)}$') assert lu5.to_string('latex_inline') == latex_str class TestLogUnitConversion: @pytest.mark.parametrize('lu_unit, physical_unit', itertools.product(lu_units, pu_sample)) def test_physical_unit_conversion(self, lu_unit, physical_unit): """Check various LogUnit subclasses are equivalent and convertible to their non-log counterparts.""" lu1 = lu_unit(physical_unit) assert lu1.is_equivalent(physical_unit) assert lu1.to(physical_unit, 0.) == 1. assert physical_unit.is_equivalent(lu1) assert physical_unit.to(lu1, 1.) == 0. pu = u.Unit(8.*physical_unit) assert lu1.is_equivalent(physical_unit) assert lu1.to(pu, 0.) == 0.125 assert pu.is_equivalent(lu1) assert_allclose(pu.to(lu1, 0.125), 0., atol=1.e-15) # Check we round-trip. value = np.linspace(0., 10., 6) assert_allclose(pu.to(lu1, lu1.to(pu, value)), value, atol=1.e-15) # And that we're not just returning True all the time. pu2 = u.g assert not lu1.is_equivalent(pu2) with pytest.raises(u.UnitsError): lu1.to(pu2) assert not pu2.is_equivalent(lu1) with pytest.raises(u.UnitsError): pu2.to(lu1) @pytest.mark.parametrize('lu_unit', lu_units) def test_container_unit_conversion(self, lu_unit): """Check that conversion to logarithmic units (u.mag, u.dB, u.dex) is only possible when the physical unit is dimensionless.""" values = np.linspace(0., 10., 6) lu1 = lu_unit(u.dimensionless_unscaled) assert lu1.is_equivalent(lu1.function_unit) assert_allclose(lu1.to(lu1.function_unit, values), values) lu2 = lu_unit(u.Jy) assert not lu2.is_equivalent(lu2.function_unit) with pytest.raises(u.UnitsError): lu2.to(lu2.function_unit, values) @pytest.mark.parametrize( 'flu_unit, tlu_unit, physical_unit', itertools.product(lu_units, lu_units, pu_sample)) def test_subclass_conversion(self, flu_unit, tlu_unit, physical_unit): """Check various LogUnit subclasses are equivalent and convertible to each other if they correspond to equivalent physical units.""" values = np.linspace(0., 10., 6) flu = flu_unit(physical_unit) tlu = tlu_unit(physical_unit) assert flu.is_equivalent(tlu) assert_allclose(flu.to(tlu), flu.function_unit.to(tlu.function_unit)) assert_allclose(flu.to(tlu, values), values * flu.function_unit.to(tlu.function_unit)) tlu2 = tlu_unit(u.Unit(100.*physical_unit)) assert flu.is_equivalent(tlu2) # Check that we round-trip. assert_allclose(flu.to(tlu2, tlu2.to(flu, values)), values, atol=1.e-15) tlu3 = tlu_unit(physical_unit.to_system(u.si)[0]) assert flu.is_equivalent(tlu3) assert_allclose(flu.to(tlu3, tlu3.to(flu, values)), values, atol=1.e-15) tlu4 = tlu_unit(u.g) assert not flu.is_equivalent(tlu4) with pytest.raises(u.UnitsError): flu.to(tlu4, values) def test_unit_decomposition(self): lu = u.mag(u.Jy) assert lu.decompose() == u.mag(u.Jy.decompose()) assert lu.decompose().physical_unit.bases == [u.kg, u.s] assert lu.si == u.mag(u.Jy.si) assert lu.si.physical_unit.bases == [u.kg, u.s] assert lu.cgs == u.mag(u.Jy.cgs) assert lu.cgs.physical_unit.bases == [u.g, u.s] def test_unit_multiple_possible_equivalencies(self): lu = u.mag(u.Jy) assert lu.is_equivalent(pu_sample) def test_magnitude_conversion_fails_message(self): """Check that "dimensionless" magnitude units include a message in their exception text suggesting a possible cause of the problem. """ with pytest.raises(u.UnitConversionError) as excinfo: (10*u.ABmag - 2*u.ABmag).to(u.nJy) assert "Did you perhaps subtract magnitudes so the unit got lost?" in str(excinfo.value) class TestLogUnitArithmetic: def test_multiplication_division(self): """Check that multiplication/division with other units is only possible when the physical unit is dimensionless, and that this turns the unit into a normal one.""" lu1 = u.mag(u.Jy) with pytest.raises(u.UnitsError): lu1 * u.m with pytest.raises(u.UnitsError): u.m * lu1 with pytest.raises(u.UnitsError): lu1 / lu1 for unit in (u.dimensionless_unscaled, u.m, u.mag, u.dex): with pytest.raises(u.UnitsError): lu1 / unit lu2 = u.mag(u.dimensionless_unscaled) with pytest.raises(u.UnitsError): lu2 * lu1 with pytest.raises(u.UnitsError): lu2 / lu1 # But dimensionless_unscaled can be cancelled. assert lu2 / lu2 == u.dimensionless_unscaled # With dimensionless, normal units are OK, but we return a plain unit. tf = lu2 * u.m tr = u.m * lu2 for t in (tf, tr): assert not isinstance(t, type(lu2)) assert t == lu2.function_unit * u.m with u.set_enabled_equivalencies(u.logarithmic()): with pytest.raises(u.UnitsError): t.to(lu2.physical_unit) # Now we essentially have a LogUnit with a prefactor of 100, # so should be equivalent again. t = tf / u.cm with u.set_enabled_equivalencies(u.logarithmic()): assert t.is_equivalent(lu2.function_unit) assert_allclose(t.to(u.dimensionless_unscaled, np.arange(3.)/100.), lu2.to(lu2.physical_unit, np.arange(3.))) # If we effectively remove lu1, a normal unit should be returned. t2 = tf / lu2 assert not isinstance(t2, type(lu2)) assert t2 == u.m t3 = tf / lu2.function_unit assert not isinstance(t3, type(lu2)) assert t3 == u.m # For completeness, also ensure non-sensical operations fail with pytest.raises(TypeError): lu1 * object() with pytest.raises(TypeError): slice(None) * lu1 with pytest.raises(TypeError): lu1 / [] with pytest.raises(TypeError): 1 / lu1 @pytest.mark.parametrize('power', (2, 0.5, 1, 0)) def test_raise_to_power(self, power): """Check that raising LogUnits to some power is only possible when the physical unit is dimensionless, and that conversion is turned off when the resulting logarithmic unit (such as mag**2) is incompatible.""" lu1 = u.mag(u.Jy) if power == 0: assert lu1 ** power == u.dimensionless_unscaled elif power == 1: assert lu1 ** power == lu1 else: with pytest.raises(u.UnitsError): lu1 ** power # With dimensionless, though, it works, but returns a normal unit. lu2 = u.mag(u.dimensionless_unscaled) t = lu2**power if power == 0: assert t == u.dimensionless_unscaled elif power == 1: assert t == lu2 else: assert not isinstance(t, type(lu2)) assert t == lu2.function_unit**power # also check we roundtrip t2 = t**(1./power) assert t2 == lu2.function_unit with u.set_enabled_equivalencies(u.logarithmic()): assert_allclose(t2.to(u.dimensionless_unscaled, np.arange(3.)), lu2.to(lu2.physical_unit, np.arange(3.))) @pytest.mark.parametrize('other', pu_sample) def test_addition_subtraction_to_normal_units_fails(self, other): lu1 = u.mag(u.Jy) with pytest.raises(u.UnitsError): lu1 + other with pytest.raises(u.UnitsError): lu1 - other with pytest.raises(u.UnitsError): other - lu1 def test_addition_subtraction_to_non_units_fails(self): lu1 = u.mag(u.Jy) with pytest.raises(TypeError): lu1 + 1. with pytest.raises(TypeError): lu1 - [1., 2., 3.] @pytest.mark.parametrize( 'other', (u.mag, u.mag(), u.mag(u.Jy), u.mag(u.m), u.Unit(2*u.mag), u.MagUnit('', 2.*u.mag))) def test_addition_subtraction(self, other): """Check physical units are changed appropriately""" lu1 = u.mag(u.Jy) other_pu = getattr(other, 'physical_unit', u.dimensionless_unscaled) lu_sf = lu1 + other assert lu_sf.is_equivalent(lu1.physical_unit * other_pu) lu_sr = other + lu1 assert lu_sr.is_equivalent(lu1.physical_unit * other_pu) lu_df = lu1 - other assert lu_df.is_equivalent(lu1.physical_unit / other_pu) lu_dr = other - lu1 assert lu_dr.is_equivalent(other_pu / lu1.physical_unit) def test_complicated_addition_subtraction(self): """for fun, a more complicated example of addition and subtraction""" dm0 = u.Unit('DM', 1./(4.*np.pi*(10.*u.pc)**2)) lu_dm = u.mag(dm0) lu_absST = u.STmag - lu_dm assert lu_absST.is_equivalent(u.erg/u.s/u.AA) def test_neg_pos(self): lu1 = u.mag(u.Jy) neg_lu = -lu1 assert neg_lu != lu1 assert neg_lu.physical_unit == u.Jy**-1 assert -neg_lu == lu1 pos_lu = +lu1 assert pos_lu is not lu1 assert pos_lu == lu1 def test_pickle(): lu1 = u.dex(u.cm/u.s**2) s = pickle.dumps(lu1) lu2 = pickle.loads(s) assert lu1 == lu2 def test_hashable(): lu1 = u.dB(u.mW) lu2 = u.dB(u.m) lu3 = u.dB(u.mW) assert hash(lu1) != hash(lu2) assert hash(lu1) == hash(lu3) luset = {lu1, lu2, lu3} assert len(luset) == 2 class TestLogQuantityCreation: @pytest.mark.parametrize('lq, lu', zip(lq_subclasses + [u.LogQuantity], lu_subclasses + [u.LogUnit])) def test_logarithmic_quantities(self, lq, lu): """Check logarithmic quantities are all set up correctly""" assert lq._unit_class == lu assert type(lu()._quantity_class(1.)) is lq @pytest.mark.parametrize('lq_cls, physical_unit', itertools.product(lq_subclasses, pu_sample)) def test_subclass_creation(self, lq_cls, physical_unit): """Create LogQuantity subclass objects for some physical units, and basic check on transformations""" value = np.arange(1., 10.) log_q = lq_cls(value * physical_unit) assert log_q.unit.physical_unit == physical_unit assert log_q.unit.function_unit == log_q.unit._default_function_unit assert_allclose(log_q.physical.value, value) with pytest.raises(ValueError): lq_cls(value, physical_unit) @pytest.mark.parametrize( 'unit', (u.mag, u.mag(), u.mag(u.Jy), u.mag(u.m), u.Unit(2*u.mag), u.MagUnit('', 2.*u.mag), u.MagUnit(u.Jy, -1*u.mag), u.MagUnit(u.m, -2.*u.mag))) def test_different_units(self, unit): q = u.Magnitude(1.23, unit) assert q.unit.function_unit == getattr(unit, 'function_unit', unit) assert q.unit.physical_unit is getattr(unit, 'physical_unit', u.dimensionless_unscaled) @pytest.mark.parametrize('value, unit', ( (1.*u.mag(u.Jy), None), (1.*u.dex(u.Jy), None), (1.*u.mag(u.W/u.m**2/u.Hz), u.mag(u.Jy)), (1.*u.dex(u.W/u.m**2/u.Hz), u.mag(u.Jy)))) def test_function_values(self, value, unit): lq = u.Magnitude(value, unit) assert lq == value assert lq.unit.function_unit == u.mag assert lq.unit.physical_unit == getattr(unit, 'physical_unit', value.unit.physical_unit) @pytest.mark.parametrize( 'unit', (u.mag(), u.mag(u.Jy), u.mag(u.m), u.MagUnit('', 2.*u.mag), u.MagUnit(u.Jy, -1*u.mag), u.MagUnit(u.m, -2.*u.mag))) def test_indirect_creation(self, unit): q1 = 2.5 * unit assert isinstance(q1, u.Magnitude) assert q1.value == 2.5 assert q1.unit == unit pv = 100. * unit.physical_unit q2 = unit * pv assert q2.unit == unit assert q2.unit.physical_unit == pv.unit assert q2.to_value(unit.physical_unit) == 100. assert (q2._function_view / u.mag).to_value(1) == -5. q3 = unit / 0.4 assert q3 == q1 def test_from_view(self): # Cannot view a physical quantity as a function quantity, since the # values would change. q = [100., 1000.] * u.cm/u.s**2 with pytest.raises(TypeError): q.view(u.Dex) # But fine if we have the right magnitude. q = [2., 3.] * u.dex lq = q.view(u.Dex) assert isinstance(lq, u.Dex) assert lq.unit.physical_unit == u.dimensionless_unscaled assert np.all(q == lq) def test_using_quantity_class(self): """Check that we can use Quantity if we have subok=True""" # following issue #5851 lu = u.dex(u.AA) with pytest.raises(u.UnitTypeError): u.Quantity(1., lu) q = u.Quantity(1., lu, subok=True) assert type(q) is lu._quantity_class def test_conversion_to_and_from_physical_quantities(): """Ensures we can convert from regular quantities.""" mst = [10., 12., 14.] * u.STmag flux_lambda = mst.physical mst_roundtrip = flux_lambda.to(u.STmag) # check we return a logquantity; see #5178. assert isinstance(mst_roundtrip, u.Magnitude) assert mst_roundtrip.unit == mst.unit assert_allclose(mst_roundtrip.value, mst.value) wave = [4956.8, 4959.55, 4962.3] * u.AA flux_nu = mst.to(u.Jy, equivalencies=u.spectral_density(wave)) mst_roundtrip2 = flux_nu.to(u.STmag, u.spectral_density(wave)) assert isinstance(mst_roundtrip2, u.Magnitude) assert mst_roundtrip2.unit == mst.unit assert_allclose(mst_roundtrip2.value, mst.value) def test_quantity_decomposition(): lq = 10.*u.mag(u.Jy) assert lq.decompose() == lq assert lq.decompose().unit.physical_unit.bases == [u.kg, u.s] assert lq.si == lq assert lq.si.unit.physical_unit.bases == [u.kg, u.s] assert lq.cgs == lq assert lq.cgs.unit.physical_unit.bases == [u.g, u.s] class TestLogQuantityViews: def setup(self): self.lq = u.Magnitude(np.arange(1., 10.) * u.Jy) self.lq2 = u.Magnitude(np.arange(1., 5.)) def test_value_view(self): lq_value = self.lq.value assert type(lq_value) is np.ndarray lq_value[2] = -1. assert np.all(self.lq.value == lq_value) def test_function_view(self): lq_fv = self.lq._function_view assert type(lq_fv) is u.Quantity assert lq_fv.unit is self.lq.unit.function_unit lq_fv[3] = -2. * lq_fv.unit assert np.all(self.lq.value == lq_fv.value) def test_quantity_view(self): # Cannot view as Quantity, since the unit cannot be represented. with pytest.raises(TypeError): self.lq.view(u.Quantity) # But a dimensionless one is fine. q2 = self.lq2.view(u.Quantity) assert q2.unit is u.mag assert np.all(q2.value == self.lq2.value) lq3 = q2.view(u.Magnitude) assert type(lq3.unit) is u.MagUnit assert lq3.unit.physical_unit == u.dimensionless_unscaled assert np.all(lq3 == self.lq2) class TestLogQuantitySlicing: def test_item_get_and_set(self): lq1 = u.Magnitude(np.arange(1., 11.)*u.Jy) assert lq1[9] == u.Magnitude(10.*u.Jy) lq1[2] = 100.*u.Jy assert lq1[2] == u.Magnitude(100.*u.Jy) with pytest.raises(u.UnitsError): lq1[2] = 100.*u.m with pytest.raises(u.UnitsError): lq1[2] = 100.*u.mag with pytest.raises(u.UnitsError): lq1[2] = u.Magnitude(100.*u.m) assert lq1[2] == u.Magnitude(100.*u.Jy) def test_slice_get_and_set(self): lq1 = u.Magnitude(np.arange(1., 10.)*u.Jy) lq1[2:4] = 100.*u.Jy assert np.all(lq1[2:4] == u.Magnitude(100.*u.Jy)) with pytest.raises(u.UnitsError): lq1[2:4] = 100.*u.m with pytest.raises(u.UnitsError): lq1[2:4] = 100.*u.mag with pytest.raises(u.UnitsError): lq1[2:4] = u.Magnitude(100.*u.m) assert np.all(lq1[2] == u.Magnitude(100.*u.Jy)) class TestLogQuantityArithmetic: @pytest.mark.parametrize( 'other', [2.4 * u.mag(), 12.34 * u.ABmag, u.Magnitude(3.45 * u.Jy), u.Dex(3.), u.Dex(np.linspace(3000, 5000, 10) * u.Angstrom), u.Magnitude(6.78, 2. * u.mag)]) @pytest.mark.parametrize('fac', [1., 2, 0.4]) def test_multiplication_division(self, other, fac): """Check that multiplication and division works as expectes""" lq_sf = fac * other assert lq_sf.unit.physical_unit == other.unit.physical_unit**fac assert_allclose(lq_sf.physical, other.physical ** fac) lq_sf = other * fac assert lq_sf.unit.physical_unit == other.unit.physical_unit**fac assert_allclose(lq_sf.physical, other.physical ** fac) lq_sf = other / fac assert lq_sf.unit.physical_unit**fac == other.unit.physical_unit assert_allclose(lq_sf.physical**fac, other.physical) lq_sf = other.copy() lq_sf *= fac assert lq_sf.unit.physical_unit == other.unit.physical_unit**fac assert_allclose(lq_sf.physical, other.physical ** fac) lq_sf = other.copy() lq_sf /= fac assert lq_sf.unit.physical_unit**fac == other.unit.physical_unit assert_allclose(lq_sf.physical**fac, other.physical) def test_more_multiplication_division(self): """Check that multiplication/division with other quantities is only possible when the physical unit is dimensionless, and that this turns the result into a normal quantity.""" lq = u.Magnitude(np.arange(1., 11.)*u.Jy) with pytest.raises(u.UnitsError): lq * (1.*u.m) with pytest.raises(u.UnitsError): (1.*u.m) * lq with pytest.raises(u.UnitsError): lq / lq for unit in (u.m, u.mag, u.dex): with pytest.raises(u.UnitsError): lq / unit lq2 = u.Magnitude(np.arange(1, 11.)) with pytest.raises(u.UnitsError): lq2 * lq with pytest.raises(u.UnitsError): lq2 / lq with pytest.raises(u.UnitsError): lq / lq2 lq_sf = lq.copy() with pytest.raises(u.UnitsError): lq_sf *= lq2 # ensure that nothing changed inside assert (lq_sf == lq).all() with pytest.raises(u.UnitsError): lq_sf /= lq2 # ensure that nothing changed inside assert (lq_sf == lq).all() # but dimensionless_unscaled can be cancelled r = lq2 / u.Magnitude(2.) assert r.unit == u.dimensionless_unscaled assert np.all(r.value == lq2.value/2.) # with dimensionless, normal units OK, but return normal quantities tf = lq2 * u.m tr = u.m * lq2 for t in (tf, tr): assert not isinstance(t, type(lq2)) assert t.unit == lq2.unit.function_unit * u.m with u.set_enabled_equivalencies(u.logarithmic()): with pytest.raises(u.UnitsError): t.to(lq2.unit.physical_unit) t = tf / (50.*u.cm) # now we essentially have the same quantity but with a prefactor of 2 assert t.unit.is_equivalent(lq2.unit.function_unit) assert_allclose(t.to(lq2.unit.function_unit), lq2._function_view*2) @pytest.mark.parametrize('power', (2, 0.5, 1, 0)) def test_raise_to_power(self, power): """Check that raising LogQuantities to some power is only possible when the physical unit is dimensionless, and that conversion is turned off when the resulting logarithmic unit (say, mag**2) is incompatible.""" lq = u.Magnitude(np.arange(1., 4.)*u.Jy) if power == 0: assert np.all(lq ** power == 1.) elif power == 1: assert np.all(lq ** power == lq) else: with pytest.raises(u.UnitsError): lq ** power # with dimensionless, it works, but falls back to normal quantity # (except for power=1) lq2 = u.Magnitude(np.arange(10.)) t = lq2**power if power == 0: assert t.unit is u.dimensionless_unscaled assert np.all(t.value == 1.) elif power == 1: assert np.all(t == lq2) else: assert not isinstance(t, type(lq2)) assert t.unit == lq2.unit.function_unit ** power with u.set_enabled_equivalencies(u.logarithmic()): with pytest.raises(u.UnitsError): t.to(u.dimensionless_unscaled) def test_error_on_lq_as_power(self): lq = u.Magnitude(np.arange(1., 4.)*u.Jy) with pytest.raises(TypeError): lq ** lq @pytest.mark.parametrize('other', pu_sample) def test_addition_subtraction_to_normal_units_fails(self, other): lq = u.Magnitude(np.arange(1., 10.)*u.Jy) q = 1.23 * other with pytest.raises(u.UnitsError): lq + q with pytest.raises(u.UnitsError): lq - q with pytest.raises(u.UnitsError): q - lq @pytest.mark.parametrize( 'other', (1.23 * u.mag, 2.34 * u.mag(), u.Magnitude(3.45 * u.Jy), u.Magnitude(4.56 * u.m), 5.67 * u.Unit(2*u.mag), u.Magnitude(6.78, 2.*u.mag))) def test_addition_subtraction(self, other): """Check that addition/subtraction with quantities with magnitude or MagUnit units works, and that it changes the physical units appropriately.""" lq = u.Magnitude(np.arange(1., 10.)*u.Jy) other_physical = other.to(getattr(other.unit, 'physical_unit', u.dimensionless_unscaled), equivalencies=u.logarithmic()) lq_sf = lq + other assert_allclose(lq_sf.physical, lq.physical * other_physical) lq_sr = other + lq assert_allclose(lq_sr.physical, lq.physical * other_physical) lq_df = lq - other assert_allclose(lq_df.physical, lq.physical / other_physical) lq_dr = other - lq assert_allclose(lq_dr.physical, other_physical / lq.physical) @pytest.mark.parametrize('other', pu_sample) def test_inplace_addition_subtraction_unit_checks(self, other): lu1 = u.mag(u.Jy) lq1 = u.Magnitude(np.arange(1., 10.), lu1) with pytest.raises(u.UnitsError): lq1 += other assert np.all(lq1.value == np.arange(1., 10.)) assert lq1.unit == lu1 with pytest.raises(u.UnitsError): lq1 -= other assert np.all(lq1.value == np.arange(1., 10.)) assert lq1.unit == lu1 @pytest.mark.parametrize( 'other', (1.23 * u.mag, 2.34 * u.mag(), u.Magnitude(3.45 * u.Jy), u.Magnitude(4.56 * u.m), 5.67 * u.Unit(2*u.mag), u.Magnitude(6.78, 2.*u.mag))) def test_inplace_addition_subtraction(self, other): """Check that inplace addition/subtraction with quantities with magnitude or MagUnit units works, and that it changes the physical units appropriately.""" lq = u.Magnitude(np.arange(1., 10.)*u.Jy) other_physical = other.to(getattr(other.unit, 'physical_unit', u.dimensionless_unscaled), equivalencies=u.logarithmic()) lq_sf = lq.copy() lq_sf += other assert_allclose(lq_sf.physical, lq.physical * other_physical) lq_df = lq.copy() lq_df -= other assert_allclose(lq_df.physical, lq.physical / other_physical) def test_complicated_addition_subtraction(self): """For fun, a more complicated example of addition and subtraction.""" dm0 = u.Unit('DM', 1./(4.*np.pi*(10.*u.pc)**2)) DMmag = u.mag(dm0) m_st = 10. * u.STmag dm = 5. * DMmag M_st = m_st - dm assert M_st.unit.is_equivalent(u.erg/u.s/u.AA) assert np.abs(M_st.physical / (m_st.physical*4.*np.pi*(100.*u.pc)**2) - 1.) < 1.e-15 class TestLogQuantityComparisons: def test_comparison_to_non_quantities_fails(self): lq = u.Magnitude(np.arange(1., 10.)*u.Jy) with pytest.raises(TypeError): lq > 'a' assert not (lq == 'a') assert lq != 'a' def test_comparison(self): lq1 = u.Magnitude(np.arange(1., 4.)*u.Jy) lq2 = u.Magnitude(2.*u.Jy) assert np.all((lq1 > lq2) == np.array([True, False, False])) assert np.all((lq1 == lq2) == np.array([False, True, False])) lq3 = u.Dex(2.*u.Jy) assert np.all((lq1 > lq3) == np.array([True, False, False])) assert np.all((lq1 == lq3) == np.array([False, True, False])) lq4 = u.Magnitude(2.*u.m) assert not (lq1 == lq4) assert lq1 != lq4 with pytest.raises(u.UnitsError): lq1 < lq4 q5 = 1.5 * u.Jy assert np.all((lq1 > q5) == np.array([True, False, False])) assert np.all((q5 < lq1) == np.array([True, False, False])) with pytest.raises(u.UnitsError): lq1 >= 2.*u.m with pytest.raises(u.UnitsError): lq1 <= lq1.value * u.mag # For physically dimensionless, we can compare with the function unit. lq6 = u.Magnitude(np.arange(1., 4.)) fv6 = lq6.value * u.mag assert np.all(lq6 == fv6) # but not some arbitrary unit, of course. with pytest.raises(u.UnitsError): lq6 < 2.*u.m class TestLogQuantityMethods: def setup(self): self.mJy = np.arange(1., 5.).reshape(2, 2) * u.mag(u.Jy) self.m1 = np.arange(1., 5.5, 0.5).reshape(3, 3) * u.mag() self.mags = (self.mJy, self.m1) @pytest.mark.parametrize('method', ('mean', 'min', 'max', 'round', 'trace', 'std', 'var', 'ptp', 'diff', 'ediff1d')) def test_always_ok(self, method): for mag in self.mags: res = getattr(mag, method)() assert np.all(res.value == getattr(mag._function_view, method)().value) if method in ('std', 'ptp', 'diff', 'ediff1d'): assert res.unit == u.mag() elif method == 'var': assert res.unit == u.mag**2 else: assert res.unit == mag.unit def test_clip(self): for mag in self.mags: assert np.all(mag.clip(2. * mag.unit, 4. * mag.unit).value == mag.value.clip(2., 4.)) @pytest.mark.parametrize('method', ('sum', 'cumsum', 'nansum')) def test_only_ok_if_dimensionless(self, method): res = getattr(self.m1, method)() assert np.all(res.value == getattr(self.m1._function_view, method)().value) assert res.unit == self.m1.unit with pytest.raises(TypeError): getattr(self.mJy, method)() def test_dot(self): assert np.all(self.m1.dot(self.m1).value == self.m1.value.dot(self.m1.value)) @pytest.mark.parametrize('method', ('prod', 'cumprod')) def test_never_ok(self, method): with pytest.raises(TypeError): getattr(self.mJy, method)() with pytest.raises(TypeError): getattr(self.m1, method)()
10f63cd2b4c0d69c8c33fb74cfacb1990bfd9b4fdbc764452fc4b082a8f214c2
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Test the Quantity class and related.""" import sys import typing as T import numpy as np import pytest from astropy import units as u from astropy.units._typing import HAS_ANNOTATED, Annotated @pytest.mark.skipif(sys.version_info < (3, 9), reason="requires py3.9+") class TestQuantityTyping: """Test Quantity Typing Annotations.""" def test_quantity_typing(self): """Test type hint creation from Quantity.""" annot = u.Quantity[u.m] assert T.get_origin(annot) is Annotated assert T.get_args(annot) == (u.Quantity, u.m) # test usage def func(x: annot, y: str) -> u.Quantity[u.s]: return x, y annots = T.get_type_hints(func, include_extras=True) assert annots["x"] is annot assert annots["return"].__metadata__[0] == u.s def test_metadata_in_annotation(self): """Test Quantity annotation with added metadata.""" multi_annot = u.Quantity[u.m, T.Any, np.dtype] def multi_func(x: multi_annot, y: str): return x, y annots = T.get_type_hints(multi_func, include_extras=True) assert annots["x"] == multi_annot def test_optional_and_annotated(self): """Test Quantity annotation in an Optional.""" opt_annot = T.Optional[u.Quantity[u.m]] def opt_func(x: opt_annot, y: str): return x, y annots = T.get_type_hints(opt_func, include_extras=True) assert annots["x"] == opt_annot def test_union_and_annotated(self): """Test Quantity annotation in a Union.""" # double Quantity[] union_annot1 = T.Union[u.Quantity[u.m], u.Quantity[u.s]] # one Quantity, one physical-type union_annot2 = T.Union[u.Quantity[u.m], u.Quantity["time"]] # one Quantity, one general type union_annot3 = T.Union[u.Quantity[u.m / u.s], float] def union_func(x: union_annot1, y: union_annot2) -> union_annot3: if isinstance(y, str): # value = time return x.value # returns <float> else: return x / y # returns Quantity[m / s] annots = T.get_type_hints(union_func, include_extras=True) assert annots["x"] == union_annot1 assert annots["y"] == union_annot2 assert annots["return"] == union_annot3 def test_quantity_subclass_typing(self): """Test type hint creation from a Quantity subclasses.""" class Length(u.SpecificTypeQuantity): _equivalent_unit = u.m annot = Length[u.km] assert T.get_origin(annot) is Annotated assert T.get_args(annot) == (Length, u.km)
845d78a7597c1956c55e087e8cc966c7779b19ff53fce526a0d47afbff499008
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Test Structured units and quantities. """ import copy import numpy as np import numpy.lib.recfunctions as rfn import pytest from numpy.testing import assert_array_equal from astropy import units as u from astropy.tests.helper import check_pickling_recovery, pickle_protocol from astropy.units import Quantity, StructuredUnit, Unit, UnitBase from astropy.utils.compat import NUMPY_LT_1_21_1 from astropy.utils.masked import Masked class StructuredTestBase: @classmethod def setup_class(self): self.pv_dtype = np.dtype([('p', 'f8'), ('v', 'f8')]) self.pv_t_dtype = np.dtype([('pv', self.pv_dtype), ('t', 'f8')]) self.p_unit = u.km self.v_unit = u.km / u.s self.t_unit = u.s self.pv_dtype = np.dtype([('p', 'f8'), ('v', 'f8')]) self.pv_t_dtype = np.dtype([('pv', self.pv_dtype), ('t', 'f8')]) self.pv = np.array([(1., 0.25), (2., 0.5), (3., 0.75)], self.pv_dtype) self.pv_t = np.array([((4., 2.5), 0.), ((5., 5.0), 1.), ((6., 7.5), 2.)], self.pv_t_dtype) class StructuredTestBaseWithUnits(StructuredTestBase): @classmethod def setup_class(self): super().setup_class() self.pv_unit = StructuredUnit((self.p_unit, self.v_unit), ('p', 'v')) self.pv_t_unit = StructuredUnit((self.pv_unit, self.t_unit), ('pv', 't')) class TestStructuredUnitBasics(StructuredTestBase): def test_initialization_and_keying(self): su = StructuredUnit((self.p_unit, self.v_unit), ('p', 'v')) assert su['p'] is self.p_unit assert su['v'] is self.v_unit su2 = StructuredUnit((su, self.t_unit), ('pv', 't')) assert isinstance(su2['pv'], StructuredUnit) assert su2['pv']['p'] is self.p_unit assert su2['pv']['v'] is self.v_unit assert su2['t'] is self.t_unit assert su2['pv'] == su su3 = StructuredUnit(('AU', 'AU/day'), ('p', 'v')) assert isinstance(su3['p'], UnitBase) assert isinstance(su3['v'], UnitBase) su4 = StructuredUnit('AU, AU/day', ('p', 'v')) assert su4['p'] == u.AU assert su4['v'] == u.AU / u.day su5 = StructuredUnit(('AU', 'AU/day')) assert su5.field_names == ('f0', 'f1') assert su5['f0'] == u.AU assert su5['f1'] == u.AU / u.day def test_recursive_initialization(self): su = StructuredUnit(((self.p_unit, self.v_unit), self.t_unit), (('p', 'v'), 't')) assert isinstance(su['pv'], StructuredUnit) assert su['pv']['p'] is self.p_unit assert su['pv']['v'] is self.v_unit assert su['t'] is self.t_unit su2 = StructuredUnit(((self.p_unit, self.v_unit), self.t_unit), (['p_v', ('p', 'v')], 't')) assert isinstance(su2['p_v'], StructuredUnit) assert su2['p_v']['p'] is self.p_unit assert su2['p_v']['v'] is self.v_unit assert su2['t'] is self.t_unit su3 = StructuredUnit((('AU', 'AU/day'), 'yr'), (['p_v', ('p', 'v')], 't')) assert isinstance(su3['p_v'], StructuredUnit) assert su3['p_v']['p'] == u.AU assert su3['p_v']['v'] == u.AU / u.day assert su3['t'] == u.yr su4 = StructuredUnit('(AU, AU/day), yr', (('p', 'v'), 't')) assert isinstance(su4['pv'], StructuredUnit) assert su4['pv']['p'] == u.AU assert su4['pv']['v'] == u.AU / u.day assert su4['t'] == u.yr def test_extreme_recursive_initialization(self): su = StructuredUnit('(yr,(AU,AU/day,(km,(day,day))),m)', ('t', ('p', 'v', ('h', ('d1', 'd2'))), 'l')) assert su.field_names == ('t', ['pvhd1d2', ('p', 'v', ['hd1d2', ('h', ['d1d2', ('d1', 'd2')])])], 'l') @pytest.mark.parametrize('names, invalid', [ [('t', ['p', 'v']), "['p', 'v']"], [('t', ['pv', 'p', 'v']), "['pv', 'p', 'v']"], [('t', ['pv', ['p', 'v']]), "['pv', ['p', 'v']"], [('t', ()), "()"], [('t', ('p', None)), "None"], [('t', ['pv', ('p', '')]), "''"]]) def test_initialization_names_invalid_list_errors(self, names, invalid): with pytest.raises(ValueError) as exc: StructuredUnit('(yr,(AU,AU/day)', names) assert f'invalid entry {invalid}' in str(exc) def test_looks_like_unit(self): su = StructuredUnit((self.p_unit, self.v_unit), ('p', 'v')) assert Unit(su) is su def test_initialize_with_float_dtype(self): su = StructuredUnit(('AU', 'AU/d'), self.pv_dtype) assert isinstance(su['p'], UnitBase) assert isinstance(su['v'], UnitBase) assert su['p'] == u.AU assert su['v'] == u.AU / u.day su = StructuredUnit((('km', 'km/s'), 'yr'), self.pv_t_dtype) assert isinstance(su['pv'], StructuredUnit) assert isinstance(su['pv']['p'], UnitBase) assert isinstance(su['t'], UnitBase) assert su['pv']['v'] == u.km / u.s su = StructuredUnit('(km, km/s), yr', self.pv_t_dtype) assert isinstance(su['pv'], StructuredUnit) assert isinstance(su['pv']['p'], UnitBase) assert isinstance(su['t'], UnitBase) assert su['pv']['v'] == u.km / u.s def test_initialize_with_structured_unit_for_names(self): su = StructuredUnit(('AU', 'AU/d'), names=('p', 'v')) su2 = StructuredUnit(('km', 'km/s'), names=su) assert su2.field_names == ('p', 'v') assert su2['p'] == u.km assert su2['v'] == u.km / u.s def test_initialize_single_field(self): su = StructuredUnit('AU', 'p') assert isinstance(su, StructuredUnit) assert isinstance(su['p'], UnitBase) assert su['p'] == u.AU su = StructuredUnit('AU') assert isinstance(su, StructuredUnit) assert isinstance(su['f0'], UnitBase) assert su['f0'] == u.AU def test_equality(self): su = StructuredUnit(('AU', 'AU/d'), self.pv_dtype) assert su == StructuredUnit(('AU', 'AU/d'), self.pv_dtype) assert su != StructuredUnit(('m', 'AU/d'), self.pv_dtype) # Names should be ignored. assert su == StructuredUnit(('AU', 'AU/d')) assert su == StructuredUnit(('AU', 'AU/d'), names=('q', 'w')) assert su != StructuredUnit(('m', 'm/s')) def test_parsing(self): su = Unit('AU, AU/d') assert isinstance(su, StructuredUnit) assert isinstance(su['f0'], UnitBase) assert isinstance(su['f1'], UnitBase) assert su['f0'] == u.AU assert su['f1'] == u.AU/u.day su2 = Unit('AU, AU/d, yr') assert isinstance(su2, StructuredUnit) assert su2 == StructuredUnit(('AU', 'AU/d', 'yr')) su2a = Unit('(AU, AU/d, yr)') assert isinstance(su2a, StructuredUnit) assert su2a == su2 su3 = Unit('(km, km/s), yr') assert isinstance(su3, StructuredUnit) assert su3 == StructuredUnit((('km', 'km/s'), 'yr')) su4 = Unit('km,') assert isinstance(su4, StructuredUnit) assert su4 == StructuredUnit((u.km,)) su5 = Unit('(m,s),') assert isinstance(su5, StructuredUnit) assert su5 == StructuredUnit(((u.m, u.s),)) ldbody_unit = Unit('Msun, 0.5rad^2, (au, au/day)') assert ldbody_unit == StructuredUnit( (u.Msun, Unit(u.rad**2 / 2), (u.AU, u.AU / u.day))) def test_to_string(self): su = StructuredUnit((u.km, u.km/u.s)) latex_str = r'$(\mathrm{km}, \mathrm{\frac{km}{s}})$' assert su.to_string(format='latex') == latex_str latex_str = r'$(\mathrm{km}, \mathrm{km\,s^{-1}})$' assert su.to_string(format='latex_inline') == latex_str def test_str(self): su = StructuredUnit(((u.km, u.km/u.s), u.yr)) assert str(su) == '((km, km / s), yr)' assert Unit(str(su)) == su def test_repr(self): su = StructuredUnit(((u.km, u.km/u.s), u.yr)) assert repr(su) == 'Unit("((km, km / s), yr)")' assert eval(repr(su)) == su class TestStructuredUnitsCopyPickle(StructuredTestBaseWithUnits): def test_copy(self): su_copy = copy.copy(self.pv_t_unit) assert su_copy is not self.pv_t_unit assert su_copy == self.pv_t_unit assert su_copy._units is self.pv_t_unit._units def test_deepcopy(self): su_copy = copy.deepcopy(self.pv_t_unit) assert su_copy is not self.pv_t_unit assert su_copy == self.pv_t_unit assert su_copy._units is not self.pv_t_unit._units @pytest.mark.skipif(NUMPY_LT_1_21_1, reason="https://stackoverflow.com/q/69571643") def test_pickle(self, pickle_protocol): check_pickling_recovery(self.pv_t_unit, pickle_protocol) class TestStructuredUnitAsMapping(StructuredTestBaseWithUnits): def test_len(self): assert len(self.pv_unit) == 2 assert len(self.pv_t_unit) == 2 def test_keys(self): slv = list(self.pv_t_unit.keys()) assert slv == ['pv', 't'] def test_values(self): values = self.pv_t_unit.values() assert values == (self.pv_unit, self.t_unit) def test_field_names(self): field_names = self.pv_t_unit.field_names assert isinstance(field_names, tuple) assert field_names == (['pv', ('p', 'v')], 't') @pytest.mark.parametrize('iterable', [list, set]) def test_as_iterable(self, iterable): sl = iterable(self.pv_unit) assert isinstance(sl, iterable) assert sl == iterable(['p', 'v']) def test_as_dict(self): sd = dict(self.pv_t_unit) assert sd == {'pv': self.pv_unit, 't': self.t_unit} def test_contains(self): assert 'p' in self.pv_unit assert 'v' in self.pv_unit assert 't' not in self.pv_unit def test_setitem_fails(self): with pytest.raises(TypeError, match='item assignment'): self.pv_t_unit['t'] = u.Gyr class TestStructuredUnitMethods(StructuredTestBaseWithUnits): def test_physical_type_id(self): pv_ptid = self.pv_unit._get_physical_type_id() assert len(pv_ptid) == 2 assert pv_ptid.dtype.names == ('p', 'v') p_ptid = self.pv_unit['p']._get_physical_type_id() v_ptid = self.pv_unit['v']._get_physical_type_id() # Expected should be (subclass of) void, with structured object dtype. expected = np.array((p_ptid, v_ptid), [('p', 'O'), ('v', 'O')])[()] assert pv_ptid == expected # Names should be ignored in comparison. assert pv_ptid == np.array((p_ptid, v_ptid), 'O,O')[()] # Should be possible to address by field and by number. assert pv_ptid['p'] == p_ptid assert pv_ptid['v'] == v_ptid assert pv_ptid[0] == p_ptid assert pv_ptid[1] == v_ptid # More complicated version. pv_t_ptid = self.pv_t_unit._get_physical_type_id() t_ptid = self.t_unit._get_physical_type_id() assert pv_t_ptid == np.array((pv_ptid, t_ptid), 'O,O')[()] assert pv_t_ptid['pv'] == pv_ptid assert pv_t_ptid['t'] == t_ptid assert pv_t_ptid['pv'][1] == v_ptid def test_physical_type(self): pv_pt = self.pv_unit.physical_type assert pv_pt == np.array(('length', 'speed'), 'O,O')[()] pv_t_pt = self.pv_t_unit.physical_type assert pv_t_pt == np.array((pv_pt, 'time'), 'O,O')[()] def test_si(self): pv_t_si = self.pv_t_unit.si assert pv_t_si == self.pv_t_unit assert pv_t_si['pv']['v'].scale == 1000 def test_cgs(self): pv_t_cgs = self.pv_t_unit.cgs assert pv_t_cgs == self.pv_t_unit assert pv_t_cgs['pv']['v'].scale == 100000 def test_decompose(self): pv_t_decompose = self.pv_t_unit.decompose() assert pv_t_decompose['pv']['v'].scale == 1000 def test_is_equivalent(self): assert self.pv_unit.is_equivalent(('AU', 'AU/day')) assert not self.pv_unit.is_equivalent('m') assert not self.pv_unit.is_equivalent(('AU', 'AU')) # Names should be ignored. pv_alt = StructuredUnit('m,m/s', names=('q', 'w')) assert pv_alt.field_names != self.pv_unit.field_names assert self.pv_unit.is_equivalent(pv_alt) # Regular units should work too. assert not u.m.is_equivalent(self.pv_unit) def test_conversion(self): pv1 = self.pv_unit.to(('AU', 'AU/day'), self.pv) assert isinstance(pv1, np.ndarray) assert pv1.dtype == self.pv.dtype assert np.all(pv1['p'] * u.AU == self.pv['p'] * self.p_unit) assert np.all(pv1['v'] * u.AU / u.day == self.pv['v'] * self.v_unit) # Names should be from value. su2 = StructuredUnit((self.p_unit, self.v_unit), ('position', 'velocity')) pv2 = su2.to(('Mm', 'mm/s'), self.pv) assert pv2.dtype.names == ('p', 'v') assert pv2.dtype == self.pv.dtype # Check recursion. pv_t1 = self.pv_t_unit.to((('AU', 'AU/day'), 'Myr'), self.pv_t) assert isinstance(pv_t1, np.ndarray) assert pv_t1.dtype == self.pv_t.dtype assert np.all(pv_t1['pv']['p'] * u.AU == self.pv_t['pv']['p'] * self.p_unit) assert np.all(pv_t1['pv']['v'] * u.AU / u.day == self.pv_t['pv']['v'] * self.v_unit) assert np.all(pv_t1['t'] * u.Myr == self.pv_t['t'] * self.t_unit) # Passing in tuples should work. pv_t2 = self.pv_t_unit.to((('AU', 'AU/day'), 'Myr'), ((1., 0.1), 10.)) assert pv_t2['pv']['p'] == self.p_unit.to('AU', 1.) assert pv_t2['pv']['v'] == self.v_unit.to('AU/day', 0.1) assert pv_t2['t'] == self.t_unit.to('Myr', 10.) pv_t3 = self.pv_t_unit.to((('AU', 'AU/day'), 'Myr'), [((1., 0.1), 10.), ((2., 0.2), 20.)]) assert np.all(pv_t3['pv']['p'] == self.p_unit.to('AU', [1., 2.])) assert np.all(pv_t3['pv']['v'] == self.v_unit.to('AU/day', [0.1, 0.2])) assert np.all(pv_t3['t'] == self.t_unit.to('Myr', [10., 20.])) class TestStructuredUnitArithmatic(StructuredTestBaseWithUnits): def test_multiplication(self): pv_times_au = self.pv_unit * u.au assert isinstance(pv_times_au, StructuredUnit) assert pv_times_au.field_names == ('p', 'v') assert pv_times_au['p'] == self.p_unit * u.AU assert pv_times_au['v'] == self.v_unit * u.AU au_times_pv = u.au * self.pv_unit assert au_times_pv == pv_times_au pv_times_au2 = self.pv_unit * 'au' assert pv_times_au2 == pv_times_au au_times_pv2 = 'AU' * self.pv_unit assert au_times_pv2 == pv_times_au with pytest.raises(TypeError): self.pv_unit * self.pv_unit with pytest.raises(TypeError): 's,s' * self.pv_unit def test_division(self): pv_by_s = self.pv_unit / u.s assert isinstance(pv_by_s, StructuredUnit) assert pv_by_s.field_names == ('p', 'v') assert pv_by_s['p'] == self.p_unit / u.s assert pv_by_s['v'] == self.v_unit / u.s pv_by_s2 = self.pv_unit / 's' assert pv_by_s2 == pv_by_s with pytest.raises(TypeError): 1. / self.pv_unit with pytest.raises(TypeError): u.s / self.pv_unit class TestStructuredQuantity(StructuredTestBaseWithUnits): def test_initialization_and_keying(self): q_pv = Quantity(self.pv, self.pv_unit) q_p = q_pv['p'] assert isinstance(q_p, Quantity) assert isinstance(q_p.unit, UnitBase) assert np.all(q_p == self.pv['p'] * self.pv_unit['p']) q_v = q_pv['v'] assert isinstance(q_v, Quantity) assert isinstance(q_v.unit, UnitBase) assert np.all(q_v == self.pv['v'] * self.pv_unit['v']) q_pv_t = Quantity(self.pv_t, self.pv_t_unit) q_t = q_pv_t['t'] assert np.all(q_t == self.pv_t['t'] * self.pv_t_unit['t']) q_pv2 = q_pv_t['pv'] assert isinstance(q_pv2, Quantity) assert q_pv2.unit == self.pv_unit with pytest.raises(ValueError): Quantity(self.pv, self.pv_t_unit) with pytest.raises(ValueError): Quantity(self.pv_t, self.pv_unit) def test_initialization_with_unit_tuples(self): q_pv_t = Quantity(self.pv_t, (('km', 'km/s'), 's')) assert isinstance(q_pv_t.unit, StructuredUnit) assert q_pv_t.unit == self.pv_t_unit def test_initialization_with_string(self): q_pv_t = Quantity(self.pv_t, '(km, km/s), s') assert isinstance(q_pv_t.unit, StructuredUnit) assert q_pv_t.unit == self.pv_t_unit def test_initialization_by_multiplication_with_unit(self): q_pv_t = self.pv_t * self.pv_t_unit assert q_pv_t.unit is self.pv_t_unit assert np.all(q_pv_t.value == self.pv_t) assert not np.may_share_memory(q_pv_t, self.pv_t) q_pv_t2 = self.pv_t_unit * self.pv_t assert q_pv_t.unit is self.pv_t_unit # Not testing equality of structured Quantity here. assert np.all(q_pv_t2.value == q_pv_t.value) def test_initialization_by_shifting_to_unit(self): q_pv_t = self.pv_t << self.pv_t_unit assert q_pv_t.unit is self.pv_t_unit assert np.all(q_pv_t.value == self.pv_t) assert np.may_share_memory(q_pv_t, self.pv_t) def test_getitem(self): q_pv_t = Quantity(self.pv_t, self.pv_t_unit) q_pv_t01 = q_pv_t[:2] assert isinstance(q_pv_t01, Quantity) assert q_pv_t01.unit == q_pv_t.unit assert np.all(q_pv_t01['t'] == q_pv_t['t'][:2]) q_pv_t1 = q_pv_t[1] assert isinstance(q_pv_t1, Quantity) assert q_pv_t1.unit == q_pv_t.unit assert q_pv_t1.shape == () assert q_pv_t1['t'] == q_pv_t['t'][1] def test_value(self): q_pv_t = Quantity(self.pv_t, self.pv_t_unit) value = q_pv_t.value assert type(value) is np.ndarray assert np.all(value == self.pv_t) value1 = q_pv_t[1].value assert type(value1) is np.void assert np.all(value1 == self.pv_t[1]) def test_conversion(self): q_pv = Quantity(self.pv, self.pv_unit) q1 = q_pv.to(('AU', 'AU/day')) assert isinstance(q1, Quantity) assert q1['p'].unit == u.AU assert q1['v'].unit == u.AU / u.day assert np.all(q1['p'] == q_pv['p'].to(u.AU)) assert np.all(q1['v'] == q_pv['v'].to(u.AU/u.day)) q2 = q_pv.to(self.pv_unit) assert q2['p'].unit == self.p_unit assert q2['v'].unit == self.v_unit assert np.all(q2['p'].value == self.pv['p']) assert np.all(q2['v'].value == self.pv['v']) assert not np.may_share_memory(q2, q_pv) pv1 = q_pv.to_value(('AU', 'AU/day')) assert type(pv1) is np.ndarray assert np.all(pv1['p'] == q_pv['p'].to_value(u.AU)) assert np.all(pv1['v'] == q_pv['v'].to_value(u.AU/u.day)) pv11 = q_pv[1].to_value(('AU', 'AU/day')) assert type(pv11) is np.void assert pv11 == pv1[1] q_pv_t = Quantity(self.pv_t, self.pv_t_unit) q2 = q_pv_t.to((('kpc', 'kpc/Myr'), 'Myr')) assert q2['pv']['p'].unit == u.kpc assert q2['pv']['v'].unit == u.kpc / u.Myr assert q2['t'].unit == u.Myr assert np.all(q2['pv']['p'] == q_pv_t['pv']['p'].to(u.kpc)) assert np.all(q2['pv']['v'] == q_pv_t['pv']['v'].to(u.kpc/u.Myr)) assert np.all(q2['t'] == q_pv_t['t'].to(u.Myr)) def test_conversion_via_lshift(self): q_pv = Quantity(self.pv, self.pv_unit) q1 = q_pv << StructuredUnit(('AU', 'AU/day')) assert isinstance(q1, Quantity) assert q1['p'].unit == u.AU assert q1['v'].unit == u.AU / u.day assert np.all(q1['p'] == q_pv['p'].to(u.AU)) assert np.all(q1['v'] == q_pv['v'].to(u.AU/u.day)) q2 = q_pv << self.pv_unit assert q2['p'].unit == self.p_unit assert q2['v'].unit == self.v_unit assert np.all(q2['p'].value == self.pv['p']) assert np.all(q2['v'].value == self.pv['v']) assert np.may_share_memory(q2, q_pv) q_pv_t = Quantity(self.pv_t, self.pv_t_unit) q2 = q_pv_t << '(kpc,kpc/Myr),Myr' assert q2['pv']['p'].unit == u.kpc assert q2['pv']['v'].unit == u.kpc / u.Myr assert q2['t'].unit == u.Myr assert np.all(q2['pv']['p'] == q_pv_t['pv']['p'].to(u.kpc)) assert np.all(q2['pv']['v'] == q_pv_t['pv']['v'].to(u.kpc/u.Myr)) assert np.all(q2['t'] == q_pv_t['t'].to(u.Myr)) def test_inplace_conversion(self): q_pv = Quantity(self.pv, self.pv_unit) q1 = q_pv.copy() q_link = q1 q1 <<= StructuredUnit(('AU', 'AU/day')) assert q1 is q_link assert q1['p'].unit == u.AU assert q1['v'].unit == u.AU / u.day assert np.all(q1['p'] == q_pv['p'].to(u.AU)) assert np.all(q1['v'] == q_pv['v'].to(u.AU/u.day)) q_pv_t = Quantity(self.pv_t, self.pv_t_unit) q2 = q_pv_t.copy() q_link = q2 q2 <<= '(kpc,kpc/Myr),Myr' assert q2 is q_link assert q2['pv']['p'].unit == u.kpc assert q2['pv']['v'].unit == u.kpc / u.Myr assert q2['t'].unit == u.Myr assert np.all(q2['pv']['p'] == q_pv_t['pv']['p'].to(u.kpc)) assert np.all(q2['pv']['v'] == q_pv_t['pv']['v'].to(u.kpc/u.Myr)) assert np.all(q2['t'] == q_pv_t['t'].to(u.Myr)) def test_si(self): q_pv_t = Quantity(self.pv_t, self.pv_t_unit) q_pv_t_si = q_pv_t.si assert_array_equal(q_pv_t_si, q_pv_t.to('(m,m/s),s')) def test_cgs(self): q_pv_t = Quantity(self.pv_t, self.pv_t_unit) q_pv_t_cgs = q_pv_t.cgs assert_array_equal(q_pv_t_cgs, q_pv_t.to('(cm,cm/s),s')) def test_equality(self): q_pv = Quantity(self.pv, self.pv_unit) equal = q_pv == q_pv not_equal = q_pv != q_pv assert np.all(equal) assert not np.any(not_equal) equal2 = q_pv == q_pv[1] not_equal2 = q_pv != q_pv[1] assert np.all(equal2 == [False, True, False]) assert np.all(not_equal2 != equal2) q1 = q_pv.to(('AU', 'AU/day')) # Ensure same conversion is done, by placing q1 first. assert np.all(q1 == q_pv) assert not np.any(q1 != q_pv) # Check different names in dtype. assert np.all(q1.value * u.Unit('AU, AU/day') == q_pv) assert not np.any(q1.value * u.Unit('AU, AU/day') != q_pv) assert (q_pv == 'b') is False assert ('b' != q_pv) is True q_pv_t = Quantity(self.pv_t, self.pv_t_unit) assert np.all((q_pv_t[2] == q_pv_t) == [False, False, True]) assert np.all((q_pv_t[2] != q_pv_t) != [False, False, True]) assert (q_pv == q_pv_t) is False assert (q_pv_t != q_pv) is True def test_setitem(self): q_pv = Quantity(self.pv, self.pv_unit) q_pv[1] = (2., 2.) * self.pv_unit assert q_pv[1].value == np.array((2., 2.), self.pv_dtype) q_pv[1:2] = (1., 0.5) * u.Unit('AU, AU/day') assert q_pv['p'][1] == 1. * u.AU assert q_pv['v'][1] == 0.5 * u.AU / u.day q_pv['v'] = 1. * u.km / u.s assert np.all(q_pv['v'] == 1. * u.km / u.s) with pytest.raises(u.UnitsError): q_pv[1] = (1., 1.) * u.Unit('AU, AU') with pytest.raises(u.UnitsError): q_pv['v'] = 1. * u.km q_pv_t = Quantity(self.pv_t, self.pv_t_unit) q_pv_t[1] = ((2., 2.), 3.) * self.pv_t_unit assert q_pv_t[1].value == np.array(((2., 2.), 3.), self.pv_t_dtype) q_pv_t[1:2] = ((1., 0.5), 5.) * u.Unit('(AU, AU/day), yr') assert q_pv_t['pv'][1] == (1., 0.5) * u.Unit('AU, AU/day') assert q_pv_t['t'][1] == 5. * u.yr q_pv_t['pv'] = (1., 0.5) * self.pv_unit assert np.all(q_pv_t['pv'] == (1., 0.5) * self.pv_unit) class TestStructuredQuantityFunctions(StructuredTestBaseWithUnits): @classmethod def setup_class(self): super().setup_class() self.q_pv = self.pv << self.pv_unit self.q_pv_t = self.pv_t << self.pv_t_unit def test_empty_like(self): z = np.empty_like(self.q_pv) assert z.dtype == self.pv_dtype assert z.unit == self.pv_unit assert z.shape == self.pv.shape @pytest.mark.parametrize('func', [np.zeros_like, np.ones_like]) def test_zeros_ones_like(self, func): z = func(self.q_pv) assert z.dtype == self.pv_dtype assert z.unit == self.pv_unit assert z.shape == self.pv.shape assert_array_equal(z, func(self.pv) << self.pv_unit) def test_structured_to_unstructured(self): # can't unstructure something with incompatible units with pytest.raises(u.UnitConversionError, match="'km / s'"): rfn.structured_to_unstructured(self.q_pv) # For the other tests of ``structured_to_unstructured``, see # ``test_quantity_non_ufuncs.TestRecFunctions.test_structured_to_unstructured`` def test_unstructured_to_structured(self): # can't structure something that's already structured dtype = np.dtype([("f1", float), ("f2", float)]) with pytest.raises(ValueError, match="The length of the last dimension"): rfn.unstructured_to_structured(self.q_pv, dtype=self.q_pv.dtype) # For the other tests of ``structured_to_unstructured``, see # ``test_quantity_non_ufuncs.TestRecFunctions.test_unstructured_to_structured`` class TestStructuredSpecificTypeQuantity(StructuredTestBaseWithUnits): def setup_class(self): super().setup_class() class PositionVelocity(u.SpecificTypeQuantity): _equivalent_unit = self.pv_unit self.PositionVelocity = PositionVelocity def test_init(self): pv = self.PositionVelocity(self.pv, self.pv_unit) assert isinstance(pv, self.PositionVelocity) assert type(pv['p']) is u.Quantity assert_array_equal(pv['p'], self.pv['p'] << self.pv_unit['p']) pv2 = self.PositionVelocity(self.pv, 'AU,AU/day') assert_array_equal(pv2['p'], self.pv['p'] << u.AU) def test_error_on_non_equivalent_unit(self): with pytest.raises(u.UnitsError): self.PositionVelocity(self.pv, 'AU') with pytest.raises(u.UnitsError): self.PositionVelocity(self.pv, 'AU,yr') class TestStructuredLogUnit: def setup_class(self): self.mag_time_dtype = np.dtype([('mag', 'f8'), ('t', 'f8')]) self.mag_time = np.array([(20., 10.), (25., 100.)], self.mag_time_dtype) def test_unit_initialization(self): mag_time_unit = StructuredUnit((u.STmag, u.s), self.mag_time_dtype) assert mag_time_unit['mag'] == u.STmag assert mag_time_unit['t'] == u.s mag_time_unit2 = u.Unit('mag(ST),s') assert mag_time_unit2 == mag_time_unit def test_quantity_initialization(self): su = u.Unit('mag(ST),s') mag_time = self.mag_time << su assert isinstance(mag_time['mag'], u.Magnitude) assert isinstance(mag_time['t'], u.Quantity) assert mag_time.unit == su assert_array_equal(mag_time['mag'], self.mag_time['mag'] << u.STmag) assert_array_equal(mag_time['t'], self.mag_time['t'] << u.s) def test_quantity_si(self): mag_time = self.mag_time << u.Unit('mag(ST),yr') mag_time_si = mag_time.si assert_array_equal(mag_time_si['mag'], mag_time['mag'].si) assert_array_equal(mag_time_si['t'], mag_time['t'].si) class TestStructuredMaskedQuantity(StructuredTestBaseWithUnits): """Somewhat minimal tests. Conversion is most stringent.""" def setup_class(self): super().setup_class() self.qpv = self.pv << self.pv_unit self.pv_mask = np.array([(True, False), (False, False), (False, True)], [('p', bool), ('v', bool)]) self.mpv = Masked(self.qpv, mask=self.pv_mask) def test_init(self): assert isinstance(self.mpv, Masked) assert isinstance(self.mpv, Quantity) assert_array_equal(self.mpv.unmasked, self.qpv) assert_array_equal(self.mpv.mask, self.pv_mask) def test_slicing(self): mp = self.mpv['p'] assert isinstance(mp, Masked) assert isinstance(mp, Quantity) assert_array_equal(mp.unmasked, self.qpv['p']) assert_array_equal(mp.mask, self.pv_mask['p']) def test_conversion(self): mpv = self.mpv.to('AU,AU/day') assert isinstance(mpv, Masked) assert isinstance(mpv, Quantity) assert_array_equal(mpv.unmasked, self.qpv.to('AU,AU/day')) assert_array_equal(mpv.mask, self.pv_mask) assert np.all(mpv == self.mpv) def test_si(self): mpv = self.mpv.si assert isinstance(mpv, Masked) assert isinstance(mpv, Quantity) assert_array_equal(mpv.unmasked, self.qpv.si) assert_array_equal(mpv.mask, self.pv_mask) assert np.all(mpv == self.mpv)
b1c71b211e4cad6025a50bd08857fb9290ab42a2ae38b671ac259ed7db4842b3
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Test the Quantity class and related.""" import copy import decimal import numbers import pickle from fractions import Fraction import numpy as np import pytest from numpy.testing import assert_allclose, assert_array_almost_equal, assert_array_equal from astropy import units as u from astropy.units.quantity import _UNIT_NOT_INITIALISED from astropy.utils import isiterable, minversion from astropy.utils.exceptions import AstropyDeprecationWarning, AstropyWarning """ The Quantity class will represent a number + unit + uncertainty """ class TestQuantityCreation: def test_1(self): # create objects through operations with Unit objects: quantity = 11.42 * u.meter # returns a Quantity object assert isinstance(quantity, u.Quantity) quantity = u.meter * 11.42 # returns a Quantity object assert isinstance(quantity, u.Quantity) quantity = 11.42 / u.meter assert isinstance(quantity, u.Quantity) quantity = u.meter / 11.42 assert isinstance(quantity, u.Quantity) quantity = 11.42 * u.meter / u.second assert isinstance(quantity, u.Quantity) with pytest.raises(TypeError): quantity = 182.234 + u.meter with pytest.raises(TypeError): quantity = 182.234 - u.meter with pytest.raises(TypeError): quantity = 182.234 % u.meter def test_2(self): # create objects using the Quantity constructor: _ = u.Quantity(11.412, unit=u.meter) _ = u.Quantity(21.52, "cm") q3 = u.Quantity(11.412) # By default quantities that don't specify a unit are unscaled # dimensionless assert q3.unit == u.Unit(1) with pytest.raises(TypeError): u.Quantity(object(), unit=u.m) def test_3(self): # with pytest.raises(u.UnitsError): with pytest.raises(ValueError): # Until @mdboom fixes the errors in units u.Quantity(11.412, unit="testingggg") def test_nan_inf(self): # Not-a-number q = u.Quantity('nan', unit='cm') assert np.isnan(q.value) q = u.Quantity('NaN', unit='cm') assert np.isnan(q.value) q = u.Quantity('-nan', unit='cm') # float() allows this assert np.isnan(q.value) q = u.Quantity('nan cm') assert np.isnan(q.value) assert q.unit == u.cm # Infinity q = u.Quantity('inf', unit='cm') assert np.isinf(q.value) q = u.Quantity('-inf', unit='cm') assert np.isinf(q.value) q = u.Quantity('inf cm') assert np.isinf(q.value) assert q.unit == u.cm q = u.Quantity('Infinity', unit='cm') # float() allows this assert np.isinf(q.value) # make sure these strings don't parse... with pytest.raises(TypeError): q = u.Quantity('', unit='cm') with pytest.raises(TypeError): q = u.Quantity('spam', unit='cm') def test_unit_property(self): # test getting and setting 'unit' attribute q1 = u.Quantity(11.4, unit=u.meter) with pytest.raises(AttributeError): q1.unit = u.cm def test_preserve_dtype(self): """Test that if an explicit dtype is given, it is used, while if not, numbers are converted to float (including decimal.Decimal, which numpy converts to an object; closes #1419) """ # If dtype is specified, use it, but if not, convert int, bool to float q1 = u.Quantity(12, unit=u.m / u.s, dtype=int) assert q1.dtype == int q2 = u.Quantity(q1) assert q2.dtype == float assert q2.value == float(q1.value) assert q2.unit == q1.unit # but we should preserve any float32 or even float16 a3_32 = np.array([1., 2.], dtype=np.float32) q3_32 = u.Quantity(a3_32, u.yr) assert q3_32.dtype == a3_32.dtype a3_16 = np.array([1., 2.], dtype=np.float16) q3_16 = u.Quantity(a3_16, u.yr) assert q3_16.dtype == a3_16.dtype # items stored as objects by numpy should be converted to float # by default q4 = u.Quantity(decimal.Decimal('10.25'), u.m) assert q4.dtype == float q5 = u.Quantity(decimal.Decimal('10.25'), u.m, dtype=object) assert q5.dtype == object def test_numpy_style_dtype_inspect(self): """Test that if ``dtype=None``, NumPy's dtype inspection is used.""" q2 = u.Quantity(12, dtype=None) assert np.issubdtype(q2.dtype, np.integer) def test_float_dtype_promotion(self): """Test that if ``dtype=numpy.inexact``, the minimum precision is float64.""" q1 = u.Quantity(12, dtype=np.inexact) assert not np.issubdtype(q1.dtype, np.integer) assert q1.dtype == np.float64 q2 = u.Quantity(np.float64(12), dtype=np.inexact) assert q2.dtype == np.float64 q3 = u.Quantity(np.float32(12), dtype=np.inexact) assert q3.dtype == np.float32 if hasattr(np, "float16"): q3 = u.Quantity(np.float16(12), dtype=np.inexact) assert q3.dtype == np.float16 if hasattr(np, "float128"): q4 = u.Quantity(np.float128(12), dtype=np.inexact) assert q4.dtype == np.float128 def test_copy(self): # By default, a new quantity is constructed, but not if copy=False a = np.arange(10.) q0 = u.Quantity(a, unit=u.m / u.s) assert q0.base is not a q1 = u.Quantity(a, unit=u.m / u.s, copy=False) assert q1.base is a q2 = u.Quantity(q0) assert q2 is not q0 assert q2.base is not q0.base q2 = u.Quantity(q0, copy=False) assert q2 is q0 assert q2.base is q0.base q3 = u.Quantity(q0, q0.unit, copy=False) assert q3 is q0 assert q3.base is q0.base q4 = u.Quantity(q0, u.cm / u.s, copy=False) assert q4 is not q0 assert q4.base is not q0.base def test_subok(self): """Test subok can be used to keep class, or to insist on Quantity""" class MyQuantitySubclass(u.Quantity): pass myq = MyQuantitySubclass(np.arange(10.), u.m) # try both with and without changing the unit assert type(u.Quantity(myq)) is u.Quantity assert type(u.Quantity(myq, subok=True)) is MyQuantitySubclass assert type(u.Quantity(myq, u.km)) is u.Quantity assert type(u.Quantity(myq, u.km, subok=True)) is MyQuantitySubclass def test_order(self): """Test that order is correctly propagated to np.array""" ac = np.array(np.arange(10.), order='C') qcc = u.Quantity(ac, u.m, order='C') assert qcc.flags['C_CONTIGUOUS'] qcf = u.Quantity(ac, u.m, order='F') assert qcf.flags['F_CONTIGUOUS'] qca = u.Quantity(ac, u.m, order='A') assert qca.flags['C_CONTIGUOUS'] # check it works also when passing in a quantity assert u.Quantity(qcc, order='C').flags['C_CONTIGUOUS'] assert u.Quantity(qcc, order='A').flags['C_CONTIGUOUS'] assert u.Quantity(qcc, order='F').flags['F_CONTIGUOUS'] af = np.array(np.arange(10.), order='F') qfc = u.Quantity(af, u.m, order='C') assert qfc.flags['C_CONTIGUOUS'] qff = u.Quantity(ac, u.m, order='F') assert qff.flags['F_CONTIGUOUS'] qfa = u.Quantity(af, u.m, order='A') assert qfa.flags['F_CONTIGUOUS'] assert u.Quantity(qff, order='C').flags['C_CONTIGUOUS'] assert u.Quantity(qff, order='A').flags['F_CONTIGUOUS'] assert u.Quantity(qff, order='F').flags['F_CONTIGUOUS'] def test_ndmin(self): """Test that ndmin is correctly propagated to np.array""" a = np.arange(10.) q1 = u.Quantity(a, u.m, ndmin=1) assert q1.ndim == 1 and q1.shape == (10,) q2 = u.Quantity(a, u.m, ndmin=2) assert q2.ndim == 2 and q2.shape == (1, 10) # check it works also when passing in a quantity q3 = u.Quantity(q1, u.m, ndmin=3) assert q3.ndim == 3 and q3.shape == (1, 1, 10) # see github issue #10063 assert u.Quantity(u.Quantity(1, 'm'), 'm', ndmin=1).ndim == 1 assert u.Quantity(u.Quantity(1, 'cm'), 'm', ndmin=1).ndim == 1 def test_non_quantity_with_unit(self): """Test that unit attributes in objects get recognized.""" class MyQuantityLookalike(np.ndarray): pass a = np.arange(3.) mylookalike = a.copy().view(MyQuantityLookalike) mylookalike.unit = 'm' q1 = u.Quantity(mylookalike) assert isinstance(q1, u.Quantity) assert q1.unit is u.m assert np.all(q1.value == a) q2 = u.Quantity(mylookalike, u.mm) assert q2.unit is u.mm assert np.all(q2.value == 1000.*a) q3 = u.Quantity(mylookalike, copy=False) assert np.all(q3.value == mylookalike) q3[2] = 0 assert q3[2] == 0. assert mylookalike[2] == 0. mylookalike = a.copy().view(MyQuantityLookalike) mylookalike.unit = u.m q4 = u.Quantity(mylookalike, u.mm, copy=False) q4[2] = 0 assert q4[2] == 0. assert mylookalike[2] == 2. mylookalike.unit = 'nonsense' with pytest.raises(TypeError): u.Quantity(mylookalike) def test_creation_via_view(self): # This works but is no better than 1. * u.m q1 = 1. << u.m assert isinstance(q1, u.Quantity) assert q1.unit == u.m assert q1.value == 1. # With an array, we get an actual view. a2 = np.arange(10.) q2 = a2 << u.m / u.s assert isinstance(q2, u.Quantity) assert q2.unit == u.m / u.s assert np.all(q2.value == a2) a2[9] = 0. assert np.all(q2.value == a2) # But with a unit change we get a copy. q3 = q2 << u.mm / u.s assert isinstance(q3, u.Quantity) assert q3.unit == u.mm / u.s assert np.all(q3.value == a2 * 1000.) a2[8] = 0. assert q3[8].value == 8000. # Without a unit change, we do get a view. q4 = q2 << q2.unit a2[7] = 0. assert np.all(q4.value == a2) with pytest.raises(u.UnitsError): q2 << u.s # But one can do an in-place unit change. a2_copy = a2.copy() q2 <<= u.mm / u.s assert q2.unit == u.mm / u.s # Of course, this changes a2 as well. assert np.all(q2.value == a2) # Sanity check on the values. assert np.all(q2.value == a2_copy * 1000.) a2[8] = -1. # Using quantities, one can also work with strings. q5 = q2 << 'km/hr' assert q5.unit == u.km / u.hr assert np.all(q5 == q2) # Finally, we can use scalar quantities as units. not_quite_a_foot = 30. * u.cm a6 = np.arange(5.) q6 = a6 << not_quite_a_foot assert q6.unit == u.Unit(not_quite_a_foot) assert np.all(q6.to_value(u.cm) == 30. * a6) def test_rshift_warns(self): with pytest.raises(TypeError), \ pytest.warns(AstropyWarning, match='is not implemented') as warning_lines: 1 >> u.m assert len(warning_lines) == 1 q = 1. * u.km with pytest.raises(TypeError), \ pytest.warns(AstropyWarning, match='is not implemented') as warning_lines: q >> u.m assert len(warning_lines) == 1 with pytest.raises(TypeError), \ pytest.warns(AstropyWarning, match='is not implemented') as warning_lines: q >>= u.m assert len(warning_lines) == 1 with pytest.raises(TypeError), \ pytest.warns(AstropyWarning, match='is not implemented') as warning_lines: 1. >> q assert len(warning_lines) == 1 class TestQuantityOperations: q1 = u.Quantity(11.42, u.meter) q2 = u.Quantity(8.0, u.centimeter) def test_addition(self): # Take units from left object, q1 new_quantity = self.q1 + self.q2 assert new_quantity.value == 11.5 assert new_quantity.unit == u.meter # Take units from left object, q2 new_quantity = self.q2 + self.q1 assert new_quantity.value == 1150.0 assert new_quantity.unit == u.centimeter new_q = u.Quantity(1500.1, u.m) + u.Quantity(13.5, u.km) assert new_q.unit == u.m assert new_q.value == 15000.1 def test_subtraction(self): # Take units from left object, q1 new_quantity = self.q1 - self.q2 assert new_quantity.value == 11.34 assert new_quantity.unit == u.meter # Take units from left object, q2 new_quantity = self.q2 - self.q1 assert new_quantity.value == -1134.0 assert new_quantity.unit == u.centimeter def test_multiplication(self): # Take units from left object, q1 new_quantity = self.q1 * self.q2 assert new_quantity.value == 91.36 assert new_quantity.unit == (u.meter * u.centimeter) # Take units from left object, q2 new_quantity = self.q2 * self.q1 assert new_quantity.value == 91.36 assert new_quantity.unit == (u.centimeter * u.meter) # Multiply with a number new_quantity = 15. * self.q1 assert new_quantity.value == 171.3 assert new_quantity.unit == u.meter # Multiply with a number new_quantity = self.q1 * 15. assert new_quantity.value == 171.3 assert new_quantity.unit == u.meter def test_division(self): # Take units from left object, q1 new_quantity = self.q1 / self.q2 assert_array_almost_equal(new_quantity.value, 1.4275, decimal=5) assert new_quantity.unit == (u.meter / u.centimeter) # Take units from left object, q2 new_quantity = self.q2 / self.q1 assert_array_almost_equal(new_quantity.value, 0.70052539404553416, decimal=16) assert new_quantity.unit == (u.centimeter / u.meter) q1 = u.Quantity(11.4, unit=u.meter) q2 = u.Quantity(10.0, unit=u.second) new_quantity = q1 / q2 assert_array_almost_equal(new_quantity.value, 1.14, decimal=10) assert new_quantity.unit == (u.meter / u.second) # divide with a number new_quantity = self.q1 / 10. assert new_quantity.value == 1.142 assert new_quantity.unit == u.meter # divide with a number new_quantity = 11.42 / self.q1 assert new_quantity.value == 1. assert new_quantity.unit == u.Unit("1/m") def test_commutativity(self): """Regression test for issue #587.""" new_q = u.Quantity(11.42, 'm*s') assert self.q1 * u.s == u.s * self.q1 == new_q assert self.q1 / u.s == u.Quantity(11.42, 'm/s') assert u.s / self.q1 == u.Quantity(1 / 11.42, 's/m') def test_power(self): # raise quantity to a power new_quantity = self.q1 ** 2 assert_array_almost_equal(new_quantity.value, 130.4164, decimal=5) assert new_quantity.unit == u.Unit("m^2") new_quantity = self.q1 ** 3 assert_array_almost_equal(new_quantity.value, 1489.355288, decimal=7) assert new_quantity.unit == u.Unit("m^3") def test_matrix_multiplication(self): a = np.eye(3) q = a * u.m result1 = q @ a assert np.all(result1 == q) result2 = a @ q assert np.all(result2 == q) result3 = q @ q assert np.all(result3 == a * u.m ** 2) # less trivial case. q2 = np.array([[[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]], [[0., 1., 0.], [0., 0., 1.], [1., 0., 0.]], [[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]]) / u.s result4 = q @ q2 assert np.all(result4 == np.matmul(a, q2.value) * q.unit * q2.unit) def test_unary(self): # Test the minus unary operator new_quantity = -self.q1 assert new_quantity.value == -self.q1.value assert new_quantity.unit == self.q1.unit new_quantity = -(-self.q1) assert new_quantity.value == self.q1.value assert new_quantity.unit == self.q1.unit # Test the plus unary operator new_quantity = +self.q1 assert new_quantity.value == self.q1.value assert new_quantity.unit == self.q1.unit def test_abs(self): q = 1. * u.m / u.s new_quantity = abs(q) assert new_quantity.value == q.value assert new_quantity.unit == q.unit q = -1. * u.m / u.s new_quantity = abs(q) assert new_quantity.value == -q.value assert new_quantity.unit == q.unit def test_incompatible_units(self): """ When trying to add or subtract units that aren't compatible, throw an error """ q1 = u.Quantity(11.412, unit=u.meter) q2 = u.Quantity(21.52, unit=u.second) with pytest.raises(u.UnitsError): q1 + q2 def test_non_number_type(self): q1 = u.Quantity(11.412, unit=u.meter) with pytest.raises(TypeError) as exc: q1 + {'a': 1} assert exc.value.args[0].startswith( "Unsupported operand type(s) for ufunc add:") with pytest.raises(TypeError): q1 + u.meter def test_dimensionless_operations(self): # test conversion to dimensionless dq = 3. * u.m / u.km dq1 = dq + 1. * u.mm / u.km assert dq1.value == 3.001 assert dq1.unit == dq.unit dq2 = dq + 1. assert dq2.value == 1.003 assert dq2.unit == u.dimensionless_unscaled # this test will check that operations with dimensionless Quantities # don't work with pytest.raises(u.UnitsError): self.q1 + u.Quantity(0.1, unit=u.Unit("")) with pytest.raises(u.UnitsError): self.q1 - u.Quantity(0.1, unit=u.Unit("")) # and test that scaling of integers works q = u.Quantity(np.array([1, 2, 3]), u.m / u.km, dtype=int) q2 = q + np.array([4, 5, 6]) assert q2.unit == u.dimensionless_unscaled assert_allclose(q2.value, np.array([4.001, 5.002, 6.003])) # but not if doing it inplace with pytest.raises(TypeError): q += np.array([1, 2, 3]) # except if it is actually possible q = np.array([1, 2, 3]) * u.km / u.m q += np.array([4, 5, 6]) assert q.unit == u.dimensionless_unscaled assert np.all(q.value == np.array([1004, 2005, 3006])) def test_complicated_operation(self): """ Perform a more complicated test """ from astropy.units import imperial # Multiple units distance = u.Quantity(15., u.meter) time = u.Quantity(11., u.second) velocity = (distance / time).to(imperial.mile / u.hour) assert_array_almost_equal( velocity.value, 3.05037, decimal=5) G = u.Quantity(6.673E-11, u.m ** 3 / u.kg / u.s ** 2) _ = ((1. / (4. * np.pi * G)).to(u.pc ** -3 / u.s ** -2 * u.kg)) # Area side1 = u.Quantity(11., u.centimeter) side2 = u.Quantity(7., u.centimeter) area = side1 * side2 assert_array_almost_equal(area.value, 77., decimal=15) assert area.unit == u.cm * u.cm def test_comparison(self): # equality/ non-equality is straightforward for quantity objects assert (1 / (u.cm * u.cm)) == 1 * u.cm ** -2 assert 1 * u.m == 100 * u.cm assert 1 * u.m != 1 * u.cm # when one is a unit, Quantity does not know what to do, # but unit is fine with it, so it still works unit = u.cm**3 q = 1. * unit assert q.__eq__(unit) is NotImplemented assert unit.__eq__(q) is True assert q == unit q = 1000. * u.mm**3 assert q == unit # mismatched types should never work assert not 1. * u.cm == 1. assert 1. * u.cm != 1. # comparison with zero should raise a deprecation warning for quantity in (1. * u.cm, 1. * u.dimensionless_unscaled): with pytest.warns(AstropyDeprecationWarning, match='The truth value of ' 'a Quantity is ambiguous. In the future this will ' 'raise a ValueError.'): bool(quantity) def test_numeric_converters(self): # float, int, long, and __index__ should only work for single # quantities, of appropriate type, and only if they are dimensionless. # for index, this should be unscaled as well # (Check on __index__ is also a regression test for #1557) # quantities with units should never convert, or be usable as an index q1 = u.Quantity(1, u.m) converter_err_msg = ("only dimensionless scalar quantities " "can be converted to Python scalars") index_err_msg = ("only integer dimensionless scalar quantities " "can be converted to a Python index") with pytest.raises(TypeError) as exc: float(q1) assert exc.value.args[0] == converter_err_msg with pytest.raises(TypeError) as exc: int(q1) assert exc.value.args[0] == converter_err_msg # We used to test `q1 * ['a', 'b', 'c'] here, but that that worked # at all was a really odd confluence of bugs. Since it doesn't work # in numpy >=1.10 any more, just go directly for `__index__` (which # makes the test more similar to the `int`, `long`, etc., tests). with pytest.raises(TypeError) as exc: q1.__index__() assert exc.value.args[0] == index_err_msg # dimensionless but scaled is OK, however q2 = u.Quantity(1.23, u.m / u.km) assert float(q2) == float(q2.to_value(u.dimensionless_unscaled)) assert int(q2) == int(q2.to_value(u.dimensionless_unscaled)) with pytest.raises(TypeError) as exc: q2.__index__() assert exc.value.args[0] == index_err_msg # dimensionless unscaled is OK, though for index needs to be int q3 = u.Quantity(1.23, u.dimensionless_unscaled) assert float(q3) == 1.23 assert int(q3) == 1 with pytest.raises(TypeError) as exc: q3.__index__() assert exc.value.args[0] == index_err_msg # integer dimensionless unscaled is good for all q4 = u.Quantity(2, u.dimensionless_unscaled, dtype=int) assert float(q4) == 2. assert int(q4) == 2 assert q4.__index__() == 2 # but arrays are not OK q5 = u.Quantity([1, 2], u.m) with pytest.raises(TypeError) as exc: float(q5) assert exc.value.args[0] == converter_err_msg with pytest.raises(TypeError) as exc: int(q5) assert exc.value.args[0] == converter_err_msg with pytest.raises(TypeError) as exc: q5.__index__() assert exc.value.args[0] == index_err_msg # See https://github.com/numpy/numpy/issues/5074 # It seems unlikely this will be resolved, so xfail'ing it. @pytest.mark.xfail(reason="list multiplication only works for numpy <=1.10") def test_numeric_converter_to_index_in_practice(self): """Test that use of __index__ actually works.""" q4 = u.Quantity(2, u.dimensionless_unscaled, dtype=int) assert q4 * ['a', 'b', 'c'] == ['a', 'b', 'c', 'a', 'b', 'c'] def test_array_converters(self): # Scalar quantity q = u.Quantity(1.23, u.m) assert np.all(np.array(q) == np.array([1.23])) # Array quantity q = u.Quantity([1., 2., 3.], u.m) assert np.all(np.array(q) == np.array([1., 2., 3.])) def test_quantity_conversion(): q1 = u.Quantity(0.1, unit=u.meter) value = q1.value assert value == 0.1 value_in_km = q1.to_value(u.kilometer) assert value_in_km == 0.0001 new_quantity = q1.to(u.kilometer) assert new_quantity.value == 0.0001 with pytest.raises(u.UnitsError): q1.to(u.zettastokes) with pytest.raises(u.UnitsError): q1.to_value(u.zettastokes) def test_quantity_value_views(): q1 = u.Quantity([1., 2.], unit=u.meter) # views if the unit is the same. v1 = q1.value v1[0] = 0. assert np.all(q1 == [0., 2.] * u.meter) v2 = q1.to_value() v2[1] = 3. assert np.all(q1 == [0., 3.] * u.meter) v3 = q1.to_value('m') v3[0] = 1. assert np.all(q1 == [1., 3.] * u.meter) q2 = q1.to('m', copy=False) q2[0] = 2 * u.meter assert np.all(q1 == [2., 3.] * u.meter) v4 = q1.to_value('cm') v4[0] = 0. # copy if different unit. assert np.all(q1 == [2., 3.] * u.meter) def test_quantity_conversion_with_equiv(): q1 = u.Quantity(0.1, unit=u.meter) v2 = q1.to_value(u.Hz, equivalencies=u.spectral()) assert_allclose(v2, 2997924580.0) q2 = q1.to(u.Hz, equivalencies=u.spectral()) assert_allclose(q2.value, v2) q1 = u.Quantity(0.4, unit=u.arcsecond) v2 = q1.to_value(u.au, equivalencies=u.parallax()) q2 = q1.to(u.au, equivalencies=u.parallax()) v3 = q2.to_value(u.arcminute, equivalencies=u.parallax()) q3 = q2.to(u.arcminute, equivalencies=u.parallax()) assert_allclose(v2, 515662.015) assert_allclose(q2.value, v2) assert q2.unit == u.au assert_allclose(v3, 0.0066666667) assert_allclose(q3.value, v3) assert q3.unit == u.arcminute def test_quantity_conversion_equivalency_passed_on(): class MySpectral(u.Quantity): _equivalencies = u.spectral() def __quantity_view__(self, obj, unit): return obj.view(MySpectral) def __quantity_instance__(self, *args, **kwargs): return MySpectral(*args, **kwargs) q1 = MySpectral([1000, 2000], unit=u.Hz) q2 = q1.to(u.nm) assert q2.unit == u.nm q3 = q2.to(u.Hz) assert q3.unit == u.Hz assert_allclose(q3.value, q1.value) q4 = MySpectral([1000, 2000], unit=u.nm) q5 = q4.to(u.Hz).to(u.nm) assert q5.unit == u.nm assert_allclose(q4.value, q5.value) # Regression test for issue #2315, divide-by-zero error when examining 0*unit def test_self_equivalency(): assert u.deg.is_equivalent(0*u.radian) assert u.deg.is_equivalent(1*u.radian) def test_si(): q1 = 10. * u.m * u.s ** 2 / (200. * u.ms) ** 2 # 250 meters assert q1.si.value == 250 assert q1.si.unit == u.m q = 10. * u.m # 10 meters assert q.si.value == 10 assert q.si.unit == u.m q = 10. / u.m # 10 1 / meters assert q.si.value == 10 assert q.si.unit == (1 / u.m) def test_cgs(): q1 = 10. * u.cm * u.s ** 2 / (200. * u.ms) ** 2 # 250 centimeters assert q1.cgs.value == 250 assert q1.cgs.unit == u.cm q = 10. * u.m # 10 centimeters assert q.cgs.value == 1000 assert q.cgs.unit == u.cm q = 10. / u.cm # 10 1 / centimeters assert q.cgs.value == 10 assert q.cgs.unit == (1 / u.cm) q = 10. * u.Pa # 10 pascals assert q.cgs.value == 100 assert q.cgs.unit == u.barye class TestQuantityComparison: def test_quantity_equality(self): assert u.Quantity(1000, unit='m') == u.Quantity(1, unit='km') assert not (u.Quantity(1, unit='m') == u.Quantity(1, unit='km')) # for ==, !=, return False, True if units do not match assert (u.Quantity(1100, unit=u.m) != u.Quantity(1, unit=u.s)) is True assert (u.Quantity(1100, unit=u.m) == u.Quantity(1, unit=u.s)) is False assert (u.Quantity(0, unit=u.m) == u.Quantity(0, unit=u.s)) is False # But allow comparison with 0, +/-inf if latter unitless assert u.Quantity(0, u.m) == 0. assert u.Quantity(1, u.m) != 0. assert u.Quantity(1, u.m) != np.inf assert u.Quantity(np.inf, u.m) == np.inf def test_quantity_equality_array(self): a = u.Quantity([0., 1., 1000.], u.m) b = u.Quantity(1., u.km) eq = a == b ne = a != b assert np.all(eq == [False, False, True]) assert np.all(eq != ne) # For mismatched units, we should just get True, False c = u.Quantity(1., u.s) eq = a == c ne = a != c assert eq is False assert ne is True # Constants are treated as dimensionless, so False too. eq = a == 1. ne = a != 1. assert eq is False assert ne is True # But 0 can have any units, so we can compare. eq = a == 0 ne = a != 0 assert np.all(eq == [True, False, False]) assert np.all(eq != ne) # But we do not extend that to arrays; they should have the same unit. d = np.array([0, 1., 1000.]) eq = a == d ne = a != d assert eq is False assert ne is True def test_quantity_comparison(self): assert u.Quantity(1100, unit=u.meter) > u.Quantity(1, unit=u.kilometer) assert u.Quantity(900, unit=u.meter) < u.Quantity(1, unit=u.kilometer) with pytest.raises(u.UnitsError): assert u.Quantity(1100, unit=u.meter) > u.Quantity(1, unit=u.second) with pytest.raises(u.UnitsError): assert u.Quantity(1100, unit=u.meter) < u.Quantity(1, unit=u.second) assert u.Quantity(1100, unit=u.meter) >= u.Quantity(1, unit=u.kilometer) assert u.Quantity(1000, unit=u.meter) >= u.Quantity(1, unit=u.kilometer) assert u.Quantity(900, unit=u.meter) <= u.Quantity(1, unit=u.kilometer) assert u.Quantity(1000, unit=u.meter) <= u.Quantity(1, unit=u.kilometer) with pytest.raises(u.UnitsError): assert u.Quantity( 1100, unit=u.meter) >= u.Quantity(1, unit=u.second) with pytest.raises(u.UnitsError): assert u.Quantity(1100, unit=u.meter) <= u.Quantity(1, unit=u.second) assert u.Quantity(1200, unit=u.meter) != u.Quantity(1, unit=u.kilometer) class TestQuantityDisplay: scalarintq = u.Quantity(1, unit='m', dtype=int) scalarfloatq = u.Quantity(1.3, unit='m') arrq = u.Quantity([1, 2.3, 8.9], unit='m') scalar_complex_q = u.Quantity(complex(1.0, 2.0)) scalar_big_complex_q = u.Quantity(complex(1.0, 2.0e27) * 1e25) scalar_big_neg_complex_q = u.Quantity(complex(-1.0, -2.0e27) * 1e36) arr_complex_q = u.Quantity(np.arange(3) * (complex(-1.0, -2.0e27) * 1e36)) big_arr_complex_q = u.Quantity(np.arange(125) * (complex(-1.0, -2.0e27) * 1e36)) def test_dimensionless_quantity_repr(self): q2 = u.Quantity(1., unit='m-1') q3 = u.Quantity(1, unit='m-1', dtype=int) assert repr(self.scalarintq * q2) == "<Quantity 1.>" assert repr(self.arrq * q2) == "<Quantity [1. , 2.3, 8.9]>" assert repr(self.scalarintq * q3) == "<Quantity 1>" def test_dimensionless_quantity_str(self): q2 = u.Quantity(1., unit='m-1') q3 = u.Quantity(1, unit='m-1', dtype=int) assert str(self.scalarintq * q2) == "1.0" assert str(self.scalarintq * q3) == "1" assert str(self.arrq * q2) == "[1. 2.3 8.9]" def test_dimensionless_quantity_format(self): q1 = u.Quantity(3.14) assert format(q1, '.2f') == '3.14' def test_scalar_quantity_str(self): assert str(self.scalarintq) == "1 m" assert str(self.scalarfloatq) == "1.3 m" def test_scalar_quantity_repr(self): assert repr(self.scalarintq) == "<Quantity 1 m>" assert repr(self.scalarfloatq) == "<Quantity 1.3 m>" def test_array_quantity_str(self): assert str(self.arrq) == "[1. 2.3 8.9] m" def test_array_quantity_repr(self): assert repr(self.arrq) == "<Quantity [1. , 2.3, 8.9] m>" def test_scalar_quantity_format(self): assert format(self.scalarintq, '02d') == "01 m" assert format(self.scalarfloatq, '.1f') == "1.3 m" assert format(self.scalarfloatq, '.0f') == "1 m" def test_uninitialized_unit_format(self): bad_quantity = np.arange(10.).view(u.Quantity) assert str(bad_quantity).endswith(_UNIT_NOT_INITIALISED) assert repr(bad_quantity).endswith(_UNIT_NOT_INITIALISED + '>') def test_to_string(self): qscalar = u.Quantity(1.5e14, 'm/s') # __str__ is the default `format` assert str(qscalar) == qscalar.to_string() res = 'Quantity as KMS: 150000000000.0 km / s' assert f"Quantity as KMS: {qscalar.to_string(unit=u.km / u.s)}" == res # With precision set res = 'Quantity as KMS: 1.500e+11 km / s' assert f"Quantity as KMS: {qscalar.to_string(precision=3, unit=u.km / u.s)}" == res res = r'$1.5 \times 10^{14} \; \mathrm{\frac{m}{s}}$' assert qscalar.to_string(format="latex") == res assert qscalar.to_string(format="latex", subfmt="inline") == res res = r'$\displaystyle 1.5 \times 10^{14} \; \mathrm{\frac{m}{s}}$' assert qscalar.to_string(format="latex", subfmt="display") == res res = r'$1.5 \times 10^{14} \; \mathrm{m\,s^{-1}}$' assert qscalar.to_string(format="latex_inline") == res assert qscalar.to_string(format="latex_inline", subfmt="inline") == res res = r'$\displaystyle 1.5 \times 10^{14} \; \mathrm{m\,s^{-1}}$' assert qscalar.to_string(format="latex_inline", subfmt="display") == res res = '[0 1 2] (Unit not initialised)' assert np.arange(3).view(u.Quantity).to_string() == res def test_repr_latex(self): from astropy.units.quantity import conf q2scalar = u.Quantity(1.5e14, 'm/s') assert self.scalarintq._repr_latex_() == r'$1 \; \mathrm{m}$' assert self.scalarfloatq._repr_latex_() == r'$1.3 \; \mathrm{m}$' assert (q2scalar._repr_latex_() == r'$1.5 \times 10^{14} \; \mathrm{\frac{m}{s}}$') assert self.arrq._repr_latex_() == r'$[1,~2.3,~8.9] \; \mathrm{m}$' # Complex quantities assert self.scalar_complex_q._repr_latex_() == r'$(1+2i) \; \mathrm{}$' assert (self.scalar_big_complex_q._repr_latex_() == r'$(1 \times 10^{25}+2 \times 10^{52}i) \; \mathrm{}$') assert (self.scalar_big_neg_complex_q._repr_latex_() == r'$(-1 \times 10^{36}-2 \times 10^{63}i) \; \mathrm{}$') assert (self.arr_complex_q._repr_latex_() == (r'$[(0-0i),~(-1 \times 10^{36}-2 \times 10^{63}i),' r'~(-2 \times 10^{36}-4 \times 10^{63}i)] \; \mathrm{}$')) assert r'\dots' in self.big_arr_complex_q._repr_latex_() qmed = np.arange(100)*u.m qbig = np.arange(1000)*u.m qvbig = np.arange(10000)*1e9*u.m pops = np.get_printoptions() oldlat = conf.latex_array_threshold try: # check precision behavior q = u.Quantity(987654321.123456789, 'm/s') qa = np.array([7.89123, 123456789.987654321, 0]) * u.cm np.set_printoptions(precision=8) assert q._repr_latex_() == r'$9.8765432 \times 10^{8} \; \mathrm{\frac{m}{s}}$' assert qa._repr_latex_() == r'$[7.89123,~1.2345679 \times 10^{8},~0] \; \mathrm{cm}$' np.set_printoptions(precision=2) assert q._repr_latex_() == r'$9.9 \times 10^{8} \; \mathrm{\frac{m}{s}}$' assert qa._repr_latex_() == r'$[7.9,~1.2 \times 10^{8},~0] \; \mathrm{cm}$' # check thresholding behavior conf.latex_array_threshold = 100 # should be default lsmed = qmed._repr_latex_() assert r'\dots' not in lsmed lsbig = qbig._repr_latex_() assert r'\dots' in lsbig lsvbig = qvbig._repr_latex_() assert r'\dots' in lsvbig conf.latex_array_threshold = 1001 lsmed = qmed._repr_latex_() assert r'\dots' not in lsmed lsbig = qbig._repr_latex_() assert r'\dots' not in lsbig lsvbig = qvbig._repr_latex_() assert r'\dots' in lsvbig conf.latex_array_threshold = -1 # means use the numpy threshold np.set_printoptions(threshold=99) lsmed = qmed._repr_latex_() assert r'\dots' in lsmed lsbig = qbig._repr_latex_() assert r'\dots' in lsbig lsvbig = qvbig._repr_latex_() assert r'\dots' in lsvbig assert lsvbig.endswith(',~1 \\times 10^{13}] \\; \\mathrm{m}$') finally: # prevent side-effects from influencing other tests np.set_printoptions(**pops) conf.latex_array_threshold = oldlat qinfnan = [np.inf, -np.inf, np.nan] * u.m assert qinfnan._repr_latex_() == r'$[\infty,~-\infty,~{\rm NaN}] \; \mathrm{m}$' def test_decompose(): q1 = 5 * u.N assert q1.decompose() == (5 * u.kg * u.m * u.s ** -2) def test_decompose_regression(): """ Regression test for bug #1163 If decompose was called multiple times on a Quantity with an array and a scale != 1, the result changed every time. This is because the value was being referenced not copied, then modified, which changed the original value. """ q = np.array([1, 2, 3]) * u.m / (2. * u.km) assert np.all(q.decompose().value == np.array([0.0005, 0.001, 0.0015])) assert np.all(q == np.array([1, 2, 3]) * u.m / (2. * u.km)) assert np.all(q.decompose().value == np.array([0.0005, 0.001, 0.0015])) def test_arrays(): """ Test using quantites with array values """ qsec = u.Quantity(np.arange(10), u.second) assert isinstance(qsec.value, np.ndarray) assert not qsec.isscalar # len and indexing should work for arrays assert len(qsec) == len(qsec.value) qsecsub25 = qsec[2:5] assert qsecsub25.unit == qsec.unit assert isinstance(qsecsub25, u.Quantity) assert len(qsecsub25) == 3 # make sure isscalar, len, and indexing behave correctly for non-arrays. qsecnotarray = u.Quantity(10., u.second) assert qsecnotarray.isscalar with pytest.raises(TypeError): len(qsecnotarray) with pytest.raises(TypeError): qsecnotarray[0] qseclen0array = u.Quantity(np.array(10), u.second, dtype=int) # 0d numpy array should act basically like a scalar assert qseclen0array.isscalar with pytest.raises(TypeError): len(qseclen0array) with pytest.raises(TypeError): qseclen0array[0] assert isinstance(qseclen0array.value, numbers.Integral) a = np.array([(1., 2., 3.), (4., 5., 6.), (7., 8., 9.)], dtype=[('x', float), ('y', float), ('z', float)]) qkpc = u.Quantity(a, u.kpc) assert not qkpc.isscalar qkpc0 = qkpc[0] assert qkpc0.value == a[0] assert qkpc0.unit == qkpc.unit assert isinstance(qkpc0, u.Quantity) assert qkpc0.isscalar qkpcx = qkpc['x'] assert np.all(qkpcx.value == a['x']) assert qkpcx.unit == qkpc.unit assert isinstance(qkpcx, u.Quantity) assert not qkpcx.isscalar qkpcx1 = qkpc['x'][1] assert qkpcx1.unit == qkpc.unit assert isinstance(qkpcx1, u.Quantity) assert qkpcx1.isscalar qkpc1x = qkpc[1]['x'] assert qkpc1x.isscalar assert qkpc1x == qkpcx1 # can also create from lists, will auto-convert to arrays qsec = u.Quantity(list(range(10)), u.second) assert isinstance(qsec.value, np.ndarray) # quantity math should work with arrays assert_array_equal((qsec * 2).value, (np.arange(10) * 2)) assert_array_equal((qsec / 2).value, (np.arange(10) / 2)) # quantity addition/subtraction should *not* work with arrays b/c unit # ambiguous with pytest.raises(u.UnitsError): assert_array_equal((qsec + 2).value, (np.arange(10) + 2)) with pytest.raises(u.UnitsError): assert_array_equal((qsec - 2).value, (np.arange(10) + 2)) # should create by unit multiplication, too qsec2 = np.arange(10) * u.second qsec3 = u.second * np.arange(10) assert np.all(qsec == qsec2) assert np.all(qsec2 == qsec3) # make sure numerical-converters fail when arrays are present with pytest.raises(TypeError): float(qsec) with pytest.raises(TypeError): int(qsec) def test_array_indexing_slicing(): q = np.array([1., 2., 3.]) * u.m assert q[0] == 1. * u.m assert np.all(q[0:2] == u.Quantity([1., 2.], u.m)) def test_array_setslice(): q = np.array([1., 2., 3.]) * u.m q[1:2] = np.array([400.]) * u.cm assert np.all(q == np.array([1., 4., 3.]) * u.m) def test_inverse_quantity(): """ Regression test from issue #679 """ q = u.Quantity(4., u.meter / u.second) qot = q / 2 toq = 2 / q npqot = q / np.array(2) assert npqot.value == 2.0 assert npqot.unit == (u.meter / u.second) assert qot.value == 2.0 assert qot.unit == (u.meter / u.second) assert toq.value == 0.5 assert toq.unit == (u.second / u.meter) def test_quantity_mutability(): q = u.Quantity(9.8, u.meter / u.second / u.second) with pytest.raises(AttributeError): q.value = 3 with pytest.raises(AttributeError): q.unit = u.kg def test_quantity_initialized_with_quantity(): q1 = u.Quantity(60, u.second) q2 = u.Quantity(q1, u.minute) assert q2.value == 1 q3 = u.Quantity([q1, q2], u.second) assert q3[0].value == 60 assert q3[1].value == 60 q4 = u.Quantity([q2, q1]) assert q4.unit == q2.unit assert q4[0].value == 1 assert q4[1].value == 1 def test_quantity_string_unit(): q1 = 1. * u.m / 's' assert q1.value == 1 assert q1.unit == (u.m / u.s) q2 = q1 * "m" assert q2.unit == ((u.m * u.m) / u.s) def test_quantity_invalid_unit_string(): with pytest.raises(ValueError): "foo" * u.m def test_implicit_conversion(): q = u.Quantity(1.0, u.meter) # Manually turn this on to simulate what might happen in a subclass q._include_easy_conversion_members = True assert_allclose(q.centimeter, 100) assert_allclose(q.cm, 100) assert_allclose(q.parsec, 3.240779289469756e-17) def test_implicit_conversion_autocomplete(): q = u.Quantity(1.0, u.meter) # Manually turn this on to simulate what might happen in a subclass q._include_easy_conversion_members = True q.foo = 42 attrs = dir(q) assert 'centimeter' in attrs assert 'cm' in attrs assert 'parsec' in attrs assert 'foo' in attrs assert 'to' in attrs assert 'value' in attrs # Something from the base class, object assert '__setattr__' in attrs with pytest.raises(AttributeError): q.l def test_quantity_iterability(): """Regressiont est for issue #878. Scalar quantities should not be iterable and should raise a type error on iteration. """ q1 = [15.0, 17.0] * u.m assert isiterable(q1) q2 = next(iter(q1)) assert q2 == 15.0 * u.m assert not isiterable(q2) pytest.raises(TypeError, iter, q2) def test_copy(): q1 = u.Quantity(np.array([[1., 2., 3.], [4., 5., 6.]]), unit=u.m) q2 = q1.copy() assert np.all(q1.value == q2.value) assert q1.unit == q2.unit assert q1.dtype == q2.dtype assert q1.value is not q2.value q3 = q1.copy(order='F') assert q3.flags['F_CONTIGUOUS'] assert np.all(q1.value == q3.value) assert q1.unit == q3.unit assert q1.dtype == q3.dtype assert q1.value is not q3.value q4 = q1.copy(order='C') assert q4.flags['C_CONTIGUOUS'] assert np.all(q1.value == q4.value) assert q1.unit == q4.unit assert q1.dtype == q4.dtype assert q1.value is not q4.value def test_deepcopy(): q1 = u.Quantity(np.array([1., 2., 3.]), unit=u.m) q2 = copy.deepcopy(q1) assert isinstance(q2, u.Quantity) assert np.all(q1.value == q2.value) assert q1.unit == q2.unit assert q1.dtype == q2.dtype assert q1.value is not q2.value def test_equality_numpy_scalar(): """ A regression test to ensure that numpy scalars are correctly compared (which originally failed due to the lack of ``__array_priority__``). """ assert 10 != 10. * u.m assert np.int64(10) != 10 * u.m assert 10 * u.m != np.int64(10) def test_quantity_pickelability(): """ Testing pickleability of quantity """ q1 = np.arange(10) * u.m q2 = pickle.loads(pickle.dumps(q1)) assert np.all(q1.value == q2.value) assert q1.unit.is_equivalent(q2.unit) assert q1.unit == q2.unit def test_quantity_initialisation_from_string(): q = u.Quantity('1') assert q.unit == u.dimensionless_unscaled assert q.value == 1. q = u.Quantity('1.5 m/s') assert q.unit == u.m/u.s assert q.value == 1.5 assert u.Unit(q) == u.Unit('1.5 m/s') q = u.Quantity('.5 m') assert q == u.Quantity(0.5, u.m) q = u.Quantity('-1e1km') assert q == u.Quantity(-10, u.km) q = u.Quantity('-1e+1km') assert q == u.Quantity(-10, u.km) q = u.Quantity('+.5km') assert q == u.Quantity(.5, u.km) q = u.Quantity('+5e-1km') assert q == u.Quantity(.5, u.km) q = u.Quantity('5', u.m) assert q == u.Quantity(5., u.m) q = u.Quantity('5 km', u.m) assert q.value == 5000. assert q.unit == u.m q = u.Quantity('5Em') assert q == u.Quantity(5., u.Em) with pytest.raises(TypeError): u.Quantity('') with pytest.raises(TypeError): u.Quantity('m') with pytest.raises(TypeError): u.Quantity('1.2.3 deg') with pytest.raises(TypeError): u.Quantity('1+deg') with pytest.raises(TypeError): u.Quantity('1-2deg') with pytest.raises(TypeError): u.Quantity('1.2e-13.3m') with pytest.raises(TypeError): u.Quantity(['5']) with pytest.raises(TypeError): u.Quantity(np.array(['5'])) with pytest.raises(ValueError): u.Quantity('5E') with pytest.raises(ValueError): u.Quantity('5 foo') def test_unsupported(): q1 = np.arange(10) * u.m with pytest.raises(TypeError): np.bitwise_and(q1, q1) def test_unit_identity(): q = 1.0 * u.hour assert q.unit is u.hour def test_quantity_to_view(): q1 = np.array([1000, 2000]) * u.m q2 = q1.to(u.km) assert q1.value[0] == 1000 assert q2.value[0] == 1 def test_quantity_tuple_power(): with pytest.raises(ValueError): (5.0 * u.m) ** (1, 2) def test_quantity_fraction_power(): q = (25.0 * u.m**2) ** Fraction(1, 2) assert q.value == 5. assert q.unit == u.m # Regression check to ensure we didn't create an object type by raising # the value of the quantity to a Fraction. [#3922] assert q.dtype.kind == 'f' def test_quantity_from_table(): """ Checks that units from tables are respected when converted to a Quantity. This also generically checks the use of *anything* with a `unit` attribute passed into Quantity """ from astropy.table import Table t = Table(data=[np.arange(5), np.arange(5)], names=['a', 'b']) t['a'].unit = u.kpc qa = u.Quantity(t['a']) assert qa.unit == u.kpc assert_array_equal(qa.value, t['a']) qb = u.Quantity(t['b']) assert qb.unit == u.dimensionless_unscaled assert_array_equal(qb.value, t['b']) # This does *not* auto-convert, because it's not necessarily obvious that's # desired. Instead we revert to standard `Quantity` behavior qap = u.Quantity(t['a'], u.pc) assert qap.unit == u.pc assert_array_equal(qap.value, t['a'] * 1000) qbp = u.Quantity(t['b'], u.pc) assert qbp.unit == u.pc assert_array_equal(qbp.value, t['b']) # Also check with a function unit (regression test for gh-8430) t['a'].unit = u.dex(u.cm/u.s**2) fq = u.Dex(t['a']) assert fq.unit == u.dex(u.cm/u.s**2) assert_array_equal(fq.value, t['a']) fq2 = u.Quantity(t['a'], subok=True) assert isinstance(fq2, u.Dex) assert fq2.unit == u.dex(u.cm/u.s**2) assert_array_equal(fq2.value, t['a']) with pytest.raises(u.UnitTypeError): u.Quantity(t['a']) def test_assign_slice_with_quantity_like(): # Regression tests for gh-5961 from astropy.table import Column, Table # first check directly that we can use a Column to assign to a slice. c = Column(np.arange(10.), unit=u.mm) q = u.Quantity(c) q[:2] = c[:2] # next check that we do not fail the original problem. t = Table() t['x'] = np.arange(10) * u.mm t['y'] = np.ones(10) * u.mm assert type(t['x']) is Column xy = np.vstack([t['x'], t['y']]).T * u.mm ii = [0, 2, 4] assert xy[ii, 0].unit == t['x'][ii].unit # should not raise anything xy[ii, 0] = t['x'][ii] def test_insert(): """ Test Quantity.insert method. This does not test the full capabilities of the underlying np.insert, but hits the key functionality for Quantity. """ q = [1, 2] * u.m # Insert a compatible float with different units q2 = q.insert(0, 1 * u.km) assert np.all(q2.value == [1000, 1, 2]) assert q2.unit is u.m assert q2.dtype.kind == 'f' if minversion(np, '1.8.0'): q2 = q.insert(1, [1, 2] * u.km) assert np.all(q2.value == [1, 1000, 2000, 2]) assert q2.unit is u.m # Cannot convert 1.5 * u.s to m with pytest.raises(u.UnitsError): q.insert(1, 1.5 * u.s) # Tests with multi-dim quantity q = [[1, 2], [3, 4]] * u.m q2 = q.insert(1, [10, 20] * u.m, axis=0) assert np.all(q2.value == [[1, 2], [10, 20], [3, 4]]) q2 = q.insert(1, [10, 20] * u.m, axis=1) assert np.all(q2.value == [[1, 10, 2], [3, 20, 4]]) q2 = q.insert(1, 10 * u.m, axis=1) assert np.all(q2.value == [[1, 10, 2], [3, 10, 4]]) def test_repr_array_of_quantity(): """ Test print/repr of object arrays of Quantity objects with different units. Regression test for the issue first reported in https://github.com/astropy/astropy/issues/3777 """ a = np.array([1 * u.m, 2 * u.s], dtype=object) assert repr(a) == 'array([<Quantity 1. m>, <Quantity 2. s>], dtype=object)' assert str(a) == '[<Quantity 1. m> <Quantity 2. s>]' class TestSpecificTypeQuantity: def setup(self): class Length(u.SpecificTypeQuantity): _equivalent_unit = u.m class Length2(Length): _default_unit = u.m class Length3(Length): _unit = u.m self.Length = Length self.Length2 = Length2 self.Length3 = Length3 def test_creation(self): l = self.Length(np.arange(10.)*u.km) assert type(l) is self.Length with pytest.raises(u.UnitTypeError): self.Length(np.arange(10.) * u.hour) with pytest.raises(u.UnitTypeError): self.Length(np.arange(10.)) l2 = self.Length2(np.arange(5.)) assert type(l2) is self.Length2 assert l2._default_unit is self.Length2._default_unit with pytest.raises(u.UnitTypeError): self.Length3(np.arange(10.)) def test_view(self): l = (np.arange(5.) * u.km).view(self.Length) assert type(l) is self.Length with pytest.raises(u.UnitTypeError): (np.arange(5.) * u.s).view(self.Length) v = np.arange(5.).view(self.Length) assert type(v) is self.Length assert v._unit is None l3 = np.ones((2, 2)).view(self.Length3) assert type(l3) is self.Length3 assert l3.unit is self.Length3._unit def test_operation_precedence_and_fallback(self): l = self.Length(np.arange(5.)*u.cm) sum1 = l + 1.*u.m assert type(sum1) is self.Length sum2 = 1.*u.km + l assert type(sum2) is self.Length sum3 = l + l assert type(sum3) is self.Length res1 = l * (1.*u.m) assert type(res1) is u.Quantity res2 = l * l assert type(res2) is u.Quantity def test_unit_class_override(): class MyQuantity(u.Quantity): pass my_unit = u.Unit("my_deg", u.deg) my_unit._quantity_class = MyQuantity q1 = u.Quantity(1., my_unit) assert type(q1) is u.Quantity q2 = u.Quantity(1., my_unit, subok=True) assert type(q2) is MyQuantity class QuantityMimic: def __init__(self, value, unit): self.value = value self.unit = unit def __array__(self): return np.array(self.value) class QuantityMimic2(QuantityMimic): def to(self, unit): return u.Quantity(self.value, self.unit).to(unit) def to_value(self, unit): return u.Quantity(self.value, self.unit).to_value(unit) class TestQuantityMimics: """Test Quantity Mimics that are not ndarray subclasses.""" @pytest.mark.parametrize('Mimic', (QuantityMimic, QuantityMimic2)) def test_mimic_input(self, Mimic): value = np.arange(10.) mimic = Mimic(value, u.m) q = u.Quantity(mimic) assert q.unit == u.m assert np.all(q.value == value) q2 = u.Quantity(mimic, u.cm) assert q2.unit == u.cm assert np.all(q2.value == 100 * value) @pytest.mark.parametrize('Mimic', (QuantityMimic, QuantityMimic2)) def test_mimic_setting(self, Mimic): mimic = Mimic([1., 2.], u.m) q = u.Quantity(np.arange(10.), u.cm) q[8:] = mimic assert np.all(q[:8].value == np.arange(8.)) assert np.all(q[8:].value == [100., 200.]) def test_mimic_function_unit(self): mimic = QuantityMimic([1., 2.], u.dex(u.cm/u.s**2)) d = u.Dex(mimic) assert isinstance(d, u.Dex) assert d.unit == u.dex(u.cm/u.s**2) assert np.all(d.value == [1., 2.]) q = u.Quantity(mimic, subok=True) assert isinstance(q, u.Dex) assert q.unit == u.dex(u.cm/u.s**2) assert np.all(q.value == [1., 2.]) with pytest.raises(u.UnitTypeError): u.Quantity(mimic) def test_masked_quantity_str_repr(): """Ensure we don't break masked Quantity representation.""" # Really, masked quantities do not work well, but at least let the # basics work. masked_quantity = np.ma.array([1, 2, 3, 4] * u.kg, mask=[True, False, True, False]) str(masked_quantity) repr(masked_quantity) class TestQuantitySubclassAboveAndBelow: @classmethod def setup_class(self): class MyArray(np.ndarray): def __array_finalize__(self, obj): super_array_finalize = super().__array_finalize__ if super_array_finalize is not None: super_array_finalize(obj) if hasattr(obj, 'my_attr'): self.my_attr = obj.my_attr self.MyArray = MyArray self.MyQuantity1 = type('MyQuantity1', (u.Quantity, MyArray), dict(my_attr='1')) self.MyQuantity2 = type('MyQuantity2', (MyArray, u.Quantity), dict(my_attr='2')) def test_setup(self): mq1 = self.MyQuantity1(10, u.m) assert isinstance(mq1, self.MyQuantity1) assert mq1.my_attr == '1' assert mq1.unit is u.m mq2 = self.MyQuantity2(10, u.m) assert isinstance(mq2, self.MyQuantity2) assert mq2.my_attr == '2' assert mq2.unit is u.m def test_attr_propagation(self): mq1 = self.MyQuantity1(10, u.m) mq12 = self.MyQuantity2(mq1) assert isinstance(mq12, self.MyQuantity2) assert not isinstance(mq12, self.MyQuantity1) assert mq12.my_attr == '1' assert mq12.unit is u.m mq2 = self.MyQuantity2(10, u.m) mq21 = self.MyQuantity1(mq2) assert isinstance(mq21, self.MyQuantity1) assert not isinstance(mq21, self.MyQuantity2) assert mq21.my_attr == '2' assert mq21.unit is u.m
f936d0f4957d7f59d9f61d2b199956fb54cf8dd5115da5796c6e70d7396af160
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Test Structured units and quantities specifically with the ERFA ufuncs. """ import erfa import numpy as np import pytest from erfa import ufunc as erfa_ufunc from numpy.testing import assert_array_equal from astropy import units as u from astropy.tests.helper import assert_quantity_allclose from astropy.utils.introspection import minversion ERFA_LE_2_0_0 = not minversion(erfa, '2.0.0.1') class TestPVUfuncs: def setup_class(self): self.pv_unit = u.Unit('AU,AU/day') self.pv_value = np.array([([1., 0., 0.], [0., 0.0125, 0.]), ([0., 1., 0.], [-.0125, 0., 0.])], dtype=erfa_ufunc.dt_pv) self.pv = self.pv_value << self.pv_unit def test_cpv(self): pv_copy = erfa_ufunc.cpv(self.pv) assert_array_equal(pv_copy, self.pv) assert not np.may_share_memory(pv_copy, self.pv) def test_p2pv(self): p2pv = erfa_ufunc.p2pv(self.pv['p']) assert_array_equal(p2pv['p'], self.pv['p']) assert_array_equal(p2pv['v'], np.zeros(self.pv.shape+(3,), float) << u.m/u.s) @pytest.mark.xfail(erfa.__version__ <= '2.0.0', reason='erfa bug; https://github.com/liberfa/pyerfa/issues/70)') def test_p2pv_inplace(self): # TODO: fix np.zeros_like. out = np.zeros_like(self.pv_value) << self.pv_unit p2pv = erfa_ufunc.p2pv(self.pv['p'], out=out) assert out is p2pv assert_array_equal(p2pv['p'], self.pv['p']) assert_array_equal(p2pv['v'], np.zeros(self.pv.shape+(3,), float) << u.m/u.s) def test_pv2p(self): p = erfa_ufunc.pv2p(self.pv) assert_array_equal(p, self.pv['p']) out = np.zeros_like(p) p2 = erfa_ufunc.pv2p(self.pv, out=out) assert out is p2 assert_array_equal(p2, self.pv['p']) def test_pv2s(self): theta, phi, r, td, pd, rd = erfa_ufunc.pv2s(self.pv) assert theta.unit == u.radian assert_quantity_allclose(theta, [0, 90] * u.deg) # longitude assert phi.unit == u.radian assert_array_equal(phi.value, np.zeros(self.pv.shape)) # latitude assert r.unit == u.AU assert_array_equal(r.value, np.ones(self.pv.shape)) assert td.unit == u.radian/u.day assert_array_equal(td.value, np.array([0.0125]*2)) assert pd.unit == u.radian/u.day assert_array_equal(pd.value, np.zeros(self.pv.shape)) assert rd.unit == u.AU/u.day assert_array_equal(rd.value, np.zeros(self.pv.shape)) def test_pv2s_non_standard_units(self): pv = self.pv_value << u.Unit('Pa,Pa/m') theta, phi, r, td, pd, rd = erfa_ufunc.pv2s(pv) assert theta.unit == u.radian assert_quantity_allclose(theta, [0, 90] * u.deg) # longitude assert phi.unit == u.radian assert_array_equal(phi.value, np.zeros(pv.shape)) # latitude assert r.unit == u.Pa assert_array_equal(r.value, np.ones(pv.shape)) assert td.unit == u.radian/u.m assert_array_equal(td.value, np.array([0.0125]*2)) assert pd.unit == u.radian/u.m assert_array_equal(pd.value, np.zeros(pv.shape)) assert rd.unit == u.Pa/u.m assert_array_equal(rd.value, np.zeros(pv.shape)) @pytest.mark.xfail(reason=( 'erfa ufuncs cannot take different names; it is not yet clear whether ' 'this is changeable; see https://github.com/liberfa/pyerfa/issues/77')) def test_pv2s_non_standard_names_and_units(self): pv_value = np.array(self.pv_value, dtype=[('pos', 'f8'), ('vel', 'f8')]) pv = pv_value << u.Unit('Pa,Pa/m') theta, phi, r, td, pd, rd = erfa_ufunc.pv2s(pv) assert theta.unit == u.radian assert_quantity_allclose(theta, [0, 90] * u.deg) # longitude assert phi.unit == u.radian assert_array_equal(phi.value, np.zeros(pv.shape)) # latitude assert r.unit == u.Pa assert_array_equal(r.value, np.ones(pv.shape)) assert td.unit == u.radian/u.m assert_array_equal(td.value, np.array([0.0125]*2)) assert pd.unit == u.radian/u.m assert_array_equal(pd.value, np.zeros(pv.shape)) assert rd.unit == u.Pa/u.m assert_array_equal(rd.value, np.zeros(pv.shape)) def test_s2pv(self): theta, phi, r, td, pd, rd = erfa_ufunc.pv2s(self.pv) # On purpose change some of the units away from expected by s2pv. pv = erfa_ufunc.s2pv(theta.to(u.deg), phi, r.to(u.m), td.to(u.deg/u.day), pd, rd.to(u.m/u.s)) assert pv.unit == u.StructuredUnit('m, m/s', names=('p', 'v')) assert_quantity_allclose(pv['p'], self.pv['p'], atol=1*u.m, rtol=0) assert_quantity_allclose(pv['v'], self.pv['v'], atol=1*u.mm/u.s, rtol=0) def test_pvstar(self): ra, dec, pmr, pmd, px, rv, stat = erfa_ufunc.pvstar(self.pv) assert_array_equal(stat, np.zeros(self.pv.shape, dtype='i4')) assert ra.unit == u.radian assert_quantity_allclose(ra, [0, 90] * u.deg) assert dec.unit == u.radian assert_array_equal(dec.value, np.zeros(self.pv.shape)) # latitude assert pmr.unit == u.radian/u.year assert_quantity_allclose(pmr, [0.0125, 0.0125]*u.radian/u.day) assert pmd.unit == u.radian/u.year assert_array_equal(pmd.value, np.zeros(self.pv.shape)) assert px.unit == u.arcsec assert_quantity_allclose(px, 1*u.radian) assert rv.unit == u.km / u.s assert_array_equal(rv.value, np.zeros(self.pv.shape)) def test_starpv(self): ra, dec, pmr, pmd, px, rv, stat = erfa_ufunc.pvstar(self.pv) pv, stat = erfa_ufunc.starpv(ra.to(u.deg), dec.to(u.deg), pmr, pmd, px, rv.to(u.m/u.s)) assert_array_equal(stat, np.zeros(self.pv.shape, dtype='i4')) assert pv.unit == self.pv.unit # Roundtrip is not as good as hoped on 32bit, not clear why. # But proper motions are ridiculously high... assert_quantity_allclose(pv['p'], self.pv['p'], atol=1*u.m, rtol=0) assert_quantity_allclose(pv['v'], self.pv['v'], atol=1*u.m/u.s, rtol=0) def test_pvtob(self): pv = erfa_ufunc.pvtob([90, 0]*u.deg, 0.*u.deg, 100*u.km, 0*u.deg, 0*u.deg, 0*u.deg, 90*u.deg) assert pv.unit == u.StructuredUnit('m, m/s', names=('p', 'v')) assert pv.unit['v'] == u.m / u.s assert_quantity_allclose(pv['p'], [[-6478, 0, 0], [0, 6478, 0]]*u.km, atol=2*u.km) assert_quantity_allclose(pv['v'], [[0, -0.5, 0], [-0.5, 0, 0]]*u.km/u.s, atol=0.1*u.km/u.s) def test_pvdpv(self): pvdpv = erfa_ufunc.pvdpv(self.pv, self.pv) assert pvdpv['pdp'].unit == self.pv.unit['p'] ** 2 assert pvdpv['pdv'].unit == self.pv.unit['p'] * self.pv.unit['v'] assert_array_equal(pvdpv['pdp'], np.einsum('...i,...i->...', self.pv['p'], self.pv['p'])) assert_array_equal(pvdpv['pdv'], 2*np.einsum('...i,...i->...', self.pv['p'], self.pv['v'])) z_axis = u.Quantity( np.array(([0, 0, 1], [0, 0, 0]), erfa_ufunc.dt_pv), '1,1/s') pvdpv2 = erfa_ufunc.pvdpv(self.pv, z_axis) assert pvdpv2['pdp'].unit == self.pv.unit['p'] assert pvdpv2['pdv'].unit == self.pv.unit['v'] assert_array_equal(pvdpv2['pdp'].value, np.zeros(self.pv.shape)) assert_array_equal(pvdpv2['pdv'].value, np.zeros(self.pv.shape)) def test_pvxpv(self): pvxpv = erfa_ufunc.pvxpv(self.pv, self.pv) assert pvxpv['p'].unit == self.pv.unit['p'] ** 2 assert pvxpv['v'].unit == self.pv.unit['p'] * self.pv.unit['v'] assert_array_equal(pvxpv['p'].value, np.zeros(self.pv['p'].shape)) assert_array_equal(pvxpv['v'].value, np.zeros(self.pv['v'].shape)) z_axis = u.Quantity( np.array(([0, 0, 1], [0, 0, 0]), erfa_ufunc.dt_pv), '1,1/s') pvxpv2 = erfa_ufunc.pvxpv(self.pv, z_axis) assert pvxpv2['p'].unit == self.pv.unit['p'] assert pvxpv2['v'].unit == self.pv.unit['v'] assert_array_equal(pvxpv2['p'], [[0., -1, 0.], [1., 0., 0.]] * u.AU) assert_array_equal(pvxpv2['v'], [[0.0125, 0., 0.], [0., 0.0125, 0.]] * u.AU / u.day) def test_pvm(self): pm, vm = erfa_ufunc.pvm(self.pv) assert pm.unit == self.pv.unit['p'] assert vm.unit == self.pv.unit['v'] assert_array_equal(pm, np.linalg.norm(self.pv['p'], axis=-1)) assert_array_equal(vm, np.linalg.norm(self.pv['v'], axis=-1)) def test_pvmpv(self): pvmpv = erfa_ufunc.pvmpv(self.pv, self.pv) assert pvmpv.unit == self.pv.unit assert_array_equal(pvmpv['p'], 0*self.pv['p']) assert_array_equal(pvmpv['v'], 0*self.pv['v']) def test_pvppv(self): pvppv = erfa_ufunc.pvppv(self.pv, self.pv) assert pvppv.unit == self.pv.unit assert_array_equal(pvppv['p'], 2*self.pv['p']) assert_array_equal(pvppv['v'], 2*self.pv['v']) def test_pvu(self): pvu = erfa_ufunc.pvu(86400*u.s, self.pv) assert pvu.unit == self.pv.unit assert_array_equal(pvu['p'], self.pv['p'] + 1*u.day*self.pv['v']) assert_array_equal(pvu['v'], self.pv['v']) def test_pvup(self): pvup = erfa_ufunc.pvup(86400*u.s, self.pv) assert pvup.unit == self.pv.unit['p'] assert_array_equal(pvup, self.pv['p'] + 1*u.day*self.pv['v']) def test_sxpv(self): # Not a realistic example!! sxpv = erfa_ufunc.sxpv(10., self.pv) assert sxpv.unit == self.pv.unit assert_array_equal(sxpv['p'], self.pv['p']*10) assert_array_equal(sxpv['v'], self.pv['v']*10) sxpv2 = erfa_ufunc.sxpv(30.*u.s, self.pv) assert sxpv2.unit == u.StructuredUnit('AU s,AU s/d', names=('p', 'v')) assert_array_equal(sxpv2['p'], self.pv['p']*30*u.s) assert_array_equal(sxpv2['v'], self.pv['v']*30*u.s) def test_s2xpv(self): # Not a realistic example!! s2xpv = erfa_ufunc.s2xpv(10., 1*u.s, self.pv) assert s2xpv.unit == u.StructuredUnit('AU,AU s/d', names=('p', 'v')) assert_array_equal(s2xpv['p'], self.pv['p']*10) assert_array_equal(s2xpv['v'], self.pv['v']*u.s) @pytest.mark.parametrize('r', [ np.eye(3), np.array([[0., -1., 0.], [1., 0., 0.], [0., 0., 1.]]), np.eye(3) / u.s]) def test_rxpv(self, r): result = erfa_ufunc.rxpv(r, self.pv) assert_array_equal(result['p'], np.einsum('...ij,...j->...i', r, self.pv['p'])) assert_array_equal(result['v'], np.einsum('...ij,...j->...i', r, self.pv['v'])) @pytest.mark.parametrize('r', [ np.eye(3), np.array([[0., -1., 0.], [1., 0., 0.], [0., 0., 1.]]), np.eye(3) / u.s]) def test_trxpv(self, r): result = erfa_ufunc.trxpv(r, self.pv) assert_array_equal(result['p'], np.einsum('...ij,...j->...i', r.T, self.pv['p'])) assert_array_equal(result['v'], np.einsum('...ij,...j->...i', r.T, self.pv['v'])) @pytest.mark.xfail(erfa.__version__ < '1.7.3.1', reason='dt_eraLDBODY incorrectly defined', scope='class') class TestEraStructUfuncs: def setup_class(self): # From t_ldn in t_erfa_c.c ldbody = np.array( [(0.00028574, 3e-10, ([-7.81014427, -5.60956681, -1.98079819], [0.0030723249, -0.00406995477, -0.00181335842])), (0.00095435, 3e-9, ([0.738098796, 4.63658692, 1.9693136], [-0.00755816922, 0.00126913722, 0.000727999001])), (1.0, 6e-6, ([-0.000712174377, -0.00230478303, -0.00105865966], [6.29235213e-6, -3.30888387e-7, -2.96486623e-7]))], dtype=erfa_ufunc.dt_eraLDBODY) ldbody_unit = u.StructuredUnit('Msun,radian,(AU,AU/day)', ldbody.dtype) self.ldbody = ldbody << ldbody_unit self.ob = [-0.974170437, -0.2115201, -0.0917583114] << u.AU self.sc = np.array([-0.763276255, -0.608633767, -0.216735543]) # From t_atciq in t_erfa_c.c astrom, eo = erfa_ufunc.apci13(2456165.5, 0.401182685) self.astrom_unit = u.StructuredUnit( 'yr,AU,1,AU,1,1,1,rad,rad,rad,rad,1,1,1,rad,rad,rad', astrom.dtype) self.astrom = astrom << self.astrom_unit self.rc = 2.71 * u.rad self.dc = 0.174 * u.rad self.pr = 1e-5 * u.rad/u.year self.pd = 5e-6 * u.rad/u.year self.px = 0.1 * u.arcsec self.rv = 55.0 * u.km/u.s def test_ldn_basic(self): sn = erfa_ufunc.ldn(self.ldbody, self.ob, self.sc) assert_quantity_allclose(sn, [-0.7632762579693333866, -0.6086337636093002660, -0.2167355420646328159] * u.one, atol=1e-12, rtol=0) def test_ldn_in_other_unit(self): ldbody = self.ldbody.to('kg,rad,(m,m/s)') ob = self.ob.to('m') sn = erfa_ufunc.ldn(ldbody, ob, self.sc) assert_quantity_allclose(sn, [-0.7632762579693333866, -0.6086337636093002660, -0.2167355420646328159] * u.one, atol=1e-12, rtol=0) def test_ldn_in_SI(self): sn = erfa_ufunc.ldn(self.ldbody.si, self.ob.si, self.sc) assert_quantity_allclose(sn, [-0.7632762579693333866, -0.6086337636093002660, -0.2167355420646328159] * u.one, atol=1e-12, rtol=0) def test_aper(self): along = self.astrom['along'] astrom2 = erfa_ufunc.aper(10*u.deg, self.astrom) assert astrom2['eral'].unit == u.radian assert_quantity_allclose(astrom2['eral'], along+10*u.deg) astrom3 = self.astrom.to('s,km,1,km,1,1,1,deg,deg,deg,deg,1,1,1,rad,rad,rad') astrom4 = erfa_ufunc.aper(10*u.deg, astrom3) assert astrom3['eral'].unit == u.rad assert astrom4['eral'].unit == u.deg assert astrom4.unit == 's,km,1,km,1,1,1,deg,deg,deg,deg,1,1,1,deg,rad,rad' assert_quantity_allclose(astrom4['eral'], along+10*u.deg) def test_atciq_basic(self): ri, di = erfa_ufunc.atciq(self.rc, self.dc, self.pr, self.pd, self.px, self.rv, self.astrom) assert_quantity_allclose(ri, 2.710121572968696744*u.rad) assert_quantity_allclose(di, 0.1729371367219539137*u.rad) def test_atciq_in_other_unit(self): astrom = self.astrom.to('s,km,1,km,1,1,1,deg,deg,deg,deg,1,1,1,deg,deg,deg') ri, di = erfa_ufunc.atciq(self.rc.to(u.deg), self.dc.to(u.deg), self.pr.to(u.mas/u.yr), self.pd.to(u.mas/u.yr), self.px, self.rv.to(u.m/u.s), astrom) assert_quantity_allclose(ri, 2.710121572968696744*u.rad, atol=1e-12*u.rad) assert_quantity_allclose(di, 0.1729371367219539137*u.rad, atol=1e-12*u.rad) def test_atciqn(self): ri, di = erfa_ufunc.atciqn(self.rc.to(u.deg), self.dc.to(u.deg), self.pr.to(u.mas/u.yr), self.pd.to(u.mas/u.yr), self.px, self.rv.to(u.m/u.s), self.astrom.si, self.ldbody.si) assert_quantity_allclose(ri, 2.710122008104983335*u.rad, atol=1e-12*u.rad) assert_quantity_allclose(di, 0.1729371916492767821*u.rad, atol=1e-12*u.rad) def test_atciqz(self): ri, di = erfa_ufunc.atciqz(self.rc.to(u.deg), self.dc.to(u.deg), self.astrom.si) assert_quantity_allclose(ri, 2.709994899247256984*u.rad, atol=1e-12*u.rad) assert_quantity_allclose(di, 0.1728740720984931891*u.rad, atol=1e-12*u.rad) def test_aticq(self): ri = 2.710121572969038991 * u.rad di = 0.1729371367218230438 * u.rad rc, dc = erfa_ufunc.aticq(ri.to(u.deg), di.to(u.deg), self.astrom.si) assert_quantity_allclose(rc, 2.710126504531716819*u.rad, atol=1e-12*u.rad) assert_quantity_allclose(dc, 0.1740632537627034482*u.rad, atol=1e-12*u.rad) def test_aticqn(self): ri = 2.709994899247599271 * u.rad di = 0.1728740720983623469 * u.rad rc, dc = erfa_ufunc.aticqn(ri.to(u.deg), di.to(u.deg), self.astrom.si, self.ldbody.si) assert_quantity_allclose(rc, 2.709999575033027333*u.rad, atol=1e-12*u.rad) assert_quantity_allclose(dc, 0.1739999656316469990*u.rad, atol=1e-12*u.rad) def test_atioq_atoiq(self): astrom, _ = erfa_ufunc.apio13(2456384.5, 0.969254051, 0.1550675, -0.527800806, -1.2345856, 2738.0, 2.47230737e-7, 1.82640464e-6, 731.0, 12.8, 0.59, 0.55) astrom = astrom << self.astrom_unit ri = 2.710121572969038991 * u.rad di = 0.1729371367218230438 * u.rad aob, zob, hob, dob, rob = erfa_ufunc.atioq(ri.to(u.deg), di.to(u.deg), astrom.si) assert_quantity_allclose(aob, 0.9233952224895122499e-1*u.rad, atol=1e-12*u.rad) assert_quantity_allclose(zob, 1.407758704513549991*u.rad, atol=1e-12*u.rad) assert_quantity_allclose(hob, -0.9247619879881698140e-1*u.rad, atol=1e-12*u.rad) assert_quantity_allclose(dob, 0.1717653435756234676*u.rad, atol=1e-12*u.rad) assert_quantity_allclose(rob, 2.710085107988480746*u.rad, atol=1e-12*u.rad) # Sadly does not just use the values from above. ob1 = 2.710085107986886201 * u.rad ob2 = 0.1717653435758265198 * u.rad ri2, di2 = erfa_ufunc.atoiq("R", ob1.to(u.deg), ob2.to(u.deg), astrom.si) assert_quantity_allclose(ri2, 2.710121574447540810*u.rad, atol=1e-12*u.rad) assert_quantity_allclose(di2, 0.17293718391166087785*u.rad, atol=1e-12*u.rad) @pytest.mark.xfail(erfa.__version__ < '2.0.0', reason='comparisons changed') def test_apio(self): sp = -3.01974337e-11 * u.rad theta = 3.14540971 * u.rad elong = -0.527800806 * u.rad phi = -1.2345856 * u.rad hm = 2738.0 * u.m xp = 2.47230737e-7 * u.rad yp = 1.82640464e-6 * u.rad refa = 0.000201418779 * u.rad refb = -2.36140831e-7 * u.rad astrom = erfa_ufunc.apio(sp.to(u.deg), theta, elong, phi, hm.to(u.km), xp, yp, refa, refb) assert astrom.unit == self.astrom_unit for name, value in [ ('along', -0.5278008060295995734), ('xpl', 0.1133427418130752958e-5), ('ypl', 0.1453347595780646207e-5), ('sphi', -0.9440115679003211329), ('cphi', 0.3299123514971474711), ('diurab', 0.5135843661699913529e-6), ('eral', 2.617608903970400427), ('refa', 0.2014187790000000000e-3), ('refb', -0.2361408310000000000e-6)]: assert_quantity_allclose(astrom[name], value * self.astrom_unit[name], rtol=1e-12, atol=0*self.astrom_unit[name])
cf6ca8366679c07f63231a1ceac9af6aaa9ab7ae4f343af623065967e7a72697
# Licensed under a 3-clause BSD style license - see LICENSE.rst import inspect import itertools import numpy as np import numpy.lib.recfunctions as rfn import pytest from numpy.testing import assert_array_equal from astropy import units as u from astropy.units.quantity_helper.function_helpers import ( ARRAY_FUNCTION_ENABLED, DISPATCHED_FUNCTIONS, FUNCTION_HELPERS, IGNORED_FUNCTIONS, SUBCLASS_SAFE_FUNCTIONS, TBD_FUNCTIONS, UNSUPPORTED_FUNCTIONS) from astropy.utils.compat import NUMPY_LT_1_20, NUMPY_LT_1_23 needs_array_function = pytest.mark.xfail( not ARRAY_FUNCTION_ENABLED, reason="Needs __array_function__ support") # To get the functions that could be covered, we look for those that # are wrapped. Of course, this does not give a full list pre-1.17. def get_wrapped_functions(*modules): wrapped_functions = {} for mod in modules: for name, f in mod.__dict__.items(): if f is np.printoptions or name.startswith('_'): continue if callable(f) and hasattr(f, '__wrapped__'): wrapped_functions[name] = f return wrapped_functions all_wrapped_functions = get_wrapped_functions(np, np.fft, np.linalg, np.lib.recfunctions) all_wrapped = set(all_wrapped_functions.values()) class CoverageMeta(type): """Meta class that tracks which functions are covered by tests. Assumes that a test is called 'test_<function_name>'. """ covered = set() def __new__(mcls, name, bases, members): for k, v in members.items(): if inspect.isfunction(v) and k.startswith('test'): f = k.replace('test_', '') if f in all_wrapped_functions: mcls.covered.add(all_wrapped_functions[f]) return super().__new__(mcls, name, bases, members) class BasicTestSetup(metaclass=CoverageMeta): """Test setup for functions that should not change the unit. Also provides a default Quantity with shape (3, 3) and units of m. """ def setup(self): self.q = np.arange(9.).reshape(3, 3) / 4. * u.m class InvariantUnitTestSetup(BasicTestSetup): def check(self, func, *args, **kwargs): o = func(self.q, *args, **kwargs) expected = func(self.q.value, *args, **kwargs) * self.q.unit assert o.shape == expected.shape assert np.all(o == expected) class NoUnitTestSetup(BasicTestSetup): def check(self, func, *args, **kwargs): out = func(self.q, *args, **kwargs) expected = func(self.q.value, *args, *kwargs) assert type(out) is type(expected) if isinstance(expected, tuple): assert all(np.all(o == x) for o, x in zip(out, expected)) else: assert np.all(out == expected) class TestShapeInformation(BasicTestSetup): def test_shape(self): assert np.shape(self.q) == (3, 3) def test_size(self): assert np.size(self.q) == 9 def test_ndim(self): assert np.ndim(self.q) == 2 class TestShapeManipulation(InvariantUnitTestSetup): # Note: do not parametrize the below, since test names are used # to check coverage. def test_reshape(self): self.check(np.reshape, (9, 1)) def test_ravel(self): self.check(np.ravel) def test_moveaxis(self): self.check(np.moveaxis, 0, 1) def test_rollaxis(self): self.check(np.rollaxis, 0, 2) def test_swapaxes(self): self.check(np.swapaxes, 0, 1) def test_transpose(self): self.check(np.transpose) def test_atleast_1d(self): q = 1. * u.m o, so = np.atleast_1d(q, self.q) assert o.shape == (1,) assert o == q expected = np.atleast_1d(self.q.value) * u.m assert np.all(so == expected) def test_atleast_2d(self): q = 1. * u.m o, so = np.atleast_2d(q, self.q) assert o.shape == (1, 1) assert o == q expected = np.atleast_2d(self.q.value) * u.m assert np.all(so == expected) def test_atleast_3d(self): q = 1. * u.m o, so = np.atleast_3d(q, self.q) assert o.shape == (1, 1, 1) assert o == q expected = np.atleast_3d(self.q.value) * u.m assert np.all(so == expected) def test_expand_dims(self): self.check(np.expand_dims, 1) def test_squeeze(self): o = np.squeeze(self.q[:, np.newaxis, :]) assert o.shape == (3, 3) assert np.all(o == self.q) def test_flip(self): self.check(np.flip) def test_fliplr(self): self.check(np.fliplr) def test_flipud(self): self.check(np.flipud) def test_rot90(self): self.check(np.rot90) def test_broadcast_to(self): # Decided *not* to change default for subok for Quantity, since # that would be contrary to the docstring and might break code. self.check(np.broadcast_to, (3, 3, 3), subok=True) out = np.broadcast_to(self.q, (3, 3, 3)) assert type(out) is np.ndarray # NOT Quantity def test_broadcast_arrays(self): # Decided *not* to change default for subok for Quantity, since # that would be contrary to the docstring and might break code. q2 = np.ones((3, 3, 3)) / u.s o1, o2 = np.broadcast_arrays(self.q, q2, subok=True) assert isinstance(o1, u.Quantity) assert isinstance(o2, u.Quantity) assert o1.shape == o2.shape == (3, 3, 3) assert np.all(o1 == self.q) assert np.all(o2 == q2) a1, a2 = np.broadcast_arrays(self.q, q2) assert type(a1) is np.ndarray assert type(a2) is np.ndarray class TestArgFunctions(NoUnitTestSetup): def test_argmin(self): self.check(np.argmin) def test_argmax(self): self.check(np.argmax) def test_argsort(self): self.check(np.argsort) def test_lexsort(self): self.check(np.lexsort) def test_searchsorted(self): q = self.q.ravel() q2 = np.array([150., 350.]) * u.cm out = np.searchsorted(q, q2) expected = np.searchsorted(q.value, q2.to_value(q.unit)) assert np.all(out == expected) def test_nonzero(self): self.check(np.nonzero) def test_argwhere(self): self.check(np.argwhere) @needs_array_function def test_argpartition(self): self.check(np.argpartition, 2) def test_flatnonzero(self): self.check(np.flatnonzero) class TestAlongAxis(BasicTestSetup): def test_take_along_axis(self): indices = np.expand_dims(np.argmax(self.q, axis=0), axis=0) out = np.take_along_axis(self.q, indices, axis=0) expected = np.take_along_axis(self.q.value, indices, axis=0) * self.q.unit assert np.all(out == expected) def test_put_along_axis(self): q = self.q.copy() indices = np.expand_dims(np.argmax(self.q, axis=0), axis=0) np.put_along_axis(q, indices, axis=0, values=-100 * u.cm) expected = q.value.copy() np.put_along_axis(expected, indices, axis=0, values=-1) expected = expected * q.unit assert np.all(q == expected) @pytest.mark.parametrize('axis', (0, 1)) def test_apply_along_axis(self, axis): out = np.apply_along_axis(np.square, axis, self.q) expected = np.apply_along_axis(np.square, axis, self.q.value) * self.q.unit ** 2 assert_array_equal(out, expected) @needs_array_function @pytest.mark.parametrize('axes', ((1,), (0,), (0, 1))) def test_apply_over_axes(self, axes): def function(x, axis): return np.sum(np.square(x), axis) out = np.apply_over_axes(function, self.q, axes) expected = np.apply_over_axes(function, self.q.value, axes) expected = expected * self.q.unit ** (2 * len(axes)) assert_array_equal(out, expected) class TestIndicesFrom(NoUnitTestSetup): def test_diag_indices_from(self): self.check(np.diag_indices_from) def test_triu_indices_from(self): self.check(np.triu_indices_from) def test_tril_indices_from(self): self.check(np.tril_indices_from) class TestRealImag(InvariantUnitTestSetup): def setup(self): self.q = (np.arange(9.).reshape(3, 3) + 1j) * u.m def test_real(self): self.check(np.real) def test_imag(self): self.check(np.imag) class TestCopyAndCreation(InvariantUnitTestSetup): @needs_array_function def test_copy(self): self.check(np.copy) # Also as kwarg copy = np.copy(a=self.q) assert_array_equal(copy, self.q) @needs_array_function def test_asfarray(self): self.check(np.asfarray) farray = np.asfarray(a=self.q) assert_array_equal(farray, self.q) def test_empty_like(self): o = np.empty_like(self.q) assert o.shape == (3, 3) assert isinstance(o, u.Quantity) assert o.unit == self.q.unit o2 = np.empty_like(prototype=self.q) assert o2.shape == (3, 3) assert isinstance(o2, u.Quantity) assert o2.unit == self.q.unit o3 = np.empty_like(self.q, subok=False) assert type(o3) is np.ndarray def test_zeros_like(self): self.check(np.zeros_like) o2 = np.zeros_like(a=self.q) assert_array_equal(o2, self.q * 0.) def test_ones_like(self): self.check(np.ones_like) @needs_array_function def test_full_like(self): o = np.full_like(self.q, 0.5 * u.km) expected = np.empty_like(self.q.value) * u.m expected[...] = 0.5 * u.km assert np.all(o == expected) with pytest.raises(u.UnitsError): np.full_like(self.q, 0.5 * u.s) class TestAccessingParts(InvariantUnitTestSetup): def test_diag(self): self.check(np.diag) @needs_array_function def test_diag_1d_input(self): # Also check 1-D case; drops unit w/o __array_function__. q = self.q.ravel() o = np.diag(q) expected = np.diag(q.value) << q.unit assert o.unit == self.q.unit assert o.shape == expected.shape assert_array_equal(o, expected) def test_diagonal(self): self.check(np.diagonal) def test_diagflat(self): self.check(np.diagflat) def test_compress(self): o = np.compress([True, False, True], self.q, axis=0) expected = np.compress([True, False, True], self.q.value, axis=0) * self.q.unit assert np.all(o == expected) def test_extract(self): o = np.extract([True, False, True], self.q) expected = np.extract([True, False, True], self.q.value) * self.q.unit assert np.all(o == expected) def test_delete(self): self.check(np.delete, slice(1, 2), 0) self.check(np.delete, [0, 2], 1) def test_trim_zeros(self): q = self.q.ravel() out = np.trim_zeros(q) expected = np.trim_zeros(q.value) * u.m assert np.all(out == expected) def test_roll(self): self.check(np.roll, 1) self.check(np.roll, 1, axis=0) def test_take(self): self.check(np.take, [0, 1], axis=1) self.check(np.take, 1) class TestSettingParts(metaclass=CoverageMeta): def test_put(self): q = np.arange(3.) * u.m np.put(q, [0, 2], [50, 150] * u.cm) assert q.unit == u.m expected = [50, 100, 150] * u.cm assert np.all(q == expected) @needs_array_function def test_putmask(self): q = np.arange(3.) * u.m mask = [True, False, True] values = [50, 0, 150] * u.cm np.putmask(q, mask, values) assert q.unit == u.m expected = [50, 100, 150] * u.cm assert np.all(q == expected) with pytest.raises(u.UnitsError): np.putmask(q, mask, values.value) with pytest.raises(u.UnitsError): np.putmask(q.value, mask, values) a = np.arange(3.) values = [50, 0, 150] * u.percent np.putmask(a, mask, values) expected = np.array([0.5, 1., 1.5]) assert np.all(a == expected) @needs_array_function def test_place(self): q = np.arange(3.) * u.m np.place(q, [True, False, True], [50, 150] * u.cm) assert q.unit == u.m expected = [50, 100, 150] * u.cm assert np.all(q == expected) a = np.arange(3.) np.place(a, [True, False, True], [50, 150] * u.percent) assert type(a) is np.ndarray expected = np.array([0.5, 1., 1.5]) assert np.all(a == expected) @needs_array_function def test_copyto(self): q = np.arange(3.) * u.m np.copyto(q, [50, 0, 150] * u.cm, where=[True, False, True]) assert q.unit == u.m expected = [50, 100, 150] * u.cm assert np.all(q == expected) a = np.arange(3.) np.copyto(a, [50, 0, 150] * u.percent, where=[True, False, True]) assert type(a) is np.ndarray expected = np.array([0.5, 1., 1.5]) assert np.all(a == expected) def test_fill_diagonal(self): q = np.arange(9.).reshape(3, 3) * u.m expected = q.value.copy() np.fill_diagonal(expected, 0.25) expected = expected * u.m np.fill_diagonal(q, 25. * u.cm) assert q.unit == u.m assert np.all(q == expected) class TestRepeat(InvariantUnitTestSetup): def test_tile(self): self.check(np.tile, 2) def test_repeat(self): self.check(np.repeat, 2) @needs_array_function def test_resize(self): self.check(np.resize, (4, 4)) class TestConcatenate(metaclass=CoverageMeta): def setup(self): self.q1 = np.arange(6.).reshape(2, 3) * u.m self.q2 = self.q1.to(u.cm) def check(self, func, *args, **kwargs): q_list = kwargs.pop('q_list', [self.q1, self.q2]) q_ref = kwargs.pop('q_ref', q_list[0]) o = func(q_list, *args, **kwargs) v_list = [q_ref._to_own_unit(q) for q in q_list] expected = func(v_list, *args, **kwargs) * q_ref.unit assert o.shape == expected.shape assert np.all(o == expected) @needs_array_function def test_concatenate(self): self.check(np.concatenate) self.check(np.concatenate, axis=1) if not NUMPY_LT_1_20: # dtype argument only introduced in numpy 1.20 # regression test for gh-13322. self.check(np.concatenate, dtype='f4') self.check(np.concatenate, q_list=[np.zeros(self.q1.shape), self.q1, self.q2], q_ref=self.q1) out = np.empty((4, 3)) * u.dimensionless_unscaled result = np.concatenate([self.q1, self.q2], out=out) assert out is result assert out.unit == self.q1.unit expected = np.concatenate( [self.q1.value, self.q2.to_value(self.q1.unit)]) * self.q1.unit assert np.all(result == expected) with pytest.raises(TypeError): np.concatenate([self.q1, object()]) @needs_array_function def test_stack(self): self.check(np.stack) @needs_array_function def test_column_stack(self): self.check(np.column_stack) @needs_array_function def test_hstack(self): self.check(np.hstack) @needs_array_function def test_vstack(self): self.check(np.vstack) @needs_array_function def test_dstack(self): self.check(np.dstack) @needs_array_function def test_block(self): self.check(np.block) result = np.block([[0., 1.*u.m], [1.*u.cm, 2.*u.km]]) assert np.all(result == np.block([[0, 1.], [.01, 2000.]]) << u.m) @needs_array_function def test_append(self): out = np.append(self.q1, self.q2, axis=0) assert out.unit == self.q1.unit expected = np.append(self.q1.value, self.q2.to_value(self.q1.unit), axis=0) * self.q1.unit assert np.all(out == expected) a = np.arange(3.) result = np.append(a, 50. * u.percent) assert isinstance(result, u.Quantity) assert result.unit == u.dimensionless_unscaled expected = np.append(a, 0.5) * u.dimensionless_unscaled assert np.all(result == expected) @needs_array_function def test_insert(self): # Unit of inserted values is not ignored. q = np.arange(12.).reshape(6, 2) * u.m out = np.insert(q, (3, 5), [50., 25.] * u.cm) assert isinstance(out, u.Quantity) assert out.unit == q.unit expected = np.insert(q.value, (3, 5), [0.5, 0.25]) << q.unit assert np.all(out == expected) # 0 can have any unit. out2 = np.insert(q, (3, 5), 0) expected2 = np.insert(q.value, (3, 5), 0) << q.unit assert np.all(out2 == expected2) a = np.arange(3.) result = np.insert(a, (2,), 50. * u.percent) assert isinstance(result, u.Quantity) assert result.unit == u.dimensionless_unscaled expected = np.insert(a, (2,), 0.5) * u.dimensionless_unscaled assert np.all(result == expected) with pytest.raises(TypeError): np.insert(q, 3 * u.cm, 50. * u.cm) with pytest.raises(u.UnitsError): np.insert(q, (3, 5), 0. * u.s) @needs_array_function def test_pad(self): q = np.arange(1., 6.) * u.m out = np.pad(q, (2, 3), 'constant', constant_values=(0., 150.*u.cm)) assert out.unit == q.unit expected = np.pad(q.value, (2, 3), 'constant', constant_values=(0., 1.5)) * q.unit assert np.all(out == expected) out2 = np.pad(q, (2, 3), 'constant', constant_values=150.*u.cm) assert out2.unit == q.unit expected2 = np.pad(q.value, (2, 3), 'constant', constant_values=1.5) * q.unit assert np.all(out2 == expected2) out3 = np.pad(q, (2, 3), 'linear_ramp', end_values=(25.*u.cm, 0.)) assert out3.unit == q.unit expected3 = np.pad(q.value, (2, 3), 'linear_ramp', end_values=(0.25, 0.)) * q.unit assert np.all(out3 == expected3) class TestSplit(metaclass=CoverageMeta): def setup(self): self.q = np.arange(54.).reshape(3, 3, 6) * u.m def check(self, func, *args, **kwargs): out = func(self.q, *args, **kwargs) expected = func(self.q.value, *args, **kwargs) expected = [x * self.q.unit for x in expected] assert len(out) == len(expected) assert all(o.shape == x.shape for o, x in zip(out, expected)) assert all(np.all(o == x) for o, x in zip(out, expected)) def test_split(self): self.check(np.split, [1]) def test_array_split(self): self.check(np.array_split, 2) def test_hsplit(self): self.check(np.hsplit, [1, 4]) def test_vsplit(self): self.check(np.vsplit, [1]) def test_dsplit(self): self.check(np.dsplit, [1]) class TestUfuncReductions(InvariantUnitTestSetup): def test_amax(self): self.check(np.amax) def test_amin(self): self.check(np.amin) def test_sum(self): self.check(np.sum) def test_cumsum(self): self.check(np.cumsum) def test_any(self): with pytest.raises(TypeError): np.any(self.q) def test_all(self): with pytest.raises(TypeError): np.all(self.q) def test_sometrue(self): with pytest.raises(TypeError): np.sometrue(self.q) def test_alltrue(self): with pytest.raises(TypeError): np.alltrue(self.q) def test_prod(self): with pytest.raises(u.UnitsError): np.prod(self.q) def test_product(self): with pytest.raises(u.UnitsError): np.product(self.q) def test_cumprod(self): with pytest.raises(u.UnitsError): np.cumprod(self.q) def test_cumproduct(self): with pytest.raises(u.UnitsError): np.cumproduct(self.q) class TestUfuncLike(InvariantUnitTestSetup): def test_ptp(self): self.check(np.ptp) self.check(np.ptp, axis=0) def test_round_(self): self.check(np.round_) def test_around(self): self.check(np.around) def test_fix(self): self.check(np.fix) def test_angle(self): q = np.array([1+0j, 0+1j, 1+1j, 0+0j]) * u.m out = np.angle(q) expected = np.angle(q.value) * u.radian assert np.all(out == expected) def test_i0(self): q = np.array([0., 10., 20.]) * u.percent out = np.i0(q) expected = np.i0(q.to_value(u.one)) * u.one assert isinstance(out, u.Quantity) assert np.all(out == expected) with pytest.raises(u.UnitsError): np.i0(self.q) def test_clip(self): qmin = 200 * u.cm qmax = [270, 280, 290] * u.cm out = np.clip(self.q, qmin, qmax) expected = np.clip(self.q.value, qmin.to_value(self.q.unit), qmax.to_value(self.q.unit)) * self.q.unit assert np.all(out == expected) @needs_array_function def test_sinc(self): q = [0., 3690., -270., 690.] * u.deg out = np.sinc(q) expected = np.sinc(q.to_value(u.radian)) * u.one assert isinstance(out, u.Quantity) assert np.all(out == expected) with pytest.raises(u.UnitsError): np.sinc(1.*u.one) @needs_array_function def test_where(self): out = np.where([True, False, True], self.q, 1. * u.km) expected = np.where([True, False, True], self.q.value, 1000.) * self.q.unit assert np.all(out == expected) @needs_array_function def test_choose(self): # from np.choose docstring a = np.array([0, 1]).reshape((2, 1, 1)) q1 = np.array([1, 2, 3]).reshape((1, 3, 1)) * u.cm q2 = np.array([-1, -2, -3, -4, -5]).reshape((1, 1, 5)) * u.m out = np.choose(a, (q1, q2)) # result is 2x3x5, res[0,:,:]=c1, res[1,:,:]=c2 expected = np.choose(a, (q1.value, q2.to_value(q1.unit))) * u.cm assert np.all(out == expected) @needs_array_function def test_select(self): q = self.q out = np.select([q < 0.55 * u.m, q > 1. * u.m], [q, q.to(u.cm)], default=-1. * u.km) expected = np.select([q.value < 0.55, q.value > 1], [q.value, q.value], default=-1000) * u.m assert np.all(out == expected) @needs_array_function def test_real_if_close(self): q = np.array([1+0j, 0+1j, 1+1j, 0+0j]) * u.m out = np.real_if_close(q) expected = np.real_if_close(q.value) * u.m assert np.all(out == expected) @needs_array_function def test_tril(self): self.check(np.tril) @needs_array_function def test_triu(self): self.check(np.triu) @needs_array_function def test_unwrap(self): q = [0., 3690., -270., 690.] * u.deg out = np.unwrap(q) expected = (np.unwrap(q.to_value(u.rad)) * u.rad).to(q.unit) assert out.unit == expected.unit assert np.allclose(out, expected, atol=1*u.urad, rtol=0) with pytest.raises(u.UnitsError): np.unwrap([1., 2.]*u.m) with pytest.raises(u.UnitsError): np.unwrap(q, discont=1.*u.m) def test_nan_to_num(self): q = np.array([-np.inf, +np.inf, np.nan, 3., 4.]) * u.m out = np.nan_to_num(q) expected = np.nan_to_num(q.value) * q.unit assert np.all(out == expected) @needs_array_function def test_nan_to_num_complex(self): q = np.array([-np.inf, +np.inf, np.nan, 3., 4.]) * u.m out = np.nan_to_num(q, nan=1.*u.km, posinf=2.*u.km, neginf=-2*u.km) expected = [-2000., 2000., 1000., 3., 4.] * u.m assert np.all(out == expected) class TestUfuncLikeTests(metaclass=CoverageMeta): def setup(self): self.q = np.array([-np.inf, +np.inf, np.nan, 3., 4.]) * u.m def check(self, func): out = func(self.q) expected = func(self.q.value) assert type(out) is np.ndarray assert out.dtype.kind == 'b' assert np.all(out == expected) def test_isposinf(self): self.check(np.isposinf) def test_isneginf(self): self.check(np.isneginf) def test_isreal(self): self.check(np.isreal) assert not np.isreal([1. + 1j]*u.m) def test_iscomplex(self): self.check(np.iscomplex) assert np.iscomplex([1. + 1j]*u.m) def test_isclose(self): q1 = np.arange(3.) * u.m q2 = np.array([0., 102., 199.]) * u.cm atol = 1.5 * u.cm rtol = 1. * u.percent out = np.isclose(q1, q2, atol=atol) expected = np.isclose(q1.value, q2.to_value(q1.unit), atol=atol.to_value(q1.unit)) assert type(out) is np.ndarray assert out.dtype.kind == 'b' assert np.all(out == expected) out = np.isclose(q1, q2, atol=0, rtol=rtol) expected = np.isclose(q1.value, q2.to_value(q1.unit), atol=0, rtol=0.01) assert type(out) is np.ndarray assert out.dtype.kind == 'b' assert np.all(out == expected) @needs_array_function def test_allclose_atol_default_unit(self): q_cm = self.q.to(u.cm) out = np.isclose(self.q, q_cm) expected = np.isclose(self.q.value, q_cm.to_value(u.m)) assert np.all(out == expected) q1 = np.arange(3.) * u.m q2 = np.array([0., 101., 198.]) * u.cm out = np.isclose(q1, q2, atol=0.011, rtol=0) expected = np.isclose(q1.value, q2.to_value(q1.unit), atol=0.011, rtol=0) assert np.all(out == expected) out2 = np.isclose(q2, q1, atol=0.011, rtol=0) expected2 = np.isclose(q2.value, q1.to_value(q2.unit), atol=0.011, rtol=0) assert np.all(out2 == expected2) class TestReductionLikeFunctions(InvariantUnitTestSetup): def test_average(self): q1 = np.arange(9.).reshape(3, 3) * u.m q2 = np.eye(3) / u.s o = np.average(q1, weights=q2) expected = np.average(q1.value, weights=q2.value) * u.m assert np.all(o == expected) def test_mean(self): self.check(np.mean) def test_std(self): self.check(np.std) def test_var(self): o = np.var(self.q) expected = np.var(self.q.value) * self.q.unit ** 2 assert np.all(o == expected) def test_median(self): self.check(np.median) @needs_array_function def test_quantile(self): self.check(np.quantile, 0.5) o = np.quantile(self.q, 50 * u.percent) expected = np.quantile(self.q.value, 0.5) * u.m assert np.all(o == expected) # For ndarray input, we return a Quantity. o2 = np.quantile(self.q.value, 50 * u.percent) assert o2.unit == u.dimensionless_unscaled assert np.all(o2 == expected.value) o3 = 0 * o2 result = np.quantile(self.q, 50 * u.percent, out=o3) assert result is o3 assert np.all(o3 == expected) o4 = 0 * o2 result = np.quantile(self.q, 50 * u.percent, None, o4) assert result is o4 assert np.all(o4 == expected) @needs_array_function def test_percentile(self): self.check(np.percentile, 0.5) o = np.percentile(self.q, 0.5 * u.one) expected = np.percentile(self.q.value, 50) * u.m assert np.all(o == expected) def test_trace(self): self.check(np.trace) @needs_array_function def test_count_nonzero(self): q1 = np.arange(9.).reshape(3, 3) * u.m o = np.count_nonzero(q1) assert type(o) is not u.Quantity assert o == 8 o = np.count_nonzero(q1, axis=1) # Returns integer Quantity with units of m assert type(o) is np.ndarray assert np.all(o == np.array([2, 3, 3])) def test_allclose(self): q1 = np.arange(3.) * u.m q2 = np.array([0., 101., 199.]) * u.cm atol = 2 * u.cm rtol = 1. * u.percent assert np.allclose(q1, q2, atol=atol) assert np.allclose(q1, q2, atol=0., rtol=rtol) @needs_array_function def test_allclose_atol_default_unit(self): q1 = np.arange(3.) * u.m q2 = np.array([0., 101., 199.]) * u.cm assert np.allclose(q1, q2, atol=0.011, rtol=0) assert not np.allclose(q2, q1, atol=0.011, rtol=0) def test_allclose_failures(self): q1 = np.arange(3.) * u.m q2 = np.array([0., 101., 199.]) * u.cm with pytest.raises(u.UnitsError): np.allclose(q1, q2, atol=2*u.s, rtol=0) with pytest.raises(u.UnitsError): np.allclose(q1, q2, atol=0, rtol=1.*u.s) @needs_array_function def test_array_equal(self): q1 = np.arange(3.) * u.m q2 = q1.to(u.cm) assert np.array_equal(q1, q2) q3 = q1.value * u.cm assert not np.array_equal(q1, q3) @needs_array_function def test_array_equiv(self): q1 = np.array([[0., 1., 2.]]*3) * u.m q2 = q1[0].to(u.cm) assert np.array_equiv(q1, q2) q3 = q1[0].value * u.cm assert not np.array_equiv(q1, q3) class TestNanFunctions(InvariantUnitTestSetup): def setup(self): super().setup() self.q[1, 1] = np.nan def test_nanmax(self): self.check(np.nanmax) def test_nanmin(self): self.check(np.nanmin) def test_nanargmin(self): out = np.nanargmin(self.q) expected = np.nanargmin(self.q.value) assert out == expected def test_nanargmax(self): out = np.nanargmax(self.q) expected = np.nanargmax(self.q.value) assert out == expected def test_nanmean(self): self.check(np.nanmean) def test_nanmedian(self): self.check(np.nanmedian) def test_nansum(self): self.check(np.nansum) def test_nancumsum(self): self.check(np.nancumsum) def test_nanstd(self): self.check(np.nanstd) def test_nanvar(self): out = np.nanvar(self.q) expected = np.nanvar(self.q.value) * self.q.unit ** 2 assert np.all(out == expected) def test_nanprod(self): with pytest.raises(u.UnitsError): np.nanprod(self.q) def test_nancumprod(self): with pytest.raises(u.UnitsError): np.nancumprod(self.q) @needs_array_function def test_nanquantile(self): self.check(np.nanquantile, 0.5) o = np.nanquantile(self.q, 50 * u.percent) expected = np.nanquantile(self.q.value, 0.5) * u.m assert np.all(o == expected) @needs_array_function def test_nanpercentile(self): self.check(np.nanpercentile, 0.5) o = np.nanpercentile(self.q, 0.5 * u.one) expected = np.nanpercentile(self.q.value, 50) * u.m assert np.all(o == expected) class TestVariousProductFunctions(metaclass=CoverageMeta): """ Test functions that are similar to gufuncs """ @needs_array_function def test_cross(self): q1 = np.arange(6.).reshape(2, 3) * u.m q2 = np.array([4., 5., 6.]) / u.s o = np.cross(q1, q2) expected = np.cross(q1.value, q2.value) * u.m / u.s assert np.all(o == expected) @needs_array_function def test_outer(self): q1 = np.array([1, 2, 3]) * u.m q2 = np.array([1, 2]) / u.s o = np.outer(q1, q2) assert np.all(o == np.array([[1, 2], [2, 4], [3, 6]]) * u.m / u.s) o2 = 0 * o result = np.outer(q1, q2, out=o2) assert result is o2 assert np.all(o2 == o) with pytest.raises(TypeError): np.outer(q1, q2, out=object()) @needs_array_function def test_inner(self): q1 = np.array([1, 2, 3]) * u.m q2 = np.array([4, 5, 6]) / u.s o = np.inner(q1, q2) assert o == 32 * u.m / u.s @needs_array_function def test_dot(self): q1 = np.array([1., 2., 3.]) * u.m q2 = np.array([4., 5., 6.]) / u.s o = np.dot(q1, q2) assert o == 32. * u.m / u.s @needs_array_function def test_vdot(self): q1 = np.array([1j, 2j, 3j]) * u.m q2 = np.array([4j, 5j, 6j]) / u.s o = np.vdot(q1, q2) assert o == (32. + 0j) * u.m / u.s @needs_array_function def test_tensordot(self): # From the docstring example a = np.arange(60.).reshape(3, 4, 5) * u.m b = np.arange(24.).reshape(4, 3, 2) / u.s c = np.tensordot(a, b, axes=([1, 0], [0, 1])) expected = np.tensordot(a.value, b.value, axes=([1, 0], [0, 1])) * u.m / u.s assert np.all(c == expected) @needs_array_function def test_kron(self): q1 = np.eye(2) * u.m q2 = np.ones(2) / u.s o = np.kron(q1, q2) expected = np.kron(q1.value, q2.value) * u.m / u.s assert np.all(o == expected) @needs_array_function def test_einsum(self): q1 = np.arange(9.).reshape(3, 3) * u.m o = np.einsum('...i', q1) assert np.all(o == q1) o = np.einsum('ii', q1) expected = np.einsum('ii', q1.value) * u.m assert np.all(o == expected) q2 = np.eye(3) / u.s o2 = np.einsum('ij,jk', q1, q2) assert np.all(o2 == q1 / u.s) o3 = 0 * o2 result = np.einsum('ij,jk', q1, q2, out=o3) assert result is o3 assert np.all(o3 == o2) def test_einsum_path(self): q1 = np.arange(9.).reshape(3, 3) * u.m o = np.einsum_path('...i', q1) assert o[0] == ['einsum_path', (0,)] o = np.einsum_path('ii', q1) assert o[0] == ['einsum_path', (0,)] q2 = np.eye(3) / u.s o = np.einsum_path('ij,jk', q1, q2) assert o[0] == ['einsum_path', (0, 1)] class TestIntDiffFunctions(metaclass=CoverageMeta): def test_trapz(self): y = np.arange(9.) * u.m / u.s out = np.trapz(y) expected = np.trapz(y.value) * y.unit assert np.all(out == expected) dx = 10. * u.s out = np.trapz(y, dx=dx) expected = np.trapz(y.value, dx=dx.value) * y.unit * dx.unit assert np.all(out == expected) x = np.arange(9.) * u.s out = np.trapz(y, x) expected = np.trapz(y.value, x.value) * y.unit * x.unit assert np.all(out == expected) def test_diff(self): # Simple diff works out of the box. x = np.arange(10.) * u.m out = np.diff(x) expected = np.diff(x.value) * u.m assert np.all(out == expected) @needs_array_function def test_diff_prepend_append(self): x = np.arange(10.) * u.m out = np.diff(x, prepend=-12.5*u.cm, append=1*u.km) expected = np.diff(x.value, prepend=-0.125, append=1000.) * x.unit assert np.all(out == expected) x = np.arange(10.) * u.m out = np.diff(x, prepend=-12.5*u.cm, append=1*u.km, n=2) expected = np.diff(x.value, prepend=-0.125, append=1000., n=2) * x.unit assert np.all(out == expected) with pytest.raises(TypeError): np.diff(x, prepend=object()) def test_gradient(self): # Simple gradient works out of the box. x = np.arange(10.) * u.m out = np.gradient(x) expected = np.gradient(x.value) * u.m assert np.all(out == expected) @needs_array_function def test_gradient_spacing(self): # Simple gradient works out of the box. x = np.arange(10.) * u.m spacing = 10. * u.s out = np.gradient(x, spacing) expected = np.gradient(x.value, spacing.value) * (x.unit / spacing.unit) assert np.all(out == expected) f = np.array([[1, 2, 6], [3, 4, 5]]) * u.m dx = 2. * u.s y = [1., 1.5, 3.5] * u.GHz dfdx, dfdy = np.gradient(f, dx, y) exp_dfdx, exp_dfdy = np.gradient(f.value, dx.value, y.value) exp_dfdx = exp_dfdx * f.unit / dx.unit exp_dfdy = exp_dfdy * f.unit / y.unit assert np.all(dfdx == exp_dfdx) assert np.all(dfdy == exp_dfdy) dfdx2 = np.gradient(f, dx, axis=0) assert np.all(dfdx2 == exp_dfdx) dfdy2 = np.gradient(f, y, axis=(1,)) assert np.all(dfdy2 == exp_dfdy) class TestSpaceFunctions(metaclass=CoverageMeta): def test_linspace(self): # Note: linspace gets unit of end point, not superlogical. out = np.linspace(1000.*u.m, 10.*u.km, 5) expected = np.linspace(1, 10, 5) * u.km assert np.all(out == expected) q1 = np.arange(6.).reshape(2, 3) * u.m q2 = 10000. * u.cm out = np.linspace(q1, q2, 5) expected = np.linspace(q1.to_value(q2.unit), q2.value, 5) * q2.unit assert np.all(out == expected) @needs_array_function def test_logspace(self): unit = u.m / u.s**2 out = np.logspace(10.*u.dex(unit), 20*u.dex(unit), 10) expected = np.logspace(10., 20., 10) * unit assert np.all(out == expected) out = np.logspace(10.*u.STmag, 20*u.STmag, 10) expected = np.logspace(10., 20., 10, base=10.**(-0.4)) * u.ST assert u.allclose(out, expected) @needs_array_function def test_geomspace(self): out = np.geomspace(1000.*u.m, 10.*u.km, 5) expected = np.geomspace(1, 10, 5) * u.km assert np.all(out == expected) q1 = np.arange(1., 7.).reshape(2, 3) * u.m q2 = 10000. * u.cm out = np.geomspace(q1, q2, 5) expected = np.geomspace(q1.to_value(q2.unit), q2.value, 5) * q2.unit assert np.all(out == expected) class TestInterpolationFunctions(metaclass=CoverageMeta): @needs_array_function def test_interp(self): x = np.array([1250., 2750.]) * u.m xp = np.arange(5.) * u.km yp = np.arange(5.) * u.day out = np.interp(x, xp, yp) expected = np.interp(x.to_value(xp.unit), xp.value, yp.value) * yp.unit assert np.all(out == expected) out = np.interp(x, xp, yp.value) assert type(out) is np.ndarray assert np.all(out == expected.value) @needs_array_function def test_piecewise(self): x = np.linspace(-2.5, 2.5, 6) * u.m out = np.piecewise(x, [x < 0, x >= 0], [-1*u.s, 1*u.day]) expected = np.piecewise(x.value, [x.value < 0, x.value >= 0], [-1, 24*3600]) * u.s assert out.unit == expected.unit assert np.all(out == expected) out2 = np.piecewise(x, [x < 1 * u.m, x >= 0], [-1*u.s, 1*u.day, lambda x: 1*u.hour]) expected2 = np.piecewise(x.value, [x.value < 1, x.value >= 0], [-1, 24*3600, 3600]) * u.s assert out2.unit == expected2.unit assert np.all(out2 == expected2) out3 = np.piecewise(x, [x < 1 * u.m, x >= 0], [0, 1*u.percent, lambda x: 1*u.one]) expected3 = np.piecewise(x.value, [x.value < 1, x.value >= 0], [0, 0.01, 1]) * u.one assert out3.unit == expected3.unit assert np.all(out3 == expected3) with pytest.raises(TypeError): # no Quantity in condlist. np.piecewise(x, [x], [0.]) with pytest.raises(TypeError): # no Quantity in condlist. np.piecewise(x.value, [x], [0.]) class TestBincountDigitize(metaclass=CoverageMeta): @needs_array_function def test_bincount(self): i = np.array([1, 1, 2, 3, 2, 4]) weights = np.arange(len(i)) * u.Jy out = np.bincount(i, weights) expected = np.bincount(i, weights.value) * weights.unit assert_array_equal(out, expected) with pytest.raises(TypeError): np.bincount(weights) @needs_array_function def test_digitize(self): x = np.array([1500., 2500., 4500.]) * u.m bins = np.arange(10.) * u.km out = np.digitize(x, bins) expected = np.digitize(x.to_value(bins.unit), bins.value) assert_array_equal(out, expected) class TestHistogramFunctions(metaclass=CoverageMeta): def setup(self): self.x = np.array([1.1, 1.2, 1.3, 2.1, 5.1]) * u.m self.y = np.array([1.2, 2.2, 2.4, 3.0, 4.0]) * u.cm self.weights = np.arange(len(self.x)) / u.s def check(self, function, *args, value_args=None, value_kwargs=None, expected_units=None, **kwargs): """Check quanties are treated correctly in the histogram function. Test is done by applying ``function(*args, **kwargs)``, where the argument can be quantities, and comparing the result to ``function(*value_args, **value_kwargs)``, with the outputs converted to quantities using the ``expected_units`` (where `None` indicates the output is expected to be a regular array). For ``**value_kwargs``, any regular ``kwargs`` are treated as defaults, i.e., non-quantity arguments do not have to be repeated. """ if value_kwargs is None: value_kwargs = kwargs else: for k, v in kwargs.items(): value_kwargs.setdefault(k, v) # Get the result, using the Quantity override. out = function(*args, **kwargs) # Get the comparison, with non-Quantity arguments. expected = function(*value_args, **value_kwargs) # All histogram functions return a tuple of the actual histogram # and the bin edges. First, check the actual histogram. out_h = out[0] expected_h = expected[0] if expected_units[0] is not None: expected_h = expected_h * expected_units[0] assert_array_equal(out_h, expected_h) # Check bin edges. Here, histogramdd returns an interable of the # bin edges as the second return argument, while histogram and # histogram2d return the bin edges directly. if function is np.histogramdd: bin_slice = 1 else: bin_slice = slice(1, None) for o_bin, e_bin, e_unit in zip(out[bin_slice], expected[bin_slice], expected_units[bin_slice]): if e_unit is not None: e_bin = e_bin * e_unit assert_array_equal(o_bin, e_bin) @needs_array_function def test_histogram(self): x = self.x weights = self.weights # Plain histogram. self.check(np.histogram, x, value_args=(x.value,), expected_units=(None, x.unit)) # With bins. self.check(np.histogram, x, [125, 200] * u.cm, value_args=(x.value, [1.25, 2.]), expected_units=(None, x.unit)) # With density. self.check(np.histogram, x, [125, 200] * u.cm, density=True, value_args=(x.value, [1.25, 2.]), expected_units=(1/x.unit, x.unit)) # With weights. self.check(np.histogram, x, [125, 200] * u.cm, weights=weights, value_args=(x.value, [1.25, 2.]), value_kwargs=dict(weights=weights.value), expected_units=(weights.unit, x.unit)) # With weights and density. self.check(np.histogram, x, [125, 200] * u.cm, weights=weights, density=True, value_args=(x.value, [1.25, 2.]), value_kwargs=dict(weights=weights.value), expected_units=(weights.unit/x.unit, x.unit)) with pytest.raises(u.UnitsError): np.histogram(x, [125, 200] * u.s) with pytest.raises(u.UnitsError): np.histogram(x, [125, 200]) with pytest.raises(u.UnitsError): np.histogram(x.value, [125, 200] * u.s) @needs_array_function def test_histogram_bin_edges(self): x = np.array([1.1, 1.2, 1.3, 2.1, 5.1]) * u.m out_b = np.histogram_bin_edges(x) expected_b = np.histogram_bin_edges(x.value) * x.unit assert np.all(out_b == expected_b) # With bins out2_b = np.histogram_bin_edges(x, [125, 200] * u.cm) expected2_b = np.histogram_bin_edges(x.value, [1.25, 2.]) * x.unit assert np.all(out2_b == expected2_b) with pytest.raises(u.UnitsError): np.histogram_bin_edges(x, [125, 200] * u.s) with pytest.raises(u.UnitsError): np.histogram_bin_edges(x, [125, 200]) with pytest.raises(u.UnitsError): np.histogram_bin_edges(x.value, [125, 200] * u.s) @needs_array_function def test_histogram2d(self): x, y = self.x, self.y weights = self.weights # Basic tests with X, Y. self.check(np.histogram2d, x, y, value_args=(x.value, y.value), expected_units=(None, x.unit, y.unit)) # Check units with density. self.check(np.histogram2d, x, y, density=True, value_args=(x.value, y.value), expected_units=(1/(x.unit*y.unit), x.unit, y.unit)) # Check units with weights. self.check(np.histogram2d, x, y, weights=weights, value_args=(x.value, y.value), value_kwargs=dict(weights=weights.value), expected_units=(weights.unit, x.unit, y.unit)) # Check quantity bin sizes. inb_y = [0, 0.025, 1.] * u.m self.check(np.histogram2d, x, y, [5, inb_y], value_args=(x.value, y.value, [5, np.array([0, 2.5, 100.])]), expected_units=(None, x.unit, y.unit)) # Check we dispatch on bin sizes (and check kwarg as well). inb2_y = [0, 250, 10000.] * u.percent self.check(np.histogram2d, x.value, y.value, bins=[5, inb2_y], value_args=(x.value, y.value), value_kwargs=dict(bins=[5, np.array([0, 2.5, 100.])]), expected_units=(None, u.one, u.one)) # Single-item bins should be integer, not Quantity. with pytest.raises(TypeError): np.histogram2d(x, y, 125 * u.s) with pytest.raises(TypeError): np.histogram2d(x.value, y.value, 125 * u.s) # Bin units need to match units of x, y. with pytest.raises(u.UnitsError): np.histogram2d(x, y, [125, 200] * u.s) with pytest.raises(u.UnitsError): np.histogram2d(x, y, ([125, 200], [125, 200])) with pytest.raises(u.UnitsError): np.histogram2d(x.value, y.value, [125, 200] * u.s) @needs_array_function def test_histogramdd(self): # First replicates of the histogram2d tests, but using the # histogramdd override. Normally takes the sample as a tuple # with a given number of dimensions, and returns the histogram # as well as a tuple of bin edges. sample = self.x, self.y sample_units = self.x.unit, self.y.unit sample_values = (self.x.value, self.y.value) weights = self.weights # Basic tests with X, Y self.check(np.histogramdd, sample, value_args=(sample_values,), expected_units=(None, sample_units)) # Check units with density. self.check(np.histogramdd, sample, density=True, value_args=(sample_values,), expected_units=(1/(self.x.unit*self.y.unit), sample_units)) # Check units with weights. self.check(np.histogramdd, sample, weights=weights, value_args=(sample_values,), value_kwargs=dict(weights=weights.value), expected_units=(weights.unit, sample_units)) # Check quantity bin sizes. inb_y = [0, 0.025, 1.] * u.m self.check(np.histogramdd, sample, [5, inb_y], value_args=(sample_values, [5, np.array([0, 2.5, 100.])]), expected_units=(None, sample_units)) # Check we dispatch on bin sizes (and check kwarg as well). inb2_y = [0, 250, 10000.] * u.percent self.check(np.histogramdd, sample_values, bins=[5, inb2_y], value_args=(sample_values,), value_kwargs=dict(bins=[5, np.array([0, 2.5, 100.])]), expected_units=(None, (u.one, u.one))) # For quantities, it is probably not that likely one would pass # in the sample as an array, but check that it works anyway. # This also gives a 3-D check. xyz = np.random.normal(size=(10, 3)) * u.m self.check(np.histogramdd, xyz, value_args=(xyz.value,), expected_units=(None, (xyz.unit,)*3)) # Passing it in as a tuple should work just as well; note the # *last* axis contains the sample dimension. self.check(np.histogramdd, (xyz[:, 0], xyz[:, 1], xyz[:, 2]), value_args=(xyz.value,), expected_units=(None, (xyz.unit,)*3)) # Single-item bins should be integer, not Quantity. with pytest.raises(TypeError): np.histogramdd(sample, 125 * u.s) # Sequence of single items should be integer. with pytest.raises(TypeError): np.histogramdd(sample, [125, 200] * u.s) with pytest.raises(TypeError): np.histogramdd(sample_values, [125, 200] * u.s) # Units of bins should match. with pytest.raises(u.UnitsError): np.histogramdd(sample, ([125, 200], [125, 200])) with pytest.raises(u.UnitsError): np.histogramdd(sample_values, ([125, 200] * u.s, [125, 200])) @needs_array_function def test_correlate(self): x1 = [1, 2, 3] * u.m x2 = [0, 1, 0.5] * u.m out = np.correlate(x1, x2) expected = np.correlate(x1.value, x2.value) * u.m ** 2 assert np.all(out == expected) @needs_array_function def test_convolve(self): x1 = [1, 2, 3] * u.m x2 = [0, 1, 0.5] * u.m out = np.convolve(x1, x2) expected = np.convolve(x1.value, x2.value) * u.m ** 2 assert np.all(out == expected) @needs_array_function def test_cov(self): # Do not see how we can use cov with Quantity x = np.array([[0, 2], [1, 1], [2, 0]]).T * u.m with pytest.raises(TypeError): np.cov(x) @needs_array_function def test_corrcoef(self): # Do not see how we can use cov with Quantity x = np.array([[0, 2], [1, 1], [2, 0]]).T * u.m with pytest.raises(TypeError): np.corrcoef(x) class TestSortFunctions(InvariantUnitTestSetup): def test_sort(self): self.check(np.sort) @needs_array_function def test_sort_complex(self): self.check(np.sort_complex) def test_msort(self): self.check(np.msort) def test_partition(self): self.check(np.partition, 2) class TestStringFunctions(metaclass=CoverageMeta): # For these, making behaviour work means deviating only slightly from # the docstring, and by default they fail miserably. So, might as well. def setup(self): self.q = np.arange(3.) * u.Jy @needs_array_function def test_array2string(self): # The default formatters cannot handle units, so if we do not pass # a relevant formatter, we are better off just treating it as an # array (which happens for all subtypes). out0 = np.array2string(self.q) expected0 = str(self.q.value) assert out0 == expected0 # Arguments are interpreted as usual. out1 = np.array2string(self.q, separator=', ') expected1 = '[0., 1., 2.]' assert out1 == expected1 # If we do pass in a formatter, though, it should be used. out2 = np.array2string(self.q, separator=', ', formatter={'all': str}) expected2 = '[0.0 Jy, 1.0 Jy, 2.0 Jy]' assert out2 == expected2 # Also as positional argument (no, nobody will do this!) out3 = np.array2string(self.q, None, None, None, ', ', '', np._NoValue, {'float': str}) assert out3 == expected2 # But not if the formatter is not relevant for us. out4 = np.array2string(self.q, separator=', ', formatter={'int': str}) assert out4 == expected1 @needs_array_function def test_array_repr(self): out = np.array_repr(self.q) assert out == "Quantity([0., 1., 2.], unit='Jy')" q2 = self.q.astype('f4') out2 = np.array_repr(q2) assert out2 == "Quantity([0., 1., 2.], unit='Jy', dtype=float32)" @needs_array_function def test_array_str(self): out = np.array_str(self.q) expected = str(self.q) assert out == expected class TestBitAndIndexFunctions(metaclass=CoverageMeta): # Index/bit functions generally fail for floats, so the usual # float quantity are safe, but the integer ones are not. def setup(self): self.q = np.arange(3) * u.m self.uint_q = u.Quantity(np.arange(3), 'm', dtype='u1') @needs_array_function def test_packbits(self): with pytest.raises(TypeError): np.packbits(self.q) with pytest.raises(TypeError): np.packbits(self.uint_q) @needs_array_function def test_unpackbits(self): with pytest.raises(TypeError): np.unpackbits(self.q) with pytest.raises(TypeError): np.unpackbits(self.uint_q) @needs_array_function def test_unravel_index(self): with pytest.raises(TypeError): np.unravel_index(self.q, 3) with pytest.raises(TypeError): np.unravel_index(self.uint_q, 3) @needs_array_function def test_ravel_multi_index(self): with pytest.raises(TypeError): np.ravel_multi_index((self.q,), 3) with pytest.raises(TypeError): np.ravel_multi_index((self.uint_q,), 3) @needs_array_function def test_ix_(self): with pytest.raises(TypeError): np.ix_(self.q) with pytest.raises(TypeError): np.ix_(self.uint_q) class TestDtypeFunctions(NoUnitTestSetup): def test_common_type(self): self.check(np.common_type) def test_result_type(self): self.check(np.result_type) def test_can_cast(self): self.check(np.can_cast, self.q.dtype) self.check(np.can_cast, 'f4') def test_min_scalar_type(self): out = np.min_scalar_type(self.q[0]) expected = np.min_scalar_type(self.q.value[0]) assert out == expected def test_iscomplexobj(self): self.check(np.iscomplexobj) def test_isrealobj(self): self.check(np.isrealobj) class TestMeshGrid(metaclass=CoverageMeta): def test_meshgrid(self): q1 = np.arange(3.) * u.m q2 = np.arange(5.) * u.s o1, o2 = np.meshgrid(q1, q2) e1, e2 = np.meshgrid(q1.value, q2.value) assert np.all(o1 == e1 * q1.unit) assert np.all(o2 == e2 * q2.unit) class TestMemoryFunctions(NoUnitTestSetup): def test_shares_memory(self): self.check(np.shares_memory, self.q.value) def test_may_share_memory(self): self.check(np.may_share_memory, self.q.value) class TestSetOpsFcuntions(metaclass=CoverageMeta): def setup(self): self.q = np.array([[0., 1., -1.], [3., 5., 3.], [0., 1., -1]]) * u.m self.q2 = np.array([0., 100., 150., 200.]) * u.cm def check(self, function, qs, *args, **kwargs): unit = kwargs.pop('unit', self.q.unit) out = function(*qs, *args, **kwargs) qv = tuple(q.to_value(self.q.unit) for q in qs) expected = function(*qv, *args, **kwargs) if isinstance(expected, tuple): if unit: expected = (expected[0] * unit,) + expected[1:] for o, e in zip(out, expected): assert_array_equal(o, e) else: if unit: expected = expected * unit assert_array_equal(out, expected) def check1(self, function, *args, **kwargs): self.check(function, (self.q,), *args, **kwargs) def check2(self, function, *args, **kwargs): self.check(function, (self.q, self.q2), *args, **kwargs) @pytest.mark.parametrize('kwargs', ( dict(return_index=True, return_inverse=True), dict(return_counts=True), dict(return_index=True, return_inverse=True, return_counts=True))) def test_unique(self, kwargs): self.check1(np.unique, **kwargs) @needs_array_function @pytest.mark.parametrize('kwargs', ( dict(axis=0), dict(axis=1), dict(return_counts=True, return_inverse=False, axis=1))) def test_unique_more_complex(self, kwargs): self.check1(np.unique, **kwargs) @needs_array_function @pytest.mark.parametrize('kwargs', ( dict(), dict(return_indices=True))) def test_intersect1d(self, kwargs): self.check2(np.intersect1d, **kwargs) @needs_array_function def test_setxor1d(self): self.check2(np.setxor1d) @needs_array_function def test_union1d(self): self.check2(np.union1d) result = np.union1d(np.array([0., np.nan]), np.arange(3) << u.m) assert result.unit is u.m assert_array_equal(result.value, np.array([0., 1., 2., np.nan])) @needs_array_function def test_setdiff1d(self): self.check2(np.setdiff1d) @needs_array_function def test_in1d(self): self.check2(np.in1d, unit=None) # Check zero is treated as having any unit. assert np.in1d(np.zeros(1), self.q2) with pytest.raises(u.UnitsError): np.in1d(np.ones(1), self.q2) @needs_array_function def test_isin(self): self.check2(np.isin, unit=None) def test_ediff1d(self): # ediff1d works always as it calls the Quantity method. self.check1(np.ediff1d) x = np.arange(10.) * u.m out = np.ediff1d(x, to_begin=-12.5*u.cm, to_end=1*u.km) expected = np.ediff1d(x.value, to_begin=-0.125, to_end=1000.) * x.unit assert_array_equal(out, expected) class TestDatetimeFunctions(BasicTestSetup): def test_busday_count(self): with pytest.raises(TypeError): np.busday_count(self.q, self.q) def test_busday_offset(self): with pytest.raises(TypeError): np.busday_offset(self.q, self.q) def test_datetime_as_string(self): with pytest.raises(TypeError): np.datetime_as_string(self.q) def test_is_busday(self): with pytest.raises(TypeError): np.is_busday(self.q) # These functions always worked; ensure they do not regress. # Note that they are *not* wrapped so no need to check coverage. @pytest.mark.parametrize('function', [np.fft.fftfreq, np.fft.rfftfreq]) def test_fft_frequencies(function): out = function(128, d=0.1*u.s) expected = function(128, d=0.1) / u.s assert_array_equal(out, expected) @needs_array_function class TestFFT(InvariantUnitTestSetup): # These are all trivial, just preserve the unit. def setup(self): # Use real input; gets turned into complex as needed. self.q = np.arange(128.).reshape(8, -1) * u.s def test_fft(self): self.check(np.fft.fft) def test_ifft(self): self.check(np.fft.ifft) def test_rfft(self): self.check(np.fft.rfft) def test_irfft(self): self.check(np.fft.irfft) def test_fft2(self): self.check(np.fft.fft2) def test_ifft2(self): self.check(np.fft.ifft2) def test_rfft2(self): self.check(np.fft.rfft2) def test_irfft2(self): self.check(np.fft.irfft2) def test_fftn(self): self.check(np.fft.fftn) def test_ifftn(self): self.check(np.fft.ifftn) def test_rfftn(self): self.check(np.fft.rfftn) def test_irfftn(self): self.check(np.fft.irfftn) def test_hfft(self): self.check(np.fft.hfft) def test_ihfft(self): self.check(np.fft.ihfft) def test_fftshift(self): self.check(np.fft.fftshift) def test_ifftshift(self): self.check(np.fft.ifftshift) class TestLinAlg(metaclass=CoverageMeta): def setup(self): # Use a matrix safe for inversion, etc. self.q = np.array([[1., -1., 2.], [0., 3., -1.], [-1., -1., 1.]]) << u.m def test_cond(self): c = np.linalg.cond(self.q) expected = np.linalg.cond(self.q.value) assert c == expected def test_matrix_rank(self): r = np.linalg.matrix_rank(self.q) x = np.linalg.matrix_rank(self.q.value) assert r == x @needs_array_function def test_matrix_rank_with_tol(self): # Use a matrix that is not so good, so tol=1 and tol=0.01 differ. q = np.arange(9.).reshape(3, 3) / 4 * u.m tol = 1. * u.cm r2 = np.linalg.matrix_rank(q, tol) x2 = np.linalg.matrix_rank(q.value, tol.to_value(q.unit)) assert r2 == x2 def test_matrix_power(self): q1 = np.linalg.matrix_power(self.q, 1) assert_array_equal(q1, self.q) q2 = np.linalg.matrix_power(self.q, 2) assert_array_equal(q2, self.q @ self.q) q2 = np.linalg.matrix_power(self.q, 4) assert_array_equal(q2, self.q @ self.q @ self.q @ self.q) @needs_array_function def test_matrix_inv_power(self): qinv = np.linalg.inv(self.q.value) / self.q.unit qm1 = np.linalg.matrix_power(self.q, -1) assert_array_equal(qm1, qinv) qm3 = np.linalg.matrix_power(self.q, -3) assert_array_equal(qm3, qinv @ qinv @ qinv) @needs_array_function def test_multi_dot(self): q2 = np.linalg.multi_dot([self.q, self.q]) q2x = self.q @ self.q assert_array_equal(q2, q2x) q3 = np.linalg.multi_dot([self.q, self.q, self.q]) q3x = self.q @ self.q @ self.q assert_array_equal(q3, q3x) @needs_array_function def test_svd(self): m = np.arange(10.) * np.arange(5.)[:, np.newaxis] * u.m svd_u, svd_s, svd_vt = np.linalg.svd(m, full_matrices=False) svd_ux, svd_sx, svd_vtx = np.linalg.svd(m.value, full_matrices=False) svd_sx <<= m.unit assert_array_equal(svd_u, svd_ux) assert_array_equal(svd_vt, svd_vtx) assert_array_equal(svd_s, svd_sx) assert u.allclose(svd_u @ np.diag(svd_s) @ svd_vt, m) s2 = np.linalg.svd(m, compute_uv=False) svd_s2x = np.linalg.svd(m.value, compute_uv=False) << m.unit assert_array_equal(s2, svd_s2x) @needs_array_function def test_inv(self): inv = np.linalg.inv(self.q) expected = np.linalg.inv(self.q.value) / self.q.unit assert_array_equal(inv, expected) @needs_array_function def test_pinv(self): pinv = np.linalg.pinv(self.q) expected = np.linalg.pinv(self.q.value) / self.q.unit assert_array_equal(pinv, expected) rcond = 0.01 * u.cm pinv2 = np.linalg.pinv(self.q, rcond) expected2 = np.linalg.pinv(self.q.value, rcond.to_value(self.q.unit)) / self.q.unit assert_array_equal(pinv2, expected2) @needs_array_function def test_tensorinv(self): inv = np.linalg.tensorinv(self.q, ind=1) expected = np.linalg.tensorinv(self.q.value, ind=1) / self.q.unit assert_array_equal(inv, expected) @needs_array_function def test_det(self): det = np.linalg.det(self.q) expected = np.linalg.det(self.q.value) expected <<= self.q.unit ** self.q.shape[-1] assert_array_equal(det, expected) with pytest.raises(np.linalg.LinAlgError): np.linalg.det(self.q[0]) # Not 2-D with pytest.raises(np.linalg.LinAlgError): np.linalg.det(self.q[:-1]) # Not square. @needs_array_function def test_slogdet(self): # TODO: Could be supported if we had a natural logarithm unit. with pytest.raises(TypeError): logdet = np.linalg.slogdet(self.q) assert hasattr(logdet, 'unit') @needs_array_function def test_solve(self): b = np.array([1., 2., 4.]) * u.m / u.s x = np.linalg.solve(self.q, b) xx = np.linalg.solve(self.q.value, b.value) xx <<= b.unit / self.q.unit assert_array_equal(x, xx) assert u.allclose(self.q @ x, b) @needs_array_function def test_tensorsolve(self): b = np.array([1., 2., 4.]) * u.m / u.s x = np.linalg.tensorsolve(self.q, b) xx = np.linalg.tensorsolve(self.q.value, b.value) xx <<= b.unit / self.q.unit assert_array_equal(x, xx) assert u.allclose(self.q @ x, b) @needs_array_function def test_lstsq(self): b = np.array([1., 2., 4.]) * u.m / u.s x, residuals, rank, s = np.linalg.lstsq(self.q, b, rcond=None) xx, residualsx, rankx, sx = np.linalg.lstsq(self.q.value, b.value, rcond=None) xx <<= b.unit / self.q.unit residualsx <<= b.unit ** 2 sx <<= self.q.unit assert_array_equal(x, xx) assert_array_equal(residuals, residualsx) assert_array_equal(s, sx) assert rank == rankx assert u.allclose(self.q @ x, b) # Also do one where we can check the answer... m = np.eye(3) b = np.arange(3) * u.m x, residuals, rank, s = np.linalg.lstsq(m, b, rcond=1.*u.percent) assert_array_equal(x, b) assert np.all(residuals == 0 * u.m**2) assert rank == 3 assert_array_equal(s, np.array([1., 1., 1.]) << u.one) with pytest.raises(u.UnitsError): np.linalg.lstsq(m, b, rcond=1.*u.s) @needs_array_function def test_norm(self): n = np.linalg.norm(self.q) expected = np.linalg.norm(self.q.value) << self.q.unit assert_array_equal(n, expected) # Special case: 1-D, ord=0. n1 = np.linalg.norm(self.q[0], ord=0) expected1 = np.linalg.norm(self.q[0].value, ord=0) << u.one assert_array_equal(n1, expected1) @needs_array_function def test_cholesky(self): # Numbers from np.linalg.cholesky docstring. q = np.array([[1, -2j], [2j, 5]]) * u.m cd = np.linalg.cholesky(q) cdx = np.linalg.cholesky(q.value) << q.unit ** 0.5 assert_array_equal(cd, cdx) assert u.allclose(cd @ cd.T.conj(), q) @needs_array_function def test_qr(self): # This is not exhaustive... a = np.array([[1, -2j], [2j, 5]]) * u.m q, r = np.linalg.qr(a) qx, rx = np.linalg.qr(a.value) qx <<= u.one rx <<= a.unit assert_array_equal(q, qx) assert_array_equal(r, rx) assert u.allclose(q @ r, a) @needs_array_function def test_eig(self): w, v = np.linalg.eig(self.q) wx, vx = np.linalg.eig(self.q.value) wx <<= self.q.unit vx <<= u.one assert_array_equal(w, wx) assert_array_equal(v, vx) # Comprehensible example q = np.diag((1, 2, 3) * u.m) w, v = np.linalg.eig(q) assert_array_equal(w, np.arange(1, 4) * u.m) assert_array_equal(v, np.eye(3)) @needs_array_function def test_eigvals(self): w = np.linalg.eigvals(self.q) wx = np.linalg.eigvals(self.q.value) << self.q.unit assert_array_equal(w, wx) # Comprehensible example q = np.diag((1, 2, 3) * u.m) w = np.linalg.eigvals(q) assert_array_equal(w, np.arange(1, 4) * u.m) @needs_array_function def test_eigh(self): w, v = np.linalg.eigh(self.q) wx, vx = np.linalg.eigh(self.q.value) wx <<= self.q.unit vx <<= u.one assert_array_equal(w, wx) assert_array_equal(v, vx) @needs_array_function def test_eigvalsh(self): w = np.linalg.eigvalsh(self.q) wx = np.linalg.eigvalsh(self.q.value) << self.q.unit assert_array_equal(w, wx) class TestRecFunctions(metaclass=CoverageMeta): def test_structured_to_unstructured(self): # can't unstructure something with incompatible units with pytest.raises(u.UnitConversionError, match="'m'"): rfn.structured_to_unstructured(u.Quantity((0, 0.6), u.Unit("(eV, m)"))) # it works if all the units are equal struct = u.Quantity((0, 0, 0.6), u.Unit("(eV, eV, eV)")) unstruct = rfn.structured_to_unstructured(struct) assert_array_equal(unstruct, [0, 0, 0.6] * u.eV) # also if the units are convertible struct = u.Quantity((0, 0, 0.6), u.Unit("(eV, eV, keV)")) unstruct = rfn.structured_to_unstructured(struct) assert_array_equal(unstruct, [0, 0, 600] * u.eV) struct = u.Quantity((0, 0, 1.7827e-33), u.Unit("(eV, eV, g)")) with u.add_enabled_equivalencies(u.mass_energy()): unstruct = rfn.structured_to_unstructured(struct) u.allclose(unstruct, [0, 0, 1.0000214] * u.eV) # and if the dtype is nested struct = [(5, (400.0, 3e6))] * u.Unit('m, (cm, um)') unstruct = rfn.structured_to_unstructured(struct) assert_array_equal(unstruct, [[5, 4, 3]] * u.m) # For the other tests of ``structured_to_unstructured``, see # ``test_structured.TestStructuredQuantityFunctions.test_structured_to_unstructured`` def test_unstructured_to_structured(self): unstruct = [1, 2, 3] * u.m dtype=np.dtype([("f1", float), ("f2", float), ("f3", float)]) # it works struct = rfn.unstructured_to_structured(unstruct, dtype=dtype) assert struct.unit == u.Unit("(m, m, m)") assert_array_equal(rfn.structured_to_unstructured(struct), unstruct) # can't structure something that's already structured with pytest.raises(ValueError, match="arr must have at least one dimension"): rfn.unstructured_to_structured(struct, dtype=dtype) # For the other tests of ``structured_to_unstructured``, see # ``test_structured.TestStructuredQuantityFunctions.test_unstructured_to_structured`` untested_functions = set() if NUMPY_LT_1_20: financial_functions = {f for f in all_wrapped_functions.values() if f in np.lib.financial.__dict__.values()} untested_functions |= financial_functions if NUMPY_LT_1_23: deprecated_functions = { # Deprecated, removed in numpy 1.23 np.asscalar, np.alen, } else: deprecated_functions = set() untested_functions |= deprecated_functions io_functions = {np.save, np.savez, np.savetxt, np.savez_compressed} untested_functions |= io_functions poly_functions = { np.poly, np.polyadd, np.polyder, np.polydiv, np.polyfit, np.polyint, np.polymul, np.polysub, np.polyval, np.roots, np.vander } untested_functions |= poly_functions rec_functions = { rfn.rec_append_fields, rfn.rec_drop_fields, rfn.rec_join, rfn.drop_fields, rfn.rename_fields, rfn.append_fields, rfn.join_by, rfn.repack_fields, rfn.apply_along_fields, rfn.assign_fields_by_name, rfn.merge_arrays, rfn.stack_arrays, rfn.find_duplicates, rfn.recursive_fill_fields, rfn.require_fields, } untested_functions |= rec_functions @needs_array_function def test_testing_completeness(): assert not CoverageMeta.covered.intersection(untested_functions) assert all_wrapped == (CoverageMeta.covered | untested_functions) class TestFunctionHelpersCompleteness: @pytest.mark.parametrize('one, two', itertools.combinations( (SUBCLASS_SAFE_FUNCTIONS, UNSUPPORTED_FUNCTIONS, set(FUNCTION_HELPERS.keys()), set(DISPATCHED_FUNCTIONS.keys())), 2)) def test_no_duplicates(self, one, two): assert not one.intersection(two) @needs_array_function def test_all_included(self): included_in_helpers = (SUBCLASS_SAFE_FUNCTIONS | UNSUPPORTED_FUNCTIONS | set(FUNCTION_HELPERS.keys()) | set(DISPATCHED_FUNCTIONS.keys())) assert all_wrapped == included_in_helpers # untested_function is created using all_wrapped_functions @needs_array_function def test_ignored_are_untested(self): assert IGNORED_FUNCTIONS | TBD_FUNCTIONS == untested_functions
dd537ad3478e3f3c34a87b4984ec25746e8ab68b03cedb39992d8314d6442fbd
# The purpose of these tests are to ensure that calling ufuncs with quantities # returns quantities with the right units, or raises exceptions. import concurrent.futures import warnings from collections import namedtuple import numpy as np import pytest from erfa import ufunc as erfa_ufunc from numpy.testing import assert_allclose from astropy import units as u from astropy.units import quantity_helper as qh from astropy.units.quantity_helper.converters import UfuncHelpers from astropy.units.quantity_helper.helpers import helper_sqrt from astropy.utils.compat.optional_deps import HAS_SCIPY # noqa testcase = namedtuple('testcase', ['f', 'q_in', 'q_out']) testexc = namedtuple('testexc', ['f', 'q_in', 'exc', 'msg']) testwarn = namedtuple('testwarn', ['f', 'q_in', 'wfilter']) @pytest.mark.skip def test_testcase(tc): results = tc.f(*tc.q_in) # careful of the following line, would break on a function returning # a single tuple (as opposed to tuple of return values) results = (results, ) if type(results) != tuple else results for result, expected in zip(results, tc.q_out): assert result.unit == expected.unit assert_allclose(result.value, expected.value, atol=1.E-15) @pytest.mark.skip def test_testexc(te): with pytest.raises(te.exc) as exc: te.f(*te.q_in) if te.msg is not None: assert te.msg in exc.value.args[0] @pytest.mark.skip def test_testwarn(tw): with warnings.catch_warnings(): warnings.filterwarnings(tw.wfilter) tw.f(*tw.q_in) class TestUfuncHelpers: # Note that this test should work even if scipy is present, since # the scipy.special ufuncs are only loaded on demand. # The test passes independently of whether erfa is already loaded # (which will be the case for a full test, since coordinates uses it). def test_coverage(self): """Test that we cover all ufunc's""" all_np_ufuncs = {ufunc for ufunc in np.core.umath.__dict__.values() if isinstance(ufunc, np.ufunc)} all_q_ufuncs = (qh.UNSUPPORTED_UFUNCS | set(qh.UFUNC_HELPERS.keys())) # Check that every numpy ufunc is covered. assert all_np_ufuncs - all_q_ufuncs == set() # Check that all ufuncs we cover come from numpy or erfa. # (Since coverage for erfa is incomplete, we do not check # this the other way). all_erfa_ufuncs = {ufunc for ufunc in erfa_ufunc.__dict__.values() if isinstance(ufunc, np.ufunc)} assert (all_q_ufuncs - all_np_ufuncs - all_erfa_ufuncs == set()) def test_scipy_registered(self): # Should be registered as existing even if scipy is not available. assert 'scipy.special' in qh.UFUNC_HELPERS.modules def test_removal_addition(self): assert np.add in qh.UFUNC_HELPERS assert np.add not in qh.UNSUPPORTED_UFUNCS qh.UFUNC_HELPERS[np.add] = None assert np.add not in qh.UFUNC_HELPERS assert np.add in qh.UNSUPPORTED_UFUNCS qh.UFUNC_HELPERS[np.add] = qh.UFUNC_HELPERS[np.subtract] assert np.add in qh.UFUNC_HELPERS assert np.add not in qh.UNSUPPORTED_UFUNCS @pytest.mark.slow def test_thread_safety(self, fast_thread_switching): def dummy_ufunc(*args, **kwargs): return np.sqrt(*args, **kwargs) def register(): return {dummy_ufunc: helper_sqrt} workers = 8 with concurrent.futures.ThreadPoolExecutor(max_workers=workers) as executor: for p in range(10000): helpers = UfuncHelpers() helpers.register_module( 'astropy.units.tests.test_quantity_ufuncs', ['dummy_ufunc'], register ) futures = [executor.submit(lambda: helpers[dummy_ufunc]) for i in range(workers)] values = [future.result() for future in futures] assert values == [helper_sqrt] * workers class TestQuantityTrigonometricFuncs: """ Test trigonometric functions """ @pytest.mark.parametrize('tc', ( testcase( f=np.sin, q_in=(30. * u.degree, ), q_out=(0.5*u.dimensionless_unscaled, ) ), testcase( f=np.sin, q_in=(np.array([0., np.pi / 4., np.pi / 2.]) * u.radian, ), q_out=(np.array([0., 1. / np.sqrt(2.), 1.]) * u.one, ) ), testcase( f=np.arcsin, q_in=(np.sin(30. * u.degree), ), q_out=(np.radians(30.) * u.radian, ) ), testcase( f=np.arcsin, q_in=(np.sin(np.array([0., np.pi / 4., np.pi / 2.]) * u.radian), ), q_out=(np.array([0., np.pi / 4., np.pi / 2.]) * u.radian, ) ), testcase( f=np.cos, q_in=(np.pi / 3. * u.radian, ), q_out=(0.5 * u.dimensionless_unscaled, ) ), testcase( f=np.cos, q_in=(np.array([0., np.pi / 4., np.pi / 2.]) * u.radian, ), q_out=(np.array([1., 1. / np.sqrt(2.), 0.]) * u.one, ) ), testcase( f=np.arccos, q_in=(np.cos(np.pi / 3. * u.radian), ), q_out=(np.pi / 3. * u.radian, ) ), testcase( f=np.arccos, q_in=(np.cos(np.array([0., np.pi / 4., np.pi / 2.]) * u.radian), ), q_out=(np.array([0., np.pi / 4., np.pi / 2.]) * u.radian, ), ), testcase( f=np.tan, q_in=(np.pi / 3. * u.radian, ), q_out=(np.sqrt(3.) * u.dimensionless_unscaled, ) ), testcase( f=np.tan, q_in=(np.array([0., 45., 135., 180.]) * u.degree, ), q_out=(np.array([0., 1., -1., 0.]) * u.dimensionless_unscaled, ) ), testcase( f=np.arctan, q_in=(np.tan(np.pi / 3. * u.radian), ), q_out=(np.pi / 3. * u.radian, ) ), testcase( f=np.arctan, q_in=(np.tan(np.array([10., 30., 70., 80.]) * u.degree), ), q_out=(np.radians(np.array([10., 30., 70., 80.]) * u.degree), ) ), testcase( f=np.arctan2, q_in=(np.array([10., 30., 70., 80.]) * u.m, 2.0 * u.km), q_out=(np.arctan2(np.array([10., 30., 70., 80.]), 2000.) * u.radian, ) ), testcase( f=np.arctan2, q_in=((np.array([10., 80.]) * u.m / (2.0 * u.km)).to(u.one), 1.), q_out=(np.arctan2(np.array([10., 80.]) / 2000., 1.) * u.radian, ) ), testcase( f=np.deg2rad, q_in=(180. * u.degree, ), q_out=(np.pi * u.radian, ) ), testcase( f=np.radians, q_in=(180. * u.degree, ), q_out=(np.pi * u.radian, ) ), testcase( f=np.deg2rad, q_in=(3. * u.radian, ), q_out=(3. * u.radian, ) ), testcase( f=np.radians, q_in=(3. * u.radian, ), q_out=(3. * u.radian, ) ), testcase( f=np.rad2deg, q_in=(60. * u.degree, ), q_out=(60. * u.degree, ) ), testcase( f=np.degrees, q_in=(60. * u.degree, ), q_out=(60. * u.degree, ) ), testcase( f=np.rad2deg, q_in=(np.pi * u.radian, ), q_out=(180. * u.degree, ) ), testcase( f=np.degrees, q_in=(np.pi * u.radian, ), q_out=(180. * u.degree, ) ) )) def test_testcases(self, tc): return test_testcase(tc) @pytest.mark.parametrize('te', ( testexc( f=np.deg2rad, q_in=(3. * u.m, ), exc=TypeError, msg=None ), testexc( f=np.radians, q_in=(3. * u.m, ), exc=TypeError, msg=None ), testexc( f=np.rad2deg, q_in=(3. * u.m), exc=TypeError, msg=None ), testexc( f=np.degrees, q_in=(3. * u.m), exc=TypeError, msg=None ), testexc( f=np.sin, q_in=(3. * u.m, ), exc=TypeError, msg="Can only apply 'sin' function to quantities with angle units" ), testexc( f=np.arcsin, q_in=(3. * u.m, ), exc=TypeError, msg="Can only apply 'arcsin' function to dimensionless quantities" ), testexc( f=np.cos, q_in=(3. * u.s, ), exc=TypeError, msg="Can only apply 'cos' function to quantities with angle units" ), testexc( f=np.arccos, q_in=(3. * u.s, ), exc=TypeError, msg="Can only apply 'arccos' function to dimensionless quantities" ), testexc( f=np.tan, q_in=(np.array([1, 2, 3]) * u.N, ), exc=TypeError, msg="Can only apply 'tan' function to quantities with angle units" ), testexc( f=np.arctan, q_in=(np.array([1, 2, 3]) * u.N, ), exc=TypeError, msg="Can only apply 'arctan' function to dimensionless quantities" ), testexc( f=np.arctan2, q_in=(np.array([1, 2, 3]) * u.N, 1. * u.s), exc=u.UnitsError, msg="compatible dimensions" ), testexc( f=np.arctan2, q_in=(np.array([1, 2, 3]) * u.N, 1.), exc=u.UnitsError, msg="dimensionless quantities when other arg" ) )) def test_testexcs(self, te): return test_testexc(te) @pytest.mark.parametrize('tw', ( testwarn( f=np.arcsin, q_in=(27. * u.pc / (15 * u.kpc), ), wfilter='error' ), )) def test_testwarns(self, tw): return test_testwarn(tw) class TestQuantityMathFuncs: """ Test other mathematical functions """ def test_multiply_scalar(self): assert np.multiply(4. * u.m, 2. / u.s) == 8. * u.m / u.s assert np.multiply(4. * u.m, 2.) == 8. * u.m assert np.multiply(4., 2. / u.s) == 8. / u.s def test_multiply_array(self): assert np.all(np.multiply(np.arange(3.) * u.m, 2. / u.s) == np.arange(0, 6., 2.) * u.m / u.s) @pytest.mark.skipif(not isinstance(getattr(np, 'matmul', None), np.ufunc), reason="np.matmul is not yet a gufunc") def test_matmul(self): q = np.arange(3.) * u.m r = np.matmul(q, q) assert r == 5. * u.m ** 2 # less trivial case. q1 = np.eye(3) * u.m q2 = np.array([[[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]], [[0., 1., 0.], [0., 0., 1.], [1., 0., 0.]], [[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]]) / u.s r2 = np.matmul(q1, q2) assert np.all(r2 == np.matmul(q1.value, q2.value) * q1.unit * q2.unit) @pytest.mark.parametrize('function', (np.divide, np.true_divide)) def test_divide_scalar(self, function): assert function(4. * u.m, 2. * u.s) == function(4., 2.) * u.m / u.s assert function(4. * u.m, 2.) == function(4., 2.) * u.m assert function(4., 2. * u.s) == function(4., 2.) / u.s @pytest.mark.parametrize('function', (np.divide, np.true_divide)) def test_divide_array(self, function): assert np.all(function(np.arange(3.) * u.m, 2. * u.s) == function(np.arange(3.), 2.) * u.m / u.s) def test_floor_divide_remainder_and_divmod(self): inch = u.Unit(0.0254 * u.m) dividend = np.array([1., 2., 3.]) * u.m divisor = np.array([3., 4., 5.]) * inch quotient = dividend // divisor remainder = dividend % divisor assert_allclose(quotient.value, [13., 19., 23.]) assert quotient.unit == u.dimensionless_unscaled assert_allclose(remainder.value, [0.0094, 0.0696, 0.079]) assert remainder.unit == dividend.unit quotient2 = np.floor_divide(dividend, divisor) remainder2 = np.remainder(dividend, divisor) assert np.all(quotient2 == quotient) assert np.all(remainder2 == remainder) quotient3, remainder3 = divmod(dividend, divisor) assert np.all(quotient3 == quotient) assert np.all(remainder3 == remainder) with pytest.raises(TypeError): divmod(dividend, u.km) with pytest.raises(TypeError): dividend // u.km with pytest.raises(TypeError): dividend % u.km quotient4, remainder4 = np.divmod(dividend, divisor) assert np.all(quotient4 == quotient) assert np.all(remainder4 == remainder) with pytest.raises(TypeError): np.divmod(dividend, u.km) def test_sqrt_scalar(self): assert np.sqrt(4. * u.m) == 2. * u.m ** 0.5 def test_sqrt_array(self): assert np.all(np.sqrt(np.array([1., 4., 9.]) * u.m) == np.array([1., 2., 3.]) * u.m ** 0.5) def test_square_scalar(self): assert np.square(4. * u.m) == 16. * u.m ** 2 def test_square_array(self): assert np.all(np.square(np.array([1., 2., 3.]) * u.m) == np.array([1., 4., 9.]) * u.m ** 2) def test_reciprocal_scalar(self): assert np.reciprocal(4. * u.m) == 0.25 / u.m def test_reciprocal_array(self): assert np.all(np.reciprocal(np.array([1., 2., 4.]) * u.m) == np.array([1., 0.5, 0.25]) / u.m) def test_heaviside_scalar(self): assert np.heaviside(0. * u.m, 0.5) == 0.5 * u.dimensionless_unscaled assert np.heaviside(0. * u.s, 25 * u.percent) == 0.25 * u.dimensionless_unscaled assert np.heaviside(2. * u.J, 0.25) == 1. * u.dimensionless_unscaled def test_heaviside_array(self): values = np.array([-1., 0., 0., +1.]) halfway = np.array([0.75, 0.25, 0.75, 0.25]) * u.dimensionless_unscaled assert np.all(np.heaviside(values * u.m, halfway * u.dimensionless_unscaled) == [0, 0.25, 0.75, +1.] * u.dimensionless_unscaled) @pytest.mark.parametrize('function', (np.cbrt, )) def test_cbrt_scalar(self, function): assert function(8. * u.m**3) == 2. * u.m @pytest.mark.parametrize('function', (np.cbrt, )) def test_cbrt_array(self, function): # Calculate cbrt on both sides since on Windows the cube root of 64 # does not exactly equal 4. See 4388. values = np.array([1., 8., 64.]) assert np.all(function(values * u.m**3) == function(values) * u.m) def test_power_scalar(self): assert np.power(4. * u.m, 2.) == 16. * u.m ** 2 assert np.power(4., 200. * u.cm / u.m) == \ u.Quantity(16., u.dimensionless_unscaled) # regression check on #1696 assert np.power(4. * u.m, 0.) == 1. * u.dimensionless_unscaled def test_power_array(self): assert np.all(np.power(np.array([1., 2., 3.]) * u.m, 3.) == np.array([1., 8., 27.]) * u.m ** 3) # regression check on #1696 assert np.all(np.power(np.arange(4.) * u.m, 0.) == 1. * u.dimensionless_unscaled) def test_float_power_array(self): assert np.all(np.float_power(np.array([1., 2., 3.]) * u.m, 3.) == np.array([1., 8., 27.]) * u.m ** 3) # regression check on #1696 assert np.all(np.float_power(np.arange(4.) * u.m, 0.) == 1. * u.dimensionless_unscaled) def test_power_array_array(self): with pytest.raises(ValueError): np.power(4. * u.m, [2., 4.]) def test_power_array_array2(self): with pytest.raises(ValueError): np.power([2., 4.] * u.m, [2., 4.]) def test_power_array_array3(self): # Identical unit fractions are converted automatically to dimensionless # and should be allowed as base for np.power: #4764 q = [2., 4.] * u.m / u.m powers = [2., 4.] res = np.power(q, powers) assert np.all(res.value == q.value ** powers) assert res.unit == u.dimensionless_unscaled # The same holds for unit fractions that are scaled dimensionless. q2 = [2., 4.] * u.m / u.cm # Test also against different types of exponent for cls in (list, tuple, np.array, np.ma.array, u.Quantity): res2 = np.power(q2, cls(powers)) assert np.all(res2.value == q2.to_value(1) ** powers) assert res2.unit == u.dimensionless_unscaled # Though for single powers, we keep the composite unit. res3 = q2 ** 2 assert np.all(res3.value == q2.value ** 2) assert res3.unit == q2.unit ** 2 assert np.all(res3 == q2 ** [2, 2]) def test_power_invalid(self): with pytest.raises(TypeError) as exc: np.power(3., 4. * u.m) assert "raise something to a dimensionless" in exc.value.args[0] def test_copysign_scalar(self): assert np.copysign(3 * u.m, 1.) == 3. * u.m assert np.copysign(3 * u.m, 1. * u.s) == 3. * u.m assert np.copysign(3 * u.m, -1.) == -3. * u.m assert np.copysign(3 * u.m, -1. * u.s) == -3. * u.m def test_copysign_array(self): assert np.all(np.copysign(np.array([1., 2., 3.]) * u.s, -1.) == -np.array([1., 2., 3.]) * u.s) assert np.all(np.copysign(np.array([1., 2., 3.]) * u.s, -1. * u.m) == -np.array([1., 2., 3.]) * u.s) assert np.all(np.copysign(np.array([1., 2., 3.]) * u.s, np.array([-2., 2., -4.]) * u.m) == np.array([-1., 2., -3.]) * u.s) q = np.copysign(np.array([1., 2., 3.]), -3 * u.m) assert np.all(q == np.array([-1., -2., -3.])) assert not isinstance(q, u.Quantity) def test_ldexp_scalar(self): assert np.ldexp(4. * u.m, 2) == 16. * u.m def test_ldexp_array(self): assert np.all(np.ldexp(np.array([1., 2., 3.]) * u.m, [3, 2, 1]) == np.array([8., 8., 6.]) * u.m) def test_ldexp_invalid(self): with pytest.raises(TypeError): np.ldexp(3. * u.m, 4.) with pytest.raises(TypeError): np.ldexp(3., u.Quantity(4, u.m, dtype=int)) @pytest.mark.parametrize('function', (np.exp, np.expm1, np.exp2, np.log, np.log2, np.log10, np.log1p)) def test_exp_scalar(self, function): q = function(3. * u.m / (6. * u.m)) assert q.unit == u.dimensionless_unscaled assert q.value == function(0.5) @pytest.mark.parametrize('function', (np.exp, np.expm1, np.exp2, np.log, np.log2, np.log10, np.log1p)) def test_exp_array(self, function): q = function(np.array([2., 3., 6.]) * u.m / (6. * u.m)) assert q.unit == u.dimensionless_unscaled assert np.all(q.value == function(np.array([1. / 3., 1. / 2., 1.]))) # should also work on quantities that can be made dimensionless q2 = function(np.array([2., 3., 6.]) * u.m / (6. * u.cm)) assert q2.unit == u.dimensionless_unscaled assert_allclose(q2.value, function(np.array([100. / 3., 100. / 2., 100.]))) @pytest.mark.parametrize('function', (np.exp, np.expm1, np.exp2, np.log, np.log2, np.log10, np.log1p)) def test_exp_invalid_units(self, function): # Can't use exp() with non-dimensionless quantities with pytest.raises(TypeError) as exc: function(3. * u.m / u.s) assert exc.value.args[0] == ("Can only apply '{}' function to " "dimensionless quantities" .format(function.__name__)) def test_modf_scalar(self): q = np.modf(9. * u.m / (600. * u.cm)) assert q == (0.5 * u.dimensionless_unscaled, 1. * u.dimensionless_unscaled) def test_modf_array(self): v = np.arange(10.) * u.m / (500. * u.cm) q = np.modf(v) n = np.modf(v.to_value(u.dimensionless_unscaled)) assert q[0].unit == u.dimensionless_unscaled assert q[1].unit == u.dimensionless_unscaled assert all(q[0].value == n[0]) assert all(q[1].value == n[1]) def test_frexp_scalar(self): q = np.frexp(3. * u.m / (6. * u.m)) assert q == (np.array(0.5), np.array(0.0)) def test_frexp_array(self): q = np.frexp(np.array([2., 3., 6.]) * u.m / (6. * u.m)) assert all((_q0, _q1) == np.frexp(_d) for _q0, _q1, _d in zip(q[0], q[1], [1. / 3., 1. / 2., 1.])) def test_frexp_invalid_units(self): # Can't use prod() with non-dimensionless quantities with pytest.raises(TypeError) as exc: np.frexp(3. * u.m / u.s) assert exc.value.args[0] == ("Can only apply 'frexp' function to " "unscaled dimensionless quantities") # also does not work on quantities that can be made dimensionless with pytest.raises(TypeError) as exc: np.frexp(np.array([2., 3., 6.]) * u.m / (6. * u.cm)) assert exc.value.args[0] == ("Can only apply 'frexp' function to " "unscaled dimensionless quantities") @pytest.mark.parametrize('function', (np.logaddexp, np.logaddexp2)) def test_dimensionless_twoarg_array(self, function): q = function(np.array([2., 3., 6.]) * u.m / (6. * u.cm), 1.) assert q.unit == u.dimensionless_unscaled assert_allclose(q.value, function(np.array([100. / 3., 100. / 2., 100.]), 1.)) @pytest.mark.parametrize('function', (np.logaddexp, np.logaddexp2)) def test_dimensionless_twoarg_invalid_units(self, function): with pytest.raises(TypeError) as exc: function(1. * u.km / u.s, 3. * u.m / u.s) assert exc.value.args[0] == ("Can only apply '{}' function to " "dimensionless quantities" .format(function.__name__)) class TestInvariantUfuncs: @pytest.mark.parametrize(('ufunc'), [np.absolute, np.fabs, np.conj, np.conjugate, np.negative, np.spacing, np.rint, np.floor, np.ceil, np.positive]) def test_invariant_scalar(self, ufunc): q_i = 4.7 * u.m q_o = ufunc(q_i) assert isinstance(q_o, u.Quantity) assert q_o.unit == q_i.unit assert q_o.value == ufunc(q_i.value) @pytest.mark.parametrize(('ufunc'), [np.absolute, np.conjugate, np.negative, np.rint, np.floor, np.ceil]) def test_invariant_array(self, ufunc): q_i = np.array([-3.3, 2.1, 10.2]) * u.kg / u.s q_o = ufunc(q_i) assert isinstance(q_o, u.Quantity) assert q_o.unit == q_i.unit assert np.all(q_o.value == ufunc(q_i.value)) @pytest.mark.parametrize(('ufunc'), [np.add, np.subtract, np.hypot, np.maximum, np.minimum, np.nextafter, np.remainder, np.mod, np.fmod]) def test_invariant_twoarg_scalar(self, ufunc): q_i1 = 4.7 * u.m q_i2 = 9.4 * u.km q_o = ufunc(q_i1, q_i2) assert isinstance(q_o, u.Quantity) assert q_o.unit == q_i1.unit assert_allclose(q_o.value, ufunc(q_i1.value, q_i2.to_value(q_i1.unit))) @pytest.mark.parametrize(('ufunc'), [np.add, np.subtract, np.hypot, np.maximum, np.minimum, np.nextafter, np.remainder, np.mod, np.fmod]) def test_invariant_twoarg_array(self, ufunc): q_i1 = np.array([-3.3, 2.1, 10.2]) * u.kg / u.s q_i2 = np.array([10., -5., 1.e6]) * u.g / u.us q_o = ufunc(q_i1, q_i2) assert isinstance(q_o, u.Quantity) assert q_o.unit == q_i1.unit assert_allclose(q_o.value, ufunc(q_i1.value, q_i2.to_value(q_i1.unit))) @pytest.mark.parametrize(('ufunc', 'arbitrary'), [ (np.add, 0.), (np.subtract, 0.), (np.hypot, 0.), (np.maximum, 0.), (np.minimum, 0.), (np.nextafter, 0.), (np.remainder, np.inf), (np.mod, np.inf), (np.fmod, np.inf)]) def test_invariant_twoarg_one_arbitrary(self, ufunc, arbitrary): q_i1 = np.array([-3.3, 2.1, 10.2]) * u.kg / u.s q_o = ufunc(q_i1, arbitrary) assert isinstance(q_o, u.Quantity) assert q_o.unit == q_i1.unit assert_allclose(q_o.value, ufunc(q_i1.value, arbitrary)) @pytest.mark.parametrize(('ufunc'), [np.add, np.subtract, np.hypot, np.maximum, np.minimum, np.nextafter, np.remainder, np.mod, np.fmod]) def test_invariant_twoarg_invalid_units(self, ufunc): q_i1 = 4.7 * u.m q_i2 = 9.4 * u.s with pytest.raises(u.UnitsError) as exc: ufunc(q_i1, q_i2) assert "compatible dimensions" in exc.value.args[0] class TestComparisonUfuncs: @pytest.mark.parametrize(('ufunc'), [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal, np.equal]) def test_comparison_valid_units(self, ufunc): q_i1 = np.array([-3.3, 2.1, 10.2]) * u.kg / u.s q_i2 = np.array([10., -5., 1.e6]) * u.g / u.Ms q_o = ufunc(q_i1, q_i2) assert not isinstance(q_o, u.Quantity) assert q_o.dtype == bool assert np.all(q_o == ufunc(q_i1.value, q_i2.to_value(q_i1.unit))) q_o2 = ufunc(q_i1 / q_i2, 2.) assert not isinstance(q_o2, u.Quantity) assert q_o2.dtype == bool assert np.all(q_o2 == ufunc((q_i1 / q_i2) .to_value(u.dimensionless_unscaled), 2.)) # comparison with 0., inf, nan is OK even for dimensional quantities # (though ignore numpy runtime warnings for comparisons with nan). with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=RuntimeWarning) for arbitrary_unit_value in (0., np.inf, np.nan): ufunc(q_i1, arbitrary_unit_value) ufunc(q_i1, arbitrary_unit_value*np.ones(len(q_i1))) # and just for completeness ufunc(q_i1, np.array([0., np.inf, np.nan])) @pytest.mark.parametrize(('ufunc'), [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal, np.equal]) def test_comparison_invalid_units(self, ufunc): q_i1 = 4.7 * u.m q_i2 = 9.4 * u.s with pytest.raises(u.UnitsError) as exc: ufunc(q_i1, q_i2) assert "compatible dimensions" in exc.value.args[0] @pytest.mark.parametrize('ufunc', (np.isfinite, np.isinf, np.isnan, np.signbit)) def test_onearg_test_ufuncs(self, ufunc): q = [1., np.inf, -np.inf, np.nan, -1., 0.] * u.m out = ufunc(q) assert not isinstance(out, u.Quantity) assert out.dtype == bool assert np.all(out == ufunc(q.value)) # Ignore RuntimeWarning raised on Windows and s390. @pytest.mark.filterwarnings('ignore:.*invalid value encountered in sign') def test_sign(self): q = [1., np.inf, -np.inf, np.nan, -1., 0.] * u.m out = np.sign(q) assert not isinstance(out, u.Quantity) assert out.dtype == q.dtype assert np.all((out == np.sign(q.value)) | (np.isnan(out) & np.isnan(q.value))) class TestInplaceUfuncs: @pytest.mark.parametrize(('value'), [1., np.arange(10.)]) def test_one_argument_ufunc_inplace(self, value): # without scaling s = value * u.rad check = s np.sin(s, out=s) assert check is s assert check.unit == u.dimensionless_unscaled # with scaling s2 = (value * u.rad).to(u.deg) check2 = s2 np.sin(s2, out=s2) assert check2 is s2 assert check2.unit == u.dimensionless_unscaled assert_allclose(s.value, s2.value) @pytest.mark.parametrize(('value'), [1., np.arange(10.)]) def test_one_argument_ufunc_inplace_2(self, value): """Check inplace works with non-quantity input and quantity output""" s = value * u.m check = s np.absolute(value, out=s) assert check is s assert np.all(check.value == np.absolute(value)) assert check.unit is u.dimensionless_unscaled np.sqrt(value, out=s) assert check is s assert np.all(check.value == np.sqrt(value)) assert check.unit is u.dimensionless_unscaled np.exp(value, out=s) assert check is s assert np.all(check.value == np.exp(value)) assert check.unit is u.dimensionless_unscaled np.arcsin(value/10., out=s) assert check is s assert np.all(check.value == np.arcsin(value/10.)) assert check.unit is u.radian @pytest.mark.parametrize(('value'), [1., np.arange(10.)]) def test_one_argument_two_output_ufunc_inplace(self, value): v = 100. * value * u.cm / u.m v_copy = v.copy() tmp = v.copy() check = v np.modf(v, tmp, v) assert check is v assert check.unit == u.dimensionless_unscaled v2 = v_copy.to(u.dimensionless_unscaled) check2 = v2 np.modf(v2, tmp, v2) assert check2 is v2 assert check2.unit == u.dimensionless_unscaled # can also replace in last position if no scaling is needed v3 = v_copy.to(u.dimensionless_unscaled) check3 = v3 np.modf(v3, v3, tmp) assert check3 is v3 assert check3.unit == u.dimensionless_unscaled # can also replace input with first output when scaling v4 = v_copy.copy() check4 = v4 np.modf(v4, v4, tmp) assert check4 is v4 assert check4.unit == u.dimensionless_unscaled @pytest.mark.parametrize(('value'), [1., np.arange(10.)]) def test_two_argument_ufunc_inplace_1(self, value): s = value * u.cycle check = s s /= 2. assert check is s assert np.all(check.value == value / 2.) s /= u.s assert check is s assert check.unit == u.cycle / u.s s *= 2. * u.s assert check is s assert np.all(check == value * u.cycle) @pytest.mark.parametrize(('value'), [1., np.arange(10.)]) def test_two_argument_ufunc_inplace_2(self, value): s = value * u.cycle check = s np.arctan2(s, s, out=s) assert check is s assert check.unit == u.radian with pytest.raises(u.UnitsError): s += 1. * u.m assert check is s assert check.unit == u.radian np.arctan2(1. * u.deg, s, out=s) assert check is s assert check.unit == u.radian np.add(1. * u.deg, s, out=s) assert check is s assert check.unit == u.deg np.multiply(2. / u.s, s, out=s) assert check is s assert check.unit == u.deg / u.s def test_two_argument_ufunc_inplace_3(self): s = np.array([1., 2., 3.]) * u.dimensionless_unscaled np.add(np.array([1., 2., 3.]), np.array([1., 2., 3.]) * 2., out=s) assert np.all(s.value == np.array([3., 6., 9.])) assert s.unit is u.dimensionless_unscaled np.arctan2(np.array([1., 2., 3.]), np.array([1., 2., 3.]) * 2., out=s) assert_allclose(s.value, np.arctan2(1., 2.)) assert s.unit is u.radian @pytest.mark.parametrize(('value'), [1., np.arange(10.)]) def test_two_argument_two_output_ufunc_inplace(self, value): v = value * u.m divisor = 70.*u.cm v1 = v.copy() tmp = v.copy() check = np.divmod(v1, divisor, out=(tmp, v1)) assert check[0] is tmp and check[1] is v1 assert tmp.unit == u.dimensionless_unscaled assert v1.unit == v.unit v2 = v.copy() check2 = np.divmod(v2, divisor, out=(v2, tmp)) assert check2[0] is v2 and check2[1] is tmp assert v2.unit == u.dimensionless_unscaled assert tmp.unit == v.unit v3a = v.copy() v3b = v.copy() check3 = np.divmod(v3a, divisor, out=(v3a, v3b)) assert check3[0] is v3a and check3[1] is v3b assert v3a.unit == u.dimensionless_unscaled assert v3b.unit == v.unit def test_ufunc_inplace_non_contiguous_data(self): # ensure inplace works also for non-contiguous data (closes #1834) s = np.arange(10.) * u.m s_copy = s.copy() s2 = s[::2] s2 += 1. * u.cm assert np.all(s[::2] > s_copy[::2]) assert np.all(s[1::2] == s_copy[1::2]) def test_ufunc_inplace_non_standard_dtype(self): """Check that inplace operations check properly for casting. First two tests that check that float32 is kept close #3976. """ a1 = u.Quantity([1, 2, 3, 4], u.m, dtype=np.float32) a1 *= np.float32(10) assert a1.unit is u.m assert a1.dtype == np.float32 a2 = u.Quantity([1, 2, 3, 4], u.m, dtype=np.float32) a2 += (20.*u.km) assert a2.unit is u.m assert a2.dtype == np.float32 # For integer, in-place only works if no conversion is done. a3 = u.Quantity([1, 2, 3, 4], u.m, dtype=np.int32) a3 += u.Quantity(10, u.m, dtype=np.int64) assert a3.unit is u.m assert a3.dtype == np.int32 a4 = u.Quantity([1, 2, 3, 4], u.m, dtype=np.int32) with pytest.raises(TypeError): a4 += u.Quantity(10, u.mm, dtype=np.int64) @pytest.mark.parametrize('ufunc', (np.equal, np.greater)) def test_comparison_ufuncs_inplace(self, ufunc): q_i1 = np.array([-3.3, 2.1, 10.2]) * u.kg / u.s q_i2 = np.array([10., -5., 1.e6]) * u.g / u.Ms check = np.empty(q_i1.shape, bool) ufunc(q_i1.value, q_i2.to_value(q_i1.unit), out=check) result = np.empty(q_i1.shape, bool) q_o = ufunc(q_i1, q_i2, out=result) assert q_o is result assert type(q_o) is np.ndarray assert q_o.dtype == bool assert np.all(q_o == check) @pytest.mark.parametrize('ufunc', (np.isfinite, np.signbit)) def test_onearg_test_ufuncs_inplace(self, ufunc): q = [1., np.inf, -np.inf, np.nan, -1., 0.] * u.m check = np.empty(q.shape, bool) ufunc(q.value, out=check) result = np.empty(q.shape, bool) out = ufunc(q, out=result) assert out is result assert type(out) is np.ndarray assert out.dtype == bool assert np.all(out == ufunc(q.value)) # Ignore RuntimeWarning raised on Windows and s390. @pytest.mark.filterwarnings('ignore:.*invalid value encountered in sign') def test_sign_inplace(self): q = [1., np.inf, -np.inf, np.nan, -1., 0.] * u.m check = np.empty(q.shape, q.dtype) np.sign(q.value, out=check) result = np.empty(q.shape, q.dtype) out = np.sign(q, out=result) assert out is result assert type(out) is np.ndarray assert out.dtype == q.dtype assert np.all((out == np.sign(q.value)) | (np.isnan(out) & np.isnan(q.value))) @pytest.mark.skipif(not hasattr(np.core.umath, 'clip'), reason='no clip ufunc available') class TestClip: """Test the clip ufunc. In numpy, this is hidden behind a function that does not backwards compatibility checks. We explicitly test the ufunc here. """ def setup(self): self.clip = np.core.umath.clip def test_clip_simple(self): q = np.arange(-1., 10.) * u.m q_min = 125 * u.cm q_max = 0.0055 * u.km result = self.clip(q, q_min, q_max) assert result.unit == q.unit expected = self.clip(q.value, q_min.to_value(q.unit), q_max.to_value(q.unit)) * q.unit assert np.all(result == expected) def test_clip_unitless_parts(self): q = np.arange(-1., 10.) * u.m qlim = 0.0055 * u.km # one-sided result1 = self.clip(q, -np.inf, qlim) expected1 = self.clip(q.value, -np.inf, qlim.to_value(q.unit)) * q.unit assert np.all(result1 == expected1) result2 = self.clip(q, qlim, np.inf) expected2 = self.clip(q.value, qlim.to_value(q.unit), np.inf) * q.unit assert np.all(result2 == expected2) # Zero result3 = self.clip(q, np.zeros(q.shape), qlim) expected3 = self.clip(q.value, 0, qlim.to_value(q.unit)) * q.unit assert np.all(result3 == expected3) # Two unitless parts, array-shaped. result4 = self.clip(q, np.zeros(q.shape), np.full(q.shape, np.inf)) expected4 = self.clip(q.value, 0, np.inf) * q.unit assert np.all(result4 == expected4) def test_clip_dimensionless(self): q = np.arange(-1., 10.) * u.dimensionless_unscaled result = self.clip(q, 200 * u.percent, 5.) expected = self.clip(q, 2., 5.) assert result.unit == u.dimensionless_unscaled assert np.all(result == expected) def test_clip_ndarray(self): a = np.arange(-1., 10.) result = self.clip(a, 200 * u.percent, 5. * u.dimensionless_unscaled) assert isinstance(result, u.Quantity) expected = self.clip(a, 2., 5.) * u.dimensionless_unscaled assert np.all(result == expected) def test_clip_quantity_inplace(self): q = np.arange(-1., 10.) * u.m q_min = 125 * u.cm q_max = 0.0055 * u.km expected = self.clip(q.value, q_min.to_value(q.unit), q_max.to_value(q.unit)) * q.unit result = self.clip(q, q_min, q_max, out=q) assert result is q assert np.all(result == expected) def test_clip_ndarray_dimensionless_output(self): a = np.arange(-1., 10.) q = np.zeros_like(a) * u.m expected = self.clip(a, 2., 5.) * u.dimensionless_unscaled result = self.clip(a, 200 * u.percent, 5. * u.dimensionless_unscaled, out=q) assert result is q assert result.unit == u.dimensionless_unscaled assert np.all(result == expected) def test_clip_errors(self): q = np.arange(-1., 10.) * u.m with pytest.raises(u.UnitsError): self.clip(q, 0, 1*u.s) with pytest.raises(u.UnitsError): self.clip(q.value, 0, 1*u.s) with pytest.raises(u.UnitsError): self.clip(q, -1, 0.) with pytest.raises(u.UnitsError): self.clip(q, 0., 1.) class TestUfuncAt: """Test that 'at' method for ufuncs (calculates in-place at given indices) For Quantities, since calculations are in-place, it makes sense only if the result is still a quantity, and if the unit does not have to change """ def test_one_argument_ufunc_at(self): q = np.arange(10.) * u.m i = np.array([1, 2]) qv = q.value.copy() np.negative.at(q, i) np.negative.at(qv, i) assert np.all(q.value == qv) assert q.unit is u.m # cannot change from quantity to bool array with pytest.raises(TypeError): np.isfinite.at(q, i) # for selective in-place, cannot change the unit with pytest.raises(u.UnitsError): np.square.at(q, i) # except if the unit does not change (i.e., dimensionless) d = np.arange(10.) * u.dimensionless_unscaled dv = d.value.copy() np.square.at(d, i) np.square.at(dv, i) assert np.all(d.value == dv) assert d.unit is u.dimensionless_unscaled d = np.arange(10.) * u.dimensionless_unscaled dv = d.value.copy() np.log.at(d, i) np.log.at(dv, i) assert np.all(d.value == dv) assert d.unit is u.dimensionless_unscaled # also for sine it doesn't work, even if given an angle a = np.arange(10.) * u.radian with pytest.raises(u.UnitsError): np.sin.at(a, i) # except, for consistency, if we have made radian equivalent to # dimensionless (though hopefully it will never be needed) av = a.value.copy() with u.add_enabled_equivalencies(u.dimensionless_angles()): np.sin.at(a, i) np.sin.at(av, i) assert_allclose(a.value, av) # but we won't do double conversion ad = np.arange(10.) * u.degree with pytest.raises(u.UnitsError): np.sin.at(ad, i) def test_two_argument_ufunc_at(self): s = np.arange(10.) * u.m i = np.array([1, 2]) check = s.value.copy() np.add.at(s, i, 1.*u.km) np.add.at(check, i, 1000.) assert np.all(s.value == check) assert s.unit is u.m with pytest.raises(u.UnitsError): np.add.at(s, i, 1.*u.s) # also raise UnitsError if unit would have to be changed with pytest.raises(u.UnitsError): np.multiply.at(s, i, 1*u.s) # but be fine if it does not s = np.arange(10.) * u.m check = s.value.copy() np.multiply.at(s, i, 2.*u.dimensionless_unscaled) np.multiply.at(check, i, 2) assert np.all(s.value == check) s = np.arange(10.) * u.m np.multiply.at(s, i, 2.) assert np.all(s.value == check) # of course cannot change class of data either with pytest.raises(TypeError): np.greater.at(s, i, 1.*u.km) class TestUfuncReduceReduceatAccumulate: """Test 'reduce', 'reduceat' and 'accumulate' methods for ufuncs For Quantities, it makes sense only if the unit does not have to change """ def test_one_argument_ufunc_reduce_accumulate(self): # one argument cannot be used s = np.arange(10.) * u.radian i = np.array([0, 5, 1, 6]) with pytest.raises(ValueError): np.sin.reduce(s) with pytest.raises(ValueError): np.sin.accumulate(s) with pytest.raises(ValueError): np.sin.reduceat(s, i) def test_two_argument_ufunc_reduce_accumulate(self): s = np.arange(10.) * u.m i = np.array([0, 5, 1, 6]) check = s.value.copy() s_add_reduce = np.add.reduce(s) check_add_reduce = np.add.reduce(check) assert s_add_reduce.value == check_add_reduce assert s_add_reduce.unit is u.m s_add_accumulate = np.add.accumulate(s) check_add_accumulate = np.add.accumulate(check) assert np.all(s_add_accumulate.value == check_add_accumulate) assert s_add_accumulate.unit is u.m s_add_reduceat = np.add.reduceat(s, i) check_add_reduceat = np.add.reduceat(check, i) assert np.all(s_add_reduceat.value == check_add_reduceat) assert s_add_reduceat.unit is u.m # reduce(at) or accumulate on comparisons makes no sense, # as intermediate result is not even a Quantity with pytest.raises(TypeError): np.greater.reduce(s) with pytest.raises(TypeError): np.greater.accumulate(s) with pytest.raises(TypeError): np.greater.reduceat(s, i) # raise UnitsError if unit would have to be changed with pytest.raises(u.UnitsError): np.multiply.reduce(s) with pytest.raises(u.UnitsError): np.multiply.accumulate(s) with pytest.raises(u.UnitsError): np.multiply.reduceat(s, i) # but be fine if it does not s = np.arange(10.) * u.dimensionless_unscaled check = s.value.copy() s_multiply_reduce = np.multiply.reduce(s) check_multiply_reduce = np.multiply.reduce(check) assert s_multiply_reduce.value == check_multiply_reduce assert s_multiply_reduce.unit is u.dimensionless_unscaled s_multiply_accumulate = np.multiply.accumulate(s) check_multiply_accumulate = np.multiply.accumulate(check) assert np.all(s_multiply_accumulate.value == check_multiply_accumulate) assert s_multiply_accumulate.unit is u.dimensionless_unscaled s_multiply_reduceat = np.multiply.reduceat(s, i) check_multiply_reduceat = np.multiply.reduceat(check, i) assert np.all(s_multiply_reduceat.value == check_multiply_reduceat) assert s_multiply_reduceat.unit is u.dimensionless_unscaled class TestUfuncOuter: """Test 'outer' methods for ufuncs Just a few spot checks, since it uses the same code as the regular ufunc call """ def test_one_argument_ufunc_outer(self): # one argument cannot be used s = np.arange(10.) * u.radian with pytest.raises(ValueError): np.sin.outer(s) def test_two_argument_ufunc_outer(self): s1 = np.arange(10.) * u.m s2 = np.arange(2.) * u.s check1 = s1.value check2 = s2.value s12_multiply_outer = np.multiply.outer(s1, s2) check12_multiply_outer = np.multiply.outer(check1, check2) assert np.all(s12_multiply_outer.value == check12_multiply_outer) assert s12_multiply_outer.unit == s1.unit * s2.unit # raise UnitsError if appropriate with pytest.raises(u.UnitsError): np.add.outer(s1, s2) # but be fine if it does not s3 = np.arange(2.) * s1.unit check3 = s3.value s13_add_outer = np.add.outer(s1, s3) check13_add_outer = np.add.outer(check1, check3) assert np.all(s13_add_outer.value == check13_add_outer) assert s13_add_outer.unit is s1.unit s13_greater_outer = np.greater.outer(s1, s3) check13_greater_outer = np.greater.outer(check1, check3) assert type(s13_greater_outer) is np.ndarray assert np.all(s13_greater_outer == check13_greater_outer) if HAS_SCIPY: from scipy import special as sps erf_like_ufuncs = ( sps.erf, sps.erfc, sps.erfcx, sps.erfi, sps.gamma, sps.gammaln, sps.loggamma, sps.gammasgn, sps.psi, sps.rgamma, sps.digamma, sps.wofz, sps.dawsn, sps.entr, sps.exprel, sps.expm1, sps.log1p, sps.exp2, sps.exp10) if isinstance(sps.erfinv, np.ufunc): erf_like_ufuncs += (sps.erfinv, sps.erfcinv) def test_scipy_registration(): """Check that scipy gets loaded upon first use.""" assert sps.erf not in qh.UFUNC_HELPERS sps.erf(1. * u.percent) assert sps.erf in qh.UFUNC_HELPERS if isinstance(sps.erfinv, np.ufunc): assert sps.erfinv in qh.UFUNC_HELPERS else: assert sps.erfinv not in qh.UFUNC_HELPERS class TestScipySpecialUfuncs: @pytest.mark.parametrize('function', erf_like_ufuncs) def test_erf_scalar(self, function): TestQuantityMathFuncs.test_exp_scalar(None, function) @pytest.mark.parametrize('function', erf_like_ufuncs) def test_erf_array(self, function): TestQuantityMathFuncs.test_exp_array(None, function) @pytest.mark.parametrize('function', erf_like_ufuncs) def test_erf_invalid_units(self, function): TestQuantityMathFuncs.test_exp_invalid_units(None, function) @pytest.mark.parametrize('function', (sps.cbrt, )) def test_cbrt_scalar(self, function): TestQuantityMathFuncs.test_cbrt_scalar(None, function) @pytest.mark.parametrize('function', (sps.cbrt, )) def test_cbrt_array(self, function): TestQuantityMathFuncs.test_cbrt_array(None, function) @pytest.mark.parametrize('function', (sps.radian, )) def test_radian(self, function): q1 = function(180. * u.degree, 0. * u.arcmin, 0. * u.arcsec) assert_allclose(q1.value, np.pi) assert q1.unit == u.radian q2 = function(0. * u.degree, 30. * u.arcmin, 0. * u.arcsec) assert_allclose(q2.value, (30. * u.arcmin).to(u.radian).value) assert q2.unit == u.radian q3 = function(0. * u.degree, 0. * u.arcmin, 30. * u.arcsec) assert_allclose(q3.value, (30. * u.arcsec).to(u.radian).value) # the following doesn't make much sense in terms of the name of the # routine, but we check it gives the correct result. q4 = function(3. * u.radian, 0. * u.arcmin, 0. * u.arcsec) assert_allclose(q4.value, 3.) assert q4.unit == u.radian with pytest.raises(TypeError): function(3. * u.m, 2. * u.s, 1. * u.kg) jv_like_ufuncs = ( sps.jv, sps.jn, sps.jve, sps.yn, sps.yv, sps.yve, sps.kn, sps.kv, sps.kve, sps.iv, sps.ive, sps.hankel1, sps.hankel1e, sps.hankel2, sps.hankel2e) @pytest.mark.parametrize('function', jv_like_ufuncs) def test_jv_scalar(self, function): q = function(2. * u.m / (2. * u.m), 3. * u.m / (6. * u.m)) assert q.unit == u.dimensionless_unscaled assert q.value == function(1.0, 0.5) @pytest.mark.parametrize('function', jv_like_ufuncs) def test_jv_array(self, function): q = function(np.ones(3) * u.m / (1. * u.m), np.array([2., 3., 6.]) * u.m / (6. * u.m)) assert q.unit == u.dimensionless_unscaled assert np.all(q.value == function( np.ones(3), np.array([1. / 3., 1. / 2., 1.])) ) # should also work on quantities that can be made dimensionless q2 = function(np.ones(3) * u.m / (1. * u.m), np.array([2., 3., 6.]) * u.m / (6. * u.cm)) assert q2.unit == u.dimensionless_unscaled assert_allclose(q2.value, function(np.ones(3), np.array([100. / 3., 100. / 2., 100.]))) @pytest.mark.parametrize('function', jv_like_ufuncs) def test_jv_invalid_units(self, function): # Can't use jv() with non-dimensionless quantities with pytest.raises(TypeError) as exc: function(1. * u.kg, 3. * u.m / u.s) assert exc.value.args[0] == ("Can only apply '{}' function to " "dimensionless quantities" .format(function.__name__))
e8b405d6612670fa30d1c63208c786309865eb84234dd19bbf77783641b992ff
# Licensed under a 3-clause BSD style license - see LICENSE.rst # STDLIB import sys import typing # THIRD PARTY import numpy as np import pytest # LOCAL from astropy import units as u from astropy.units._typing import HAS_ANNOTATED # list of pairs (target unit/physical type, input unit) x_inputs = [(u.arcsec, u.deg), ('angle', u.deg), (u.kpc/u.Myr, u.km/u.s), ('speed', u.km/u.s), ([u.arcsec, u.km], u.deg), ([u.arcsec, u.km], u.km), # multiple allowed (['angle', 'length'], u.deg), (['angle', 'length'], u.km)] y_inputs = [(u.m, u.km), (u.km, u.m), (u.arcsec, u.deg), ('angle', u.deg), (u.kpc/u.Myr, u.km/u.s), ('speed', u.km/u.s)] @pytest.fixture(scope="module", params=list(range(len(x_inputs)))) def x_input(request): return x_inputs[request.param] @pytest.fixture(scope="module", params=list(range(len(y_inputs)))) def y_input(request): return y_inputs[request.param] # ---- Tests that use the fixtures defined above ---- def test_args(x_input, y_input): x_target, x_unit = x_input y_target, y_unit = y_input @u.quantity_input(x=x_target, y=y_target) def myfunc_args(x, y): return x, y x, y = myfunc_args(1*x_unit, 1*y_unit) assert isinstance(x, u.Quantity) assert isinstance(y, u.Quantity) assert x.unit == x_unit assert y.unit == y_unit def test_args_nonquantity(x_input): x_target, x_unit = x_input @u.quantity_input(x=x_target) def myfunc_args(x, y): return x, y x, y = myfunc_args(1*x_unit, 100) assert isinstance(x, u.Quantity) assert isinstance(y, int) assert x.unit == x_unit def test_wrong_unit(x_input, y_input): x_target, x_unit = x_input y_target, y_unit = y_input @u.quantity_input(x=x_target, y=y_target) def myfunc_args(x, y): return x, y with pytest.raises(u.UnitsError) as e: x, y = myfunc_args(1*x_unit, 100*u.Joule) # has to be an unspecified unit str_to = str(y_target) assert str(e.value) == f"Argument 'y' to function 'myfunc_args' must be in units convertible to '{str_to}'." def test_wrong_unit_annotated(x_input, y_input): x_target, x_unit = x_input y_target, y_unit = y_input @u.quantity_input def myfunc_args(x: x_target, y: y_target): return x, y with pytest.raises(u.UnitsError, match="Argument 'y' to function 'myfunc_args'"): x, y = myfunc_args(1*x_unit, 100*u.Joule) # has to be an unspecified unit def test_not_quantity(x_input, y_input): x_target, x_unit = x_input y_target, y_unit = y_input @u.quantity_input(x=x_target, y=y_target) def myfunc_args(x, y): return x, y with pytest.raises(TypeError) as e: x, y = myfunc_args(1*x_unit, 100) assert str(e.value) == "Argument 'y' to function 'myfunc_args' has no 'unit' attribute. You should pass in an astropy Quantity instead." def test_not_quantity_annotated(x_input, y_input): x_target, x_unit = x_input y_target, y_unit = y_input @u.quantity_input def myfunc_args(x: x_target, y: y_target): return x, y with pytest.raises(TypeError) as e: x, y = myfunc_args(1*x_unit, 100) assert str(e.value) == "Argument 'y' to function 'myfunc_args' has no 'unit' attribute. You should pass in an astropy Quantity instead." def test_kwargs(x_input, y_input): x_target, x_unit = x_input y_target, y_unit = y_input @u.quantity_input(x=x_target, y=y_target) def myfunc_args(x, my_arg, y=1*y_unit): return x, my_arg, y x, my_arg, y = myfunc_args(1*x_unit, 100, y=100*y_unit) assert isinstance(x, u.Quantity) assert isinstance(my_arg, int) assert isinstance(y, u.Quantity) assert y.unit == y_unit def test_unused_kwargs(x_input, y_input): x_target, x_unit = x_input y_target, y_unit = y_input @u.quantity_input(x=x_target, y=y_target) def myfunc_args(x, my_arg1, y=y_unit, my_arg2=1000): return x, my_arg1, y, my_arg2 x, my_arg1, y, my_arg2 = myfunc_args(1*x_unit, 100, y=100*y_unit, my_arg2=10) assert isinstance(x, u.Quantity) assert isinstance(my_arg1, int) assert isinstance(y, u.Quantity) assert isinstance(my_arg2, int) assert y.unit == y_unit assert my_arg2 == 10 def test_kwarg_wrong_unit(x_input, y_input): x_target, x_unit = x_input y_target, y_unit = y_input @u.quantity_input(x=x_target, y=y_target) def myfunc_args(x, y=10*y_unit): return x, y with pytest.raises(u.UnitsError) as e: x, y = myfunc_args(1*x_unit, y=100*u.Joule) str_to = str(y_target) assert str(e.value) == f"Argument 'y' to function 'myfunc_args' must be in units convertible to '{str_to}'." def test_kwarg_not_quantity(x_input, y_input): x_target, x_unit = x_input y_target, y_unit = y_input @u.quantity_input(x=x_target, y=y_target) def myfunc_args(x, y=10*y_unit): return x, y with pytest.raises(TypeError) as e: x, y = myfunc_args(1*x_unit, y=100) assert str(e.value) == "Argument 'y' to function 'myfunc_args' has no 'unit' attribute. You should pass in an astropy Quantity instead." def test_kwarg_default(x_input, y_input): x_target, x_unit = x_input y_target, y_unit = y_input @u.quantity_input(x=x_target, y=y_target) def myfunc_args(x, y=10*y_unit): return x, y x, y = myfunc_args(1*x_unit) assert isinstance(x, u.Quantity) assert isinstance(y, u.Quantity) assert x.unit == x_unit assert y.unit == y_unit def test_kwargs_input(x_input, y_input): x_target, x_unit = x_input y_target, y_unit = y_input @u.quantity_input(x=x_target, y=y_target) def myfunc_args(x=1*x_unit, y=1*y_unit): return x, y kwargs = {'x': 10*x_unit, 'y': 10*y_unit} x, y = myfunc_args(**kwargs) assert isinstance(x, u.Quantity) assert isinstance(y, u.Quantity) assert x.unit == x_unit assert y.unit == y_unit def test_kwargs_extra(x_input): x_target, x_unit = x_input @u.quantity_input(x=x_target) def myfunc_args(x, **kwargs): return x x = myfunc_args(1*x_unit) assert isinstance(x, u.Quantity) assert x.unit == x_unit # ---- Tests that don't used the fixtures ---- @pytest.mark.parametrize("x_unit,y_unit", [ (u.arcsec, u.eV), ('angle', 'energy')]) def test_arg_equivalencies(x_unit, y_unit): @u.quantity_input(x=x_unit, y=y_unit, equivalencies=u.mass_energy()) def myfunc_args(x, y): return x, y+(10*u.J) # Add an energy to check equiv is working x, y = myfunc_args(1*u.arcsec, 100*u.gram) assert isinstance(x, u.Quantity) assert isinstance(y, u.Quantity) assert x.unit == u.arcsec assert y.unit == u.gram @pytest.mark.parametrize("x_unit,energy_unit", [ (u.arcsec, u.eV), ('angle', 'energy')]) def test_kwarg_equivalencies(x_unit, energy_unit): @u.quantity_input(x=x_unit, energy=energy_unit, equivalencies=u.mass_energy()) def myfunc_args(x, energy=10*u.eV): return x, energy+(10*u.J) # Add an energy to check equiv is working x, energy = myfunc_args(1*u.arcsec, 100*u.gram) assert isinstance(x, u.Quantity) assert isinstance(energy, u.Quantity) assert x.unit == u.arcsec assert energy.unit == u.gram def test_no_equivalent(): class test_unit: pass class test_quantity: unit = test_unit() @u.quantity_input(x=u.arcsec) def myfunc_args(x): return x with pytest.raises(TypeError) as e: x, y = myfunc_args(test_quantity()) assert str(e.value) == "Argument 'x' to function 'myfunc_args' has a 'unit' attribute without an 'is_equivalent' method. You should pass in an astropy Quantity instead." def test_kwarg_invalid_physical_type(): @u.quantity_input(x='angle', y='africanswallow') def myfunc_args(x, y=10*u.deg): return x, y with pytest.raises(ValueError) as e: x, y = myfunc_args(1*u.arcsec, y=100*u.deg) assert str(e.value) == "Invalid unit or physical type 'africanswallow'." def test_default_value_check(): x_target = u.deg x_unit = u.arcsec with pytest.raises(TypeError): @u.quantity_input(x=x_target) def myfunc_args(x=1.): return x x = myfunc_args() x = myfunc_args(1*x_unit) assert isinstance(x, u.Quantity) assert x.unit == x_unit def test_str_unit_typo(): @u.quantity_input def myfunc_args(x: "kilograam"): return x with pytest.raises(ValueError): result = myfunc_args(u.kg) @pytest.mark.skipif(not HAS_ANNOTATED, reason="need `Annotated`") class TestTypeAnnotations: @pytest.mark.parametrize("annot", [u.m, u.Quantity[u.m], u.Quantity[u.m, "more"]] if HAS_ANNOTATED else [None]) # Note: parametrization is done even if test class is skipped def test_single_annotation_unit(self, annot): """Try a variety of valid annotations.""" @u.quantity_input def myfunc_args(x: annot, y: str): return x, y i_q, i_str = 2 * u.m, "cool string" o_q, o_str = myfunc_args(i_q, i_str) assert o_q == i_q assert o_str == i_str def test_args_None(): x_target = u.deg x_unit = u.arcsec y_target = u.km y_unit = u.kpc @u.quantity_input(x=[x_target, None], y=[None, y_target]) def myfunc_args(x, y): return x, y x, y = myfunc_args(1*x_unit, None) assert isinstance(x, u.Quantity) assert x.unit == x_unit assert y is None x, y = myfunc_args(None, 1*y_unit) assert isinstance(y, u.Quantity) assert y.unit == y_unit assert x is None def test_args_None_kwarg(): x_target = u.deg x_unit = u.arcsec y_target = u.km @u.quantity_input(x=x_target, y=y_target) def myfunc_args(x, y=None): return x, y x, y = myfunc_args(1*x_unit) assert isinstance(x, u.Quantity) assert x.unit == x_unit assert y is None x, y = myfunc_args(1*x_unit, None) assert isinstance(x, u.Quantity) assert x.unit == x_unit assert y is None with pytest.raises(TypeError): x, y = myfunc_args(None, None) @pytest.mark.parametrize('val', [1., 1, np.arange(10), np.arange(10.)]) def test_allow_dimensionless_numeric(val): """ When dimensionless_unscaled is an allowed unit, numbers and numeric numpy arrays are allowed through """ @u.quantity_input(velocity=[u.km/u.s, u.dimensionless_unscaled]) def myfunc(velocity): return velocity assert np.all(myfunc(val) == val) @pytest.mark.parametrize('val', [1., 1, np.arange(10), np.arange(10.)]) def test_allow_dimensionless_numeric_strict(val): """ When dimensionless_unscaled is an allowed unit, but we are being strict, don't allow numbers and numeric numpy arrays through """ @u.quantity_input(velocity=[u.km/u.s, u.dimensionless_unscaled], strict_dimensionless=True) def myfunc(velocity): return velocity with pytest.raises(TypeError): assert myfunc(val) @pytest.mark.parametrize('val', [1*u.deg, [1, 2, 3]*u.m]) def test_dimensionless_with_nondimensionless_input(val): """ When dimensionless_unscaled is the only allowed unit, don't let input with non-dimensionless units through """ @u.quantity_input(x=u.dimensionless_unscaled) def myfunc(x): return x with pytest.raises(u.UnitsError): myfunc(val) @pytest.mark.skipif(sys.version_info < (3, 9), reason="requires py3.9+") def test_annotated_not_quantity(): """Test when annotation looks like a Quantity[X], but isn't.""" @u.quantity_input() def myfunc(x: typing.Annotated[object, u.m]): return x # nothing happens when wrong unit is passed assert myfunc(1) == 1 assert myfunc(1 * u.m) == 1 * u.m assert myfunc(1 * u.s) == 1 * u.s @pytest.mark.skipif(sys.version_info < (3, 9), reason="requires py3.9+") def test_annotated_not_unit(): """Test when annotation looks like a Quantity[X], but the unit's wrong.""" @u.quantity_input() def myfunc(x: typing.Annotated[u.Quantity, object()]): return x # nothing happens when wrong unit is passed assert myfunc(1) == 1 assert myfunc(1 * u.m) == 1 * u.m assert myfunc(1 * u.s) == 1 * u.s
3009dad4836dfea7f76839fd15927ed99f44ce2c13d4dc8525fcbf091d6d3e21
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numbers import numpy as np from astropy.units import ( CompositeUnit, Unit, UnitConversionError, UnitsError, UnitTypeError, dimensionless_unscaled, photometric) from .core import FunctionQuantity, FunctionUnitBase from .units import dB, dex, mag __all__ = ['LogUnit', 'MagUnit', 'DexUnit', 'DecibelUnit', 'LogQuantity', 'Magnitude', 'Decibel', 'Dex', 'STmag', 'ABmag', 'M_bol', 'm_bol'] class LogUnit(FunctionUnitBase): """Logarithmic unit containing a physical one Usually, logarithmic units are instantiated via specific subclasses such `MagUnit`, `DecibelUnit`, and `DexUnit`. Parameters ---------- physical_unit : `~astropy.units.Unit` or `string` Unit that is encapsulated within the logarithmic function unit. If not given, dimensionless. function_unit : `~astropy.units.Unit` or `string` By default, the same as the logarithmic unit set by the subclass. """ # the four essential overrides of FunctionUnitBase @property def _default_function_unit(self): return dex @property def _quantity_class(self): return LogQuantity def from_physical(self, x): """Transformation from value in physical to value in logarithmic units. Used in equivalency.""" return dex.to(self._function_unit, np.log10(x)) def to_physical(self, x): """Transformation from value in logarithmic to value in physical units. Used in equivalency.""" return 10 ** self._function_unit.to(dex, x) # ^^^^ the four essential overrides of FunctionUnitBase # add addition and subtraction, which imply multiplication/division of # the underlying physical units def _add_and_adjust_physical_unit(self, other, sign_self, sign_other): """Add/subtract LogUnit to/from another unit, and adjust physical unit. self and other are multiplied by sign_self and sign_other, resp. We wish to do: ±lu_1 + ±lu_2 -> lu_f (lu=logarithmic unit) and pu_1^(±1) * pu_2^(±1) -> pu_f (pu=physical unit) Raises ------ UnitsError If function units are not equivalent. """ # First, insist on compatible logarithmic type. Here, plain u.mag, # u.dex, and u.dB are OK, i.e., other does not have to be LogUnit # (this will indirectly test whether other is a unit at all). try: getattr(other, 'function_unit', other)._to(self._function_unit) except AttributeError: # if other is not a unit (i.e., does not have _to). return NotImplemented except UnitsError: raise UnitsError("Can only add/subtract logarithmic units of" "of compatible type.") other_physical_unit = getattr(other, 'physical_unit', dimensionless_unscaled) physical_unit = CompositeUnit( 1, [self._physical_unit, other_physical_unit], [sign_self, sign_other]) return self._copy(physical_unit) def __neg__(self): return self._copy(self.physical_unit**(-1)) def __add__(self, other): # Only know how to add to a logarithmic unit with compatible type, # be it a plain one (u.mag, etc.,) or another LogUnit return self._add_and_adjust_physical_unit(other, +1, +1) def __radd__(self, other): return self._add_and_adjust_physical_unit(other, +1, +1) def __sub__(self, other): return self._add_and_adjust_physical_unit(other, +1, -1) def __rsub__(self, other): # here, in normal usage other cannot be LogUnit; only equivalent one # would be u.mag,u.dB,u.dex. But might as well use common routine. return self._add_and_adjust_physical_unit(other, -1, +1) class MagUnit(LogUnit): """Logarithmic physical units expressed in magnitudes Parameters ---------- physical_unit : `~astropy.units.Unit` or `string` Unit that is encapsulated within the magnitude function unit. If not given, dimensionless. function_unit : `~astropy.units.Unit` or `string` By default, this is ``mag``, but this allows one to use an equivalent unit such as ``2 mag``. """ @property def _default_function_unit(self): return mag @property def _quantity_class(self): return Magnitude class DexUnit(LogUnit): """Logarithmic physical units expressed in magnitudes Parameters ---------- physical_unit : `~astropy.units.Unit` or `string` Unit that is encapsulated within the magnitude function unit. If not given, dimensionless. function_unit : `~astropy.units.Unit` or `string` By default, this is ``dex``, but this allows one to use an equivalent unit such as ``0.5 dex``. """ @property def _default_function_unit(self): return dex @property def _quantity_class(self): return Dex def to_string(self, format='generic'): if format == 'cds': if self.physical_unit == dimensionless_unscaled: return "[-]" # by default, would get "[---]". else: return f"[{self.physical_unit.to_string(format=format)}]" else: return super().to_string() class DecibelUnit(LogUnit): """Logarithmic physical units expressed in dB Parameters ---------- physical_unit : `~astropy.units.Unit` or `string` Unit that is encapsulated within the decibel function unit. If not given, dimensionless. function_unit : `~astropy.units.Unit` or `string` By default, this is ``dB``, but this allows one to use an equivalent unit such as ``2 dB``. """ @property def _default_function_unit(self): return dB @property def _quantity_class(self): return Decibel class LogQuantity(FunctionQuantity): """A representation of a (scaled) logarithm of a number with a unit Parameters ---------- value : number, `~astropy.units.Quantity`, `~astropy.units.function.logarithmic.LogQuantity`, or sequence of quantity-like. The numerical value of the logarithmic quantity. If a number or a `~astropy.units.Quantity` with a logarithmic unit, it will be converted to ``unit`` and the physical unit will be inferred from ``unit``. If a `~astropy.units.Quantity` with just a physical unit, it will converted to the logarithmic unit, after, if necessary, converting it to the physical unit inferred from ``unit``. unit : str, `~astropy.units.UnitBase`, or `~astropy.units.function.FunctionUnitBase`, optional For an `~astropy.units.function.FunctionUnitBase` instance, the physical unit will be taken from it; for other input, it will be inferred from ``value``. By default, ``unit`` is set by the subclass. dtype : `~numpy.dtype`, optional The ``dtype`` of the resulting Numpy array or scalar that will hold the value. If not provided, is is determined automatically from the input value. copy : bool, optional If `True` (default), then the value is copied. Otherwise, a copy will only be made if ``__array__`` returns a copy, if value is a nested sequence, or if a copy is needed to satisfy an explicitly given ``dtype``. (The `False` option is intended mostly for internal use, to speed up initialization where a copy is known to have been made. Use with care.) Examples -------- Typically, use is made of an `~astropy.units.function.FunctionQuantity` subclass, as in:: >>> import astropy.units as u >>> u.Magnitude(-2.5) <Magnitude -2.5 mag> >>> u.Magnitude(10.*u.count/u.second) <Magnitude -2.5 mag(ct / s)> >>> u.Decibel(1.*u.W, u.DecibelUnit(u.mW)) # doctest: +FLOAT_CMP <Decibel 30. dB(mW)> """ # only override of FunctionQuantity _unit_class = LogUnit # additions that work just for logarithmic units def __add__(self, other): # Add function units, thus multiplying physical units. If no unit is # given, assume dimensionless_unscaled; this will give the appropriate # exception in LogUnit.__add__. new_unit = self.unit + getattr(other, 'unit', dimensionless_unscaled) # Add actual logarithmic values, rescaling, e.g., dB -> dex. result = self._function_view + getattr(other, '_function_view', other) return self._new_view(result, new_unit) def __radd__(self, other): return self.__add__(other) def __iadd__(self, other): new_unit = self.unit + getattr(other, 'unit', dimensionless_unscaled) # Do calculation in-place using _function_view of array. function_view = self._function_view function_view += getattr(other, '_function_view', other) self._set_unit(new_unit) return self def __sub__(self, other): # Subtract function units, thus dividing physical units. new_unit = self.unit - getattr(other, 'unit', dimensionless_unscaled) # Subtract actual logarithmic values, rescaling, e.g., dB -> dex. result = self._function_view - getattr(other, '_function_view', other) return self._new_view(result, new_unit) def __rsub__(self, other): new_unit = self.unit.__rsub__( getattr(other, 'unit', dimensionless_unscaled)) result = self._function_view.__rsub__( getattr(other, '_function_view', other)) # Ensure the result is in right function unit scale # (with rsub, this does not have to be one's own). result = result.to(new_unit.function_unit) return self._new_view(result, new_unit) def __isub__(self, other): new_unit = self.unit - getattr(other, 'unit', dimensionless_unscaled) # Do calculation in-place using _function_view of array. function_view = self._function_view function_view -= getattr(other, '_function_view', other) self._set_unit(new_unit) return self def __mul__(self, other): # Multiply by a float or a dimensionless quantity if isinstance(other, numbers.Number): # Multiplying a log means putting the factor into the exponent # of the unit new_physical_unit = self.unit.physical_unit**other result = self.view(np.ndarray) * other return self._new_view(result, self.unit._copy(new_physical_unit)) else: return super().__mul__(other) def __rmul__(self, other): return self.__mul__(other) def __imul__(self, other): if isinstance(other, numbers.Number): new_physical_unit = self.unit.physical_unit**other function_view = self._function_view function_view *= other self._set_unit(self.unit._copy(new_physical_unit)) return self else: return super().__imul__(other) def __truediv__(self, other): # Divide by a float or a dimensionless quantity if isinstance(other, numbers.Number): # Dividing a log means putting the nominator into the exponent # of the unit new_physical_unit = self.unit.physical_unit**(1/other) result = self.view(np.ndarray) / other return self._new_view(result, self.unit._copy(new_physical_unit)) else: return super().__truediv__(other) def __itruediv__(self, other): if isinstance(other, numbers.Number): new_physical_unit = self.unit.physical_unit**(1/other) function_view = self._function_view function_view /= other self._set_unit(self.unit._copy(new_physical_unit)) return self else: return super().__itruediv__(other) def __pow__(self, other): # We check if this power is OK by applying it first to the unit. try: other = float(other) except TypeError: return NotImplemented new_unit = self.unit ** other new_value = self.view(np.ndarray) ** other return self._new_view(new_value, new_unit) def __ilshift__(self, other): try: other = Unit(other) except UnitTypeError: return NotImplemented if not isinstance(other, self._unit_class): return NotImplemented try: factor = self.unit.physical_unit._to(other.physical_unit) except UnitConversionError: # Maybe via equivalencies? Now we do make a temporary copy. try: value = self._to_value(other) except UnitConversionError: return NotImplemented self.view(np.ndarray)[...] = value else: self.view(np.ndarray)[...] += self.unit.from_physical(factor) self._set_unit(other) return self # Methods that do not work for function units generally but are OK for # logarithmic units as they imply differences and independence of # physical unit. def var(self, axis=None, dtype=None, out=None, ddof=0): return self._wrap_function(np.var, axis, dtype, out=out, ddof=ddof, unit=self.unit.function_unit**2) def std(self, axis=None, dtype=None, out=None, ddof=0): return self._wrap_function(np.std, axis, dtype, out=out, ddof=ddof, unit=self.unit._copy(dimensionless_unscaled)) def ptp(self, axis=None, out=None): return self._wrap_function(np.ptp, axis, out=out, unit=self.unit._copy(dimensionless_unscaled)) def diff(self, n=1, axis=-1): return self._wrap_function(np.diff, n, axis, unit=self.unit._copy(dimensionless_unscaled)) def ediff1d(self, to_end=None, to_begin=None): return self._wrap_function(np.ediff1d, to_end, to_begin, unit=self.unit._copy(dimensionless_unscaled)) _supported_functions = (FunctionQuantity._supported_functions | {getattr(np, function) for function in ('var', 'std', 'ptp', 'diff', 'ediff1d')}) class Dex(LogQuantity): _unit_class = DexUnit class Decibel(LogQuantity): _unit_class = DecibelUnit class Magnitude(LogQuantity): _unit_class = MagUnit dex._function_unit_class = DexUnit dB._function_unit_class = DecibelUnit mag._function_unit_class = MagUnit STmag = MagUnit(photometric.STflux) STmag.__doc__ = "ST magnitude: STmag=-21.1 corresponds to 1 erg/s/cm2/A" ABmag = MagUnit(photometric.ABflux) ABmag.__doc__ = "AB magnitude: ABmag=-48.6 corresponds to 1 erg/s/cm2/Hz" M_bol = MagUnit(photometric.Bol) M_bol.__doc__ = ("Absolute bolometric magnitude: M_bol=0 corresponds to " "L_bol0={}".format(photometric.Bol.si)) m_bol = MagUnit(photometric.bol) m_bol.__doc__ = ("Apparent bolometric magnitude: m_bol=0 corresponds to " "f_bol0={}".format(photometric.bol.si))
d162717d5713babf9de7447ab48857e14703248030795e2af641df3aa3f2ae49
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Function Units and Quantities.""" from abc import ABCMeta, abstractmethod import numpy as np from astropy.units import ( Quantity, Unit, UnitBase, UnitConversionError, UnitsError, UnitTypeError, dimensionless_unscaled) __all__ = ['FunctionUnitBase', 'FunctionQuantity'] SUPPORTED_UFUNCS = {getattr(np.core.umath, ufunc) for ufunc in ( 'isfinite', 'isinf', 'isnan', 'sign', 'signbit', 'rint', 'floor', 'ceil', 'trunc', '_ones_like', 'ones_like', 'positive') if hasattr(np.core.umath, ufunc)} # TODO: the following could work if helper changed relative to Quantity: # - spacing should return dimensionless, not same unit # - negative should negate unit too, # - add, subtract, comparisons can work if units added/subtracted SUPPORTED_FUNCTIONS = {getattr(np, function) for function in ('clip', 'trace', 'mean', 'min', 'max', 'round')} # subclassing UnitBase or CompositeUnit was found to be problematic, requiring # a large number of overrides. Hence, define new class. class FunctionUnitBase(metaclass=ABCMeta): """Abstract base class for function units. Function units are functions containing a physical unit, such as dB(mW). Most of the arithmetic operations on function units are defined in this base class. While instantiation is defined, this class should not be used directly. Rather, subclasses should be used that override the abstract properties `_default_function_unit` and `_quantity_class`, and the abstract methods `from_physical`, and `to_physical`. Parameters ---------- physical_unit : `~astropy.units.Unit` or `string` Unit that is encapsulated within the function unit. If not given, dimensionless. function_unit : `~astropy.units.Unit` or `string` By default, the same as the function unit set by the subclass. """ # ↓↓↓ the following four need to be set by subclasses # Make this a property so we can ensure subclasses define it. @property @abstractmethod def _default_function_unit(self): """Default function unit corresponding to the function. This property should be overridden by subclasses, with, e.g., `~astropy.unit.MagUnit` returning `~astropy.unit.mag`. """ # This has to be a property because the function quantity will not be # known at unit definition time, as it gets defined after. @property @abstractmethod def _quantity_class(self): """Function quantity class corresponding to this function unit. This property should be overridden by subclasses, with, e.g., `~astropy.unit.MagUnit` returning `~astropy.unit.Magnitude`. """ @abstractmethod def from_physical(self, x): """Transformation from value in physical to value in function units. This method should be overridden by subclasses. It is used to provide automatic transformations using an equivalency. """ @abstractmethod def to_physical(self, x): """Transformation from value in function to value in physical units. This method should be overridden by subclasses. It is used to provide automatic transformations using an equivalency. """ # ↑↑↑ the above four need to be set by subclasses # have priority over arrays, regular units, and regular quantities __array_priority__ = 30000 def __init__(self, physical_unit=None, function_unit=None): if physical_unit is None: self._physical_unit = dimensionless_unscaled else: self._physical_unit = Unit(physical_unit) if (not isinstance(self._physical_unit, UnitBase) or self._physical_unit.is_equivalent( self._default_function_unit)): raise UnitConversionError("Unit {} is not a physical unit." .format(self._physical_unit)) if function_unit is None: self._function_unit = self._default_function_unit else: # any function unit should be equivalent to subclass default function_unit = Unit(getattr(function_unit, 'function_unit', function_unit)) if function_unit.is_equivalent(self._default_function_unit): self._function_unit = function_unit else: raise UnitConversionError( "Cannot initialize '{}' instance with function unit '{}'" ", as it is not equivalent to default function unit '{}'." .format(self.__class__.__name__, function_unit, self._default_function_unit)) def _copy(self, physical_unit=None): """Copy oneself, possibly with a different physical unit.""" if physical_unit is None: physical_unit = self.physical_unit return self.__class__(physical_unit, self.function_unit) @property def physical_unit(self): return self._physical_unit @property def function_unit(self): return self._function_unit @property def equivalencies(self): """List of equivalencies between function and physical units. Uses the `from_physical` and `to_physical` methods. """ return [(self, self.physical_unit, self.to_physical, self.from_physical)] # ↓↓↓ properties/methods required to behave like a unit def decompose(self, bases=set()): """Copy the current unit with the physical unit decomposed. For details, see `~astropy.units.UnitBase.decompose`. """ return self._copy(self.physical_unit.decompose(bases)) @property def si(self): """Copy the current function unit with the physical unit in SI.""" return self._copy(self.physical_unit.si) @property def cgs(self): """Copy the current function unit with the physical unit in CGS.""" return self._copy(self.physical_unit.cgs) def _get_physical_type_id(self): """Get physical type corresponding to physical unit.""" return self.physical_unit._get_physical_type_id() @property def physical_type(self): """Return the physical type of the physical unit (e.g., 'length').""" return self.physical_unit.physical_type def is_equivalent(self, other, equivalencies=[]): """ Returns `True` if this unit is equivalent to ``other``. Parameters ---------- other : `~astropy.units.Unit`, string, or tuple The unit to convert to. If a tuple of units is specified, this method returns true if the unit matches any of those in the tuple. equivalencies : list of tuple A list of equivalence pairs to try if the units are not directly convertible. See :ref:`astropy:unit_equivalencies`. This list is in addition to the built-in equivalencies between the function unit and the physical one, as well as possible global defaults set by, e.g., `~astropy.units.set_enabled_equivalencies`. Use `None` to turn off any global equivalencies. Returns ------- bool """ if isinstance(other, tuple): return any(self.is_equivalent(u, equivalencies=equivalencies) for u in other) other_physical_unit = getattr(other, 'physical_unit', ( dimensionless_unscaled if self.function_unit.is_equivalent(other) else other)) return self.physical_unit.is_equivalent(other_physical_unit, equivalencies) def to(self, other, value=1., equivalencies=[]): """ Return the converted values in the specified unit. Parameters ---------- other : `~astropy.units.Unit`, `~astropy.units.function.FunctionUnitBase`, or str The unit to convert to. value : int, float, or scalar array-like, optional Value(s) in the current unit to be converted to the specified unit. If not provided, defaults to 1.0. equivalencies : list of tuple A list of equivalence pairs to try if the units are not directly convertible. See :ref:`astropy:unit_equivalencies`. This list is in meant to treat only equivalencies between different physical units; the built-in equivalency between the function unit and the physical one is automatically taken into account. Returns ------- values : scalar or array Converted value(s). Input value sequences are returned as numpy arrays. Raises ------ `~astropy.units.UnitsError` If units are inconsistent. """ # conversion to one's own physical unit should be fastest if other is self.physical_unit: return self.to_physical(value) other_function_unit = getattr(other, 'function_unit', other) if self.function_unit.is_equivalent(other_function_unit): # when other is an equivalent function unit: # first convert physical units to other's physical units other_physical_unit = getattr(other, 'physical_unit', dimensionless_unscaled) if self.physical_unit != other_physical_unit: value_other_physical = self.physical_unit.to( other_physical_unit, self.to_physical(value), equivalencies) # make function unit again, in own system value = self.from_physical(value_other_physical) # convert possible difference in function unit (e.g., dex->dB) return self.function_unit.to(other_function_unit, value) else: try: # when other is not a function unit return self.physical_unit.to(other, self.to_physical(value), equivalencies) except UnitConversionError as e: if self.function_unit == Unit('mag'): # One can get to raw magnitudes via math that strips the dimensions off. # Include extra information in the exception to remind users of this. msg = "Did you perhaps subtract magnitudes so the unit got lost?" e.args += (msg,) raise e else: raise def is_unity(self): return False def __eq__(self, other): return (self.physical_unit == getattr(other, 'physical_unit', dimensionless_unscaled) and self.function_unit == getattr(other, 'function_unit', other)) def __ne__(self, other): return not self.__eq__(other) def __rlshift__(self, other): """Unit conversion operator ``<<``""" try: return self._quantity_class(other, self, copy=False, subok=True) except Exception: return NotImplemented def __mul__(self, other): if isinstance(other, (str, UnitBase, FunctionUnitBase)): if self.physical_unit == dimensionless_unscaled: # If dimensionless, drop back to normal unit and retry. return self.function_unit * other else: raise UnitsError("Cannot multiply a function unit " "with a physical dimension with any unit.") else: # Anything not like a unit, try initialising as a function quantity. try: return self._quantity_class(other, unit=self) except Exception: return NotImplemented def __rmul__(self, other): return self.__mul__(other) def __truediv__(self, other): if isinstance(other, (str, UnitBase, FunctionUnitBase)): if self.physical_unit == dimensionless_unscaled: # If dimensionless, drop back to normal unit and retry. return self.function_unit / other else: raise UnitsError("Cannot divide a function unit " "with a physical dimension by any unit.") else: # Anything not like a unit, try initialising as a function quantity. try: return self._quantity_class(1./other, unit=self) except Exception: return NotImplemented def __rtruediv__(self, other): if isinstance(other, (str, UnitBase, FunctionUnitBase)): if self.physical_unit == dimensionless_unscaled: # If dimensionless, drop back to normal unit and retry. return other / self.function_unit else: raise UnitsError("Cannot divide a function unit " "with a physical dimension into any unit") else: # Don't know what to do with anything not like a unit. return NotImplemented def __pow__(self, power): if power == 0: return dimensionless_unscaled elif power == 1: return self._copy() if self.physical_unit == dimensionless_unscaled: return self.function_unit ** power raise UnitsError("Cannot raise a function unit " "with a physical dimension to any power but 0 or 1.") def __pos__(self): return self._copy() def to_string(self, format='generic'): """ Output the unit in the given format as a string. The physical unit is appended, within parentheses, to the function unit, as in "dB(mW)", with both units set using the given format Parameters ---------- format : `astropy.units.format.Base` instance or str The name of a format or a formatter object. If not provided, defaults to the generic format. """ if format not in ('generic', 'unscaled', 'latex', 'latex_inline'): raise ValueError(f"Function units cannot be written in {format} " "format. Only 'generic', 'unscaled', 'latex' and " "'latex_inline' are supported.") self_str = self.function_unit.to_string(format) pu_str = self.physical_unit.to_string(format) if pu_str == '': pu_str = '1' if format.startswith('latex'): self_str += r'$\mathrm{{\left( {0} \right)}}$'.format( pu_str[1:-1]) # need to strip leading and trailing "$" else: self_str += f'({pu_str})' return self_str def __str__(self): """Return string representation for unit.""" self_str = str(self.function_unit) pu_str = str(self.physical_unit) if pu_str: self_str += f'({pu_str})' return self_str def __repr__(self): # By default, try to give a representation using `Unit(<string>)`, # with string such that parsing it would give the correct FunctionUnit. if callable(self.function_unit): return f'Unit("{self.to_string()}")' else: return '{}("{}"{})'.format( self.__class__.__name__, self.physical_unit, "" if self.function_unit is self._default_function_unit else f', unit="{self.function_unit}"') def _repr_latex_(self): """ Generate latex representation of unit name. This is used by the IPython notebook to print a unit with a nice layout. Returns ------- Latex string """ return self.to_string('latex') def __hash__(self): return hash((self.function_unit, self.physical_unit)) class FunctionQuantity(Quantity): """A representation of a (scaled) function of a number with a unit. Function quantities are quantities whose units are functions containing a physical unit, such as dB(mW). Most of the arithmetic operations on function quantities are defined in this base class. While instantiation is also defined here, this class should not be instantiated directly. Rather, subclasses should be made which have ``_unit_class`` pointing back to the corresponding function unit class. Parameters ---------- value : number, quantity-like, or sequence thereof The numerical value of the function quantity. If a number or a `~astropy.units.Quantity` with a function unit, it will be converted to ``unit`` and the physical unit will be inferred from ``unit``. If a `~astropy.units.Quantity` with just a physical unit, it will converted to the function unit, after, if necessary, converting it to the physical unit inferred from ``unit``. unit : str, `~astropy.units.UnitBase`, or `~astropy.units.function.FunctionUnitBase`, optional For an `~astropy.units.function.FunctionUnitBase` instance, the physical unit will be taken from it; for other input, it will be inferred from ``value``. By default, ``unit`` is set by the subclass. dtype : `~numpy.dtype`, optional The dtype of the resulting Numpy array or scalar that will hold the value. If not provided, it is determined from the input, except that any input that cannot represent float (integer and bool) is converted to float. copy : bool, optional If `True` (default), then the value is copied. Otherwise, a copy will only be made if ``__array__`` returns a copy, if value is a nested sequence, or if a copy is needed to satisfy an explicitly given ``dtype``. (The `False` option is intended mostly for internal use, to speed up initialization where a copy is known to have been made. Use with care.) order : {'C', 'F', 'A'}, optional Specify the order of the array. As in `~numpy.array`. Ignored if the input does not need to be converted and ``copy=False``. subok : bool, optional If `False` (default), the returned array will be forced to be of the class used. Otherwise, subclasses will be passed through. ndmin : int, optional Specifies the minimum number of dimensions that the resulting array should have. Ones will be pre-pended to the shape as needed to meet this requirement. This parameter is ignored if the input is a `~astropy.units.Quantity` and ``copy=False``. Raises ------ TypeError If the value provided is not a Python numeric type. TypeError If the unit provided is not a `~astropy.units.function.FunctionUnitBase` or `~astropy.units.Unit` object, or a parseable string unit. """ _unit_class = None """Default `~astropy.units.function.FunctionUnitBase` subclass. This should be overridden by subclasses. """ # Ensure priority over ndarray, regular Unit & Quantity, and FunctionUnit. __array_priority__ = 40000 # Define functions that work on FunctionQuantity. _supported_ufuncs = SUPPORTED_UFUNCS _supported_functions = SUPPORTED_FUNCTIONS def __new__(cls, value, unit=None, dtype=np.inexact, copy=True, order=None, subok=False, ndmin=0): if unit is not None: # Convert possible string input to a (function) unit. unit = Unit(unit) if not isinstance(unit, FunctionUnitBase): # By default, use value's physical unit. value_unit = getattr(value, 'unit', None) if value_unit is None: # if iterable, see if first item has a unit # (mixed lists fail in super call below). try: value_unit = getattr(value[0], 'unit') except Exception: pass physical_unit = getattr(value_unit, 'physical_unit', value_unit) unit = cls._unit_class(physical_unit, function_unit=unit) # initialise! return super().__new__(cls, value, unit, dtype=dtype, copy=copy, order=order, subok=subok, ndmin=ndmin) # ↓↓↓ properties not found in Quantity @property def physical(self): """The physical quantity corresponding the function one.""" return self.to(self.unit.physical_unit) @property def _function_view(self): """View as Quantity with function unit, dropping the physical unit. Use `~astropy.units.quantity.Quantity.value` for just the value. """ return self._new_view(unit=self.unit.function_unit) # ↓↓↓ methods overridden to change the behavior @property def si(self): """Return a copy with the physical unit in SI units.""" return self.__class__(self.physical.si) @property def cgs(self): """Return a copy with the physical unit in CGS units.""" return self.__class__(self.physical.cgs) def decompose(self, bases=[]): """Generate a new `FunctionQuantity` with the physical unit decomposed. For details, see `~astropy.units.Quantity.decompose`. """ return self.__class__(self.physical.decompose(bases)) # ↓↓↓ methods overridden to add additional behavior def __quantity_subclass__(self, unit): if isinstance(unit, FunctionUnitBase): return self.__class__, True else: return super().__quantity_subclass__(unit)[0], False def _set_unit(self, unit): if not isinstance(unit, self._unit_class): # Have to take care of, e.g., (10*u.mag).view(u.Magnitude) try: # "or 'nonsense'" ensures `None` breaks, just in case. unit = self._unit_class(function_unit=unit or 'nonsense') except Exception: raise UnitTypeError( "{} instances require {} function units" .format(type(self).__name__, self._unit_class.__name__) + f", so cannot set it to '{unit}'.") self._unit = unit def __array_ufunc__(self, function, method, *inputs, **kwargs): # TODO: it would be more logical to have this in Quantity already, # instead of in UFUNC_HELPERS, where it cannot be overridden. # And really it should just return NotImplemented, since possibly # another argument might know what to do. if function not in self._supported_ufuncs: raise UnitTypeError( f"Cannot use ufunc '{function.__name__}' with function quantities") return super().__array_ufunc__(function, method, *inputs, **kwargs) # ↓↓↓ methods overridden to change behavior def __mul__(self, other): if self.unit.physical_unit == dimensionless_unscaled: return self._function_view * other raise UnitTypeError("Cannot multiply function quantities which " "are not dimensionless with anything.") def __truediv__(self, other): if self.unit.physical_unit == dimensionless_unscaled: return self._function_view / other raise UnitTypeError("Cannot divide function quantities which " "are not dimensionless by anything.") def __rtruediv__(self, other): if self.unit.physical_unit == dimensionless_unscaled: return self._function_view.__rtruediv__(other) raise UnitTypeError("Cannot divide function quantities which " "are not dimensionless into anything.") def _comparison(self, other, comparison_func): """Do a comparison between self and other, raising UnitsError when other cannot be converted to self because it has different physical unit, and returning NotImplemented when there are other errors.""" try: # will raise a UnitsError if physical units not equivalent other_in_own_unit = self._to_own_unit(other, check_precision=False) except UnitsError as exc: if self.unit.physical_unit != dimensionless_unscaled: raise exc try: other_in_own_unit = self._function_view._to_own_unit( other, check_precision=False) except Exception: raise exc except Exception: return NotImplemented return comparison_func(other_in_own_unit) def __eq__(self, other): try: return self._comparison(other, self.value.__eq__) except UnitsError: return False def __ne__(self, other): try: return self._comparison(other, self.value.__ne__) except UnitsError: return True def __gt__(self, other): return self._comparison(other, self.value.__gt__) def __ge__(self, other): return self._comparison(other, self.value.__ge__) def __lt__(self, other): return self._comparison(other, self.value.__lt__) def __le__(self, other): return self._comparison(other, self.value.__le__) def __lshift__(self, other): """Unit conversion operator `<<`""" try: other = Unit(other, parse_strict='silent') except UnitTypeError: return NotImplemented return self.__class__(self, other, copy=False, subok=True) # Ensure Quantity methods are used only if they make sense. def _wrap_function(self, function, *args, **kwargs): if function in self._supported_functions: return super()._wrap_function(function, *args, **kwargs) # For dimensionless, we can convert to regular quantities. if all(arg.unit.physical_unit == dimensionless_unscaled for arg in (self,) + args if (hasattr(arg, 'unit') and hasattr(arg.unit, 'physical_unit'))): args = tuple(getattr(arg, '_function_view', arg) for arg in args) return self._function_view._wrap_function(function, *args, **kwargs) raise TypeError("Cannot use method that uses function '{}' with " "function quantities that are not dimensionless." .format(function.__name__)) # Override functions that are supported but do not use _wrap_function # in Quantity. def max(self, axis=None, out=None, keepdims=False): return self._wrap_function(np.max, axis, out=out, keepdims=keepdims) def min(self, axis=None, out=None, keepdims=False): return self._wrap_function(np.min, axis, out=out, keepdims=keepdims) def sum(self, axis=None, dtype=None, out=None, keepdims=False): return self._wrap_function(np.sum, axis, dtype, out=out, keepdims=keepdims) def cumsum(self, axis=None, dtype=None, out=None): return self._wrap_function(np.cumsum, axis, dtype, out=out) def clip(self, a_min, a_max, out=None): return self._wrap_function(np.clip, self._to_own_unit(a_min), self._to_own_unit(a_max), out=out)
c2ac2d6130ffd79249b795f2f981218dce2ed529a42c4ed030e359f37d20f0ca
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This package defines units that can also be used as functions of other units. If called, their arguments are used to initialize the corresponding function unit (e.g., ``u.mag(u.ct/u.s)``). Note that the prefixed versions cannot be called, as it would be unclear what, e.g., ``u.mmag(u.ct/u.s)`` would mean. """ from astropy.units.core import _add_prefixes from .mixin import IrreducibleFunctionUnit, RegularFunctionUnit _ns = globals() ########################################################################### # Logarithmic units # These calls are what core.def_unit would do, but we need to use the callable # unit versions. The actual function unit classes get added in logarithmic. dex = IrreducibleFunctionUnit(['dex'], namespace=_ns, doc="Dex: Base 10 logarithmic unit") dB = RegularFunctionUnit(['dB', 'decibel'], 0.1 * dex, namespace=_ns, doc="Decibel: ten per base 10 logarithmic unit") mag = RegularFunctionUnit(['mag'], -0.4 * dex, namespace=_ns, doc=("Astronomical magnitude: " "-2.5 per base 10 logarithmic unit")) _add_prefixes(mag, namespace=_ns, prefixes=True) ########################################################################### # CLEANUP del RegularFunctionUnit del IrreducibleFunctionUnit ########################################################################### # DOCSTRING # This generates a docstring for this module that describes all of the # standard units defined here. from astropy.units.utils import generate_unit_summary as _generate_unit_summary if __doc__ is not None: __doc__ += _generate_unit_summary(globals())
d6b48aa1fb31d95075aecd483ad3e4a94406ec5d1a24a34803323d1e1880c46a
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy.units.core import IrreducibleUnit, Unit class FunctionMixin: """Mixin class that makes UnitBase subclasses callable. Provides a __call__ method that passes on arguments to a FunctionUnit. Instances of this class should define ``_function_unit_class`` pointing to the relevant class. See units.py and logarithmic.py for usage. """ def __call__(self, unit=None): return self._function_unit_class(physical_unit=unit, function_unit=self) class IrreducibleFunctionUnit(FunctionMixin, IrreducibleUnit): pass class RegularFunctionUnit(FunctionMixin, Unit): pass
c1c47dbc91d2204b1fd2a6c12b3ec3bb8b7cd25f6ea10bc5943318a0aff5c6ef
# Licensed under a 3-clause BSD style license - see LICENSE.rst import copy from collections.abc import MappingView from types import MappingProxyType import numpy as np from astropy import units as u from astropy.utils.state import ScienceState from astropy.utils.decorators import format_doc, classproperty, deprecated from astropy.coordinates.angles import Angle from astropy.coordinates.matrix_utilities import rotation_matrix, matrix_product, matrix_transpose from astropy.coordinates import representation as r from astropy.coordinates.baseframe import (BaseCoordinateFrame, frame_transform_graph, base_doc) from astropy.coordinates.attributes import (CoordinateAttribute, QuantityAttribute, DifferentialAttribute) from astropy.coordinates.transformations import AffineTransform from astropy.coordinates.errors import ConvertError from .icrs import ICRS __all__ = ['Galactocentric'] # Measured by minimizing the difference between a plane of coordinates along # l=0, b=[-90,90] and the Galactocentric x-z plane # This is not used directly, but accessed via `get_roll0`. We define it here to # prevent having to create new Angle objects every time `get_roll0` is called. _ROLL0 = Angle(58.5986320306*u.degree) class _StateProxy(MappingView): """ `~collections.abc.MappingView` with a read-only ``getitem`` through `~types.MappingProxyType`. """ def __init__(self, mapping): super().__init__(mapping) self._mappingproxy = MappingProxyType(self._mapping) # read-only def __getitem__(self, key): """Read-only ``getitem``.""" return self._mappingproxy[key] def __deepcopy__(self, memo): return copy.deepcopy(self._mapping, memo=memo) class galactocentric_frame_defaults(ScienceState): """This class controls the global setting of default values for the frame attributes in the `~astropy.coordinates.Galactocentric` frame, which may be updated in future versions of ``astropy``. Note that when using `~astropy.coordinates.Galactocentric`, changing values here will not affect any attributes that are set explicitly by passing values in to the `~astropy.coordinates.Galactocentric` initializer. Modifying these defaults will only affect the frame attribute values when using the frame as, e.g., ``Galactocentric`` or ``Galactocentric()`` with no explicit arguments. This class controls the parameter settings by specifying a string name, with the following pre-specified options: - 'pre-v4.0': The current default value, which sets the default frame attribute values to their original (pre-astropy-v4.0) values. - 'v4.0': The attribute values as updated in Astropy version 4.0. - 'latest': An alias of the most recent parameter set (currently: 'v4.0') Alternatively, user-defined parameter settings may be registered, with :meth:`~astropy.coordinates.galactocentric_frame_defaults.register`, and used identically as pre-specified parameter sets. At minimum, registrations must have unique names and a dictionary of parameters with keys "galcen_coord", "galcen_distance", "galcen_v_sun", "z_sun", "roll". See examples below. This class also tracks the references for all parameter values in the attribute ``references``, as well as any further information the registry. The pre-specified options can be extended to include similar state information as user-defined parameter settings -- for example, to add parameter uncertainties. The preferred method for getting a parameter set and metadata, by name, is :meth:`~galactocentric_frame_defaults.get_from_registry` since it ensures the immutability of the registry. See :ref:`astropy:astropy-coordinates-galactocentric-defaults` for more information. Examples -------- The default `~astropy.coordinates.Galactocentric` frame parameters can be modified globally:: >>> from astropy.coordinates import galactocentric_frame_defaults >>> _ = galactocentric_frame_defaults.set('v4.0') # doctest: +SKIP >>> Galactocentric() # doctest: +SKIP <Galactocentric Frame (galcen_coord=<ICRS Coordinate: (ra, dec) in deg (266.4051, -28.936175)>, galcen_distance=8.122 kpc, galcen_v_sun=(12.9, 245.6, 7.78) km / s, z_sun=20.8 pc, roll=0.0 deg)> >>> _ = galactocentric_frame_defaults.set('pre-v4.0') # doctest: +SKIP >>> Galactocentric() # doctest: +SKIP <Galactocentric Frame (galcen_coord=<ICRS Coordinate: (ra, dec) in deg (266.4051, -28.936175)>, galcen_distance=8.3 kpc, galcen_v_sun=(11.1, 232.24, 7.25) km / s, z_sun=27.0 pc, roll=0.0 deg)> The default parameters can also be updated by using this class as a context manager:: >>> with galactocentric_frame_defaults.set('pre-v4.0'): ... print(Galactocentric()) # doctest: +FLOAT_CMP <Galactocentric Frame (galcen_coord=<ICRS Coordinate: (ra, dec) in deg (266.4051, -28.936175)>, galcen_distance=8.3 kpc, galcen_v_sun=(11.1, 232.24, 7.25) km / s, z_sun=27.0 pc, roll=0.0 deg)> Again, changing the default parameter values will not affect frame attributes that are explicitly specified:: >>> import astropy.units as u >>> with galactocentric_frame_defaults.set('pre-v4.0'): ... print(Galactocentric(galcen_distance=8.0*u.kpc)) # doctest: +FLOAT_CMP <Galactocentric Frame (galcen_coord=<ICRS Coordinate: (ra, dec) in deg (266.4051, -28.936175)>, galcen_distance=8.0 kpc, galcen_v_sun=(11.1, 232.24, 7.25) km / s, z_sun=27.0 pc, roll=0.0 deg)> Additional parameter sets may be registered, for instance to use the Dehnen & Binney (1998) measurements of the solar motion. We can also add metadata, such as the 1-sigma errors. In this example we will modify the required key "parameters", change the recommended key "references" to match "parameters", and add the extra key "error" (any key can be added):: >>> state = galactocentric_frame_defaults.get_from_registry("v4.0") >>> state["parameters"]["galcen_v_sun"] = (10.00, 225.25, 7.17) * (u.km / u.s) >>> state["references"]["galcen_v_sun"] = "https://ui.adsabs.harvard.edu/full/1998MNRAS.298..387D" >>> state["error"] = {"galcen_v_sun": (0.36, 0.62, 0.38) * (u.km / u.s)} >>> galactocentric_frame_defaults.register(name="DB1998", **state) Just as in the previous examples, the new parameter set can be retrieved with:: >>> state = galactocentric_frame_defaults.get_from_registry("DB1998") >>> print(state["error"]["galcen_v_sun"]) # doctest: +FLOAT_CMP [0.36 0.62 0.38] km / s """ _latest_value = 'v4.0' _value = None _references = None _state = dict() # all other data # Note: _StateProxy() produces read-only view of enclosed mapping. _registry = { "v4.0": { "parameters": _StateProxy( { "galcen_coord": ICRS( ra=266.4051 * u.degree, dec=-28.936175 * u.degree ), "galcen_distance": 8.122 * u.kpc, "galcen_v_sun": r.CartesianDifferential( [12.9, 245.6, 7.78] * (u.km / u.s) ), "z_sun": 20.8 * u.pc, "roll": 0 * u.deg, } ), "references": _StateProxy( { "galcen_coord": "https://ui.adsabs.harvard.edu/abs/2004ApJ...616..872R", "galcen_distance": "https://ui.adsabs.harvard.edu/abs/2018A%26A...615L..15G", "galcen_v_sun": [ "https://ui.adsabs.harvard.edu/abs/2018RNAAS...2..210D", "https://ui.adsabs.harvard.edu/abs/2018A%26A...615L..15G", "https://ui.adsabs.harvard.edu/abs/2004ApJ...616..872R", ], "z_sun": "https://ui.adsabs.harvard.edu/abs/2019MNRAS.482.1417B", "roll": None, } ), }, "pre-v4.0": { "parameters": _StateProxy( { "galcen_coord": ICRS( ra=266.4051 * u.degree, dec=-28.936175 * u.degree ), "galcen_distance": 8.3 * u.kpc, "galcen_v_sun": r.CartesianDifferential( [11.1, 220 + 12.24, 7.25] * (u.km / u.s) ), "z_sun": 27.0 * u.pc, "roll": 0 * u.deg, } ), "references": _StateProxy( { "galcen_coord": "https://ui.adsabs.harvard.edu/abs/2004ApJ...616..872R", "galcen_distance": "https://ui.adsabs.harvard.edu/#abs/2009ApJ...692.1075G", "galcen_v_sun": [ "https://ui.adsabs.harvard.edu/#abs/2010MNRAS.403.1829S", "https://ui.adsabs.harvard.edu/#abs/2015ApJS..216...29B", ], "z_sun": "https://ui.adsabs.harvard.edu/#abs/2001ApJ...553..184C", "roll": None, } ), }, } @classproperty # read-only def parameters(cls): return cls._value @classproperty # read-only def references(cls): return cls._references @classmethod def get_from_registry(cls, name: str): """ Return Galactocentric solar parameters and metadata given string names for the parameter sets. This method ensures the returned state is a mutable copy, so any changes made do not affect the registry state. Returns ------- state : dict Copy of the registry for the string name. Should contain, at minimum: - "parameters": dict Galactocentric solar parameters - "references" : Dict[str, Union[str, Sequence[str]]] References for "parameters". Fields are str or sequence of str. Raises ------ KeyError If invalid string input to registry to retrieve solar parameters for Galactocentric frame. """ # Resolve the meaning of 'latest': latest parameter set is from v4.0 # - update this as newer parameter choices are added if name == 'latest': name = cls._latest_value # Get the state from the registry. # Copy to ensure registry is immutable to modifications of "_value". # Raises KeyError if `name` is invalid string input to registry # to retrieve solar parameters for Galactocentric frame. state = copy.deepcopy(cls._registry[name]) # ensure mutable return state @deprecated("v4.2", alternative="`get_from_registry`") @classmethod def get_solar_params_from_string(cls, arg): """ Return Galactocentric solar parameters given string names for the parameter sets. Returns ------- parameters : dict Copy of Galactocentric solar parameters from registry Raises ------ KeyError If invalid string input to registry to retrieve solar parameters for Galactocentric frame. """ return cls.get_from_registry(arg)["parameters"] @classmethod def validate(cls, value): if value is None: value = cls._latest_value if isinstance(value, str): state = cls.get_from_registry(value) cls._references = state["references"] cls._state = state parameters = state["parameters"] elif isinstance(value, dict): parameters = value elif isinstance(value, Galactocentric): # turn the frame instance into a dict of frame attributes parameters = dict() for k in value.frame_attributes: parameters[k] = getattr(value, k) cls._references = value.frame_attribute_references.copy() cls._state = dict(parameters=parameters, references=cls._references) else: raise ValueError("Invalid input to retrieve solar parameters for " "Galactocentric frame: input must be a string, " "dict, or Galactocentric instance") return parameters @classmethod def register(cls, name: str, parameters: dict, references=None, **meta: dict): """Register a set of parameters. Parameters ---------- name : str The registration name for the parameter and metadata set. parameters : dict The solar parameters for Galactocentric frame. references : dict or None, optional References for contents of `parameters`. None becomes empty dict. **meta : dict, optional Any other properties to register. """ # check on contents of `parameters` must_have = {"galcen_coord", "galcen_distance", "galcen_v_sun", "z_sun", "roll"} missing = must_have.difference(parameters) if missing: raise ValueError(f"Missing parameters: {missing}") references = references or {} # None -> {} state = dict(parameters=parameters, references=references) state.update(meta) # meta never has keys "parameters" or "references" cls._registry[name] = state doc_components = """ x : `~astropy.units.Quantity`, optional Cartesian, Galactocentric :math:`x` position component. y : `~astropy.units.Quantity`, optional Cartesian, Galactocentric :math:`y` position component. z : `~astropy.units.Quantity`, optional Cartesian, Galactocentric :math:`z` position component. v_x : `~astropy.units.Quantity`, optional Cartesian, Galactocentric :math:`v_x` velocity component. v_y : `~astropy.units.Quantity`, optional Cartesian, Galactocentric :math:`v_y` velocity component. v_z : `~astropy.units.Quantity`, optional Cartesian, Galactocentric :math:`v_z` velocity component. """ doc_footer = """ Other parameters ---------------- galcen_coord : `ICRS`, optional, keyword-only The ICRS coordinates of the Galactic center. galcen_distance : `~astropy.units.Quantity`, optional, keyword-only The distance from the sun to the Galactic center. galcen_v_sun : `~astropy.coordinates.representation.CartesianDifferential`, `~astropy.units.Quantity` ['speed'], optional, keyword-only The velocity of the sun *in the Galactocentric frame* as Cartesian velocity components. z_sun : `~astropy.units.Quantity` ['length'], optional, keyword-only The distance from the sun to the Galactic midplane. roll : `~astropy.coordinates.Angle`, optional, keyword-only The angle to rotate about the final x-axis, relative to the orientation for Galactic. For example, if this roll angle is 0, the final x-z plane will align with the Galactic coordinates x-z plane. Unless you really know what this means, you probably should not change this! Examples -------- To transform to the Galactocentric frame with the default frame attributes, pass the uninstantiated class name to the ``transform_to()`` method of a `~astropy.coordinates.SkyCoord` object:: >>> import astropy.units as u >>> import astropy.coordinates as coord >>> c = coord.SkyCoord(ra=[158.3122, 24.5] * u.degree, ... dec=[-17.3, 81.52] * u.degree, ... distance=[11.5, 24.12] * u.kpc, ... frame='icrs') >>> c.transform_to(coord.Galactocentric) # doctest: +FLOAT_CMP <SkyCoord (Galactocentric: galcen_coord=<ICRS Coordinate: (ra, dec) in deg (266.4051, -28.936175)>, galcen_distance=8.122 kpc, galcen_v_sun=(12.9, 245.6, 7.78) km / s, z_sun=20.8 pc, roll=0.0 deg): (x, y, z) in kpc [( -9.43489286, -9.40062188, 6.51345359), (-21.11044918, 18.76334013, 7.83175149)]> To specify a custom set of parameters, you have to include extra keyword arguments when initializing the Galactocentric frame object:: >>> c.transform_to(coord.Galactocentric(galcen_distance=8.1*u.kpc)) # doctest: +FLOAT_CMP <SkyCoord (Galactocentric: galcen_coord=<ICRS Coordinate: (ra, dec) in deg (266.4051, -28.936175)>, galcen_distance=8.1 kpc, galcen_v_sun=(12.9, 245.6, 7.78) km / s, z_sun=20.8 pc, roll=0.0 deg): (x, y, z) in kpc [( -9.41284763, -9.40062188, 6.51346272), (-21.08839478, 18.76334013, 7.83184184)]> Similarly, transforming from the Galactocentric frame to another coordinate frame:: >>> c = coord.SkyCoord(x=[-8.3, 4.5] * u.kpc, ... y=[0., 81.52] * u.kpc, ... z=[0.027, 24.12] * u.kpc, ... frame=coord.Galactocentric) >>> c.transform_to(coord.ICRS) # doctest: +FLOAT_CMP <SkyCoord (ICRS): (ra, dec, distance) in (deg, deg, kpc) [( 88.22423301, 29.88672864, 0.17813456), (289.72864549, 49.9865043 , 85.93949064)]> Or, with custom specification of the Galactic center:: >>> c = coord.SkyCoord(x=[-8.0, 4.5] * u.kpc, ... y=[0., 81.52] * u.kpc, ... z=[21.0, 24120.0] * u.pc, ... frame=coord.Galactocentric, ... z_sun=21 * u.pc, galcen_distance=8. * u.kpc) >>> c.transform_to(coord.ICRS) # doctest: +FLOAT_CMP <SkyCoord (ICRS): (ra, dec, distance) in (deg, deg, kpc) [( 86.2585249 , 28.85773187, 2.75625475e-05), (289.77285255, 50.06290457, 8.59216010e+01)]> """ @format_doc(base_doc, components=doc_components, footer=doc_footer) class Galactocentric(BaseCoordinateFrame): r""" A coordinate or frame in the Galactocentric system. This frame allows specifying the Sun-Galactic center distance, the height of the Sun above the Galactic midplane, and the solar motion relative to the Galactic center. However, as there is no modern standard definition of a Galactocentric reference frame, it is important to pay attention to the default values used in this class if precision is important in your code. The default values of the parameters of this frame are taken from the original definition of the frame in 2014. As such, the defaults are somewhat out of date relative to recent measurements made possible by, e.g., Gaia. The defaults can, however, be changed at runtime by setting the parameter set name in `~astropy.coordinates.galactocentric_frame_defaults`. The current default parameter set is ``"pre-v4.0"``, indicating that the parameters were adopted before ``astropy`` version 4.0. A regularly-updated parameter set can instead be used by setting ``galactocentric_frame_defaults.set ('latest')``, and other parameter set names may be added in future versions. To find out the scientific papers that the current default parameters are derived from, use ``galcen.frame_attribute_references`` (where ``galcen`` is an instance of this frame), which will update even if the default parameter set is changed. The position of the Sun is assumed to be on the x axis of the final, right-handed system. That is, the x axis points from the position of the Sun projected to the Galactic midplane to the Galactic center -- roughly towards :math:`(l,b) = (0^\circ,0^\circ)`. For the default transformation (:math:`{\rm roll}=0^\circ`), the y axis points roughly towards Galactic longitude :math:`l=90^\circ`, and the z axis points roughly towards the North Galactic Pole (:math:`b=90^\circ`). For a more detailed look at the math behind this transformation, see the document :ref:`astropy:coordinates-galactocentric`. The frame attributes are listed under **Other Parameters**. """ default_representation = r.CartesianRepresentation default_differential = r.CartesianDifferential # frame attributes galcen_coord = CoordinateAttribute(frame=ICRS) galcen_distance = QuantityAttribute(unit=u.kpc) galcen_v_sun = DifferentialAttribute( allowed_classes=[r.CartesianDifferential]) z_sun = QuantityAttribute(unit=u.pc) roll = QuantityAttribute(unit=u.deg) def __init__(self, *args, **kwargs): # Set default frame attribute values based on the ScienceState instance # for the solar parameters defined above default_params = galactocentric_frame_defaults.get() self.frame_attribute_references = \ galactocentric_frame_defaults.references.copy() for k in default_params: if k in kwargs: # If a frame attribute is set by the user, remove its reference self.frame_attribute_references.pop(k, None) # Keep the frame attribute if it is set by the user, otherwise use # the default value kwargs[k] = kwargs.get(k, default_params[k]) super().__init__(*args, **kwargs) @classmethod def get_roll0(cls): """ The additional roll angle (about the final x axis) necessary to align the final z axis to match the Galactic yz-plane. Setting the ``roll`` frame attribute to -this method's return value removes this rotation, allowing the use of the `Galactocentric` frame in more general contexts. """ # note that the actual value is defined at the module level. We make at # a property here because this module isn't actually part of the public # API, so it's better for it to be accessible from Galactocentric return _ROLL0 # ICRS to/from Galactocentric -----------------------> def get_matrix_vectors(galactocentric_frame, inverse=False): """ Use the ``inverse`` argument to get the inverse transformation, matrix and offsets to go from Galactocentric to ICRS. """ # shorthand gcf = galactocentric_frame # rotation matrix to align x(ICRS) with the vector to the Galactic center mat1 = rotation_matrix(-gcf.galcen_coord.dec, 'y') mat2 = rotation_matrix(gcf.galcen_coord.ra, 'z') # extra roll away from the Galactic x-z plane mat0 = rotation_matrix(gcf.get_roll0() - gcf.roll, 'x') # construct transformation matrix and use it R = matrix_product(mat0, mat1, mat2) # Now need to translate by Sun-Galactic center distance around x' and # rotate about y' to account for tilt due to Sun's height above the plane translation = r.CartesianRepresentation(gcf.galcen_distance * [1., 0., 0.]) z_d = gcf.z_sun / gcf.galcen_distance H = rotation_matrix(-np.arcsin(z_d), 'y') # compute total matrices A = matrix_product(H, R) # Now we re-align the translation vector to account for the Sun's height # above the midplane offset = -translation.transform(H) if inverse: # the inverse of a rotation matrix is a transpose, which is much faster # and more stable to compute A = matrix_transpose(A) offset = (-offset).transform(A) offset_v = r.CartesianDifferential.from_cartesian( (-gcf.galcen_v_sun).to_cartesian().transform(A)) offset = offset.with_differentials(offset_v) else: offset = offset.with_differentials(gcf.galcen_v_sun) return A, offset def _check_coord_repr_diff_types(c): if isinstance(c.data, r.UnitSphericalRepresentation): raise ConvertError("Transforming to/from a Galactocentric frame " "requires a 3D coordinate, e.g. (angle, angle, " "distance) or (x, y, z).") if ('s' in c.data.differentials and isinstance(c.data.differentials['s'], (r.UnitSphericalDifferential, r.UnitSphericalCosLatDifferential, r.RadialDifferential))): raise ConvertError("Transforming to/from a Galactocentric frame " "requires a 3D velocity, e.g., proper motion " "components and radial velocity.") @frame_transform_graph.transform(AffineTransform, ICRS, Galactocentric) def icrs_to_galactocentric(icrs_coord, galactocentric_frame): _check_coord_repr_diff_types(icrs_coord) return get_matrix_vectors(galactocentric_frame) @frame_transform_graph.transform(AffineTransform, Galactocentric, ICRS) def galactocentric_to_icrs(galactocentric_coord, icrs_frame): _check_coord_repr_diff_types(galactocentric_coord) return get_matrix_vectors(galactocentric_coord, inverse=True) # Create loopback transformation frame_transform_graph._add_merged_transform(Galactocentric, ICRS, Galactocentric)
fc858fa13cde8ecebb68b0645c29f11b5a2aa6264b6470d69f42c2f85419d669
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy.coordinates.matrix_utilities import (rotation_matrix, matrix_product, matrix_transpose) from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.transformations import StaticMatrixTransform from .galactic import Galactic from .supergalactic import Supergalactic @frame_transform_graph.transform(StaticMatrixTransform, Galactic, Supergalactic) def gal_to_supergal(): mat1 = rotation_matrix(90, 'z') mat2 = rotation_matrix(90 - Supergalactic._nsgp_gal.b.degree, 'y') mat3 = rotation_matrix(Supergalactic._nsgp_gal.l.degree, 'z') return matrix_product(mat1, mat2, mat3) @frame_transform_graph.transform(StaticMatrixTransform, Supergalactic, Galactic) def supergal_to_gal(): return matrix_transpose(gal_to_supergal())
613fe7ea0dfd7a4e33b1685087b26f6647a25f2f021674020633e6fdd027e676
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy.utils.decorators import format_doc from astropy.coordinates.baseframe import frame_transform_graph, base_doc from astropy.coordinates.attributes import TimeAttribute from astropy.coordinates.transformations import DynamicMatrixTransform from astropy.coordinates import earth_orientation as earth from .baseradec import BaseRADecFrame, doc_components from .utils import EQUINOX_J2000 __all__ = ['FK5'] doc_footer = """ Other parameters ---------------- equinox : `~astropy.time.Time` The equinox of this frame. """ @format_doc(base_doc, components=doc_components, footer=doc_footer) class FK5(BaseRADecFrame): """ A coordinate or frame in the FK5 system. Note that this is a barycentric version of FK5 - that is, the origin for this frame is the Solar System Barycenter, *not* the Earth geocenter. The frame attributes are listed under **Other Parameters**. """ equinox = TimeAttribute(default=EQUINOX_J2000) @staticmethod def _precession_matrix(oldequinox, newequinox): """ Compute and return the precession matrix for FK5 based on Capitaine et al. 2003/IAU2006. Used inside some of the transformation functions. Parameters ---------- oldequinox : `~astropy.time.Time` The equinox to precess from. newequinox : `~astropy.time.Time` The equinox to precess to. Returns ------- newcoord : array The precession matrix to transform to the new equinox """ return earth.precession_matrix_Capitaine(oldequinox, newequinox) # This is the "self-transform". Defined at module level because the decorator # needs a reference to the FK5 class @frame_transform_graph.transform(DynamicMatrixTransform, FK5, FK5) def fk5_to_fk5(fk5coord1, fk5frame2): return fk5coord1._precession_matrix(fk5coord1.equinox, fk5frame2.equinox)
ea91c6848cd36f878398a83ab5b7340d2e7c9097912c66915abb8961b5f55dbe
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Contains the transformation functions for getting to/from ITRS, TEME, GCRS, and CIRS. These are distinct from the ICRS and AltAz functions because they are just rotations without aberration corrections or offsets. """ import numpy as np import erfa from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.transformations import FunctionTransformWithFiniteDifference from astropy.coordinates.matrix_utilities import matrix_transpose from .icrs import ICRS from .gcrs import GCRS, PrecessedGeocentric from .cirs import CIRS from .itrs import ITRS from .equatorial import TEME, TETE from .utils import get_polar_motion, get_jd12, EARTH_CENTER # # first define helper functions def teme_to_itrs_mat(time): # Sidereal time, rotates from ITRS to mean equinox # Use 1982 model for consistency with Vallado et al (2006) # http://www.celestrak.com/publications/aiaa/2006-6753/AIAA-2006-6753.pdf gst = erfa.gmst82(*get_jd12(time, 'ut1')) # Polar Motion # Do not include TIO locator s' because it is not used in Vallado 2006 xp, yp = get_polar_motion(time) pmmat = erfa.pom00(xp, yp, 0) # rotation matrix # c2tcio expects a GCRS->CIRS matrix as it's first argument. # Here, we just set that to an I-matrix, because we're already # in TEME and the difference between TEME and CIRS is just the # rotation by the sidereal time rather than the Earth Rotation Angle return erfa.c2tcio(np.eye(3), gst, pmmat) def gcrs_to_cirs_mat(time): # celestial-to-intermediate matrix return erfa.c2i06a(*get_jd12(time, 'tt')) def cirs_to_itrs_mat(time): # compute the polar motion p-matrix xp, yp = get_polar_motion(time) sp = erfa.sp00(*get_jd12(time, 'tt')) pmmat = erfa.pom00(xp, yp, sp) # now determine the Earth Rotation Angle for the input obstime # era00 accepts UT1, so we convert if need be era = erfa.era00(*get_jd12(time, 'ut1')) # c2tcio expects a GCRS->CIRS matrix, but we just set that to an I-matrix # because we're already in CIRS return erfa.c2tcio(np.eye(3), era, pmmat) def tete_to_itrs_mat(time, rbpn=None): """Compute the polar motion p-matrix at the given time. If the nutation-precession matrix is already known, it should be passed in, as this is by far the most expensive calculation. """ xp, yp = get_polar_motion(time) sp = erfa.sp00(*get_jd12(time, 'tt')) pmmat = erfa.pom00(xp, yp, sp) # now determine the greenwich apparent siderial time for the input obstime # we use the 2006A model for consistency with RBPN matrix use in GCRS <-> TETE ujd1, ujd2 = get_jd12(time, 'ut1') jd1, jd2 = get_jd12(time, 'tt') if rbpn is None: # erfa.gst06a calls pnm06a to calculate rbpn and then gst06. Use it in # favour of getting rbpn with erfa.pnm06a to avoid a possibly large array. gast = erfa.gst06a(ujd1, ujd2, jd1, jd2) else: gast = erfa.gst06(ujd1, ujd2, jd1, jd2, rbpn) # c2tcio expects a GCRS->CIRS matrix, but we just set that to an I-matrix # because we're already in CIRS equivalent frame return erfa.c2tcio(np.eye(3), gast, pmmat) def gcrs_precession_mat(equinox): gamb, phib, psib, epsa = erfa.pfw06(*get_jd12(equinox, 'tt')) return erfa.fw2m(gamb, phib, psib, epsa) def get_location_gcrs(location, obstime, ref_to_itrs, gcrs_to_ref): """Create a GCRS frame at the location and obstime. The reference frame z axis must point to the Celestial Intermediate Pole (as is the case for CIRS and TETE). This function is here to avoid location.get_gcrs(obstime), which would recalculate matrices that are already available below (and return a GCRS coordinate, rather than a frame with obsgeoloc and obsgeovel). Instead, it uses the private method that allows passing in the matrices. """ obsgeoloc, obsgeovel = location._get_gcrs_posvel(obstime, ref_to_itrs, gcrs_to_ref) return GCRS(obstime=obstime, obsgeoloc=obsgeoloc, obsgeovel=obsgeovel) # now the actual transforms @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, GCRS, TETE) def gcrs_to_tete(gcrs_coo, tete_frame): # Classical NPB matrix, IAU 2006/2000A # (same as in builtin_frames.utils.get_cip). rbpn = erfa.pnm06a(*get_jd12(tete_frame.obstime, 'tt')) # Get GCRS coordinates for the target observer location and time. loc_gcrs = get_location_gcrs(tete_frame.location, tete_frame.obstime, tete_to_itrs_mat(tete_frame.obstime, rbpn=rbpn), rbpn) gcrs_coo2 = gcrs_coo.transform_to(loc_gcrs) # Now we are relative to the correct observer, do the transform to TETE. # These rotations are defined at the geocenter, but can be applied to # topocentric positions as well, assuming rigid Earth. See p57 of # https://www.usno.navy.mil/USNO/astronomical-applications/publications/Circular_179.pdf crepr = gcrs_coo2.cartesian.transform(rbpn) return tete_frame.realize_frame(crepr) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, TETE, GCRS) def tete_to_gcrs(tete_coo, gcrs_frame): # Compute the pn matrix, and then multiply by its transpose. rbpn = erfa.pnm06a(*get_jd12(tete_coo.obstime, 'tt')) newrepr = tete_coo.cartesian.transform(matrix_transpose(rbpn)) # We now have a GCRS vector for the input location and obstime. # Turn it into a GCRS frame instance. loc_gcrs = get_location_gcrs(tete_coo.location, tete_coo.obstime, tete_to_itrs_mat(tete_coo.obstime, rbpn=rbpn), rbpn) gcrs = loc_gcrs.realize_frame(newrepr) # Finally, do any needed offsets (no-op if same obstime and location) return gcrs.transform_to(gcrs_frame) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, TETE, ITRS) def tete_to_itrs(tete_coo, itrs_frame): # first get us to TETE at the target obstime, and geocentric position tete_coo2 = tete_coo.transform_to(TETE(obstime=itrs_frame.obstime, location=EARTH_CENTER)) # now get the pmatrix pmat = tete_to_itrs_mat(itrs_frame.obstime) crepr = tete_coo2.cartesian.transform(pmat) return itrs_frame.realize_frame(crepr) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, ITRS, TETE) def itrs_to_tete(itrs_coo, tete_frame): # compute the pmatrix, and then multiply by its transpose pmat = tete_to_itrs_mat(itrs_coo.obstime) newrepr = itrs_coo.cartesian.transform(matrix_transpose(pmat)) tete = TETE(newrepr, obstime=itrs_coo.obstime) # now do any needed offsets (no-op if same obstime) return tete.transform_to(tete_frame) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, GCRS, CIRS) def gcrs_to_cirs(gcrs_coo, cirs_frame): # first get the pmatrix pmat = gcrs_to_cirs_mat(cirs_frame.obstime) # Get GCRS coordinates for the target observer location and time. loc_gcrs = get_location_gcrs(cirs_frame.location, cirs_frame.obstime, cirs_to_itrs_mat(cirs_frame.obstime), pmat) gcrs_coo2 = gcrs_coo.transform_to(loc_gcrs) # Now we are relative to the correct observer, do the transform to CIRS. crepr = gcrs_coo2.cartesian.transform(pmat) return cirs_frame.realize_frame(crepr) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, CIRS, GCRS) def cirs_to_gcrs(cirs_coo, gcrs_frame): # Compute the pmatrix, and then multiply by its transpose, pmat = gcrs_to_cirs_mat(cirs_coo.obstime) newrepr = cirs_coo.cartesian.transform(matrix_transpose(pmat)) # We now have a GCRS vector for the input location and obstime. # Turn it into a GCRS frame instance. loc_gcrs = get_location_gcrs(cirs_coo.location, cirs_coo.obstime, cirs_to_itrs_mat(cirs_coo.obstime), pmat) gcrs = loc_gcrs.realize_frame(newrepr) # Finally, do any needed offsets (no-op if same obstime and location) return gcrs.transform_to(gcrs_frame) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, CIRS, ITRS) def cirs_to_itrs(cirs_coo, itrs_frame): # first get us to geocentric CIRS at the target obstime cirs_coo2 = cirs_coo.transform_to(CIRS(obstime=itrs_frame.obstime, location=EARTH_CENTER)) # now get the pmatrix pmat = cirs_to_itrs_mat(itrs_frame.obstime) crepr = cirs_coo2.cartesian.transform(pmat) return itrs_frame.realize_frame(crepr) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, ITRS, CIRS) def itrs_to_cirs(itrs_coo, cirs_frame): # compute the pmatrix, and then multiply by its transpose pmat = cirs_to_itrs_mat(itrs_coo.obstime) newrepr = itrs_coo.cartesian.transform(matrix_transpose(pmat)) cirs = CIRS(newrepr, obstime=itrs_coo.obstime) # now do any needed offsets (no-op if same obstime) return cirs.transform_to(cirs_frame) # TODO: implement GCRS<->CIRS if there's call for it. The thing that's awkward # is that they both have obstimes, so an extra set of transformations are necessary. # so unless there's a specific need for that, better to just have it go through the above # two steps anyway @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, GCRS, PrecessedGeocentric) def gcrs_to_precessedgeo(from_coo, to_frame): # first get us to GCRS with the right attributes (might be a no-op) gcrs_coo = from_coo.transform_to(GCRS(obstime=to_frame.obstime, obsgeoloc=to_frame.obsgeoloc, obsgeovel=to_frame.obsgeovel)) # now precess to the requested equinox pmat = gcrs_precession_mat(to_frame.equinox) crepr = gcrs_coo.cartesian.transform(pmat) return to_frame.realize_frame(crepr) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, PrecessedGeocentric, GCRS) def precessedgeo_to_gcrs(from_coo, to_frame): # first un-precess pmat = gcrs_precession_mat(from_coo.equinox) crepr = from_coo.cartesian.transform(matrix_transpose(pmat)) gcrs_coo = GCRS(crepr, obstime=from_coo.obstime, obsgeoloc=from_coo.obsgeoloc, obsgeovel=from_coo.obsgeovel) # then move to the GCRS that's actually desired return gcrs_coo.transform_to(to_frame) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, TEME, ITRS) def teme_to_itrs(teme_coo, itrs_frame): # use the pmatrix to transform to ITRS in the source obstime pmat = teme_to_itrs_mat(teme_coo.obstime) crepr = teme_coo.cartesian.transform(pmat) itrs = ITRS(crepr, obstime=teme_coo.obstime) # transform the ITRS coordinate to the target obstime return itrs.transform_to(itrs_frame) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, ITRS, TEME) def itrs_to_teme(itrs_coo, teme_frame): # transform the ITRS coordinate to the target obstime itrs_coo2 = itrs_coo.transform_to(ITRS(obstime=teme_frame.obstime)) # compute the pmatrix, and then multiply by its transpose pmat = teme_to_itrs_mat(teme_frame.obstime) newrepr = itrs_coo2.cartesian.transform(matrix_transpose(pmat)) return teme_frame.realize_frame(newrepr) # Create loopback transformations frame_transform_graph._add_merged_transform(ITRS, CIRS, ITRS) frame_transform_graph._add_merged_transform(PrecessedGeocentric, GCRS, PrecessedGeocentric) frame_transform_graph._add_merged_transform(TEME, ITRS, TEME) frame_transform_graph._add_merged_transform(TETE, ICRS, TETE)
8ac6ae291e52aaf9c1161b439cb8335c90619d99ff8b059683a3c89065a13848
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy.utils.decorators import format_doc from astropy.coordinates.attributes import TimeAttribute from .utils import DEFAULT_OBSTIME from astropy.coordinates.baseframe import base_doc from .baseradec import BaseRADecFrame, doc_components __all__ = ['HCRS'] doc_footer = """ Other parameters ---------------- obstime : `~astropy.time.Time` The time at which the observation is taken. Used for determining the position of the Sun. """ @format_doc(base_doc, components=doc_components, footer=doc_footer) class HCRS(BaseRADecFrame): """ A coordinate or frame in a Heliocentric system, with axes aligned to ICRS. The ICRS has an origin at the Barycenter and axes which are fixed with respect to space. This coordinate system is distinct from ICRS mainly in that it is relative to the Sun's center-of-mass rather than the solar system Barycenter. In principle, therefore, this frame should include the effects of aberration (unlike ICRS), but this is not done, since they are very small, of the order of 8 milli-arcseconds. For more background on the ICRS and related coordinate transformations, see the references provided in the :ref:`astropy:astropy-coordinates-seealso` section of the documentation. The frame attributes are listed under **Other Parameters**. """ obstime = TimeAttribute(default=DEFAULT_OBSTIME) # Transformations are defined in icrs_circ_transforms.py
e0c1d919b2cb2218492399c19f627b3a2d21a347d8b54479bb3c6bc40c082786
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from astropy import units as u from astropy.utils.decorators import format_doc from astropy.coordinates.baseframe import frame_transform_graph, base_doc from astropy.coordinates.attributes import TimeAttribute from astropy.coordinates.transformations import ( FunctionTransformWithFiniteDifference, DynamicMatrixTransform) from astropy.coordinates.representation import (CartesianRepresentation, UnitSphericalRepresentation) from astropy.coordinates import earth_orientation as earth from .utils import EQUINOX_B1950 from .baseradec import doc_components, BaseRADecFrame __all__ = ['FK4', 'FK4NoETerms'] doc_footer_fk4 = """ Other parameters ---------------- equinox : `~astropy.time.Time` The equinox of this frame. obstime : `~astropy.time.Time` The time this frame was observed. If ``None``, will be the same as ``equinox``. """ @format_doc(base_doc, components=doc_components, footer=doc_footer_fk4) class FK4(BaseRADecFrame): """ A coordinate or frame in the FK4 system. Note that this is a barycentric version of FK4 - that is, the origin for this frame is the Solar System Barycenter, *not* the Earth geocenter. The frame attributes are listed under **Other Parameters**. """ equinox = TimeAttribute(default=EQUINOX_B1950) obstime = TimeAttribute(default=None, secondary_attribute='equinox') # the "self" transform @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, FK4, FK4) def fk4_to_fk4(fk4coord1, fk4frame2): # deceptively complicated: need to transform to No E-terms FK4, precess, and # then come back, because precession is non-trivial with E-terms fnoe_w_eqx1 = fk4coord1.transform_to(FK4NoETerms(equinox=fk4coord1.equinox)) fnoe_w_eqx2 = fnoe_w_eqx1.transform_to(FK4NoETerms(equinox=fk4frame2.equinox)) return fnoe_w_eqx2.transform_to(fk4frame2) @format_doc(base_doc, components=doc_components, footer=doc_footer_fk4) class FK4NoETerms(BaseRADecFrame): """ A coordinate or frame in the FK4 system, but with the E-terms of aberration removed. The frame attributes are listed under **Other Parameters**. """ equinox = TimeAttribute(default=EQUINOX_B1950) obstime = TimeAttribute(default=None, secondary_attribute='equinox') @staticmethod def _precession_matrix(oldequinox, newequinox): """ Compute and return the precession matrix for FK4 using Newcomb's method. Used inside some of the transformation functions. Parameters ---------- oldequinox : `~astropy.time.Time` The equinox to precess from. newequinox : `~astropy.time.Time` The equinox to precess to. Returns ------- newcoord : array The precession matrix to transform to the new equinox """ return earth._precession_matrix_besselian(oldequinox.byear, newequinox.byear) # the "self" transform @frame_transform_graph.transform(DynamicMatrixTransform, FK4NoETerms, FK4NoETerms) def fk4noe_to_fk4noe(fk4necoord1, fk4neframe2): return fk4necoord1._precession_matrix(fk4necoord1.equinox, fk4neframe2.equinox) # FK4-NO-E to/from FK4 -----------------------------> # Unlike other frames, this module include *two* frame classes for FK4 # coordinates - one including the E-terms of aberration (FK4), and # one not including them (FK4NoETerms). The following functions # implement the transformation between these two. def fk4_e_terms(equinox): """ Return the e-terms of aberration vector Parameters ---------- equinox : Time object The equinox for which to compute the e-terms """ # Constant of aberration at J2000; from Explanatory Supplement to the # Astronomical Almanac (Seidelmann, 2005). k = 0.0056932 # in degrees (v_earth/c ~ 1e-4 rad ~ 0.0057 deg) k = np.radians(k) # Eccentricity of the Earth's orbit e = earth.eccentricity(equinox.jd) # Mean longitude of perigee of the solar orbit g = earth.mean_lon_of_perigee(equinox.jd) g = np.radians(g) # Obliquity of the ecliptic o = earth.obliquity(equinox.jd, algorithm=1980) o = np.radians(o) return (e * k * np.sin(g), -e * k * np.cos(g) * np.cos(o), -e * k * np.cos(g) * np.sin(o)) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, FK4, FK4NoETerms) def fk4_to_fk4_no_e(fk4coord, fk4noeframe): # Extract cartesian vector rep = fk4coord.cartesian # Find distance (for re-normalization) d_orig = rep.norm() rep /= d_orig # Apply E-terms of aberration. Note that this depends on the equinox (not # the observing time/epoch) of the coordinates. See issue #1496 for a # discussion of this. eterms_a = CartesianRepresentation( u.Quantity(fk4_e_terms(fk4coord.equinox), u.dimensionless_unscaled, copy=False), copy=False) rep = rep - eterms_a + eterms_a.dot(rep) * rep # Find new distance (for re-normalization) d_new = rep.norm() # Renormalize rep *= d_orig / d_new # now re-cast into an appropriate Representation, and precess if need be if isinstance(fk4coord.data, UnitSphericalRepresentation): rep = rep.represent_as(UnitSphericalRepresentation) # if no obstime was given in the new frame, use the old one for consistency newobstime = fk4coord._obstime if fk4noeframe._obstime is None else fk4noeframe._obstime fk4noe = FK4NoETerms(rep, equinox=fk4coord.equinox, obstime=newobstime) if fk4coord.equinox != fk4noeframe.equinox: # precession fk4noe = fk4noe.transform_to(fk4noeframe) return fk4noe @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, FK4NoETerms, FK4) def fk4_no_e_to_fk4(fk4noecoord, fk4frame): # first precess, if necessary if fk4noecoord.equinox != fk4frame.equinox: fk4noe_w_fk4equinox = FK4NoETerms(equinox=fk4frame.equinox, obstime=fk4noecoord.obstime) fk4noecoord = fk4noecoord.transform_to(fk4noe_w_fk4equinox) # Extract cartesian vector rep = fk4noecoord.cartesian # Find distance (for re-normalization) d_orig = rep.norm() rep /= d_orig # Apply E-terms of aberration. Note that this depends on the equinox (not # the observing time/epoch) of the coordinates. See issue #1496 for a # discussion of this. eterms_a = CartesianRepresentation( u.Quantity(fk4_e_terms(fk4noecoord.equinox), u.dimensionless_unscaled, copy=False), copy=False) rep0 = rep.copy() for _ in range(10): rep = (eterms_a + rep0) / (1. + eterms_a.dot(rep)) # Find new distance (for re-normalization) d_new = rep.norm() # Renormalize rep *= d_orig / d_new # now re-cast into an appropriate Representation, and precess if need be if isinstance(fk4noecoord.data, UnitSphericalRepresentation): rep = rep.represent_as(UnitSphericalRepresentation) return fk4frame.realize_frame(rep)
71faf8b940a647befb3409db9ba7d3ad6bfd530167c12b28e8933a0670dadc6d
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy.utils.decorators import format_doc from astropy.coordinates import representation as r from astropy.coordinates.baseframe import BaseCoordinateFrame, RepresentationMapping, base_doc __all__ = ['BaseRADecFrame'] doc_components = """ ra : `~astropy.coordinates.Angle`, optional, keyword-only The RA for this object (``dec`` must also be given and ``representation`` must be None). dec : `~astropy.coordinates.Angle`, optional, keyword-only The Declination for this object (``ra`` must also be given and ``representation`` must be None). distance : `~astropy.units.Quantity` ['length'], optional, keyword-only The Distance for this object along the line-of-sight. (``representation`` must be None). pm_ra_cosdec : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in Right Ascension (including the ``cos(dec)`` factor) for this object (``pm_dec`` must also be given). pm_dec : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in Declination for this object (``pm_ra_cosdec`` must also be given). radial_velocity : `~astropy.units.Quantity` ['speed'], optional, keyword-only The radial velocity of this object. """ @format_doc(base_doc, components=doc_components, footer="") class BaseRADecFrame(BaseCoordinateFrame): """ A base class that defines default representation info for frames that represent longitude and latitude as Right Ascension and Declination following typical "equatorial" conventions. """ frame_specific_representation_info = { r.SphericalRepresentation: [ RepresentationMapping('lon', 'ra'), RepresentationMapping('lat', 'dec') ] } default_representation = r.SphericalRepresentation default_differential = r.SphericalCosLatDifferential
713ad19d52bd3114e377b2817003e3a0c4619078ea670af5badf87a3d57dee53
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This package contains the coordinate frames implemented by astropy. Users shouldn't use this module directly, but rather import from the `astropy.coordinates` module. While it is likely to exist for the long-term, the existence of this package and details of its organization should be considered an implementation detail, and is not guaranteed to hold for future versions of astropy. Notes ----- The builtin frame classes are all imported automatically into this package's namespace, so there's no need to access the sub-modules directly. To implement a new frame in Astropy, a developer should add the frame as a new module in this package. Any "self" transformations (i.e., those that transform from one frame to another frame of the same class) should be included in that module. Transformation functions connecting the new frame to other frames should be in a separate module, which should be imported in this package's ``__init__.py`` to ensure the transformations are hooked up when this package is imported. Placing the transformation functions in separate modules avoids circular dependencies, because they need references to the frame classes. """ from .baseradec import BaseRADecFrame from .icrs import ICRS from .fk5 import FK5 from .fk4 import FK4, FK4NoETerms from .galactic import Galactic from .galactocentric import Galactocentric, galactocentric_frame_defaults from .supergalactic import Supergalactic from .altaz import AltAz from .hadec import HADec from .gcrs import GCRS, PrecessedGeocentric from .cirs import CIRS from .itrs import ITRS from .hcrs import HCRS from .equatorial import TEME, TETE from .ecliptic import * # there are a lot of these so we don't list them all explicitly from .skyoffset import SkyOffsetFrame # need to import transformations so that they get registered in the graph from . import icrs_fk5_transforms from . import fk4_fk5_transforms from . import galactic_transforms from . import supergalactic_transforms from . import icrs_cirs_transforms from . import cirs_observed_transforms from . import icrs_observed_transforms from . import intermediate_rotation_transforms from . import ecliptic_transforms # Import this after importing other frames, since this requires various # transformtions to set up the LSR frames from .lsr import LSR, GalacticLSR, LSRK, LSRD from astropy.coordinates.baseframe import frame_transform_graph # we define an __all__ because otherwise the transformation modules # get included __all__ = ['ICRS', 'FK5', 'FK4', 'FK4NoETerms', 'Galactic', 'Galactocentric', 'galactocentric_frame_defaults', 'Supergalactic', 'AltAz', 'HADec', 'GCRS', 'CIRS', 'ITRS', 'HCRS', 'TEME', 'TETE', 'PrecessedGeocentric', 'GeocentricMeanEcliptic', 'BarycentricMeanEcliptic', 'HeliocentricMeanEcliptic', 'GeocentricTrueEcliptic', 'BarycentricTrueEcliptic', 'HeliocentricTrueEcliptic', 'SkyOffsetFrame', 'GalacticLSR', 'LSR', 'LSRK', 'LSRD', 'BaseEclipticFrame', 'BaseRADecFrame', 'make_transform_graph_docs', 'HeliocentricEclipticIAU76', 'CustomBarycentricEcliptic'] def make_transform_graph_docs(transform_graph): """ Generates a string that can be used in other docstrings to include a transformation graph, showing the available transforms and coordinate systems. Parameters ---------- transform_graph : `~.coordinates.TransformGraph` Returns ------- docstring : str A string that can be added to the end of a docstring to show the transform graph. """ from textwrap import dedent coosys = [transform_graph.lookup_name(item) for item in transform_graph.get_names()] # currently, all of the priorities are set to 1, so we don't need to show # then in the transform graph. graphstr = transform_graph.to_dot_graph(addnodes=coosys, priorities=False) docstr = """ The diagram below shows all of the built in coordinate systems, their aliases (useful for converting other coordinates to them using attribute-style access) and the pre-defined transformations between them. The user is free to override any of these transformations by defining new transformations between these systems, but the pre-defined transformations should be sufficient for typical usage. The color of an edge in the graph (i.e. the transformations between two frames) is set by the type of transformation; the legend box defines the mapping from transform class name to color. .. Wrap the graph in a div with a custom class to allow themeing. .. container:: frametransformgraph .. graphviz:: """ docstr = dedent(docstr) + ' ' + graphstr.replace('\n', '\n ') # colors are in dictionary at the bottom of transformations.py from astropy.coordinates.transformations import trans_to_color html_list_items = [] for cls, color in trans_to_color.items(): block = f""" <li style='list-style: none;'> <p style="font-size: 12px;line-height: 24px;font-weight: normal;color: #848484;padding: 0;margin: 0;"> <b>{cls.__name__}:</b> <span style="font-size: 24px; color: {color};"><b>➝</b></span> </p> </li> """ html_list_items.append(block) nl = '\n' graph_legend = f""" .. raw:: html <ul> {nl.join(html_list_items)} </ul> """ docstr = docstr + dedent(graph_legend) return docstr _transform_graph_docs = make_transform_graph_docs(frame_transform_graph) # Here, we override the module docstring so that sphinx renders the transform # graph without the developer documentation in the main docstring above. __doc__ = _transform_graph_docs
1b8551f1795bb99b2ede1094cc11acc2f963171103d6ed7f76e988d95aba9283
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy import units as u from astropy.utils.decorators import format_doc from astropy.coordinates import representation as r from astropy.coordinates.baseframe import BaseCoordinateFrame, RepresentationMapping, base_doc from .galactic import Galactic __all__ = ['Supergalactic'] doc_components = """ sgl : `~astropy.coordinates.Angle`, optional, keyword-only The supergalactic longitude for this object (``sgb`` must also be given and ``representation`` must be None). sgb : `~astropy.coordinates.Angle`, optional, keyword-only The supergalactic latitude for this object (``sgl`` must also be given and ``representation`` must be None). distance : `~astropy.units.Quantity` ['speed'], optional, keyword-only The Distance for this object along the line-of-sight. pm_sgl_cossgb : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in Right Ascension for this object (``pm_sgb`` must also be given). pm_sgb : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in Declination for this object (``pm_sgl_cossgb`` must also be given). radial_velocity : `~astropy.units.Quantity` ['speed'], optional, keyword-only The radial velocity of this object. """ @format_doc(base_doc, components=doc_components, footer="") class Supergalactic(BaseCoordinateFrame): """ Supergalactic Coordinates (see Lahav et al. 2000, <https://ui.adsabs.harvard.edu/abs/2000MNRAS.312..166L>, and references therein). """ frame_specific_representation_info = { r.SphericalRepresentation: [ RepresentationMapping('lon', 'sgl'), RepresentationMapping('lat', 'sgb') ], r.CartesianRepresentation: [ RepresentationMapping('x', 'sgx'), RepresentationMapping('y', 'sgy'), RepresentationMapping('z', 'sgz') ], r.CartesianDifferential: [ RepresentationMapping('d_x', 'v_x', u.km/u.s), RepresentationMapping('d_y', 'v_y', u.km/u.s), RepresentationMapping('d_z', 'v_z', u.km/u.s) ], } default_representation = r.SphericalRepresentation default_differential = r.SphericalCosLatDifferential # North supergalactic pole in Galactic coordinates. # Needed for transformations to/from Galactic coordinates. _nsgp_gal = Galactic(l=47.37*u.degree, b=+6.32*u.degree)
655c9544d74a9c984bad46c161dc22bac9fef8512802362aa0fd9a07a9e49ad4
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy.utils.decorators import format_doc from astropy.coordinates.baseframe import base_doc from .baseradec import BaseRADecFrame, doc_components __all__ = ['ICRS'] @format_doc(base_doc, components=doc_components, footer="") class ICRS(BaseRADecFrame): """ A coordinate or frame in the ICRS system. If you're looking for "J2000" coordinates, and aren't sure if you want to use this or `~astropy.coordinates.FK5`, you probably want to use ICRS. It's more well-defined as a catalog coordinate and is an inertial system, and is very close (within tens of milliarcseconds) to J2000 equatorial. For more background on the ICRS and related coordinate transformations, see the references provided in the :ref:`astropy:astropy-coordinates-seealso` section of the documentation. """
79272ba2ea5f42cc995e0ac10e9b0122572d50e37058cd5eb2301b5faa28ffb2
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy import units as u from astropy.utils.decorators import format_doc from astropy.coordinates.attributes import (TimeAttribute, CartesianRepresentationAttribute) from .utils import DEFAULT_OBSTIME, EQUINOX_J2000 from astropy.coordinates.baseframe import base_doc from .baseradec import BaseRADecFrame, doc_components __all__ = ['GCRS', 'PrecessedGeocentric'] doc_footer_gcrs = """ Other parameters ---------------- obstime : `~astropy.time.Time` The time at which the observation is taken. Used for determining the position of the Earth. obsgeoloc : `~astropy.coordinates.CartesianRepresentation`, `~astropy.units.Quantity` The position of the observer relative to the center-of-mass of the Earth, oriented the same as BCRS/ICRS. Either [0, 0, 0], `~astropy.coordinates.CartesianRepresentation`, or proper input for one, i.e., a `~astropy.units.Quantity` with shape (3, ...) and length units. Defaults to [0, 0, 0], meaning "true" GCRS. obsgeovel : `~astropy.coordinates.CartesianRepresentation`, `~astropy.units.Quantity` The velocity of the observer relative to the center-of-mass of the Earth, oriented the same as BCRS/ICRS. Either [0, 0, 0], `~astropy.coordinates.CartesianRepresentation`, or proper input for one, i.e., a `~astropy.units.Quantity` with shape (3, ...) and velocity units. Defaults to [0, 0, 0], meaning "true" GCRS. """ @format_doc(base_doc, components=doc_components, footer=doc_footer_gcrs) class GCRS(BaseRADecFrame): """ A coordinate or frame in the Geocentric Celestial Reference System (GCRS). GCRS is distinct form ICRS mainly in that it is relative to the Earth's center-of-mass rather than the solar system Barycenter. That means this frame includes the effects of aberration (unlike ICRS). For more background on the GCRS, see the references provided in the :ref:`astropy:astropy-coordinates-seealso` section of the documentation. (Of particular note is Section 1.2 of `USNO Circular 179 <https://arxiv.org/abs/astro-ph/0602086>`_) This frame also includes frames that are defined *relative* to the Earth, but that are offset (in both position and velocity) from the Earth. The frame attributes are listed under **Other Parameters**. """ obstime = TimeAttribute(default=DEFAULT_OBSTIME) obsgeoloc = CartesianRepresentationAttribute(default=[0, 0, 0], unit=u.m) obsgeovel = CartesianRepresentationAttribute(default=[0, 0, 0], unit=u.m/u.s) # The "self-transform" is defined in icrs_cirs_transformations.py, because in # the current implementation it goes through ICRS (like CIRS) doc_footer_prec_geo = """ Other parameters ---------------- equinox : `~astropy.time.Time` The (mean) equinox to precess the coordinates to. obstime : `~astropy.time.Time` The time at which the observation is taken. Used for determining the position of the Earth. obsgeoloc : `~astropy.coordinates.CartesianRepresentation`, `~astropy.units.Quantity` The position of the observer relative to the center-of-mass of the Earth, oriented the same as BCRS/ICRS. Either [0, 0, 0], `~astropy.coordinates.CartesianRepresentation`, or proper input for one, i.e., a `~astropy.units.Quantity` with shape (3, ...) and length units. Defaults to [0, 0, 0], meaning "true" Geocentric. obsgeovel : `~astropy.coordinates.CartesianRepresentation`, `~astropy.units.Quantity` The velocity of the observer relative to the center-of-mass of the Earth, oriented the same as BCRS/ICRS. Either 0, `~astropy.coordinates.CartesianRepresentation`, or proper input for one, i.e., a `~astropy.units.Quantity` with shape (3, ...) and velocity units. Defaults to [0, 0, 0], meaning "true" Geocentric. """ @format_doc(base_doc, components=doc_components, footer=doc_footer_prec_geo) class PrecessedGeocentric(BaseRADecFrame): """ A coordinate frame defined in a similar manner as GCRS, but precessed to a requested (mean) equinox. Note that this does *not* end up the same as regular GCRS even for J2000 equinox, because the GCRS orientation is fixed to that of ICRS, which is not quite the same as the dynamical J2000 orientation. The frame attributes are listed under **Other Parameters** """ equinox = TimeAttribute(default=EQUINOX_J2000) obstime = TimeAttribute(default=DEFAULT_OBSTIME) obsgeoloc = CartesianRepresentationAttribute(default=[0, 0, 0], unit=u.m) obsgeovel = CartesianRepresentationAttribute(default=[0, 0, 0], unit=u.m/u.s)
8028b9fdcc436e6412a0b50ac1b41e774d00d90c2f458d1f94943eecb1ba96af
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy import units as u from astropy.utils.decorators import format_doc from astropy.coordinates import representation as r from astropy.coordinates.baseframe import BaseCoordinateFrame, base_doc from astropy.coordinates.attributes import TimeAttribute, QuantityAttribute from .utils import EQUINOX_J2000, DEFAULT_OBSTIME __all__ = ['GeocentricMeanEcliptic', 'BarycentricMeanEcliptic', 'HeliocentricMeanEcliptic', 'BaseEclipticFrame', 'GeocentricTrueEcliptic', 'BarycentricTrueEcliptic', 'HeliocentricTrueEcliptic', 'HeliocentricEclipticIAU76', 'CustomBarycentricEcliptic'] doc_components_ecl = """ lon : `~astropy.coordinates.Angle`, optional, keyword-only The ecliptic longitude for this object (``lat`` must also be given and ``representation`` must be None). lat : `~astropy.coordinates.Angle`, optional, keyword-only The ecliptic latitude for this object (``lon`` must also be given and ``representation`` must be None). distance : `~astropy.units.Quantity` ['length'], optional, keyword-only The distance for this object from the {0}. (``representation`` must be None). pm_lon_coslat : `~astropy.units.Quantity` ['angualar speed'], optional, keyword-only The proper motion in the ecliptic longitude (including the ``cos(lat)`` factor) for this object (``pm_lat`` must also be given). pm_lat : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in the ecliptic latitude for this object (``pm_lon_coslat`` must also be given). radial_velocity : `~astropy.units.Quantity` ['speed'], optional, keyword-only The radial velocity of this object. """ @format_doc(base_doc, components=doc_components_ecl.format('specified location'), footer="") class BaseEclipticFrame(BaseCoordinateFrame): """ A base class for frames that have names and conventions like that of ecliptic frames. .. warning:: In the current version of astropy, the ecliptic frames do not yet have stringent accuracy tests. We recommend you test to "known-good" cases to ensure this frames are what you are looking for. (and then ideally you would contribute these tests to Astropy!) """ default_representation = r.SphericalRepresentation default_differential = r.SphericalCosLatDifferential doc_footer_geo = """ Other parameters ---------------- equinox : `~astropy.time.Time`, optional The date to assume for this frame. Determines the location of the x-axis and the location of the Earth (necessary for transformation to non-geocentric systems). Defaults to the 'J2000' equinox. obstime : `~astropy.time.Time`, optional The time at which the observation is taken. Used for determining the position of the Earth. Defaults to J2000. """ @format_doc(base_doc, components=doc_components_ecl.format('geocenter'), footer=doc_footer_geo) class GeocentricMeanEcliptic(BaseEclipticFrame): """ Geocentric mean ecliptic coordinates. These origin of the coordinates are the geocenter (Earth), with the x axis pointing to the *mean* (not true) equinox at the time specified by the ``equinox`` attribute, and the xy-plane in the plane of the ecliptic for that date. Be aware that the definition of "geocentric" here means that this frame *includes* light deflection from the sun, aberration, etc when transforming to/from e.g. ICRS. The frame attributes are listed under **Other Parameters**. """ equinox = TimeAttribute(default=EQUINOX_J2000) obstime = TimeAttribute(default=DEFAULT_OBSTIME) @format_doc(base_doc, components=doc_components_ecl.format('geocenter'), footer=doc_footer_geo) class GeocentricTrueEcliptic(BaseEclipticFrame): """ Geocentric true ecliptic coordinates. These origin of the coordinates are the geocenter (Earth), with the x axis pointing to the *true* (not mean) equinox at the time specified by the ``equinox`` attribute, and the xy-plane in the plane of the ecliptic for that date. Be aware that the definition of "geocentric" here means that this frame *includes* light deflection from the sun, aberration, etc when transforming to/from e.g. ICRS. The frame attributes are listed under **Other Parameters**. """ equinox = TimeAttribute(default=EQUINOX_J2000) obstime = TimeAttribute(default=DEFAULT_OBSTIME) doc_footer_bary = """ Other parameters ---------------- equinox : `~astropy.time.Time`, optional The date to assume for this frame. Determines the location of the x-axis and the location of the Earth and Sun. Defaults to the 'J2000' equinox. """ @format_doc(base_doc, components=doc_components_ecl.format("barycenter"), footer=doc_footer_bary) class BarycentricMeanEcliptic(BaseEclipticFrame): """ Barycentric mean ecliptic coordinates. These origin of the coordinates are the barycenter of the solar system, with the x axis pointing in the direction of the *mean* (not true) equinox as at the time specified by the ``equinox`` attribute (as seen from Earth), and the xy-plane in the plane of the ecliptic for that date. The frame attributes are listed under **Other Parameters**. """ equinox = TimeAttribute(default=EQUINOX_J2000) @format_doc(base_doc, components=doc_components_ecl.format("barycenter"), footer=doc_footer_bary) class BarycentricTrueEcliptic(BaseEclipticFrame): """ Barycentric true ecliptic coordinates. These origin of the coordinates are the barycenter of the solar system, with the x axis pointing in the direction of the *true* (not mean) equinox as at the time specified by the ``equinox`` attribute (as seen from Earth), and the xy-plane in the plane of the ecliptic for that date. The frame attributes are listed under **Other Parameters**. """ equinox = TimeAttribute(default=EQUINOX_J2000) doc_footer_helio = """ Other parameters ---------------- equinox : `~astropy.time.Time`, optional The date to assume for this frame. Determines the location of the x-axis and the location of the Earth and Sun. Defaults to the 'J2000' equinox. obstime : `~astropy.time.Time`, optional The time at which the observation is taken. Used for determining the position of the Sun. Defaults to J2000. """ @format_doc(base_doc, components=doc_components_ecl.format("sun's center"), footer=doc_footer_helio) class HeliocentricMeanEcliptic(BaseEclipticFrame): """ Heliocentric mean ecliptic coordinates. These origin of the coordinates are the center of the sun, with the x axis pointing in the direction of the *mean* (not true) equinox as at the time specified by the ``equinox`` attribute (as seen from Earth), and the xy-plane in the plane of the ecliptic for that date. The frame attributes are listed under **Other Parameters**. {params} """ equinox = TimeAttribute(default=EQUINOX_J2000) obstime = TimeAttribute(default=DEFAULT_OBSTIME) @format_doc(base_doc, components=doc_components_ecl.format("sun's center"), footer=doc_footer_helio) class HeliocentricTrueEcliptic(BaseEclipticFrame): """ Heliocentric true ecliptic coordinates. These origin of the coordinates are the center of the sun, with the x axis pointing in the direction of the *true* (not mean) equinox as at the time specified by the ``equinox`` attribute (as seen from Earth), and the xy-plane in the plane of the ecliptic for that date. The frame attributes are listed under **Other Parameters**. {params} """ equinox = TimeAttribute(default=EQUINOX_J2000) obstime = TimeAttribute(default=DEFAULT_OBSTIME) @format_doc(base_doc, components=doc_components_ecl.format("sun's center"), footer="") class HeliocentricEclipticIAU76(BaseEclipticFrame): """ Heliocentric mean (IAU 1976) ecliptic coordinates. These origin of the coordinates are the center of the sun, with the x axis pointing in the direction of the *mean* (not true) equinox of J2000, and the xy-plane in the plane of the ecliptic of J2000 (according to the IAU 1976/1980 obliquity model). It has, therefore, a fixed equinox and an older obliquity value than the rest of the frames. The frame attributes are listed under **Other Parameters**. {params} """ obstime = TimeAttribute(default=DEFAULT_OBSTIME) @format_doc(base_doc, components=doc_components_ecl.format("barycenter"), footer="") class CustomBarycentricEcliptic(BaseEclipticFrame): """ Barycentric ecliptic coordinates with custom obliquity. These origin of the coordinates are the barycenter of the solar system, with the x axis pointing in the direction of the *mean* (not true) equinox of J2000, and the xy-plane in the plane of the ecliptic tilted a custom obliquity angle. The frame attributes are listed under **Other Parameters**. """ obliquity = QuantityAttribute(default=84381.448 * u.arcsec, unit=u.arcsec)
a9d489f95db23609770f711b851723b557f04ce9b9ba17f4cb8a391cb43c6422
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy.utils.decorators import format_doc from astropy.coordinates.representation import CartesianRepresentation, CartesianDifferential from astropy.coordinates.baseframe import BaseCoordinateFrame, base_doc from astropy.coordinates.attributes import TimeAttribute from .utils import DEFAULT_OBSTIME __all__ = ['ITRS'] @format_doc(base_doc, components="", footer="") class ITRS(BaseCoordinateFrame): """ A coordinate or frame in the International Terrestrial Reference System (ITRS). This is approximately a geocentric system, although strictly it is defined by a series of reference locations near the surface of the Earth. For more background on the ITRS, see the references provided in the :ref:`astropy:astropy-coordinates-seealso` section of the documentation. """ default_representation = CartesianRepresentation default_differential = CartesianDifferential obstime = TimeAttribute(default=DEFAULT_OBSTIME) @property def earth_location(self): """ The data in this frame as an `~astropy.coordinates.EarthLocation` class. """ from astropy.coordinates.earth import EarthLocation cart = self.represent_as(CartesianRepresentation) return EarthLocation(x=cart.x, y=cart.y, z=cart.z) # Self-transform is in intermediate_rotation_transforms.py with all the other # ITRS transforms
e661c03107dc1346c629eec1244847da35f977b6dcb0f87f5af57a276d9a77e6
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Contains the transformation functions for getting to "observed" systems from ICRS. """ import erfa from astropy import units as u from astropy.coordinates.builtin_frames.utils import atciqz, aticq from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.transformations import FunctionTransformWithFiniteDifference from astropy.coordinates.representation import (SphericalRepresentation, CartesianRepresentation, UnitSphericalRepresentation) from .icrs import ICRS from .altaz import AltAz from .hadec import HADec from .utils import PIOVER2 from ..erfa_astrom import erfa_astrom @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, ICRS, AltAz) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, ICRS, HADec) def icrs_to_observed(icrs_coo, observed_frame): # if the data are UnitSphericalRepresentation, we can skip the distance calculations is_unitspherical = (isinstance(icrs_coo.data, UnitSphericalRepresentation) or icrs_coo.cartesian.x.unit == u.one) # first set up the astrometry context for ICRS<->observed astrom = erfa_astrom.get().apco(observed_frame) # correct for parallax to find BCRS direction from observer (as in erfa.pmpx) if is_unitspherical: srepr = icrs_coo.spherical else: observer_icrs = CartesianRepresentation(astrom['eb'], unit=u.au, xyz_axis=-1, copy=False) srepr = (icrs_coo.cartesian - observer_icrs).represent_as( SphericalRepresentation) # convert to topocentric CIRS cirs_ra, cirs_dec = atciqz(srepr, astrom) # now perform observed conversion if isinstance(observed_frame, AltAz): lon, zen, _, _, _ = erfa.atioq(cirs_ra, cirs_dec, astrom) lat = PIOVER2 - zen else: _, _, lon, lat, _ = erfa.atioq(cirs_ra, cirs_dec, astrom) if is_unitspherical: obs_srepr = UnitSphericalRepresentation(lon << u.radian, lat << u.radian, copy=False) else: obs_srepr = SphericalRepresentation(lon << u.radian, lat << u.radian, srepr.distance, copy=False) return observed_frame.realize_frame(obs_srepr) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, AltAz, ICRS) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HADec, ICRS) def observed_to_icrs(observed_coo, icrs_frame): # if the data are UnitSphericalRepresentation, we can skip the distance calculations is_unitspherical = (isinstance(observed_coo.data, UnitSphericalRepresentation) or observed_coo.cartesian.x.unit == u.one) usrepr = observed_coo.represent_as(UnitSphericalRepresentation) lon = usrepr.lon.to_value(u.radian) lat = usrepr.lat.to_value(u.radian) if isinstance(observed_coo, AltAz): # the 'A' indicates zen/az inputs coord_type = 'A' lat = PIOVER2 - lat else: coord_type = 'H' # first set up the astrometry context for ICRS<->CIRS at the observed_coo time astrom = erfa_astrom.get().apco(observed_coo) # Topocentric CIRS cirs_ra, cirs_dec = erfa.atoiq(coord_type, lon, lat, astrom) << u.radian if is_unitspherical: srepr = SphericalRepresentation(cirs_ra, cirs_dec, 1, copy=False) else: srepr = SphericalRepresentation(lon=cirs_ra, lat=cirs_dec, distance=observed_coo.distance, copy=False) # BCRS (Astrometric) direction to source bcrs_ra, bcrs_dec = aticq(srepr, astrom) << u.radian # Correct for parallax to get ICRS representation if is_unitspherical: icrs_srepr = UnitSphericalRepresentation(bcrs_ra, bcrs_dec, copy=False) else: icrs_srepr = SphericalRepresentation(lon=bcrs_ra, lat=bcrs_dec, distance=observed_coo.distance, copy=False) observer_icrs = CartesianRepresentation(astrom['eb'], unit=u.au, xyz_axis=-1, copy=False) newrepr = icrs_srepr.to_cartesian() + observer_icrs icrs_srepr = newrepr.represent_as(SphericalRepresentation) return icrs_frame.realize_frame(icrs_srepr) # Create loopback transformations frame_transform_graph._add_merged_transform(AltAz, ICRS, AltAz) frame_transform_graph._add_merged_transform(HADec, ICRS, HADec) # for now we just implement this through ICRS to make sure we get everything # covered # Before, this was using CIRS as intermediate frame, however this is much # slower than the direct observed<->ICRS transform added in 4.3 # due to how the frame attribute broadcasting works, see # https://github.com/astropy/astropy/pull/10994#issuecomment-722617041
b4453a88648421fa2717f16aff45c6ec3324b42d2ad0fc3a8323d82eec4725c9
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This module contains functions/values used repeatedly in different modules of the ``builtin_frames`` package. """ import warnings import erfa import numpy as np from astropy import units as u from astropy.time import Time from astropy.coordinates.earth import EarthLocation from astropy.utils import iers from astropy.utils.exceptions import AstropyWarning from ..representation import CartesianDifferential # We use tt as the time scale for this equinoxes, primarily because it is the # convention for J2000 (it is unclear if there is any "right answer" for B1950) # while #8600 makes this the default behavior, we show it here to ensure it's # clear which is used here EQUINOX_J2000 = Time('J2000', scale='tt') EQUINOX_B1950 = Time('B1950', scale='tt') # This is a time object that is the default "obstime" when such an attribute is # necessary. Currently, we use J2000. DEFAULT_OBSTIME = Time('J2000', scale='tt') # This is an EarthLocation that is the default "location" when such an attribute is # necessary. It is the centre of the Earth. EARTH_CENTER = EarthLocation(0*u.km, 0*u.km, 0*u.km) PIOVER2 = np.pi / 2. # comes from the mean of the 1962-2014 IERS B data _DEFAULT_PM = (0.035, 0.29)*u.arcsec def get_polar_motion(time): """ gets the two polar motion components in radians for use with apio """ # Get the polar motion from the IERS table iers_table = iers.earth_orientation_table.get() xp, yp, status = iers_table.pm_xy(time, return_status=True) wmsg = ( 'Tried to get polar motions for times {} IERS data is ' 'valid. Defaulting to polar motion from the 50-yr mean for those. ' 'This may affect precision at the arcsec level. Please check your ' 'astropy.utils.iers.conf.iers_auto_url and point it to a newer ' 'version if necessary.' ) if np.any(status == iers.TIME_BEFORE_IERS_RANGE): xp[status == iers.TIME_BEFORE_IERS_RANGE] = _DEFAULT_PM[0] yp[status == iers.TIME_BEFORE_IERS_RANGE] = _DEFAULT_PM[1] warnings.warn(wmsg.format('before'), AstropyWarning) if np.any(status == iers.TIME_BEYOND_IERS_RANGE): xp[status == iers.TIME_BEYOND_IERS_RANGE] = _DEFAULT_PM[0] yp[status == iers.TIME_BEYOND_IERS_RANGE] = _DEFAULT_PM[1] warnings.warn(wmsg.format('after'), AstropyWarning) return xp.to_value(u.radian), yp.to_value(u.radian) def _warn_iers(ierserr): """ Generate a warning for an IERSRangeerror Parameters ---------- ierserr : An `~astropy.utils.iers.IERSRangeError` """ msg = '{0} Assuming UT1-UTC=0 for coordinate transformations.' warnings.warn(msg.format(ierserr.args[0]), AstropyWarning) def get_dut1utc(time): """ This function is used to get UT1-UTC in coordinates because normally it gives an error outside the IERS range, but in coordinates we want to allow it to go through but with a warning. """ try: return time.delta_ut1_utc except iers.IERSRangeError as e: _warn_iers(e) return np.zeros(time.shape) def get_jd12(time, scale): """ Gets ``jd1`` and ``jd2`` from a time object in a particular scale. Parameters ---------- time : `~astropy.time.Time` The time to get the jds for scale : str The time scale to get the jds for Returns ------- jd1 : float jd2 : float """ if time.scale == scale: newtime = time else: try: newtime = getattr(time, scale) except iers.IERSRangeError as e: _warn_iers(e) newtime = time return newtime.jd1, newtime.jd2 def norm(p): """ Normalise a p-vector. """ return p / np.sqrt(np.einsum('...i,...i', p, p))[..., np.newaxis] def pav2pv(p, v): """ Combine p- and v- vectors into a pv-vector. """ pv = np.empty(np.broadcast(p, v).shape[:-1], erfa.dt_pv) pv['p'] = p pv['v'] = v return pv def get_cip(jd1, jd2): """ Find the X, Y coordinates of the CIP and the CIO locator, s. Parameters ---------- jd1 : float or `np.ndarray` First part of two part Julian date (TDB) jd2 : float or `np.ndarray` Second part of two part Julian date (TDB) Returns ------- x : float or `np.ndarray` x coordinate of the CIP y : float or `np.ndarray` y coordinate of the CIP s : float or `np.ndarray` CIO locator, s """ # classical NPB matrix, IAU 2006/2000A rpnb = erfa.pnm06a(jd1, jd2) # CIP X, Y coordinates from array x, y = erfa.bpn2xy(rpnb) # CIO locator, s s = erfa.s06(jd1, jd2, x, y) return x, y, s def aticq(srepr, astrom): """ A slightly modified version of the ERFA function ``eraAticq``. ``eraAticq`` performs the transformations between two coordinate systems, with the details of the transformation being encoded into the ``astrom`` array. There are two issues with the version of aticq in ERFA. Both are associated with the handling of light deflection. The companion function ``eraAtciqz`` is meant to be its inverse. However, this is not true for directions close to the Solar centre, since the light deflection calculations are numerically unstable and therefore not reversible. This version sidesteps that problem by artificially reducing the light deflection for directions which are within 90 arcseconds of the Sun's position. This is the same approach used by the ERFA functions above, except that they use a threshold of 9 arcseconds. In addition, ERFA's aticq assumes a distant source, so there is no difference between the object-Sun vector and the observer-Sun vector. This can lead to errors of up to a few arcseconds in the worst case (e.g a Venus transit). Parameters ---------- srepr : `~astropy.coordinates.SphericalRepresentation` Astrometric GCRS or CIRS position of object from observer astrom : eraASTROM array ERFA astrometry context, as produced by, e.g. ``eraApci13`` or ``eraApcs13`` Returns ------- rc : float or `~numpy.ndarray` Right Ascension in radians dc : float or `~numpy.ndarray` Declination in radians """ # ignore parallax effects if no distance, or far away srepr_distance = srepr.distance ignore_distance = srepr_distance.unit == u.one # RA, Dec to cartesian unit vectors pos = erfa.s2c(srepr.lon.radian, srepr.lat.radian) # Bias-precession-nutation, giving GCRS proper direction. ppr = erfa.trxp(astrom['bpn'], pos) # Aberration, giving GCRS natural direction d = np.zeros_like(ppr) for j in range(2): before = norm(ppr-d) after = erfa.ab(before, astrom['v'], astrom['em'], astrom['bm1']) d = after - before pnat = norm(ppr-d) # Light deflection by the Sun, giving BCRS coordinate direction d = np.zeros_like(pnat) for j in range(5): before = norm(pnat-d) if ignore_distance: # No distance to object, assume a long way away q = before else: # Find BCRS direction of Sun to object. # astrom['eh'] and astrom['em'] contain Sun to observer unit vector, # and distance, respectively. eh = astrom['em'][..., np.newaxis] * astrom['eh'] # unit vector from Sun to object q = eh + srepr_distance[..., np.newaxis].to_value(u.au) * before sundist, q = erfa.pn(q) sundist = sundist[..., np.newaxis] # calculation above is extremely unstable very close to the sun # in these situations, default back to ldsun-style behaviour, # since this is reversible and drops to zero within stellar limb q = np.where(sundist > 1.0e-10, q, before) after = erfa.ld(1.0, before, q, astrom['eh'], astrom['em'], 1e-6) d = after - before pco = norm(pnat-d) # ICRS astrometric RA, Dec rc, dc = erfa.c2s(pco) return erfa.anp(rc), dc def atciqz(srepr, astrom): """ A slightly modified version of the ERFA function ``eraAtciqz``. ``eraAtciqz`` performs the transformations between two coordinate systems, with the details of the transformation being encoded into the ``astrom`` array. There are two issues with the version of atciqz in ERFA. Both are associated with the handling of light deflection. The companion function ``eraAticq`` is meant to be its inverse. However, this is not true for directions close to the Solar centre, since the light deflection calculations are numerically unstable and therefore not reversible. This version sidesteps that problem by artificially reducing the light deflection for directions which are within 90 arcseconds of the Sun's position. This is the same approach used by the ERFA functions above, except that they use a threshold of 9 arcseconds. In addition, ERFA's atciqz assumes a distant source, so there is no difference between the object-Sun vector and the observer-Sun vector. This can lead to errors of up to a few arcseconds in the worst case (e.g a Venus transit). Parameters ---------- srepr : `~astropy.coordinates.SphericalRepresentation` Astrometric ICRS position of object from observer astrom : eraASTROM array ERFA astrometry context, as produced by, e.g. ``eraApci13`` or ``eraApcs13`` Returns ------- ri : float or `~numpy.ndarray` Right Ascension in radians di : float or `~numpy.ndarray` Declination in radians """ # ignore parallax effects if no distance, or far away srepr_distance = srepr.distance ignore_distance = srepr_distance.unit == u.one # BCRS coordinate direction (unit vector). pco = erfa.s2c(srepr.lon.radian, srepr.lat.radian) # Find BCRS direction of Sun to object if ignore_distance: # No distance to object, assume a long way away q = pco else: # Find BCRS direction of Sun to object. # astrom['eh'] and astrom['em'] contain Sun to observer unit vector, # and distance, respectively. eh = astrom['em'][..., np.newaxis] * astrom['eh'] # unit vector from Sun to object q = eh + srepr_distance[..., np.newaxis].to_value(u.au) * pco sundist, q = erfa.pn(q) sundist = sundist[..., np.newaxis] # calculation above is extremely unstable very close to the sun # in these situations, default back to ldsun-style behaviour, # since this is reversible and drops to zero within stellar limb q = np.where(sundist > 1.0e-10, q, pco) # Light deflection by the Sun, giving BCRS natural direction. pnat = erfa.ld(1.0, pco, q, astrom['eh'], astrom['em'], 1e-6) # Aberration, giving GCRS proper direction. ppr = erfa.ab(pnat, astrom['v'], astrom['em'], astrom['bm1']) # Bias-precession-nutation, giving CIRS proper direction. # Has no effect if matrix is identity matrix, in which case gives GCRS ppr. pi = erfa.rxp(astrom['bpn'], ppr) # CIRS (GCRS) RA, Dec ri, di = erfa.c2s(pi) return erfa.anp(ri), di def prepare_earth_position_vel(time): """ Get barycentric position and velocity, and heliocentric position of Earth Parameters ---------- time : `~astropy.time.Time` time at which to calculate position and velocity of Earth Returns ------- earth_pv : `np.ndarray` Barycentric position and velocity of Earth, in au and au/day earth_helio : `np.ndarray` Heliocentric position of Earth in au """ # this goes here to avoid circular import errors from astropy.coordinates.solar_system import ( get_body_barycentric, get_body_barycentric_posvel, solar_system_ephemeris, ) # get barycentric position and velocity of earth ephemeris = solar_system_ephemeris.get() # if we are using the builtin erfa based ephemeris, # we can use the fact that epv00 already provides all we need. # This avoids calling epv00 twice, once # in get_body_barycentric_posvel('earth') and once in # get_body_barycentric('sun') if ephemeris == 'builtin': jd1, jd2 = get_jd12(time, 'tdb') earth_pv_heliocentric, earth_pv = erfa.epv00(jd1, jd2) earth_heliocentric = earth_pv_heliocentric['p'] # all other ephemeris providers probably don't have a shortcut like this else: earth_p, earth_v = get_body_barycentric_posvel('earth', time) # get heliocentric position of earth, preparing it for passing to erfa. sun = get_body_barycentric('sun', time) earth_heliocentric = (earth_p - sun).get_xyz(xyz_axis=-1).to_value(u.au) # Also prepare earth_pv for passing to erfa, which wants it as # a structured dtype. earth_pv = pav2pv( earth_p.get_xyz(xyz_axis=-1).to_value(u.au), earth_v.get_xyz(xyz_axis=-1).to_value(u.au / u.d) ) return earth_pv, earth_heliocentric def get_offset_sun_from_barycenter(time, include_velocity=False, reverse=False): """ Returns the offset of the Sun center from the solar-system barycenter (SSB). Parameters ---------- time : `~astropy.time.Time` Time at which to calculate the offset include_velocity : `bool` If ``True``, attach the velocity as a differential. Defaults to ``False``. reverse : `bool` If ``True``, return the offset of the barycenter from the Sun. Defaults to ``False``. Returns ------- `~astropy.coordinates.CartesianRepresentation` The offset """ if include_velocity: # Import here to avoid a circular import from astropy.coordinates.solar_system import get_body_barycentric_posvel offset_pos, offset_vel = get_body_barycentric_posvel('sun', time) if reverse: offset_pos, offset_vel = -offset_pos, -offset_vel offset_vel = offset_vel.represent_as(CartesianDifferential) offset_pos = offset_pos.with_differentials(offset_vel) else: # Import here to avoid a circular import from astropy.coordinates.solar_system import get_body_barycentric offset_pos = get_body_barycentric('sun', time) if reverse: offset_pos = -offset_pos return offset_pos
3a1506042436940454badc3798c489b3217665475c92c29725464c6e37d9094b
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Contains the transformation functions for getting to/from ecliptic systems. """ import erfa from astropy import units as u from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.transformations import ( FunctionTransformWithFiniteDifference, DynamicMatrixTransform, AffineTransform, ) from astropy.coordinates.matrix_utilities import (rotation_matrix, matrix_product, matrix_transpose) from .icrs import ICRS from .gcrs import GCRS from .ecliptic import (GeocentricMeanEcliptic, BarycentricMeanEcliptic, HeliocentricMeanEcliptic, GeocentricTrueEcliptic, BarycentricTrueEcliptic, HeliocentricTrueEcliptic, HeliocentricEclipticIAU76, CustomBarycentricEcliptic) from .utils import get_jd12, get_offset_sun_from_barycenter, EQUINOX_J2000 from astropy.coordinates.errors import UnitsError def _mean_ecliptic_rotation_matrix(equinox): # This code just calls ecm06, which uses the precession matrix according to the # IAU 2006 model, but leaves out nutation. This brings the results closer to what # other libraries give (see https://github.com/astropy/astropy/pull/6508). return erfa.ecm06(*get_jd12(equinox, 'tt')) def _true_ecliptic_rotation_matrix(equinox): # This code calls the same routines as done in pnm06a from ERFA, which # retrieves the precession matrix (including frame bias) according to # the IAU 2006 model, and including the nutation. # This family of systems is less popular # (see https://github.com/astropy/astropy/pull/6508). jd1, jd2 = get_jd12(equinox, 'tt') # Here, we call the three routines from erfa.pnm06a separately, # so that we can keep the nutation for calculating the true obliquity # (which is a fairly expensive operation); see gh-11000. # pnm06a: Fukushima-Williams angles for frame bias and precession. # (ERFA names short for F-W's gamma_bar, phi_bar, psi_bar and epsilon_A). gamb, phib, psib, epsa = erfa.pfw06(jd1, jd2) # pnm06a: Nutation components (in longitude and obliquity). dpsi, deps = erfa.nut06a(jd1, jd2) # pnm06a: Equinox based nutation x precession x bias matrix. rnpb = erfa.fw2m(gamb, phib, psib+dpsi, epsa+deps) # calculate the true obliquity of the ecliptic obl = erfa.obl06(jd1, jd2)+deps return matrix_product(rotation_matrix(obl << u.radian, 'x'), rnpb) def _obliquity_only_rotation_matrix(obl=erfa.obl80(EQUINOX_J2000.jd1, EQUINOX_J2000.jd2) * u.radian): # This code only accounts for the obliquity, # which can be passed explicitly. # The default value is the IAU 1980 value for J2000, # which is computed using obl80 from ERFA: # # obl = erfa.obl80(EQUINOX_J2000.jd1, EQUINOX_J2000.jd2) * u.radian return rotation_matrix(obl, "x") # MeanEcliptic frames @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, GCRS, GeocentricMeanEcliptic, finite_difference_frameattr_name='equinox') def gcrs_to_geoecliptic(gcrs_coo, to_frame): # first get us to a 0 pos/vel GCRS at the target equinox gcrs_coo2 = gcrs_coo.transform_to(GCRS(obstime=to_frame.obstime)) rmat = _mean_ecliptic_rotation_matrix(to_frame.equinox) newrepr = gcrs_coo2.cartesian.transform(rmat) return to_frame.realize_frame(newrepr) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, GeocentricMeanEcliptic, GCRS) def geoecliptic_to_gcrs(from_coo, gcrs_frame): rmat = _mean_ecliptic_rotation_matrix(from_coo.equinox) newrepr = from_coo.cartesian.transform(matrix_transpose(rmat)) gcrs = GCRS(newrepr, obstime=from_coo.obstime) # now do any needed offsets (no-op if same obstime and 0 pos/vel) return gcrs.transform_to(gcrs_frame) @frame_transform_graph.transform(DynamicMatrixTransform, ICRS, BarycentricMeanEcliptic) def icrs_to_baryecliptic(from_coo, to_frame): return _mean_ecliptic_rotation_matrix(to_frame.equinox) @frame_transform_graph.transform(DynamicMatrixTransform, BarycentricMeanEcliptic, ICRS) def baryecliptic_to_icrs(from_coo, to_frame): return matrix_transpose(icrs_to_baryecliptic(to_frame, from_coo)) _NEED_ORIGIN_HINT = ("The input {0} coordinates do not have length units. This " "probably means you created coordinates with lat/lon but " "no distance. Heliocentric<->ICRS transforms cannot " "function in this case because there is an origin shift.") @frame_transform_graph.transform(AffineTransform, ICRS, HeliocentricMeanEcliptic) def icrs_to_helioecliptic(from_coo, to_frame): if not u.m.is_equivalent(from_coo.cartesian.x.unit): raise UnitsError(_NEED_ORIGIN_HINT.format(from_coo.__class__.__name__)) # get the offset of the barycenter from the Sun ssb_from_sun = get_offset_sun_from_barycenter(to_frame.obstime, reverse=True, include_velocity=bool(from_coo.data.differentials)) # now compute the matrix to precess to the right orientation rmat = _mean_ecliptic_rotation_matrix(to_frame.equinox) return rmat, ssb_from_sun.transform(rmat) @frame_transform_graph.transform(AffineTransform, HeliocentricMeanEcliptic, ICRS) def helioecliptic_to_icrs(from_coo, to_frame): if not u.m.is_equivalent(from_coo.cartesian.x.unit): raise UnitsError(_NEED_ORIGIN_HINT.format(from_coo.__class__.__name__)) # first un-precess from ecliptic to ICRS orientation rmat = _mean_ecliptic_rotation_matrix(from_coo.equinox) # now offset back to barycentric, which is the correct center for ICRS sun_from_ssb = get_offset_sun_from_barycenter(from_coo.obstime, include_velocity=bool(from_coo.data.differentials)) return matrix_transpose(rmat), sun_from_ssb # TrueEcliptic frames @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, GCRS, GeocentricTrueEcliptic, finite_difference_frameattr_name='equinox') def gcrs_to_true_geoecliptic(gcrs_coo, to_frame): # first get us to a 0 pos/vel GCRS at the target equinox gcrs_coo2 = gcrs_coo.transform_to(GCRS(obstime=to_frame.obstime)) rmat = _true_ecliptic_rotation_matrix(to_frame.equinox) newrepr = gcrs_coo2.cartesian.transform(rmat) return to_frame.realize_frame(newrepr) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, GeocentricTrueEcliptic, GCRS) def true_geoecliptic_to_gcrs(from_coo, gcrs_frame): rmat = _true_ecliptic_rotation_matrix(from_coo.equinox) newrepr = from_coo.cartesian.transform(matrix_transpose(rmat)) gcrs = GCRS(newrepr, obstime=from_coo.obstime) # now do any needed offsets (no-op if same obstime and 0 pos/vel) return gcrs.transform_to(gcrs_frame) @frame_transform_graph.transform(DynamicMatrixTransform, ICRS, BarycentricTrueEcliptic) def icrs_to_true_baryecliptic(from_coo, to_frame): return _true_ecliptic_rotation_matrix(to_frame.equinox) @frame_transform_graph.transform(DynamicMatrixTransform, BarycentricTrueEcliptic, ICRS) def true_baryecliptic_to_icrs(from_coo, to_frame): return matrix_transpose(icrs_to_true_baryecliptic(to_frame, from_coo)) @frame_transform_graph.transform(AffineTransform, ICRS, HeliocentricTrueEcliptic) def icrs_to_true_helioecliptic(from_coo, to_frame): if not u.m.is_equivalent(from_coo.cartesian.x.unit): raise UnitsError(_NEED_ORIGIN_HINT.format(from_coo.__class__.__name__)) # get the offset of the barycenter from the Sun ssb_from_sun = get_offset_sun_from_barycenter(to_frame.obstime, reverse=True, include_velocity=bool(from_coo.data.differentials)) # now compute the matrix to precess to the right orientation rmat = _true_ecliptic_rotation_matrix(to_frame.equinox) return rmat, ssb_from_sun.transform(rmat) @frame_transform_graph.transform(AffineTransform, HeliocentricTrueEcliptic, ICRS) def true_helioecliptic_to_icrs(from_coo, to_frame): if not u.m.is_equivalent(from_coo.cartesian.x.unit): raise UnitsError(_NEED_ORIGIN_HINT.format(from_coo.__class__.__name__)) # first un-precess from ecliptic to ICRS orientation rmat = _true_ecliptic_rotation_matrix(from_coo.equinox) # now offset back to barycentric, which is the correct center for ICRS sun_from_ssb = get_offset_sun_from_barycenter(from_coo.obstime, include_velocity=bool(from_coo.data.differentials)) return matrix_transpose(rmat), sun_from_ssb # Other ecliptic frames @frame_transform_graph.transform(AffineTransform, HeliocentricEclipticIAU76, ICRS) def ecliptic_to_iau76_icrs(from_coo, to_frame): # first un-precess from ecliptic to ICRS orientation rmat = _obliquity_only_rotation_matrix() # now offset back to barycentric, which is the correct center for ICRS sun_from_ssb = get_offset_sun_from_barycenter(from_coo.obstime, include_velocity=bool(from_coo.data.differentials)) return matrix_transpose(rmat), sun_from_ssb @frame_transform_graph.transform(AffineTransform, ICRS, HeliocentricEclipticIAU76) def icrs_to_iau76_ecliptic(from_coo, to_frame): # get the offset of the barycenter from the Sun ssb_from_sun = get_offset_sun_from_barycenter(to_frame.obstime, reverse=True, include_velocity=bool(from_coo.data.differentials)) # now compute the matrix to precess to the right orientation rmat = _obliquity_only_rotation_matrix() return rmat, ssb_from_sun.transform(rmat) @frame_transform_graph.transform(DynamicMatrixTransform, ICRS, CustomBarycentricEcliptic) def icrs_to_custombaryecliptic(from_coo, to_frame): return _obliquity_only_rotation_matrix(to_frame.obliquity) @frame_transform_graph.transform(DynamicMatrixTransform, CustomBarycentricEcliptic, ICRS) def custombaryecliptic_to_icrs(from_coo, to_frame): return icrs_to_custombaryecliptic(to_frame, from_coo).T # Create loopback transformations frame_transform_graph._add_merged_transform(GeocentricMeanEcliptic, ICRS, GeocentricMeanEcliptic) frame_transform_graph._add_merged_transform(GeocentricTrueEcliptic, ICRS, GeocentricTrueEcliptic) frame_transform_graph._add_merged_transform(HeliocentricMeanEcliptic, ICRS, HeliocentricMeanEcliptic) frame_transform_graph._add_merged_transform(HeliocentricTrueEcliptic, ICRS, HeliocentricTrueEcliptic) frame_transform_graph._add_merged_transform(HeliocentricEclipticIAU76, ICRS, HeliocentricEclipticIAU76) frame_transform_graph._add_merged_transform(BarycentricMeanEcliptic, ICRS, BarycentricMeanEcliptic) frame_transform_graph._add_merged_transform(BarycentricTrueEcliptic, ICRS, BarycentricTrueEcliptic) frame_transform_graph._add_merged_transform(CustomBarycentricEcliptic, ICRS, CustomBarycentricEcliptic)
806632abd30b13eb3f2c969f60522c409ee5d82a34d4c278b38f1293f5b966f0
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Contains the transformation functions for getting from ICRS/HCRS to CIRS and anything in between (currently that means GCRS) """ import numpy as np from astropy import units as u from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.transformations import ( FunctionTransformWithFiniteDifference, AffineTransform, ) from astropy.coordinates.representation import ( SphericalRepresentation, CartesianRepresentation, UnitSphericalRepresentation, CartesianDifferential, ) from .icrs import ICRS from .gcrs import GCRS from .cirs import CIRS from .hcrs import HCRS from .utils import aticq, atciqz, get_offset_sun_from_barycenter from ..erfa_astrom import erfa_astrom # First the ICRS/CIRS related transforms @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, ICRS, CIRS) def icrs_to_cirs(icrs_coo, cirs_frame): # first set up the astrometry context for ICRS<->CIRS astrom = erfa_astrom.get().apco(cirs_frame) if icrs_coo.data.get_name() == 'unitspherical' or icrs_coo.data.to_cartesian().x.unit == u.one: # if no distance, just do the infinite-distance/no parallax calculation srepr = icrs_coo.spherical cirs_ra, cirs_dec = atciqz(srepr.without_differentials(), astrom) newrep = UnitSphericalRepresentation(lat=u.Quantity(cirs_dec, u.radian, copy=False), lon=u.Quantity(cirs_ra, u.radian, copy=False), copy=False) else: # When there is a distance, we first offset for parallax to get the # astrometric coordinate direction and *then* run the ERFA transform for # no parallax/PM. This ensures reversibility and is more sensible for # inside solar system objects astrom_eb = CartesianRepresentation(astrom['eb'], unit=u.au, xyz_axis=-1, copy=False) newcart = icrs_coo.cartesian - astrom_eb srepr = newcart.represent_as(SphericalRepresentation) cirs_ra, cirs_dec = atciqz(srepr.without_differentials(), astrom) newrep = SphericalRepresentation(lat=u.Quantity(cirs_dec, u.radian, copy=False), lon=u.Quantity(cirs_ra, u.radian, copy=False), distance=srepr.distance, copy=False) return cirs_frame.realize_frame(newrep) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, CIRS, ICRS) def cirs_to_icrs(cirs_coo, icrs_frame): # set up the astrometry context for ICRS<->cirs and then convert to # astrometric coordinate direction astrom = erfa_astrom.get().apco(cirs_coo) srepr = cirs_coo.represent_as(SphericalRepresentation) i_ra, i_dec = aticq(srepr.without_differentials(), astrom) if cirs_coo.data.get_name() == 'unitspherical' or cirs_coo.data.to_cartesian().x.unit == u.one: # if no distance, just use the coordinate direction to yield the # infinite-distance/no parallax answer newrep = UnitSphericalRepresentation(lat=u.Quantity(i_dec, u.radian, copy=False), lon=u.Quantity(i_ra, u.radian, copy=False), copy=False) else: # When there is a distance, apply the parallax/offset to the SSB as the # last step - ensures round-tripping with the icrs_to_cirs transform # the distance in intermedrep is *not* a real distance as it does not # include the offset back to the SSB intermedrep = SphericalRepresentation(lat=u.Quantity(i_dec, u.radian, copy=False), lon=u.Quantity(i_ra, u.radian, copy=False), distance=srepr.distance, copy=False) astrom_eb = CartesianRepresentation(astrom['eb'], unit=u.au, xyz_axis=-1, copy=False) newrep = intermedrep + astrom_eb return icrs_frame.realize_frame(newrep) # Now the GCRS-related transforms to/from ICRS @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, ICRS, GCRS) def icrs_to_gcrs(icrs_coo, gcrs_frame): # first set up the astrometry context for ICRS<->GCRS. astrom = erfa_astrom.get().apcs(gcrs_frame) if icrs_coo.data.get_name() == 'unitspherical' or icrs_coo.data.to_cartesian().x.unit == u.one: # if no distance, just do the infinite-distance/no parallax calculation srepr = icrs_coo.represent_as(SphericalRepresentation) gcrs_ra, gcrs_dec = atciqz(srepr.without_differentials(), astrom) newrep = UnitSphericalRepresentation(lat=u.Quantity(gcrs_dec, u.radian, copy=False), lon=u.Quantity(gcrs_ra, u.radian, copy=False), copy=False) else: # When there is a distance, we first offset for parallax to get the # BCRS coordinate direction and *then* run the ERFA transform for no # parallax/PM. This ensures reversibility and is more sensible for # inside solar system objects astrom_eb = CartesianRepresentation(astrom['eb'], unit=u.au, xyz_axis=-1, copy=False) newcart = icrs_coo.cartesian - astrom_eb srepr = newcart.represent_as(SphericalRepresentation) gcrs_ra, gcrs_dec = atciqz(srepr.without_differentials(), astrom) newrep = SphericalRepresentation(lat=u.Quantity(gcrs_dec, u.radian, copy=False), lon=u.Quantity(gcrs_ra, u.radian, copy=False), distance=srepr.distance, copy=False) return gcrs_frame.realize_frame(newrep) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, GCRS, ICRS) def gcrs_to_icrs(gcrs_coo, icrs_frame): # set up the astrometry context for ICRS<->GCRS and then convert to BCRS # coordinate direction astrom = erfa_astrom.get().apcs(gcrs_coo) srepr = gcrs_coo.represent_as(SphericalRepresentation) i_ra, i_dec = aticq(srepr.without_differentials(), astrom) if gcrs_coo.data.get_name() == 'unitspherical' or gcrs_coo.data.to_cartesian().x.unit == u.one: # if no distance, just use the coordinate direction to yield the # infinite-distance/no parallax answer newrep = UnitSphericalRepresentation(lat=u.Quantity(i_dec, u.radian, copy=False), lon=u.Quantity(i_ra, u.radian, copy=False), copy=False) else: # When there is a distance, apply the parallax/offset to the SSB as the # last step - ensures round-tripping with the icrs_to_gcrs transform # the distance in intermedrep is *not* a real distance as it does not # include the offset back to the SSB intermedrep = SphericalRepresentation(lat=u.Quantity(i_dec, u.radian, copy=False), lon=u.Quantity(i_ra, u.radian, copy=False), distance=srepr.distance, copy=False) astrom_eb = CartesianRepresentation(astrom['eb'], unit=u.au, xyz_axis=-1, copy=False) newrep = intermedrep + astrom_eb return icrs_frame.realize_frame(newrep) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, GCRS, HCRS) def gcrs_to_hcrs(gcrs_coo, hcrs_frame): if np.any(gcrs_coo.obstime != hcrs_frame.obstime): # if they GCRS obstime and HCRS obstime are not the same, we first # have to move to a GCRS where they are. frameattrs = gcrs_coo.get_frame_attr_names() frameattrs['obstime'] = hcrs_frame.obstime gcrs_coo = gcrs_coo.transform_to(GCRS(**frameattrs)) # set up the astrometry context for ICRS<->GCRS and then convert to ICRS # coordinate direction astrom = erfa_astrom.get().apcs(gcrs_coo) srepr = gcrs_coo.represent_as(SphericalRepresentation) i_ra, i_dec = aticq(srepr.without_differentials(), astrom) # convert to Quantity objects i_ra = u.Quantity(i_ra, u.radian, copy=False) i_dec = u.Quantity(i_dec, u.radian, copy=False) if gcrs_coo.data.get_name() == 'unitspherical' or gcrs_coo.data.to_cartesian().x.unit == u.one: # if no distance, just use the coordinate direction to yield the # infinite-distance/no parallax answer newrep = UnitSphericalRepresentation(lat=i_dec, lon=i_ra, copy=False) else: # When there is a distance, apply the parallax/offset to the # Heliocentre as the last step to ensure round-tripping with the # hcrs_to_gcrs transform # Note that the distance in intermedrep is *not* a real distance as it # does not include the offset back to the Heliocentre intermedrep = SphericalRepresentation(lat=i_dec, lon=i_ra, distance=srepr.distance, copy=False) # astrom['eh'] and astrom['em'] contain Sun to observer unit vector, # and distance, respectively. Shapes are (X) and (X,3), where (X) is the # shape resulting from broadcasting the shape of the times object # against the shape of the pv array. # broadcast em to eh and scale eh eh = astrom['eh'] * astrom['em'][..., np.newaxis] eh = CartesianRepresentation(eh, unit=u.au, xyz_axis=-1, copy=False) newrep = intermedrep.to_cartesian() + eh return hcrs_frame.realize_frame(newrep) _NEED_ORIGIN_HINT = ("The input {0} coordinates do not have length units. This " "probably means you created coordinates with lat/lon but " "no distance. Heliocentric<->ICRS transforms cannot " "function in this case because there is an origin shift.") @frame_transform_graph.transform(AffineTransform, HCRS, ICRS) def hcrs_to_icrs(hcrs_coo, icrs_frame): # this is just an origin translation so without a distance it cannot go ahead if isinstance(hcrs_coo.data, UnitSphericalRepresentation): raise u.UnitsError(_NEED_ORIGIN_HINT.format(hcrs_coo.__class__.__name__)) return None, get_offset_sun_from_barycenter(hcrs_coo.obstime, include_velocity=bool(hcrs_coo.data.differentials)) @frame_transform_graph.transform(AffineTransform, ICRS, HCRS) def icrs_to_hcrs(icrs_coo, hcrs_frame): # this is just an origin translation so without a distance it cannot go ahead if isinstance(icrs_coo.data, UnitSphericalRepresentation): raise u.UnitsError(_NEED_ORIGIN_HINT.format(icrs_coo.__class__.__name__)) return None, get_offset_sun_from_barycenter(hcrs_frame.obstime, reverse=True, include_velocity=bool(icrs_coo.data.differentials)) # Create loopback transformations frame_transform_graph._add_merged_transform(CIRS, ICRS, CIRS) # The CIRS<-> CIRS transform going through ICRS has a # subtle implication that a point in CIRS is uniquely determined # by the corresponding astrometric ICRS coordinate *at its # current time*. This has some subtle implications in terms of GR, but # is sort of glossed over in the current scheme because we are dropping # distances anyway. frame_transform_graph._add_merged_transform(GCRS, ICRS, GCRS) frame_transform_graph._add_merged_transform(HCRS, ICRS, HCRS)
3f8a079d8f51d41036df5f5ba181ca688947d024e4240c628584df9d9c061039
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy import units as u from astropy.coordinates.transformations import DynamicMatrixTransform, FunctionTransform from astropy.coordinates.baseframe import (frame_transform_graph, BaseCoordinateFrame) from astropy.coordinates.attributes import CoordinateAttribute, QuantityAttribute from astropy.coordinates.matrix_utilities import (rotation_matrix, matrix_product, matrix_transpose) _skyoffset_cache = {} def make_skyoffset_cls(framecls): """ Create a new class that is the sky offset frame for a specific class of origin frame. If such a class has already been created for this frame, the same class will be returned. The new class will always have component names for spherical coordinates of ``lon``/``lat``. Parameters ---------- framecls : `~astropy.coordinates.BaseCoordinateFrame` subclass The class to create the SkyOffsetFrame of. Returns ------- skyoffsetframecls : class The class for the new skyoffset frame. Notes ----- This function is necessary because Astropy's frame transformations depend on connection between specific frame *classes*. So each type of frame needs its own distinct skyoffset frame class. This function generates just that class, as well as ensuring that only one example of such a class actually gets created in any given python session. """ if framecls in _skyoffset_cache: return _skyoffset_cache[framecls] # Create a new SkyOffsetFrame subclass for this frame class. name = 'SkyOffset' + framecls.__name__ _SkyOffsetFramecls = type( name, (SkyOffsetFrame, framecls), {'origin': CoordinateAttribute(frame=framecls, default=None), # The following two have to be done because otherwise we use the # defaults of SkyOffsetFrame set by BaseCoordinateFrame. '_default_representation': framecls._default_representation, '_default_differential': framecls._default_differential, '__doc__': SkyOffsetFrame.__doc__, }) @frame_transform_graph.transform(FunctionTransform, _SkyOffsetFramecls, _SkyOffsetFramecls) def skyoffset_to_skyoffset(from_skyoffset_coord, to_skyoffset_frame): """Transform between two skyoffset frames.""" # This transform goes through the parent frames on each side. # from_frame -> from_frame.origin -> to_frame.origin -> to_frame intermediate_from = from_skyoffset_coord.transform_to(from_skyoffset_coord.origin) intermediate_to = intermediate_from.transform_to(to_skyoffset_frame.origin) return intermediate_to.transform_to(to_skyoffset_frame) @frame_transform_graph.transform(DynamicMatrixTransform, framecls, _SkyOffsetFramecls) def reference_to_skyoffset(reference_frame, skyoffset_frame): """Convert a reference coordinate to an sky offset frame.""" # Define rotation matrices along the position angle vector, and # relative to the origin. origin = skyoffset_frame.origin.spherical mat1 = rotation_matrix(-skyoffset_frame.rotation, 'x') mat2 = rotation_matrix(-origin.lat, 'y') mat3 = rotation_matrix(origin.lon, 'z') return matrix_product(mat1, mat2, mat3) @frame_transform_graph.transform(DynamicMatrixTransform, _SkyOffsetFramecls, framecls) def skyoffset_to_reference(skyoffset_coord, reference_frame): """Convert an sky offset frame coordinate to the reference frame""" # use the forward transform, but just invert it R = reference_to_skyoffset(reference_frame, skyoffset_coord) # transpose is the inverse because R is a rotation matrix return matrix_transpose(R) _skyoffset_cache[framecls] = _SkyOffsetFramecls return _SkyOffsetFramecls class SkyOffsetFrame(BaseCoordinateFrame): """ A frame which is relative to some specific position and oriented to match its frame. SkyOffsetFrames always have component names for spherical coordinates of ``lon``/``lat``, *not* the component names for the frame of ``origin``. This is useful for calculating offsets and dithers in the frame of the sky relative to an arbitrary position. Coordinates in this frame are both centered on the position specified by the ``origin`` coordinate, *and* they are oriented in the same manner as the ``origin`` frame. E.g., if ``origin`` is `~astropy.coordinates.ICRS`, this object's ``lat`` will be pointed in the direction of Dec, while ``lon`` will point in the direction of RA. For more on skyoffset frames, see :ref:`astropy:astropy-skyoffset-frames`. Parameters ---------- representation : `~astropy.coordinates.BaseRepresentation` or None A representation object or None to have no data (or use the other keywords) origin : coordinate-like The coordinate which specifies the origin of this frame. Note that this origin is used purely for on-sky location/rotation. It can have a ``distance`` but it will not be used by this ``SkyOffsetFrame``. rotation : angle-like The final rotation of the frame about the ``origin``. The sign of the rotation is the left-hand rule. That is, an object at a particular position angle in the un-rotated system will be sent to the positive latitude (z) direction in the final frame. Notes ----- ``SkyOffsetFrame`` is a factory class. That is, the objects that it yields are *not* actually objects of class ``SkyOffsetFrame``. Instead, distinct classes are created on-the-fly for whatever the frame class is of ``origin``. """ rotation = QuantityAttribute(default=0, unit=u.deg) origin = CoordinateAttribute(default=None, frame=None) def __new__(cls, *args, **kwargs): # We don't want to call this method if we've already set up # an skyoffset frame for this class. if not (issubclass(cls, SkyOffsetFrame) and cls is not SkyOffsetFrame): # We get the origin argument, and handle it here. try: origin_frame = kwargs['origin'] except KeyError: raise TypeError("Can't initialize an SkyOffsetFrame without origin= keyword.") if hasattr(origin_frame, 'frame'): origin_frame = origin_frame.frame newcls = make_skyoffset_cls(origin_frame.__class__) return newcls.__new__(newcls, *args, **kwargs) # http://stackoverflow.com/questions/19277399/why-does-object-new-work-differently-in-these-three-cases # See above for why this is necessary. Basically, because some child # may override __new__, we must override it here to never pass # arguments to the object.__new__ method. if super().__new__ is object.__new__: return super().__new__(cls) return super().__new__(cls, *args, **kwargs) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.origin is not None and not self.origin.has_data: raise ValueError('The origin supplied to SkyOffsetFrame has no ' 'data.') if self.has_data: self._set_skyoffset_data_lon_wrap_angle(self.data) @staticmethod def _set_skyoffset_data_lon_wrap_angle(data): if hasattr(data, 'lon'): data.lon.wrap_angle = 180. * u.deg return data def represent_as(self, base, s='base', in_frame_units=False): """ Ensure the wrap angle for any spherical representations. """ data = super().represent_as(base, s, in_frame_units=in_frame_units) self._set_skyoffset_data_lon_wrap_angle(data) return data def __reduce__(self): return (_skyoffset_reducer, (self.origin,), self.__dict__) def _skyoffset_reducer(origin): return SkyOffsetFrame.__new__(SkyOffsetFrame, origin=origin)
71fd6d91ae8d539c8cbc0b26243801b0352f3b990f1fa3bb2fd2165f77767051
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Contains the transformation functions for getting to "observed" systems from CIRS. """ import numpy as np import erfa from astropy import units as u from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.transformations import FunctionTransformWithFiniteDifference from astropy.coordinates.representation import (SphericalRepresentation, UnitSphericalRepresentation) from .cirs import CIRS from .altaz import AltAz from .hadec import HADec from .utils import PIOVER2 from ..erfa_astrom import erfa_astrom @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, CIRS, AltAz) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, CIRS, HADec) def cirs_to_observed(cirs_coo, observed_frame): if (np.any(observed_frame.location != cirs_coo.location) or np.any(cirs_coo.obstime != observed_frame.obstime)): cirs_coo = cirs_coo.transform_to(CIRS(obstime=observed_frame.obstime, location=observed_frame.location)) # if the data are UnitSphericalRepresentation, we can skip the distance calculations is_unitspherical = (isinstance(cirs_coo.data, UnitSphericalRepresentation) or cirs_coo.cartesian.x.unit == u.one) # We used to do "astrometric" corrections here, but these are no longer necesssary # CIRS has proper topocentric behaviour usrepr = cirs_coo.represent_as(UnitSphericalRepresentation) cirs_ra = usrepr.lon.to_value(u.radian) cirs_dec = usrepr.lat.to_value(u.radian) # first set up the astrometry context for CIRS<->observed astrom = erfa_astrom.get().apio(observed_frame) if isinstance(observed_frame, AltAz): lon, zen, _, _, _ = erfa.atioq(cirs_ra, cirs_dec, astrom) lat = PIOVER2 - zen else: _, _, lon, lat, _ = erfa.atioq(cirs_ra, cirs_dec, astrom) if is_unitspherical: rep = UnitSphericalRepresentation(lat=u.Quantity(lat, u.radian, copy=False), lon=u.Quantity(lon, u.radian, copy=False), copy=False) else: # since we've transformed to CIRS at the observatory location, just use CIRS distance rep = SphericalRepresentation(lat=u.Quantity(lat, u.radian, copy=False), lon=u.Quantity(lon, u.radian, copy=False), distance=cirs_coo.distance, copy=False) return observed_frame.realize_frame(rep) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, AltAz, CIRS) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HADec, CIRS) def observed_to_cirs(observed_coo, cirs_frame): usrepr = observed_coo.represent_as(UnitSphericalRepresentation) lon = usrepr.lon.to_value(u.radian) lat = usrepr.lat.to_value(u.radian) if isinstance(observed_coo, AltAz): # the 'A' indicates zen/az inputs coord_type = 'A' lat = PIOVER2 - lat else: coord_type = 'H' # first set up the astrometry context for ICRS<->CIRS at the observed_coo time astrom = erfa_astrom.get().apio(observed_coo) cirs_ra, cirs_dec = erfa.atoiq(coord_type, lon, lat, astrom) << u.radian if isinstance(observed_coo.data, UnitSphericalRepresentation) or observed_coo.cartesian.x.unit == u.one: distance = None else: distance = observed_coo.distance cirs_at_aa_time = CIRS(ra=cirs_ra, dec=cirs_dec, distance=distance, obstime=observed_coo.obstime, location=observed_coo.location) # this final transform may be a no-op if the obstimes and locations are the same return cirs_at_aa_time.transform_to(cirs_frame)
2314512ab555beed31ca2faecf3b6a96185ab0648ae9df7db463203d83c6ce0c
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from astropy import units as u from astropy.utils.decorators import format_doc from astropy.coordinates import representation as r from astropy.coordinates.baseframe import BaseCoordinateFrame, RepresentationMapping, base_doc from astropy.coordinates.attributes import (TimeAttribute, QuantityAttribute, EarthLocationAttribute) __all__ = ['AltAz'] _90DEG = 90*u.deg doc_components = """ az : `~astropy.coordinates.Angle`, optional, keyword-only The Azimuth for this object (``alt`` must also be given and ``representation`` must be None). alt : `~astropy.coordinates.Angle`, optional, keyword-only The Altitude for this object (``az`` must also be given and ``representation`` must be None). distance : `~astropy.units.Quantity` ['length'], optional, keyword-only The Distance for this object along the line-of-sight. pm_az_cosalt : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in azimuth (including the ``cos(alt)`` factor) for this object (``pm_alt`` must also be given). pm_alt : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in altitude for this object (``pm_az_cosalt`` must also be given). radial_velocity : `~astropy.units.Quantity` ['speed'], optional, keyword-only The radial velocity of this object.""" doc_footer = """ Other parameters ---------------- obstime : `~astropy.time.Time` The time at which the observation is taken. Used for determining the position and orientation of the Earth. location : `~astropy.coordinates.EarthLocation` The location on the Earth. This can be specified either as an `~astropy.coordinates.EarthLocation` object or as anything that can be transformed to an `~astropy.coordinates.ITRS` frame. pressure : `~astropy.units.Quantity` ['pressure'] The atmospheric pressure as an `~astropy.units.Quantity` with pressure units. This is necessary for performing refraction corrections. Setting this to 0 (the default) will disable refraction calculations when transforming to/from this frame. temperature : `~astropy.units.Quantity` ['temperature'] The ground-level temperature as an `~astropy.units.Quantity` in deg C. This is necessary for performing refraction corrections. relative_humidity : `~astropy.units.Quantity` ['dimensionless'] or number The relative humidity as a dimensionless quantity between 0 to 1. This is necessary for performing refraction corrections. obswl : `~astropy.units.Quantity` ['length'] The average wavelength of observations as an `~astropy.units.Quantity` with length units. This is necessary for performing refraction corrections. Notes ----- The refraction model is based on that implemented in ERFA, which is fast but becomes inaccurate for altitudes below about 5 degrees. Near and below altitudes of 0, it can even give meaningless answers, and in this case transforming to AltAz and back to another frame can give highly discrepant results. For much better numerical stability, leave the ``pressure`` at ``0`` (the default), thereby disabling the refraction correction and yielding "topocentric" horizontal coordinates. """ @format_doc(base_doc, components=doc_components, footer=doc_footer) class AltAz(BaseCoordinateFrame): """ A coordinate or frame in the Altitude-Azimuth system (Horizontal coordinates) with respect to the WGS84 ellipsoid. Azimuth is oriented East of North (i.e., N=0, E=90 degrees). Altitude is also known as elevation angle, so this frame is also in the Azimuth-Elevation system. This frame is assumed to *include* refraction effects if the ``pressure`` frame attribute is non-zero. The frame attributes are listed under **Other Parameters**, which are necessary for transforming from AltAz to some other system. """ frame_specific_representation_info = { r.SphericalRepresentation: [ RepresentationMapping('lon', 'az'), RepresentationMapping('lat', 'alt') ] } default_representation = r.SphericalRepresentation default_differential = r.SphericalCosLatDifferential obstime = TimeAttribute(default=None) location = EarthLocationAttribute(default=None) pressure = QuantityAttribute(default=0, unit=u.hPa) temperature = QuantityAttribute(default=0, unit=u.deg_C) relative_humidity = QuantityAttribute(default=0, unit=u.dimensionless_unscaled) obswl = QuantityAttribute(default=1*u.micron, unit=u.micron) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) @property def secz(self): """ Secant of the zenith angle for this coordinate, a common estimate of the airmass. """ return 1/np.sin(self.alt) @property def zen(self): """ The zenith angle (or zenith distance / co-altitude) for this coordinate. """ return _90DEG.to(self.alt.unit) - self.alt # self-transform defined in icrs_observed_transforms.py
17cda771b23828e179ef0c8fa3b7b92415418ae4bb3345cb84a9752a064eb09d
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy import units as u from astropy.utils.decorators import format_doc from astropy.coordinates import representation as r from astropy.coordinates.baseframe import BaseCoordinateFrame, RepresentationMapping, base_doc from astropy.coordinates.attributes import (TimeAttribute, QuantityAttribute, EarthLocationAttribute) __all__ = ['HADec'] doc_components = """ ha : `~astropy.coordinates.Angle`, optional, keyword-only The Hour Angle for this object (``dec`` must also be given and ``representation`` must be None). dec : `~astropy.coordinates.Angle`, optional, keyword-only The Declination for this object (``ha`` must also be given and ``representation`` must be None). distance : `~astropy.units.Quantity` ['length'], optional, keyword-only The Distance for this object along the line-of-sight. pm_ha_cosdec : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in hour angle (including the ``cos(dec)`` factor) for this object (``pm_dec`` must also be given). pm_dec : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in declination for this object (``pm_ha_cosdec`` must also be given). radial_velocity : `~astropy.units.Quantity` ['speed'], optional, keyword-only The radial velocity of this object.""" doc_footer = """ Other parameters ---------------- obstime : `~astropy.time.Time` The time at which the observation is taken. Used for determining the position and orientation of the Earth. location : `~astropy.coordinates.EarthLocation` The location on the Earth. This can be specified either as an `~astropy.coordinates.EarthLocation` object or as anything that can be transformed to an `~astropy.coordinates.ITRS` frame. pressure : `~astropy.units.Quantity` ['pressure'] The atmospheric pressure as an `~astropy.units.Quantity` with pressure units. This is necessary for performing refraction corrections. Setting this to 0 (the default) will disable refraction calculations when transforming to/from this frame. temperature : `~astropy.units.Quantity` ['temperature'] The ground-level temperature as an `~astropy.units.Quantity` in deg C. This is necessary for performing refraction corrections. relative_humidity : `~astropy.units.Quantity` ['dimensionless'] or number. The relative humidity as a dimensionless quantity between 0 to 1. This is necessary for performing refraction corrections. obswl : `~astropy.units.Quantity` ['length'] The average wavelength of observations as an `~astropy.units.Quantity` with length units. This is necessary for performing refraction corrections. Notes ----- The refraction model is based on that implemented in ERFA, which is fast but becomes inaccurate for altitudes below about 5 degrees. Near and below altitudes of 0, it can even give meaningless answers, and in this case transforming to HADec and back to another frame can give highly discrepant results. For much better numerical stability, leave the ``pressure`` at ``0`` (the default), thereby disabling the refraction correction and yielding "topocentric" equatorial coordinates. """ @format_doc(base_doc, components=doc_components, footer=doc_footer) class HADec(BaseCoordinateFrame): """ A coordinate or frame in the Hour Angle-Declination system (Equatorial coordinates) with respect to the WGS84 ellipsoid. Hour Angle is oriented with respect to upper culmination such that the hour angle is negative to the East and positive to the West. This frame is assumed to *include* refraction effects if the ``pressure`` frame attribute is non-zero. The frame attributes are listed under **Other Parameters**, which are necessary for transforming from HADec to some other system. """ frame_specific_representation_info = { r.SphericalRepresentation: [ RepresentationMapping('lon', 'ha', u.hourangle), RepresentationMapping('lat', 'dec') ] } default_representation = r.SphericalRepresentation default_differential = r.SphericalCosLatDifferential obstime = TimeAttribute(default=None) location = EarthLocationAttribute(default=None) pressure = QuantityAttribute(default=0, unit=u.hPa) temperature = QuantityAttribute(default=0, unit=u.deg_C) relative_humidity = QuantityAttribute(default=0, unit=u.dimensionless_unscaled) obswl = QuantityAttribute(default=1*u.micron, unit=u.micron) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.has_data: self._set_data_lon_wrap_angle(self.data) @staticmethod def _set_data_lon_wrap_angle(data): if hasattr(data, 'lon'): data.lon.wrap_angle = 180. * u.deg return data def represent_as(self, base, s='base', in_frame_units=False): """ Ensure the wrap angle for any spherical representations. """ data = super().represent_as(base, s, in_frame_units=in_frame_units) self._set_data_lon_wrap_angle(data) return data # self-transform defined in icrs_observed_transforms.py
2d9c6858bf3d7b1e3c3f46d758f58388fa1e36c57905dcd1d40bbfd43070858b
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.transformations import DynamicMatrixTransform from astropy.coordinates.matrix_utilities import matrix_product, matrix_transpose from .fk4 import FK4NoETerms from .fk5 import FK5 from .utils import EQUINOX_B1950, EQUINOX_J2000 # FK5 to/from FK4 -------------------> # B1950->J2000 matrix from Murray 1989 A&A 218,325 eqn 28 _B1950_TO_J2000_M = np.array( [[0.9999256794956877, -0.0111814832204662, -0.0048590038153592], [0.0111814832391717, 0.9999374848933135, -0.0000271625947142], [0.0048590037723143, -0.0000271702937440, 0.9999881946023742]]) _FK4_CORR = np.array( [[-0.0026455262, -1.1539918689, +2.1111346190], [+1.1540628161, -0.0129042997, +0.0236021478], [-2.1112979048, -0.0056024448, +0.0102587734]]) * 1.e-6 def _fk4_B_matrix(obstime): """ This is a correction term in the FK4 transformations because FK4 is a rotating system - see Murray 89 eqn 29 """ # Note this is *julian century*, not besselian T = (obstime.jyear - 1950.) / 100. if getattr(T, 'shape', ()): # Ensure we broadcast possibly arrays of times properly. T.shape += (1, 1) return _B1950_TO_J2000_M + _FK4_CORR * T # This transformation can't be static because the observation date is needed. @frame_transform_graph.transform(DynamicMatrixTransform, FK4NoETerms, FK5) def fk4_no_e_to_fk5(fk4noecoord, fk5frame): # Correction terms for FK4 being a rotating system B = _fk4_B_matrix(fk4noecoord.obstime) # construct both precession matricies - if the equinoxes are B1950 and # J2000, these are just identity matricies pmat1 = fk4noecoord._precession_matrix(fk4noecoord.equinox, EQUINOX_B1950) pmat2 = fk5frame._precession_matrix(EQUINOX_J2000, fk5frame.equinox) return matrix_product(pmat2, B, pmat1) # This transformation can't be static because the observation date is needed. @frame_transform_graph.transform(DynamicMatrixTransform, FK5, FK4NoETerms) def fk5_to_fk4_no_e(fk5coord, fk4noeframe): # Get transposed version of the rotating correction terms... so with the # transpose this takes us from FK5/J200 to FK4/B1950 B = matrix_transpose(_fk4_B_matrix(fk4noeframe.obstime)) # construct both precession matricies - if the equinoxes are B1950 and # J2000, these are just identity matricies pmat1 = fk5coord._precession_matrix(fk5coord.equinox, EQUINOX_J2000) pmat2 = fk4noeframe._precession_matrix(EQUINOX_B1950, fk4noeframe.equinox) return matrix_product(pmat2, B, pmat1)
e417ee850c4fd437524d0545ea8afa9f3aed09996e959b39c1fabf2274eec441
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy import units as u from astropy.utils.decorators import format_doc from astropy.time import Time from astropy.coordinates import representation as r from astropy.coordinates.baseframe import (BaseCoordinateFrame, RepresentationMapping, frame_transform_graph, base_doc) from astropy.coordinates.transformations import AffineTransform from astropy.coordinates.attributes import DifferentialAttribute from .baseradec import BaseRADecFrame, doc_components as doc_components_radec from .icrs import ICRS from .galactic import Galactic # For speed J2000 = Time('J2000') v_bary_Schoenrich2010 = r.CartesianDifferential([11.1, 12.24, 7.25]*u.km/u.s) __all__ = ['LSR', 'GalacticLSR', 'LSRK', 'LSRD'] doc_footer_lsr = """ Other parameters ---------------- v_bary : `~astropy.coordinates.representation.CartesianDifferential` The velocity of the solar system barycenter with respect to the LSR, in Galactic cartesian velocity components. """ @format_doc(base_doc, components=doc_components_radec, footer=doc_footer_lsr) class LSR(BaseRADecFrame): r"""A coordinate or frame in the Local Standard of Rest (LSR). This coordinate frame is axis-aligned and co-spatial with `ICRS`, but has a velocity offset relative to the solar system barycenter to remove the peculiar motion of the sun relative to the LSR. Roughly, the LSR is the mean velocity of the stars in the solar neighborhood, but the precise definition of which depends on the study. As defined in Schönrich et al. (2010): "The LSR is the rest frame at the location of the Sun of a star that would be on a circular orbit in the gravitational potential one would obtain by azimuthally averaging away non-axisymmetric features in the actual Galactic potential." No such orbit truly exists, but it is still a commonly used velocity frame. We use default values from Schönrich et al. (2010) for the barycentric velocity relative to the LSR, which is defined in Galactic (right-handed) cartesian velocity components :math:`(U, V, W) = (11.1, 12.24, 7.25)~{{\rm km}}~{{\rm s}}^{{-1}}`. These values are customizable via the ``v_bary`` argument which specifies the velocity of the solar system barycenter with respect to the LSR. The frame attributes are listed under **Other Parameters**. """ # frame attributes: v_bary = DifferentialAttribute(default=v_bary_Schoenrich2010, allowed_classes=[r.CartesianDifferential]) @frame_transform_graph.transform(AffineTransform, ICRS, LSR) def icrs_to_lsr(icrs_coord, lsr_frame): v_bary_gal = Galactic(lsr_frame.v_bary.to_cartesian()) v_bary_icrs = v_bary_gal.transform_to(icrs_coord) v_offset = v_bary_icrs.data.represent_as(r.CartesianDifferential) offset = r.CartesianRepresentation([0, 0, 0]*u.au, differentials=v_offset) return None, offset @frame_transform_graph.transform(AffineTransform, LSR, ICRS) def lsr_to_icrs(lsr_coord, icrs_frame): v_bary_gal = Galactic(lsr_coord.v_bary.to_cartesian()) v_bary_icrs = v_bary_gal.transform_to(icrs_frame) v_offset = v_bary_icrs.data.represent_as(r.CartesianDifferential) offset = r.CartesianRepresentation([0, 0, 0]*u.au, differentials=-v_offset) return None, offset # ------------------------------------------------------------------------------ doc_components_gal = """ l : `~astropy.coordinates.Angle`, optional, keyword-only The Galactic longitude for this object (``b`` must also be given and ``representation`` must be None). b : `~astropy.coordinates.Angle`, optional, keyword-only The Galactic latitude for this object (``l`` must also be given and ``representation`` must be None). distance : `~astropy.units.Quantity` ['length'], optional, keyword-only The Distance for this object along the line-of-sight. (``representation`` must be None). pm_l_cosb : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in Galactic longitude (including the ``cos(b)`` term) for this object (``pm_b`` must also be given). pm_b : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in Galactic latitude for this object (``pm_l_cosb`` must also be given). radial_velocity : `~astropy.units.Quantity` ['speed'], optional, keyword-only The radial velocity of this object. """ @format_doc(base_doc, components=doc_components_gal, footer=doc_footer_lsr) class GalacticLSR(BaseCoordinateFrame): r"""A coordinate or frame in the Local Standard of Rest (LSR), axis-aligned to the `Galactic` frame. This coordinate frame is axis-aligned and co-spatial with `ICRS`, but has a velocity offset relative to the solar system barycenter to remove the peculiar motion of the sun relative to the LSR. Roughly, the LSR is the mean velocity of the stars in the solar neighborhood, but the precise definition of which depends on the study. As defined in Schönrich et al. (2010): "The LSR is the rest frame at the location of the Sun of a star that would be on a circular orbit in the gravitational potential one would obtain by azimuthally averaging away non-axisymmetric features in the actual Galactic potential." No such orbit truly exists, but it is still a commonly used velocity frame. We use default values from Schönrich et al. (2010) for the barycentric velocity relative to the LSR, which is defined in Galactic (right-handed) cartesian velocity components :math:`(U, V, W) = (11.1, 12.24, 7.25)~{{\rm km}}~{{\rm s}}^{{-1}}`. These values are customizable via the ``v_bary`` argument which specifies the velocity of the solar system barycenter with respect to the LSR. The frame attributes are listed under **Other Parameters**. """ frame_specific_representation_info = { r.SphericalRepresentation: [ RepresentationMapping('lon', 'l'), RepresentationMapping('lat', 'b') ] } default_representation = r.SphericalRepresentation default_differential = r.SphericalCosLatDifferential # frame attributes: v_bary = DifferentialAttribute(default=v_bary_Schoenrich2010) @frame_transform_graph.transform(AffineTransform, Galactic, GalacticLSR) def galactic_to_galacticlsr(galactic_coord, lsr_frame): v_bary_gal = Galactic(lsr_frame.v_bary.to_cartesian()) v_offset = v_bary_gal.data.represent_as(r.CartesianDifferential) offset = r.CartesianRepresentation([0, 0, 0]*u.au, differentials=v_offset) return None, offset @frame_transform_graph.transform(AffineTransform, GalacticLSR, Galactic) def galacticlsr_to_galactic(lsr_coord, galactic_frame): v_bary_gal = Galactic(lsr_coord.v_bary.to_cartesian()) v_offset = v_bary_gal.data.represent_as(r.CartesianDifferential) offset = r.CartesianRepresentation([0, 0, 0]*u.au, differentials=-v_offset) return None, offset # ------------------------------------------------------------------------------ # The LSRK velocity frame, defined as having a velocity of 20 km/s towards # RA=270 Dec=30 (B1900) relative to the solar system Barycenter. This is defined # in: # # Gordon 1975, Methods of Experimental Physics: Volume 12: # Astrophysics, Part C: Radio Observations - Section 6.1.5. class LSRK(BaseRADecFrame): r""" A coordinate or frame in the Kinematic Local Standard of Rest (LSR). This frame is defined as having a velocity of 20 km/s towards RA=270 Dec=30 (B1900) relative to the solar system Barycenter. This is defined in: Gordon 1975, Methods of Experimental Physics: Volume 12: Astrophysics, Part C: Radio Observations - Section 6.1.5. This coordinate frame is axis-aligned and co-spatial with `ICRS`, but has a velocity offset relative to the solar system barycenter to remove the peculiar motion of the sun relative to the LSRK. """ # NOTE: To avoid a performance penalty at import time, we hard-code the ICRS # offsets here. The code to generate the offsets is provided for reproducibility. # GORDON1975_V_BARY = 20*u.km/u.s # GORDON1975_DIRECTION = FK4(ra=270*u.deg, dec=30*u.deg, equinox='B1900') # V_OFFSET_LSRK = ((GORDON1975_V_BARY * GORDON1975_DIRECTION.transform_to(ICRS()).data) # .represent_as(r.CartesianDifferential)) V_OFFSET_LSRK = r.CartesianDifferential([0.28999706839034606, -17.317264789717928, 10.00141199546947]*u.km/u.s) ICRS_LSRK_OFFSET = r.CartesianRepresentation([0, 0, 0]*u.au, differentials=V_OFFSET_LSRK) LSRK_ICRS_OFFSET = r.CartesianRepresentation([0, 0, 0]*u.au, differentials=-V_OFFSET_LSRK) @frame_transform_graph.transform(AffineTransform, ICRS, LSRK) def icrs_to_lsrk(icrs_coord, lsr_frame): return None, ICRS_LSRK_OFFSET @frame_transform_graph.transform(AffineTransform, LSRK, ICRS) def lsrk_to_icrs(lsr_coord, icrs_frame): return None, LSRK_ICRS_OFFSET # ------------------------------------------------------------------------------ # The LSRD velocity frame, defined as a velocity of U=9 km/s, V=12 km/s, # and W=7 km/s in Galactic coordinates or 16.552945 km/s # towards l=53.13 b=25.02. This is defined in: # # Delhaye 1965, Solar Motion and Velocity Distribution of # Common Stars. class LSRD(BaseRADecFrame): r""" A coordinate or frame in the Dynamical Local Standard of Rest (LSRD) This frame is defined as a velocity of U=9 km/s, V=12 km/s, and W=7 km/s in Galactic coordinates or 16.552945 km/s towards l=53.13 b=25.02. This is defined in: Delhaye 1965, Solar Motion and Velocity Distribution of Common Stars. This coordinate frame is axis-aligned and co-spatial with `ICRS`, but has a velocity offset relative to the solar system barycenter to remove the peculiar motion of the sun relative to the LSRD. """ # NOTE: To avoid a performance penalty at import time, we hard-code the ICRS # offsets here. The code to generate the offsets is provided for reproducibility. # V_BARY_DELHAYE1965 = r.CartesianDifferential([9, 12, 7] * u.km/u.s) # V_OFFSET_LSRD = (Galactic(V_BARY_DELHAYE1965.to_cartesian()).transform_to(ICRS()).data # .represent_as(r.CartesianDifferential)) V_OFFSET_LSRD = r.CartesianDifferential([-0.6382306360182073, -14.585424483191094, 7.8011572411006815]*u.km/u.s) ICRS_LSRD_OFFSET = r.CartesianRepresentation([0, 0, 0]*u.au, differentials=V_OFFSET_LSRD) LSRD_ICRS_OFFSET = r.CartesianRepresentation([0, 0, 0]*u.au, differentials=-V_OFFSET_LSRD) @frame_transform_graph.transform(AffineTransform, ICRS, LSRD) def icrs_to_lsrd(icrs_coord, lsr_frame): return None, ICRS_LSRD_OFFSET @frame_transform_graph.transform(AffineTransform, LSRD, ICRS) def lsrd_to_icrs(lsr_coord, icrs_frame): return None, LSRD_ICRS_OFFSET # ------------------------------------------------------------------------------ # Create loopback transformations frame_transform_graph._add_merged_transform(LSR, ICRS, LSR) frame_transform_graph._add_merged_transform(GalacticLSR, Galactic, GalacticLSR)
884f38f1d60e583f31152f6f7c26cbd55845a3681e70d0e94fe006a9cf9d756e
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy.coordinates.matrix_utilities import (rotation_matrix, matrix_product, matrix_transpose) from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.transformations import DynamicMatrixTransform from .fk5 import FK5 from .fk4 import FK4NoETerms from .utils import EQUINOX_B1950, EQUINOX_J2000 from .galactic import Galactic # Galactic to/from FK4/FK5 -----------------------> # can't be static because the equinox is needed @frame_transform_graph.transform(DynamicMatrixTransform, FK5, Galactic) def fk5_to_gal(fk5coord, galframe): # need precess to J2000 first pmat = fk5coord._precession_matrix(fk5coord.equinox, EQUINOX_J2000) mat1 = rotation_matrix(180 - Galactic._lon0_J2000.degree, 'z') mat2 = rotation_matrix(90 - Galactic._ngp_J2000.dec.degree, 'y') mat3 = rotation_matrix(Galactic._ngp_J2000.ra.degree, 'z') return matrix_product(mat1, mat2, mat3, pmat) @frame_transform_graph.transform(DynamicMatrixTransform, Galactic, FK5) def _gal_to_fk5(galcoord, fk5frame): return matrix_transpose(fk5_to_gal(fk5frame, galcoord)) @frame_transform_graph.transform(DynamicMatrixTransform, FK4NoETerms, Galactic) def fk4_to_gal(fk4coords, galframe): mat1 = rotation_matrix(180 - Galactic._lon0_B1950.degree, 'z') mat2 = rotation_matrix(90 - Galactic._ngp_B1950.dec.degree, 'y') mat3 = rotation_matrix(Galactic._ngp_B1950.ra.degree, 'z') matprec = fk4coords._precession_matrix(fk4coords.equinox, EQUINOX_B1950) return matrix_product(mat1, mat2, mat3, matprec) @frame_transform_graph.transform(DynamicMatrixTransform, Galactic, FK4NoETerms) def gal_to_fk4(galcoords, fk4frame): return matrix_transpose(fk4_to_gal(fk4frame, galcoords))
90bb2888a4951b00d9440b2526e7092af1c40fd2744bf82bda5de478a82ab1a7
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy import units as u from astropy.utils.decorators import format_doc from astropy.coordinates.angles import Angle from astropy.coordinates import representation as r from astropy.coordinates.baseframe import BaseCoordinateFrame, RepresentationMapping, base_doc # these are needed for defining the NGP from .fk5 import FK5 from .fk4 import FK4NoETerms __all__ = ['Galactic'] doc_components = """ l : `~astropy.coordinates.Angle`, optional, keyword-only The Galactic longitude for this object (``b`` must also be given and ``representation`` must be None). b : `~astropy.coordinates.Angle`, optional, keyword-only The Galactic latitude for this object (``l`` must also be given and ``representation`` must be None). distance : `~astropy.units.Quantity` ['length'], optional, keyword-only The Distance for this object along the line-of-sight. pm_l_cosb : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in Galactic longitude (including the ``cos(b)`` term) for this object (``pm_b`` must also be given). pm_b : `~astropy.units.Quantity` ['angular speed'], optional, keyword-only The proper motion in Galactic latitude for this object (``pm_l_cosb`` must also be given). radial_velocity : `~astropy.units.Quantity` ['speed'], optional, keyword-only The radial velocity of this object. """ doc_footer = """ Notes ----- .. [1] Blaauw, A.; Gum, C. S.; Pawsey, J. L.; Westerhout, G. (1960), "The new I.A.U. system of galactic coordinates (1958 revision)," `MNRAS, Vol 121, pp.123 <https://ui.adsabs.harvard.edu/abs/1960MNRAS.121..123B>`_. """ @format_doc(base_doc, components=doc_components, footer=doc_footer) class Galactic(BaseCoordinateFrame): """ A coordinate or frame in the Galactic coordinate system. This frame is used in a variety of Galactic contexts because it has as its x-y plane the plane of the Milky Way. The positive x direction (i.e., the l=0, b=0 direction) points to the center of the Milky Way and the z-axis points toward the North Galactic Pole (following the IAU's 1958 definition [1]_). However, unlike the `~astropy.coordinates.Galactocentric` frame, the *origin* of this frame in 3D space is the solar system barycenter, not the center of the Milky Way. """ frame_specific_representation_info = { r.SphericalRepresentation: [ RepresentationMapping('lon', 'l'), RepresentationMapping('lat', 'b') ], r.CartesianRepresentation: [ RepresentationMapping('x', 'u'), RepresentationMapping('y', 'v'), RepresentationMapping('z', 'w') ], r.CartesianDifferential: [ RepresentationMapping('d_x', 'U', u.km/u.s), RepresentationMapping('d_y', 'V', u.km/u.s), RepresentationMapping('d_z', 'W', u.km/u.s) ] } default_representation = r.SphericalRepresentation default_differential = r.SphericalCosLatDifferential # North galactic pole and zeropoint of l in FK4/FK5 coordinates. Needed for # transformations to/from FK4/5 # These are from the IAU's definition of galactic coordinates _ngp_B1950 = FK4NoETerms(ra=192.25*u.degree, dec=27.4*u.degree) _lon0_B1950 = Angle(123, u.degree) # These are *not* from Reid & Brunthaler 2004 - instead, they were # derived by doing: # # >>> FK4NoETerms(ra=192.25*u.degree, dec=27.4*u.degree).transform_to(FK5()) # # This gives better consistency with other codes than using the values # from Reid & Brunthaler 2004 and the best self-consistency between FK5 # -> Galactic and FK5 -> FK4 -> Galactic. The lon0 angle was found by # optimizing the self-consistency. _ngp_J2000 = FK5(ra=192.8594812065348*u.degree, dec=27.12825118085622*u.degree) _lon0_J2000 = Angle(122.9319185680026, u.degree)
9eb3283b936245259ea8d118871f746909cd21d83eed2d49436e05355da47196
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy.coordinates.matrix_utilities import (rotation_matrix, matrix_product, matrix_transpose) from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.transformations import DynamicMatrixTransform from .fk5 import FK5 from .icrs import ICRS from .utils import EQUINOX_J2000 def _icrs_to_fk5_matrix(): """ B-matrix from USNO circular 179. Used by the ICRS->FK5 transformation functions. """ eta0 = -19.9 / 3600000. xi0 = 9.1 / 3600000. da0 = -22.9 / 3600000. m1 = rotation_matrix(-eta0, 'x') m2 = rotation_matrix(xi0, 'y') m3 = rotation_matrix(da0, 'z') return matrix_product(m1, m2, m3) # define this here because it only needs to be computed once _ICRS_TO_FK5_J2000_MAT = _icrs_to_fk5_matrix() @frame_transform_graph.transform(DynamicMatrixTransform, ICRS, FK5) def icrs_to_fk5(icrscoord, fk5frame): # ICRS is by design very close to J2000 equinox pmat = fk5frame._precession_matrix(EQUINOX_J2000, fk5frame.equinox) return matrix_product(pmat, _ICRS_TO_FK5_J2000_MAT) # can't be static because the equinox is needed @frame_transform_graph.transform(DynamicMatrixTransform, FK5, ICRS) def fk5_to_icrs(fk5coord, icrsframe): # ICRS is by design very close to J2000 equinox pmat = fk5coord._precession_matrix(fk5coord.equinox, EQUINOX_J2000) return matrix_product(matrix_transpose(_ICRS_TO_FK5_J2000_MAT), pmat)
753d12a6e4b34519933ca1db4524a47c2b91c44402929632f1a8245c034e6eda
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy.utils.decorators import format_doc from astropy.coordinates.attributes import (TimeAttribute, EarthLocationAttribute) from astropy.coordinates.baseframe import base_doc from .baseradec import doc_components, BaseRADecFrame from .utils import DEFAULT_OBSTIME, EARTH_CENTER __all__ = ['CIRS'] doc_footer = """ Other parameters ---------------- obstime : `~astropy.time.Time` The time at which the observation is taken. Used for determining the position of the Earth and its precession. location : `~astropy.coordinates.EarthLocation` The location on the Earth. This can be specified either as an `~astropy.coordinates.EarthLocation` object or as anything that can be transformed to an `~astropy.coordinates.ITRS` frame. The default is the centre of the Earth. """ @format_doc(base_doc, components=doc_components, footer=doc_footer) class CIRS(BaseRADecFrame): """ A coordinate or frame in the Celestial Intermediate Reference System (CIRS). The frame attributes are listed under **Other Parameters**. """ obstime = TimeAttribute(default=DEFAULT_OBSTIME) location = EarthLocationAttribute(default=EARTH_CENTER) # The "self-transform" is defined in icrs_cirs_transformations.py, because in # the current implementation it goes through ICRS (like GCRS)
a80e6045288fd1d21e2458d4928549c3bba8f07b0b912c322c0ab37761c1ce60
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Coordinate frames tied to the Equator and Equinox of Earth. TEME is a True equator, Mean Equinox coordinate frame used in NORAD TLE satellite files. TETE is a True equator, True Equinox coordinate frame often called the "apparent" coordinates. It is the same frame as used by JPL Horizons and can be combined with Local Apparent Sidereal Time to calculate the hour angle. """ from astropy.utils.decorators import format_doc from astropy.coordinates.representation import (CartesianRepresentation, CartesianDifferential) from astropy.coordinates.baseframe import BaseCoordinateFrame, base_doc from astropy.coordinates.builtin_frames.baseradec import BaseRADecFrame, doc_components from astropy.coordinates.attributes import TimeAttribute, EarthLocationAttribute from .utils import DEFAULT_OBSTIME, EARTH_CENTER __all__ = ['TEME', 'TETE'] doc_footer_teme = """ Other parameters ---------------- obstime : `~astropy.time.Time` The time at which the frame is defined. Used for determining the position of the Earth. """ doc_footer_tete = """ Other parameters ---------------- obstime : `~astropy.time.Time` The time at which the observation is taken. Used for determining the position of the Earth. location : `~astropy.coordinates.EarthLocation` The location on the Earth. This can be specified either as an `~astropy.coordinates.EarthLocation` object or as anything that can be transformed to an `~astropy.coordinates.ITRS` frame. The default is the centre of the Earth. """ @format_doc(base_doc, components=doc_components, footer=doc_footer_tete) class TETE(BaseRADecFrame): """ An equatorial coordinate or frame using the True Equator and True Equinox (TETE). Equatorial coordinate frames measure RA with respect to the equinox and declination with with respect to the equator. The location of the equinox and equator vary due the gravitational torques on the oblate Earth. This variation is split into precession and nutation, although really they are two aspects of a single phenomena. The smooth, long term variation is known as precession, whilst smaller, periodic components are called nutation. Calculation of the true equator and equinox involves the application of both precession and nutation, whilst only applying precession gives a mean equator and equinox. TETE coordinates are often referred to as "apparent" coordinates, or "apparent place". TETE is the apparent coordinate system used by JPL Horizons and is the correct coordinate system to use when combining the right ascension with local apparent sidereal time to calculate the apparent (TIRS) hour angle. For more background on TETE, see the references provided in the :ref:`astropy:astropy-coordinates-seealso` section of the documentation. Of particular note are Sections 5 and 6 of `USNO Circular 179 <https://arxiv.org/abs/astro-ph/0602086>`_) and especially the diagram at the top of page 57. This frame also includes frames that are defined *relative* to the center of the Earth, but that are offset (in both position and velocity) from the center of the Earth. You may see such non-geocentric coordinates referred to as "topocentric". The frame attributes are listed under **Other Parameters**. """ obstime = TimeAttribute(default=DEFAULT_OBSTIME) location = EarthLocationAttribute(default=EARTH_CENTER) # Self transform goes through ICRS and is defined in icrs_cirs_transforms.py @format_doc(base_doc, components="", footer=doc_footer_teme) class TEME(BaseCoordinateFrame): """ A coordinate or frame in the True Equator Mean Equinox frame (TEME). This frame is a geocentric system similar to CIRS or geocentric apparent place, except that the mean sidereal time is used to rotate from TIRS. TEME coordinates are most often used in combination with orbital data for satellites in the two-line-ephemeris format. Different implementations of the TEME frame exist. For clarity, this frame follows the conventions and relations to other frames that are set out in Vallado et al (2006). For more background on TEME, see the references provided in the :ref:`astropy:astropy-coordinates-seealso` section of the documentation. """ default_representation = CartesianRepresentation default_differential = CartesianDifferential obstime = TimeAttribute() # Transformation functions for getting to/from TEME and ITRS are in # intermediate rotation transforms.py
d52e871639b9b67fc3d194da557a648c00d1eae999fb38120367817d7be92111
# Licensed under a 3-clause BSD style license - see LICENSE.rst from copy import deepcopy import numpy as np import pytest import re from astropy import units as u from astropy.units import allclose from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy.utils.exceptions import AstropyWarning from astropy.time import Time from astropy.coordinates import ( EarthLocation, galactocentric_frame_defaults, representation as r, SkyCoord, ) from astropy.coordinates.attributes import ( Attribute, CoordinateAttribute, DifferentialAttribute, EarthLocationAttribute, QuantityAttribute, TimeAttribute, ) from astropy.coordinates.baseframe import ( BaseCoordinateFrame, RepresentationMapping ) from astropy.coordinates.builtin_frames import ( AltAz, HADec, FK4, FK5, Galactic, Galactocentric, GCRS, HCRS, ICRS, ITRS ) from astropy.coordinates.representation import ( CartesianDifferential, REPRESENTATION_CLASSES, ) from .test_representation import unitphysics # this fixture is used below # noqa def setup_function(func): """Copy original 'REPRESENTATIONCLASSES' as attribute in function.""" func.REPRESENTATION_CLASSES_ORIG = deepcopy(REPRESENTATION_CLASSES) def teardown_function(func): """Reset REPRESENTATION_CLASSES to original value.""" REPRESENTATION_CLASSES.clear() REPRESENTATION_CLASSES.update(func.REPRESENTATION_CLASSES_ORIG) def test_frame_attribute_descriptor(): """Unit tests of the Attribute descriptor.""" class TestAttributes: attr_none = Attribute() attr_2 = Attribute(default=2) attr_3_attr2 = Attribute(default=3, secondary_attribute='attr_2') attr_none_attr2 = Attribute(default=None, secondary_attribute='attr_2') attr_none_nonexist = Attribute( default=None, secondary_attribute='nonexist' ) t = TestAttributes() # Defaults assert t.attr_none is None assert t.attr_2 == 2 assert t.attr_3_attr2 == 3 assert t.attr_none_attr2 == t.attr_2 assert t.attr_none_nonexist is None # No default and non-existent secondary attr # Setting values via '_'-prefixed internal vars # (as would normally done in __init__) t._attr_none = 10 assert t.attr_none == 10 t._attr_2 = 20 assert t.attr_2 == 20 assert t.attr_3_attr2 == 3 assert t.attr_none_attr2 == t.attr_2 t._attr_none_attr2 = 40 assert t.attr_none_attr2 == 40 # Make sure setting values via public attribute fails with pytest.raises(AttributeError) as err: t.attr_none = 5 assert 'Cannot set frame attribute' in str(err.value) def test_frame_subclass_attribute_descriptor(): """Unit test of the attribute descriptors in subclasses.""" _EQUINOX_B1980 = Time('B1980', scale='tai') class MyFK4(FK4): # equinox inherited from FK4, obstime overridden, and newattr is new obstime = TimeAttribute(default=_EQUINOX_B1980) newattr = Attribute(default='newattr') mfk4 = MyFK4() assert mfk4.equinox.value == 'B1950.000' assert mfk4.obstime.value == 'B1980.000' assert mfk4.newattr == 'newattr' assert set(mfk4.get_frame_attr_names()) == {'equinox', 'obstime', 'newattr'} mfk4 = MyFK4(equinox='J1980.0', obstime='J1990.0', newattr='world') assert mfk4.equinox.value == 'J1980.000' assert mfk4.obstime.value == 'J1990.000' assert mfk4.newattr == 'world' def test_frame_multiple_inheritance_attribute_descriptor(): """ Ensure that all attributes are accumulated in case of inheritance from multiple BaseCoordinateFrames. See https://github.com/astropy/astropy/pull/11099#issuecomment-735829157 """ class Frame1(BaseCoordinateFrame): attr1 = Attribute() class Frame2(BaseCoordinateFrame): attr2 = Attribute() class Frame3(Frame1, Frame2): pass assert len(Frame3.frame_attributes) == 2 assert 'attr1' in Frame3.frame_attributes assert 'attr2' in Frame3.frame_attributes # In case the same attribute exists in both frames, the one from the # left-most class in the MRO should take precedence class Frame4(BaseCoordinateFrame): attr1 = Attribute() attr2 = Attribute() class Frame5(Frame1, Frame4): pass assert Frame5.frame_attributes['attr1'] is Frame1.frame_attributes['attr1'] assert Frame5.frame_attributes['attr2'] is Frame4.frame_attributes['attr2'] def test_differentialattribute(): # Test logic of passing input through to allowed class vel = [1, 2, 3]*u.km/u.s dif = r.CartesianDifferential(vel) class TestFrame(BaseCoordinateFrame): attrtest = DifferentialAttribute( default=dif, allowed_classes=[r.CartesianDifferential]) frame1 = TestFrame() frame2 = TestFrame(attrtest=dif) frame3 = TestFrame(attrtest=vel) assert np.all(frame1.attrtest.d_xyz == frame2.attrtest.d_xyz) assert np.all(frame1.attrtest.d_xyz == frame3.attrtest.d_xyz) # This shouldn't work if there is more than one allowed class: class TestFrame2(BaseCoordinateFrame): attrtest = DifferentialAttribute( default=dif, allowed_classes=[r.CartesianDifferential, r.CylindricalDifferential]) frame1 = TestFrame2() frame2 = TestFrame2(attrtest=dif) with pytest.raises(TypeError): TestFrame2(attrtest=vel) def test_create_data_frames(): # from repr i1 = ICRS(r.SphericalRepresentation(1*u.deg, 2*u.deg, 3*u.kpc)) i2 = ICRS(r.UnitSphericalRepresentation(lon=1*u.deg, lat=2*u.deg)) # from preferred name i3 = ICRS(ra=1*u.deg, dec=2*u.deg, distance=3*u.kpc) i4 = ICRS(ra=1*u.deg, dec=2*u.deg) assert i1.data.lat == i3.data.lat assert i1.data.lon == i3.data.lon assert i1.data.distance == i3.data.distance assert i2.data.lat == i4.data.lat assert i2.data.lon == i4.data.lon # now make sure the preferred names work as properties assert_allclose(i1.ra, i3.ra) assert_allclose(i2.ra, i4.ra) assert_allclose(i1.distance, i3.distance) with pytest.raises(AttributeError): i1.ra = [11.]*u.deg def test_create_orderered_data(): TOL = 1e-10*u.deg i = ICRS(1*u.deg, 2*u.deg) assert (i.ra - 1*u.deg) < TOL assert (i.dec - 2*u.deg) < TOL g = Galactic(1*u.deg, 2*u.deg) assert (g.l - 1*u.deg) < TOL assert (g.b - 2*u.deg) < TOL a = AltAz(1*u.deg, 2*u.deg) assert (a.az - 1*u.deg) < TOL assert (a.alt - 2*u.deg) < TOL with pytest.raises(TypeError): ICRS(1*u.deg, 2*u.deg, 1*u.deg, 2*u.deg) with pytest.raises(TypeError): sph = r.SphericalRepresentation(1*u.deg, 2*u.deg, 3*u.kpc) ICRS(sph, 1*u.deg, 2*u.deg) def test_create_nodata_frames(): i = ICRS() assert len(i.get_frame_attr_names()) == 0 f5 = FK5() assert f5.equinox == FK5.get_frame_attr_names()['equinox'] f4 = FK4() assert f4.equinox == FK4.get_frame_attr_names()['equinox'] # obstime is special because it's a property that uses equinox if obstime is not set assert f4.obstime in (FK4.get_frame_attr_names()['obstime'], FK4.get_frame_attr_names()['equinox']) def test_no_data_nonscalar_frames(): a1 = AltAz(obstime=Time('2012-01-01') + np.arange(10.) * u.day, temperature=np.ones((3, 1)) * u.deg_C) assert a1.obstime.shape == (3, 10) assert a1.temperature.shape == (3, 10) assert a1.shape == (3, 10) with pytest.raises(ValueError) as exc: AltAz(obstime=Time('2012-01-01') + np.arange(10.) * u.day, temperature=np.ones((3,)) * u.deg_C) assert 'inconsistent shapes' in str(exc.value) def test_frame_repr(): i = ICRS() assert repr(i) == '<ICRS Frame>' f5 = FK5() assert repr(f5).startswith('<FK5 Frame (equinox=') i2 = ICRS(ra=1*u.deg, dec=2*u.deg) i3 = ICRS(ra=1*u.deg, dec=2*u.deg, distance=3*u.kpc) assert repr(i2) == ('<ICRS Coordinate: (ra, dec) in deg\n' ' (1., 2.)>') assert repr(i3) == ('<ICRS Coordinate: (ra, dec, distance) in (deg, deg, kpc)\n' ' (1., 2., 3.)>') # try with arrays i2 = ICRS(ra=[1.1, 2.1]*u.deg, dec=[2.1, 3.1]*u.deg) i3 = ICRS(ra=[1.1, 2.1]*u.deg, dec=[-15.6, 17.1]*u.deg, distance=[11., 21.]*u.kpc) assert repr(i2) == ('<ICRS Coordinate: (ra, dec) in deg\n' ' [(1.1, 2.1), (2.1, 3.1)]>') assert repr(i3) == ('<ICRS Coordinate: (ra, dec, distance) in (deg, deg, kpc)\n' ' [(1.1, -15.6, 11.), (2.1, 17.1, 21.)]>') def test_frame_repr_vels(): i = ICRS(ra=1*u.deg, dec=2*u.deg, pm_ra_cosdec=1*u.marcsec/u.yr, pm_dec=2*u.marcsec/u.yr) # unit comes out as mas/yr because of the preferred units defined in the # frame RepresentationMapping assert repr(i) == ('<ICRS Coordinate: (ra, dec) in deg\n' ' (1., 2.)\n' ' (pm_ra_cosdec, pm_dec) in mas / yr\n' ' (1., 2.)>') def test_converting_units(): # this is a regular expression that with split (see below) removes what's # the decimal point to fix rounding problems rexrepr = re.compile(r'(.*?=\d\.).*?( .*?=\d\.).*?( .*)') # Use values that aren't subject to rounding down to X.9999... i2 = ICRS(ra=2.*u.deg, dec=2.*u.deg) i2_many = ICRS(ra=[2., 4.]*u.deg, dec=[2., -8.1]*u.deg) # converting from FK5 to ICRS and back changes the *internal* representation, # but it should still come out in the preferred form i4 = i2.transform_to(FK5()).transform_to(ICRS()) i4_many = i2_many.transform_to(FK5()).transform_to(ICRS()) ri2 = ''.join(rexrepr.split(repr(i2))) ri4 = ''.join(rexrepr.split(repr(i4))) assert ri2 == ri4 assert i2.data.lon.unit != i4.data.lon.unit # Internal repr changed ri2_many = ''.join(rexrepr.split(repr(i2_many))) ri4_many = ''.join(rexrepr.split(repr(i4_many))) assert ri2_many == ri4_many assert i2_many.data.lon.unit != i4_many.data.lon.unit # Internal repr changed # but that *shouldn't* hold if we turn off units for the representation class FakeICRS(ICRS): frame_specific_representation_info = { 'spherical': [RepresentationMapping('lon', 'ra', u.hourangle), RepresentationMapping('lat', 'dec', None), RepresentationMapping('distance', 'distance')] # should fall back to default of None unit } fi = FakeICRS(i4.data) ri2 = ''.join(rexrepr.split(repr(i2))) rfi = ''.join(rexrepr.split(repr(fi))) rfi = re.sub('FakeICRS', 'ICRS', rfi) # Force frame name to match assert ri2 != rfi # the attributes should also get the right units assert i2.dec.unit == i4.dec.unit # unless no/explicitly given units assert i2.dec.unit != fi.dec.unit assert i2.ra.unit != fi.ra.unit assert fi.ra.unit == u.hourangle def test_representation_info(): class NewICRS1(ICRS): frame_specific_representation_info = { r.SphericalRepresentation: [ RepresentationMapping('lon', 'rara', u.hourangle), RepresentationMapping('lat', 'decdec', u.degree), RepresentationMapping('distance', 'distance', u.kpc)] } i1 = NewICRS1(rara=10*u.degree, decdec=-12*u.deg, distance=1000*u.pc, pm_rara_cosdecdec=100*u.mas/u.yr, pm_decdec=17*u.mas/u.yr, radial_velocity=10*u.km/u.s) assert allclose(i1.rara, 10*u.deg) assert i1.rara.unit == u.hourangle assert allclose(i1.decdec, -12*u.deg) assert allclose(i1.distance, 1000*u.pc) assert i1.distance.unit == u.kpc assert allclose(i1.pm_rara_cosdecdec, 100*u.mas/u.yr) assert allclose(i1.pm_decdec, 17*u.mas/u.yr) # this should auto-set the names of UnitSpherical: i1.set_representation_cls(r.UnitSphericalRepresentation, s=r.UnitSphericalCosLatDifferential) assert allclose(i1.rara, 10*u.deg) assert allclose(i1.decdec, -12*u.deg) assert allclose(i1.pm_rara_cosdecdec, 100*u.mas/u.yr) assert allclose(i1.pm_decdec, 17*u.mas/u.yr) # For backwards compatibility, we also support the string name in the # representation info dictionary: class NewICRS2(ICRS): frame_specific_representation_info = { 'spherical': [ RepresentationMapping('lon', 'ang1', u.hourangle), RepresentationMapping('lat', 'ang2', u.degree), RepresentationMapping('distance', 'howfar', u.kpc)] } i2 = NewICRS2(ang1=10*u.degree, ang2=-12*u.deg, howfar=1000*u.pc) assert allclose(i2.ang1, 10*u.deg) assert i2.ang1.unit == u.hourangle assert allclose(i2.ang2, -12*u.deg) assert allclose(i2.howfar, 1000*u.pc) assert i2.howfar.unit == u.kpc # Test that the differential kwargs get overridden class NewICRS3(ICRS): frame_specific_representation_info = { r.SphericalCosLatDifferential: [ RepresentationMapping('d_lon_coslat', 'pm_ang1', u.hourangle/u.year), RepresentationMapping('d_lat', 'pm_ang2'), RepresentationMapping('d_distance', 'vlos', u.kpc/u.Myr)] } i3 = NewICRS3(lon=10*u.degree, lat=-12*u.deg, distance=1000*u.pc, pm_ang1=1*u.mas/u.yr, pm_ang2=2*u.mas/u.yr, vlos=100*u.km/u.s) assert allclose(i3.pm_ang1, 1*u.mas/u.yr) assert i3.pm_ang1.unit == u.hourangle/u.year assert allclose(i3.pm_ang2, 2*u.mas/u.yr) assert allclose(i3.vlos, 100*u.km/u.s) assert i3.vlos.unit == u.kpc/u.Myr def test_realizing(): rep = r.SphericalRepresentation(1*u.deg, 2*u.deg, 3*u.kpc) i = ICRS() i2 = i.realize_frame(rep) assert not i.has_data assert i2.has_data f = FK5(equinox=Time('J2001')) f2 = f.realize_frame(rep) assert not f.has_data assert f2.has_data assert f2.equinox == f.equinox assert f2.equinox != FK5.get_frame_attr_names()['equinox'] # Check that a nicer error message is returned: with pytest.raises(TypeError) as excinfo: f.realize_frame(f.representation_type) assert ('Class passed as data instead of a representation' in excinfo.value.args[0]) def test_replicating(): i = ICRS(ra=[1]*u.deg, dec=[2]*u.deg) icopy = i.replicate(copy=True) irepl = i.replicate(copy=False) i.data._lat[:] = 0*u.deg assert np.all(i.data.lat == irepl.data.lat) assert np.all(i.data.lat != icopy.data.lat) iclone = i.replicate_without_data() assert i.has_data assert not iclone.has_data aa = AltAz(alt=1*u.deg, az=2*u.deg, obstime=Time('J2000')) aaclone = aa.replicate_without_data(obstime=Time('J2001')) assert not aaclone.has_data assert aa.obstime != aaclone.obstime assert aa.pressure == aaclone.pressure assert aa.obswl == aaclone.obswl def test_getitem(): rep = r.SphericalRepresentation( [1, 2, 3]*u.deg, [4, 5, 6]*u.deg, [7, 8, 9]*u.kpc) i = ICRS(rep) assert len(i.ra) == 3 iidx = i[1:] assert len(iidx.ra) == 2 iidx2 = i[0] assert iidx2.ra.isscalar def test_transform(): """ This test just makes sure the transform architecture works, but does *not* actually test all the builtin transforms themselves are accurate. """ i = ICRS(ra=[1, 2]*u.deg, dec=[3, 4]*u.deg) f = i.transform_to(FK5()) i2 = f.transform_to(ICRS()) assert i2.data.__class__ == r.UnitSphericalRepresentation assert_allclose(i.ra, i2.ra) assert_allclose(i.dec, i2.dec) i = ICRS(ra=[1, 2]*u.deg, dec=[3, 4]*u.deg, distance=[5, 6]*u.kpc) f = i.transform_to(FK5()) i2 = f.transform_to(ICRS()) assert i2.data.__class__ != r.UnitSphericalRepresentation f = FK5(ra=1*u.deg, dec=2*u.deg, equinox=Time('J2001')) f4 = f.transform_to(FK4()) f4_2 = f.transform_to(FK4(equinox=f.equinox)) # make sure attributes are copied over correctly assert f4.equinox == FK4().equinox assert f4_2.equinox == f.equinox # make sure self-transforms also work i = ICRS(ra=[1, 2]*u.deg, dec=[3, 4]*u.deg) i2 = i.transform_to(ICRS()) assert_allclose(i.ra, i2.ra) assert_allclose(i.dec, i2.dec) f = FK5(ra=1*u.deg, dec=2*u.deg, equinox=Time('J2001')) f2 = f.transform_to(FK5()) # default equinox, so should be *different* assert f2.equinox == FK5().equinox with pytest.raises(AssertionError): assert_allclose(f.ra, f2.ra) with pytest.raises(AssertionError): assert_allclose(f.dec, f2.dec) # finally, check Galactic round-tripping i1 = ICRS(ra=[1, 2]*u.deg, dec=[3, 4]*u.deg) i2 = i1.transform_to(Galactic()).transform_to(ICRS()) assert_allclose(i1.ra, i2.ra) assert_allclose(i1.dec, i2.dec) def test_transform_to_nonscalar_nodata_frame(): # https://github.com/astropy/astropy/pull/5254#issuecomment-241592353 times = Time('2016-08-23') + np.linspace(0, 10, 12)*u.day coo1 = ICRS(ra=[[0.], [10.], [20.]]*u.deg, dec=[[-30.], [30.], [60.]]*u.deg) coo2 = coo1.transform_to(FK5(equinox=times)) assert coo2.shape == (3, 12) def test_setitem_no_velocity(): """Test different flavors of item setting for a Frame without a velocity. """ obstime = 'B1955' sc0 = FK4([1, 2]*u.deg, [3, 4]*u.deg, obstime=obstime) sc2 = FK4([10, 20]*u.deg, [30, 40]*u.deg, obstime=obstime) sc1 = sc0.copy() sc1_repr = repr(sc1) assert 'representation' in sc1.cache sc1[1] = sc2[0] assert sc1.cache == {} assert repr(sc2) != sc1_repr assert np.allclose(sc1.ra.to_value(u.deg), [1, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [3, 30]) assert sc1.obstime == sc2.obstime assert sc1.name == 'fk4' sc1 = sc0.copy() sc1[:] = sc2[0] assert np.allclose(sc1.ra.to_value(u.deg), [10, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [30, 30]) sc1 = sc0.copy() sc1[:] = sc2[:] assert np.allclose(sc1.ra.to_value(u.deg), [10, 20]) assert np.allclose(sc1.dec.to_value(u.deg), [30, 40]) sc1 = sc0.copy() sc1[[1, 0]] = sc2[:] assert np.allclose(sc1.ra.to_value(u.deg), [20, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [40, 30]) # Works for array-valued obstime so long as they are considered equivalent sc1 = FK4(sc0.ra, sc0.dec, obstime=[obstime, obstime]) sc1[0] = sc2[0] # Multidimensional coordinates sc1 = FK4([[1, 2], [3, 4]] * u.deg, [[5, 6], [7, 8]] * u.deg) sc2 = FK4([[10, 20], [30, 40]] * u.deg, [[50, 60], [70, 80]] * u.deg) sc1[0] = sc2[0] assert np.allclose(sc1.ra.to_value(u.deg), [[10, 20], [3, 4]]) assert np.allclose(sc1.dec.to_value(u.deg), [[50, 60], [7, 8]]) def test_setitem_velocities(): """Test different flavors of item setting for a Frame with a velocity. """ sc0 = FK4([1, 2]*u.deg, [3, 4]*u.deg, radial_velocity=[1, 2]*u.km/u.s, obstime='B1950') sc2 = FK4([10, 20]*u.deg, [30, 40]*u.deg, radial_velocity=[10, 20]*u.km/u.s, obstime='B1950') sc1 = sc0.copy() sc1[1] = sc2[0] assert np.allclose(sc1.ra.to_value(u.deg), [1, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [3, 30]) assert np.allclose(sc1.radial_velocity.to_value(u.km / u.s), [1, 10]) assert sc1.obstime == sc2.obstime assert sc1.name == 'fk4' sc1 = sc0.copy() sc1[:] = sc2[0] assert np.allclose(sc1.ra.to_value(u.deg), [10, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [30, 30]) assert np.allclose(sc1.radial_velocity.to_value(u.km / u.s), [10, 10]) sc1 = sc0.copy() sc1[:] = sc2[:] assert np.allclose(sc1.ra.to_value(u.deg), [10, 20]) assert np.allclose(sc1.dec.to_value(u.deg), [30, 40]) assert np.allclose(sc1.radial_velocity.to_value(u.km / u.s), [10, 20]) sc1 = sc0.copy() sc1[[1, 0]] = sc2[:] assert np.allclose(sc1.ra.to_value(u.deg), [20, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [40, 30]) assert np.allclose(sc1.radial_velocity.to_value(u.km / u.s), [20, 10]) def test_setitem_exceptions(): obstime = 'B1950' sc0 = FK4([1, 2]*u.deg, [3, 4]*u.deg) sc2 = FK4([10, 20]*u.deg, [30, 40]*u.deg, obstime=obstime) sc1 = Galactic(sc0.ra, sc0.dec) with pytest.raises(TypeError, match='can only set from object of same class: ' 'Galactic vs. FK4'): sc1[0] = sc2[0] sc1 = FK4(sc0.ra, sc0.dec, obstime='B2001') with pytest.raises(ValueError, match='can only set frame item from an equivalent frame'): sc1[0] = sc2[0] sc1 = FK4(sc0.ra[0], sc0.dec[0], obstime=obstime) with pytest.raises(TypeError, match="scalar 'FK4' frame object does not support " 'item assignment'): sc1[0] = sc2[0] sc1 = FK4(obstime=obstime) with pytest.raises(ValueError, match='cannot set frame which has no data'): sc1[0] = sc2[0] sc1 = FK4(sc0.ra, sc0.dec, obstime=[obstime, 'B1980']) with pytest.raises(ValueError, match='can only set frame item from an equivalent frame'): sc1[0] = sc2[0] # Wrong shape sc1 = FK4([sc0.ra], [sc0.dec], obstime=[obstime, 'B1980']) with pytest.raises(ValueError, match='can only set frame item from an equivalent frame'): sc1[0] = sc2[0] def test_sep(): i1 = ICRS(ra=0*u.deg, dec=1*u.deg) i2 = ICRS(ra=0*u.deg, dec=2*u.deg) sep = i1.separation(i2) assert_allclose(sep.deg, 1.) i3 = ICRS(ra=[1, 2]*u.deg, dec=[3, 4]*u.deg, distance=[5, 6]*u.kpc) i4 = ICRS(ra=[1, 2]*u.deg, dec=[3, 4]*u.deg, distance=[4, 5]*u.kpc) sep3d = i3.separation_3d(i4) assert_allclose(sep3d.to(u.kpc), np.array([1, 1])*u.kpc) # check that it works even with velocities i5 = ICRS(ra=[1, 2]*u.deg, dec=[3, 4]*u.deg, distance=[5, 6]*u.kpc, pm_ra_cosdec=[1, 2]*u.mas/u.yr, pm_dec=[3, 4]*u.mas/u.yr, radial_velocity=[5, 6]*u.km/u.s) i6 = ICRS(ra=[1, 2]*u.deg, dec=[3, 4]*u.deg, distance=[7, 8]*u.kpc, pm_ra_cosdec=[1, 2]*u.mas/u.yr, pm_dec=[3, 4]*u.mas/u.yr, radial_velocity=[5, 6]*u.km/u.s) sep3d = i5.separation_3d(i6) assert_allclose(sep3d.to(u.kpc), np.array([2, 2])*u.kpc) # 3d separations of dimensionless distances should still work i7 = ICRS(ra=1*u.deg, dec=2*u.deg, distance=3*u.one) i8 = ICRS(ra=1*u.deg, dec=2*u.deg, distance=4*u.one) sep3d = i7.separation_3d(i8) assert_allclose(sep3d, 1*u.one) # but should fail with non-dimensionless with pytest.raises(ValueError): i7.separation_3d(i3) def test_time_inputs(): """ Test validation and conversion of inputs for equinox and obstime attributes. """ c = FK4(1 * u.deg, 2 * u.deg, equinox='J2001.5', obstime='2000-01-01 12:00:00') assert c.equinox == Time('J2001.5') assert c.obstime == Time('2000-01-01 12:00:00') with pytest.raises(ValueError) as err: c = FK4(1 * u.deg, 2 * u.deg, equinox=1.5) assert 'Invalid time input' in str(err.value) with pytest.raises(ValueError) as err: c = FK4(1 * u.deg, 2 * u.deg, obstime='hello') assert 'Invalid time input' in str(err.value) # A vector time should work if the shapes match, but we don't automatically # broadcast the basic data (just like time). FK4([1, 2] * u.deg, [2, 3] * u.deg, obstime=['J2000', 'J2001']) with pytest.raises(ValueError) as err: FK4(1 * u.deg, 2 * u.deg, obstime=['J2000', 'J2001']) assert 'shape' in str(err.value) def test_is_frame_attr_default(): """ Check that the `is_frame_attr_default` machinery works as expected """ c1 = FK5(ra=1*u.deg, dec=1*u.deg) c2 = FK5(ra=1*u.deg, dec=1*u.deg, equinox=FK5.get_frame_attr_names()['equinox']) c3 = FK5(ra=1*u.deg, dec=1*u.deg, equinox=Time('J2001.5')) assert c1.equinox == c2.equinox assert c1.equinox != c3.equinox assert c1.is_frame_attr_default('equinox') assert not c2.is_frame_attr_default('equinox') assert not c3.is_frame_attr_default('equinox') c4 = c1.realize_frame(r.UnitSphericalRepresentation(3*u.deg, 4*u.deg)) c5 = c2.realize_frame(r.UnitSphericalRepresentation(3*u.deg, 4*u.deg)) assert c4.is_frame_attr_default('equinox') assert not c5.is_frame_attr_default('equinox') def test_altaz_attributes(): aa = AltAz(1*u.deg, 2*u.deg) assert aa.obstime is None assert aa.location is None aa2 = AltAz(1*u.deg, 2*u.deg, obstime='J2000') assert aa2.obstime == Time('J2000') aa3 = AltAz(1*u.deg, 2*u.deg, location=EarthLocation(0*u.deg, 0*u.deg, 0*u.m)) assert isinstance(aa3.location, EarthLocation) def test_hadec_attributes(): hd = HADec(1*u.hourangle, 2*u.deg) assert hd.ha == 1.*u.hourangle assert hd.dec == 2*u.deg assert hd.obstime is None assert hd.location is None hd2 = HADec(23*u.hourangle, -2*u.deg, obstime='J2000', location=EarthLocation(0*u.deg, 0*u.deg, 0*u.m)) assert_allclose(hd2.ha, -1*u.hourangle) assert hd2.dec == -2*u.deg assert hd2.obstime == Time('J2000') assert isinstance(hd2.location, EarthLocation) sr = hd2.represent_as(r.SphericalRepresentation) assert_allclose(sr.lon, -1*u.hourangle) def test_representation(): """ Test the getter and setter properties for `representation` """ # Create the frame object. icrs = ICRS(ra=1*u.deg, dec=1*u.deg) data = icrs.data # Create some representation objects. icrs_cart = icrs.cartesian icrs_spher = icrs.spherical icrs_cyl = icrs.cylindrical # Testing when `_representation` set to `CartesianRepresentation`. icrs.representation_type = r.CartesianRepresentation assert icrs.representation_type == r.CartesianRepresentation assert icrs_cart.x == icrs.x assert icrs_cart.y == icrs.y assert icrs_cart.z == icrs.z assert icrs.data == data # Testing that an ICRS object in CartesianRepresentation must not have spherical attributes. for attr in ('ra', 'dec', 'distance'): with pytest.raises(AttributeError) as err: getattr(icrs, attr) assert 'object has no attribute' in str(err.value) # Testing when `_representation` set to `CylindricalRepresentation`. icrs.representation_type = r.CylindricalRepresentation assert icrs.representation_type == r.CylindricalRepresentation assert icrs.data == data # Testing setter input using text argument for spherical. icrs.representation_type = 'spherical' assert icrs.representation_type is r.SphericalRepresentation assert icrs_spher.lat == icrs.dec assert icrs_spher.lon == icrs.ra assert icrs_spher.distance == icrs.distance assert icrs.data == data # Testing that an ICRS object in SphericalRepresentation must not have cartesian attributes. for attr in ('x', 'y', 'z'): with pytest.raises(AttributeError) as err: getattr(icrs, attr) assert 'object has no attribute' in str(err.value) # Testing setter input using text argument for cylindrical. icrs.representation_type = 'cylindrical' assert icrs.representation_type is r.CylindricalRepresentation assert icrs_cyl.rho == icrs.rho assert icrs_cyl.phi == icrs.phi assert icrs_cyl.z == icrs.z assert icrs.data == data # Testing that an ICRS object in CylindricalRepresentation must not have spherical attributes. for attr in ('ra', 'dec', 'distance'): with pytest.raises(AttributeError) as err: getattr(icrs, attr) assert 'object has no attribute' in str(err.value) with pytest.raises(ValueError) as err: icrs.representation_type = 'WRONG' assert 'but must be a BaseRepresentation class' in str(err.value) with pytest.raises(ValueError) as err: icrs.representation_type = ICRS assert 'but must be a BaseRepresentation class' in str(err.value) def test_represent_as(): icrs = ICRS(ra=1*u.deg, dec=1*u.deg) cart1 = icrs.represent_as('cartesian') cart2 = icrs.represent_as(r.CartesianRepresentation) cart1.x == cart2.x cart1.y == cart2.y cart1.z == cart2.z # now try with velocities icrs = ICRS(ra=0*u.deg, dec=0*u.deg, distance=10*u.kpc, pm_ra_cosdec=0*u.mas/u.yr, pm_dec=0*u.mas/u.yr, radial_velocity=1*u.km/u.s) # single string rep2 = icrs.represent_as('cylindrical') assert isinstance(rep2, r.CylindricalRepresentation) assert isinstance(rep2.differentials['s'], r.CylindricalDifferential) # single class with positional in_frame_units, verify that warning raised with pytest.warns(AstropyWarning, match='argument position') as w: icrs.represent_as(r.CylindricalRepresentation, False) assert len(w) == 1 # TODO: this should probably fail in the future once we figure out a better # workaround for dealing with UnitSphericalRepresentation's with # RadialDifferential's # two classes # rep2 = icrs.represent_as(r.CartesianRepresentation, # r.SphericalCosLatDifferential) # assert isinstance(rep2, r.CartesianRepresentation) # assert isinstance(rep2.differentials['s'], r.SphericalCosLatDifferential) with pytest.raises(ValueError): icrs.represent_as('odaigahara') def test_shorthand_representations(): rep = r.CartesianRepresentation([1, 2, 3]*u.pc) dif = r.CartesianDifferential([1, 2, 3]*u.km/u.s) rep = rep.with_differentials(dif) icrs = ICRS(rep) cyl = icrs.cylindrical assert isinstance(cyl, r.CylindricalRepresentation) assert isinstance(cyl.differentials['s'], r.CylindricalDifferential) sph = icrs.spherical assert isinstance(sph, r.SphericalRepresentation) assert isinstance(sph.differentials['s'], r.SphericalDifferential) sph = icrs.sphericalcoslat assert isinstance(sph, r.SphericalRepresentation) assert isinstance(sph.differentials['s'], r.SphericalCosLatDifferential) def test_equal(): obstime = 'B1955' sc1 = FK4([1, 2]*u.deg, [3, 4]*u.deg, obstime=obstime) sc2 = FK4([1, 20]*u.deg, [3, 4]*u.deg, obstime=obstime) # Compare arrays and scalars eq = sc1 == sc2 ne = sc1 != sc2 assert np.all(eq == [True, False]) assert np.all(ne == [False, True]) assert (sc1[0] == sc2[0]) == True # noqa (numpy True not Python True) assert (sc1[0] != sc2[0]) == False # noqa # Broadcasting eq = sc1[0] == sc2 ne = sc1[0] != sc2 assert np.all(eq == [True, False]) assert np.all(ne == [False, True]) # With diff only in velocity sc1 = FK4([1, 2]*u.deg, [3, 4]*u.deg, radial_velocity=[1, 2]*u.km/u.s) sc2 = FK4([1, 2]*u.deg, [3, 4]*u.deg, radial_velocity=[1, 20]*u.km/u.s) eq = sc1 == sc2 ne = sc1 != sc2 assert np.all(eq == [True, False]) assert np.all(ne == [False, True]) assert (sc1[0] == sc2[0]) == True # noqa assert (sc1[0] != sc2[0]) == False # noqa assert (FK4() == ICRS()) is False assert (FK4() == FK4(obstime='J1999')) is False def test_equal_exceptions(): # Shape mismatch sc1 = FK4([1, 2, 3]*u.deg, [3, 4, 5]*u.deg) with pytest.raises(ValueError, match='cannot compare: shape mismatch'): sc1 == sc1[:2] # Different representation_type sc1 = FK4(1, 2, 3, representation_type='cartesian') sc2 = FK4(1*u.deg, 2*u.deg, 2, representation_type='spherical') with pytest.raises(TypeError, match='cannot compare: objects must have same ' 'class: CartesianRepresentation vs. SphericalRepresentation'): sc1 == sc2 # Different differential type sc1 = FK4(1*u.deg, 2*u.deg, radial_velocity=1*u.km/u.s) sc2 = FK4(1*u.deg, 2*u.deg, pm_ra_cosdec=1*u.mas/u.yr, pm_dec=1*u.mas/u.yr) with pytest.raises(TypeError, match='cannot compare: objects must have same ' 'class: RadialDifferential vs. UnitSphericalCosLatDifferential'): sc1 == sc2 # Different frame attribute sc1 = FK5(1*u.deg, 2*u.deg) sc2 = FK5(1*u.deg, 2*u.deg, equinox='J1999') with pytest.raises(TypeError, match=r'cannot compare: objects must have equivalent ' r'frames: <FK5 Frame \(equinox=J2000.000\)> ' r'vs. <FK5 Frame \(equinox=J1999.000\)>'): sc1 == sc2 # Different frame sc1 = FK4(1*u.deg, 2*u.deg) sc2 = FK5(1*u.deg, 2*u.deg, equinox='J2000') with pytest.raises(TypeError, match='cannot compare: objects must have equivalent ' r'frames: <FK4 Frame \(equinox=B1950.000, obstime=B1950.000\)> ' r'vs. <FK5 Frame \(equinox=J2000.000\)>'): sc1 == sc2 sc1 = FK4(1*u.deg, 2*u.deg) sc2 = FK4() with pytest.raises(ValueError, match='cannot compare: one frame has data and ' 'the other does not'): sc1 == sc2 with pytest.raises(ValueError, match='cannot compare: one frame has data and ' 'the other does not'): sc2 == sc1 def test_dynamic_attrs(): c = ICRS(1*u.deg, 2*u.deg) assert 'ra' in dir(c) assert 'dec' in dir(c) with pytest.raises(AttributeError) as err: c.blahblah assert "object has no attribute 'blahblah'" in str(err.value) with pytest.raises(AttributeError) as err: c.ra = 1 assert "Cannot set any frame attribute" in str(err.value) c.blahblah = 1 assert c.blahblah == 1 def test_nodata_error(): i = ICRS() with pytest.raises(ValueError) as excinfo: i.data assert 'does not have associated data' in str(excinfo.value) def test_len0_data(): i = ICRS([]*u.deg, []*u.deg) assert i.has_data repr(i) def test_quantity_attributes(): # make sure we can create a GCRS frame with valid inputs GCRS(obstime='J2002', obsgeoloc=[1, 2, 3]*u.km, obsgeovel=[4, 5, 6]*u.km/u.s) # make sure it fails for invalid lovs or vels with pytest.raises(TypeError): GCRS(obsgeoloc=[1, 2, 3]) # no unit with pytest.raises(u.UnitsError): GCRS(obsgeoloc=[1, 2, 3]*u.km/u.s) # incorrect unit with pytest.raises(ValueError): GCRS(obsgeoloc=[1, 3]*u.km) # incorrect shape def test_quantity_attribute_default(): # The default default (yes) is None: class MyCoord(BaseCoordinateFrame): someval = QuantityAttribute(unit=u.deg) frame = MyCoord() assert frame.someval is None frame = MyCoord(someval=15*u.deg) assert u.isclose(frame.someval, 15*u.deg) # This should work if we don't explicitly pass in a unit, but we pass in a # default value with a unit class MyCoord2(BaseCoordinateFrame): someval = QuantityAttribute(15*u.deg) frame = MyCoord2() assert u.isclose(frame.someval, 15*u.deg) # Since here no shape was given, we can set to any shape we like. frame = MyCoord2(someval=np.ones(3)*u.deg) assert frame.someval.shape == (3,) assert np.all(frame.someval == 1*u.deg) # We should also be able to insist on a given shape. class MyCoord3(BaseCoordinateFrame): someval = QuantityAttribute(unit=u.arcsec, shape=(3,)) frame = MyCoord3(someval=np.ones(3)*u.deg) assert frame.someval.shape == (3,) assert frame.someval.unit == u.arcsec assert u.allclose(frame.someval.value, 3600.) # The wrong shape raises. with pytest.raises(ValueError, match='shape'): MyCoord3(someval=1.*u.deg) # As does the wrong unit. with pytest.raises(u.UnitsError): MyCoord3(someval=np.ones(3)*u.m) # We are allowed a short-cut for zero. frame0 = MyCoord3(someval=0) assert frame0.someval.shape == (3,) assert frame0.someval.unit == u.arcsec assert np.all(frame0.someval.value == 0.) # But not if it has the wrong shape. with pytest.raises(ValueError, match='shape'): MyCoord3(someval=np.zeros(2)) # This should fail, if we don't pass in a default or a unit with pytest.raises(ValueError): class MyCoord(BaseCoordinateFrame): someval = QuantityAttribute() def test_eloc_attributes(): el = EarthLocation(lon=12.3*u.deg, lat=45.6*u.deg, height=1*u.km) it = ITRS(r.SphericalRepresentation(lon=12.3*u.deg, lat=45.6*u.deg, distance=1*u.km)) gc = GCRS(ra=12.3*u.deg, dec=45.6*u.deg, distance=6375*u.km) el1 = AltAz(location=el).location assert isinstance(el1, EarthLocation) # these should match *exactly* because the EarthLocation assert el1.lat == el.lat assert el1.lon == el.lon assert el1.height == el.height el2 = AltAz(location=it).location assert isinstance(el2, EarthLocation) # these should *not* match because giving something in Spherical ITRS is # *not* the same as giving it as an EarthLocation: EarthLocation is on an # elliptical geoid. So the longitude should match (because flattening is # only along the z-axis), but latitude should not. Also, height is relative # to the *surface* in EarthLocation, but the ITRS distance is relative to # the center of the Earth assert not allclose(el2.lat, it.spherical.lat) assert allclose(el2.lon, it.spherical.lon) assert el2.height < -6000*u.km el3 = AltAz(location=gc).location # GCRS inputs implicitly get transformed to ITRS and then onto # EarthLocation's elliptical geoid. So both lat and lon shouldn't match assert isinstance(el3, EarthLocation) assert not allclose(el3.lat, gc.dec) assert not allclose(el3.lon, gc.ra) assert np.abs(el3.height) < 500*u.km def test_equivalent_frames(): i = ICRS() i2 = ICRS(1*u.deg, 2*u.deg) assert i.is_equivalent_frame(i) assert i.is_equivalent_frame(i2) with pytest.raises(TypeError): assert i.is_equivalent_frame(10) with pytest.raises(TypeError): assert i2.is_equivalent_frame(SkyCoord(i2)) f0 = FK5() # this J2000 is TT f1 = FK5(equinox='J2000') f2 = FK5(1*u.deg, 2*u.deg, equinox='J2000') f3 = FK5(equinox='J2010') f4 = FK4(equinox='J2010') assert f1.is_equivalent_frame(f1) assert not i.is_equivalent_frame(f1) assert f0.is_equivalent_frame(f1) assert f1.is_equivalent_frame(f2) assert not f1.is_equivalent_frame(f3) assert not f3.is_equivalent_frame(f4) aa1 = AltAz() aa2 = AltAz(obstime='J2010') assert aa2.is_equivalent_frame(aa2) assert not aa1.is_equivalent_frame(i) assert not aa1.is_equivalent_frame(aa2) def test_equivalent_frame_coordinateattribute(): class FrameWithCoordinateAttribute(BaseCoordinateFrame): coord_attr = CoordinateAttribute(HCRS) # These frames should not be considered equivalent f0 = FrameWithCoordinateAttribute() f1 = FrameWithCoordinateAttribute(coord_attr=HCRS(1*u.deg, 2*u.deg, obstime='J2000')) f2 = FrameWithCoordinateAttribute(coord_attr=HCRS(3*u.deg, 4*u.deg, obstime='J2000')) f3 = FrameWithCoordinateAttribute(coord_attr=HCRS(1*u.deg, 2*u.deg, obstime='J2001')) assert not f0.is_equivalent_frame(f1) assert not f1.is_equivalent_frame(f0) assert not f1.is_equivalent_frame(f2) assert not f1.is_equivalent_frame(f3) assert not f2.is_equivalent_frame(f3) # They each should still be equivalent to a deep copy of themselves assert f0.is_equivalent_frame(deepcopy(f0)) assert f1.is_equivalent_frame(deepcopy(f1)) assert f2.is_equivalent_frame(deepcopy(f2)) assert f3.is_equivalent_frame(deepcopy(f3)) def test_equivalent_frame_locationattribute(): class FrameWithLocationAttribute(BaseCoordinateFrame): loc_attr = EarthLocationAttribute() # These frames should not be considered equivalent f0 = FrameWithLocationAttribute() location = EarthLocation(lat=-34, lon=19, height=300) f1 = FrameWithLocationAttribute(loc_attr=location) assert not f0.is_equivalent_frame(f1) assert not f1.is_equivalent_frame(f0) # They each should still be equivalent to a deep copy of themselves assert f0.is_equivalent_frame(deepcopy(f0)) assert f1.is_equivalent_frame(deepcopy(f1)) def test_representation_subclass(): # Regression test for #3354 # Normally when instantiating a frame without a distance the frame will try # and use UnitSphericalRepresentation internally instead of # SphericalRepresentation. frame = FK5(representation_type=r.SphericalRepresentation, ra=32 * u.deg, dec=20 * u.deg) assert type(frame._data) == r.UnitSphericalRepresentation assert frame.representation_type == r.SphericalRepresentation # If using a SphericalRepresentation class this used to not work, so we # test here that this is now fixed. class NewSphericalRepresentation(r.SphericalRepresentation): attr_classes = r.SphericalRepresentation.attr_classes frame = FK5(representation_type=NewSphericalRepresentation, lon=32 * u.deg, lat=20 * u.deg) assert type(frame._data) == r.UnitSphericalRepresentation assert frame.representation_type == NewSphericalRepresentation # A similar issue then happened in __repr__ with subclasses of # SphericalRepresentation. assert repr(frame) == ("<FK5 Coordinate (equinox=J2000.000): (lon, lat) in deg\n" " (32., 20.)>") # A more subtle issue is when specifying a custom # UnitSphericalRepresentation subclass for the data and # SphericalRepresentation or a subclass for the representation. class NewUnitSphericalRepresentation(r.UnitSphericalRepresentation): attr_classes = r.UnitSphericalRepresentation.attr_classes def __repr__(self): return "<NewUnitSphericalRepresentation: spam spam spam>" frame = FK5(NewUnitSphericalRepresentation(lon=32 * u.deg, lat=20 * u.deg), representation_type=NewSphericalRepresentation) assert repr(frame) == "<FK5 Coordinate (equinox=J2000.000): spam spam spam>" def test_getitem_representation(): """ Make sure current representation survives __getitem__ even if different from data representation. """ c = ICRS([1, 1] * u.deg, [2, 2] * u.deg) c.representation_type = 'cartesian' assert c[0].representation_type is r.CartesianRepresentation def test_component_error_useful(): """ Check that a data-less frame gives useful error messages about not having data when the attributes asked for are possible coordinate components """ i = ICRS() with pytest.raises(ValueError) as excinfo: i.ra assert 'does not have associated data' in str(excinfo.value) with pytest.raises(AttributeError) as excinfo1: i.foobar with pytest.raises(AttributeError) as excinfo2: i.lon # lon is *not* the component name despite being the underlying representation's name assert "object has no attribute 'foobar'" in str(excinfo1.value) assert "object has no attribute 'lon'" in str(excinfo2.value) def test_cache_clear(): i = ICRS(1*u.deg, 2*u.deg) # Add an in frame units version of the rep to the cache. repr(i) assert len(i.cache['representation']) == 2 i.cache.clear() assert len(i.cache['representation']) == 0 def test_inplace_array(): i = ICRS([[1, 2], [3, 4]]*u.deg, [[10, 20], [30, 40]]*u.deg) # Add an in frame units version of the rep to the cache. repr(i) # Check that repr() has added a rep to the cache assert len(i.cache['representation']) == 2 # Modify the data i.data.lon[:, 0] = [100, 200]*u.deg # Clear the cache i.cache.clear() # This will use a second (potentially cached rep) assert_allclose(i.ra, [[100, 2], [200, 4]]*u.deg) assert_allclose(i.dec, [[10, 20], [30, 40]]*u.deg) def test_inplace_change(): i = ICRS(1*u.deg, 2*u.deg) # Add an in frame units version of the rep to the cache. repr(i) # Check that repr() has added a rep to the cache assert len(i.cache['representation']) == 2 # Modify the data i.data.lon[()] = 10*u.deg # Clear the cache i.cache.clear() # This will use a second (potentially cached rep) assert i.ra == 10 * u.deg assert i.dec == 2 * u.deg def test_representation_with_multiple_differentials(): dif1 = r.CartesianDifferential([1, 2, 3]*u.km/u.s) dif2 = r.CartesianDifferential([1, 2, 3]*u.km/u.s**2) rep = r.CartesianRepresentation([1, 2, 3]*u.pc, differentials={'s': dif1, 's2': dif2}) # check warning is raised for a scalar with pytest.raises(ValueError): ICRS(rep) def test_missing_component_error_names(): """ This test checks that the component names are frame component names, not representation or differential names, when referenced in an exception raised when not passing in enough data. For example: ICRS(ra=10*u.deg) should state: TypeError: __init__() missing 1 required positional argument: 'dec' """ with pytest.raises(TypeError) as e: ICRS(ra=150 * u.deg) assert "missing 1 required positional argument: 'dec'" in str(e.value) with pytest.raises(TypeError) as e: ICRS(ra=150*u.deg, dec=-11*u.deg, pm_ra=100*u.mas/u.yr, pm_dec=10*u.mas/u.yr) assert "pm_ra_cosdec" in str(e.value) def test_non_spherical_representation_unit_creation(unitphysics): class PhysicsICRS(ICRS): default_representation = r.PhysicsSphericalRepresentation pic = PhysicsICRS(phi=1*u.deg, theta=25*u.deg, r=1*u.kpc) assert isinstance(pic.data, r.PhysicsSphericalRepresentation) picu = PhysicsICRS(phi=1*u.deg, theta=25*u.deg) assert isinstance(picu.data, unitphysics) def test_attribute_repr(): class Spam: def _astropy_repr_in_frame(self): return "TEST REPR" class TestFrame(BaseCoordinateFrame): attrtest = Attribute(default=Spam()) assert "TEST REPR" in repr(TestFrame()) def test_component_names_repr(): # Frame class with new component names that includes a name swap class NameChangeFrame(BaseCoordinateFrame): default_representation = r.PhysicsSphericalRepresentation frame_specific_representation_info = { r.PhysicsSphericalRepresentation: [ RepresentationMapping('phi', 'theta', u.deg), RepresentationMapping('theta', 'phi', u.arcsec), RepresentationMapping('r', 'JUSTONCE', u.AU)] } frame = NameChangeFrame(0*u.deg, 0*u.arcsec, 0*u.AU) # Check for the new names in the Frame repr assert "(theta, phi, JUSTONCE)" in repr(frame) # Check that the letter "r" has not been replaced more than once in the Frame repr assert repr(frame).count("JUSTONCE") == 1 def test_galactocentric_defaults(): with galactocentric_frame_defaults.set('pre-v4.0'): galcen_pre40 = Galactocentric() with galactocentric_frame_defaults.set('v4.0'): galcen_40 = Galactocentric() with galactocentric_frame_defaults.set('latest'): galcen_latest = Galactocentric() # parameters that changed assert not u.allclose(galcen_pre40.galcen_distance, galcen_40.galcen_distance) assert not u.allclose(galcen_pre40.z_sun, galcen_40.z_sun) for k in galcen_40.get_frame_attr_names(): if isinstance(getattr(galcen_40, k), BaseCoordinateFrame): continue # skip coordinate comparison... elif isinstance(getattr(galcen_40, k), CartesianDifferential): assert u.allclose(getattr(galcen_40, k).d_xyz, getattr(galcen_latest, k).d_xyz) else: assert getattr(galcen_40, k) == getattr(galcen_latest, k) # test validate Galactocentric with galactocentric_frame_defaults.set('latest'): params = galactocentric_frame_defaults.validate(galcen_latest) references = galcen_latest.frame_attribute_references state = dict(parameters=params, references=references) assert galactocentric_frame_defaults.parameters == params assert galactocentric_frame_defaults.references == references assert galactocentric_frame_defaults._state == state # Test not one of accepted parameter types with pytest.raises(ValueError): galactocentric_frame_defaults.validate(ValueError) # test parameters property assert ( galactocentric_frame_defaults.parameters == galactocentric_frame_defaults.parameters ) def test_galactocentric_references(): # references in the "scientific paper"-sense with galactocentric_frame_defaults.set('pre-v4.0'): galcen_pre40 = Galactocentric() for k in galcen_pre40.get_frame_attr_names(): if k == 'roll': # no reference for this parameter continue assert k in galcen_pre40.frame_attribute_references with galactocentric_frame_defaults.set('v4.0'): galcen_40 = Galactocentric() for k in galcen_40.get_frame_attr_names(): if k == 'roll': # no reference for this parameter continue assert k in galcen_40.frame_attribute_references with galactocentric_frame_defaults.set('v4.0'): galcen_custom = Galactocentric(z_sun=15*u.pc) for k in galcen_custom.get_frame_attr_names(): if k == 'roll': # no reference for this parameter continue if k == 'z_sun': assert k not in galcen_custom.frame_attribute_references else: assert k in galcen_custom.frame_attribute_references def test_coordinateattribute_transformation(): class FrameWithCoordinateAttribute(BaseCoordinateFrame): coord_attr = CoordinateAttribute(HCRS) hcrs = HCRS(1*u.deg, 2*u.deg, 3*u.AU, obstime='2001-02-03') f1_frame = FrameWithCoordinateAttribute(coord_attr=hcrs) f1_skycoord = FrameWithCoordinateAttribute(coord_attr=SkyCoord(hcrs)) # The input is already HCRS, so the frame attribute should not change it assert f1_frame.coord_attr == hcrs # The output should not be different if a SkyCoord is provided assert f1_skycoord.coord_attr == f1_frame.coord_attr gcrs = GCRS(4*u.deg, 5*u.deg, 6*u.AU, obstime='2004-05-06') f2_frame = FrameWithCoordinateAttribute(coord_attr=gcrs) f2_skycoord = FrameWithCoordinateAttribute(coord_attr=SkyCoord(gcrs)) # The input needs to be converted from GCRS to HCRS assert isinstance(f2_frame.coord_attr, HCRS) # The `obstime` frame attribute should have been "merged" in a SkyCoord-style transformation assert f2_frame.coord_attr.obstime == gcrs.obstime # The output should not be different if a SkyCoord is provided assert f2_skycoord.coord_attr == f2_frame.coord_attr def test_realize_frame_accepts_kwargs(): c1 = ICRS(x=1*u.pc, y=2*u.pc, z=3*u.pc, representation_type=r.CartesianRepresentation) new_data = r.CartesianRepresentation(x=11*u.pc, y=12*u.pc, z=13*u.pc) c2 = c1.realize_frame(new_data, representation_type="cartesian") c3 = c1.realize_frame(new_data, representation_type="cylindrical") assert c2.representation_type == r.CartesianRepresentation assert c3.representation_type == r.CylindricalRepresentation def test_nameless_frame_subclass(): """Note: this is a regression test for #11096""" class Test: pass # Subclass from a frame class and a non-frame class. # This subclassing is the test! class NewFrame(ICRS, Test): pass
4228edee1e292bb7c8d7a839f5975c9c09ddfe6af2db0bd28e2d799496297e95
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np import pytest from astropy import units as u from astropy.coordinates import transformations as t from astropy.coordinates.builtin_frames import ICRS, FK5, FK4, FK4NoETerms, Galactic, AltAz, HCRS from astropy.coordinates import representation as r from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.matrix_utilities import rotation_matrix from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy.time import Time from astropy.units import allclose as quantity_allclose from astropy.utils.exceptions import AstropyWarning # Coordinates just for these tests. class TCoo1(ICRS): pass class TCoo2(ICRS): pass class TCoo3(ICRS): pass def test_transform_classes(): """ Tests the class-based/OO syntax for creating transforms """ def tfun(c, f): return f.__class__(ra=c.ra, dec=c.dec) _ = t.FunctionTransform(tfun, TCoo1, TCoo2, register_graph=frame_transform_graph) c1 = TCoo1(ra=1*u.radian, dec=0.5*u.radian) c2 = c1.transform_to(TCoo2()) assert_allclose(c2.ra.radian, 1) assert_allclose(c2.dec.radian, 0.5) def matfunc(coo, fr): return [[1, 0, 0], [0, coo.ra.degree, 0], [0, 0, 1]] trans2 = t.DynamicMatrixTransform(matfunc, TCoo1, TCoo2) trans2.register(frame_transform_graph) c3 = TCoo1(ra=1*u.deg, dec=2*u.deg) c4 = c3.transform_to(TCoo2()) assert_allclose(c4.ra.degree, 1) assert_allclose(c4.ra.degree, 1) # be sure to unregister the second one - no need for trans1 because it # already got unregistered when trans2 was created. trans2.unregister(frame_transform_graph) def test_transform_decos(): """ Tests the decorator syntax for creating transforms """ c1 = TCoo1(ra=1*u.deg, dec=2*u.deg) @frame_transform_graph.transform(t.FunctionTransform, TCoo1, TCoo2) def trans(coo1, f): return TCoo2(ra=coo1.ra, dec=coo1.dec * 2) c2 = c1.transform_to(TCoo2()) assert_allclose(c2.ra.degree, 1) assert_allclose(c2.dec.degree, 4) c3 = TCoo1(r.CartesianRepresentation(x=1*u.pc, y=1*u.pc, z=2*u.pc)) @frame_transform_graph.transform(t.StaticMatrixTransform, TCoo1, TCoo2) def matrix(): return [[2, 0, 0], [0, 1, 0], [0, 0, 1]] c4 = c3.transform_to(TCoo2()) assert_allclose(c4.cartesian.x, 2*u.pc) assert_allclose(c4.cartesian.y, 1*u.pc) assert_allclose(c4.cartesian.z, 2*u.pc) def test_shortest_path(): class FakeTransform: def __init__(self, pri): self.priority = pri g = t.TransformGraph() # cheating by adding graph elements directly that are not classes - the # graphing algorithm still works fine with integers - it just isn't a valid # TransformGraph # the graph looks is a down-going diamond graph with the lower-right slightly # heavier and a cycle from the bottom to the top # also, a pair of nodes isolated from 1 g._graph[1][2] = FakeTransform(1) g._graph[1][3] = FakeTransform(1) g._graph[2][4] = FakeTransform(1) g._graph[3][4] = FakeTransform(2) g._graph[4][1] = FakeTransform(5) g._graph[5][6] = FakeTransform(1) path, d = g.find_shortest_path(1, 2) assert path == [1, 2] assert d == 1 path, d = g.find_shortest_path(1, 3) assert path == [1, 3] assert d == 1 path, d = g.find_shortest_path(1, 4) print('Cached paths:', g._shortestpaths) assert path == [1, 2, 4] assert d == 2 # unreachable path, d = g.find_shortest_path(1, 5) assert path is None assert d == float('inf') path, d = g.find_shortest_path(5, 6) assert path == [5, 6] assert d == 1 def test_sphere_cart(): """ Tests the spherical <-> cartesian transform functions """ from astropy.utils import NumpyRNGContext from astropy.coordinates import spherical_to_cartesian, cartesian_to_spherical x, y, z = spherical_to_cartesian(1, 0, 0) assert_allclose(x, 1) assert_allclose(y, 0) assert_allclose(z, 0) x, y, z = spherical_to_cartesian(0, 1, 1) assert_allclose(x, 0) assert_allclose(y, 0) assert_allclose(z, 0) x, y, z = spherical_to_cartesian(5, 0, np.arcsin(4. / 5.)) assert_allclose(x, 3) assert_allclose(y, 4) assert_allclose(z, 0) r, lat, lon = cartesian_to_spherical(0, 1, 0) assert_allclose(r, 1) assert_allclose(lat, 0 * u.deg) assert_allclose(lon, np.pi / 2 * u.rad) # test round-tripping with NumpyRNGContext(13579): x, y, z = np.random.randn(3, 5) r, lat, lon = cartesian_to_spherical(x, y, z) x2, y2, z2 = spherical_to_cartesian(r, lat, lon) assert_allclose(x, x2) assert_allclose(y, y2) assert_allclose(z, z2) def test_transform_path_pri(): """ This checks that the transformation path prioritization works by making sure the ICRS -> Gal transformation always goes through FK5 and not FK4. """ frame_transform_graph.invalidate_cache() tpath, td = frame_transform_graph.find_shortest_path(ICRS, Galactic) assert tpath == [ICRS, FK5, Galactic] assert td == 2 # but direct from FK4 to Galactic should still be possible tpath, td = frame_transform_graph.find_shortest_path(FK4, Galactic) assert tpath == [FK4, FK4NoETerms, Galactic] assert td == 2 def test_obstime(): """ Checks to make sure observation time is accounted for at least in FK4 <-> ICRS transformations """ b1950 = Time('B1950') j1975 = Time('J1975') fk4_50 = FK4(ra=1*u.deg, dec=2*u.deg, obstime=b1950) fk4_75 = FK4(ra=1*u.deg, dec=2*u.deg, obstime=j1975) icrs_50 = fk4_50.transform_to(ICRS()) icrs_75 = fk4_75.transform_to(ICRS()) # now check that the resulting coordinates are *different* - they should be, # because the obstime is different assert icrs_50.ra.degree != icrs_75.ra.degree assert icrs_50.dec.degree != icrs_75.dec.degree # ------------------------------------------------------------------------------ # Affine transform tests and helpers: # just acting as a namespace class transfunc: rep = r.CartesianRepresentation(np.arange(3)*u.pc) dif = r.CartesianDifferential(*np.arange(3, 6)*u.pc/u.Myr) rep0 = r.CartesianRepresentation(np.zeros(3)*u.pc) @classmethod def both(cls, coo, fr): # exchange x <-> z and offset M = np.array([[0., 0., 1.], [0., 1., 0.], [1., 0., 0.]]) return M, cls.rep.with_differentials(cls.dif) @classmethod def just_matrix(cls, coo, fr): # exchange x <-> z and offset M = np.array([[0., 0., 1.], [0., 1., 0.], [1., 0., 0.]]) return M, None @classmethod def no_matrix(cls, coo, fr): return None, cls.rep.with_differentials(cls.dif) @classmethod def no_pos(cls, coo, fr): return None, cls.rep0.with_differentials(cls.dif) @classmethod def no_vel(cls, coo, fr): return None, cls.rep @pytest.mark.parametrize('transfunc', [transfunc.both, transfunc.no_matrix, transfunc.no_pos, transfunc.no_vel, transfunc.just_matrix]) @pytest.mark.parametrize('rep', [ r.CartesianRepresentation(5, 6, 7, unit=u.pc), r.CartesianRepresentation(5, 6, 7, unit=u.pc, differentials=r.CartesianDifferential(8, 9, 10, unit=u.pc/u.Myr)), r.CartesianRepresentation(5, 6, 7, unit=u.pc, differentials=r.CartesianDifferential(8, 9, 10, unit=u.pc/u.Myr)) .represent_as(r.CylindricalRepresentation, r.CylindricalDifferential) ]) def test_affine_transform_succeed(transfunc, rep): c = TCoo1(rep) # compute expected output M, offset = transfunc(c, TCoo2) _rep = rep.to_cartesian() diffs = {k: diff.represent_as(r.CartesianDifferential, rep) for k, diff in rep.differentials.items()} expected_rep = _rep.with_differentials(diffs) if M is not None: expected_rep = expected_rep.transform(M) expected_pos = expected_rep.without_differentials() if offset is not None: expected_pos = expected_pos + offset.without_differentials() expected_vel = None if c.data.differentials: expected_vel = expected_rep.differentials['s'] if offset and offset.differentials: expected_vel = (expected_vel + offset.differentials['s']) # register and do the transformation and check against expected trans = t.AffineTransform(transfunc, TCoo1, TCoo2) trans.register(frame_transform_graph) c2 = c.transform_to(TCoo2()) assert quantity_allclose(c2.data.to_cartesian().xyz, expected_pos.to_cartesian().xyz) if expected_vel is not None: diff = c2.data.differentials['s'].to_cartesian(base=c2.data) assert quantity_allclose(diff.xyz, expected_vel.d_xyz) trans.unregister(frame_transform_graph) # these should fail def transfunc_invalid_matrix(coo, fr): return np.eye(4), None # Leaving this open in case we want to add more functions to check for failures @pytest.mark.parametrize('transfunc', [transfunc_invalid_matrix]) def test_affine_transform_fail(transfunc): diff = r.CartesianDifferential(8, 9, 10, unit=u.pc/u.Myr) rep = r.CartesianRepresentation(5, 6, 7, unit=u.pc, differentials=diff) c = TCoo1(rep) # register and do the transformation and check against expected trans = t.AffineTransform(transfunc, TCoo1, TCoo2) trans.register(frame_transform_graph) with pytest.raises(ValueError): c.transform_to(TCoo2()) trans.unregister(frame_transform_graph) def test_too_many_differentials(): dif1 = r.CartesianDifferential(*np.arange(3, 6)*u.pc/u.Myr) dif2 = r.CartesianDifferential(*np.arange(3, 6)*u.pc/u.Myr**2) rep = r.CartesianRepresentation(np.arange(3)*u.pc, differentials={'s': dif1, 's2': dif2}) with pytest.raises(ValueError): c = TCoo1(rep) # register and do the transformation and check against expected trans = t.AffineTransform(transfunc.both, TCoo1, TCoo2) trans.register(frame_transform_graph) # Check that if frame somehow gets through to transformation, multiple # differentials are caught c = TCoo1(rep.without_differentials()) c._data = c._data.with_differentials({'s': dif1, 's2': dif2}) with pytest.raises(ValueError): c.transform_to(TCoo2()) trans.unregister(frame_transform_graph) # A matrix transform of a unit spherical with differentials should work @pytest.mark.parametrize('rep', [ r.UnitSphericalRepresentation(lon=15*u.degree, lat=-11*u.degree, differentials=r.SphericalDifferential(d_lon=15*u.mas/u.yr, d_lat=11*u.mas/u.yr, d_distance=-110*u.km/u.s)), r.UnitSphericalRepresentation(lon=15*u.degree, lat=-11*u.degree, differentials={'s': r.RadialDifferential(d_distance=-110*u.km/u.s)}), r.SphericalRepresentation(lon=15*u.degree, lat=-11*u.degree, distance=150*u.pc, differentials={'s': r.RadialDifferential(d_distance=-110*u.km/u.s)}) ]) def test_unit_spherical_with_differentials(rep): c = TCoo1(rep) # register and do the transformation and check against expected trans = t.AffineTransform(transfunc.just_matrix, TCoo1, TCoo2) trans.register(frame_transform_graph) c2 = c.transform_to(TCoo2()) assert 's' in rep.differentials assert isinstance(c2.data.differentials['s'], rep.differentials['s'].__class__) if isinstance(rep.differentials['s'], r.RadialDifferential): assert c2.data.differentials['s'] is rep.differentials['s'] trans.unregister(frame_transform_graph) # should fail if we have to do offsets trans = t.AffineTransform(transfunc.both, TCoo1, TCoo2) trans.register(frame_transform_graph) with pytest.raises(TypeError): c.transform_to(TCoo2()) trans.unregister(frame_transform_graph) def test_vel_transformation_obstime_err(): # TODO: replace after a final decision on PR #6280 from astropy.coordinates.sites import get_builtin_sites diff = r.CartesianDifferential([.1, .2, .3]*u.km/u.s) rep = r.CartesianRepresentation([1, 2, 3]*u.au, differentials=diff) loc = get_builtin_sites()['example_site'] aaf = AltAz(obstime='J2010', location=loc) aaf2 = AltAz(obstime=aaf.obstime + 3*u.day, location=loc) aaf3 = AltAz(obstime=aaf.obstime + np.arange(3)*u.day, location=loc) aaf4 = AltAz(obstime=aaf.obstime, location=loc) aa = aaf.realize_frame(rep) with pytest.raises(NotImplementedError) as exc: aa.transform_to(aaf2) assert 'cannot transform' in exc.value.args[0] with pytest.raises(NotImplementedError) as exc: aa.transform_to(aaf3) assert 'cannot transform' in exc.value.args[0] aa.transform_to(aaf4) aa.transform_to(ICRS()) def test_function_transform_with_differentials(): def tfun(c, f): return f.__class__(ra=c.ra, dec=c.dec) _ = t.FunctionTransform(tfun, TCoo3, TCoo2, register_graph=frame_transform_graph) t3 = TCoo3(ra=1*u.deg, dec=2*u.deg, pm_ra_cosdec=1*u.marcsec/u.yr, pm_dec=1*u.marcsec/u.yr,) with pytest.warns(AstropyWarning, match=r'.*they have been dropped.*') as w: t3.transform_to(TCoo2()) assert len(w) == 1 def test_frame_override_component_with_attribute(): """ It was previously possible to define a frame with an attribute with the same name as a component. We don't want to allow this! """ from astropy.coordinates.baseframe import BaseCoordinateFrame from astropy.coordinates.attributes import Attribute class BorkedFrame(BaseCoordinateFrame): ra = Attribute(default=150) dec = Attribute(default=150) def trans_func(coo1, f): pass trans = t.FunctionTransform(trans_func, BorkedFrame, ICRS) with pytest.raises(ValueError) as exc: trans.register(frame_transform_graph) assert ('BorkedFrame' in exc.value.args[0] and "'ra'" in exc.value.args[0] and "'dec'" in exc.value.args[0]) def test_static_matrix_combine_paths(): """ Check that combined staticmatrixtransform matrices provide the same transformation as using an intermediate transformation. This is somewhat of a regression test for #7706 """ from astropy.coordinates.baseframe import BaseCoordinateFrame from astropy.coordinates.matrix_utilities import rotation_matrix class AFrame(BaseCoordinateFrame): default_representation = r.SphericalRepresentation default_differential = r.SphericalCosLatDifferential t1 = t.StaticMatrixTransform(rotation_matrix(30.*u.deg, 'z'), ICRS, AFrame) t1.register(frame_transform_graph) t2 = t.StaticMatrixTransform(rotation_matrix(30.*u.deg, 'z').T, AFrame, ICRS) t2.register(frame_transform_graph) class BFrame(BaseCoordinateFrame): default_representation = r.SphericalRepresentation default_differential = r.SphericalCosLatDifferential t3 = t.StaticMatrixTransform(rotation_matrix(30.*u.deg, 'x'), ICRS, BFrame) t3.register(frame_transform_graph) t4 = t.StaticMatrixTransform(rotation_matrix(30.*u.deg, 'x').T, BFrame, ICRS) t4.register(frame_transform_graph) c = Galactic(123*u.deg, 45*u.deg) c1 = c.transform_to(BFrame()) # direct c2 = c.transform_to(AFrame()).transform_to(BFrame()) # thru A c3 = c.transform_to(ICRS()).transform_to(BFrame()) # thru ICRS assert quantity_allclose(c1.lon, c2.lon) assert quantity_allclose(c1.lat, c2.lat) assert quantity_allclose(c1.lon, c3.lon) assert quantity_allclose(c1.lat, c3.lat) for t_ in [t1, t2, t3, t4]: t_.unregister(frame_transform_graph) def test_multiple_aliases(): from astropy.coordinates.baseframe import BaseCoordinateFrame # Define a frame with multiple aliases class MultipleAliasesFrame(BaseCoordinateFrame): name = ['alias_1', 'alias_2'] default_representation = r.SphericalRepresentation def tfun(c, f): return f.__class__(lon=c.lon, lat=c.lat) # Register a transform graph = t.TransformGraph() _ = t.FunctionTransform(tfun, MultipleAliasesFrame, MultipleAliasesFrame, register_graph=graph) # Test that both aliases have been added to the transform graph assert graph.lookup_name('alias_1') == MultipleAliasesFrame assert graph.lookup_name('alias_2') == MultipleAliasesFrame # Test that both aliases appear in the graphviz DOT format output dotstr = graph.to_dot_graph() assert '`alias_1`\\n`alias_2`' in dotstr def test_remove_transform_and_unregister(): def tfun(c, f): f.__class__(ra=c.ra, dec=c.dec) # Register transforms graph = t.TransformGraph() ftrans1 = t.FunctionTransform(tfun, TCoo1, TCoo1, register_graph=graph) ftrans2 = t.FunctionTransform(tfun, TCoo2, TCoo2, register_graph=graph) _ = t.FunctionTransform(tfun, TCoo1, TCoo2, register_graph=graph) # Confirm that the frames are part of the graph assert TCoo1 in graph.frame_set assert TCoo2 in graph.frame_set # Use all three ways to remove a transform # Remove the only transform with TCoo2 as the "from" frame ftrans2.unregister(graph) # TCoo2 should still be part of the graph because it is the "to" frame of a transform assert TCoo2 in graph.frame_set # Remove the remaining transform that involves TCoo2 graph.remove_transform(TCoo1, TCoo2, None) # Now TCoo2 should not be part of the graph assert TCoo2 not in graph.frame_set # Remove the remaining transform that involves TCoo1 graph.remove_transform(None, None, ftrans1) # Now TCoo1 should not be part of the graph assert TCoo1 not in graph.frame_set def test_remove_transform_errors(): def tfun(c, f): return f.__class__(ra=c.ra, dec=c.dec) graph = t.TransformGraph() _ = t.FunctionTransform(tfun, TCoo1, TCoo1, register_graph=graph) # Test bad calls to remove_transform with pytest.raises(ValueError): graph.remove_transform(None, TCoo1, None) with pytest.raises(ValueError): graph.remove_transform(TCoo1, None, None) with pytest.raises(ValueError): graph.remove_transform(None, None, None) with pytest.raises(ValueError): graph.remove_transform(None, None, 1) with pytest.raises(ValueError): graph.remove_transform(TCoo1, TCoo1, 1) def test_impose_finite_difference_dt(): class H1(HCRS): pass class H2(HCRS): pass class H3(HCRS): pass graph = t.TransformGraph() tfun = lambda c, f: f.__class__(ra=c.ra, dec=c.dec) # Set up a number of transforms with different time steps old_dt = 1*u.min transform1 = t.FunctionTransformWithFiniteDifference(tfun, H1, H1, register_graph=graph, finite_difference_dt=old_dt) transform2 = t.FunctionTransformWithFiniteDifference(tfun, H2, H2, register_graph=graph, finite_difference_dt=old_dt * 2) transform3 = t.FunctionTransformWithFiniteDifference(tfun, H2, H3, register_graph=graph, finite_difference_dt=old_dt * 3) # Check that all of the transforms have the same new time step new_dt = 1*u.yr with graph.impose_finite_difference_dt(new_dt): assert transform1.finite_difference_dt == new_dt assert transform2.finite_difference_dt == new_dt assert transform3.finite_difference_dt == new_dt # Check that all of the original time steps have been restored assert transform1.finite_difference_dt == old_dt assert transform2.finite_difference_dt == old_dt * 2 assert transform3.finite_difference_dt == old_dt * 3 @pytest.mark.parametrize("first, second, check", [((rotation_matrix(30*u.deg), None), (rotation_matrix(45*u.deg), None), (rotation_matrix(75*u.deg), None)), ((rotation_matrix(30*u.deg), r.CartesianRepresentation([1, 0, 0])), (rotation_matrix(45*u.deg), None), (rotation_matrix(75*u.deg), r.CartesianRepresentation([1/np.sqrt(2), -1/np.sqrt(2), 0]))), ((rotation_matrix(30*u.deg), None), (rotation_matrix(45*u.deg), r.CartesianRepresentation([0, 0, 1])), (rotation_matrix(75*u.deg), r.CartesianRepresentation([0, 0, 1]))), ((rotation_matrix(30*u.deg), r.CartesianRepresentation([1, 0, 0])), (rotation_matrix(45*u.deg), r.CartesianRepresentation([0, 0, 1])), (rotation_matrix(75*u.deg), r.CartesianRepresentation([1/np.sqrt(2), -1/np.sqrt(2), 1]))), ((rotation_matrix(30*u.deg), r.CartesianRepresentation([1, 2 ,3])), (None, r.CartesianRepresentation([4, 5, 6])), (rotation_matrix(30*u.deg), r.CartesianRepresentation([5, 7, 9]))), ((None, r.CartesianRepresentation([1, 2, 3])), (rotation_matrix(45*u.deg), r.CartesianRepresentation([4, 5, 6])), (rotation_matrix(45*u.deg), r.CartesianRepresentation([3/np.sqrt(2)+4, 1/np.sqrt(2)+5, 9]))), ((None, r.CartesianRepresentation([1, 2, 3])), (None, r.CartesianRepresentation([4, 5, 6])), (None, r.CartesianRepresentation([5, 7, 9]))), ((rotation_matrix(30*u.deg), r.CartesianRepresentation([1, 0, 0])), (None, None), (rotation_matrix(30*u.deg), r.CartesianRepresentation([1, 0, 0]))), ((None, None), (rotation_matrix(45*u.deg), r.CartesianRepresentation([0, 0, 1])), (rotation_matrix(45*u.deg), r.CartesianRepresentation([0, 0, 1]))), ((None, None), (None, None), (None, None))]) def test_combine_affine_params(first, second, check): result = t._combine_affine_params(first, second) if check[0] is None: assert result[0] is None else: assert_allclose(result[0], check[0]) if check[1] is None: assert result[1] is None else: assert_allclose(result[1].xyz, check[1].xyz)
8620b48d7e88699a17e2958207c1568e47a4f0f4f545a0e9738e9a4aeade81f5
import pytest import numpy as np from astropy.tests.helper import assert_quantity_allclose from astropy import units as u from astropy.time import Time from astropy.coordinates import EarthLocation, SkyCoord, Angle, Distance from astropy.coordinates.sites import get_builtin_sites from astropy.utils.data import get_pkg_data_filename from astropy.constants import c as speed_of_light from astropy.table import Table @pytest.mark.parametrize('kind', ['heliocentric', 'barycentric']) def test_basic(kind): t0 = Time('2015-1-1') loc = get_builtin_sites()['example_site'] sc = SkyCoord(0, 0, unit=u.deg, obstime=t0, location=loc) rvc0 = sc.radial_velocity_correction(kind) assert rvc0.shape == () assert rvc0.unit.is_equivalent(u.km/u.s) scs = SkyCoord(0, 0, unit=u.deg, obstime=t0 + np.arange(10)*u.day, location=loc) rvcs = scs.radial_velocity_correction(kind) assert rvcs.shape == (10,) assert rvcs.unit.is_equivalent(u.km/u.s) test_input_time = Time(2457244.5, format='jd') # test_input_loc = EarthLocation.of_site('Cerro Paranal') # to avoid the network hit we just copy here what that yields test_input_loc = EarthLocation.from_geodetic(lon=-70.403*u.deg, lat=-24.6252*u.deg, height=2635*u.m) def test_helio_iraf(): """ Compare the heliocentric correction to the IRAF rvcorrect. `generate_IRAF_input` function is provided to show how the comparison data was produced """ # this is based on running IRAF with the output of `generate_IRAF_input` below rvcorr_result = """ # RVCORRECT: Observatory parameters for European Southern Observatory: Paranal # latitude = -24:37.5 # longitude = 70:24.2 # altitude = 2635 ## HJD VOBS VHELIO VLSR VDIURNAL VLUNAR VANNUAL VSOLAR 2457244.50120 0.00 -10.36 -20.35 -0.034 -0.001 -10.325 -9.993 2457244.50025 0.00 -14.20 -23.86 -0.115 -0.004 -14.085 -9.656 2457244.50278 0.00 -2.29 -11.75 0.115 0.004 -2.413 -9.459 2457244.50025 0.00 -14.20 -23.86 -0.115 -0.004 -14.085 -9.656 2457244.49929 0.00 -17.41 -26.30 -0.192 -0.006 -17.214 -8.888 2457244.50317 0.00 -17.19 -17.44 0.078 0.001 -17.269 -0.253 2457244.50348 0.00 2.35 -6.21 0.192 0.006 2.156 -8.560 2457244.49959 0.00 2.13 -15.06 -0.078 -0.000 2.211 -17.194 2457244.49929 0.00 -17.41 -26.30 -0.192 -0.006 -17.214 -8.888 2457244.49835 0.00 -19.84 -27.56 -0.259 -0.008 -19.573 -7.721 2457244.50186 0.00 -24.47 -22.16 -0.038 -0.004 -24.433 2.313 2457244.50470 0.00 -11.11 -8.57 0.221 0.005 -11.332 2.534 2457244.50402 0.00 6.90 -0.38 0.259 0.008 6.629 -7.277 2457244.50051 0.00 11.53 -5.78 0.038 0.004 11.489 -17.311 2457244.49768 0.00 -1.84 -19.37 -0.221 -0.004 -1.612 -17.533 2457244.49835 0.00 -19.84 -27.56 -0.259 -0.008 -19.573 -7.721 2457244.49749 0.00 -21.38 -27.59 -0.315 -0.010 -21.056 -6.209 2457244.50109 0.00 -27.69 -22.90 -0.096 -0.006 -27.584 4.785 2457244.50457 0.00 -17.00 -9.30 0.196 0.003 -17.201 7.704 2457244.50532 0.00 2.62 2.97 0.340 0.009 2.276 0.349 2457244.50277 0.00 16.42 4.67 0.228 0.009 16.178 -11.741 2457244.49884 0.00 13.98 -5.48 -0.056 0.002 14.039 -19.463 2457244.49649 0.00 -2.84 -19.84 -0.297 -0.007 -2.533 -17.000 2457244.49749 0.00 -21.38 -27.59 -0.315 -0.010 -21.056 -6.209 2457244.49675 0.00 -21.97 -26.39 -0.357 -0.011 -21.598 -4.419 2457244.50025 0.00 -29.30 -22.47 -0.149 -0.008 -29.146 6.831 2457244.50398 0.00 -21.55 -9.88 0.146 0.001 -21.700 11.670 2457244.50577 0.00 -3.26 4.00 0.356 0.009 -3.623 7.263 2457244.50456 0.00 14.87 11.06 0.357 0.011 14.497 -3.808 2457244.50106 0.00 22.20 7.14 0.149 0.008 22.045 -15.058 2457244.49732 0.00 14.45 -5.44 -0.146 -0.001 14.600 -19.897 2457244.49554 0.00 -3.84 -19.33 -0.356 -0.008 -3.478 -15.491 2457244.49675 0.00 -21.97 -26.39 -0.357 -0.011 -21.598 -4.419 2457244.49615 0.00 -21.57 -24.00 -0.383 -0.012 -21.172 -2.432 2457244.49942 0.00 -29.36 -20.83 -0.193 -0.009 -29.157 8.527 2457244.50312 0.00 -24.26 -9.75 0.088 -0.001 -24.348 14.511 2457244.50552 0.00 -8.66 4.06 0.327 0.007 -8.996 12.721 2457244.50549 0.00 10.14 14.13 0.413 0.012 9.715 3.994 2457244.50305 0.00 23.35 15.76 0.306 0.011 23.031 -7.586 2457244.49933 0.00 24.78 8.18 0.056 0.006 24.721 -16.601 2457244.49609 0.00 13.77 -5.06 -0.221 -0.003 13.994 -18.832 2457244.49483 0.00 -4.53 -17.77 -0.394 -0.010 -4.131 -13.237 2457244.49615 0.00 -21.57 -24.00 -0.383 -0.012 -21.172 -2.432 2457244.49572 0.00 -20.20 -20.54 -0.392 -0.013 -19.799 -0.335 2457244.49907 0.00 -28.17 -17.30 -0.197 -0.009 -27.966 10.874 2457244.50285 0.00 -22.96 -5.96 0.090 -0.001 -23.048 16.995 2457244.50531 0.00 -7.00 8.16 0.335 0.007 -7.345 15.164 2457244.50528 0.00 12.23 18.47 0.423 0.012 11.795 6.238 2457244.50278 0.00 25.74 20.13 0.313 0.012 25.416 -5.607 2457244.49898 0.00 27.21 12.38 0.057 0.006 27.144 -14.829 2457244.49566 0.00 15.94 -1.17 -0.226 -0.003 16.172 -17.111 2457244.49437 0.00 -2.78 -14.17 -0.403 -0.010 -2.368 -11.387 2457244.49572 0.00 -20.20 -20.54 -0.392 -0.013 -19.799 -0.335 2457244.49548 0.00 -17.94 -16.16 -0.383 -0.012 -17.541 1.776 2457244.49875 0.00 -25.73 -12.99 -0.193 -0.009 -25.525 12.734 2457244.50246 0.00 -20.63 -1.91 0.088 -0.001 -20.716 18.719 2457244.50485 0.00 -5.03 11.90 0.327 0.007 -5.365 16.928 2457244.50482 0.00 13.77 21.97 0.413 0.012 13.347 8.202 2457244.50238 0.00 26.98 23.60 0.306 0.011 26.663 -3.378 2457244.49867 0.00 28.41 16.02 0.056 0.005 28.353 -12.393 2457244.49542 0.00 17.40 2.78 -0.221 -0.003 17.625 -14.625 2457244.49416 0.00 -0.90 -9.93 -0.394 -0.010 -0.499 -9.029 2457244.49548 0.00 -17.94 -16.16 -0.383 -0.012 -17.541 1.776 2457244.49544 0.00 -14.87 -11.06 -0.357 -0.011 -14.497 3.808 2457244.49894 0.00 -22.20 -7.14 -0.149 -0.008 -22.045 15.058 2457244.50268 0.00 -14.45 5.44 0.146 0.001 -14.600 19.897 2457244.50446 0.00 3.84 19.33 0.356 0.008 3.478 15.491 2457244.50325 0.00 21.97 26.39 0.357 0.011 21.598 4.419 2457244.49975 0.00 29.30 22.47 0.149 0.008 29.146 -6.831 2457244.49602 0.00 21.55 9.88 -0.146 -0.001 21.700 -11.670 2457244.49423 0.00 3.26 -4.00 -0.356 -0.009 3.623 -7.263 2457244.49544 0.00 -14.87 -11.06 -0.357 -0.011 -14.497 3.808 2457244.49561 0.00 -11.13 -5.46 -0.315 -0.010 -10.805 5.670 2457244.49921 0.00 -17.43 -0.77 -0.096 -0.006 -17.333 16.664 2457244.50269 0.00 -6.75 12.83 0.196 0.003 -6.949 19.583 2457244.50344 0.00 12.88 25.10 0.340 0.009 12.527 12.227 2457244.50089 0.00 26.67 26.80 0.228 0.009 26.430 0.137 2457244.49696 0.00 24.24 16.65 -0.056 0.002 24.290 -7.584 2457244.49461 0.00 7.42 2.29 -0.297 -0.007 7.719 -5.122 2457244.49561 0.00 -11.13 -5.46 -0.315 -0.010 -10.805 5.670 2457244.49598 0.00 -6.90 0.38 -0.259 -0.008 -6.629 7.277 2457244.49949 0.00 -11.53 5.78 -0.038 -0.004 -11.489 17.311 2457244.50232 0.00 1.84 19.37 0.221 0.004 1.612 17.533 2457244.50165 0.00 19.84 27.56 0.259 0.008 19.573 7.721 2457244.49814 0.00 24.47 22.16 0.038 0.004 24.433 -2.313 2457244.49530 0.00 11.11 8.57 -0.221 -0.005 11.332 -2.534 2457244.49598 0.00 -6.90 0.38 -0.259 -0.008 -6.629 7.277 2457244.49652 0.00 -2.35 6.21 -0.192 -0.006 -2.156 8.560 2457244.50041 0.00 -2.13 15.06 0.078 0.000 -2.211 17.194 2457244.50071 0.00 17.41 26.30 0.192 0.006 17.214 8.888 2457244.49683 0.00 17.19 17.44 -0.078 -0.001 17.269 0.253 2457244.49652 0.00 -2.35 6.21 -0.192 -0.006 -2.156 8.560 2457244.49722 0.00 2.29 11.75 -0.115 -0.004 2.413 9.459 2457244.49975 0.00 14.20 23.86 0.115 0.004 14.085 9.656 2457244.49722 0.00 2.29 11.75 -0.115 -0.004 2.413 9.459 2457244.49805 0.00 6.84 16.77 -0.034 -0.001 6.874 9.935 """ vhs_iraf = [] for line in rvcorr_result.strip().split('\n'): if not line.strip().startswith('#'): vhs_iraf.append(float(line.split()[2])) vhs_iraf = vhs_iraf*u.km/u.s targets = SkyCoord(_get_test_input_radecs(), obstime=test_input_time, location=test_input_loc) vhs_astropy = targets.radial_velocity_correction('heliocentric') assert_quantity_allclose(vhs_astropy, vhs_iraf, atol=150*u.m/u.s) return vhs_astropy, vhs_iraf # for interactively examination def generate_IRAF_input(writefn=None): dt = test_input_time.utc.datetime coos = _get_test_input_radecs() lines = [] for ra, dec in zip(coos.ra, coos.dec): rastr = Angle(ra).to_string(u.hour, sep=':') decstr = Angle(dec).to_string(u.deg, sep=':') msg = '{yr} {mo} {day} {uth}:{utmin} {ra} {dec}' lines.append(msg.format(yr=dt.year, mo=dt.month, day=dt.day, uth=dt.hour, utmin=dt.minute, ra=rastr, dec=decstr)) if writefn: with open(writefn, 'w') as f: for l in lines: f.write(l) else: for l in lines: print(l) print('Run IRAF as:\nastutil\nrvcorrect f=<filename> observatory=Paranal') def _get_test_input_radecs(): ras = [] decs = [] for dec in np.linspace(-85, 85, 15): nra = int(np.round(10*np.cos(dec*u.deg)).value) ras1 = np.linspace(-180, 180-1e-6, nra) ras.extend(ras1) decs.extend([dec]*len(ras1)) return SkyCoord(ra=ras, dec=decs, unit=u.deg) def test_barycorr(): # this is the result of calling _get_barycorr_bvcs barycorr_bvcs = u.Quantity([ -10335.93326096, -14198.47605491, -2237.60012494, -14198.47595363, -17425.46512587, -17131.70901174, 2424.37095076, 2130.61519166, -17425.46495779, -19872.50026998, -24442.37091097, -11017.08975893, 6978.0622355, 11547.93333743, -1877.34772637, -19872.50004258, -21430.08240017, -27669.14280689, -16917.08506807, 2729.57222968, 16476.49569232, 13971.97171764, -2898.04250914, -21430.08212368, -22028.51337105, -29301.92349394, -21481.13036199, -3147.44828909, 14959.50065514, 22232.91155425, 14412.11903105, -3921.56359768, -22028.51305781, -21641.01479409, -29373.0512649, -24205.90521765, -8557.34138828, 10250.50350732, 23417.2299926, 24781.98057941, 13706.17339044, -4627.70005932, -21641.01445812, -20284.92627505, -28193.91696959, -22908.51624166, -6901.82132125, 12336.45758056, 25804.51614607, 27200.50029664, 15871.21385688, -2882.24738355, -20284.9259314, -18020.92947805, -25752.96564978, -20585.81957567, -4937.25573801, 13870.58916957, 27037.31568441, 28402.06636994, 17326.25977035, -1007.62209045, -18020.92914212, -14950.33284575, -22223.74260839, -14402.94943965, 3930.73265119, 22037.68163353, 29311.09265126, 21490.30070307, 3156.62229843, -14950.33253252, -11210.53846867, -17449.59867676, -6697.54090389, 12949.11642965, 26696.03999586, 24191.5164355, 7321.50355488, -11210.53819218, -6968.89359681, -11538.76423011, 1886.51695238, 19881.66902396, 24451.54039956, 11026.26000765, -6968.89336945, -2415.20201758, -2121.44599781, 17434.63406085, 17140.87871753, -2415.2018495, 2246.76923076, 14207.64513054, 2246.76933194, 6808.40787728], u.m/u.s) # this tries the *other* way of calling radial_velocity_correction relative # to the IRAF tests targets = _get_test_input_radecs() bvcs_astropy = targets.radial_velocity_correction(obstime=test_input_time, location=test_input_loc, kind='barycentric') assert_quantity_allclose(bvcs_astropy, barycorr_bvcs, atol=10*u.mm/u.s) return bvcs_astropy, barycorr_bvcs # for interactively examination def _get_barycorr_bvcs(coos, loc, injupyter=False): """ Gets the barycentric correction of the test data from the http://astroutils.astronomy.ohio-state.edu/exofast/barycorr.html web site. Requires the https://github.com/tronsgaard/barycorr python interface to that site. Provided to reproduce the test data above, but not required to actually run the tests. """ import barycorr from astropy.utils.console import ProgressBar bvcs = [] for ra, dec in ProgressBar(list(zip(coos.ra.deg, coos.dec.deg)), ipython_widget=injupyter): res = barycorr.bvc(test_input_time.utc.jd, ra, dec, lat=loc.geodetic[1].deg, lon=loc.geodetic[0].deg, elevation=loc.geodetic[2].to(u.m).value) bvcs.append(res) return bvcs*u.m/u.s def test_rvcorr_multiple_obstimes_onskycoord(): loc = EarthLocation(-2309223 * u.m, -3695529 * u.m, -4641767 * u.m) arrtime = Time('2005-03-21 00:00:00') + np.linspace(-1, 1, 10)*u.day sc = SkyCoord(1*u.deg, 2*u.deg, 100*u.kpc, obstime=arrtime, location=loc) rvcbary_sc2 = sc.radial_velocity_correction(kind='barycentric') assert len(rvcbary_sc2) == 10 # check the multiple-obstime and multi- mode sc = SkyCoord(([1]*10)*u.deg, 2*u.deg, 100*u.kpc, obstime=arrtime, location=loc) rvcbary_sc3 = sc.radial_velocity_correction(kind='barycentric') assert len(rvcbary_sc3) == 10 def test_invalid_argument_combos(): loc = EarthLocation(-2309223 * u.m, -3695529 * u.m, -4641767 * u.m) time = Time('2005-03-21 00:00:00') timel = Time('2005-03-21 00:00:00', location=loc) scwattrs = SkyCoord(1*u.deg, 2*u.deg, obstime=time, location=loc) scwoattrs = SkyCoord(1*u.deg, 2*u.deg) scwattrs.radial_velocity_correction() with pytest.raises(ValueError): scwattrs.radial_velocity_correction(obstime=time, location=loc) with pytest.raises(TypeError): scwoattrs.radial_velocity_correction(obstime=time) scwoattrs.radial_velocity_correction(obstime=time, location=loc) with pytest.raises(TypeError): scwoattrs.radial_velocity_correction() with pytest.raises(ValueError): scwattrs.radial_velocity_correction(timel) def test_regression_9645(): sc = SkyCoord(10*u.deg, 20*u.deg, distance=5*u.pc, obstime=test_input_time, pm_ra_cosdec=0*u.mas/u.yr, pm_dec=0*u.mas/u.yr, radial_velocity=0*u.km/u.s) sc_novel = SkyCoord(10*u.deg, 20*u.deg, distance=5*u.pc, obstime=test_input_time) corr = sc.radial_velocity_correction(obstime=test_input_time, location=test_input_loc) corr_novel = sc_novel.radial_velocity_correction(obstime=test_input_time, location=test_input_loc) assert_quantity_allclose(corr, corr_novel) def test_barycorr_withvels(): # this is the result of calling _get_barycorr_bvcs_withvels barycorr_bvcs = u.Quantity( [-10335.94926581, -14198.49117304, -2237.58656335, -14198.49078575, -17425.47883864, -17131.72711182, 2424.38466675, 2130.62819093, -17425.47834604, -19872.51254565, -24442.39064348, -11017.0964353, 6978.07515501, 11547.94831175, -1877.34560543, -19872.51188308, -21430.0931411, -27669.15919972, -16917.09482078, 2729.57757823, 16476.5087925, 13971.97955641, -2898.04451551, -21430.09220144, -22028.52224227, -29301.93613248, -21481.14015151, -3147.44852058, 14959.50849997, 22232.91906264, 14412.12044201, -3921.56783473, -22028.52088749, -21641.02117064, -29373.05982792, -24205.91319258, -8557.34473049, 10250.50560918, 23417.23357219, 24781.98113432, 13706.17025059, -4627.70468688, -21641.01928189, -20284.92926795, -28193.92117514, -22908.52127321, -6901.82512637, 12336.45557256, 25804.5137786, 27200.49576347, 15871.20847332, -2882.25080211, -20284.92696256, -18020.92824383, -25752.96528309, -20585.82211189, -4937.26088706, 13870.58217495, 27037.30698639, 28402.0571686, 17326.25314311, -1007.62313006, -18020.92552769, -14950.32653444, -22223.73793506, -14402.95155047, 3930.72325162, 22037.66749783, 29311.07826101, 21490.29193529, 3156.62360741, -14950.32373745, -11210.52665171, -17449.59068509, -6697.54579192, 12949.09948082, 26696.01956077, 24191.50403015, 7321.50684816, -11210.52389393, -6968.87610888, -11538.7547047, 1886.50525065, 19881.64366561, 24451.52197666, 11026.26396455, -6968.87351156, -2415.17899385, -2121.44598968, 17434.60465075, 17140.87204017, -2415.1771038, 2246.79688215, 14207.61339552, 2246.79790276, 6808.43888253], u.m/u.s) coos = _get_test_input_radecvels() bvcs_astropy = coos.radial_velocity_correction(obstime=test_input_time, location=test_input_loc) assert_quantity_allclose(bvcs_astropy, barycorr_bvcs, atol=10*u.mm/u.s) return bvcs_astropy, barycorr_bvcs # for interactively examination def _get_test_input_radecvels(): coos = _get_test_input_radecs() ras = coos.ra decs = coos.dec pmra = np.linspace(-1000, 1000, coos.size)*u.mas/u.yr pmdec = np.linspace(0, 1000, coos.size)*u.mas/u.yr rvs = np.linspace(0, 100, coos.size)*u.km/u.s distance = np.linspace(10, 100, coos.size)*u.pc return SkyCoord(ras, decs, pm_ra_cosdec=pmra, pm_dec=pmdec, radial_velocity=rvs, distance=distance, obstime=test_input_time) def _get_barycorr_bvcs_withvels(coos, loc, injupyter=False): """ Gets the barycentric correction of the test data from the http://astroutils.astronomy.ohio-state.edu/exofast/barycorr.html web site. Requires the https://github.com/tronsgaard/barycorr python interface to that site. Provided to reproduce the test data above, but not required to actually run the tests. """ import barycorr from astropy.utils.console import ProgressBar bvcs = [] for coo in ProgressBar(coos, ipython_widget=injupyter): res = barycorr.bvc(test_input_time.utc.jd, coo.ra.deg, coo.dec.deg, lat=loc.geodetic[1].deg, lon=loc.geodetic[0].deg, pmra=coo.pm_ra_cosdec.to_value(u.mas/u.yr), pmdec=coo.pm_dec.to_value(u.mas/u.yr), parallax=coo.distance.to_value(u.mas, equivalencies=u.parallax()), rv=coo.radial_velocity.to_value(u.m/u.s), epoch=test_input_time.utc.jd, elevation=loc.geodetic[2].to(u.m).value) bvcs.append(res) return bvcs*u.m/u.s def test_warning_no_obstime_on_skycoord(): c = SkyCoord(l=10*u.degree, b=45*u.degree, pm_l_cosb=34*u.mas/u.yr, pm_b=-117*u.mas/u.yr, distance=50*u.pc, frame='galactic') with pytest.warns(Warning): c.radial_velocity_correction('barycentric', test_input_time, test_input_loc) @pytest.mark.remote_data def test_regression_10094(): """ Make sure that when we include the proper motion and radial velocity of a SkyCoord, our velocity corrections remain close to TEMPO2. We check that tau Ceti is within 5mm/s """ # Wright & Eastman (2014) Table2 # Corrections for tau Ceti wright_table = Table.read( get_pkg_data_filename('coordinates/wright_eastmann_2014_tau_ceti.fits') ) reduced_jds = wright_table['JD-2400000'] tempo2 = wright_table['TEMPO2'] barycorr = wright_table['BARYCORR'] # tau Ceti Hipparchos data tauCet = SkyCoord('01 44 05.1275 -15 56 22.4006', unit=(u.hour, u.deg), pm_ra_cosdec=-1721.05*u.mas/u.yr, pm_dec=854.16*u.mas/u.yr, distance=Distance(parallax=273.96*u.mas), radial_velocity=-16.597*u.km/u.s, obstime=Time(48348.5625, format='mjd')) # CTIO location as used in Wright & Eastmann xyz = u.Quantity([1814985.3, -5213916.8, -3187738.1], u.m) obs = EarthLocation(*xyz) times = Time(2400000, reduced_jds, format='jd') tempo2 = tempo2 * speed_of_light barycorr = barycorr * speed_of_light astropy = tauCet.radial_velocity_correction(location=obs, obstime=times) assert_quantity_allclose(astropy, tempo2, atol=5*u.mm/u.s) assert_quantity_allclose(astropy, barycorr, atol=5*u.mm/u.s)
e43812ff36c827376077179c2ebe5142c23fb06947721249a7375811e8792196
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np from astropy import units as u from astropy.coordinates.builtin_frames import CIRS, ICRS, Galactic, Galactocentric from astropy.coordinates import builtin_frames as bf from astropy.coordinates import galactocentric_frame_defaults from astropy.units import allclose as quantity_allclose from astropy.coordinates.errors import ConvertError from astropy.coordinates import representation as r def test_api(): # transform observed Barycentric velocities to full-space Galactocentric with galactocentric_frame_defaults.set('latest'): gc_frame = Galactocentric() icrs = ICRS(ra=151.*u.deg, dec=-16*u.deg, distance=101*u.pc, pm_ra_cosdec=21*u.mas/u.yr, pm_dec=-71*u.mas/u.yr, radial_velocity=71*u.km/u.s) icrs.transform_to(gc_frame) # transform a set of ICRS proper motions to Galactic icrs = ICRS(ra=151.*u.deg, dec=-16*u.deg, pm_ra_cosdec=21*u.mas/u.yr, pm_dec=-71*u.mas/u.yr) icrs.transform_to(Galactic()) # transform a Barycentric RV to a GSR RV icrs = ICRS(ra=151.*u.deg, dec=-16*u.deg, distance=1.*u.pc, pm_ra_cosdec=0*u.mas/u.yr, pm_dec=0*u.mas/u.yr, radial_velocity=71*u.km/u.s) icrs.transform_to(Galactocentric()) all_kwargs = [ dict(ra=37.4*u.deg, dec=-55.8*u.deg), dict(ra=37.4*u.deg, dec=-55.8*u.deg, distance=150*u.pc), dict(ra=37.4*u.deg, dec=-55.8*u.deg, pm_ra_cosdec=-21.2*u.mas/u.yr, pm_dec=17.1*u.mas/u.yr), dict(ra=37.4*u.deg, dec=-55.8*u.deg, distance=150*u.pc, pm_ra_cosdec=-21.2*u.mas/u.yr, pm_dec=17.1*u.mas/u.yr), dict(ra=37.4*u.deg, dec=-55.8*u.deg, radial_velocity=105.7*u.km/u.s), dict(ra=37.4*u.deg, dec=-55.8*u.deg, distance=150*u.pc, radial_velocity=105.7*u.km/u.s), dict(ra=37.4*u.deg, dec=-55.8*u.deg, radial_velocity=105.7*u.km/u.s, pm_ra_cosdec=-21.2*u.mas/u.yr, pm_dec=17.1*u.mas/u.yr), dict(ra=37.4*u.deg, dec=-55.8*u.deg, distance=150*u.pc, pm_ra_cosdec=-21.2*u.mas/u.yr, pm_dec=17.1*u.mas/u.yr, radial_velocity=105.7*u.km/u.s), # Now test other representation/differential types: dict(x=100.*u.pc, y=200*u.pc, z=300*u.pc, representation_type='cartesian'), dict(x=100.*u.pc, y=200*u.pc, z=300*u.pc, representation_type=r.CartesianRepresentation), dict(x=100.*u.pc, y=200*u.pc, z=300*u.pc, v_x=100.*u.km/u.s, v_y=200*u.km/u.s, v_z=300*u.km/u.s, representation_type=r.CartesianRepresentation, differential_type=r.CartesianDifferential), dict(x=100.*u.pc, y=200*u.pc, z=300*u.pc, v_x=100.*u.km/u.s, v_y=200*u.km/u.s, v_z=300*u.km/u.s, representation_type=r.CartesianRepresentation, differential_type='cartesian'), ] @pytest.mark.parametrize('kwargs', all_kwargs) def test_all_arg_options(kwargs): # Above is a list of all possible valid combinations of arguments. # Here we do a simple thing and just verify that passing them in, we have # access to the relevant attributes from the resulting object icrs = ICRS(**kwargs) gal = icrs.transform_to(Galactic()) repr_gal = repr(gal) for k in kwargs: if k == 'differential_type': continue getattr(icrs, k) if 'pm_ra_cosdec' in kwargs: # should have both assert 'pm_l_cosb' in repr_gal assert 'pm_b' in repr_gal assert 'mas / yr' in repr_gal if 'radial_velocity' not in kwargs: assert 'radial_velocity' not in repr_gal if 'radial_velocity' in kwargs: assert 'radial_velocity' in repr_gal assert 'km / s' in repr_gal if 'pm_ra_cosdec' not in kwargs: assert 'pm_l_cosb' not in repr_gal assert 'pm_b' not in repr_gal @pytest.mark.parametrize('cls,lon,lat', [ [bf.ICRS, 'ra', 'dec'], [bf.FK4, 'ra', 'dec'], [bf.FK4NoETerms, 'ra', 'dec'], [bf.FK5, 'ra', 'dec'], [bf.GCRS, 'ra', 'dec'], [bf.HCRS, 'ra', 'dec'], [bf.LSR, 'ra', 'dec'], [bf.CIRS, 'ra', 'dec'], [bf.Galactic, 'l', 'b'], [bf.AltAz, 'az', 'alt'], [bf.Supergalactic, 'sgl', 'sgb'], [bf.GalacticLSR, 'l', 'b'], [bf.HeliocentricMeanEcliptic, 'lon', 'lat'], [bf.GeocentricMeanEcliptic, 'lon', 'lat'], [bf.BarycentricMeanEcliptic, 'lon', 'lat'], [bf.PrecessedGeocentric, 'ra', 'dec'] ]) def test_expected_arg_names(cls, lon, lat): kwargs = {lon: 37.4*u.deg, lat: -55.8*u.deg, 'distance': 150*u.pc, f'pm_{lon}_cos{lat}': -21.2*u.mas/u.yr, f'pm_{lat}': 17.1*u.mas/u.yr, 'radial_velocity': 105.7*u.km/u.s} frame = cls(**kwargs) # these data are extracted from the vizier copy of XHIP: # http://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=+V/137A/XHIP _xhip_head = """ ------ ------------ ------------ -------- -------- ------------ ------------ ------- -------- -------- ------- ------ ------ ------ R D pmRA pmDE Di pmGLon pmGLat RV U V W HIP AJ2000 (deg) EJ2000 (deg) (mas/yr) (mas/yr) GLon (deg) GLat (deg) st (pc) (mas/yr) (mas/yr) (km/s) (km/s) (km/s) (km/s) ------ ------------ ------------ -------- -------- ------------ ------------ ------- -------- -------- ------- ------ ------ ------ """[1:-1] _xhip_data = """ 19 000.05331690 +38.30408633 -3.17 -15.37 112.00026470 -23.47789171 247.12 -6.40 -14.33 6.30 7.3 2.0 -17.9 20 000.06295067 +23.52928427 36.11 -22.48 108.02779304 -37.85659811 95.90 29.35 -30.78 37.80 -19.3 16.1 -34.2 21 000.06623581 +08.00723430 61.48 -0.23 101.69697120 -52.74179515 183.68 58.06 -20.23 -11.72 -45.2 -30.9 -1.3 24917 080.09698238 -33.39874984 -4.30 13.40 236.92324669 -32.58047131 107.38 -14.03 -1.15 36.10 -22.4 -21.3 -19.9 59207 182.13915108 +65.34963517 18.17 5.49 130.04157185 51.18258601 56.00 -18.98 -0.49 5.70 1.5 6.1 4.4 87992 269.60730667 +36.87462906 -89.58 72.46 62.98053142 25.90148234 129.60 45.64 105.79 -4.00 -39.5 -15.8 56.7 115110 349.72322473 -28.74087144 48.86 -9.25 23.00447250 -69.52799804 116.87 -8.37 -49.02 15.00 -16.8 -12.2 -23.6 """[1:-1] # in principal we could parse the above as a table, but doing it "manually" # makes this test less tied to Table working correctly @pytest.mark.parametrize('hip,ra,dec,pmra,pmdec,glon,glat,dist,pmglon,pmglat,rv,U,V,W', [[float(val) for val in row.split()] for row in _xhip_data.split('\n')]) def test_xhip_galactic(hip, ra, dec, pmra, pmdec, glon, glat, dist, pmglon, pmglat, rv, U, V, W): i = ICRS(ra*u.deg, dec*u.deg, dist*u.pc, pm_ra_cosdec=pmra*u.marcsec/u.yr, pm_dec=pmdec*u.marcsec/u.yr, radial_velocity=rv*u.km/u.s) g = i.transform_to(Galactic()) # precision is limited by 2-deciimal digit string representation of pms assert quantity_allclose(g.pm_l_cosb, pmglon*u.marcsec/u.yr, atol=.01*u.marcsec/u.yr) assert quantity_allclose(g.pm_b, pmglat*u.marcsec/u.yr, atol=.01*u.marcsec/u.yr) # make sure UVW also makes sense uvwg = g.cartesian.differentials['s'] # precision is limited by 1-decimal digit string representation of vels assert quantity_allclose(uvwg.d_x, U*u.km/u.s, atol=.1*u.km/u.s) assert quantity_allclose(uvwg.d_y, V*u.km/u.s, atol=.1*u.km/u.s) assert quantity_allclose(uvwg.d_z, W*u.km/u.s, atol=.1*u.km/u.s) @pytest.mark.parametrize('kwargs,expect_success', [ [dict(ra=37.4*u.deg, dec=-55.8*u.deg), False], [dict(ra=37.4*u.deg, dec=-55.8*u.deg, distance=150*u.pc), True], [dict(ra=37.4*u.deg, dec=-55.8*u.deg, pm_ra_cosdec=-21.2*u.mas/u.yr, pm_dec=17.1*u.mas/u.yr), False], [dict(ra=37.4*u.deg, dec=-55.8*u.deg, radial_velocity=105.7*u.km/u.s), False], [dict(ra=37.4*u.deg, dec=-55.8*u.deg, distance=150*u.pc, radial_velocity=105.7*u.km/u.s), False], [dict(ra=37.4*u.deg, dec=-55.8*u.deg, radial_velocity=105.7*u.km/u.s, pm_ra_cosdec=-21.2*u.mas/u.yr, pm_dec=17.1*u.mas/u.yr), False], [dict(ra=37.4*u.deg, dec=-55.8*u.deg, distance=150*u.pc, pm_ra_cosdec=-21.2*u.mas/u.yr, pm_dec=17.1*u.mas/u.yr, radial_velocity=105.7*u.km/u.s), True] ]) def test_frame_affinetransform(kwargs, expect_success): """There are already tests in test_transformations.py that check that an AffineTransform fails without full-space data, but this just checks that things work as expected at the frame level as well. """ with galactocentric_frame_defaults.set('latest'): icrs = ICRS(**kwargs) if expect_success: _ = icrs.transform_to(Galactocentric()) else: with pytest.raises(ConvertError): icrs.transform_to(Galactocentric()) def test_differential_type_arg(): """ Test passing in an explicit differential class to the initializer or changing the differential class via set_representation_cls """ from astropy.coordinates.builtin_frames import ICRS icrs = ICRS(ra=1*u.deg, dec=60*u.deg, pm_ra=10*u.mas/u.yr, pm_dec=-11*u.mas/u.yr, differential_type=r.UnitSphericalDifferential) assert icrs.pm_ra == 10*u.mas/u.yr icrs = ICRS(ra=1*u.deg, dec=60*u.deg, pm_ra=10*u.mas/u.yr, pm_dec=-11*u.mas/u.yr, differential_type={'s': r.UnitSphericalDifferential}) assert icrs.pm_ra == 10*u.mas/u.yr icrs = ICRS(ra=1*u.deg, dec=60*u.deg, pm_ra_cosdec=10*u.mas/u.yr, pm_dec=-11*u.mas/u.yr) icrs.set_representation_cls(s=r.UnitSphericalDifferential) assert quantity_allclose(icrs.pm_ra, 20*u.mas/u.yr) # incompatible representation and differential with pytest.raises(TypeError): ICRS(ra=1*u.deg, dec=60*u.deg, v_x=1*u.km/u.s, v_y=-2*u.km/u.s, v_z=-2*u.km/u.s, differential_type=r.CartesianDifferential) # specify both icrs = ICRS(x=1*u.pc, y=2*u.pc, z=3*u.pc, v_x=1*u.km/u.s, v_y=2*u.km/u.s, v_z=3*u.km/u.s, representation_type=r.CartesianRepresentation, differential_type=r.CartesianDifferential) assert icrs.x == 1*u.pc assert icrs.y == 2*u.pc assert icrs.z == 3*u.pc assert icrs.v_x == 1*u.km/u.s assert icrs.v_y == 2*u.km/u.s assert icrs.v_z == 3*u.km/u.s def test_slicing_preserves_differential(): icrs = ICRS(ra=37.4*u.deg, dec=-55.8*u.deg, distance=150*u.pc, pm_ra_cosdec=-21.2*u.mas/u.yr, pm_dec=17.1*u.mas/u.yr, radial_velocity=105.7*u.km/u.s) icrs2 = icrs.reshape(1,1)[:1,0] for name in icrs.representation_component_names.keys(): assert getattr(icrs, name) == getattr(icrs2, name)[0] for name in icrs.get_representation_component_names('s').keys(): assert getattr(icrs, name) == getattr(icrs2, name)[0] def test_shorthand_attributes(): # Check that attribute access works # for array data: n = 4 icrs1 = ICRS(ra=np.random.uniform(0, 360, n)*u.deg, dec=np.random.uniform(-90, 90, n)*u.deg, distance=100*u.pc, pm_ra_cosdec=np.random.normal(0, 100, n)*u.mas/u.yr, pm_dec=np.random.normal(0, 100, n)*u.mas/u.yr, radial_velocity=np.random.normal(0, 100, n)*u.km/u.s) v = icrs1.velocity pm = icrs1.proper_motion assert quantity_allclose(pm[0], icrs1.pm_ra_cosdec) assert quantity_allclose(pm[1], icrs1.pm_dec) # for scalar data: icrs2 = ICRS(ra=37.4*u.deg, dec=-55.8*u.deg, distance=150*u.pc, pm_ra_cosdec=-21.2*u.mas/u.yr, pm_dec=17.1*u.mas/u.yr, radial_velocity=105.7*u.km/u.s) v = icrs2.velocity pm = icrs2.proper_motion assert quantity_allclose(pm[0], icrs2.pm_ra_cosdec) assert quantity_allclose(pm[1], icrs2.pm_dec) # check that it fails where we expect: # no distance rv = 105.7*u.km/u.s icrs3 = ICRS(ra=37.4*u.deg, dec=-55.8*u.deg, pm_ra_cosdec=-21.2*u.mas/u.yr, pm_dec=17.1*u.mas/u.yr, radial_velocity=rv) with pytest.raises(ValueError): icrs3.velocity icrs3.set_representation_cls('cartesian') assert hasattr(icrs3, 'radial_velocity') assert quantity_allclose(icrs3.radial_velocity, rv) icrs4 = ICRS(x=30*u.pc, y=20*u.pc, z=11*u.pc, v_x=10*u.km/u.s, v_y=10*u.km/u.s, v_z=10*u.km/u.s, representation_type=r.CartesianRepresentation, differential_type=r.CartesianDifferential) icrs4.radial_velocity def test_negative_distance(): """ Regression test: #7408 Make sure that negative parallaxes turned into distances are handled right """ RA = 150 * u.deg DEC = -11*u.deg c = ICRS(ra=RA, dec=DEC, distance=(-10*u.mas).to(u.pc, u.parallax()), pm_ra_cosdec=10*u.mas/u.yr, pm_dec=10*u.mas/u.yr) assert quantity_allclose(c.ra, RA) assert quantity_allclose(c.dec, DEC) c = ICRS(ra=RA, dec=DEC, distance=(-10*u.mas).to(u.pc, u.parallax())) assert quantity_allclose(c.ra, RA) assert quantity_allclose(c.dec, DEC) def test_velocity_units(): """Check that the differential data given has compatible units with the time-derivative of representation data""" msg = ('x has unit "" with physical type "dimensionless", but v_x has ' 'incompatible unit "" with physical type "dimensionless" instead ' r'of the expected "frequency"\.') with pytest.raises(ValueError, match=msg): c = ICRS( x=1, y=2, z=3, v_x=1, v_y=2, v_z=3, representation_type=r.CartesianRepresentation, differential_type=r.CartesianDifferential) def test_frame_with_velocity_without_distance_can_be_transformed(): frame = CIRS(1*u.deg, 2*u.deg, pm_dec=1*u.mas/u.yr, pm_ra_cosdec=2*u.mas/u.yr) rep = frame.transform_to(ICRS()) assert "<ICRS Coordinate: (ra, dec, distance) in" in repr(rep)
0c16a38ecc3f62725f65f1cade6ef79292b079b2bfd284db5d47b2f4a7d822d7
""" Tests the Angle string formatting capabilities. SkyCoord formatting is in test_sky_coord """ from astropy.coordinates.angles import Angle from astropy import units as u def test_to_string_precision(): # There are already some tests in test_api.py, but this is a regression # test for the bug in issue #1319 which caused incorrect formatting of the # seconds for precision=0 angle = Angle(-1.23456789, unit=u.degree) assert angle.to_string(precision=3) == '-1d14m04.444s' assert angle.to_string(precision=1) == '-1d14m04.4s' assert angle.to_string(precision=0) == '-1d14m04s' angle2 = Angle(-1.23456789, unit=u.hourangle) assert angle2.to_string(precision=3, unit=u.hour) == '-1h14m04.444s' assert angle2.to_string(precision=1, unit=u.hour) == '-1h14m04.4s' assert angle2.to_string(precision=0, unit=u.hour) == '-1h14m04s' # Regression test for #7141 angle3 = Angle(-0.5, unit=u.degree) assert angle3.to_string(precision=0, fields=3) == '-0d30m00s' assert angle3.to_string(precision=0, fields=2) == '-0d30m' assert angle3.to_string(precision=0, fields=1) == '-1d' def test_to_string_decimal(): # There are already some tests in test_api.py, but this is a regression # test for the bug in issue #1323 which caused decimal formatting to not # work angle1 = Angle(2., unit=u.degree) assert angle1.to_string(decimal=True, precision=3) == '2.000' assert angle1.to_string(decimal=True, precision=1) == '2.0' assert angle1.to_string(decimal=True, precision=0) == '2' angle2 = Angle(3., unit=u.hourangle) assert angle2.to_string(decimal=True, precision=3) == '3.000' assert angle2.to_string(decimal=True, precision=1) == '3.0' assert angle2.to_string(decimal=True, precision=0) == '3' angle3 = Angle(4., unit=u.radian) assert angle3.to_string(decimal=True, precision=3) == '4.000' assert angle3.to_string(decimal=True, precision=1) == '4.0' assert angle3.to_string(decimal=True, precision=0) == '4' def test_to_string_formats(): a = Angle(1.113355, unit=u.deg) latex_str = r'$1^\circ06{}^\prime48.078{}^{\prime\prime}$' assert a.to_string(format='latex') == latex_str assert a.to_string(format='latex_inline') == latex_str assert a.to_string(format='unicode') == '1°06′48.078″' a = Angle(1.113355, unit=u.hour) latex_str = r'$1^{\mathrm{h}}06^{\mathrm{m}}48.078^{\mathrm{s}}$' assert a.to_string(format='latex') == latex_str assert a.to_string(format='latex_inline') == latex_str assert a.to_string(format='unicode') == '1ʰ06ᵐ48.078ˢ' a = Angle(1.113355, unit=u.radian) assert a.to_string(format='latex') == r'$1.11336\mathrm{rad}$' assert a.to_string(format='latex_inline') == r'$1.11336\mathrm{rad}$' assert a.to_string(format='unicode') == '1.11336rad' def test_to_string_fields(): a = Angle(1.113355, unit=u.deg) assert a.to_string(fields=1) == r'1d' assert a.to_string(fields=2) == r'1d07m' assert a.to_string(fields=3) == r'1d06m48.078s' def test_to_string_padding(): a = Angle(0.5653, unit=u.deg) assert a.to_string(unit='deg', sep=':', pad=True) == r'00:33:55.08' # Test to make sure negative angles are padded correctly a = Angle(-0.5653, unit=u.deg) assert a.to_string(unit='deg', sep=':', pad=True) == r'-00:33:55.08' def test_sexagesimal_rounding_up(): a = Angle(359.999999999999, unit=u.deg) assert a.to_string(precision=None) == '360d00m00s' assert a.to_string(precision=4) == '360d00m00.0000s' assert a.to_string(precision=5) == '360d00m00.00000s' assert a.to_string(precision=6) == '360d00m00.000000s' assert a.to_string(precision=7) == '360d00m00.0000000s' assert a.to_string(precision=8) == '360d00m00.00000000s' assert a.to_string(precision=9) == '359d59m59.999999996s' a = Angle(3.999999, unit=u.deg) assert a.to_string(fields=2, precision=None) == '4d00m' assert a.to_string(fields=2, precision=1) == '4d00m' assert a.to_string(fields=2, precision=5) == '4d00m' assert a.to_string(fields=1, precision=1) == '4d' assert a.to_string(fields=1, precision=5) == '4d' def test_to_string_scalar(): a = Angle(1.113355, unit=u.deg) assert isinstance(a.to_string(), str) def test_to_string_radian_with_precision(): """ Regression test for a bug that caused ``to_string`` to crash for angles in radians when specifying the precision. """ # Check that specifying the precision works a = Angle(3., unit=u.rad) assert a.to_string(precision=3, sep='fromunit') == '3.000rad' def test_sexagesimal_round_down(): a1 = Angle(1, u.deg).to(u.hourangle) a2 = Angle(2, u.deg) assert a1.to_string() == '0h04m00s' assert a2.to_string() == '2d00m00s' def test_to_string_fields_colon(): a = Angle(1.113355, unit=u.deg) assert a.to_string(fields=2, sep=':') == '1:07' assert a.to_string(fields=3, sep=':') == '1:06:48.078' assert a.to_string(fields=1, sep=':') == '1'
90347bdb4932246b79c7bc42b63dfed3fc42d87bbc81edf905a200c373993887
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np from astropy import units as u from astropy.coordinates.distances import Distance from astropy.coordinates.builtin_frames import ICRS, FK5, Galactic, AltAz, SkyOffsetFrame from astropy.coordinates import SkyCoord, EarthLocation from astropy.time import Time from astropy.tests.helper import assert_quantity_allclose as assert_allclose def test_altaz_attribute_transforms(): """Test transforms between AltAz frames with different attributes.""" el1 = EarthLocation(0*u.deg, 0*u.deg, 0*u.m) origin1 = AltAz(0 * u.deg, 0*u.deg, obstime=Time("2000-01-01T12:00:00"), location=el1) frame1 = SkyOffsetFrame(origin=origin1) coo1 = SkyCoord(1 * u.deg, 1 * u.deg, frame=frame1) el2 = EarthLocation(0*u.deg, 0*u.deg, 0*u.m) origin2 = AltAz(0 * u.deg, 0*u.deg, obstime=Time("2000-01-01T11:00:00"), location=el2) frame2 = SkyOffsetFrame(origin=origin2) coo2 = coo1.transform_to(frame2) coo2_expected = [1.22522446, 0.70624298] * u.deg assert_allclose([coo2.lon.wrap_at(180*u.deg), coo2.lat], coo2_expected, atol=convert_precision) el3 = EarthLocation(0*u.deg, 90*u.deg, 0*u.m) origin3 = AltAz(0 * u.deg, 90*u.deg, obstime=Time("2000-01-01T12:00:00"), location=el3) frame3 = SkyOffsetFrame(origin=origin3) coo3 = coo2.transform_to(frame3) assert_allclose([coo3.lon.wrap_at(180*u.deg), coo3.lat], [1*u.deg, 1*u.deg], atol=convert_precision) @pytest.mark.parametrize("inradec,expectedlatlon, tolsep", [ ((45, 45)*u.deg, (0, 0)*u.deg, .001*u.arcsec), ((45, 0)*u.deg, (0, -45)*u.deg, .001*u.arcsec), ((45, 90)*u.deg, (0, 45)*u.deg, .001*u.arcsec), ((46, 45)*u.deg, (1*np.cos(45*u.deg), 0)*u.deg, 16*u.arcsec), ]) def test_skyoffset(inradec, expectedlatlon, tolsep, originradec=(45, 45)*u.deg): origin = ICRS(*originradec) skyoffset_frame = SkyOffsetFrame(origin=origin) skycoord = SkyCoord(*inradec, frame=ICRS) skycoord_inaf = skycoord.transform_to(skyoffset_frame) assert hasattr(skycoord_inaf, 'lon') assert hasattr(skycoord_inaf, 'lat') expected = SkyCoord(*expectedlatlon, frame=skyoffset_frame) assert skycoord_inaf.separation(expected) < tolsep # Check we can also transform back (regression test for gh-11254). roundtrip = skycoord_inaf.transform_to(ICRS()) assert roundtrip.separation(skycoord) < 1*u.uas def test_skyoffset_functional_ra(): # we do the 12)[1:-1] business because sometimes machine precision issues # lead to results that are either ~0 or ~360, which mucks up the final # comparison and leads to spurious failures. So this just avoids that by # staying away from the edges input_ra = np.linspace(0, 360, 12)[1:-1] input_dec = np.linspace(-90, 90, 12)[1:-1] icrs_coord = ICRS(ra=input_ra*u.deg, dec=input_dec*u.deg, distance=1.*u.kpc) for ra in np.linspace(0, 360, 24): # expected rotation expected = ICRS(ra=np.linspace(0-ra, 360-ra, 12)[1:-1]*u.deg, dec=np.linspace(-90, 90, 12)[1:-1]*u.deg, distance=1.*u.kpc) expected_xyz = expected.cartesian.xyz # actual transformation to the frame skyoffset_frame = SkyOffsetFrame(origin=ICRS(ra*u.deg, 0*u.deg)) actual = icrs_coord.transform_to(skyoffset_frame) actual_xyz = actual.cartesian.xyz # back to ICRS roundtrip = actual.transform_to(ICRS()) roundtrip_xyz = roundtrip.cartesian.xyz # Verify assert_allclose(actual_xyz, expected_xyz, atol=1E-5*u.kpc) assert_allclose(icrs_coord.ra, roundtrip.ra, atol=1E-5*u.deg) assert_allclose(icrs_coord.dec, roundtrip.dec, atol=1E-5*u.deg) assert_allclose(icrs_coord.distance, roundtrip.distance, atol=1E-5*u.kpc) def test_skyoffset_functional_dec(): # we do the 12)[1:-1] business because sometimes machine precision issues # lead to results that are either ~0 or ~360, which mucks up the final # comparison and leads to spurious failures. So this just avoids that by # staying away from the edges input_ra = np.linspace(0, 360, 12)[1:-1] input_dec = np.linspace(-90, 90, 12)[1:-1] input_ra_rad = np.deg2rad(input_ra) input_dec_rad = np.deg2rad(input_dec) icrs_coord = ICRS(ra=input_ra*u.deg, dec=input_dec*u.deg, distance=1.*u.kpc) # Dec rotations # Done in xyz space because dec must be [-90,90] for dec in np.linspace(-90, 90, 13): # expected rotation dec_rad = -np.deg2rad(dec) expected_x = (-np.sin(input_dec_rad) * np.sin(dec_rad) + np.cos(input_ra_rad) * np.cos(input_dec_rad) * np.cos(dec_rad)) expected_y = (np.sin(input_ra_rad) * np.cos(input_dec_rad)) expected_z = (np.sin(input_dec_rad) * np.cos(dec_rad) + np.sin(dec_rad) * np.cos(input_ra_rad) * np.cos(input_dec_rad)) expected = SkyCoord(x=expected_x, y=expected_y, z=expected_z, unit='kpc', representation_type='cartesian') expected_xyz = expected.cartesian.xyz # actual transformation to the frame skyoffset_frame = SkyOffsetFrame(origin=ICRS(0*u.deg, dec*u.deg)) actual = icrs_coord.transform_to(skyoffset_frame) actual_xyz = actual.cartesian.xyz # back to ICRS roundtrip = actual.transform_to(ICRS()) # Verify assert_allclose(actual_xyz, expected_xyz, atol=1E-5*u.kpc) assert_allclose(icrs_coord.ra, roundtrip.ra, atol=1E-5*u.deg) assert_allclose(icrs_coord.dec, roundtrip.dec, atol=1E-5*u.deg) assert_allclose(icrs_coord.distance, roundtrip.distance, atol=1E-5*u.kpc) def test_skyoffset_functional_ra_dec(): # we do the 12)[1:-1] business because sometimes machine precision issues # lead to results that are either ~0 or ~360, which mucks up the final # comparison and leads to spurious failures. So this just avoids that by # staying away from the edges input_ra = np.linspace(0, 360, 12)[1:-1] input_dec = np.linspace(-90, 90, 12)[1:-1] input_ra_rad = np.deg2rad(input_ra) input_dec_rad = np.deg2rad(input_dec) icrs_coord = ICRS(ra=input_ra*u.deg, dec=input_dec*u.deg, distance=1.*u.kpc) for ra in np.linspace(0, 360, 10): for dec in np.linspace(-90, 90, 5): # expected rotation dec_rad = -np.deg2rad(dec) ra_rad = np.deg2rad(ra) expected_x = (-np.sin(input_dec_rad) * np.sin(dec_rad) + np.cos(input_ra_rad) * np.cos(input_dec_rad) * np.cos(dec_rad) * np.cos(ra_rad) + np.sin(input_ra_rad) * np.cos(input_dec_rad) * np.cos(dec_rad) * np.sin(ra_rad)) expected_y = (np.sin(input_ra_rad) * np.cos(input_dec_rad) * np.cos(ra_rad) - np.cos(input_ra_rad) * np.cos(input_dec_rad) * np.sin(ra_rad)) expected_z = (np.sin(input_dec_rad) * np.cos(dec_rad) + np.sin(dec_rad) * np.cos(ra_rad) * np.cos(input_ra_rad) * np.cos(input_dec_rad) + np.sin(dec_rad) * np.sin(ra_rad) * np.sin(input_ra_rad) * np.cos(input_dec_rad)) expected = SkyCoord(x=expected_x, y=expected_y, z=expected_z, unit='kpc', representation_type='cartesian') expected_xyz = expected.cartesian.xyz # actual transformation to the frame skyoffset_frame = SkyOffsetFrame(origin=ICRS(ra*u.deg, dec*u.deg)) actual = icrs_coord.transform_to(skyoffset_frame) actual_xyz = actual.cartesian.xyz # back to ICRS roundtrip = actual.transform_to(ICRS()) # Verify assert_allclose(actual_xyz, expected_xyz, atol=1E-5*u.kpc) assert_allclose(icrs_coord.ra, roundtrip.ra, atol=1E-4*u.deg) assert_allclose(icrs_coord.dec, roundtrip.dec, atol=1E-5*u.deg) assert_allclose(icrs_coord.distance, roundtrip.distance, atol=1E-5*u.kpc) def test_skycoord_skyoffset_frame(): m31 = SkyCoord(10.6847083, 41.26875, frame='icrs', unit=u.deg) m33 = SkyCoord(23.4621, 30.6599417, frame='icrs', unit=u.deg) m31_astro = m31.skyoffset_frame() m31_in_m31 = m31.transform_to(m31_astro) m33_in_m31 = m33.transform_to(m31_astro) assert_allclose([m31_in_m31.lon, m31_in_m31.lat], [0, 0]*u.deg, atol=1e-10*u.deg) assert_allclose([m33_in_m31.lon, m33_in_m31.lat], [11.13135175, -9.79084759]*u.deg) assert_allclose(m33.separation(m31), np.hypot(m33_in_m31.lon, m33_in_m31.lat), atol=.1*u.deg) # used below in the next parametrized test m31_sys = [ICRS, FK5, Galactic] m31_coo = [(10.6847929, 41.2690650), (10.6847929, 41.2690650), (121.1744050, -21.5729360)] m31_dist = Distance(770, u.kpc) convert_precision = 1 * u.arcsec roundtrip_precision = 1e-4 * u.degree dist_precision = 1e-9 * u.kpc m31_params = [] for i in range(len(m31_sys)): for j in range(len(m31_sys)): if i < j: m31_params.append((m31_sys[i], m31_sys[j], m31_coo[i], m31_coo[j])) @pytest.mark.parametrize(('fromsys', 'tosys', 'fromcoo', 'tocoo'), m31_params) def test_m31_coord_transforms(fromsys, tosys, fromcoo, tocoo): """ This tests a variety of coordinate conversions for the Chandra point-source catalog location of M31 from NED, via SkyOffsetFrames """ from_origin = fromsys(fromcoo[0]*u.deg, fromcoo[1]*u.deg, distance=m31_dist) from_pos = SkyOffsetFrame(1*u.deg, 1*u.deg, origin=from_origin) to_origin = tosys(tocoo[0]*u.deg, tocoo[1]*u.deg, distance=m31_dist) to_astroframe = SkyOffsetFrame(origin=to_origin) target_pos = from_pos.transform_to(to_astroframe) assert_allclose(to_origin.separation(target_pos), np.hypot(from_pos.lon, from_pos.lat), atol=convert_precision) roundtrip_pos = target_pos.transform_to(from_pos) assert_allclose([roundtrip_pos.lon.wrap_at(180*u.deg), roundtrip_pos.lat], [1.0*u.deg, 1.0*u.deg], atol=convert_precision) @pytest.mark.parametrize("rotation, expectedlatlon", [ (0*u.deg, [0, 1]*u.deg), (180*u.deg, [0, -1]*u.deg), (90*u.deg, [-1, 0]*u.deg), (-90*u.deg, [1, 0]*u.deg) ]) def test_rotation(rotation, expectedlatlon): origin = ICRS(45*u.deg, 45*u.deg) target = ICRS(45*u.deg, 46*u.deg) aframe = SkyOffsetFrame(origin=origin, rotation=rotation) trans = target.transform_to(aframe) assert_allclose([trans.lon.wrap_at(180*u.deg), trans.lat], expectedlatlon, atol=1e-10*u.deg) @pytest.mark.parametrize("rotation, expectedlatlon", [ (0*u.deg, [0, 1]*u.deg), (180*u.deg, [0, -1]*u.deg), (90*u.deg, [-1, 0]*u.deg), (-90*u.deg, [1, 0]*u.deg) ]) def test_skycoord_skyoffset_frame_rotation(rotation, expectedlatlon): """Test if passing a rotation argument via SkyCoord works""" origin = SkyCoord(45*u.deg, 45*u.deg) target = SkyCoord(45*u.deg, 46*u.deg) aframe = origin.skyoffset_frame(rotation=rotation) trans = target.transform_to(aframe) assert_allclose([trans.lon.wrap_at(180*u.deg), trans.lat], expectedlatlon, atol=1e-10*u.deg) def test_skyoffset_names(): origin1 = ICRS(45*u.deg, 45*u.deg) aframe1 = SkyOffsetFrame(origin=origin1) assert type(aframe1).__name__ == 'SkyOffsetICRS' origin2 = Galactic(45*u.deg, 45*u.deg) aframe2 = SkyOffsetFrame(origin=origin2) assert type(aframe2).__name__ == 'SkyOffsetGalactic' def test_skyoffset_origindata(): origin = ICRS() with pytest.raises(ValueError): SkyOffsetFrame(origin=origin) def test_skyoffset_lonwrap(): origin = ICRS(45*u.deg, 45*u.deg) sc = SkyCoord(190*u.deg, -45*u.deg, frame=SkyOffsetFrame(origin=origin)) assert sc.lon < 180 * u.deg sc2 = SkyCoord(-10*u.deg, -45*u.deg, frame=SkyOffsetFrame(origin=origin)) assert sc2.lon < 180 * u.deg sc3 = sc.realize_frame(sc.represent_as('cartesian')) assert sc3.lon < 180 * u.deg sc4 = sc2.realize_frame(sc2.represent_as('cartesian')) assert sc4.lon < 180 * u.deg def test_skyoffset_velocity(): c = ICRS(ra=170.9*u.deg, dec=-78.4*u.deg, pm_ra_cosdec=74.4134*u.mas/u.yr, pm_dec=-93.2342*u.mas/u.yr) skyoffset_frame = SkyOffsetFrame(origin=c) c_skyoffset = c.transform_to(skyoffset_frame) assert_allclose(c_skyoffset.pm_lon_coslat, c.pm_ra_cosdec) assert_allclose(c_skyoffset.pm_lat, c.pm_dec) @pytest.mark.parametrize("rotation, expectedpmlonlat", [ (0*u.deg, [1, 2]*u.mas/u.yr), (45*u.deg, [-2**-0.5, 3*2**-0.5]*u.mas/u.yr), (90*u.deg, [-2, 1]*u.mas/u.yr), (180*u.deg, [-1, -2]*u.mas/u.yr), (-90*u.deg, [2, -1]*u.mas/u.yr) ]) def test_skyoffset_velocity_rotation(rotation, expectedpmlonlat): sc = SkyCoord(ra=170.9*u.deg, dec=-78.4*u.deg, pm_ra_cosdec=1*u.mas/u.yr, pm_dec=2*u.mas/u.yr) c_skyoffset0 = sc.transform_to(sc.skyoffset_frame(rotation=rotation)) assert_allclose(c_skyoffset0.pm_lon_coslat, expectedpmlonlat[0]) assert_allclose(c_skyoffset0.pm_lat, expectedpmlonlat[1]) def test_skyoffset_two_frames_interfering(): """Regression test for gh-11277, where it turned out that the origin argument validation from one SkyOffsetFrame could interfere with that of another. Note that this example brought out a different bug than that at the top of gh-11277, viz., that an attempt was made to set origin on a SkyCoord when it should just be stay as part of the SkyOffsetFrame. """ # Example adapted from @bmerry's minimal example at # https://github.com/astropy/astropy/issues/11277#issuecomment-825492335 altaz_frame = AltAz(obstime=Time('2020-04-22T13:00:00Z'), location=EarthLocation(18, -30)) target = SkyCoord(alt=70*u.deg, az=150*u.deg, frame=altaz_frame) dirs_altaz_offset = SkyCoord(lon=[-0.02, 0.01, 0.0, 0.0, 0.0] * u.rad, lat=[0.0, 0.2, 0.0, -0.3, 0.1] * u.rad, frame=target.skyoffset_frame()) dirs_altaz = dirs_altaz_offset.transform_to(altaz_frame) dirs_icrs = dirs_altaz.transform_to(ICRS()) target_icrs = target.transform_to(ICRS()) # The line below was almost guaranteed to fail. dirs_icrs.transform_to(target_icrs.skyoffset_frame())
6eb27b210c55610a502625daefa78b7c0cea4d8cd44eb7a64f089bb48f48f27b
import pickle import pytest import numpy as np import astropy.units as u from astropy.coordinates import Longitude, representation from astropy import coordinates as coord from astropy.tests.helper import pickle_protocol, check_pickling_recovery # noqa # Can't test distances without scipy due to cosmology deps from astropy.utils.compat.optional_deps import HAS_SCIPY # noqa def test_basic(): lon1 = Longitude(1.23, "radian", wrap_angle='180d') s = pickle.dumps(lon1) lon2 = pickle.loads(s) def test_pickle_longitude_wrap_angle(): a = Longitude(1.23, "radian", wrap_angle='180d') s = pickle.dumps(a) b = pickle.loads(s) assert a.rad == b.rad assert a.wrap_angle == b.wrap_angle _names = [coord.Angle, coord.Distance, coord.DynamicMatrixTransform, coord.ICRS, coord.Latitude, coord.Longitude, coord.StaticMatrixTransform, ] _xfail = [False, not HAS_SCIPY, True, True, False, True, False] _args = [[0.0], [], [lambda *args: np.identity(3), coord.ICRS, coord.ICRS], [0, 0], [0], [0], [np.identity(3), coord.ICRS, coord.ICRS], ] _kwargs = [{'unit': 'radian'}, {'z': 0.23}, {}, {'unit': ['radian', 'radian']}, {'unit': 'radian'}, {'unit': 'radian'}, {}, ] @pytest.mark.parametrize(("name", "args", "kwargs", "xfail"), tuple(zip(_names, _args, _kwargs, _xfail))) def test_simple_object(pickle_protocol, name, args, kwargs, xfail): # Tests easily instantiated objects if xfail: pytest.xfail() original = name(*args, **kwargs) check_pickling_recovery(original, pickle_protocol) class _CustomICRS(coord.ICRS): default_representation = coord.PhysicsSphericalRepresentation @pytest.mark.parametrize( "frame", [ coord.SkyOffsetFrame(origin=coord.ICRS(0*u.deg, 0*u.deg)), coord.SkyOffsetFrame(5*u.deg, 10*u.deg, origin=coord.Galactic(2*u.deg, -3*u.deg)), coord.SkyOffsetFrame(5*u.deg, 10*u.deg, 10*u.pc, origin=coord.Galactic(2*u.deg, -3*u.deg), representation_type=coord.PhysicsSphericalRepresentation), coord.SkyOffsetFrame(5*u.deg, 10*u.deg, 0*u.pc, origin=_CustomICRS(2*u.deg, 3*u.deg, 1*u.pc)), ] ) def test_skyoffset_pickle(pickle_protocol, frame): """ This is a regression test for issue #9249: https://github.com/astropy/astropy/issues/9249 """ check_pickling_recovery(frame, pickle_protocol)
379d5e27675f34546ccf59976779837920a44073e70d5b4a878deadb33022963
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np from astropy import units as u from astropy.coordinates import galactocentric_frame_defaults from astropy.coordinates.distances import Distance from astropy.coordinates.builtin_frames import ( ICRS, FK5, FK4, FK4NoETerms, Galactic, CIRS, Supergalactic, Galactocentric, HCRS, GCRS, LSR, GalacticLSR) from astropy.coordinates import SkyCoord from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy.coordinates import EarthLocation, CartesianRepresentation, CartesianDifferential from astropy.time import Time from astropy.units import allclose # used below in the next parametrized test m31_sys = [ICRS, FK5, FK4, Galactic] m31_coo = [(10.6847929, 41.2690650), (10.6847929, 41.2690650), (10.0004738, 40.9952444), (121.1744050, -21.5729360)] m31_dist = Distance(770, u.kpc) convert_precision = 1 * u.arcsec roundtrip_precision = 1e-4 * u.degree dist_precision = 1e-9 * u.kpc m31_params = [] for i in range(len(m31_sys)): for j in range(len(m31_sys)): if i < j: m31_params.append((m31_sys[i], m31_sys[j], m31_coo[i], m31_coo[j])) @pytest.mark.parametrize(('fromsys', 'tosys', 'fromcoo', 'tocoo'), m31_params) def test_m31_coord_transforms(fromsys, tosys, fromcoo, tocoo): """ This tests a variety of coordinate conversions for the Chandra point-source catalog location of M31 from NED. """ coo1 = fromsys(ra=fromcoo[0]*u.deg, dec=fromcoo[1]*u.deg, distance=m31_dist) coo2 = coo1.transform_to(tosys()) if tosys is FK4: coo2_prec = coo2.transform_to(FK4(equinox=Time('B1950'))) assert (coo2_prec.spherical.lon - tocoo[0]*u.deg) < convert_precision # <1 arcsec assert (coo2_prec.spherical.lat - tocoo[1]*u.deg) < convert_precision else: assert (coo2.spherical.lon - tocoo[0]*u.deg) < convert_precision # <1 arcsec assert (coo2.spherical.lat - tocoo[1]*u.deg) < convert_precision assert coo1.distance.unit == u.kpc assert coo2.distance.unit == u.kpc assert m31_dist.unit == u.kpc assert (coo2.distance - m31_dist) < dist_precision # check round-tripping coo1_2 = coo2.transform_to(fromsys()) assert (coo1_2.spherical.lon - fromcoo[0]*u.deg) < roundtrip_precision assert (coo1_2.spherical.lat - fromcoo[1]*u.deg) < roundtrip_precision assert (coo1_2.distance - m31_dist) < dist_precision def test_precession(): """ Ensures that FK4 and FK5 coordinates precess their equinoxes """ j2000 = Time('J2000') b1950 = Time('B1950') j1975 = Time('J1975') b1975 = Time('B1975') fk4 = FK4(ra=1*u.radian, dec=0.5*u.radian) assert fk4.equinox.byear == b1950.byear fk4_2 = fk4.transform_to(FK4(equinox=b1975)) assert fk4_2.equinox.byear == b1975.byear fk5 = FK5(ra=1*u.radian, dec=0.5*u.radian) assert fk5.equinox.jyear == j2000.jyear fk5_2 = fk5.transform_to(FK4(equinox=j1975)) assert fk5_2.equinox.jyear == j1975.jyear def test_fk5_galactic(): """ Check that FK5 -> Galactic gives the same as FK5 -> FK4 -> Galactic. """ fk5 = FK5(ra=1*u.deg, dec=2*u.deg) direct = fk5.transform_to(Galactic()) indirect = fk5.transform_to(FK4()).transform_to(Galactic()) assert direct.separation(indirect).degree < 1.e-10 direct = fk5.transform_to(Galactic()) indirect = fk5.transform_to(FK4NoETerms()).transform_to(Galactic()) assert direct.separation(indirect).degree < 1.e-10 def test_galactocentric(): # when z_sun=0, transformation should be very similar to Galactic icrs_coord = ICRS(ra=np.linspace(0, 360, 10)*u.deg, dec=np.linspace(-90, 90, 10)*u.deg, distance=1.*u.kpc) g_xyz = icrs_coord.transform_to(Galactic()).cartesian.xyz with galactocentric_frame_defaults.set('pre-v4.0'): gc_xyz = icrs_coord.transform_to(Galactocentric(z_sun=0*u.kpc)).cartesian.xyz diff = np.abs(g_xyz - gc_xyz) assert allclose(diff[0], 8.3*u.kpc, atol=1E-5*u.kpc) assert allclose(diff[1:], 0*u.kpc, atol=1E-5*u.kpc) # generate some test coordinates g = Galactic(l=[0, 0, 45, 315]*u.deg, b=[-45, 45, 0, 0]*u.deg, distance=[np.sqrt(2)]*4*u.kpc) with galactocentric_frame_defaults.set('pre-v4.0'): xyz = g.transform_to(Galactocentric(galcen_distance=1.*u.kpc, z_sun=0.*u.pc)).cartesian.xyz true_xyz = np.array([[0, 0, -1.], [0, 0, 1], [0, 1, 0], [0, -1, 0]]).T*u.kpc assert allclose(xyz.to(u.kpc), true_xyz.to(u.kpc), atol=1E-5*u.kpc) # check that ND arrays work # from Galactocentric to Galactic x = np.linspace(-10., 10., 100) * u.kpc y = np.linspace(-10., 10., 100) * u.kpc z = np.zeros_like(x) # from Galactic to Galactocentric l = np.linspace(15, 30., 100) * u.deg b = np.linspace(-10., 10., 100) * u.deg d = np.ones_like(l.value) * u.kpc with galactocentric_frame_defaults.set('latest'): g1 = Galactocentric(x=x, y=y, z=z) g2 = Galactocentric(x=x.reshape(100, 1, 1), y=y.reshape(100, 1, 1), z=z.reshape(100, 1, 1)) g1t = g1.transform_to(Galactic()) g2t = g2.transform_to(Galactic()) assert_allclose(g1t.cartesian.xyz, g2t.cartesian.xyz[:, :, 0, 0]) g1 = Galactic(l=l, b=b, distance=d) g2 = Galactic(l=l.reshape(100, 1, 1), b=b.reshape(100, 1, 1), distance=d.reshape(100, 1, 1)) g1t = g1.transform_to(Galactocentric()) g2t = g2.transform_to(Galactocentric()) np.testing.assert_almost_equal(g1t.cartesian.xyz.value, g2t.cartesian.xyz.value[:, :, 0, 0]) def test_supergalactic(): """ Check Galactic<->Supergalactic and Galactic<->ICRS conversion. """ # Check supergalactic North pole. npole = Galactic(l=47.37*u.degree, b=+6.32*u.degree) assert allclose(npole.transform_to(Supergalactic()).sgb.deg, +90, atol=1e-9) # Check the origin of supergalactic longitude. lon0 = Supergalactic(sgl=0*u.degree, sgb=0*u.degree) lon0_gal = lon0.transform_to(Galactic()) assert allclose(lon0_gal.l.deg, 137.37, atol=1e-9) assert allclose(lon0_gal.b.deg, 0, atol=1e-9) # Test Galactic<->ICRS with some positions that appear in Foley et al. 2008 # (https://ui.adsabs.harvard.edu/abs/2008A%26A...484..143F) # GRB 021219 supergalactic = Supergalactic(sgl=29.91*u.degree, sgb=+73.72*u.degree) icrs = SkyCoord('18h50m27s +31d57m17s') assert supergalactic.separation(icrs) < 0.005 * u.degree # GRB 030320 supergalactic = Supergalactic(sgl=-174.44*u.degree, sgb=+46.17*u.degree) icrs = SkyCoord('17h51m36s -25d18m52s') assert supergalactic.separation(icrs) < 0.005 * u.degree class TestHCRS(): """ Check HCRS<->ICRS coordinate conversions. Uses ICRS Solar positions predicted by get_body_barycentric; with `t1` and `tarr` as defined below, the ICRS Solar positions were predicted using, e.g. coord.ICRS(coord.get_body_barycentric(tarr, 'sun')). """ def setup(self): self.t1 = Time("2013-02-02T23:00") self.t2 = Time("2013-08-02T23:00") self.tarr = Time(["2013-02-02T23:00", "2013-08-02T23:00"]) self.sun_icrs_scalar = ICRS(ra=244.52984668*u.deg, dec=-22.36943723*u.deg, distance=406615.66347377*u.km) # array of positions corresponds to times in `tarr` self.sun_icrs_arr = ICRS(ra=[244.52989062, 271.40976248]*u.deg, dec=[-22.36943605, -25.07431079]*u.deg, distance=[406615.66347377, 375484.13558956]*u.km) # corresponding HCRS positions self.sun_hcrs_t1 = HCRS(CartesianRepresentation([0.0, 0.0, 0.0] * u.km), obstime=self.t1) twod_rep = CartesianRepresentation([[0.0, 0.0], [0.0, 0.0], [0.0, 0.0]] * u.km) self.sun_hcrs_tarr = HCRS(twod_rep, obstime=self.tarr) self.tolerance = 5*u.km def test_from_hcrs(self): # test scalar transform transformed = self.sun_hcrs_t1.transform_to(ICRS()) separation = transformed.separation_3d(self.sun_icrs_scalar) assert_allclose(separation, 0*u.km, atol=self.tolerance) # test non-scalar positions and times transformed = self.sun_hcrs_tarr.transform_to(ICRS()) separation = transformed.separation_3d(self.sun_icrs_arr) assert_allclose(separation, 0*u.km, atol=self.tolerance) def test_from_icrs(self): # scalar positions transformed = self.sun_icrs_scalar.transform_to(HCRS(obstime=self.t1)) separation = transformed.separation_3d(self.sun_hcrs_t1) assert_allclose(separation, 0*u.km, atol=self.tolerance) # nonscalar positions transformed = self.sun_icrs_arr.transform_to(HCRS(obstime=self.tarr)) separation = transformed.separation_3d(self.sun_hcrs_tarr) assert_allclose(separation, 0*u.km, atol=self.tolerance) class TestHelioBaryCentric(): """ Check GCRS<->Heliocentric and Barycentric coordinate conversions. Uses the WHT observing site (information grabbed from data/sites.json). """ def setup(self): wht = EarthLocation(342.12*u.deg, 28.758333333333333*u.deg, 2327*u.m) self.obstime = Time("2013-02-02T23:00") self.wht_itrs = wht.get_itrs(obstime=self.obstime) def test_heliocentric(self): gcrs = self.wht_itrs.transform_to(GCRS(obstime=self.obstime)) helio = gcrs.transform_to(HCRS(obstime=self.obstime)) # Check it doesn't change from previous times. previous = [-1.02597256e+11, 9.71725820e+10, 4.21268419e+10] * u.m assert_allclose(helio.cartesian.xyz, previous) # And that it agrees with SLALIB to within 14km helio_slalib = [-0.685820296, 0.6495585893, 0.2816005464] * u.au assert np.sqrt(((helio.cartesian.xyz - helio_slalib)**2).sum()) < 14. * u.km def test_barycentric(self): gcrs = self.wht_itrs.transform_to(GCRS(obstime=self.obstime)) bary = gcrs.transform_to(ICRS()) previous = [-1.02758958e+11, 9.68331109e+10, 4.19720938e+10] * u.m assert_allclose(bary.cartesian.xyz, previous) # And that it agrees with SLALIB answer to within 14km bary_slalib = [-0.6869012079, 0.6472893646, 0.2805661191] * u.au assert np.sqrt(((bary.cartesian.xyz - bary_slalib)**2).sum()) < 14. * u.km def test_lsr_sanity(): # random numbers, but zero velocity in ICRS frame icrs = ICRS(ra=15.1241*u.deg, dec=17.5143*u.deg, distance=150.12*u.pc, pm_ra_cosdec=0*u.mas/u.yr, pm_dec=0*u.mas/u.yr, radial_velocity=0*u.km/u.s) lsr = icrs.transform_to(LSR()) lsr_diff = lsr.data.differentials['s'] cart_lsr_vel = lsr_diff.represent_as(CartesianRepresentation, base=lsr.data) lsr_vel = ICRS(cart_lsr_vel) gal_lsr = lsr_vel.transform_to(Galactic()).cartesian.xyz assert allclose(gal_lsr.to(u.km/u.s, u.dimensionless_angles()), lsr.v_bary.d_xyz) # moving with LSR velocity lsr = LSR(ra=15.1241*u.deg, dec=17.5143*u.deg, distance=150.12*u.pc, pm_ra_cosdec=0*u.mas/u.yr, pm_dec=0*u.mas/u.yr, radial_velocity=0*u.km/u.s) icrs = lsr.transform_to(ICRS()) icrs_diff = icrs.data.differentials['s'] cart_vel = icrs_diff.represent_as(CartesianRepresentation, base=icrs.data) vel = ICRS(cart_vel) gal_icrs = vel.transform_to(Galactic()).cartesian.xyz assert allclose(gal_icrs.to(u.km/u.s, u.dimensionless_angles()), -lsr.v_bary.d_xyz) def test_hcrs_icrs_differentials(): # Regression to ensure that we can transform velocities from HCRS to LSR. # Numbers taken from the original issue, gh-6835. hcrs = HCRS(ra=8.67*u.deg, dec=53.09*u.deg, distance=117*u.pc, pm_ra_cosdec=4.8*u.mas/u.yr, pm_dec=-15.16*u.mas/u.yr, radial_velocity=23.42*u.km/u.s) icrs = hcrs.transform_to(ICRS()) # The position and velocity should not change much assert allclose(hcrs.cartesian.xyz, icrs.cartesian.xyz, rtol=1e-8) assert allclose(hcrs.velocity.d_xyz, icrs.velocity.d_xyz, rtol=1e-2) hcrs2 = icrs.transform_to(HCRS()) # The values should round trip assert allclose(hcrs.cartesian.xyz, hcrs2.cartesian.xyz, rtol=1e-12) assert allclose(hcrs.velocity.d_xyz, hcrs2.velocity.d_xyz, rtol=1e-12) def test_cirs_icrs(): """ Test CIRS<->ICRS transformations, including self transform """ t = Time("J2010") MOONDIST = 385000*u.km # approximate moon semi-major orbit axis of moon MOONDIST_CART = CartesianRepresentation(3**-0.5*MOONDIST, 3**-0.5*MOONDIST, 3**-0.5*MOONDIST) loc = EarthLocation(lat=0*u.deg, lon=0*u.deg) cirs_geo_frame = CIRS(obstime=t) cirs_topo_frame = CIRS(obstime=t, location=loc) moon_geo = cirs_geo_frame.realize_frame(MOONDIST_CART) moon_topo = moon_geo.transform_to(cirs_topo_frame) # now check that the distance change is similar to earth radius assert 1000*u.km < np.abs(moon_topo.distance - moon_geo.distance).to(u.au) < 7000*u.km # now check that it round-trips moon2 = moon_topo.transform_to(moon_geo) assert_allclose(moon_geo.cartesian.xyz, moon2.cartesian.xyz) # now check ICRS transform gives a decent distance from Barycentre moon_icrs = moon_geo.transform_to(ICRS()) assert_allclose(moon_icrs.distance - 1*u.au, 0.0*u.R_sun, atol=3*u.R_sun) @pytest.mark.parametrize('frame', [LSR, GalacticLSR]) def test_lsr_loopback(frame): xyz = CartesianRepresentation(1, 2, 3)*u.AU xyz = xyz.with_differentials(CartesianDifferential(4, 5, 6)*u.km/u.s) v_bary = CartesianDifferential(5, 10, 15)*u.km/u.s # Test that the loopback properly handles a change in v_bary from_coo = frame(xyz) # default v_bary to_frame = frame(v_bary=v_bary) explicit_coo = from_coo.transform_to(ICRS()).transform_to(to_frame) implicit_coo = from_coo.transform_to(to_frame) # Confirm that the explicit transformation changes the velocity but not the position assert allclose(explicit_coo.cartesian.xyz, from_coo.cartesian.xyz, rtol=1e-10) assert not allclose(explicit_coo.velocity.d_xyz, from_coo.velocity.d_xyz, rtol=1e-10) # Confirm that the loopback matches the explicit transformation assert allclose(explicit_coo.cartesian.xyz, implicit_coo.cartesian.xyz, rtol=1e-10) assert allclose(explicit_coo.velocity.d_xyz, implicit_coo.velocity.d_xyz, rtol=1e-10) @pytest.mark.parametrize('to_frame', [Galactocentric(galcen_coord=ICRS(300*u.deg, -30*u.deg)), Galactocentric(galcen_distance=10*u.kpc), Galactocentric(z_sun=10*u.pc), Galactocentric(roll=1*u.deg)]) def test_galactocentric_loopback(to_frame): xyz = CartesianRepresentation(1, 2, 3)*u.pc from_coo = Galactocentric(xyz) explicit_coo = from_coo.transform_to(ICRS()).transform_to(to_frame) implicit_coo = from_coo.transform_to(to_frame) # Confirm that the explicit transformation changes the position assert not allclose(explicit_coo.cartesian.xyz, from_coo.cartesian.xyz, rtol=1e-10) # Confirm that the loopback matches the explicit transformation assert allclose(explicit_coo.cartesian.xyz, implicit_coo.cartesian.xyz, rtol=1e-10)
9021275860338ba3dfdd8849c5b44b9d90a6ad84488ef6263dccb5b0a5debc88
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Test initialization and other aspects of Angle and subclasses""" import threading import warnings import numpy as np import pytest from numpy.testing import assert_allclose, assert_array_equal import astropy.units as u from astropy.coordinates.angles import Longitude, Latitude, Angle from astropy.coordinates.errors import ( IllegalSecondError, IllegalMinuteError, IllegalHourError, IllegalSecondWarning, IllegalMinuteWarning) from astropy.utils.exceptions import AstropyDeprecationWarning def test_create_angles(): """ Tests creating and accessing Angle objects """ ''' The "angle" is a fundamental object. The internal representation is stored in radians, but this is transparent to the user. Units *must* be specified rather than a default value be assumed. This is as much for self-documenting code as anything else. Angle objects simply represent a single angular coordinate. More specific angular coordinates (e.g. Longitude, Latitude) are subclasses of Angle.''' a1 = Angle(54.12412, unit=u.degree) a2 = Angle("54.12412", unit=u.degree) a3 = Angle("54:07:26.832", unit=u.degree) a4 = Angle("54.12412 deg") a5 = Angle("54.12412 degrees") a6 = Angle("54.12412°") # because we like Unicode a8 = Angle("54°07'26.832\"") a9 = Angle([54, 7, 26.832], unit=u.degree) assert_allclose(a9.value, [54, 7, 26.832]) assert a9.unit is u.degree a10 = Angle(3.60827466667, unit=u.hour) a11 = Angle("3:36:29.7888000120", unit=u.hour) with pytest.warns(AstropyDeprecationWarning, match='hms_to_hour'): a12 = Angle((3, 36, 29.7888000120), unit=u.hour) # *must* be a tuple with pytest.warns(AstropyDeprecationWarning, match='hms_to_hour'): # Regression test for #5001 a13 = Angle((3, 36, 29.7888000120), unit='hour') Angle(0.944644098745, unit=u.radian) with pytest.raises(u.UnitsError): Angle(54.12412) # raises an exception because this is ambiguous with pytest.raises(u.UnitsError): Angle(54.12412, unit=u.m) with pytest.raises(ValueError): Angle(12.34, unit="not a unit") a14 = Angle("03h36m29.7888000120") # no trailing 's', but unambiguous a15 = Angle("5h4m3s") # single digits, no decimal assert a15.unit == u.hourangle a16 = Angle("1 d") a17 = Angle("1 degree") assert a16.degree == 1 assert a17.degree == 1 a18 = Angle("54 07.4472", unit=u.degree) a19 = Angle("54:07.4472", unit=u.degree) a20 = Angle("54d07.4472m", unit=u.degree) a21 = Angle("3h36m", unit=u.hour) a22 = Angle("3.6h", unit=u.hour) a23 = Angle("- 3h", unit=u.hour) a24 = Angle("+ 3h", unit=u.hour) # ensure the above angles that should match do assert a1 == a2 == a3 == a4 == a5 == a6 == a8 == a18 == a19 == a20 assert_allclose(a1.radian, a2.radian) assert_allclose(a2.degree, a3.degree) assert_allclose(a3.radian, a4.radian) assert_allclose(a4.radian, a5.radian) assert_allclose(a5.radian, a6.radian) assert_allclose(a10.degree, a11.degree) assert a11 == a12 == a13 == a14 assert a21 == a22 assert a23 == -a24 # check for illegal ranges / values with pytest.raises(IllegalSecondError): a = Angle("12 32 99", unit=u.degree) with pytest.raises(IllegalMinuteError): a = Angle("12 99 23", unit=u.degree) with pytest.raises(IllegalSecondError): a = Angle("12 32 99", unit=u.hour) with pytest.raises(IllegalMinuteError): a = Angle("12 99 23", unit=u.hour) with pytest.raises(IllegalHourError): a = Angle("99 25 51.0", unit=u.hour) with pytest.raises(ValueError): a = Angle("12 25 51.0xxx", unit=u.hour) with pytest.raises(ValueError): a = Angle("12h34321m32.2s") assert a1 is not None def test_angle_from_view(): q = np.arange(3.) * u.deg a = q.view(Angle) assert type(a) is Angle assert a.unit is q.unit assert np.all(a == q) q2 = np.arange(4) * u.m with pytest.raises(u.UnitTypeError): q2.view(Angle) def test_angle_ops(): """ Tests operations on Angle objects """ # Angles can be added and subtracted. Multiplication and division by a # scalar is also permitted. A negative operator is also valid. All of # these operate in a single dimension. Attempting to multiply or divide two # Angle objects will return a quantity. An exception will be raised if it # is attempted to store output with a non-angular unit in an Angle [#2718]. a1 = Angle(3.60827466667, unit=u.hour) a2 = Angle("54:07:26.832", unit=u.degree) a1 + a2 # creates new Angle object a1 - a2 -a1 assert_allclose((a1 * 2).hour, 2 * 3.6082746666700003) assert abs((a1 / 3.123456).hour - 3.60827466667 / 3.123456) < 1e-10 # commutativity assert (2 * a1).hour == (a1 * 2).hour a3 = Angle(a1) # makes a *copy* of the object, but identical content as a1 assert_allclose(a1.radian, a3.radian) assert a1 is not a3 a4 = abs(-a1) assert a4.radian == a1.radian a5 = Angle(5.0, unit=u.hour) assert a5 > a1 assert a5 >= a1 assert a1 < a5 assert a1 <= a5 # check operations with non-angular result give Quantity. a6 = Angle(45., u.degree) a7 = a6 * a5 assert type(a7) is u.Quantity # but those with angular result yield Angle. # (a9 is regression test for #5327) a8 = a1 + 1.*u.deg assert type(a8) is Angle a9 = 1.*u.deg + a1 assert type(a9) is Angle with pytest.raises(TypeError): a6 *= a5 with pytest.raises(TypeError): a6 *= u.m with pytest.raises(TypeError): np.sin(a6, out=a6) def test_angle_methods(): # Most methods tested as part of the Quantity tests. # A few tests here which caused problems before: #8368 a = Angle([0., 2.], 'deg') a_mean = a.mean() assert type(a_mean) is Angle assert a_mean == 1. * u.degree a_std = a.std() assert type(a_std) is Angle assert a_std == 1. * u.degree a_var = a.var() assert type(a_var) is u.Quantity assert a_var == 1. * u.degree ** 2 a_ptp = a.ptp() assert type(a_ptp) is Angle assert a_ptp == 2. * u.degree a_max = a.max() assert type(a_max) is Angle assert a_max == 2. * u.degree a_min = a.min() assert type(a_min) is Angle assert a_min == 0. * u.degree def test_angle_convert(): """ Test unit conversion of Angle objects """ angle = Angle("54.12412", unit=u.degree) assert_allclose(angle.hour, 3.60827466667) assert_allclose(angle.radian, 0.944644098745) assert_allclose(angle.degree, 54.12412) assert len(angle.hms) == 3 assert isinstance(angle.hms, tuple) assert angle.hms[0] == 3 assert angle.hms[1] == 36 assert_allclose(angle.hms[2], 29.78879999999947) # also check that the namedtuple attribute-style access works: assert angle.hms.h == 3 assert angle.hms.m == 36 assert_allclose(angle.hms.s, 29.78879999999947) assert len(angle.dms) == 3 assert isinstance(angle.dms, tuple) assert angle.dms[0] == 54 assert angle.dms[1] == 7 assert_allclose(angle.dms[2], 26.831999999992036) # also check that the namedtuple attribute-style access works: assert angle.dms.d == 54 assert angle.dms.m == 7 assert_allclose(angle.dms.s, 26.831999999992036) assert isinstance(angle.dms[0], float) assert isinstance(angle.hms[0], float) # now make sure dms and signed_dms work right for negative angles negangle = Angle("-54.12412", unit=u.degree) assert negangle.dms.d == -54 assert negangle.dms.m == -7 assert_allclose(negangle.dms.s, -26.831999999992036) assert negangle.signed_dms.sign == -1 assert negangle.signed_dms.d == 54 assert negangle.signed_dms.m == 7 assert_allclose(negangle.signed_dms.s, 26.831999999992036) def test_angle_formatting(): """ Tests string formatting for Angle objects """ ''' The string method of Angle has this signature: def string(self, unit=DEGREE, decimal=False, sep=" ", precision=5, pad=False): The "decimal" parameter defaults to False since if you need to print the Angle as a decimal, there's no need to use the "format" method (see above). ''' angle = Angle("54.12412", unit=u.degree) # __str__ is the default `format` assert str(angle) == angle.to_string() res = 'Angle as HMS: 3h36m29.7888s' assert f"Angle as HMS: {angle.to_string(unit=u.hour)}" == res res = 'Angle as HMS: 3:36:29.7888' assert f"Angle as HMS: {angle.to_string(unit=u.hour, sep=':')}" == res res = 'Angle as HMS: 3:36:29.79' assert f"Angle as HMS: {angle.to_string(unit=u.hour, sep=':', precision=2)}" == res # Note that you can provide one, two, or three separators passed as a # tuple or list res = 'Angle as HMS: 3h36m29.7888s' assert "Angle as HMS: {}".format(angle.to_string(unit=u.hour, sep=("h", "m", "s"), precision=4)) == res res = 'Angle as HMS: 3-36|29.7888' assert "Angle as HMS: {}".format(angle.to_string(unit=u.hour, sep=["-", "|"], precision=4)) == res res = 'Angle as HMS: 3-36-29.7888' assert f"Angle as HMS: {angle.to_string(unit=u.hour, sep='-', precision=4)}" == res res = 'Angle as HMS: 03h36m29.7888s' assert f"Angle as HMS: {angle.to_string(unit=u.hour, precision=4, pad=True)}" == res # Same as above, in degrees angle = Angle("3 36 29.78880", unit=u.degree) res = 'Angle as DMS: 3d36m29.7888s' assert f"Angle as DMS: {angle.to_string(unit=u.degree)}" == res res = 'Angle as DMS: 3:36:29.7888' assert f"Angle as DMS: {angle.to_string(unit=u.degree, sep=':')}" == res res = 'Angle as DMS: 3:36:29.79' assert "Angle as DMS: {}".format(angle.to_string(unit=u.degree, sep=":", precision=2)) == res # Note that you can provide one, two, or three separators passed as a # tuple or list res = 'Angle as DMS: 3d36m29.7888s' assert "Angle as DMS: {}".format(angle.to_string(unit=u.degree, sep=("d", "m", "s"), precision=4)) == res res = 'Angle as DMS: 3-36|29.7888' assert "Angle as DMS: {}".format(angle.to_string(unit=u.degree, sep=["-", "|"], precision=4)) == res res = 'Angle as DMS: 3-36-29.7888' assert "Angle as DMS: {}".format(angle.to_string(unit=u.degree, sep="-", precision=4)) == res res = 'Angle as DMS: 03d36m29.7888s' assert "Angle as DMS: {}".format(angle.to_string(unit=u.degree, precision=4, pad=True)) == res res = 'Angle as rad: 0.0629763rad' assert f"Angle as rad: {angle.to_string(unit=u.radian)}" == res res = 'Angle as rad decimal: 0.0629763' assert f"Angle as rad decimal: {angle.to_string(unit=u.radian, decimal=True)}" == res # check negative angles angle = Angle(-1.23456789, unit=u.degree) angle2 = Angle(-1.23456789, unit=u.hour) assert angle.to_string() == '-1d14m04.444404s' assert angle.to_string(pad=True) == '-01d14m04.444404s' assert angle.to_string(unit=u.hour) == '-0h04m56.2962936s' assert angle2.to_string(unit=u.hour, pad=True) == '-01h14m04.444404s' assert angle.to_string(unit=u.radian, decimal=True) == '-0.0215473' def test_to_string_vector(): # Regression test for the fact that vectorize doesn't work with Numpy 1.6 assert Angle([1./7., 1./7.], unit='deg').to_string()[0] == "0d08m34.28571429s" assert Angle([1./7.], unit='deg').to_string()[0] == "0d08m34.28571429s" assert Angle(1./7., unit='deg').to_string() == "0d08m34.28571429s" def test_angle_format_roundtripping(): """ Ensures that the string representation of an angle can be used to create a new valid Angle. """ a1 = Angle(0, unit=u.radian) a2 = Angle(10, unit=u.degree) a3 = Angle(0.543, unit=u.degree) a4 = Angle('1d2m3.4s') assert Angle(str(a1)).degree == a1.degree assert Angle(str(a2)).degree == a2.degree assert Angle(str(a3)).degree == a3.degree assert Angle(str(a4)).degree == a4.degree # also check Longitude/Latitude ra = Longitude('1h2m3.4s') dec = Latitude('1d2m3.4s') assert_allclose(Angle(str(ra)).degree, ra.degree) assert_allclose(Angle(str(dec)).degree, dec.degree) def test_radec(): """ Tests creation/operations of Longitude and Latitude objects """ ''' Longitude and Latitude are objects that are subclassed from Angle. As with Angle, Longitude and Latitude can parse any unambiguous format (tuples, formatted strings, etc.). The intention is not to create an Angle subclass for every possible coordinate object (e.g. galactic l, galactic b). However, equatorial Longitude/Latitude are so prevalent in astronomy that it's worth creating ones for these units. They will be noted as "special" in the docs and use of the just the Angle class is to be used for other coordinate systems. ''' with pytest.raises(u.UnitsError): ra = Longitude("4:08:15.162342") # error - hours or degrees? with pytest.raises(u.UnitsError): ra = Longitude("-4:08:15.162342") # the "smart" initializer allows >24 to automatically do degrees, but the # Angle-based one does not # TODO: adjust in 0.3 for whatever behavior is decided on # ra = Longitude("26:34:15.345634") # unambiguous b/c hours don't go past 24 # assert_allclose(ra.degree, 26.570929342) with pytest.raises(u.UnitsError): ra = Longitude("26:34:15.345634") # ra = Longitude(68) with pytest.raises(u.UnitsError): ra = Longitude(68) with pytest.raises(u.UnitsError): ra = Longitude(12) with pytest.raises(ValueError): ra = Longitude("garbage containing a d and no units") ra = Longitude("12h43m23s") assert_allclose(ra.hour, 12.7230555556) # TODO: again, fix based on >24 behavior # ra = Longitude((56,14,52.52)) with pytest.raises(u.UnitsError): ra = Longitude((56, 14, 52.52)) with pytest.raises(u.UnitsError): ra = Longitude((12, 14, 52)) # ambiguous w/o units with pytest.warns(AstropyDeprecationWarning, match='hms_to_hours'): ra = Longitude((12, 14, 52), unit=u.hour) # Units can be specified ra = Longitude("4:08:15.162342", unit=u.hour) # TODO: this was the "smart" initializer behavior - adjust in 0.3 appropriately # Where Longitude values are commonly found in hours or degrees, declination is # nearly always specified in degrees, so this is the default. # dec = Latitude("-41:08:15.162342") with pytest.raises(u.UnitsError): dec = Latitude("-41:08:15.162342") dec = Latitude("-41:08:15.162342", unit=u.degree) # same as above def test_negative_zero_dms(): # Test for DMS parser a = Angle('-00:00:10', u.deg) assert_allclose(a.degree, -10. / 3600.) # Unicode minus a = Angle('−00:00:10', u.deg) assert_allclose(a.degree, -10. / 3600.) def test_negative_zero_dm(): # Test for DM parser a = Angle('-00:10', u.deg) assert_allclose(a.degree, -10. / 60.) def test_negative_zero_hms(): # Test for HMS parser a = Angle('-00:00:10', u.hour) assert_allclose(a.hour, -10. / 3600.) def test_negative_zero_hm(): # Test for HM parser a = Angle('-00:10', u.hour) assert_allclose(a.hour, -10. / 60.) def test_negative_sixty_hm(): # Test for HM parser with pytest.warns(IllegalMinuteWarning): a = Angle('-00:60', u.hour) assert_allclose(a.hour, -1.) def test_plus_sixty_hm(): # Test for HM parser with pytest.warns(IllegalMinuteWarning): a = Angle('00:60', u.hour) assert_allclose(a.hour, 1.) def test_negative_fifty_nine_sixty_dms(): # Test for DMS parser with pytest.warns(IllegalSecondWarning): a = Angle('-00:59:60', u.deg) assert_allclose(a.degree, -1.) def test_plus_fifty_nine_sixty_dms(): # Test for DMS parser with pytest.warns(IllegalSecondWarning): a = Angle('+00:59:60', u.deg) assert_allclose(a.degree, 1.) def test_negative_sixty_dms(): # Test for DMS parser with pytest.warns(IllegalSecondWarning): a = Angle('-00:00:60', u.deg) assert_allclose(a.degree, -1. / 60.) def test_plus_sixty_dms(): # Test for DMS parser with pytest.warns(IllegalSecondWarning): a = Angle('+00:00:60', u.deg) assert_allclose(a.degree, 1. / 60.) def test_angle_to_is_angle(): with pytest.warns(IllegalSecondWarning): a = Angle('00:00:60', u.deg) assert isinstance(a, Angle) assert isinstance(a.to(u.rad), Angle) def test_angle_to_quantity(): with pytest.warns(IllegalSecondWarning): a = Angle('00:00:60', u.deg) q = u.Quantity(a) assert isinstance(q, u.Quantity) assert q.unit is u.deg def test_quantity_to_angle(): a = Angle(1.0*u.deg) assert isinstance(a, Angle) with pytest.raises(u.UnitsError): Angle(1.0*u.meter) a = Angle(1.0*u.hour) assert isinstance(a, Angle) assert a.unit is u.hourangle with pytest.raises(u.UnitsError): Angle(1.0*u.min) def test_angle_string(): with pytest.warns(IllegalSecondWarning): a = Angle('00:00:60', u.deg) assert str(a) == '0d01m00s' a = Angle('00:00:59S', u.deg) assert str(a) == '-0d00m59s' a = Angle('00:00:59N', u.deg) assert str(a) == '0d00m59s' a = Angle('00:00:59E', u.deg) assert str(a) == '0d00m59s' a = Angle('00:00:59W', u.deg) assert str(a) == '-0d00m59s' a = Angle('-00:00:10', u.hour) assert str(a) == '-0h00m10s' a = Angle('00:00:59E', u.hour) assert str(a) == '0h00m59s' a = Angle('00:00:59W', u.hour) assert str(a) == '-0h00m59s' a = Angle(3.2, u.radian) assert str(a) == '3.2rad' a = Angle(4.2, u.microarcsecond) assert str(a) == '4.2uarcsec' a = Angle('1.0uarcsec') assert a.value == 1.0 assert a.unit == u.microarcsecond a = Angle('1.0uarcsecN') assert a.value == 1.0 assert a.unit == u.microarcsecond a = Angle('1.0uarcsecS') assert a.value == -1.0 assert a.unit == u.microarcsecond a = Angle('1.0uarcsecE') assert a.value == 1.0 assert a.unit == u.microarcsecond a = Angle('1.0uarcsecW') assert a.value == -1.0 assert a.unit == u.microarcsecond a = Angle("3d") assert_allclose(a.value, 3.0) assert a.unit == u.degree a = Angle("3dN") assert str(a) == "3d00m00s" assert a.unit == u.degree a = Angle("3dS") assert str(a) == "-3d00m00s" assert a.unit == u.degree a = Angle("3dE") assert str(a) == "3d00m00s" assert a.unit == u.degree a = Angle("3dW") assert str(a) == "-3d00m00s" assert a.unit == u.degree a = Angle('10"') assert_allclose(a.value, 10.0) assert a.unit == u.arcsecond a = Angle("10'N") assert_allclose(a.value, 10.0) assert a.unit == u.arcminute a = Angle("10'S") assert_allclose(a.value, -10.0) assert a.unit == u.arcminute a = Angle("10'E") assert_allclose(a.value, 10.0) assert a.unit == u.arcminute a = Angle("10'W") assert_allclose(a.value, -10.0) assert a.unit == u.arcminute a = Angle('45°55′12″N') assert str(a) == '45d55m12s' assert_allclose(a.value, 45.92) assert a.unit == u.deg a = Angle('45°55′12″S') assert str(a) == '-45d55m12s' assert_allclose(a.value, -45.92) assert a.unit == u.deg a = Angle('45°55′12″E') assert str(a) == '45d55m12s' assert_allclose(a.value, 45.92) assert a.unit == u.deg a = Angle('45°55′12″W') assert str(a) == '-45d55m12s' assert_allclose(a.value, -45.92) assert a.unit == u.deg with pytest.raises(ValueError): Angle('00h00m10sN') with pytest.raises(ValueError): Angle('45°55′12″NS') def test_angle_repr(): assert 'Angle' in repr(Angle(0, u.deg)) assert 'Longitude' in repr(Longitude(0, u.deg)) assert 'Latitude' in repr(Latitude(0, u.deg)) a = Angle(0, u.deg) repr(a) def test_large_angle_representation(): """Test that angles above 360 degrees can be output as strings, in repr, str, and to_string. (regression test for #1413)""" a = Angle(350, u.deg) + Angle(350, u.deg) a.to_string() a.to_string(u.hourangle) repr(a) repr(a.to(u.hourangle)) str(a) str(a.to(u.hourangle)) def test_wrap_at_inplace(): a = Angle([-20, 150, 350, 360] * u.deg) out = a.wrap_at('180d', inplace=True) assert out is None assert np.all(a.degree == np.array([-20., 150., -10., 0.])) def test_latitude(): with pytest.raises(ValueError): lat = Latitude(['91d', '89d']) with pytest.raises(ValueError): lat = Latitude('-91d') lat = Latitude(['90d', '89d']) # check that one can get items assert lat[0] == 90 * u.deg assert lat[1] == 89 * u.deg # and that comparison with angles works assert np.all(lat == Angle(['90d', '89d'])) # check setitem works lat[1] = 45. * u.deg assert np.all(lat == Angle(['90d', '45d'])) # but not with values out of range with pytest.raises(ValueError): lat[0] = 90.001 * u.deg with pytest.raises(ValueError): lat[0] = -90.001 * u.deg # these should also not destroy input (#1851) assert np.all(lat == Angle(['90d', '45d'])) # conserve type on unit change (closes #1423) angle = lat.to('radian') assert type(angle) is Latitude # but not on calculations angle = lat - 190 * u.deg assert type(angle) is Angle assert angle[0] == -100 * u.deg lat = Latitude('80d') angle = lat / 2. assert type(angle) is Angle assert angle == 40 * u.deg angle = lat * 2. assert type(angle) is Angle assert angle == 160 * u.deg angle = -lat assert type(angle) is Angle assert angle == -80 * u.deg # Test errors when trying to interoperate with longitudes. with pytest.raises(TypeError) as excinfo: lon = Longitude(10, 'deg') lat = Latitude(lon) assert "A Latitude angle cannot be created from a Longitude angle" in str(excinfo.value) with pytest.raises(TypeError) as excinfo: lon = Longitude(10, 'deg') lat = Latitude([20], 'deg') lat[0] = lon assert "A Longitude angle cannot be assigned to a Latitude angle" in str(excinfo.value) # Check we can work around the Lat vs Long checks by casting explicitly to Angle. lon = Longitude(10, 'deg') lat = Latitude(Angle(lon)) assert lat.value == 10.0 # Check setitem. lon = Longitude(10, 'deg') lat = Latitude([20], 'deg') lat[0] = Angle(lon) assert lat.value[0] == 10.0 def test_longitude(): # Default wrapping at 360d with an array input lon = Longitude(['370d', '88d']) assert np.all(lon == Longitude(['10d', '88d'])) assert np.all(lon == Angle(['10d', '88d'])) # conserve type on unit change and keep wrap_angle (closes #1423) angle = lon.to('hourangle') assert type(angle) is Longitude assert angle.wrap_angle == lon.wrap_angle angle = lon[0] assert type(angle) is Longitude assert angle.wrap_angle == lon.wrap_angle angle = lon[1:] assert type(angle) is Longitude assert angle.wrap_angle == lon.wrap_angle # but not on calculations angle = lon / 2. assert np.all(angle == Angle(['5d', '44d'])) assert type(angle) is Angle assert not hasattr(angle, 'wrap_angle') angle = lon * 2. + 400 * u.deg assert np.all(angle == Angle(['420d', '576d'])) assert type(angle) is Angle # Test setting a mutable value and having it wrap lon[1] = -10 * u.deg assert np.all(lon == Angle(['10d', '350d'])) # Test wrapping and try hitting some edge cases lon = Longitude(np.array([0, 0.5, 1.0, 1.5, 2.0]) * np.pi, unit=u.radian) assert np.all(lon.degree == np.array([0., 90, 180, 270, 0])) lon = Longitude(np.array([0, 0.5, 1.0, 1.5, 2.0]) * np.pi, unit=u.radian, wrap_angle='180d') assert np.all(lon.degree == np.array([0., 90, -180, -90, 0])) # Wrap on setting wrap_angle property (also test auto-conversion of wrap_angle to an Angle) lon = Longitude(np.array([0, 0.5, 1.0, 1.5, 2.0]) * np.pi, unit=u.radian) lon.wrap_angle = '180d' assert np.all(lon.degree == np.array([0., 90, -180, -90, 0])) lon = Longitude('460d') assert lon == Angle('100d') lon.wrap_angle = '90d' assert lon == Angle('-260d') # check that if we initialize a longitude with another longitude, # wrap_angle is kept by default lon2 = Longitude(lon) assert lon2.wrap_angle == lon.wrap_angle # but not if we explicitly set it lon3 = Longitude(lon, wrap_angle='180d') assert lon3.wrap_angle == 180 * u.deg # check that wrap_angle is always an Angle lon = Longitude(lon, wrap_angle=Longitude(180 * u.deg)) assert lon.wrap_angle == 180 * u.deg assert lon.wrap_angle.__class__ is Angle # check that wrap_angle is not copied wrap_angle=180 * u.deg lon = Longitude(lon, wrap_angle=wrap_angle) assert lon.wrap_angle == 180 * u.deg assert np.may_share_memory(lon.wrap_angle, wrap_angle) # check for problem reported in #2037 about Longitude initializing to -0 lon = Longitude(0, u.deg) lonstr = lon.to_string() assert not lonstr.startswith('-') # also make sure dtype is correctly conserved assert Longitude(0, u.deg, dtype=float).dtype == np.dtype(float) assert Longitude(0, u.deg, dtype=int).dtype == np.dtype(int) # Test errors when trying to interoperate with latitudes. with pytest.raises(TypeError) as excinfo: lat = Latitude(10, 'deg') lon = Longitude(lat) assert "A Longitude angle cannot be created from a Latitude angle" in str(excinfo.value) with pytest.raises(TypeError) as excinfo: lat = Latitude(10, 'deg') lon = Longitude([20], 'deg') lon[0] = lat assert "A Latitude angle cannot be assigned to a Longitude angle" in str(excinfo.value) # Check we can work around the Lat vs Long checks by casting explicitly to Angle. lat = Latitude(10, 'deg') lon = Longitude(Angle(lat)) assert lon.value == 10.0 # Check setitem. lat = Latitude(10, 'deg') lon = Longitude([20], 'deg') lon[0] = Angle(lat) assert lon.value[0] == 10.0 def test_wrap_at(): a = Angle([-20, 150, 350, 360] * u.deg) assert np.all(a.wrap_at(360 * u.deg).degree == np.array([340., 150., 350., 0.])) assert np.all(a.wrap_at(Angle(360, unit=u.deg)).degree == np.array([340., 150., 350., 0.])) assert np.all(a.wrap_at('360d').degree == np.array([340., 150., 350., 0.])) assert np.all(a.wrap_at('180d').degree == np.array([-20., 150., -10., 0.])) assert np.all(a.wrap_at(np.pi * u.rad).degree == np.array([-20., 150., -10., 0.])) # Test wrapping a scalar Angle a = Angle('190d') assert a.wrap_at('180d') == Angle('-170d') a = Angle(np.arange(-1000.0, 1000.0, 0.125), unit=u.deg) for wrap_angle in (270, 0.2, 0.0, 360.0, 500, -2000.125): aw = a.wrap_at(wrap_angle * u.deg) assert np.all(aw.degree >= wrap_angle - 360.0) assert np.all(aw.degree < wrap_angle) aw = a.to(u.rad).wrap_at(wrap_angle * u.deg) assert np.all(aw.degree >= wrap_angle - 360.0) assert np.all(aw.degree < wrap_angle) def test_is_within_bounds(): a = Angle([-20, 150, 350] * u.deg) assert a.is_within_bounds('0d', '360d') is False assert a.is_within_bounds(None, '360d') is True assert a.is_within_bounds(-30 * u.deg, None) is True a = Angle('-20d') assert a.is_within_bounds('0d', '360d') is False assert a.is_within_bounds(None, '360d') is True assert a.is_within_bounds(-30 * u.deg, None) is True def test_angle_mismatched_unit(): a = Angle('+6h7m8s', unit=u.degree) assert_allclose(a.value, 91.78333333333332) def test_regression_formatting_negative(): # Regression test for a bug that caused: # # >>> Angle(-1., unit='deg').to_string() # '-1d00m-0s' assert Angle(-0., unit='deg').to_string() == '-0d00m00s' assert Angle(-1., unit='deg').to_string() == '-1d00m00s' assert Angle(-0., unit='hour').to_string() == '-0h00m00s' assert Angle(-1., unit='hour').to_string() == '-1h00m00s' def test_regression_formatting_default_precision(): # Regression test for issue #11140 assert Angle('10:20:30.12345678d').to_string() == '10d20m30.12345678s' assert Angle('10d20m30.123456784564s').to_string() == '10d20m30.12345678s' assert Angle('10d20m30.123s').to_string() == '10d20m30.123s' def test_empty_sep(): a = Angle('05h04m31.93830s') assert a.to_string(sep='', precision=2, pad=True) == '050431.94' def test_create_tuple(): """ Tests creation of an angle with an (h,m,s) tuple (d, m, s) tuples are not tested because of sign ambiguity issues (#13162) """ with pytest.warns(AstropyDeprecationWarning, match='hms_to_hours'): a1 = Angle((1, 30, 0), unit=u.hourangle) assert a1.value == 1.5 def test_list_of_quantities(): a1 = Angle([1*u.deg, 1*u.hourangle]) assert a1.unit == u.deg assert_allclose(a1.value, [1, 15]) a2 = Angle([1*u.hourangle, 1*u.deg], u.deg) assert a2.unit == u.deg assert_allclose(a2.value, [15, 1]) def test_multiply_divide(): # Issue #2273 a1 = Angle([1, 2, 3], u.deg) a2 = Angle([4, 5, 6], u.deg) a3 = a1 * a2 assert_allclose(a3.value, [4, 10, 18]) assert a3.unit == (u.deg * u.deg) a3 = a1 / a2 assert_allclose(a3.value, [.25, .4, .5]) assert a3.unit == u.dimensionless_unscaled def test_mixed_string_and_quantity(): a1 = Angle(['1d', 1. * u.deg]) assert_array_equal(a1.value, [1., 1.]) assert a1.unit == u.deg a2 = Angle(['1d', 1 * u.rad * np.pi, '3d']) assert_array_equal(a2.value, [1., 180., 3.]) assert a2.unit == u.deg def test_array_angle_tostring(): aobj = Angle([1, 2], u.deg) assert aobj.to_string().dtype.kind == 'U' assert np.all(aobj.to_string() == ['1d00m00s', '2d00m00s']) def test_wrap_at_without_new(): """ Regression test for subtle bugs from situations where an Angle is created via numpy channels that don't do the standard __new__ but instead depend on array_finalize to set state. Longitude is used because the bug was in its _wrap_angle not getting initialized correctly """ l1 = Longitude([1]*u.deg) l2 = Longitude([2]*u.deg) l = np.concatenate([l1, l2]) assert l._wrap_angle is not None def test__str__(): """ Check the __str__ method used in printing the Angle """ # scalar angle scangle = Angle('10.2345d') strscangle = scangle.__str__() assert strscangle == '10d14m04.2s' # non-scalar array angles arrangle = Angle(['10.2345d', '-20d']) strarrangle = arrangle.__str__() assert strarrangle == '[10d14m04.2s -20d00m00s]' # summarizing for large arrays, ... should appear bigarrangle = Angle(np.ones(10000), u.deg) assert '...' in bigarrangle.__str__() def test_repr_latex(): """ Check the _repr_latex_ method, used primarily by IPython notebooks """ # try with both scalar scangle = Angle(2.1, u.deg) rlscangle = scangle._repr_latex_() # and array angles arrangle = Angle([1, 2.1], u.deg) rlarrangle = arrangle._repr_latex_() assert rlscangle == r'$2^\circ06{}^\prime00{}^{\prime\prime}$' assert rlscangle.split('$')[1] in rlarrangle # make sure the ... appears for large arrays bigarrangle = Angle(np.ones(50000)/50000., u.deg) assert '...' in bigarrangle._repr_latex_() def test_angle_with_cds_units_enabled(): """Regression test for #5350 Especially the example in https://github.com/astropy/astropy/issues/5350#issuecomment-248770151 """ from astropy.units import cds # the problem is with the parser, so remove it temporarily from astropy.coordinates.angle_formats import _AngleParser del _AngleParser._thread_local._parser with cds.enable(): Angle('5d') del _AngleParser._thread_local._parser Angle('5d') def test_longitude_nan(): # Check that passing a NaN to Longitude doesn't raise a warning Longitude([0, np.nan, 1] * u.deg) def test_latitude_nan(): # Check that passing a NaN to Latitude doesn't raise a warning Latitude([0, np.nan, 1] * u.deg) def test_angle_wrap_at_nan(): # Check that no attempt is made to wrap a NaN angle angle = Angle([0, np.nan, 1] * u.deg) angle.flags.writeable = False # to force an error if a write is attempted angle.wrap_at(180*u.deg, inplace=True) def test_angle_multithreading(): """ Regression test for issue #7168 """ angles = ['00:00:00']*10000 def parse_test(i=0): Angle(angles, unit='hour') for i in range(10): threading.Thread(target=parse_test, args=(i,)).start() @pytest.mark.parametrize("cls", [Angle, Longitude, Latitude]) @pytest.mark.parametrize("input, expstr, exprepr", [(np.nan*u.deg, "nan", "nan deg"), ([np.nan, 5, 0]*u.deg, "[nan 5d00m00s 0d00m00s]", "[nan, 5., 0.] deg"), ([6, np.nan, 0]*u.deg, "[6d00m00s nan 0d00m00s]", "[6., nan, 0.] deg"), ([np.nan, np.nan, np.nan]*u.deg, "[nan nan nan]", "[nan, nan, nan] deg"), (np.nan*u.hour, "nan", "nan hourangle"), ([np.nan, 5, 0]*u.hour, "[nan 5h00m00s 0h00m00s]", "[nan, 5., 0.] hourangle"), ([6, np.nan, 0]*u.hour, "[6h00m00s nan 0h00m00s]", "[6., nan, 0.] hourangle"), ([np.nan, np.nan, np.nan]*u.hour, "[nan nan nan]", "[nan, nan, nan] hourangle"), (np.nan*u.rad, "nan", "nan rad"), ([np.nan, 1, 0]*u.rad, "[nan 1rad 0rad]", "[nan, 1., 0.] rad"), ([1.50, np.nan, 0]*u.rad, "[1.5rad nan 0rad]", "[1.5, nan, 0.] rad"), ([np.nan, np.nan, np.nan]*u.rad, "[nan nan nan]", "[nan, nan, nan] rad")]) def test_str_repr_angles_nan(cls, input, expstr, exprepr): """ Regression test for issue #11473 """ q = cls(input) assert str(q) == expstr # Deleting whitespaces since repr appears to be adding them for some values # making the test fail. assert repr(q).replace(" ", "") == f'<{cls.__name__}{exprepr}>'.replace(" ","")
f747fd09ce57172fdfe5f215c2ee284bbd08870bae8ee27b2e9ee4218dd0f6d3
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Tests for the projected separation stuff """ import pytest import numpy as np from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy import units as u from astropy.coordinates.builtin_frames import ICRS, FK5, Galactic from astropy.coordinates import Angle, Distance # lon1, lat1, lon2, lat2 in degrees coords = [(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 10, 0), (0, 0, 90, 0), (0, 0, 180, 0), (0, 45, 0, -45), (0, 60, 0, -30), (-135, -15, 45, 15), (100, -89, -80, 89), (0, 0, 0, 0), (0, 0, 1. / 60., 1. / 60.)] correct_seps = [1, 1, 1, 1, 10, 90, 180, 90, 90, 180, 180, 0, 0.023570225877234643] correctness_margin = 2e-10 def test_angsep(): """ Tests that the angular separation object also behaves correctly. """ from astropy.coordinates.angle_utilities import angular_separation # check it both works with floats in radians, Quantities, or Angles for conv in (np.deg2rad, lambda x: u.Quantity(x, "deg"), lambda x: Angle(x, "deg")): for (lon1, lat1, lon2, lat2), corrsep in zip(coords, correct_seps): angsep = angular_separation(conv(lon1), conv(lat1), conv(lon2), conv(lat2)) assert np.fabs(angsep - conv(corrsep)) < conv(correctness_margin) def test_fk5_seps(): """ This tests if `separation` works for FK5 objects. This is a regression test for github issue #891 """ a = FK5(1.*u.deg, 1.*u.deg) b = FK5(2.*u.deg, 2.*u.deg) a.separation(b) def test_proj_separations(): """ Test angular separation functionality """ c1 = ICRS(ra=0*u.deg, dec=0*u.deg) c2 = ICRS(ra=0*u.deg, dec=1*u.deg) sep = c2.separation(c1) # returns an Angle object assert isinstance(sep, Angle) assert_allclose(sep.degree, 1.) assert_allclose(sep.arcminute, 60.) # these operations have ambiguous interpretations for points on a sphere with pytest.raises(TypeError): c1 + c2 with pytest.raises(TypeError): c1 - c2 ngp = Galactic(l=0*u.degree, b=90*u.degree) ncp = ICRS(ra=0*u.degree, dec=90*u.degree) # if there is a defined conversion between the relevant coordinate systems, # it will be automatically performed to get the right angular separation assert_allclose(ncp.separation(ngp.transform_to(ICRS())).degree, ncp.separation(ngp).degree) # distance from the north galactic pole to celestial pole assert_allclose(ncp.separation(ngp.transform_to(ICRS())).degree, 62.87174758503201) def test_3d_separations(): """ Test 3D separation functionality """ c1 = ICRS(ra=1*u.deg, dec=1*u.deg, distance=9*u.kpc) c2 = ICRS(ra=1*u.deg, dec=1*u.deg, distance=10*u.kpc) sep3d = c2.separation_3d(c1) assert isinstance(sep3d, Distance) assert_allclose(sep3d - 1*u.kpc, 0*u.kpc, atol=1e-12*u.kpc)
2a65591630fd9cd8bb528400df6f9c4127f777ce7c8ecfff1ba8c5a7790f0f86
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This is the APE5 coordinates API document re-written to work as a series of test functions. Note that new tests for coordinates functionality should generally *not* be added to this file - instead, add them to other appropriate test modules in this package, like ``test_sky_coord.py``, ``test_frames.py``, or ``test_representation.py``. This file is instead meant mainly to keep track of deviations from the original APE5 plan. """ import pytest import numpy as np from numpy import testing as npt from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy import units as u from astropy import time from astropy import coordinates as coords from astropy.units import allclose from astropy.utils.compat.optional_deps import HAS_SCIPY # noqa def test_representations_api(): from astropy.coordinates.representation import SphericalRepresentation, \ UnitSphericalRepresentation, PhysicsSphericalRepresentation, \ CartesianRepresentation from astropy.coordinates import Angle, Longitude, Latitude, Distance # <-----------------Classes for representation of coordinate data--------------> # These classes inherit from a common base class and internally contain Quantity # objects, which are arrays (although they may act as scalars, like numpy's # length-0 "arrays") # They can be initialized with a variety of ways that make intuitive sense. # Distance is optional. UnitSphericalRepresentation(lon=8*u.hour, lat=5*u.deg) UnitSphericalRepresentation(lon=8*u.hourangle, lat=5*u.deg) SphericalRepresentation(lon=8*u.hourangle, lat=5*u.deg, distance=10*u.kpc) # In the initial implementation, the lat/lon/distance arguments to the # initializer must be in order. A *possible* future change will be to allow # smarter guessing of the order. E.g. `Latitude` and `Longitude` objects can be # given in any order. UnitSphericalRepresentation(Longitude(8, u.hour), Latitude(5, u.deg)) SphericalRepresentation(Longitude(8, u.hour), Latitude(5, u.deg), Distance(10, u.kpc)) # Arrays of any of the inputs are fine UnitSphericalRepresentation(lon=[8, 9]*u.hourangle, lat=[5, 6]*u.deg) # Default is to copy arrays, but optionally, it can be a reference UnitSphericalRepresentation(lon=[8, 9]*u.hourangle, lat=[5, 6]*u.deg, copy=False) # strings are parsed by `Latitude` and `Longitude` constructors, so no need to # implement parsing in the Representation classes UnitSphericalRepresentation(lon=Angle('2h6m3.3s'), lat=Angle('0.1rad')) # Or, you can give `Quantity`s with keywords, and they will be internally # converted to Angle/Distance c1 = SphericalRepresentation(lon=8*u.hourangle, lat=5*u.deg, distance=10*u.kpc) # Can also give another representation object with the `reprobj` keyword. c2 = SphericalRepresentation.from_representation(c1) # distance, lat, and lon typically will just match in shape SphericalRepresentation(lon=[8, 9]*u.hourangle, lat=[5, 6]*u.deg, distance=[10, 11]*u.kpc) # if the inputs are not the same, if possible they will be broadcast following # numpy's standard broadcasting rules. c2 = SphericalRepresentation(lon=[8, 9]*u.hourangle, lat=[5, 6]*u.deg, distance=10*u.kpc) assert len(c2.distance) == 2 # when they can't be broadcast, it is a ValueError (same as Numpy) with pytest.raises(ValueError): c2 = UnitSphericalRepresentation(lon=[8, 9, 10]*u.hourangle, lat=[5, 6]*u.deg) # It's also possible to pass in scalar quantity lists with mixed units. These # are converted to array quantities following the same rule as `Quantity`: all # elements are converted to match the first element's units. c2 = UnitSphericalRepresentation(lon=Angle([8*u.hourangle, 135*u.deg]), lat=Angle([5*u.deg, (6*np.pi/180)*u.rad])) assert c2.lat.unit == u.deg and c2.lon.unit == u.hourangle npt.assert_almost_equal(c2.lon[1].value, 9) # The Quantity initializer itself can also be used to force the unit even if the # first element doesn't have the right unit lon = u.Quantity([120*u.deg, 135*u.deg], u.hourangle) lat = u.Quantity([(5*np.pi/180)*u.rad, 0.4*u.hourangle], u.deg) c2 = UnitSphericalRepresentation(lon, lat) # regardless of how input, the `lat` and `lon` come out as angle/distance assert isinstance(c1.lat, Angle) assert isinstance(c1.lat, Latitude) # `Latitude` is an `~astropy.coordinates.Angle` subclass assert isinstance(c1.distance, Distance) # but they are read-only, as representations are immutable once created with pytest.raises(AttributeError): c1.lat = Latitude(5, u.deg) # Note that it is still possible to modify the array in-place, but this is not # sanctioned by the API, as this would prevent things like caching. c2.lat[:] = [0] * u.deg # possible, but NOT SUPPORTED # To address the fact that there are various other conventions for how spherical # coordinates are defined, other conventions can be included as new classes. # Later there may be other conventions that we implement - for now just the # physics convention, as it is one of the most common cases. _ = PhysicsSphericalRepresentation(phi=120*u.deg, theta=85*u.deg, r=3*u.kpc) # first dimension must be length-3 if a lone `Quantity` is passed in. c1 = CartesianRepresentation(np.random.randn(3, 100) * u.kpc) assert c1.xyz.shape[0] == 3 assert c1.xyz.unit == u.kpc assert c1.x.shape[0] == 100 assert c1.y.shape[0] == 100 assert c1.z.shape[0] == 100 # can also give each as separate keywords CartesianRepresentation(x=np.random.randn(100)*u.kpc, y=np.random.randn(100)*u.kpc, z=np.random.randn(100)*u.kpc) # if the units don't match but are all distances, they will automatically be # converted to match `x` xarr, yarr, zarr = np.random.randn(3, 100) c1 = CartesianRepresentation(x=xarr*u.kpc, y=yarr*u.kpc, z=zarr*u.kpc) c2 = CartesianRepresentation(x=xarr*u.kpc, y=yarr*u.kpc, z=zarr*u.pc) assert c1.xyz.unit == c2.xyz.unit == u.kpc assert_allclose((c1.z / 1000) - c2.z, 0*u.kpc, atol=1e-10*u.kpc) # representations convert into other representations via `represent_as` srep = SphericalRepresentation(lon=90*u.deg, lat=0*u.deg, distance=1*u.pc) crep = srep.represent_as(CartesianRepresentation) assert_allclose(crep.x, 0*u.pc, atol=1e-10*u.pc) assert_allclose(crep.y, 1*u.pc, atol=1e-10*u.pc) assert_allclose(crep.z, 0*u.pc, atol=1e-10*u.pc) # The functions that actually do the conversion are defined via methods on the # representation classes. This may later be expanded into a full registerable # transform graph like the coordinate frames, but initially it will be a simpler # method system def test_frame_api(): from astropy.coordinates.representation import SphericalRepresentation, \ UnitSphericalRepresentation from astropy.coordinates.builtin_frames import ICRS, FK5 # <--------------------Reference Frame/"Low-level" classes---------------------> # The low-level classes have a dual role: they act as specifiers of coordinate # frames and they *may* also contain data as one of the representation objects, # in which case they are the actual coordinate objects themselves. # They can always accept a representation as a first argument icrs = ICRS(UnitSphericalRepresentation(lon=8*u.hour, lat=5*u.deg)) # which is stored as the `data` attribute assert icrs.data.lat == 5*u.deg assert icrs.data.lon == 8*u.hourangle # Frames that require additional information like equinoxs or obstimes get them # as keyword parameters to the frame constructor. Where sensible, defaults are # used. E.g., FK5 is almost always J2000 equinox fk5 = FK5(UnitSphericalRepresentation(lon=8*u.hour, lat=5*u.deg)) J2000 = time.Time('J2000') fk5_2000 = FK5(UnitSphericalRepresentation(lon=8*u.hour, lat=5*u.deg), equinox=J2000) assert fk5.equinox == fk5_2000.equinox # the information required to specify the frame is immutable J2001 = time.Time('J2001') with pytest.raises(AttributeError): fk5.equinox = J2001 # Similar for the representation data. with pytest.raises(AttributeError): fk5.data = UnitSphericalRepresentation(lon=8*u.hour, lat=5*u.deg) # There is also a class-level attribute that lists the attributes needed to # identify the frame. These include attributes like `equinox` shown above. assert all(nm in ('equinox', 'obstime') for nm in fk5.get_frame_attr_names()) # the result of `get_frame_attr_names` is called for particularly in the # high-level class (discussed below) to allow round-tripping between various # frames. It is also part of the public API for other similar developer / # advanced users' use. # The actual position information is accessed via the representation objects assert_allclose(icrs.represent_as(SphericalRepresentation).lat, 5*u.deg) # shorthand for the above assert_allclose(icrs.spherical.lat, 5*u.deg) assert icrs.cartesian.z.value > 0 # Many frames have a "default" representation, the one in which they are # conventionally described, often with a special name for some of the # coordinates. E.g., most equatorial coordinate systems are spherical with RA and # Dec. This works simply as a shorthand for the longer form above assert_allclose(icrs.dec, 5*u.deg) assert_allclose(fk5.ra, 8*u.hourangle) assert icrs.representation_type == SphericalRepresentation # low-level classes can also be initialized with names valid for that representation # and frame: icrs_2 = ICRS(ra=8*u.hour, dec=5*u.deg, distance=1*u.kpc) assert_allclose(icrs.ra, icrs_2.ra) # and these are taken as the default if keywords are not given: # icrs_nokwarg = ICRS(8*u.hour, 5*u.deg, distance=1*u.kpc) # assert icrs_nokwarg.ra == icrs_2.ra and icrs_nokwarg.dec == icrs_2.dec # they also are capable of computing on-sky or 3d separations from each other, # which will be a direct port of the existing methods: coo1 = ICRS(ra=0*u.hour, dec=0*u.deg) coo2 = ICRS(ra=0*u.hour, dec=1*u.deg) # `separation` is the on-sky separation assert_allclose(coo1.separation(coo2).degree, 1.0) # while `separation_3d` includes the 3D distance information coo3 = ICRS(ra=0*u.hour, dec=0*u.deg, distance=1*u.kpc) coo4 = ICRS(ra=0*u.hour, dec=0*u.deg, distance=2*u.kpc) assert coo3.separation_3d(coo4).kpc == 1.0 # The next example fails because `coo1` and `coo2` don't have distances with pytest.raises(ValueError): assert coo1.separation_3d(coo2).kpc == 1.0 # repr/str also shows info, with frame and data # assert repr(fk5) == '' def test_transform_api(): from astropy.coordinates.representation import UnitSphericalRepresentation from astropy.coordinates.builtin_frames import ICRS, FK5 from astropy.coordinates.baseframe import frame_transform_graph, BaseCoordinateFrame from astropy.coordinates.transformations import DynamicMatrixTransform # <------------------------Transformations-------------------------------------> # Transformation functionality is the key to the whole scheme: they transform # low-level classes from one frame to another. # (used below but defined above in the API) fk5 = FK5(ra=8*u.hour, dec=5*u.deg) # If no data (or `None`) is given, the class acts as a specifier of a frame, but # without any stored data. J2001 = time.Time('J2001') fk5_J2001_frame = FK5(equinox=J2001) # if they do not have data, the string instead is the frame specification assert repr(fk5_J2001_frame) == "<FK5 Frame (equinox=J2001.000)>" # Note that, although a frame object is immutable and can't have data added, it # can be used to create a new object that does have data by giving the # `realize_frame` method a representation: srep = UnitSphericalRepresentation(lon=8*u.hour, lat=5*u.deg) fk5_j2001_with_data = fk5_J2001_frame.realize_frame(srep) assert fk5_j2001_with_data.data is not None # Now `fk5_j2001_with_data` is in the same frame as `fk5_J2001_frame`, but it # is an actual low-level coordinate, rather than a frame without data. # These frames are primarily useful for specifying what a coordinate should be # transformed *into*, as they are used by the `transform_to` method # E.g., this snippet precesses the point to the new equinox newfk5 = fk5.transform_to(fk5_J2001_frame) assert newfk5.equinox == J2001 # transforming to a new frame necessarily loses framespec information if that # information is not applicable to the new frame. This means transforms are not # always round-trippable: fk5_2 = FK5(ra=8*u.hour, dec=5*u.deg, equinox=J2001) ic_trans = fk5_2.transform_to(ICRS()) # `ic_trans` does not have an `equinox`, so now when we transform back to FK5, # it's a *different* RA and Dec fk5_trans = ic_trans.transform_to(FK5()) assert not allclose(fk5_2.ra, fk5_trans.ra, rtol=0, atol=1e-10*u.deg) # But if you explicitly give the right equinox, all is fine fk5_trans_2 = fk5_2.transform_to(FK5(equinox=J2001)) assert_allclose(fk5_2.ra, fk5_trans_2.ra, rtol=0, atol=1e-10*u.deg) # Trying to transforming a frame with no data is of course an error: with pytest.raises(ValueError): FK5(equinox=J2001).transform_to(ICRS()) # To actually define a new transformation, the same scheme as in the # 0.2/0.3 coordinates framework can be re-used - a graph of transform functions # connecting various coordinate classes together. The main changes are: # 1) The transform functions now get the frame object they are transforming the # current data into. # 2) Frames with additional information need to have a way to transform between # objects of the same class, but with different framespecinfo values # An example transform function: class SomeNewSystem(BaseCoordinateFrame): pass @frame_transform_graph.transform(DynamicMatrixTransform, SomeNewSystem, FK5) def new_to_fk5(newobj, fk5frame): _ = newobj.obstime _ = fk5frame.equinox # ... build a *cartesian* transform matrix using `eq` that transforms from # the `newobj` frame as observed at `ot` to FK5 an equinox `eq` matrix = np.eye(3) return matrix # Other options for transform functions include one that simply returns the new # coordinate object, and one that returns a cartesian matrix but does *not* # require `newobj` or `fk5frame` - this allows optimization of the transform. def test_highlevel_api(): J2001 = time.Time('J2001') # <--------------------------"High-level" class--------------------------------> # The "high-level" class is intended to wrap the lower-level classes in such a # way that they can be round-tripped, as well as providing a variety of # convenience functionality. This document is not intended to show *all* of the # possible high-level functionality, rather how the high-level classes are # initialized and interact with the low-level classes # this creates an object that contains an `ICRS` low-level class, initialized # identically to the first ICRS example further up. sc = coords.SkyCoord(coords.SphericalRepresentation(lon=8 * u.hour, lat=5 * u.deg, distance=1 * u.kpc), frame='icrs') # Other representations and `system` keywords delegate to the appropriate # low-level class. The already-existing registry for user-defined coordinates # will be used by `SkyCoordinate` to figure out what various the `system` # keyword actually means. sc = coords.SkyCoord(ra=8 * u.hour, dec=5 * u.deg, frame='icrs') sc = coords.SkyCoord(l=120 * u.deg, b=5 * u.deg, frame='galactic') # High-level classes can also be initialized directly from low-level objects sc = coords.SkyCoord(coords.ICRS(ra=8 * u.hour, dec=5 * u.deg)) # The next example raises an error because the high-level class must always # have position data. with pytest.raises(ValueError): sc = coords.SkyCoord(coords.FK5(equinox=J2001)) # raises ValueError # similarly, the low-level object can always be accessed # this is how it's supposed to look, but sometimes the numbers get rounded in # funny ways # assert repr(sc.frame) == '<ICRS Coordinate: ra=120.0 deg, dec=5.0 deg>' rscf = repr(sc.frame) assert rscf.startswith('<ICRS Coordinate: (ra, dec) in deg') # and the string representation will be inherited from the low-level class. # same deal, should loook like this, but different archituectures/ python # versions may round the numbers differently # assert repr(sc) == '<SkyCoord (ICRS): ra=120.0 deg, dec=5.0 deg>' rsc = repr(sc) assert rsc.startswith('<SkyCoord (ICRS): (ra, dec) in deg') # Supports a variety of possible complex string formats sc = coords.SkyCoord('8h00m00s +5d00m00.0s', frame='icrs') # In the next example, the unit is only needed b/c units are ambiguous. In # general, we *never* accept ambiguity sc = coords.SkyCoord('8:00:00 +5:00:00.0', unit=(u.hour, u.deg), frame='icrs') # The next one would yield length-2 array coordinates, because of the comma sc = coords.SkyCoord(['8h 5d', '2°2′3″ 0.3rad'], frame='icrs') # It should also interpret common designation styles as a coordinate # NOT YET # sc = coords.SkyCoord('SDSS J123456.89-012345.6', frame='icrs') # but it should also be possible to provide formats for outputting to strings, # similar to `Time`. This can be added right away or at a later date. # transformation is done the same as for low-level classes, which it delegates to sc_fk5_j2001 = sc.transform_to(coords.FK5(equinox=J2001)) assert sc_fk5_j2001.equinox == J2001 # The key difference is that the high-level class remembers frame information # necessary for round-tripping, unlike the low-level classes: sc1 = coords.SkyCoord(ra=8 * u.hour, dec=5 * u.deg, equinox=J2001, frame='fk5') sc2 = sc1.transform_to('icrs') # The next assertion succeeds, but it doesn't mean anything for ICRS, as ICRS # isn't defined in terms of an equinox assert sc2.equinox == J2001 # But it *is* necessary once we transform to FK5 sc3 = sc2.transform_to('fk5') assert sc3.equinox == J2001 assert_allclose(sc1.ra, sc3.ra) # `SkyCoord` will also include the attribute-style access that is in the # v0.2/0.3 coordinate objects. This will *not* be in the low-level classes sc = coords.SkyCoord(ra=8 * u.hour, dec=5 * u.deg, frame='icrs') scgal = sc.galactic assert str(scgal).startswith('<SkyCoord (Galactic): (l, b)') # the existing `from_name` and `match_to_catalog_*` methods will be moved to the # high-level class as convenience functionality. # in remote-data test below! # m31icrs = coords.SkyCoord.from_name('M31', frame='icrs') # assert str(m31icrs) == '<SkyCoord (ICRS) RA=10.68471 deg, Dec=41.26875 deg>' if HAS_SCIPY: cat1 = coords.SkyCoord(ra=[1, 2]*u.hr, dec=[3, 4.01]*u.deg, distance=[5, 6]*u.kpc, frame='icrs') cat2 = coords.SkyCoord(ra=[1, 2, 2.01]*u.hr, dec=[3, 4, 5]*u.deg, distance=[5, 200, 6]*u.kpc, frame='icrs') idx1, sep2d1, dist3d1 = cat1.match_to_catalog_sky(cat2) idx2, sep2d2, dist3d2 = cat1.match_to_catalog_3d(cat2) assert np.any(idx1 != idx2) # additional convenience functionality for the future should be added as methods # on `SkyCoord`, *not* the low-level classes. @pytest.mark.remote_data def test_highlevel_api_remote(): m31icrs = coords.SkyCoord.from_name('M31', frame='icrs') m31str = str(m31icrs) assert m31str.startswith('<SkyCoord (ICRS): (ra, dec) in deg\n (') assert m31str.endswith(')>') assert '10.68' in m31str assert '41.26' in m31str # The above is essentially a replacement of the below, but tweaked so that # small/moderate changes in what `from_name` returns don't cause the tests # to fail # assert str(m31icrs) == '<SkyCoord (ICRS): (ra, dec) in deg\n (10.6847083, 41.26875)>' m31fk4 = coords.SkyCoord.from_name('M31', frame='fk4') assert not m31icrs.is_equivalent_frame(m31fk4) assert np.abs(m31icrs.ra - m31fk4.ra) > .5*u.deg
959395aa536cb12ca40404b8c066755737321780f4397398015d8439be86381d
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Tests for putting velocity differentials into SkyCoord objects. Note: the skyoffset velocity tests are in a different file, in test_skyoffset_transformations.py """ import pytest import numpy as np from astropy import units as u from astropy.tests.helper import assert_quantity_allclose from astropy.coordinates import ( SkyCoord, ICRS, SphericalRepresentation, SphericalDifferential, SphericalCosLatDifferential, UnitSphericalRepresentation, UnitSphericalDifferential, UnitSphericalCosLatDifferential, RadialDifferential, CartesianRepresentation, CartesianDifferential, Galactic, PrecessedGeocentric) from astropy.utils.compat.optional_deps import HAS_SCIPY # noqa def test_creation_frameobjs(): i = ICRS(1*u.deg, 2*u.deg, pm_ra_cosdec=.2*u.mas/u.yr, pm_dec=.1*u.mas/u.yr) sc = SkyCoord(i) for attrnm in ['ra', 'dec', 'pm_ra_cosdec', 'pm_dec']: assert_quantity_allclose(getattr(i, attrnm), getattr(sc, attrnm)) sc_nod = SkyCoord(ICRS(1*u.deg, 2*u.deg)) for attrnm in ['ra', 'dec']: assert_quantity_allclose(getattr(sc, attrnm), getattr(sc_nod, attrnm)) def test_creation_attrs(): sc1 = SkyCoord(1*u.deg, 2*u.deg, pm_ra_cosdec=.2*u.mas/u.yr, pm_dec=.1*u.mas/u.yr, frame='fk5') assert_quantity_allclose(sc1.ra, 1*u.deg) assert_quantity_allclose(sc1.dec, 2*u.deg) assert_quantity_allclose(sc1.pm_ra_cosdec, .2*u.arcsec/u.kyr) assert_quantity_allclose(sc1.pm_dec, .1*u.arcsec/u.kyr) sc2 = SkyCoord(1*u.deg, 2*u.deg, pm_ra=.2*u.mas/u.yr, pm_dec=.1*u.mas/u.yr, differential_type=SphericalDifferential) assert_quantity_allclose(sc2.ra, 1*u.deg) assert_quantity_allclose(sc2.dec, 2*u.deg) assert_quantity_allclose(sc2.pm_ra, .2*u.arcsec/u.kyr) assert_quantity_allclose(sc2.pm_dec, .1*u.arcsec/u.kyr) sc3 = SkyCoord('1:2:3 4:5:6', pm_ra_cosdec=.2*u.mas/u.yr, pm_dec=.1*u.mas/u.yr, unit=(u.hour, u.deg)) assert_quantity_allclose(sc3.ra, 1*u.hourangle + 2*u.arcmin*15 + 3*u.arcsec*15) assert_quantity_allclose(sc3.dec, 4*u.deg + 5*u.arcmin + 6*u.arcsec) # might as well check with sillier units? assert_quantity_allclose(sc3.pm_ra_cosdec, 1.2776637006616473e-07 * u.arcmin / u.fortnight) assert_quantity_allclose(sc3.pm_dec, 6.388318503308237e-08 * u.arcmin / u.fortnight) def test_creation_copy_basic(): i = ICRS(1*u.deg, 2*u.deg, pm_ra_cosdec=.2*u.mas/u.yr, pm_dec=.1*u.mas/u.yr) sc = SkyCoord(i) sc_cpy = SkyCoord(sc) for attrnm in ['ra', 'dec', 'pm_ra_cosdec', 'pm_dec']: assert_quantity_allclose(getattr(sc, attrnm), getattr(sc_cpy, attrnm)) def test_creation_copy_rediff(): sc = SkyCoord(1*u.deg, 2*u.deg, pm_ra=.2*u.mas/u.yr, pm_dec=.1*u.mas/u.yr, differential_type=SphericalDifferential) sc_cpy = SkyCoord(sc) for attrnm in ['ra', 'dec', 'pm_ra', 'pm_dec']: assert_quantity_allclose(getattr(sc, attrnm), getattr(sc_cpy, attrnm)) sc_newdiff = SkyCoord(sc, differential_type=SphericalCosLatDifferential) reprepr = sc.represent_as(SphericalRepresentation, SphericalCosLatDifferential) assert_quantity_allclose(sc_newdiff.pm_ra_cosdec, reprepr.differentials['s'].d_lon_coslat) def test_creation_cartesian(): rep = CartesianRepresentation([10, 0., 0.]*u.pc) dif = CartesianDifferential([0, 100, 0.]*u.pc/u.Myr) rep = rep.with_differentials(dif) c = SkyCoord(rep) sdif = dif.represent_as(SphericalCosLatDifferential, rep) assert_quantity_allclose(c.pm_ra_cosdec, sdif.d_lon_coslat) def test_useful_error_missing(): sc_nod = SkyCoord(ICRS(1*u.deg, 2*u.deg)) try: sc_nod.l except AttributeError as e: # this is double-checking the *normal* behavior msg_l = e.args[0] try: sc_nod.pm_dec except Exception as e: msg_pm_dec = e.args[0] assert "has no attribute" in msg_l assert "has no associated differentials" in msg_pm_dec # ----------------------Operations on SkyCoords w/ velocities------------------- # define some fixtures to get baseline coordinates to try operations with @pytest.fixture(scope="module", params=[(False, False), (True, False), (False, True), (True, True)]) def sc(request): incldist, inclrv = request.param args = [1*u.deg, 2*u.deg] kwargs = dict(pm_dec=1*u.mas/u.yr, pm_ra_cosdec=2*u.mas/u.yr) if incldist: kwargs['distance'] = 213.4*u.pc if inclrv: kwargs['radial_velocity'] = 61*u.km/u.s return SkyCoord(*args, **kwargs) @pytest.fixture(scope="module") def scmany(): return SkyCoord(ICRS(ra=[1]*100*u.deg, dec=[2]*100*u.deg, pm_ra_cosdec=np.random.randn(100)*u.mas/u.yr, pm_dec=np.random.randn(100)*u.mas/u.yr,)) @pytest.fixture(scope="module") def sc_for_sep(): return SkyCoord(1*u.deg, 2*u.deg, pm_dec=1*u.mas/u.yr, pm_ra_cosdec=2*u.mas/u.yr) def test_separation(sc, sc_for_sep): sc.separation(sc_for_sep) def test_accessors(sc, scmany): sc.data.differentials['s'] sph = sc.spherical gal = sc.galactic if (sc.data.get_name().startswith('unit') and not sc.data.differentials['s'].get_name().startswith('unit')): # this xfail can be eliminated when issue #7028 is resolved pytest.xfail('.velocity fails if there is an RV but not distance') sc.velocity assert isinstance(sph, SphericalRepresentation) assert gal.data.differentials is not None scmany[0] sph = scmany.spherical gal = scmany.galactic assert isinstance(sph, SphericalRepresentation) assert gal.data.differentials is not None def test_transforms(sc): trans = sc.transform_to('galactic') assert isinstance(trans.frame, Galactic) def test_transforms_diff(sc): # note that arguably this *should* fail for the no-distance cases: 3D # information is necessary to truly solve this, hence the xfail if not sc.distance.unit.is_equivalent(u.m): pytest.xfail('Should fail for no-distance cases') else: trans = sc.transform_to(PrecessedGeocentric(equinox='B1975')) assert isinstance(trans.frame, PrecessedGeocentric) @pytest.mark.skipif('not HAS_SCIPY') def test_matching(sc, scmany): # just check that it works and yields something idx, d2d, d3d = sc.match_to_catalog_sky(scmany) def test_position_angle(sc, sc_for_sep): sc.position_angle(sc_for_sep) def test_constellations(sc): const = sc.get_constellation() assert const == 'Pisces' def test_separation_3d_with_differentials(): c1 = SkyCoord(ra=138*u.deg, dec=-17*u.deg, distance=100*u.pc, pm_ra_cosdec=5*u.mas/u.yr, pm_dec=-7*u.mas/u.yr, radial_velocity=160*u.km/u.s) c2 = SkyCoord(ra=138*u.deg, dec=-17*u.deg, distance=105*u.pc, pm_ra_cosdec=15*u.mas/u.yr, pm_dec=-74*u.mas/u.yr, radial_velocity=-60*u.km/u.s) sep = c1.separation_3d(c2) assert_quantity_allclose(sep, 5*u.pc) @pytest.mark.parametrize('sph_type', ['spherical', 'unitspherical']) def test_cartesian_to_spherical(sph_type): """Conversion to unitspherical should work, even if we lose distance.""" c = SkyCoord(x=1*u.kpc, y=0*u.kpc, z=0*u.kpc, v_x=10*u.km/u.s, v_y=0*u.km/u.s, v_z=4.74*u.km/u.s, representation_type='cartesian') c.representation_type = sph_type assert c.ra == 0 assert c.dec == 0 assert c.pm_ra == 0 assert u.allclose(c.pm_dec, 1*u.mas/u.yr, rtol=1e-3) assert c.radial_velocity == 10*u.km/u.s if sph_type == 'spherical': assert c.distance == 1*u.kpc else: assert not hasattr(c, 'distance') @pytest.mark.parametrize('diff_info, diff_cls', [ (dict(radial_velocity=[20, 30]*u.km/u.s), RadialDifferential), (dict(pm_ra=[2, 3]*u.mas/u.yr, pm_dec=[-3, -4]*u.mas/u.yr, differential_type='unitspherical'), UnitSphericalDifferential), (dict(pm_ra_cosdec=[2, 3]*u.mas/u.yr, pm_dec=[-3, -4]*u.mas/u.yr), UnitSphericalCosLatDifferential)], scope='class') class TestDifferentialClassPropagation: """Test that going in between spherical and unit-spherical, we do not change differential type (since both can handle the same types). """ def test_sc_unit_spherical_with_pm_or_rv_only(self, diff_info, diff_cls): sc = SkyCoord(ra=[10, 20]*u.deg, dec=[-10, 10]*u.deg, **diff_info) assert isinstance(sc.data, UnitSphericalRepresentation) assert isinstance(sc.data.differentials['s'], diff_cls) sr = sc.represent_as('spherical') assert isinstance(sr, SphericalRepresentation) assert isinstance(sr.differentials['s'], diff_cls) def test_sc_spherical_with_pm_or_rv_only(self, diff_info, diff_cls): sc = SkyCoord(ra=[10, 20]*u.deg, dec=[-10, 10]*u.deg, distance=1.*u.kpc, **diff_info) assert isinstance(sc.data, SphericalRepresentation) assert isinstance(sc.data.differentials['s'], diff_cls) sr = sc.represent_as('unitspherical') assert isinstance(sr, UnitSphericalRepresentation) assert isinstance(sr.differentials['s'], diff_cls)
964f3e73393eb068564810ff0fd257a85aa9f832ff839f83e83c11967f08cfce
# Licensed under a 3-clause BSD style license - see LICENSE.rst import warnings import pytest import numpy as np from numpy import testing as npt import erfa from astropy import units as u from astropy.time import Time from astropy.coordinates.builtin_frames import ICRS, AltAz from astropy.coordinates.builtin_frames.utils import get_jd12 from astropy.coordinates import EarthLocation from astropy.coordinates import SkyCoord from astropy.utils import iers from astropy.coordinates.angle_utilities import golden_spiral_grid # These fixtures are used in test_iau_fullstack @pytest.fixture(scope="function") def fullstack_icrs(): rep = golden_spiral_grid(size=1000) return ICRS(rep) @pytest.fixture(scope="function") def fullstack_fiducial_altaz(fullstack_icrs): altazframe = AltAz(location=EarthLocation(lat=0*u.deg, lon=0*u.deg, height=0*u.m), obstime=Time('J2000')) with warnings.catch_warnings(): # Ignore remote_data warning warnings.simplefilter('ignore') result = fullstack_icrs.transform_to(altazframe) return result @pytest.fixture(scope="function", params=['J2000.1', 'J2010']) def fullstack_times(request): return Time(request.param) @pytest.fixture(scope="function", params=[(0, 0, 0), (23, 0, 0), (-70, 0, 0), (0, 100, 0), (23, 0, 3000)]) def fullstack_locations(request): return EarthLocation(lat=request.param[0]*u.deg, lon=request.param[0]*u.deg, height=request.param[0]*u.m) @pytest.fixture(scope="function", params=[(0*u.bar, 0*u.deg_C, 0, 1*u.micron), (1*u.bar, 0*u.deg_C, 0*u.one, 1*u.micron), (1*u.bar, 10*u.deg_C, 0, 1*u.micron), (1*u.bar, 0*u.deg_C, 50*u.percent, 1*u.micron), (1*u.bar, 0*u.deg_C, 0, 21*u.cm)]) def fullstack_obsconditions(request): return request.param def _erfa_check(ira, idec, astrom): """ This function does the same thing the astropy layer is supposed to do, but all in erfa """ cra, cdec = erfa.atciq(ira, idec, 0, 0, 0, 0, astrom) az, zen, ha, odec, ora = erfa.atioq(cra, cdec, astrom) alt = np.pi/2-zen cra2, cdec2 = erfa.atoiq('A', az, zen, astrom) ira2, idec2 = erfa.aticq(cra2, cdec2, astrom) dct = locals() del dct['astrom'] return dct def test_iau_fullstack(fullstack_icrs, fullstack_fiducial_altaz, fullstack_times, fullstack_locations, fullstack_obsconditions): """ Test the full transform from ICRS <-> AltAz """ # create the altaz frame altazframe = AltAz(obstime=fullstack_times, location=fullstack_locations, pressure=fullstack_obsconditions[0], temperature=fullstack_obsconditions[1], relative_humidity=fullstack_obsconditions[2], obswl=fullstack_obsconditions[3]) aacoo = fullstack_icrs.transform_to(altazframe) # compare aacoo to the fiducial AltAz - should always be different assert np.all(np.abs(aacoo.alt - fullstack_fiducial_altaz.alt) > 50*u.milliarcsecond) assert np.all(np.abs(aacoo.az - fullstack_fiducial_altaz.az) > 50*u.milliarcsecond) # if the refraction correction is included, we *only* do the comparisons # where altitude >5 degrees. The SOFA guides imply that below 5 is where # where accuracy gets more problematic, and testing reveals that alt<~0 # gives garbage round-tripping, and <10 can give ~1 arcsec uncertainty if fullstack_obsconditions[0].value == 0: # but if there is no refraction correction, check everything msk = slice(None) tol = 5*u.microarcsecond else: msk = aacoo.alt > 5*u.deg # most of them aren't this bad, but some of those at low alt are offset # this much. For alt > 10, this is always better than 100 masec tol = 750*u.milliarcsecond # now make sure the full stack round-tripping works icrs2 = aacoo.transform_to(ICRS()) adras = np.abs(fullstack_icrs.ra - icrs2.ra)[msk] addecs = np.abs(fullstack_icrs.dec - icrs2.dec)[msk] assert np.all(adras < tol), f'largest RA change is {np.max(adras.arcsec * 1000)} mas, > {tol}' assert np.all(addecs < tol), f'largest Dec change is {np.max(addecs.arcsec * 1000)} mas, > {tol}' # check that we're consistent with the ERFA alt/az result iers_tab = iers.earth_orientation_table.get() xp, yp = u.Quantity(iers_tab.pm_xy(fullstack_times)).to_value(u.radian) lon = fullstack_locations.geodetic[0].to_value(u.radian) lat = fullstack_locations.geodetic[1].to_value(u.radian) height = fullstack_locations.geodetic[2].to_value(u.m) jd1, jd2 = get_jd12(fullstack_times, 'utc') pressure = fullstack_obsconditions[0].to_value(u.hPa) temperature = fullstack_obsconditions[1].to_value(u.deg_C) # Relative humidity can be a quantity or a number. relative_humidity = u.Quantity(fullstack_obsconditions[2], u.one).value obswl = fullstack_obsconditions[3].to_value(u.micron) astrom, eo = erfa.apco13(jd1, jd2, fullstack_times.delta_ut1_utc, lon, lat, height, xp, yp, pressure, temperature, relative_humidity, obswl) erfadct = _erfa_check(fullstack_icrs.ra.rad, fullstack_icrs.dec.rad, astrom) npt.assert_allclose(erfadct['alt'], aacoo.alt.radian, atol=1e-7) npt.assert_allclose(erfadct['az'], aacoo.az.radian, atol=1e-7) def test_fiducial_roudtrip(fullstack_icrs, fullstack_fiducial_altaz): """ Test the full transform from ICRS <-> AltAz """ aacoo = fullstack_icrs.transform_to(fullstack_fiducial_altaz) # make sure the round-tripping works icrs2 = aacoo.transform_to(ICRS()) npt.assert_allclose(fullstack_icrs.ra.deg, icrs2.ra.deg) npt.assert_allclose(fullstack_icrs.dec.deg, icrs2.dec.deg) def test_future_altaz(): """ While this does test the full stack, it is mostly meant to check that a warning is raised when attempting to get to AltAz in the future (beyond IERS tables) """ from astropy.utils.exceptions import AstropyWarning # this is an ugly hack to get the warning to show up even if it has already # appeared from astropy.coordinates.builtin_frames import utils if hasattr(utils, '__warningregistry__'): utils.__warningregistry__.clear() location = EarthLocation(lat=0*u.deg, lon=0*u.deg) t = Time('J2161') # check that these message(s) appear among any other warnings. If tests are run with # --remote-data then the IERS table will be an instance of IERS_Auto which is # assured of being "fresh". In this case getting times outside the range of the # table does not raise an exception. Only if using IERS_B (which happens without # --remote-data, i.e. for all CI testing) do we expect another warning. with pytest.warns(AstropyWarning, match=r"Tried to get polar motions for " "times after IERS data is valid.*") as found_warnings: SkyCoord(1*u.deg, 2*u.deg).transform_to(AltAz(location=location, obstime=t)) if isinstance(iers.earth_orientation_table.get(), iers.IERS_B): messages_found = ["(some) times are outside of range covered by IERS " "table." in str(w.message) for w in found_warnings] assert any(messages_found)
33a66018f892069836188d8ea0ed2c77ce1d508ece3ef72758d729f1ced698b6
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Test replacements for ERFA functions atciqz and aticq.""" import pytest import erfa from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy.time import Time import astropy.units as u from astropy.coordinates.builtin_frames.utils import get_jd12, atciqz, aticq from astropy.coordinates import SphericalRepresentation # Hard-coded random values sph = SphericalRepresentation(lon=[15., 214.] * u.deg, lat=[-12., 64.] * u.deg, distance=[1, 1.]) @pytest.mark.parametrize('t', [Time("2014-06-25T00:00"), Time(["2014-06-25T00:00", "2014-09-24"])]) @pytest.mark.parametrize('pos', [sph[0], sph]) def test_atciqz_aticq(t, pos): """Check replacements against erfa versions for consistency.""" jd1, jd2 = get_jd12(t, 'tdb') astrom, _ = erfa.apci13(jd1, jd2) ra = pos.lon.to_value(u.rad) dec = pos.lat.to_value(u.rad) assert_allclose(erfa.atciqz(ra, dec, astrom), atciqz(pos, astrom)) assert_allclose(erfa.aticq(ra, dec, astrom), aticq(pos, astrom))
0b837868bee30d030b771506d77c24ef38f81f17d0780253ed2bc82aa5276ea0
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from numpy.testing import assert_allclose, assert_array_equal from astropy import units as u from astropy.coordinates.matrix_utilities import (rotation_matrix, angle_axis, is_O3, is_rotation) def test_rotation_matrix(): assert_array_equal(rotation_matrix(0*u.deg, 'x'), np.eye(3)) assert_allclose(rotation_matrix(90*u.deg, 'y'), [[0, 0, -1], [0, 1, 0], [1, 0, 0]], atol=1e-12) assert_allclose(rotation_matrix(-90*u.deg, 'z'), [[0, -1, 0], [1, 0, 0], [0, 0, 1]], atol=1e-12) assert_allclose(rotation_matrix(45*u.deg, 'x'), rotation_matrix(45*u.deg, [1, 0, 0])) assert_allclose(rotation_matrix(125*u.deg, 'y'), rotation_matrix(125*u.deg, [0, 1, 0])) assert_allclose(rotation_matrix(-30*u.deg, 'z'), rotation_matrix(-30*u.deg, [0, 0, 1])) assert_allclose(np.dot(rotation_matrix(180*u.deg, [1, 1, 0]), [1, 0, 0]), [0, 1, 0], atol=1e-12) # make sure it also works for very small angles assert_allclose(rotation_matrix(0.000001*u.deg, 'x'), rotation_matrix(0.000001*u.deg, [1, 0, 0])) def test_angle_axis(): m1 = rotation_matrix(35*u.deg, 'x') an1, ax1 = angle_axis(m1) assert an1 - 35*u.deg < 1e-10*u.deg assert_allclose(ax1, [1, 0, 0]) m2 = rotation_matrix(-89*u.deg, [1, 1, 0]) an2, ax2 = angle_axis(m2) assert an2 - 89*u.deg < 1e-10*u.deg assert_allclose(ax2, [-2**-0.5, -2**-0.5, 0]) def test_is_O3(): """Test the matrix checker ``is_O3``.""" # Normal rotation matrix m1 = rotation_matrix(35*u.deg, 'x') assert is_O3(m1) # and (M, 3, 3) n1 = np.tile(m1, (2, 1, 1)) assert tuple(is_O3(n1)) == (True, True) # (show the broadcasting) # reflection m2 = m1.copy() m2[0,0] *= -1 assert is_O3(m2) # and (M, 3, 3) n2 = np.stack((m1, m2)) assert tuple(is_O3(n2)) == (True, True) # (show the broadcasting) # Not any sort of O(3) m3 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert not is_O3(m3) # and (M, 3, 3) n3 = np.stack((m1, m3)) assert tuple(is_O3(n3)) == (True, False) # (show the broadcasting) def test_is_rotation(): """Test the rotation matrix checker ``is_rotation``.""" # Normal rotation matrix m1 = rotation_matrix(35*u.deg, 'x') assert is_rotation(m1) assert is_rotation(m1, allow_improper=True) # (a less restrictive test) # and (M, 3, 3) n1 = np.tile(m1, (2, 1, 1)) assert tuple(is_rotation(n1)) == (True, True) # (show the broadcasting) # Improper rotation (unit rotation + reflection) m2 = np.identity(3) m2[0,0] = -1 assert not is_rotation(m2) assert is_rotation(m2, allow_improper=True) # and (M, 3, 3) n2 = np.stack((m1, m2)) assert tuple(is_rotation(n2)) == (True, False) # (show the broadcasting) # Not any sort of rotation m3 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert not is_rotation(m3) assert not is_rotation(m3, allow_improper=True) # and (M, 3, 3) n3 = np.stack((m1, m3)) assert tuple(is_rotation(n3)) == (True, False) # (show the broadcasting)
81b8560fb9ceedaa3423ea7ee69724771ea7b0469a2a5c78772f2fc0b0c42cc9
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Regression tests for coordinates-related bugs that don't have an obvious other place to live """ import io import copy import pytest import numpy as np from contextlib import nullcontext from erfa import ErfaWarning from astropy import units as u from astropy.coordinates import ( AltAz, EarthLocation, SkyCoord, get_sun, ICRS, GeocentricMeanEcliptic, Longitude, Latitude, GCRS, HCRS, CIRS, get_moon, FK4, FK4NoETerms, BaseCoordinateFrame, ITRS, QuantityAttribute, UnitSphericalRepresentation, SphericalRepresentation, CartesianRepresentation, FunctionTransform, get_body, CylindricalRepresentation, CylindricalDifferential, CartesianDifferential) from astropy.coordinates.sites import get_builtin_sites from astropy.time import Time from astropy.utils import iers from astropy.table import Table from astropy.tests.helper import assert_quantity_allclose from astropy.utils.compat.optional_deps import HAS_SCIPY # noqa from astropy.units import allclose as quantity_allclose def test_regression_5085(): """ PR #5085 was put in place to fix the following issue. Issue: https://github.com/astropy/astropy/issues/5069 At root was the transformation of Ecliptic coordinates with non-scalar times. """ # Note: for regression test, we need to be sure that we use UTC for the # epoch, even though more properly that should be TT; but the "expected" # values were calculated using that. j2000 = Time('J2000', scale='utc') times = Time(["2015-08-28 03:30", "2015-09-05 10:30", "2015-09-15 18:35"]) latitudes = Latitude([3.9807075, -5.00733806, 1.69539491]*u.deg) longitudes = Longitude([311.79678613, 72.86626741, 199.58698226]*u.deg) distances = u.Quantity([0.00243266, 0.0025424, 0.00271296]*u.au) coo = GeocentricMeanEcliptic(lat=latitudes, lon=longitudes, distance=distances, obstime=times, equinox=times) # expected result ras = Longitude([310.50095400, 314.67109920, 319.56507428]*u.deg) decs = Latitude([-18.25190443, -17.1556676, -15.71616522]*u.deg) distances = u.Quantity([1.78309901, 1.710874, 1.61326649]*u.au) expected_result = GCRS(ra=ras, dec=decs, distance=distances, obstime=j2000).cartesian.xyz actual_result = coo.transform_to(GCRS(obstime=j2000)).cartesian.xyz assert_quantity_allclose(expected_result, actual_result) def test_regression_3920(): """ Issue: https://github.com/astropy/astropy/issues/3920 """ loc = EarthLocation.from_geodetic(0*u.deg, 0*u.deg, 0) time = Time('2010-1-1') aa = AltAz(location=loc, obstime=time) sc = SkyCoord(10*u.deg, 3*u.deg) assert sc.transform_to(aa).shape == tuple() # That part makes sense: the input is a scalar so the output is too sc2 = SkyCoord(10*u.deg, 3*u.deg, 1*u.AU) assert sc2.transform_to(aa).shape == tuple() # in 3920 that assert fails, because the shape is (1,) # check that the same behavior occurs even if transform is from low-level classes icoo = ICRS(sc.data) icoo2 = ICRS(sc2.data) assert icoo.transform_to(aa).shape == tuple() assert icoo2.transform_to(aa).shape == tuple() def test_regression_3938(): """ Issue: https://github.com/astropy/astropy/issues/3938 """ # Set up list of targets - we don't use `from_name` here to avoid # remote_data requirements, but it does the same thing # vega = SkyCoord.from_name('Vega') vega = SkyCoord(279.23473479*u.deg, 38.78368896*u.deg) # capella = SkyCoord.from_name('Capella') capella = SkyCoord(79.17232794*u.deg, 45.99799147*u.deg) # sirius = SkyCoord.from_name('Sirius') sirius = SkyCoord(101.28715533*u.deg, -16.71611586*u.deg) targets = [vega, capella, sirius] # Feed list of targets into SkyCoord combined_coords = SkyCoord(targets) # Set up AltAz frame time = Time('2012-01-01 00:00:00') location = EarthLocation('10d', '45d', 0) aa = AltAz(location=location, obstime=time) combined_coords.transform_to(aa) # in 3938 the above yields ``UnitConversionError: '' (dimensionless) and 'pc' (length) are not convertible`` def test_regression_3998(): """ Issue: https://github.com/astropy/astropy/issues/3998 """ time = Time('2012-01-01 00:00:00') assert time.isscalar sun = get_sun(time) assert sun.isscalar # in 3998, the above yields False - `sun` is a length-1 vector assert sun.obstime is time def test_regression_4033(): """ Issue: https://github.com/astropy/astropy/issues/4033 """ # alb = SkyCoord.from_name('Albireo') alb = SkyCoord(292.68033548*u.deg, 27.95968007*u.deg) alb_wdist = SkyCoord(alb, distance=133*u.pc) # de = SkyCoord.from_name('Deneb') de = SkyCoord(310.35797975*u.deg, 45.28033881*u.deg) de_wdist = SkyCoord(de, distance=802*u.pc) aa = AltAz(location=EarthLocation(lat=45*u.deg, lon=0*u.deg), obstime='2010-1-1') deaa = de.transform_to(aa) albaa = alb.transform_to(aa) alb_wdistaa = alb_wdist.transform_to(aa) de_wdistaa = de_wdist.transform_to(aa) # these work fine sepnod = deaa.separation(albaa) sepwd = deaa.separation(alb_wdistaa) assert_quantity_allclose(sepnod, 22.2862*u.deg, rtol=1e-6) assert_quantity_allclose(sepwd, 22.2862*u.deg, rtol=1e-6) # parallax should be present when distance added assert np.abs(sepnod - sepwd) > 1*u.marcsec # in 4033, the following fail with a recursion error assert_quantity_allclose(de_wdistaa.separation(alb_wdistaa), 22.2862*u.deg, rtol=1e-3) assert_quantity_allclose(alb_wdistaa.separation(deaa), 22.2862*u.deg, rtol=1e-3) @pytest.mark.skipif(not HAS_SCIPY, reason='No Scipy') def test_regression_4082(): """ Issue: https://github.com/astropy/astropy/issues/4082 """ from astropy.coordinates import search_around_sky, search_around_3d cat = SkyCoord([10.076, 10.00455], [18.54746, 18.54896], unit='deg') search_around_sky(cat[0:1], cat, seplimit=u.arcsec * 60, storekdtree=False) # in the issue, this raises a TypeError # also check 3d for good measure, although it's not really affected by this bug directly cat3d = SkyCoord([10.076, 10.00455]*u.deg, [18.54746, 18.54896]*u.deg, distance=[0.1, 1.5]*u.kpc) search_around_3d(cat3d[0:1], cat3d, 1*u.kpc, storekdtree=False) def test_regression_4210(): """ Issue: https://github.com/astropy/astropy/issues/4210 Related PR with actual change: https://github.com/astropy/astropy/pull/4211 """ crd = SkyCoord(0*u.deg, 0*u.deg, distance=1*u.AU) ecl = crd.geocentricmeanecliptic # bug was that "lambda", which at the time was the name of the geocentric # ecliptic longitude, is a reserved keyword. So this just makes sure the # new name is are all valid ecl.lon # and for good measure, check the other ecliptic systems are all the same # names for their attributes from astropy.coordinates.builtin_frames import ecliptic for frame_name in ecliptic.__all__: eclcls = getattr(ecliptic, frame_name) eclobj = eclcls(1*u.deg, 2*u.deg, 3*u.AU) eclobj.lat eclobj.lon eclobj.distance def test_regression_futuretimes_4302(): """ Checks that an error is not raised for future times not covered by IERS tables (at least in a simple transform like CIRS->ITRS that simply requires the UTC<->UT1 conversion). Relevant comment: https://github.com/astropy/astropy/pull/4302#discussion_r44836531 """ from astropy.utils.exceptions import AstropyWarning # this is an ugly hack to get the warning to show up even if it has already # appeared from astropy.coordinates.builtin_frames import utils if hasattr(utils, '__warningregistry__'): utils.__warningregistry__.clear() # check that out-of-range warning appears among any other warnings. If # tests are run with --remote-data then the IERS table will be an instance # of IERS_Auto which is assured of being "fresh". In this case getting # times outside the range of the table does not raise an exception. Only # if using IERS_B (which happens without --remote-data, i.e. for all CI # testing) do we expect another warning. if isinstance(iers.earth_orientation_table.get(), iers.IERS_B): ctx = pytest.warns( AstropyWarning, match=r'\(some\) times are outside of range covered by IERS table.*') else: ctx = nullcontext() with ctx: future_time = Time('2511-5-1') c = CIRS(1*u.deg, 2*u.deg, obstime=future_time) c.transform_to(ITRS(obstime=future_time)) def test_regression_4996(): # this part is the actual regression test deltat = np.linspace(-12, 12, 1000)*u.hour times = Time('2012-7-13 00:00:00') + deltat suncoo = get_sun(times) assert suncoo.shape == (len(times),) # and this is an additional test to make sure more complex arrays work times2 = Time('2012-7-13 00:00:00') + deltat.reshape(10, 20, 5) suncoo2 = get_sun(times2) assert suncoo2.shape == times2.shape # this is intentionally not allclose - they should be *exactly* the same assert np.all(suncoo.ra.ravel() == suncoo2.ra.ravel()) def test_regression_4293(): """Really just an extra test on FK4 no e, after finding that the units were not always taken correctly. This test is against explicitly doing the transformations on pp170 of Explanatory Supplement to the Astronomical Almanac (Seidelmann, 2005). See https://github.com/astropy/astropy/pull/4293#issuecomment-234973086 """ # Check all over sky, but avoiding poles (note that FK4 did not ignore # e terms within 10∘ of the poles... see p170 of explan.supp.). ra, dec = np.meshgrid(np.arange(0, 359, 45), np.arange(-80, 81, 40)) fk4 = FK4(ra.ravel() * u.deg, dec.ravel() * u.deg) Dc = -0.065838*u.arcsec Dd = +0.335299*u.arcsec # Dc * tan(obliquity), as given on p.170 Dctano = -0.028553*u.arcsec fk4noe_dec = (fk4.dec - (Dd*np.cos(fk4.ra) - Dc*np.sin(fk4.ra))*np.sin(fk4.dec) - Dctano*np.cos(fk4.dec)) fk4noe_ra = fk4.ra - (Dc*np.cos(fk4.ra) + Dd*np.sin(fk4.ra)) / np.cos(fk4.dec) fk4noe = fk4.transform_to(FK4NoETerms()) # Tolerance here just set to how well the coordinates match, which is much # better than the claimed accuracy of <1 mas for this first-order in # v_earth/c approximation. # Interestingly, if one divides by np.cos(fk4noe_dec) in the ra correction, # the match becomes good to 2 μas. assert_quantity_allclose(fk4noe.ra, fk4noe_ra, atol=11.*u.uas, rtol=0) assert_quantity_allclose(fk4noe.dec, fk4noe_dec, atol=3.*u.uas, rtol=0) def test_regression_4926(): times = Time('2010-01-1') + np.arange(20)*u.day green = get_builtin_sites()['greenwich'] # this is the regression test moon = get_moon(times, green) # this is an additional test to make sure the GCRS->ICRS transform works for complex shapes moon.transform_to(ICRS()) # and some others to increase coverage of transforms moon.transform_to(HCRS(obstime="J2000")) moon.transform_to(HCRS(obstime=times)) def test_regression_5209(): "check that distances are not lost on SkyCoord init" time = Time('2015-01-01') moon = get_moon(time) new_coord = SkyCoord([moon]) assert_quantity_allclose(new_coord[0].distance, moon.distance) def test_regression_5133(): N = 1000 np.random.seed(12345) lon = np.random.uniform(-10, 10, N) * u.deg lat = np.random.uniform(50, 52, N) * u.deg alt = np.random.uniform(0, 10., N) * u.km time = Time('2010-1-1') objects = EarthLocation.from_geodetic(lon, lat, height=alt) itrs_coo = objects.get_itrs(time) homes = [EarthLocation.from_geodetic(lon=-1 * u.deg, lat=52 * u.deg, height=h) for h in (0, 1000, 10000)*u.km] altaz_frames = [AltAz(obstime=time, location=h) for h in homes] altaz_coos = [itrs_coo.transform_to(f) for f in altaz_frames] # they should all be different for coo in altaz_coos[1:]: assert not quantity_allclose(coo.az, coo.az[0]) assert not quantity_allclose(coo.alt, coo.alt[0]) def test_itrs_vals_5133(): """ Test to check if alt-az calculations respect height of observer Because ITRS is geocentric and includes aberration, an object that appears 'straight up' to a geocentric observer (ITRS) won't be straight up to a topocentric observer - see https://github.com/astropy/astropy/issues/10983 This is worse for small height above the Earth, which is why this test uses large distances. """ time = Time('2010-1-1') height = 500000. * u.km el = EarthLocation.from_geodetic(lon=20*u.deg, lat=45*u.deg, height=height) lons = [20, 30, 20]*u.deg lats = [44, 45, 45]*u.deg alts = u.Quantity([height, height, 10*height]) coos = [EarthLocation.from_geodetic(lon, lat, height=alt).get_itrs(time) for lon, lat, alt in zip(lons, lats, alts)] aaf = AltAz(obstime=time, location=el) aacs = [coo.transform_to(aaf) for coo in coos] assert all([coo.isscalar for coo in aacs]) # the ~1 degree tolerance is b/c aberration makes it not exact assert_quantity_allclose(aacs[0].az, 180*u.deg, atol=1*u.deg) assert aacs[0].alt < 0*u.deg assert aacs[0].distance > 5000*u.km # it should *not* actually be 90 degrees, b/c constant latitude is not # straight east anywhere except the equator... but should be close-ish assert_quantity_allclose(aacs[1].az, 90*u.deg, atol=5*u.deg) assert aacs[1].alt < 0*u.deg assert aacs[1].distance > 5000*u.km assert_quantity_allclose(aacs[2].alt, 90*u.deg, atol=1*u.arcminute) assert_quantity_allclose(aacs[2].distance, 9*height) def test_regression_simple_5133(): """ Simple test to check if alt-az calculations respect height of observer Because ITRS is geocentric and includes aberration, an object that appears 'straight up' to a geocentric observer (ITRS) won't be straight up to a topocentric observer - see https://github.com/astropy/astropy/issues/10983 This is why we construct a topocentric GCRS SkyCoord before calculating AltAz """ t = Time('J2010') obj = EarthLocation(-1*u.deg, 52*u.deg, height=[10., 0.]*u.km) home = EarthLocation(-1*u.deg, 52*u.deg, height=5.*u.km) obsloc_gcrs, obsvel_gcrs = home.get_gcrs_posvel(t) gcrs_geo = obj.get_itrs(t).transform_to(GCRS(obstime=t)) obsrepr = home.get_itrs(t).transform_to(GCRS(obstime=t)).cartesian topo_gcrs_repr = gcrs_geo.cartesian - obsrepr topocentric_gcrs_frame = GCRS(obstime=t, obsgeoloc=obsloc_gcrs, obsgeovel=obsvel_gcrs) gcrs_topo = topocentric_gcrs_frame.realize_frame(topo_gcrs_repr) aa = gcrs_topo.transform_to(AltAz(obstime=t, location=home)) # az is more-or-less undefined for straight up or down assert_quantity_allclose(aa.alt, [90, -90]*u.deg, rtol=1e-7) assert_quantity_allclose(aa.distance, 5*u.km) def test_regression_5743(): sc = SkyCoord([5, 10], [20, 30], unit=u.deg, obstime=['2017-01-01T00:00', '2017-01-01T00:10']) assert sc[0].obstime.shape == tuple() def test_regression_5889_5890(): # ensure we can represent all Representations and transform to ND frames greenwich = EarthLocation( *u.Quantity([3980608.90246817, -102.47522911, 4966861.27310067], unit=u.m)) times = Time("2017-03-20T12:00:00") + np.linspace(-2, 2, 3)*u.hour moon = get_moon(times, location=greenwich) targets = SkyCoord([350.7*u.deg, 260.7*u.deg], [18.4*u.deg, 22.4*u.deg]) targs2d = targets[:, np.newaxis] targs2d.transform_to(moon) def test_regression_6236(): # sunpy changes its representation upon initialisation of a frame, # including via `realize_frame`. Ensure this works. class MyFrame(BaseCoordinateFrame): default_representation = CartesianRepresentation my_attr = QuantityAttribute(default=0, unit=u.m) class MySpecialFrame(MyFrame): def __init__(self, *args, **kwargs): _rep_kwarg = kwargs.get('representation_type', None) super().__init__(*args, **kwargs) if not _rep_kwarg: self.representation_type = self.default_representation self._data = self.data.represent_as(self.representation_type) rep1 = UnitSphericalRepresentation([0., 1]*u.deg, [2., 3.]*u.deg) rep2 = SphericalRepresentation([10., 11]*u.deg, [12., 13.]*u.deg, [14., 15.]*u.kpc) mf1 = MyFrame(rep1, my_attr=1.*u.km) mf2 = mf1.realize_frame(rep2) # Normally, data is stored as is, but the representation gets set to a # default, even if a different representation instance was passed in. # realize_frame should do the same. Just in case, check attrs are passed. assert mf1.data is rep1 assert mf2.data is rep2 assert mf1.representation_type is CartesianRepresentation assert mf2.representation_type is CartesianRepresentation assert mf2.my_attr == mf1.my_attr # It should be independent of whether I set the representation explicitly mf3 = MyFrame(rep1, my_attr=1.*u.km, representation_type='unitspherical') mf4 = mf3.realize_frame(rep2) assert mf3.data is rep1 assert mf4.data is rep2 assert mf3.representation_type is UnitSphericalRepresentation assert mf4.representation_type is CartesianRepresentation assert mf4.my_attr == mf3.my_attr # This should be enough to help sunpy, but just to be sure, a test # even closer to what is done there, i.e., transform the representation. msf1 = MySpecialFrame(rep1, my_attr=1.*u.km) msf2 = msf1.realize_frame(rep2) assert msf1.data is not rep1 # Gets transformed to Cartesian. assert msf2.data is not rep2 assert type(msf1.data) is CartesianRepresentation assert type(msf2.data) is CartesianRepresentation assert msf1.representation_type is CartesianRepresentation assert msf2.representation_type is CartesianRepresentation assert msf2.my_attr == msf1.my_attr # And finally a test where the input is not transformed. msf3 = MySpecialFrame(rep1, my_attr=1.*u.km, representation_type='unitspherical') msf4 = msf3.realize_frame(rep2) assert msf3.data is rep1 assert msf4.data is not rep2 assert msf3.representation_type is UnitSphericalRepresentation assert msf4.representation_type is CartesianRepresentation assert msf4.my_attr == msf3.my_attr @pytest.mark.skipif(not HAS_SCIPY, reason='No Scipy') def test_regression_6347(): sc1 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg) sc2 = SkyCoord([1.1, 2.1]*u.deg, [3.1, 4.1]*u.deg) sc0 = sc1[:0] idx1_10, idx2_10, d2d_10, d3d_10 = sc1.search_around_sky(sc2, 10*u.arcmin) idx1_1, idx2_1, d2d_1, d3d_1 = sc1.search_around_sky(sc2, 1*u.arcmin) idx1_0, idx2_0, d2d_0, d3d_0 = sc0.search_around_sky(sc2, 10*u.arcmin) assert len(d2d_10) == 2 assert len(d2d_0) == 0 assert type(d2d_0) is type(d2d_10) assert len(d2d_1) == 0 assert type(d2d_1) is type(d2d_10) @pytest.mark.skipif(not HAS_SCIPY, reason='No Scipy') def test_regression_6347_3d(): sc1 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg, [5, 6]*u.kpc) sc2 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg, [5.1, 6.1]*u.kpc) sc0 = sc1[:0] idx1_10, idx2_10, d2d_10, d3d_10 = sc1.search_around_3d(sc2, 500*u.pc) idx1_1, idx2_1, d2d_1, d3d_1 = sc1.search_around_3d(sc2, 50*u.pc) idx1_0, idx2_0, d2d_0, d3d_0 = sc0.search_around_3d(sc2, 500*u.pc) assert len(d2d_10) > 0 assert len(d2d_0) == 0 assert type(d2d_0) is type(d2d_10) assert len(d2d_1) == 0 assert type(d2d_1) is type(d2d_10) def test_gcrs_itrs_cartesian_repr(): # issue 6436: transformation failed if coordinate representation was # Cartesian gcrs = GCRS(CartesianRepresentation((859.07256, -4137.20368, 5295.56871), unit='km'), representation_type='cartesian') gcrs.transform_to(ITRS()) def test_regression_6446(): # this succeeds even before 6446: sc1 = SkyCoord([1, 2], [3, 4], unit='deg') t1 = Table([sc1]) sio1 = io.StringIO() t1.write(sio1, format='ascii.ecsv') # but this fails due to the 6446 bug c1 = SkyCoord(1, 3, unit='deg') c2 = SkyCoord(2, 4, unit='deg') sc2 = SkyCoord([c1, c2]) t2 = Table([sc2]) sio2 = io.StringIO() t2.write(sio2, format='ascii.ecsv') assert sio1.getvalue() == sio2.getvalue() def test_regression_6597(): frame_name = 'galactic' c1 = SkyCoord(1, 3, unit='deg', frame=frame_name) c2 = SkyCoord(2, 4, unit='deg', frame=frame_name) sc1 = SkyCoord([c1, c2]) assert sc1.frame.name == frame_name def test_regression_6597_2(): """ This tests the more subtle flaw that #6597 indirectly uncovered: that even in the case that the frames are ra/dec, they still might be the wrong *kind* """ frame = FK4(equinox='J1949') c1 = SkyCoord(1, 3, unit='deg', frame=frame) c2 = SkyCoord(2, 4, unit='deg', frame=frame) sc1 = SkyCoord([c1, c2]) assert sc1.frame.name == frame.name def test_regression_6697(): """ Test for regression of a bug in get_gcrs_posvel that introduced errors at the 1m/s level. Comparison data is derived from calculation in PINT https://github.com/nanograv/PINT/blob/master/pint/erfautils.py """ pint_vels = CartesianRepresentation(*(348.63632871, -212.31704928, -0.60154936), unit=u.m/u.s) location = EarthLocation(*(5327448.9957829, -1718665.73869569, 3051566.90295403), unit=u.m) t = Time(2458036.161966612, format='jd') obsgeopos, obsgeovel = location.get_gcrs_posvel(t) delta = (obsgeovel-pint_vels).norm() assert delta < 1*u.cm/u.s def test_regression_8138(): sc = SkyCoord(1*u.deg, 2*u.deg) newframe = GCRS() sc2 = sc.transform_to(newframe) assert newframe.is_equivalent_frame(sc2.frame) def test_regression_8276(): from astropy.coordinates import baseframe class MyFrame(BaseCoordinateFrame): a = QuantityAttribute(unit=u.m) # we save the transform graph so that it doesn't acidentally mess with other tests old_transform_graph = baseframe.frame_transform_graph try: baseframe.frame_transform_graph = copy.copy(baseframe.frame_transform_graph) # as reported in 8276, this previously failed right here because # registering the transform tries to create a frame attribute @baseframe.frame_transform_graph.transform(FunctionTransform, MyFrame, AltAz) def trans(my_frame_coord, altaz_frame): pass # should also be able to *create* the Frame at this point MyFrame() finally: baseframe.frame_transform_graph = old_transform_graph def test_regression_8615(): # note this is a "higher-level" symptom of the problem that a test now moved # to pyerfa (erfa/tests/test_erfa:test_float32_input) is testing for, but we keep # it here as well due to being a more practical version of the issue. crf = CartesianRepresentation(np.array([3, 0, 4], dtype=float) * u.pc) srf = SphericalRepresentation.from_cartesian(crf) # does not error in 8615 cr = CartesianRepresentation(np.array([3, 0, 4], dtype='f4') * u.pc) sr = SphericalRepresentation.from_cartesian(cr) # errors in 8615 assert_quantity_allclose(sr.distance, 5 * u.pc) assert_quantity_allclose(srf.distance, 5 * u.pc) def test_regression_8924(): """This checks that the ValueError in BaseRepresentation._re_represent_differentials is raised properly """ # A case where the representation has a 's' differential, but we try to # re-represent only with an 's2' differential rep = CartesianRepresentation(1, 2, 3, unit=u.kpc) dif = CartesianDifferential(4, 5, 6, u.km/u.s) rep = rep.with_differentials(dif) with pytest.raises(ValueError): rep._re_represent_differentials(CylindricalRepresentation, {'s2': CylindricalDifferential}) def test_regression_10092(): """ Check that we still get a proper motion even for SkyCoords without distance """ c = SkyCoord(l=10*u.degree, b=45*u.degree, pm_l_cosb=34*u.mas/u.yr, pm_b=-117*u.mas/u.yr, frame='galactic', obstime=Time('1988-12-18 05:11:23.5')) with pytest.warns(ErfaWarning, match='ERFA function "pmsafe" yielded .*'): # expect ErfaWarning here newc = c.apply_space_motion(dt=10*u.year) assert_quantity_allclose(newc.pm_l_cosb, 33.99980714*u.mas/u.yr, atol=1.0e-5*u.mas/u.yr) def test_regression_10226(): # Dictionary representation of SkyCoord should contain differentials. sc = SkyCoord([270, 280]*u.deg, [30, 35]*u.deg, [10, 11]*u.pc, radial_velocity=[20, -20]*u.km/u.s) sc_as_dict = sc.info._represent_as_dict() assert 'radial_velocity' in sc_as_dict # But only the components that have been specified. assert 'pm_dec' not in sc_as_dict @pytest.mark.parametrize('mjd', ( 52000, [52000], [[52000]], [52001, 52002], [[52001], [52002]])) def test_regression_10422(mjd): """ Check that we can get a GCRS for a scalar EarthLocation and a size=1 non-scalar Time. """ # Avoid trying to download new IERS data. with iers.earth_orientation_table.set(iers.IERS_B.open(iers.IERS_B_FILE)): t = Time(mjd, format="mjd", scale="tai") loc = EarthLocation(88258.0 * u.m, -4924882.2 * u.m, 3943729.0 * u.m) p, v = loc.get_gcrs_posvel(obstime=t) assert p.shape == v.shape == t.shape @pytest.mark.remote_data def test_regression_10291(): """ According to https://eclipse.gsfc.nasa.gov/OH/transit12.html, the minimum separation between Venus and the Sun during the 2012 transit is 554 arcseconds for an observer at the Geocenter. If light deflection from the Sun is incorrectly applied, this increases to 557 arcseconds. """ t = Time('2012-06-06 01:29:36') sun = get_body('sun', t) venus = get_body('venus', t) assert_quantity_allclose(venus.separation(sun), 554.427*u.arcsecond, atol=0.001*u.arcsecond)
b194abc368a899add1cf600e133a1e30c21a6bd75cc0b4f5d790fa95ec920c1e
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np from numpy import testing as npt from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy import units as u from astropy.coordinates import matching from astropy.utils.compat.optional_deps import HAS_SCIPY # noqa """ These are the tests for coordinate matching. Note that this requires scipy. """ @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy.") def test_matching_function(): from astropy.coordinates import ICRS from astropy.coordinates.matching import match_coordinates_3d # this only uses match_coordinates_3d because that's the actual implementation cmatch = ICRS([4, 2.1]*u.degree, [0, 0]*u.degree) ccatalog = ICRS([1, 2, 3, 4]*u.degree, [0, 0, 0, 0]*u.degree) idx, d2d, d3d = match_coordinates_3d(cmatch, ccatalog) npt.assert_array_equal(idx, [3, 1]) npt.assert_array_almost_equal(d2d.degree, [0, 0.1]) assert d3d.value[0] == 0 idx, d2d, d3d = match_coordinates_3d(cmatch, ccatalog, nthneighbor=2) assert np.all(idx == 2) npt.assert_array_almost_equal(d2d.degree, [1, 0.9]) npt.assert_array_less(d3d.value, 0.02) @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy.") def test_matching_function_3d_and_sky(): from astropy.coordinates import ICRS from astropy.coordinates.matching import match_coordinates_3d, match_coordinates_sky cmatch = ICRS([4, 2.1]*u.degree, [0, 0]*u.degree, distance=[1, 5] * u.kpc) ccatalog = ICRS([1, 2, 3, 4]*u.degree, [0, 0, 0, 0]*u.degree, distance=[1, 1, 1, 5] * u.kpc) idx, d2d, d3d = match_coordinates_3d(cmatch, ccatalog) npt.assert_array_equal(idx, [2, 3]) assert_allclose(d2d, [1, 1.9] * u.deg) assert np.abs(d3d[0].to_value(u.kpc) - np.radians(1)) < 1e-6 assert np.abs(d3d[1].to_value(u.kpc) - 5*np.radians(1.9)) < 1e-5 idx, d2d, d3d = match_coordinates_sky(cmatch, ccatalog) npt.assert_array_equal(idx, [3, 1]) assert_allclose(d2d, [0, 0.1] * u.deg) assert_allclose(d3d, [4, 4.0000019] * u.kpc) @pytest.mark.parametrize('functocheck, args, defaultkdtname, bothsaved', [(matching.match_coordinates_3d, [], 'kdtree_3d', False), (matching.match_coordinates_sky, [], 'kdtree_sky', False), (matching.search_around_3d, [1*u.kpc], 'kdtree_3d', True), (matching.search_around_sky, [1*u.deg], 'kdtree_sky', False) ]) @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy.") def test_kdtree_storage(functocheck, args, defaultkdtname, bothsaved): from astropy.coordinates import ICRS def make_scs(): cmatch = ICRS([4, 2.1]*u.degree, [0, 0]*u.degree, distance=[1, 2]*u.kpc) ccatalog = ICRS([1, 2, 3, 4]*u.degree, [0, 0, 0, 0]*u.degree, distance=[1, 2, 3, 4]*u.kpc) return cmatch, ccatalog cmatch, ccatalog = make_scs() functocheck(cmatch, ccatalog, *args, storekdtree=False) assert 'kdtree' not in ccatalog.cache assert defaultkdtname not in ccatalog.cache cmatch, ccatalog = make_scs() functocheck(cmatch, ccatalog, *args) assert defaultkdtname in ccatalog.cache assert 'kdtree' not in ccatalog.cache cmatch, ccatalog = make_scs() functocheck(cmatch, ccatalog, *args, storekdtree=True) assert 'kdtree' in ccatalog.cache assert defaultkdtname not in ccatalog.cache cmatch, ccatalog = make_scs() assert 'tislit_cheese' not in ccatalog.cache functocheck(cmatch, ccatalog, *args, storekdtree='tislit_cheese') assert 'tislit_cheese' in ccatalog.cache assert defaultkdtname not in ccatalog.cache assert 'kdtree' not in ccatalog.cache if bothsaved: assert 'tislit_cheese' in cmatch.cache assert defaultkdtname not in cmatch.cache assert 'kdtree' not in cmatch.cache else: assert 'tislit_cheese' not in cmatch.cache # now a bit of a hacky trick to make sure it at least tries to *use* it ccatalog.cache['tislit_cheese'] = 1 cmatch.cache['tislit_cheese'] = 1 with pytest.raises(TypeError) as e: functocheck(cmatch, ccatalog, *args, storekdtree='tislit_cheese') assert 'KD' in e.value.args[0] @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy.") def test_python_kdtree(monkeypatch): from astropy.coordinates import ICRS cmatch = ICRS([4, 2.1]*u.degree, [0, 0]*u.degree, distance=[1, 2]*u.kpc) ccatalog = ICRS([1, 2, 3, 4]*u.degree, [0, 0, 0, 0]*u.degree, distance=[1, 2, 3, 4]*u.kpc) monkeypatch.delattr("scipy.spatial.cKDTree") with pytest.warns(UserWarning, match=r'C-based KD tree not found'): matching.match_coordinates_sky(cmatch, ccatalog) @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy.") def test_matching_method(): from astropy.coordinates import ICRS, SkyCoord from astropy.utils import NumpyRNGContext from astropy.coordinates.matching import match_coordinates_3d, match_coordinates_sky with NumpyRNGContext(987654321): cmatch = ICRS(np.random.rand(20) * 360.*u.degree, (np.random.rand(20) * 180. - 90.)*u.degree) ccatalog = ICRS(np.random.rand(100) * 360. * u.degree, (np.random.rand(100) * 180. - 90.)*u.degree) idx1, d2d1, d3d1 = SkyCoord(cmatch).match_to_catalog_3d(ccatalog) idx2, d2d2, d3d2 = match_coordinates_3d(cmatch, ccatalog) npt.assert_array_equal(idx1, idx2) assert_allclose(d2d1, d2d2) assert_allclose(d3d1, d3d2) # should be the same as above because there's no distance, but just make sure this method works idx1, d2d1, d3d1 = SkyCoord(cmatch).match_to_catalog_sky(ccatalog) idx2, d2d2, d3d2 = match_coordinates_sky(cmatch, ccatalog) npt.assert_array_equal(idx1, idx2) assert_allclose(d2d1, d2d2) assert_allclose(d3d1, d3d2) assert len(idx1) == len(d2d1) == len(d3d1) == 20 @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy") def test_search_around(): from astropy.coordinates import ICRS, SkyCoord from astropy.coordinates.matching import search_around_sky, search_around_3d coo1 = ICRS([4, 2.1]*u.degree, [0, 0]*u.degree, distance=[1, 5] * u.kpc) coo2 = ICRS([1, 2, 3, 4]*u.degree, [0, 0, 0, 0]*u.degree, distance=[1, 1, 1, 5] * u.kpc) idx1_1deg, idx2_1deg, d2d_1deg, d3d_1deg = search_around_sky(coo1, coo2, 1.01*u.deg) idx1_0p05deg, idx2_0p05deg, d2d_0p05deg, d3d_0p05deg = search_around_sky(coo1, coo2, 0.05*u.deg) assert list(zip(idx1_1deg, idx2_1deg)) == [(0, 2), (0, 3), (1, 1), (1, 2)] assert_allclose(d2d_1deg[0], 1.0*u.deg, atol=1e-14*u.deg, rtol=0) assert_allclose(d2d_1deg, [1, 0, .1, .9]*u.deg) assert list(zip(idx1_0p05deg, idx2_0p05deg)) == [(0, 3)] idx1_1kpc, idx2_1kpc, d2d_1kpc, d3d_1kpc = search_around_3d(coo1, coo2, 1*u.kpc) idx1_sm, idx2_sm, d2d_sm, d3d_sm = search_around_3d(coo1, coo2, 0.05*u.kpc) assert list(zip(idx1_1kpc, idx2_1kpc)) == [(0, 0), (0, 1), (0, 2), (1, 3)] assert list(zip(idx1_sm, idx2_sm)) == [(0, 1), (0, 2)] assert_allclose(d2d_sm, [2, 1]*u.deg) # Test for the non-matches, #4877 coo1 = ICRS([4.1, 2.1]*u.degree, [0, 0]*u.degree, distance=[1, 5] * u.kpc) idx1, idx2, d2d, d3d = search_around_sky(coo1, coo2, 1*u.arcsec) assert idx1.size == idx2.size == d2d.size == d3d.size == 0 assert idx1.dtype == idx2.dtype == int assert d2d.unit == u.deg assert d3d.unit == u.kpc idx1, idx2, d2d, d3d = search_around_3d(coo1, coo2, 1*u.m) assert idx1.size == idx2.size == d2d.size == d3d.size == 0 assert idx1.dtype == idx2.dtype == int assert d2d.unit == u.deg assert d3d.unit == u.kpc # Test when one or both of the coordinate arrays is empty, #4875 empty = ICRS(ra=[] * u.degree, dec=[] * u.degree, distance=[] * u.kpc) idx1, idx2, d2d, d3d = search_around_sky(empty, coo2, 1*u.arcsec) assert idx1.size == idx2.size == d2d.size == d3d.size == 0 assert idx1.dtype == idx2.dtype == int assert d2d.unit == u.deg assert d3d.unit == u.kpc idx1, idx2, d2d, d3d = search_around_sky(coo1, empty, 1*u.arcsec) assert idx1.size == idx2.size == d2d.size == d3d.size == 0 assert idx1.dtype == idx2.dtype == int assert d2d.unit == u.deg assert d3d.unit == u.kpc empty = ICRS(ra=[] * u.degree, dec=[] * u.degree, distance=[] * u.kpc) idx1, idx2, d2d, d3d = search_around_sky(empty, empty[:], 1*u.arcsec) assert idx1.size == idx2.size == d2d.size == d3d.size == 0 assert idx1.dtype == idx2.dtype == int assert d2d.unit == u.deg assert d3d.unit == u.kpc idx1, idx2, d2d, d3d = search_around_3d(empty, coo2, 1*u.m) assert idx1.size == idx2.size == d2d.size == d3d.size == 0 assert idx1.dtype == idx2.dtype == int assert d2d.unit == u.deg assert d3d.unit == u.kpc idx1, idx2, d2d, d3d = search_around_3d(coo1, empty, 1*u.m) assert idx1.size == idx2.size == d2d.size == d3d.size == 0 assert idx1.dtype == idx2.dtype == int assert d2d.unit == u.deg assert d3d.unit == u.kpc idx1, idx2, d2d, d3d = search_around_3d(empty, empty[:], 1*u.m) assert idx1.size == idx2.size == d2d.size == d3d.size == 0 assert idx1.dtype == idx2.dtype == int assert d2d.unit == u.deg assert d3d.unit == u.kpc # Test that input without distance units results in a # 'dimensionless_unscaled' unit cempty = SkyCoord(ra=[], dec=[], unit=u.deg) idx1, idx2, d2d, d3d = search_around_3d(cempty, cempty[:], 1*u.m) assert d2d.unit == u.deg assert d3d.unit == u.dimensionless_unscaled idx1, idx2, d2d, d3d = search_around_sky(cempty, cempty[:], 1*u.m) assert d2d.unit == u.deg assert d3d.unit == u.dimensionless_unscaled @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy") def test_search_around_scalar(): from astropy.coordinates import SkyCoord, Angle cat = SkyCoord([1, 2, 3], [-30, 45, 8], unit="deg") target = SkyCoord('1.1 -30.1', unit="deg") with pytest.raises(ValueError) as excinfo: cat.search_around_sky(target, Angle('2d')) # make sure the error message is *specific* to search_around_sky rather than # generic as reported in #3359 assert 'search_around_sky' in str(excinfo.value) with pytest.raises(ValueError) as excinfo: cat.search_around_3d(target, Angle('2d')) assert 'search_around_3d' in str(excinfo.value) @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy") def test_match_catalog_empty(): from astropy.coordinates import SkyCoord sc1 = SkyCoord(1, 2, unit="deg") cat0 = SkyCoord([], [], unit="deg") cat1 = SkyCoord([1.1], [2.1], unit="deg") cat2 = SkyCoord([1.1, 3], [2.1, 5], unit="deg") sc1.match_to_catalog_sky(cat2) sc1.match_to_catalog_3d(cat2) sc1.match_to_catalog_sky(cat1) sc1.match_to_catalog_3d(cat1) with pytest.raises(ValueError) as excinfo: sc1.match_to_catalog_sky(cat1[0]) assert 'catalog' in str(excinfo.value) with pytest.raises(ValueError) as excinfo: sc1.match_to_catalog_3d(cat1[0]) assert 'catalog' in str(excinfo.value) with pytest.raises(ValueError) as excinfo: sc1.match_to_catalog_sky(cat0) assert 'catalog' in str(excinfo.value) with pytest.raises(ValueError) as excinfo: sc1.match_to_catalog_3d(cat0) assert 'catalog' in str(excinfo.value) @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy") @pytest.mark.filterwarnings( r'ignore:invalid value encountered in.*:RuntimeWarning') def test_match_catalog_nan(): from astropy.coordinates import SkyCoord, Galactic sc1 = SkyCoord(1, 2, unit="deg") sc_with_nans = SkyCoord(1, np.nan, unit="deg") cat = SkyCoord([1.1, 3], [2.1, 5], unit="deg") cat_with_nans = SkyCoord([1.1, np.nan], [2.1, 5], unit="deg") galcat_with_nans = Galactic([1.2, np.nan]*u.deg, [5.6, 7.8]*u.deg) with pytest.raises(ValueError) as excinfo: sc1.match_to_catalog_sky(cat_with_nans) assert 'Catalog coordinates cannot contain' in str(excinfo.value) with pytest.raises(ValueError) as excinfo: sc1.match_to_catalog_3d(cat_with_nans) assert 'Catalog coordinates cannot contain' in str(excinfo.value) with pytest.raises(ValueError) as excinfo: sc1.match_to_catalog_sky(galcat_with_nans) assert 'Catalog coordinates cannot contain' in str(excinfo.value) with pytest.raises(ValueError) as excinfo: sc1.match_to_catalog_3d(galcat_with_nans) assert 'Catalog coordinates cannot contain' in str(excinfo.value) with pytest.raises(ValueError) as excinfo: sc_with_nans.match_to_catalog_sky(cat) assert 'Matching coordinates cannot contain' in str(excinfo.value) with pytest.raises(ValueError) as excinfo: sc_with_nans.match_to_catalog_3d(cat) assert 'Matching coordinates cannot contain' in str(excinfo.value) @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy") def test_match_catalog_nounit(): from astropy.coordinates import ICRS, CartesianRepresentation from astropy.coordinates.matching import match_coordinates_sky i1 = ICRS([[1], [2], [3]], representation_type=CartesianRepresentation) i2 = ICRS([[1], [2], [4, 5]], representation_type=CartesianRepresentation) i, sep, sep3d = match_coordinates_sky(i1, i2) assert_allclose(sep3d, [1]*u.dimensionless_unscaled)
1e86f14b133d3776fcf5d3530ab727138d9525b9ef76692ba96d6e482bd45e90
# Licensed under a 3-clause BSD style license - see LICENSE.rst from contextlib import ExitStack import pytest import numpy as np from numpy import testing as npt from astropy import units as u from astropy.time import Time from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy.utils.compat import NUMPY_LT_1_19, NUMPY_LT_1_24 from astropy.utils.exceptions import AstropyDeprecationWarning from astropy.coordinates import (Angle, ICRS, FK4, FK5, Galactic, SkyCoord, CartesianRepresentation) def test_angle_arrays(): """ Test arrays values with Angle objects. """ # Tests incomplete a1 = Angle([0, 45, 90, 180, 270, 360, 720.], unit=u.degree) npt.assert_almost_equal([0., 45., 90., 180., 270., 360., 720.], a1.value) a2 = Angle(np.array([-90, -45, 0, 45, 90, 180, 270, 360]), unit=u.degree) npt.assert_almost_equal([-90, -45, 0, 45, 90, 180, 270, 360], a2.value) a3 = Angle(["12 degrees", "3 hours", "5 deg", "4rad"]) npt.assert_almost_equal([12., 45., 5., 229.18311805], a3.value) assert a3.unit == u.degree a4 = Angle(["12 degrees", "3 hours", "5 deg", "4rad"], u.radian) npt.assert_almost_equal(a4.degree, a3.value) assert a4.unit == u.radian a5 = Angle([0, 45, 90, 180, 270, 360], unit=u.degree) a6 = a5.sum() npt.assert_almost_equal(a6.value, 945.0) assert a6.unit is u.degree with ExitStack() as stack: if NUMPY_LT_1_24: stack.enter_context(pytest.raises(TypeError)) # Arrays where the elements are Angle objects are not supported -- it's # really tricky to do correctly, if at all, due to the possibility of # nesting. if not NUMPY_LT_1_19: stack.enter_context( pytest.warns(DeprecationWarning, match='automatic object dtype is deprecated')) else: stack.enter_context(pytest.raises(ValueError)) a7 = Angle([a1, a2, a3], unit=u.degree) a8 = Angle(["04:02:02", "03:02:01", "06:02:01"], unit=u.degree) npt.assert_almost_equal(a8.value, [4.03388889, 3.03361111, 6.03361111]) a9 = Angle(np.array(["04:02:02", "03:02:01", "06:02:01"]), unit=u.degree) npt.assert_almost_equal(a9.value, a8.value) with pytest.raises(u.UnitsError): a10 = Angle(["04:02:02", "03:02:01", "06:02:01"]) def test_dms(): a1 = Angle([0, 45.5, -45.5], unit=u.degree) d, m, s = a1.dms npt.assert_almost_equal(d, [0, 45, -45]) npt.assert_almost_equal(m, [0, 30, -30]) npt.assert_almost_equal(s, [0, 0, -0]) def test_hms(): a1 = Angle([0, 11.5, -11.5], unit=u.hour) h, m, s = a1.hms npt.assert_almost_equal(h, [0, 11, -11]) npt.assert_almost_equal(m, [0, 30, -30]) npt.assert_almost_equal(s, [0, 0, -0]) hms = a1.hms hours = hms[0] + hms[1] / 60. + hms[2] / 3600. npt.assert_almost_equal(a1.hour, hours) with pytest.warns(AstropyDeprecationWarning, match='hms_to_hours'): a2 = Angle(hms, unit=u.hour) npt.assert_almost_equal(a2.radian, a1.radian) def test_array_coordinates_creation(): """ Test creating coordinates from arrays. """ c = ICRS(np.array([1, 2])*u.deg, np.array([3, 4])*u.deg) assert not c.ra.isscalar with pytest.raises(ValueError): c = ICRS(np.array([1, 2])*u.deg, np.array([3, 4, 5])*u.deg) with pytest.raises(ValueError): c = ICRS(np.array([1, 2, 4, 5])*u.deg, np.array([[3, 4], [5, 6]])*u.deg) # make sure cartesian initialization also works cart = CartesianRepresentation(x=[1., 2.]*u.kpc, y=[3., 4.]*u.kpc, z=[5., 6.]*u.kpc) c = ICRS(cart) # also ensure strings can be arrays c = SkyCoord(['1d0m0s', '2h02m00.3s'], ['3d', '4d']) # but invalid strings cannot with pytest.raises(ValueError): c = SkyCoord(Angle(['10m0s', '2h02m00.3s']), Angle(['3d', '4d'])) with pytest.raises(ValueError): c = SkyCoord(Angle(['1d0m0s', '2h02m00.3s']), Angle(['3x', '4d'])) def test_array_coordinates_distances(): """ Test creating coordinates from arrays and distances. """ # correct way ICRS(ra=np.array([1, 2])*u.deg, dec=np.array([3, 4])*u.deg, distance=[.1, .2] * u.kpc) with pytest.raises(ValueError): # scalar distance and mismatched array coordinates ICRS(ra=np.array([1, 2, 3])*u.deg, dec=np.array([[3, 4], [5, 6]])*u.deg, distance=2. * u.kpc) with pytest.raises(ValueError): # more distance values than coordinates ICRS(ra=np.array([1, 2])*u.deg, dec=np.array([3, 4])*u.deg, distance=[.1, .2, 3.] * u.kpc) @pytest.mark.parametrize(('arrshape', 'distance'), [((2, ), None), ((4, 2, 5), None), ((4, 2, 5), 2 * u.kpc)]) def test_array_coordinates_transformations(arrshape, distance): """ Test transformation on coordinates with array content (first length-2 1D, then a 3D array) """ # M31 coordinates from test_transformations raarr = np.ones(arrshape) * 10.6847929 decarr = np.ones(arrshape) * 41.2690650 if distance is not None: distance = np.ones(arrshape) * distance print(raarr, decarr, distance) c = ICRS(ra=raarr*u.deg, dec=decarr*u.deg, distance=distance) g = c.transform_to(Galactic()) assert g.l.shape == arrshape npt.assert_array_almost_equal(g.l.degree, 121.17440967) npt.assert_array_almost_equal(g.b.degree, -21.57299631) if distance is not None: assert g.distance.unit == c.distance.unit # now make sure round-tripping works through FK5 c2 = c.transform_to(FK5()).transform_to(ICRS()) npt.assert_array_almost_equal(c.ra.radian, c2.ra.radian) npt.assert_array_almost_equal(c.dec.radian, c2.dec.radian) assert c2.ra.shape == arrshape if distance is not None: assert c2.distance.unit == c.distance.unit # also make sure it's possible to get to FK4, which uses a direct transform function. fk4 = c.transform_to(FK4()) npt.assert_array_almost_equal(fk4.ra.degree, 10.0004, decimal=4) npt.assert_array_almost_equal(fk4.dec.degree, 40.9953, decimal=4) assert fk4.ra.shape == arrshape if distance is not None: assert fk4.distance.unit == c.distance.unit # now check the reverse transforms run cfk4 = fk4.transform_to(ICRS()) assert cfk4.ra.shape == arrshape def test_array_precession(): """ Ensures that FK5 coordinates as arrays precess their equinoxes """ j2000 = Time('J2000') j1975 = Time('J1975') fk5 = FK5([1, 1.1]*u.radian, [0.5, 0.6]*u.radian) assert fk5.equinox.jyear == j2000.jyear fk5_2 = fk5.transform_to(FK5(equinox=j1975)) assert fk5_2.equinox.jyear == j1975.jyear npt.assert_array_less(0.05, np.abs(fk5.ra.degree - fk5_2.ra.degree)) npt.assert_array_less(0.05, np.abs(fk5.dec.degree - fk5_2.dec.degree)) def test_array_separation(): c1 = ICRS([0, 0]*u.deg, [0, 0]*u.deg) c2 = ICRS([1, 2]*u.deg, [0, 0]*u.deg) npt.assert_array_almost_equal(c1.separation(c2).degree, [1, 2]) c3 = ICRS([0, 3.]*u.deg, [0., 0]*u.deg, distance=[1, 1.] * u.kpc) c4 = ICRS([1, 1.]*u.deg, [0., 0]*u.deg, distance=[1, 1.] * u.kpc) # the 3-1 separation should be twice the 0-1 separation, but not *exactly* the same sep = c3.separation_3d(c4) sepdiff = sep[1] - (2 * sep[0]) assert abs(sepdiff.value) < 1e-5 assert sepdiff != 0 def test_array_indexing(): ra = np.linspace(0, 360, 10) dec = np.linspace(-90, 90, 10) j1975 = Time(1975, format='jyear') c1 = FK5(ra*u.deg, dec*u.deg, equinox=j1975) c2 = c1[4] assert c2.ra.degree == 160 assert c2.dec.degree == -10 c3 = c1[2:5] assert_allclose(c3.ra, [80, 120, 160] * u.deg) assert_allclose(c3.dec, [-50, -30, -10] * u.deg) c4 = c1[np.array([2, 5, 8])] assert_allclose(c4.ra, [80, 200, 320] * u.deg) assert_allclose(c4.dec, [-50, 10, 70] * u.deg) # now make sure the equinox is preserved assert c2.equinox == c1.equinox assert c3.equinox == c1.equinox assert c4.equinox == c1.equinox def test_array_len(): input_length = [1, 5] for length in input_length: ra = np.linspace(0, 360, length) dec = np.linspace(0, 90, length) c = ICRS(ra*u.deg, dec*u.deg) assert len(c) == length assert c.shape == (length,) with pytest.raises(TypeError): c = ICRS(0*u.deg, 0*u.deg) len(c) assert c.shape == tuple() def test_array_eq(): c1 = ICRS([1, 2]*u.deg, [3, 4]*u.deg) c2 = ICRS([1, 2]*u.deg, [3, 5]*u.deg) c3 = ICRS([1, 3]*u.deg, [3, 4]*u.deg) c4 = ICRS([1, 2]*u.deg, [3, 4.2]*u.deg) assert np.all(c1 == c1) assert np.any(c1 != c2) assert np.any(c1 != c3) assert np.any(c1 != c4)
10fe8f481e13d291c02f0d37a72a3e14f0bcb103b0f59004f0f854b69232ac20
# Licensed under a 3-clause BSD style license - see LICENSE.rst from copy import deepcopy import pytest import numpy as np from numpy.testing import assert_allclose, assert_array_equal from astropy import units as u from astropy.tests.helper import (assert_quantity_allclose as assert_allclose_quantity) from astropy.utils import isiterable from astropy.utils.exceptions import DuplicateRepresentationWarning from astropy.coordinates.angles import Longitude, Latitude, Angle from astropy.coordinates.distances import Distance from astropy.coordinates.matrix_utilities import rotation_matrix from astropy.coordinates.representation import ( REPRESENTATION_CLASSES, DIFFERENTIAL_CLASSES, DUPLICATE_REPRESENTATIONS, BaseRepresentation, SphericalRepresentation, UnitSphericalRepresentation, SphericalCosLatDifferential, CartesianRepresentation, RadialRepresentation, RadialDifferential, CylindricalRepresentation, PhysicsSphericalRepresentation, CartesianDifferential, SphericalDifferential, CylindricalDifferential, PhysicsSphericalDifferential, UnitSphericalDifferential, UnitSphericalCosLatDifferential) # create matrices for use in testing ``.transform()`` methods matrices = { "rotation": rotation_matrix(-10, "z", u.deg), "general": np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) } # Preserve the original REPRESENTATION_CLASSES dict so that importing # the test file doesn't add a persistent test subclass (LogDRepresentation) def setup_function(func): func.REPRESENTATION_CLASSES_ORIG = deepcopy(REPRESENTATION_CLASSES) func.DUPLICATE_REPRESENTATIONS_ORIG = deepcopy(DUPLICATE_REPRESENTATIONS) def teardown_function(func): REPRESENTATION_CLASSES.clear() REPRESENTATION_CLASSES.update(func.REPRESENTATION_CLASSES_ORIG) DUPLICATE_REPRESENTATIONS.clear() DUPLICATE_REPRESENTATIONS.update(func.DUPLICATE_REPRESENTATIONS_ORIG) def components_equal(rep1, rep2): result = True if type(rep1) is not type(rep2): return False for component in rep1.components: result &= getattr(rep1, component) == getattr(rep2, component) return result def components_allclose(rep1, rep2): result = True if type(rep1) is not type(rep2): return False for component in rep1.components: result &= u.allclose(getattr(rep1, component), getattr(rep2, component)) return result def representation_equal(rep1, rep2): result = True if type(rep1) is not type(rep2): return False if getattr(rep1, '_differentials', False): if rep1._differentials.keys() != rep2._differentials.keys(): return False for key, diff1 in rep1._differentials.items(): result &= components_equal(diff1, rep2._differentials[key]) elif getattr(rep2, '_differentials', False): return False return result & components_equal(rep1, rep2) def representation_equal_up_to_angular_type(rep1, rep2): result = True if type(rep1) is not type(rep2): return False if getattr(rep1, '_differentials', False): if rep1._differentials.keys() != rep2._differentials.keys(): return False for key, diff1 in rep1._differentials.items(): result &= components_allclose(diff1, rep2._differentials[key]) elif getattr(rep2, '_differentials', False): return False return result & components_allclose(rep1, rep2) class TestRadialRepresentation: def test_transform(self): """Test the ``transform`` method. Only multiplication matrices pass.""" rep = RadialRepresentation(distance=10 * u.kpc) # a rotation matrix does not work matrix = rotation_matrix(10 * u.deg) with pytest.raises(ValueError, match="scaled identity matrix"): rep.transform(matrix) # only a scaled identity matrix matrix = 3 * np.identity(3) newrep = rep.transform(matrix) assert newrep.distance == 30 * u.kpc # let's also check with differentials dif = RadialDifferential(d_distance=-3 * u.km / u.s) rep = rep.with_differentials(dict(s=dif)) newrep = rep.transform(matrix) assert newrep.distance == 30 * u.kpc assert newrep.differentials["s"].d_distance == -9 * u.km / u.s class TestSphericalRepresentation: def test_name(self): assert SphericalRepresentation.get_name() == 'spherical' assert SphericalRepresentation.get_name() in REPRESENTATION_CLASSES def test_empty_init(self): with pytest.raises(TypeError) as exc: s = SphericalRepresentation() def test_init_quantity(self): s3 = SphericalRepresentation(lon=8 * u.hourangle, lat=5 * u.deg, distance=10 * u.kpc) assert s3.lon == 8. * u.hourangle assert s3.lat == 5. * u.deg assert s3.distance == 10 * u.kpc assert isinstance(s3.lon, Longitude) assert isinstance(s3.lat, Latitude) assert isinstance(s3.distance, Distance) def test_init_no_mutate_input(self): lon = -1 * u.hourangle s = SphericalRepresentation(lon=lon, lat=-1 * u.deg, distance=1 * u.kpc, copy=True) # The longitude component should be wrapped at 24 hours assert_allclose_quantity(s.lon, 23 * u.hourangle) # The input should not have been mutated by the constructor assert_allclose_quantity(lon, -1 * u.hourangle) def test_init_lonlat(self): s2 = SphericalRepresentation(Longitude(8, u.hour), Latitude(5, u.deg), Distance(10, u.kpc)) assert s2.lon == 8. * u.hourangle assert s2.lat == 5. * u.deg assert s2.distance == 10. * u.kpc assert isinstance(s2.lon, Longitude) assert isinstance(s2.lat, Latitude) assert isinstance(s2.distance, Distance) # also test that wrap_angle is preserved s3 = SphericalRepresentation(Longitude(-90, u.degree, wrap_angle=180*u.degree), Latitude(-45, u.degree), Distance(1., u.Rsun)) assert s3.lon == -90. * u.degree assert s3.lon.wrap_angle == 180 * u.degree def test_init_subclass(self): class Longitude180(Longitude): _default_wrap_angle = 180*u.degree s = SphericalRepresentation(Longitude180(-90, u.degree), Latitude(-45, u.degree), Distance(1., u.Rsun)) assert isinstance(s.lon, Longitude180) assert s.lon == -90. * u.degree assert s.lon.wrap_angle == 180 * u.degree def test_init_array(self): s1 = SphericalRepresentation(lon=[8, 9] * u.hourangle, lat=[5, 6] * u.deg, distance=[1, 2] * u.kpc) assert_allclose(s1.lon.degree, [120, 135]) assert_allclose(s1.lat.degree, [5, 6]) assert_allclose(s1.distance.kpc, [1, 2]) assert isinstance(s1.lon, Longitude) assert isinstance(s1.lat, Latitude) assert isinstance(s1.distance, Distance) def test_init_array_nocopy(self): lon = Longitude([8, 9] * u.hourangle) lat = Latitude([5, 6] * u.deg) distance = Distance([1, 2] * u.kpc) s1 = SphericalRepresentation(lon=lon, lat=lat, distance=distance, copy=False) lon[:] = [1, 2] * u.rad lat[:] = [3, 4] * u.arcmin distance[:] = [8, 9] * u.Mpc assert_allclose_quantity(lon, s1.lon) assert_allclose_quantity(lat, s1.lat) assert_allclose_quantity(distance, s1.distance) def test_init_float32_array(self): """Regression test against #2983""" lon = Longitude(np.float32([1., 2.]), u.degree) lat = Latitude(np.float32([3., 4.]), u.degree) s1 = UnitSphericalRepresentation(lon=lon, lat=lat, copy=False) assert s1.lon.dtype == np.float32 assert s1.lat.dtype == np.float32 assert s1._values['lon'].dtype == np.float32 assert s1._values['lat'].dtype == np.float32 def test_reprobj(self): s1 = SphericalRepresentation(lon=8 * u.hourangle, lat=5 * u.deg, distance=10 * u.kpc) s2 = SphericalRepresentation.from_representation(s1) assert_allclose_quantity(s2.lon, 8. * u.hourangle) assert_allclose_quantity(s2.lat, 5. * u.deg) assert_allclose_quantity(s2.distance, 10 * u.kpc) s3 = SphericalRepresentation(s1) assert representation_equal(s1, s3) def test_broadcasting(self): s1 = SphericalRepresentation(lon=[8, 9] * u.hourangle, lat=[5, 6] * u.deg, distance=10 * u.kpc) assert_allclose_quantity(s1.lon, [120, 135] * u.degree) assert_allclose_quantity(s1.lat, [5, 6] * u.degree) assert_allclose_quantity(s1.distance, [10, 10] * u.kpc) def test_broadcasting_mismatch(self): with pytest.raises(ValueError) as exc: s1 = SphericalRepresentation(lon=[8, 9, 10] * u.hourangle, lat=[5, 6] * u.deg, distance=[1, 2] * u.kpc) assert exc.value.args[0] == "Input parameters lon, lat, and distance cannot be broadcast" def test_broadcasting_and_nocopy(self): s1 = SphericalRepresentation(lon=[200] * u.deg, lat=[0] * u.deg, distance=[0] * u.kpc, copy=False) # With no copying, we should be able to modify the wrap angle of the longitude component s1.lon.wrap_angle = 180 * u.deg s2 = SphericalRepresentation(lon=[200] * u.deg, lat=0 * u.deg, distance=0 * u.kpc, copy=False) # We should be able to modify the wrap angle of the longitude component even if other # components need to be broadcasted s2.lon.wrap_angle = 180 * u.deg def test_readonly(self): s1 = SphericalRepresentation(lon=8 * u.hourangle, lat=5 * u.deg, distance=1. * u.kpc) with pytest.raises(AttributeError): s1.lon = 1. * u.deg with pytest.raises(AttributeError): s1.lat = 1. * u.deg with pytest.raises(AttributeError): s1.distance = 1. * u.kpc def test_getitem_len_iterable(self): s = SphericalRepresentation(lon=np.arange(10) * u.deg, lat=-np.arange(10) * u.deg, distance=1 * u.kpc) s_slc = s[2:8:2] assert_allclose_quantity(s_slc.lon, [2, 4, 6] * u.deg) assert_allclose_quantity(s_slc.lat, [-2, -4, -6] * u.deg) assert_allclose_quantity(s_slc.distance, [1, 1, 1] * u.kpc) assert len(s) == 10 assert isiterable(s) def test_getitem_len_iterable_scalar(self): s = SphericalRepresentation(lon=1 * u.deg, lat=-2 * u.deg, distance=3 * u.kpc) with pytest.raises(TypeError): s_slc = s[0] with pytest.raises(TypeError): len(s) assert not isiterable(s) def test_setitem(self): s = SphericalRepresentation(lon=np.arange(5) * u.deg, lat=-np.arange(5) * u.deg, distance=1 * u.kpc) s[:2] = SphericalRepresentation(lon=10.*u.deg, lat=2.*u.deg, distance=5.*u.kpc) assert_allclose_quantity(s.lon, [10, 10, 2, 3, 4] * u.deg) assert_allclose_quantity(s.lat, [2, 2, -2, -3, -4] * u.deg) assert_allclose_quantity(s.distance, [5, 5, 1, 1, 1] * u.kpc) def test_negative_distance(self): """Only allowed if explicitly passed on.""" with pytest.raises(ValueError, match='allow_negative'): SphericalRepresentation(10*u.deg, 20*u.deg, -10*u.m) s1 = SphericalRepresentation(10*u.deg, 20*u.deg, Distance(-10*u.m, allow_negative=True)) assert s1.distance == -10.*u.m def test_nan_distance(self): """ This is a regression test: calling represent_as() and passing in the same class as the object shouldn't round-trip through cartesian. """ sph = SphericalRepresentation(1*u.deg, 2*u.deg, np.nan*u.kpc) new_sph = sph.represent_as(SphericalRepresentation) assert_allclose_quantity(new_sph.lon, sph.lon) assert_allclose_quantity(new_sph.lat, sph.lat) dif = SphericalCosLatDifferential(1*u.mas/u.yr, 2*u.mas/u.yr, 3*u.km/u.s) sph = sph.with_differentials(dif) new_sph = sph.represent_as(SphericalRepresentation) assert_allclose_quantity(new_sph.lon, sph.lon) assert_allclose_quantity(new_sph.lat, sph.lat) def test_raise_on_extra_arguments(self): with pytest.raises(TypeError, match='got multiple values'): SphericalRepresentation(1*u.deg, 2*u.deg, 1.*u.kpc, lat=10) with pytest.raises(TypeError, match='unexpected keyword.*parrot'): SphericalRepresentation(1*u.deg, 2*u.deg, 1.*u.kpc, parrot=10) def test_representation_shortcuts(self): """Test that shortcuts in ``represent_as`` don't fail.""" difs = SphericalCosLatDifferential(4*u.mas/u.yr,5*u.mas/u.yr,6*u.km/u.s) sph = SphericalRepresentation(1*u.deg, 2*u.deg, 3*u.kpc, differentials={'s': difs}) got = sph.represent_as(PhysicsSphericalRepresentation, PhysicsSphericalDifferential) assert np.may_share_memory(sph.lon, got.phi) assert np.may_share_memory(sph.distance, got.r) expected = BaseRepresentation.represent_as( sph, PhysicsSphericalRepresentation, PhysicsSphericalDifferential) # equal up to angular type assert representation_equal_up_to_angular_type(got, expected) got = sph.represent_as(UnitSphericalRepresentation, UnitSphericalDifferential) assert np.may_share_memory(sph.lon, got.lon) assert np.may_share_memory(sph.lat, got.lat) expected = BaseRepresentation.represent_as( sph, UnitSphericalRepresentation, UnitSphericalDifferential) assert representation_equal_up_to_angular_type(got, expected) def test_transform(self): """Test ``.transform()`` on rotation and general matrices.""" # set up representation ds1 = SphericalDifferential( d_lon=[1, 2] * u.mas / u.yr, d_lat=[3, 4] * u.mas / u.yr, d_distance=[-5, 6] * u.km / u.s) s1 = SphericalRepresentation(lon=[1, 2] * u.deg, lat=[3, 4] * u.deg, distance=[5, 6] * u.kpc, differentials=ds1) # transform representation & get comparison (thru CartesianRep) s2 = s1.transform(matrices["rotation"]) ds2 = s2.differentials["s"] dexpected = SphericalDifferential.from_cartesian( ds1.to_cartesian(base=s1).transform(matrices["rotation"]), base=s2) assert_allclose_quantity(s2.lon, s1.lon + 10 * u.deg) assert_allclose_quantity(s2.lat, s1.lat) assert_allclose_quantity(s2.distance, s1.distance) # check differentials. they shouldn't have changed. assert_allclose_quantity(ds2.d_lon, ds1.d_lon) assert_allclose_quantity(ds2.d_lat, ds1.d_lat) assert_allclose_quantity(ds2.d_distance, ds1.d_distance) assert_allclose_quantity(ds2.d_lon, dexpected.d_lon) assert_allclose_quantity(ds2.d_lat, dexpected.d_lat) assert_allclose_quantity(ds2.d_distance, dexpected.d_distance) # now with a non rotation matrix # transform representation & get comparison (thru CartesianRep) s3 = s1.transform(matrices["general"]) ds3 = s3.differentials["s"] expected = (s1.represent_as(CartesianRepresentation, CartesianDifferential) .transform(matrices["general"]) .represent_as(SphericalRepresentation, SphericalDifferential)) dexpected = expected.differentials["s"] assert_allclose_quantity(s3.lon, expected.lon) assert_allclose_quantity(s3.lat, expected.lat) assert_allclose_quantity(s3.distance, expected.distance) assert_allclose_quantity(ds3.d_lon, dexpected.d_lon) assert_allclose_quantity(ds3.d_lat, dexpected.d_lat) assert_allclose_quantity(ds3.d_distance, dexpected.d_distance) def test_transform_with_NaN(self): # all over again, but with a NaN in the distance ds1 = SphericalDifferential( d_lon=[1, 2] * u.mas / u.yr, d_lat=[3, 4] * u.mas / u.yr, d_distance=[-5, 6] * u.km / u.s) s1 = SphericalRepresentation(lon=[1, 2] * u.deg, lat=[3, 4] * u.deg, distance=[5, np.nan] * u.kpc, differentials=ds1) # transform representation & get comparison (thru CartesianRep) s2 = s1.transform(matrices["rotation"]) ds2 = s2.differentials["s"] dexpected = SphericalDifferential.from_cartesian( ds1.to_cartesian(base=s1).transform(matrices["rotation"]), base=s2) assert_allclose_quantity(s2.lon, s1.lon + 10 * u.deg) assert_allclose_quantity(s2.lat, s1.lat) assert_allclose_quantity(s2.distance, s1.distance) assert_allclose_quantity(ds2.d_lon, dexpected.d_lon) assert_allclose_quantity(ds2.d_lat, dexpected.d_lat) assert_allclose_quantity(ds2.d_distance, dexpected.d_distance) # the 2nd component is NaN since the 2nd distance is NaN # TODO! this will change when ``.transform`` skips Cartesian assert_array_equal(np.isnan(ds2.d_lon), (False, True)) assert_array_equal(np.isnan(ds2.d_lat), (False, True)) assert_array_equal(np.isnan(ds2.d_distance), (False, True)) # now with a non rotation matrix s3 = s1.transform(matrices["general"]) ds3 = s3.differentials["s"] thruC = (s1.represent_as(CartesianRepresentation, CartesianDifferential) .transform(matrices["general"]) .represent_as(SphericalRepresentation, differential_class=SphericalDifferential)) dthruC = thruC.differentials["s"] # s3 should not propagate Nan. assert_array_equal(np.isnan(s3.lon), (False, False)) assert_array_equal(np.isnan(s3.lat), (False, False)) assert_array_equal(np.isnan(s3.distance), (False, True)) # ds3 does b/c currently aren't any shortcuts on the transform assert_array_equal(np.isnan(ds3.d_lon), (False, True)) assert_array_equal(np.isnan(ds3.d_lat), (False, True)) assert_array_equal(np.isnan(ds3.d_distance), (False, True)) # through Cartesian should assert_array_equal(np.isnan(thruC.lon), (False, True)) assert_array_equal(np.isnan(thruC.lat), (False, True)) assert_array_equal(np.isnan(thruC.distance), (False, True)) assert_array_equal(np.isnan(dthruC.d_lon), (False, True)) assert_array_equal(np.isnan(dthruC.d_lat), (False, True)) assert_array_equal(np.isnan(dthruC.d_distance), (False, True)) # test that they are close on the first value assert_allclose_quantity(s3.lon[0], thruC.lon[0]) assert_allclose_quantity(s3.lat[0], thruC.lat[0]) assert_allclose_quantity(ds3.d_lon[0], dthruC.d_lon[0]) assert_allclose_quantity(ds3.d_lat[0], dthruC.d_lat[0]) class TestUnitSphericalRepresentation: def test_name(self): assert UnitSphericalRepresentation.get_name() == 'unitspherical' assert UnitSphericalRepresentation.get_name() in REPRESENTATION_CLASSES def test_empty_init(self): with pytest.raises(TypeError) as exc: s = UnitSphericalRepresentation() def test_init_quantity(self): s3 = UnitSphericalRepresentation(lon=8 * u.hourangle, lat=5 * u.deg) assert s3.lon == 8. * u.hourangle assert s3.lat == 5. * u.deg assert isinstance(s3.lon, Longitude) assert isinstance(s3.lat, Latitude) def test_init_lonlat(self): s2 = UnitSphericalRepresentation(Longitude(8, u.hour), Latitude(5, u.deg)) assert s2.lon == 8. * u.hourangle assert s2.lat == 5. * u.deg assert isinstance(s2.lon, Longitude) assert isinstance(s2.lat, Latitude) def test_init_array(self): s1 = UnitSphericalRepresentation(lon=[8, 9] * u.hourangle, lat=[5, 6] * u.deg) assert_allclose(s1.lon.degree, [120, 135]) assert_allclose(s1.lat.degree, [5, 6]) assert isinstance(s1.lon, Longitude) assert isinstance(s1.lat, Latitude) def test_init_array_nocopy(self): lon = Longitude([8, 9] * u.hourangle) lat = Latitude([5, 6] * u.deg) s1 = UnitSphericalRepresentation(lon=lon, lat=lat, copy=False) lon[:] = [1, 2] * u.rad lat[:] = [3, 4] * u.arcmin assert_allclose_quantity(lon, s1.lon) assert_allclose_quantity(lat, s1.lat) def test_reprobj(self): s1 = UnitSphericalRepresentation(lon=8 * u.hourangle, lat=5 * u.deg) s2 = UnitSphericalRepresentation.from_representation(s1) assert_allclose_quantity(s2.lon, 8. * u.hourangle) assert_allclose_quantity(s2.lat, 5. * u.deg) s3 = UnitSphericalRepresentation(s1) assert representation_equal(s3, s1) def test_broadcasting(self): s1 = UnitSphericalRepresentation(lon=[8, 9] * u.hourangle, lat=[5, 6] * u.deg) assert_allclose_quantity(s1.lon, [120, 135] * u.degree) assert_allclose_quantity(s1.lat, [5, 6] * u.degree) def test_broadcasting_mismatch(self): with pytest.raises(ValueError) as exc: s1 = UnitSphericalRepresentation(lon=[8, 9, 10] * u.hourangle, lat=[5, 6] * u.deg) assert exc.value.args[0] == "Input parameters lon and lat cannot be broadcast" def test_readonly(self): s1 = UnitSphericalRepresentation(lon=8 * u.hourangle, lat=5 * u.deg) with pytest.raises(AttributeError): s1.lon = 1. * u.deg with pytest.raises(AttributeError): s1.lat = 1. * u.deg def test_getitem(self): s = UnitSphericalRepresentation(lon=np.arange(10) * u.deg, lat=-np.arange(10) * u.deg) s_slc = s[2:8:2] assert_allclose_quantity(s_slc.lon, [2, 4, 6] * u.deg) assert_allclose_quantity(s_slc.lat, [-2, -4, -6] * u.deg) def test_getitem_scalar(self): s = UnitSphericalRepresentation(lon=1 * u.deg, lat=-2 * u.deg) with pytest.raises(TypeError): s_slc = s[0] def test_representation_shortcuts(self): """Test that shortcuts in ``represent_as`` don't fail.""" # TODO! representation transformations with differentials cannot # (currently) be implemented due to a mismatch between the UnitSpherical # expected keys (e.g. "s") and that expected in the other class # (here "s / m"). For more info, see PR #11467 # We leave the test code commented out for future use. # diffs = UnitSphericalCosLatDifferential(4*u.mas/u.yr, 5*u.mas/u.yr, # 6*u.km/u.s) sph = UnitSphericalRepresentation(1*u.deg, 2*u.deg) # , differentials={'s': diffs} got = sph.represent_as(PhysicsSphericalRepresentation) # , PhysicsSphericalDifferential) assert np.may_share_memory(sph.lon, got.phi) expected = BaseRepresentation.represent_as( sph, PhysicsSphericalRepresentation) # PhysicsSphericalDifferential assert representation_equal_up_to_angular_type(got, expected) got = sph.represent_as(SphericalRepresentation) # , SphericalDifferential) assert np.may_share_memory(sph.lon, got.lon) assert np.may_share_memory(sph.lat, got.lat) expected = BaseRepresentation.represent_as( sph, SphericalRepresentation) # , SphericalDifferential) assert representation_equal_up_to_angular_type(got, expected) def test_transform(self): """Test ``.transform()`` on rotation and general matrices.""" # set up representation ds1 = UnitSphericalDifferential(d_lon=[1, 2] * u.mas / u.yr, d_lat=[3, 4] * u.mas / u.yr,) s1 = UnitSphericalRepresentation(lon=[1, 2] * u.deg, lat=[3, 4] * u.deg, differentials=ds1) # transform representation & get comparison (thru CartesianRep) s2 = s1.transform(matrices["rotation"]) ds2 = s2.differentials["s"] dexpected = UnitSphericalDifferential.from_cartesian( ds1.to_cartesian(base=s1).transform(matrices["rotation"]), base=s2) assert_allclose_quantity(s2.lon, s1.lon + 10 * u.deg) assert_allclose_quantity(s2.lat, s1.lat) # compare differentials. they should be unchanged (ds1). assert_allclose_quantity(ds2.d_lon, ds1.d_lon) assert_allclose_quantity(ds2.d_lat, ds1.d_lat) assert_allclose_quantity(ds2.d_lon, dexpected.d_lon) assert_allclose_quantity(ds2.d_lat, dexpected.d_lat) assert not hasattr(ds2, "d_distance") # now with a non rotation matrix # note that the result will be a Spherical, not UnitSpherical s3 = s1.transform(matrices["general"]) ds3 = s3.differentials["s"] expected = (s1.represent_as(CartesianRepresentation, CartesianDifferential) .transform(matrices["general"]) .represent_as(SphericalRepresentation, differential_class=SphericalDifferential)) dexpected = expected.differentials["s"] assert_allclose_quantity(s3.lon, expected.lon) assert_allclose_quantity(s3.lat, expected.lat) assert_allclose_quantity(s3.distance, expected.distance) assert_allclose_quantity(ds3.d_lon, dexpected.d_lon) assert_allclose_quantity(ds3.d_lat, dexpected.d_lat) assert_allclose_quantity(ds3.d_distance, dexpected.d_distance) class TestPhysicsSphericalRepresentation: def test_name(self): assert PhysicsSphericalRepresentation.get_name() == 'physicsspherical' assert PhysicsSphericalRepresentation.get_name() in REPRESENTATION_CLASSES def test_empty_init(self): with pytest.raises(TypeError) as exc: s = PhysicsSphericalRepresentation() def test_init_quantity(self): s3 = PhysicsSphericalRepresentation(phi=8 * u.hourangle, theta=5 * u.deg, r=10 * u.kpc) assert s3.phi == 8. * u.hourangle assert s3.theta == 5. * u.deg assert s3.r == 10 * u.kpc assert isinstance(s3.phi, Angle) assert isinstance(s3.theta, Angle) assert isinstance(s3.r, Distance) def test_init_phitheta(self): s2 = PhysicsSphericalRepresentation(Angle(8, u.hour), Angle(5, u.deg), Distance(10, u.kpc)) assert s2.phi == 8. * u.hourangle assert s2.theta == 5. * u.deg assert s2.r == 10. * u.kpc assert isinstance(s2.phi, Angle) assert isinstance(s2.theta, Angle) assert isinstance(s2.r, Distance) def test_init_array(self): s1 = PhysicsSphericalRepresentation(phi=[8, 9] * u.hourangle, theta=[5, 6] * u.deg, r=[1, 2] * u.kpc) assert_allclose(s1.phi.degree, [120, 135]) assert_allclose(s1.theta.degree, [5, 6]) assert_allclose(s1.r.kpc, [1, 2]) assert isinstance(s1.phi, Angle) assert isinstance(s1.theta, Angle) assert isinstance(s1.r, Distance) def test_init_array_nocopy(self): phi = Angle([8, 9] * u.hourangle) theta = Angle([5, 6] * u.deg) r = Distance([1, 2] * u.kpc) s1 = PhysicsSphericalRepresentation(phi=phi, theta=theta, r=r, copy=False) phi[:] = [1, 2] * u.rad theta[:] = [3, 4] * u.arcmin r[:] = [8, 9] * u.Mpc assert_allclose_quantity(phi, s1.phi) assert_allclose_quantity(theta, s1.theta) assert_allclose_quantity(r, s1.r) def test_reprobj(self): s1 = PhysicsSphericalRepresentation(phi=8 * u.hourangle, theta=5 * u.deg, r=10 * u.kpc) s2 = PhysicsSphericalRepresentation.from_representation(s1) assert_allclose_quantity(s2.phi, 8. * u.hourangle) assert_allclose_quantity(s2.theta, 5. * u.deg) assert_allclose_quantity(s2.r, 10 * u.kpc) s3 = PhysicsSphericalRepresentation(s1) assert representation_equal(s3, s1) def test_broadcasting(self): s1 = PhysicsSphericalRepresentation(phi=[8, 9] * u.hourangle, theta=[5, 6] * u.deg, r=10 * u.kpc) assert_allclose_quantity(s1.phi, [120, 135] * u.degree) assert_allclose_quantity(s1.theta, [5, 6] * u.degree) assert_allclose_quantity(s1.r, [10, 10] * u.kpc) def test_broadcasting_mismatch(self): with pytest.raises(ValueError) as exc: s1 = PhysicsSphericalRepresentation(phi=[8, 9, 10] * u.hourangle, theta=[5, 6] * u.deg, r=[1, 2] * u.kpc) assert exc.value.args[0] == "Input parameters phi, theta, and r cannot be broadcast" def test_readonly(self): s1 = PhysicsSphericalRepresentation(phi=[8, 9] * u.hourangle, theta=[5, 6] * u.deg, r=[10, 20] * u.kpc) with pytest.raises(AttributeError): s1.phi = 1. * u.deg with pytest.raises(AttributeError): s1.theta = 1. * u.deg with pytest.raises(AttributeError): s1.r = 1. * u.kpc def test_getitem(self): s = PhysicsSphericalRepresentation(phi=np.arange(10) * u.deg, theta=np.arange(5, 15) * u.deg, r=1 * u.kpc) s_slc = s[2:8:2] assert_allclose_quantity(s_slc.phi, [2, 4, 6] * u.deg) assert_allclose_quantity(s_slc.theta, [7, 9, 11] * u.deg) assert_allclose_quantity(s_slc.r, [1, 1, 1] * u.kpc) def test_getitem_scalar(self): s = PhysicsSphericalRepresentation(phi=1 * u.deg, theta=2 * u.deg, r=3 * u.kpc) with pytest.raises(TypeError): s_slc = s[0] def test_representation_shortcuts(self): """Test that shortcuts in ``represent_as`` don't fail.""" difs = PhysicsSphericalDifferential(4*u.mas/u.yr,5*u.mas/u.yr,6*u.km/u.s) sph = PhysicsSphericalRepresentation(1*u.deg, 2*u.deg, 3*u.kpc, differentials={'s': difs}) got = sph.represent_as(SphericalRepresentation, SphericalDifferential) assert np.may_share_memory(sph.phi, got.lon) assert np.may_share_memory(sph.r, got.distance) expected = BaseRepresentation.represent_as( sph, SphericalRepresentation, SphericalDifferential) assert representation_equal_up_to_angular_type(got, expected) got = sph.represent_as(UnitSphericalRepresentation, UnitSphericalDifferential) assert np.may_share_memory(sph.phi, got.lon) expected = BaseRepresentation.represent_as( sph, UnitSphericalRepresentation, UnitSphericalDifferential) assert representation_equal_up_to_angular_type(got, expected) def test_initialize_with_nan(self): # Regression test for gh-11558: initialization used to fail. psr = PhysicsSphericalRepresentation([1., np.nan]*u.deg, [np.nan, 2.]*u.deg, [3., np.nan]*u.m) assert_array_equal(np.isnan(psr.phi), [False, True]) assert_array_equal(np.isnan(psr.theta), [True, False]) assert_array_equal(np.isnan(psr.r), [False, True]) def test_transform(self): """Test ``.transform()`` on rotation and general transform matrices.""" # set up representation ds1 = PhysicsSphericalDifferential( d_phi=[1, 2] * u.mas / u.yr, d_theta=[3, 4] * u.mas / u.yr, d_r=[-5, 6] * u.km / u.s) s1 = PhysicsSphericalRepresentation( phi=[1, 2] * u.deg, theta=[3, 4] * u.deg, r=[5, 6] * u.kpc, differentials=ds1) # transform representation & get comparison (thru CartesianRep) s2 = s1.transform(matrices["rotation"]) ds2 = s2.differentials["s"] dexpected = PhysicsSphericalDifferential.from_cartesian( ds1.to_cartesian(base=s1).transform(matrices["rotation"]), base=s2) assert_allclose_quantity(s2.phi, s1.phi + 10 * u.deg) assert_allclose_quantity(s2.theta, s1.theta) assert_allclose_quantity(s2.r, s1.r) # compare differentials. should be unchanged (ds1). assert_allclose_quantity(ds2.d_phi, ds1.d_phi) assert_allclose_quantity(ds2.d_theta, ds1.d_theta) assert_allclose_quantity(ds2.d_r, ds1.d_r) assert_allclose_quantity(ds2.d_phi, dexpected.d_phi) assert_allclose_quantity(ds2.d_theta, dexpected.d_theta) assert_allclose_quantity(ds2.d_r, dexpected.d_r) # now with a non rotation matrix # transform representation & get comparison (thru CartesianRep) s3 = s1.transform(matrices["general"]) ds3 = s3.differentials["s"] expected = (s1.represent_as(CartesianRepresentation, CartesianDifferential) .transform(matrices["general"]) .represent_as(PhysicsSphericalRepresentation, PhysicsSphericalDifferential)) dexpected = expected.differentials["s"] assert_allclose_quantity(s3.phi, expected.phi) assert_allclose_quantity(s3.theta, expected.theta) assert_allclose_quantity(s3.r, expected.r) assert_allclose_quantity(ds3.d_phi, dexpected.d_phi) assert_allclose_quantity(ds3.d_theta, dexpected.d_theta) assert_allclose_quantity(ds3.d_r, dexpected.d_r) def test_transform_with_NaN(self): # all over again, but with a NaN in the distance ds1 = PhysicsSphericalDifferential( d_phi=[1, 2] * u.mas / u.yr, d_theta=[3, 4] * u.mas / u.yr, d_r=[-5, 6] * u.km / u.s) s1 = PhysicsSphericalRepresentation( phi=[1, 2] * u.deg, theta=[3, 4] * u.deg, r=[5, np.nan] * u.kpc, differentials=ds1) # transform representation & get comparison (thru CartesianRep) s2 = s1.transform(matrices["rotation"]) ds2 = s2.differentials["s"] dexpected = PhysicsSphericalDifferential.from_cartesian( ds1.to_cartesian(base=s1).transform(matrices["rotation"]), base=s2) assert_allclose_quantity(s2.phi, s1.phi + 10 * u.deg) assert_allclose_quantity(s2.theta, s1.theta) assert_allclose_quantity(s2.r, s1.r) assert_allclose_quantity(ds2.d_phi, dexpected.d_phi) assert_allclose_quantity(ds2.d_theta, dexpected.d_theta) assert_allclose_quantity(ds2.d_r, dexpected.d_r) # now with a non rotation matrix s3 = s1.transform(matrices["general"]) ds3 = s3.differentials["s"] thruC = (s1.represent_as(CartesianRepresentation, CartesianDifferential) .transform(matrices["general"]) .represent_as(PhysicsSphericalRepresentation, PhysicsSphericalDifferential)) dthruC = thruC.differentials["s"] # s3 should not propagate Nan. assert_array_equal(np.isnan(s3.phi), (False, False)) assert_array_equal(np.isnan(s3.theta), (False, False)) assert_array_equal(np.isnan(s3.r), (False, True)) # ds3 does b/c currently aren't any shortcuts on the transform assert_array_equal(np.isnan(ds3.d_phi), (False, True)) assert_array_equal(np.isnan(ds3.d_theta), (False, True)) assert_array_equal(np.isnan(ds3.d_r), (False, True)) # through Cartesian does assert_array_equal(np.isnan(thruC.phi), (False, True)) assert_array_equal(np.isnan(thruC.theta), (False, True)) assert_array_equal(np.isnan(thruC.r), (False, True)) # so only test on the first value assert_allclose_quantity(s3.phi[0], thruC.phi[0]) assert_allclose_quantity(s3.theta[0], thruC.theta[0]) assert_allclose_quantity(ds3.d_phi[0], dthruC.d_phi[0]) assert_allclose_quantity(ds3.d_theta[0], dthruC.d_theta[0]) class TestCartesianRepresentation: def test_name(self): assert CartesianRepresentation.get_name() == 'cartesian' assert CartesianRepresentation.get_name() in REPRESENTATION_CLASSES def test_empty_init(self): with pytest.raises(TypeError) as exc: s = CartesianRepresentation() def test_init_quantity(self): s1 = CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc) assert s1.x.unit is u.kpc assert s1.y.unit is u.kpc assert s1.z.unit is u.kpc assert_allclose(s1.x.value, 1) assert_allclose(s1.y.value, 2) assert_allclose(s1.z.value, 3) def test_init_singleunit(self): s1 = CartesianRepresentation(x=1, y=2, z=3, unit=u.kpc) assert s1.x.unit is u.kpc assert s1.y.unit is u.kpc assert s1.z.unit is u.kpc assert_allclose(s1.x.value, 1) assert_allclose(s1.y.value, 2) assert_allclose(s1.z.value, 3) def test_init_array(self): s1 = CartesianRepresentation(x=[1, 2, 3] * u.pc, y=[2, 3, 4] * u.Mpc, z=[3, 4, 5] * u.kpc) assert s1.x.unit is u.pc assert s1.y.unit is u.Mpc assert s1.z.unit is u.kpc assert_allclose(s1.x.value, [1, 2, 3]) assert_allclose(s1.y.value, [2, 3, 4]) assert_allclose(s1.z.value, [3, 4, 5]) def test_init_one_array(self): s1 = CartesianRepresentation(x=[1, 2, 3] * u.pc) assert s1.x.unit is u.pc assert s1.y.unit is u.pc assert s1.z.unit is u.pc assert_allclose(s1.x.value, 1) assert_allclose(s1.y.value, 2) assert_allclose(s1.z.value, 3) r = np.arange(27.).reshape(3, 3, 3) * u.kpc s2 = CartesianRepresentation(r, xyz_axis=0) assert s2.shape == (3, 3) assert s2.x.unit == u.kpc assert np.all(s2.x == r[0]) assert np.all(s2.xyz == r) assert np.all(s2.get_xyz(xyz_axis=0) == r) s3 = CartesianRepresentation(r, xyz_axis=1) assert s3.shape == (3, 3) assert np.all(s3.x == r[:, 0]) assert np.all(s3.y == r[:, 1]) assert np.all(s3.z == r[:, 2]) assert np.all(s3.get_xyz(xyz_axis=1) == r) s4 = CartesianRepresentation(r, xyz_axis=2) assert s4.shape == (3, 3) assert np.all(s4.x == r[:, :, 0]) assert np.all(s4.get_xyz(xyz_axis=2) == r) s5 = CartesianRepresentation(r, unit=u.pc) assert s5.x.unit == u.pc assert np.all(s5.xyz == r) s6 = CartesianRepresentation(r.value, unit=u.pc, xyz_axis=2) assert s6.x.unit == u.pc assert np.all(s6.get_xyz(xyz_axis=2).value == r.value) def test_init_one_array_size_fail(self): with pytest.raises(ValueError) as exc: CartesianRepresentation(x=[1, 2, 3, 4] * u.pc) assert exc.value.args[0].startswith("too many values to unpack") def test_init_xyz_but_more_than_one_array_fail(self): with pytest.raises(ValueError) as exc: CartesianRepresentation(x=[1, 2, 3] * u.pc, y=[2, 3, 4] * u.pc, z=[3, 4, 5] * u.pc, xyz_axis=0) assert 'xyz_axis should only be set' in str(exc.value) def test_init_one_array_yz_fail(self): with pytest.raises(ValueError) as exc: CartesianRepresentation(x=[1, 2, 3, 4] * u.pc, y=[1, 2] * u.pc) assert exc.value.args[0] == ("x, y, and z are required to instantiate " "CartesianRepresentation") def test_init_array_nocopy(self): x = [8, 9, 10] * u.pc y = [5, 6, 7] * u.Mpc z = [2, 3, 4] * u.kpc s1 = CartesianRepresentation(x=x, y=y, z=z, copy=False) x[:] = [1, 2, 3] * u.kpc y[:] = [9, 9, 8] * u.kpc z[:] = [1, 2, 1] * u.kpc assert_allclose_quantity(x, s1.x) assert_allclose_quantity(y, s1.y) assert_allclose_quantity(z, s1.z) def test_xyz_is_view_if_possible(self): xyz = np.arange(1., 10.).reshape(3, 3) s1 = CartesianRepresentation(xyz, unit=u.kpc, copy=False) s1_xyz = s1.xyz assert s1_xyz.value[0, 0] == 1. xyz[0, 0] = 0. assert s1.x[0] == 0. assert s1_xyz.value[0, 0] == 0. # Not possible: we don't check that tuples are from the same array xyz = np.arange(1., 10.).reshape(3, 3) s2 = CartesianRepresentation(*xyz, unit=u.kpc, copy=False) s2_xyz = s2.xyz assert s2_xyz.value[0, 0] == 1. xyz[0, 0] = 0. assert s2.x[0] == 0. assert s2_xyz.value[0, 0] == 1. def test_reprobj(self): s1 = CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc) s2 = CartesianRepresentation.from_representation(s1) assert s2.x == 1 * u.kpc assert s2.y == 2 * u.kpc assert s2.z == 3 * u.kpc s3 = CartesianRepresentation(s1) assert representation_equal(s3, s1) def test_broadcasting(self): s1 = CartesianRepresentation(x=[1, 2] * u.kpc, y=[3, 4] * u.kpc, z=5 * u.kpc) assert s1.x.unit == u.kpc assert s1.y.unit == u.kpc assert s1.z.unit == u.kpc assert_allclose(s1.x.value, [1, 2]) assert_allclose(s1.y.value, [3, 4]) assert_allclose(s1.z.value, [5, 5]) def test_broadcasting_mismatch(self): with pytest.raises(ValueError) as exc: s1 = CartesianRepresentation(x=[1, 2] * u.kpc, y=[3, 4] * u.kpc, z=[5, 6, 7] * u.kpc) assert exc.value.args[0] == "Input parameters x, y, and z cannot be broadcast" def test_readonly(self): s1 = CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc) with pytest.raises(AttributeError): s1.x = 1. * u.kpc with pytest.raises(AttributeError): s1.y = 1. * u.kpc with pytest.raises(AttributeError): s1.z = 1. * u.kpc def test_xyz(self): s1 = CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc) assert isinstance(s1.xyz, u.Quantity) assert s1.xyz.unit is u.kpc assert_allclose(s1.xyz.value, [1, 2, 3]) def test_unit_mismatch(self): q_len = u.Quantity([1], u.km) q_nonlen = u.Quantity([1], u.kg) with pytest.raises(u.UnitsError) as exc: s1 = CartesianRepresentation(x=q_nonlen, y=q_len, z=q_len) assert exc.value.args[0] == "x, y, and z should have matching physical types" with pytest.raises(u.UnitsError) as exc: s1 = CartesianRepresentation(x=q_len, y=q_nonlen, z=q_len) assert exc.value.args[0] == "x, y, and z should have matching physical types" with pytest.raises(u.UnitsError) as exc: s1 = CartesianRepresentation(x=q_len, y=q_len, z=q_nonlen) assert exc.value.args[0] == "x, y, and z should have matching physical types" def test_unit_non_length(self): s1 = CartesianRepresentation(x=1 * u.kg, y=2 * u.kg, z=3 * u.kg) s2 = CartesianRepresentation(x=1 * u.km / u.s, y=2 * u.km / u.s, z=3 * u.km / u.s) banana = u.def_unit('banana') s3 = CartesianRepresentation(x=1 * banana, y=2 * banana, z=3 * banana) def test_getitem(self): s = CartesianRepresentation(x=np.arange(10) * u.m, y=-np.arange(10) * u.m, z=3 * u.km) s_slc = s[2:8:2] assert_allclose_quantity(s_slc.x, [2, 4, 6] * u.m) assert_allclose_quantity(s_slc.y, [-2, -4, -6] * u.m) assert_allclose_quantity(s_slc.z, [3, 3, 3] * u.km) def test_getitem_scalar(self): s = CartesianRepresentation(x=1 * u.m, y=-2 * u.m, z=3 * u.km) with pytest.raises(TypeError): s_slc = s[0] def test_transform(self): ds1 = CartesianDifferential(d_x=[1, 2] * u.km / u.s, d_y=[3, 4] * u.km / u.s, d_z=[5, 6] * u.km / u.s) s1 = CartesianRepresentation(x=[1, 2] * u.kpc, y=[3, 4] * u.kpc, z=[5, 6] * u.kpc, differentials=ds1) # transform representation & get comparison (thru CartesianRep) s2 = s1.transform(matrices["general"]) ds2 = s2.differentials["s"] dexpected = CartesianDifferential.from_cartesian( ds1.to_cartesian(base=s1).transform(matrices["general"]), base=s2) assert_allclose_quantity(ds2.d_x, dexpected.d_x) assert_allclose_quantity(ds2.d_y, dexpected.d_y) assert_allclose_quantity(ds2.d_z, dexpected.d_z) # also explicitly calculate, since we can assert_allclose(s2.x.value, [1 * 1 + 2 * 3 + 3 * 5, 1 * 2 + 2 * 4 + 3 * 6]) assert_allclose(s2.y.value, [4 * 1 + 5 * 3 + 6 * 5, 4 * 2 + 5 * 4 + 6 * 6]) assert_allclose(s2.z.value, [7 * 1 + 8 * 3 + 9 * 5, 7 * 2 + 8 * 4 + 9 * 6]) assert_allclose(ds2.d_x.value, [1 * 1 + 2 * 3 + 3 * 5, 1 * 2 + 2 * 4 + 3 * 6]) assert_allclose(ds2.d_y.value, [4 * 1 + 5 * 3 + 6 * 5, 4 * 2 + 5 * 4 + 6 * 6]) assert_allclose(ds2.d_z.value, [7 * 1 + 8 * 3 + 9 * 5, 7 * 2 + 8 * 4 + 9 * 6]) assert s2.x.unit is u.kpc assert s2.y.unit is u.kpc assert s2.z.unit is u.kpc assert ds2.d_x.unit == u.km / u.s assert ds2.d_y.unit == u.km / u.s assert ds2.d_z.unit == u.km / u.s class TestCylindricalRepresentation: def test_name(self): assert CylindricalRepresentation.get_name() == 'cylindrical' assert CylindricalRepresentation.get_name() in REPRESENTATION_CLASSES def test_empty_init(self): with pytest.raises(TypeError) as exc: s = CylindricalRepresentation() def test_init_quantity(self): s1 = CylindricalRepresentation(rho=1 * u.kpc, phi=2 * u.deg, z=3 * u.kpc) assert s1.rho.unit is u.kpc assert s1.phi.unit is u.deg assert s1.z.unit is u.kpc assert_allclose(s1.rho.value, 1) assert_allclose(s1.phi.value, 2) assert_allclose(s1.z.value, 3) def test_init_array(self): s1 = CylindricalRepresentation(rho=[1, 2, 3] * u.pc, phi=[2, 3, 4] * u.deg, z=[3, 4, 5] * u.kpc) assert s1.rho.unit is u.pc assert s1.phi.unit is u.deg assert s1.z.unit is u.kpc assert_allclose(s1.rho.value, [1, 2, 3]) assert_allclose(s1.phi.value, [2, 3, 4]) assert_allclose(s1.z.value, [3, 4, 5]) def test_init_array_nocopy(self): rho = [8, 9, 10] * u.pc phi = [5, 6, 7] * u.deg z = [2, 3, 4] * u.kpc s1 = CylindricalRepresentation(rho=rho, phi=phi, z=z, copy=False) rho[:] = [9, 2, 3] * u.kpc phi[:] = [1, 2, 3] * u.arcmin z[:] = [-2, 3, 8] * u.kpc assert_allclose_quantity(rho, s1.rho) assert_allclose_quantity(phi, s1.phi) assert_allclose_quantity(z, s1.z) def test_reprobj(self): s1 = CylindricalRepresentation(rho=1 * u.kpc, phi=2 * u.deg, z=3 * u.kpc) s2 = CylindricalRepresentation.from_representation(s1) assert s2.rho == 1 * u.kpc assert s2.phi == 2 * u.deg assert s2.z == 3 * u.kpc s3 = CylindricalRepresentation(s1) assert representation_equal(s3, s1) def test_broadcasting(self): s1 = CylindricalRepresentation(rho=[1, 2] * u.kpc, phi=[3, 4] * u.deg, z=5 * u.kpc) assert s1.rho.unit == u.kpc assert s1.phi.unit == u.deg assert s1.z.unit == u.kpc assert_allclose(s1.rho.value, [1, 2]) assert_allclose(s1.phi.value, [3, 4]) assert_allclose(s1.z.value, [5, 5]) def test_broadcasting_mismatch(self): with pytest.raises(ValueError) as exc: s1 = CylindricalRepresentation(rho=[1, 2] * u.kpc, phi=[3, 4] * u.deg, z=[5, 6, 7] * u.kpc) assert exc.value.args[0] == "Input parameters rho, phi, and z cannot be broadcast" def test_readonly(self): s1 = CylindricalRepresentation(rho=1 * u.kpc, phi=20 * u.deg, z=3 * u.kpc) with pytest.raises(AttributeError): s1.rho = 1. * u.kpc with pytest.raises(AttributeError): s1.phi = 20 * u.deg with pytest.raises(AttributeError): s1.z = 1. * u.kpc def unit_mismatch(self): q_len = u.Quantity([1], u.kpc) q_nonlen = u.Quantity([1], u.kg) with pytest.raises(u.UnitsError) as exc: s1 = CylindricalRepresentation(rho=q_nonlen, phi=10 * u.deg, z=q_len) assert exc.value.args[0] == "rho and z should have matching physical types" with pytest.raises(u.UnitsError) as exc: s1 = CylindricalRepresentation(rho=q_len, phi=10 * u.deg, z=q_nonlen) assert exc.value.args[0] == "rho and z should have matching physical types" def test_getitem(self): s = CylindricalRepresentation(rho=np.arange(10) * u.pc, phi=-np.arange(10) * u.deg, z=1 * u.kpc) s_slc = s[2:8:2] assert_allclose_quantity(s_slc.rho, [2, 4, 6] * u.pc) assert_allclose_quantity(s_slc.phi, [-2, -4, -6] * u.deg) assert_allclose_quantity(s_slc.z, [1, 1, 1] * u.kpc) def test_getitem_scalar(self): s = CylindricalRepresentation(rho=1 * u.pc, phi=-2 * u.deg, z=3 * u.kpc) with pytest.raises(TypeError): s_slc = s[0] def test_transform(self): s1 = CylindricalRepresentation(phi=[1, 2] * u.deg, z=[3, 4] * u.pc, rho=[5, 6] * u.kpc) s2 = s1.transform(matrices["rotation"]) assert_allclose_quantity(s2.phi, s1.phi + 10 * u.deg) assert_allclose_quantity(s2.z, s1.z) assert_allclose_quantity(s2.rho, s1.rho) assert s2.phi.unit is u.rad assert s2.z.unit is u.kpc assert s2.rho.unit is u.kpc # now with a non rotation matrix s3 = s1.transform(matrices["general"]) expected = (s1.to_cartesian().transform(matrices["general"]) ).represent_as(CylindricalRepresentation) assert_allclose_quantity(s3.phi, expected.phi) assert_allclose_quantity(s3.z, expected.z) assert_allclose_quantity(s3.rho, expected.rho) class TestUnitSphericalCosLatDifferential: @pytest.mark.parametrize("matrix", list(matrices.values())) def test_transform(self, matrix): """Test ``.transform()`` on rotation and general matrices.""" # set up representation ds1 = UnitSphericalCosLatDifferential(d_lon_coslat=[1, 2] * u.mas / u.yr, d_lat=[3, 4] * u.mas / u.yr,) s1 = UnitSphericalRepresentation(lon=[1, 2] * u.deg, lat=[3, 4] * u.deg) # transform representation & get comparison (thru CartesianRep) s2 = s1.transform(matrix) ds2 = ds1.transform(matrix, s1, s2) dexpected = UnitSphericalCosLatDifferential.from_cartesian( ds1.to_cartesian(base=s1).transform(matrix), base=s2) assert_allclose_quantity(ds2.d_lon_coslat, dexpected.d_lon_coslat) assert_allclose_quantity(ds2.d_lat, dexpected.d_lat) def test_cartesian_spherical_roundtrip(): s1 = CartesianRepresentation(x=[1, 2000.] * u.kpc, y=[3000., 4.] * u.pc, z=[5., 6000.] * u.pc) s2 = SphericalRepresentation.from_representation(s1) s3 = CartesianRepresentation.from_representation(s2) s4 = SphericalRepresentation.from_representation(s3) assert_allclose_quantity(s1.x, s3.x) assert_allclose_quantity(s1.y, s3.y) assert_allclose_quantity(s1.z, s3.z) assert_allclose_quantity(s2.lon, s4.lon) assert_allclose_quantity(s2.lat, s4.lat) assert_allclose_quantity(s2.distance, s4.distance) def test_cartesian_setting_with_other(): s1 = CartesianRepresentation(x=[1, 2000.] * u.kpc, y=[3000., 4.] * u.pc, z=[5., 6000.] * u.pc) s1[0] = SphericalRepresentation(0.*u.deg, 0.*u.deg, 1*u.kpc) assert_allclose_quantity(s1.x, [1., 2000.] * u.kpc) assert_allclose_quantity(s1.y, [0., 4.] * u.pc) assert_allclose_quantity(s1.z, [0., 6000.] * u.pc) with pytest.raises(ValueError, match='loss of information'): s1[1] = UnitSphericalRepresentation(0.*u.deg, 10.*u.deg) def test_cartesian_physics_spherical_roundtrip(): s1 = CartesianRepresentation(x=[1, 2000.] * u.kpc, y=[3000., 4.] * u.pc, z=[5., 6000.] * u.pc) s2 = PhysicsSphericalRepresentation.from_representation(s1) s3 = CartesianRepresentation.from_representation(s2) s4 = PhysicsSphericalRepresentation.from_representation(s3) assert_allclose_quantity(s1.x, s3.x) assert_allclose_quantity(s1.y, s3.y) assert_allclose_quantity(s1.z, s3.z) assert_allclose_quantity(s2.phi, s4.phi) assert_allclose_quantity(s2.theta, s4.theta) assert_allclose_quantity(s2.r, s4.r) def test_spherical_physics_spherical_roundtrip(): s1 = SphericalRepresentation(lon=3 * u.deg, lat=4 * u.deg, distance=3 * u.kpc) s2 = PhysicsSphericalRepresentation.from_representation(s1) s3 = SphericalRepresentation.from_representation(s2) s4 = PhysicsSphericalRepresentation.from_representation(s3) assert_allclose_quantity(s1.lon, s3.lon) assert_allclose_quantity(s1.lat, s3.lat) assert_allclose_quantity(s1.distance, s3.distance) assert_allclose_quantity(s2.phi, s4.phi) assert_allclose_quantity(s2.theta, s4.theta) assert_allclose_quantity(s2.r, s4.r) assert_allclose_quantity(s1.lon, s4.phi) assert_allclose_quantity(s1.lat, 90. * u.deg - s4.theta) assert_allclose_quantity(s1.distance, s4.r) def test_cartesian_cylindrical_roundtrip(): s1 = CartesianRepresentation(x=np.array([1., 2000.]) * u.kpc, y=np.array([3000., 4.]) * u.pc, z=np.array([5., 600.]) * u.cm) s2 = CylindricalRepresentation.from_representation(s1) s3 = CartesianRepresentation.from_representation(s2) s4 = CylindricalRepresentation.from_representation(s3) assert_allclose_quantity(s1.x, s3.x) assert_allclose_quantity(s1.y, s3.y) assert_allclose_quantity(s1.z, s3.z) assert_allclose_quantity(s2.rho, s4.rho) assert_allclose_quantity(s2.phi, s4.phi) assert_allclose_quantity(s2.z, s4.z) def test_unit_spherical_roundtrip(): s1 = UnitSphericalRepresentation(lon=[10., 30.] * u.deg, lat=[5., 6.] * u.arcmin) s2 = CartesianRepresentation.from_representation(s1) s3 = SphericalRepresentation.from_representation(s2) s4 = UnitSphericalRepresentation.from_representation(s3) assert_allclose_quantity(s1.lon, s4.lon) assert_allclose_quantity(s1.lat, s4.lat) def test_no_unnecessary_copies(): s1 = UnitSphericalRepresentation(lon=[10., 30.] * u.deg, lat=[5., 6.] * u.arcmin) s2 = s1.represent_as(UnitSphericalRepresentation) assert s2 is s1 assert np.may_share_memory(s1.lon, s2.lon) assert np.may_share_memory(s1.lat, s2.lat) s3 = s1.represent_as(SphericalRepresentation) assert np.may_share_memory(s1.lon, s3.lon) assert np.may_share_memory(s1.lat, s3.lat) s4 = s1.represent_as(CartesianRepresentation) s5 = s4.represent_as(CylindricalRepresentation) assert np.may_share_memory(s5.z, s4.z) def test_representation_repr(): r1 = SphericalRepresentation(lon=1 * u.deg, lat=2.5 * u.deg, distance=1 * u.kpc) assert repr(r1) == ('<SphericalRepresentation (lon, lat, distance) in (deg, deg, kpc)\n' ' (1., 2.5, 1.)>') r2 = CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc) assert repr(r2) == ('<CartesianRepresentation (x, y, z) in kpc\n' ' (1., 2., 3.)>') r3 = CartesianRepresentation(x=[1, 2, 3] * u.kpc, y=4 * u.kpc, z=[9, 10, 11] * u.kpc) assert repr(r3) == ('<CartesianRepresentation (x, y, z) in kpc\n' ' [(1., 4., 9.), (2., 4., 10.), (3., 4., 11.)]>') def test_representation_repr_multi_d(): """Regression test for #5889.""" cr = CartesianRepresentation(np.arange(27).reshape(3, 3, 3), unit='m') assert repr(cr) == ( '<CartesianRepresentation (x, y, z) in m\n' ' [[(0., 9., 18.), (1., 10., 19.), (2., 11., 20.)],\n' ' [(3., 12., 21.), (4., 13., 22.), (5., 14., 23.)],\n' ' [(6., 15., 24.), (7., 16., 25.), (8., 17., 26.)]]>') # This was broken before. assert repr(cr.T) == ( '<CartesianRepresentation (x, y, z) in m\n' ' [[(0., 9., 18.), (3., 12., 21.), (6., 15., 24.)],\n' ' [(1., 10., 19.), (4., 13., 22.), (7., 16., 25.)],\n' ' [(2., 11., 20.), (5., 14., 23.), (8., 17., 26.)]]>') def test_representation_str(): r1 = SphericalRepresentation(lon=1 * u.deg, lat=2.5 * u.deg, distance=1 * u.kpc) assert str(r1) == '(1., 2.5, 1.) (deg, deg, kpc)' r2 = CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc) assert str(r2) == '(1., 2., 3.) kpc' r3 = CartesianRepresentation(x=[1, 2, 3] * u.kpc, y=4 * u.kpc, z=[9, 10, 11] * u.kpc) assert str(r3) == '[(1., 4., 9.), (2., 4., 10.), (3., 4., 11.)] kpc' def test_representation_str_multi_d(): """Regression test for #5889.""" cr = CartesianRepresentation(np.arange(27).reshape(3, 3, 3), unit='m') assert str(cr) == ( '[[(0., 9., 18.), (1., 10., 19.), (2., 11., 20.)],\n' ' [(3., 12., 21.), (4., 13., 22.), (5., 14., 23.)],\n' ' [(6., 15., 24.), (7., 16., 25.), (8., 17., 26.)]] m') # This was broken before. assert str(cr.T) == ( '[[(0., 9., 18.), (3., 12., 21.), (6., 15., 24.)],\n' ' [(1., 10., 19.), (4., 13., 22.), (7., 16., 25.)],\n' ' [(2., 11., 20.), (5., 14., 23.), (8., 17., 26.)]] m') def test_subclass_representation(): from astropy.coordinates.builtin_frames import ICRS class Longitude180(Longitude): def __new__(cls, angle, unit=None, wrap_angle=180 * u.deg, **kwargs): self = super().__new__(cls, angle, unit=unit, wrap_angle=wrap_angle, **kwargs) return self class SphericalWrap180Representation(SphericalRepresentation): attr_classes = {'lon': Longitude180, 'lat': Latitude, 'distance': u.Quantity} class ICRSWrap180(ICRS): frame_specific_representation_info = ICRS._frame_specific_representation_info.copy() frame_specific_representation_info[SphericalWrap180Representation] = \ frame_specific_representation_info[SphericalRepresentation] default_representation = SphericalWrap180Representation c = ICRSWrap180(ra=-1 * u.deg, dec=-2 * u.deg, distance=1 * u.m) assert c.ra.value == -1 assert c.ra.unit is u.deg assert c.dec.value == -2 assert c.dec.unit is u.deg def test_minimal_subclass(): # Basically to check what we document works; # see doc/coordinates/representations.rst class LogDRepresentation(BaseRepresentation): attr_classes = {'lon': Longitude, 'lat': Latitude, 'logd': u.Dex} def to_cartesian(self): d = self.logd.physical x = d * np.cos(self.lat) * np.cos(self.lon) y = d * np.cos(self.lat) * np.sin(self.lon) z = d * np.sin(self.lat) return CartesianRepresentation(x=x, y=y, z=z, copy=False) @classmethod def from_cartesian(cls, cart): s = np.hypot(cart.x, cart.y) r = np.hypot(s, cart.z) lon = np.arctan2(cart.y, cart.x) lat = np.arctan2(cart.z, s) return cls(lon=lon, lat=lat, logd=u.Dex(r), copy=False) ld1 = LogDRepresentation(90.*u.deg, 0.*u.deg, 1.*u.dex(u.kpc)) ld2 = LogDRepresentation(lon=90.*u.deg, lat=0.*u.deg, logd=1.*u.dex(u.kpc)) assert np.all(ld1.lon == ld2.lon) assert np.all(ld1.lat == ld2.lat) assert np.all(ld1.logd == ld2.logd) c = ld1.to_cartesian() assert_allclose_quantity(c.xyz, [0., 10., 0.] * u.kpc, atol=1.*u.npc) ld3 = LogDRepresentation.from_cartesian(c) assert np.all(ld3.lon == ld2.lon) assert np.all(ld3.lat == ld2.lat) assert np.all(ld3.logd == ld2.logd) s = ld1.represent_as(SphericalRepresentation) assert_allclose_quantity(s.lon, ld1.lon) assert_allclose_quantity(s.distance, 10.*u.kpc) assert_allclose_quantity(s.lat, ld1.lat) with pytest.raises(TypeError): LogDRepresentation(0.*u.deg, 1.*u.deg) with pytest.raises(TypeError): LogDRepresentation(0.*u.deg, 1.*u.deg, 1.*u.dex(u.kpc), lon=1.*u.deg) with pytest.raises(TypeError): LogDRepresentation(0.*u.deg, 1.*u.deg, 1.*u.dex(u.kpc), True, False) with pytest.raises(TypeError): LogDRepresentation(0.*u.deg, 1.*u.deg, 1.*u.dex(u.kpc), foo='bar') # if we define it a second time, even the qualnames are the same, # so we raise with pytest.raises(ValueError): class LogDRepresentation(BaseRepresentation): attr_classes = {'lon': Longitude, 'lat': Latitude, 'logr': u.Dex} def test_duplicate_warning(): from astropy.coordinates.representation import DUPLICATE_REPRESENTATIONS from astropy.coordinates.representation import REPRESENTATION_CLASSES with pytest.warns(DuplicateRepresentationWarning): class UnitSphericalRepresentation(BaseRepresentation): attr_classes = {'lon': Longitude, 'lat': Latitude} assert 'unitspherical' in DUPLICATE_REPRESENTATIONS assert 'unitspherical' not in REPRESENTATION_CLASSES assert 'astropy.coordinates.representation.UnitSphericalRepresentation' in REPRESENTATION_CLASSES assert __name__ + '.test_duplicate_warning.<locals>.UnitSphericalRepresentation' in REPRESENTATION_CLASSES class TestCartesianRepresentationWithDifferential: def test_init_differential(self): diff = CartesianDifferential(d_x=1 * u.km/u.s, d_y=2 * u.km/u.s, d_z=3 * u.km/u.s) # Check that a single differential gets turned into a 1-item dict. s1 = CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc, differentials=diff) assert s1.x.unit is u.kpc assert s1.y.unit is u.kpc assert s1.z.unit is u.kpc assert len(s1.differentials) == 1 assert s1.differentials['s'] is diff # can also pass in an explicit dictionary s1 = CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc, differentials={'s': diff}) assert len(s1.differentials) == 1 assert s1.differentials['s'] is diff # using the wrong key will cause it to fail with pytest.raises(ValueError): s1 = CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc, differentials={'1 / s2': diff}) # make sure other kwargs are handled properly s1 = CartesianRepresentation(x=1, y=2, z=3, differentials=diff, copy=False, unit=u.kpc) assert len(s1.differentials) == 1 assert s1.differentials['s'] is diff with pytest.raises(TypeError): # invalid type passed to differentials CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc, differentials='garmonbozia') # And that one can add it to another representation. s1 = CartesianRepresentation( CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc), differentials=diff) assert len(s1.differentials) == 1 assert s1.differentials['s'] is diff # make sure differentials can't accept differentials with pytest.raises(TypeError): CartesianDifferential(d_x=1 * u.km/u.s, d_y=2 * u.km/u.s, d_z=3 * u.km/u.s, differentials=diff) def test_init_differential_compatible(self): # TODO: more extensive checking of this # should fail - representation and differential not compatible diff = SphericalDifferential(d_lon=1 * u.mas/u.yr, d_lat=2 * u.mas/u.yr, d_distance=3 * u.km/u.s) with pytest.raises(TypeError): CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc, differentials=diff) # should succeed - representation and differential are compatible diff = SphericalCosLatDifferential(d_lon_coslat=1 * u.mas/u.yr, d_lat=2 * u.mas/u.yr, d_distance=3 * u.km/u.s) r1 = SphericalRepresentation(lon=15*u.deg, lat=21*u.deg, distance=1*u.pc, differentials=diff) def test_init_differential_multiple_equivalent_keys(self): d1 = CartesianDifferential(*[1, 2, 3] * u.km/u.s) d2 = CartesianDifferential(*[4, 5, 6] * u.km/u.s) # verify that the check against expected_unit validates against passing # in two different but equivalent keys with pytest.raises(ValueError): r1 = CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc, differentials={'s': d1, 'yr': d2}) def test_init_array_broadcasting(self): arr1 = np.arange(8).reshape(4, 2) * u.km/u.s diff = CartesianDifferential(d_x=arr1, d_y=arr1, d_z=arr1) # shapes aren't compatible arr2 = np.arange(27).reshape(3, 9) * u.kpc with pytest.raises(ValueError): rep = CartesianRepresentation(x=arr2, y=arr2, z=arr2, differentials=diff) arr2 = np.arange(8).reshape(4, 2) * u.kpc rep = CartesianRepresentation(x=arr2, y=arr2, z=arr2, differentials=diff) assert rep.x.unit is u.kpc assert rep.y.unit is u.kpc assert rep.z.unit is u.kpc assert len(rep.differentials) == 1 assert rep.differentials['s'] is diff assert rep.xyz.shape == rep.differentials['s'].d_xyz.shape def test_reprobj(self): # should succeed - representation and differential are compatible diff = SphericalCosLatDifferential(d_lon_coslat=1 * u.mas/u.yr, d_lat=2 * u.mas/u.yr, d_distance=3 * u.km/u.s) r1 = SphericalRepresentation(lon=15*u.deg, lat=21*u.deg, distance=1*u.pc, differentials=diff) r2 = CartesianRepresentation.from_representation(r1) assert r2.get_name() == 'cartesian' assert not r2.differentials r3 = SphericalRepresentation(r1) assert r3.differentials assert representation_equal(r3, r1) def test_readonly(self): s1 = CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc) with pytest.raises(AttributeError): # attribute is not settable s1.differentials = 'thing' def test_represent_as(self): diff = CartesianDifferential(d_x=1 * u.km/u.s, d_y=2 * u.km/u.s, d_z=3 * u.km/u.s) rep1 = CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc, differentials=diff) # Only change the representation, drop the differential new_rep = rep1.represent_as(SphericalRepresentation) assert new_rep.get_name() == 'spherical' assert not new_rep.differentials # dropped # Pass in separate classes for representation, differential new_rep = rep1.represent_as(SphericalRepresentation, SphericalCosLatDifferential) assert new_rep.get_name() == 'spherical' assert new_rep.differentials['s'].get_name() == 'sphericalcoslat' # Pass in a dictionary for the differential classes new_rep = rep1.represent_as(SphericalRepresentation, {'s': SphericalCosLatDifferential}) assert new_rep.get_name() == 'spherical' assert new_rep.differentials['s'].get_name() == 'sphericalcoslat' # make sure represent_as() passes through the differentials for name in REPRESENTATION_CLASSES: if name == 'radial': # TODO: Converting a CartesianDifferential to a # RadialDifferential fails, even on `main` continue elif name.endswith("geodetic"): # TODO: Geodetic representations do not have differentials yet continue new_rep = rep1.represent_as(REPRESENTATION_CLASSES[name], DIFFERENTIAL_CLASSES[name]) assert new_rep.get_name() == name assert len(new_rep.differentials) == 1 assert new_rep.differentials['s'].get_name() == name with pytest.raises(ValueError) as excinfo: rep1.represent_as('name') assert 'use frame object' in str(excinfo.value) @pytest.mark.parametrize('sph_diff,usph_diff', [ (SphericalDifferential, UnitSphericalDifferential), (SphericalCosLatDifferential, UnitSphericalCosLatDifferential)]) def test_represent_as_unit_spherical_with_diff(self, sph_diff, usph_diff): """Test that differential angles are correctly reduced.""" diff = CartesianDifferential(d_x=1 * u.km/u.s, d_y=2 * u.km/u.s, d_z=3 * u.km/u.s) rep = CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc, differentials=diff) sph = rep.represent_as(SphericalRepresentation, sph_diff) usph = rep.represent_as(UnitSphericalRepresentation, usph_diff) assert components_equal(usph, sph.represent_as(UnitSphericalRepresentation)) assert components_equal(usph.differentials['s'], sph.differentials['s'].represent_as(usph_diff)) # Just to be sure components_equal and the represent_as work as advertised, # a sanity check: d_lat is always defined and should be the same. assert_array_equal(sph.differentials['s'].d_lat, usph.differentials['s'].d_lat) def test_getitem(self): d = CartesianDifferential(d_x=np.arange(10) * u.m/u.s, d_y=-np.arange(10) * u.m/u.s, d_z=1. * u.m/u.s) s = CartesianRepresentation(x=np.arange(10) * u.m, y=-np.arange(10) * u.m, z=3 * u.km, differentials=d) s_slc = s[2:8:2] s_dif = s_slc.differentials['s'] assert_allclose_quantity(s_slc.x, [2, 4, 6] * u.m) assert_allclose_quantity(s_slc.y, [-2, -4, -6] * u.m) assert_allclose_quantity(s_slc.z, [3, 3, 3] * u.km) assert_allclose_quantity(s_dif.d_x, [2, 4, 6] * u.m/u.s) assert_allclose_quantity(s_dif.d_y, [-2, -4, -6] * u.m/u.s) assert_allclose_quantity(s_dif.d_z, [1, 1, 1] * u.m/u.s) def test_setitem(self): d = CartesianDifferential(d_x=np.arange(5) * u.m/u.s, d_y=-np.arange(5) * u.m/u.s, d_z=1. * u.m/u.s) s = CartesianRepresentation(x=np.arange(5) * u.m, y=-np.arange(5) * u.m, z=3 * u.km, differentials=d) s[:2] = s[2] assert_array_equal(s.x, [2, 2, 2, 3, 4] * u.m) assert_array_equal(s.y, [-2, -2, -2, -3, -4] * u.m) assert_array_equal(s.z, [3, 3, 3, 3, 3] * u.km) assert_array_equal(s.differentials['s'].d_x, [2, 2, 2, 3, 4] * u.m/u.s) assert_array_equal(s.differentials['s'].d_y, [-2, -2, -2, -3, -4] * u.m/u.s) assert_array_equal(s.differentials['s'].d_z, [1, 1, 1, 1, 1] * u.m/u.s) s2 = s.represent_as(SphericalRepresentation, SphericalDifferential) s[0] = s2[3] assert_allclose_quantity(s.x, [3, 2, 2, 3, 4] * u.m) assert_allclose_quantity(s.y, [-3, -2, -2, -3, -4] * u.m) assert_allclose_quantity(s.z, [3, 3, 3, 3, 3] * u.km) assert_allclose_quantity(s.differentials['s'].d_x, [3, 2, 2, 3, 4] * u.m/u.s) assert_allclose_quantity(s.differentials['s'].d_y, [-3, -2, -2, -3, -4] * u.m/u.s) assert_allclose_quantity(s.differentials['s'].d_z, [1, 1, 1, 1, 1] * u.m/u.s) s3 = CartesianRepresentation(s.xyz, differentials={ 's': d, 's2': CartesianDifferential(np.ones((3, 5))*u.m/u.s**2)}) with pytest.raises(ValueError, match='same differentials'): s[0] = s3[2] s4 = SphericalRepresentation(0.*u.deg, 0.*u.deg, 1.*u.kpc, differentials=RadialDifferential( 10*u.km/u.s)) with pytest.raises(ValueError, match='loss of information'): s[0] = s4 def test_transform(self): d1 = CartesianDifferential(d_x=[1, 2] * u.km/u.s, d_y=[3, 4] * u.km/u.s, d_z=[5, 6] * u.km/u.s) r1 = CartesianRepresentation(x=[1, 2] * u.kpc, y=[3, 4] * u.kpc, z=[5, 6] * u.kpc, differentials=d1) r2 = r1.transform(matrices["general"]) d2 = r2.differentials['s'] assert_allclose_quantity(d2.d_x, [22., 28]*u.km/u.s) assert_allclose_quantity(d2.d_y, [49, 64]*u.km/u.s) assert_allclose_quantity(d2.d_z, [76, 100.]*u.km/u.s) def test_with_differentials(self): # make sure with_differential correctly creates a new copy with the same # differential cr = CartesianRepresentation([1, 2, 3]*u.kpc) diff = CartesianDifferential([.1, .2, .3]*u.km/u.s) cr2 = cr.with_differentials(diff) assert cr.differentials != cr2.differentials assert cr2.differentials['s'] is diff # make sure it works even if a differential is present already diff2 = CartesianDifferential([.1, .2, .3]*u.m/u.s) cr3 = CartesianRepresentation([1, 2, 3]*u.kpc, differentials=diff) cr4 = cr3.with_differentials(diff2) assert cr4.differentials['s'] != cr3.differentials['s'] assert cr4.differentials['s'] == diff2 # also ensure a *scalar* differential will works cr5 = cr.with_differentials(diff) assert len(cr5.differentials) == 1 assert cr5.differentials['s'] == diff # make sure we don't update the original representation's dict d1 = CartesianDifferential(*np.random.random((3, 5)), unit=u.km/u.s) d2 = CartesianDifferential(*np.random.random((3, 5)), unit=u.km/u.s**2) r1 = CartesianRepresentation(*np.random.random((3, 5)), unit=u.pc, differentials=d1) r2 = r1.with_differentials(d2) assert r1.differentials['s'] is r2.differentials['s'] assert 's2' not in r1.differentials assert 's2' in r2.differentials def test_repr_with_differentials(): diff = CartesianDifferential([.1, .2, .3]*u.km/u.s) cr = CartesianRepresentation([1, 2, 3]*u.kpc, differentials=diff) assert "has differentials w.r.t.: 's'" in repr(cr) def test_to_cartesian(): """ Test that to_cartesian drops the differential. """ sd = SphericalDifferential(d_lat=1*u.deg, d_lon=2*u.deg, d_distance=10*u.m) sr = SphericalRepresentation(lat=1*u.deg, lon=2*u.deg, distance=10*u.m, differentials=sd) cart = sr.to_cartesian() assert cart.get_name() == 'cartesian' assert not cart.differentials @pytest.fixture def unitphysics(): """ This fixture is used """ had_unit = False if hasattr(PhysicsSphericalRepresentation, '_unit_representation'): orig = PhysicsSphericalRepresentation._unit_representation had_unit = True class UnitPhysicsSphericalRepresentation(BaseRepresentation): attr_classes = {'phi': Angle, 'theta': Angle} def __init__(self, *args, copy=True, **kwargs): super().__init__(*args, copy=copy, **kwargs) # Wrap/validate phi/theta if copy: self._phi = self._phi.wrap_at(360 * u.deg) else: # necessary because the above version of `wrap_at` has to be a copy self._phi.wrap_at(360 * u.deg, inplace=True) if np.any(self._theta < 0.*u.deg) or np.any(self._theta > 180.*u.deg): raise ValueError('Inclination angle(s) must be within ' '0 deg <= angle <= 180 deg, ' 'got {}'.format(self._theta.to(u.degree))) @property def phi(self): return self._phi @property def theta(self): return self._theta def unit_vectors(self): sinphi, cosphi = np.sin(self.phi), np.cos(self.phi) sintheta, costheta = np.sin(self.theta), np.cos(self.theta) return { 'phi': CartesianRepresentation(-sinphi, cosphi, 0., copy=False), 'theta': CartesianRepresentation(costheta*cosphi, costheta*sinphi, -sintheta, copy=False)} def scale_factors(self): sintheta = np.sin(self.theta) l = np.broadcast_to(1.*u.one, self.shape, subok=True) return {'phi', sintheta, 'theta', l} def to_cartesian(self): x = np.sin(self.theta) * np.cos(self.phi) y = np.sin(self.theta) * np.sin(self.phi) z = np.cos(self.theta) return CartesianRepresentation(x=x, y=y, z=z, copy=False) @classmethod def from_cartesian(cls, cart): """ Converts 3D rectangular cartesian coordinates to spherical polar coordinates. """ s = np.hypot(cart.x, cart.y) phi = np.arctan2(cart.y, cart.x) theta = np.arctan2(s, cart.z) return cls(phi=phi, theta=theta, copy=False) def norm(self): return u.Quantity(np.ones(self.shape), u.dimensionless_unscaled, copy=False) PhysicsSphericalRepresentation._unit_representation = UnitPhysicsSphericalRepresentation yield UnitPhysicsSphericalRepresentation if had_unit: PhysicsSphericalRepresentation._unit_representation = orig else: del PhysicsSphericalRepresentation._unit_representation # remove from the module-level representations, if present REPRESENTATION_CLASSES.pop(UnitPhysicsSphericalRepresentation.get_name(), None) def test_unitphysics(unitphysics): obj = unitphysics(phi=0*u.deg, theta=10*u.deg) objkw = unitphysics(phi=0*u.deg, theta=10*u.deg) assert objkw.phi == obj.phi assert objkw.theta == obj.theta asphys = obj.represent_as(PhysicsSphericalRepresentation) assert asphys.phi == obj.phi assert_allclose(asphys.theta, obj.theta) assert_allclose_quantity(asphys.r, 1*u.dimensionless_unscaled) assph = obj.represent_as(SphericalRepresentation) assert assph.lon == obj.phi assert_allclose_quantity(assph.lat, 80*u.deg) assert_allclose_quantity(assph.distance, 1*u.dimensionless_unscaled) with pytest.raises(TypeError, match='got multiple values'): unitphysics(1*u.deg, 2*u.deg, theta=10) with pytest.raises(TypeError, match='unexpected keyword.*parrot'): unitphysics(1*u.deg, 2*u.deg, parrot=10) def test_distance_warning(recwarn): SphericalRepresentation(1*u.deg, 2*u.deg, 1*u.kpc) with pytest.raises(ValueError) as excinfo: SphericalRepresentation(1*u.deg, 2*u.deg, -1*u.kpc) assert 'Distance must be >= 0' in str(excinfo.value) # second check is because the "originating" ValueError says the above, # while the representation one includes the below assert 'you must explicitly pass' in str(excinfo.value) def test_dtype_preservation_in_indexing(): # Regression test for issue #8614 (fixed in #8876) xyz = np.array([[1, 0, 0], [0.9, 0.1, 0]], dtype='f4') cr = CartesianRepresentation(xyz, xyz_axis=-1, unit="km") assert cr.xyz.dtype == xyz.dtype cr0 = cr[0] # This used to fail. assert cr0.xyz.dtype == xyz.dtype class TestInfo: def setup_class(cls): cls.rep = SphericalRepresentation([0, 1]*u.deg, [2, 3]*u.deg, 10*u.pc) cls.diff = SphericalDifferential([10, 20]*u.mas/u.yr, [30, 40]*u.mas/u.yr, [50, 60]*u.km/u.s) cls.rep_w_diff = SphericalRepresentation(cls.rep, differentials=cls.diff) def test_info_unit(self): assert self.rep.info.unit == 'deg, deg, pc' assert self.diff.info.unit == 'mas / yr, mas / yr, km / s' assert self.rep_w_diff.info.unit == 'deg, deg, pc' @pytest.mark.parametrize('item', ['rep', 'diff', 'rep_w_diff']) def test_roundtrip(self, item): rep_or_diff = getattr(self, item) as_dict = rep_or_diff.info._represent_as_dict() new = rep_or_diff.__class__.info._construct_from_dict(as_dict) assert np.all(representation_equal(new, rep_or_diff)) @pytest.mark.parametrize('cls', [SphericalDifferential, SphericalCosLatDifferential, CylindricalDifferential, PhysicsSphericalDifferential, UnitSphericalDifferential, UnitSphericalCosLatDifferential]) def test_differential_norm_noncartesian(cls): # The norm of a non-Cartesian differential without specifying `base` should error rep = cls(0, 0, 0) with pytest.raises(ValueError, match=r"`base` must be provided .* " + cls.__name__): rep.norm() def test_differential_norm_radial(): # Unlike most non-Cartesian differentials, the norm of a radial differential does not require `base` rep = RadialDifferential(1*u.km/u.s) assert_allclose_quantity(rep.norm(), 1*u.km/u.s)
84b642579cb16d92dc8501d9f798ff99a25cf11f904a4390ab011dfa7aace7be
import pytest from astropy.tests.helper import assert_quantity_allclose from astropy.units import allclose as quantity_allclose from astropy import units as u from astropy.coordinates import Longitude, Latitude, EarthLocation from astropy.coordinates.sites import get_builtin_sites, get_downloaded_sites, SiteRegistry def test_builtin_sites(): reg = get_builtin_sites() greenwich = reg['greenwich'] lon, lat, el = greenwich.to_geodetic() assert_quantity_allclose(lon, Longitude('0:0:0', unit=u.deg), atol=10*u.arcsec) assert_quantity_allclose(lat, Latitude('51:28:40', unit=u.deg), atol=1*u.arcsec) assert_quantity_allclose(el, 46*u.m, atol=1*u.m) names = reg.names assert 'greenwich' in names assert 'example_site' in names with pytest.raises(KeyError) as exc: reg['nonexistent site'] assert exc.value.args[0] == "Site 'nonexistent site' not in database. Use the 'names' attribute to see available sites." @pytest.mark.remote_data(source='astropy') def test_online_sites(): reg = get_downloaded_sites() keck = reg['keck'] lon, lat, el = keck.to_geodetic() assert_quantity_allclose(lon, -Longitude('155:28.7', unit=u.deg), atol=0.001*u.deg) assert_quantity_allclose(lat, Latitude('19:49.7', unit=u.deg), atol=0.001*u.deg) assert_quantity_allclose(el, 4160*u.m, atol=1*u.m) names = reg.names assert 'keck' in names assert 'ctio' in names # The JSON file contains `name` and `aliases` for each site, and astropy # should use names from both, but not empty strings [#12721]. assert '' not in names assert 'Royal Observatory Greenwich' in names with pytest.raises(KeyError) as exc: reg['nonexistent site'] assert exc.value.args[0] == "Site 'nonexistent site' not in database. Use the 'names' attribute to see available sites." with pytest.raises(KeyError) as exc: reg['kec'] assert exc.value.args[0] == "Site 'kec' not in database. Use the 'names' attribute to see available sites. Did you mean one of: 'keck'?'" @pytest.mark.remote_data(source='astropy') # this will *try* the online so we have to make it remote_data, even though it # could fall back on the non-remote version def test_EarthLocation_basic(): greenwichel = EarthLocation.of_site('greenwich') lon, lat, el = greenwichel.to_geodetic() assert_quantity_allclose(lon, Longitude('0:0:0', unit=u.deg), atol=10*u.arcsec) assert_quantity_allclose(lat, Latitude('51:28:40', unit=u.deg), atol=1*u.arcsec) assert_quantity_allclose(el, 46*u.m, atol=1*u.m) names = EarthLocation.get_site_names() assert 'greenwich' in names assert 'example_site' in names with pytest.raises(KeyError) as exc: EarthLocation.of_site('nonexistent site') assert exc.value.args[0] == "Site 'nonexistent site' not in database. Use EarthLocation.get_site_names to see available sites." def test_EarthLocation_state_offline(): EarthLocation._site_registry = None EarthLocation._get_site_registry(force_builtin=True) assert EarthLocation._site_registry is not None oldreg = EarthLocation._site_registry newreg = EarthLocation._get_site_registry() assert oldreg is newreg newreg = EarthLocation._get_site_registry(force_builtin=True) assert oldreg is not newreg @pytest.mark.remote_data(source='astropy') def test_EarthLocation_state_online(): EarthLocation._site_registry = None EarthLocation._get_site_registry(force_download=True) assert EarthLocation._site_registry is not None oldreg = EarthLocation._site_registry newreg = EarthLocation._get_site_registry() assert oldreg is newreg newreg = EarthLocation._get_site_registry(force_download=True) assert oldreg is not newreg def test_registry(): reg = SiteRegistry() assert len(reg.names) == 0 names = ['sitea', 'site A'] loc = EarthLocation.from_geodetic(lat=1*u.deg, lon=2*u.deg, height=3*u.km) reg.add_site(names, loc) assert len(reg.names) == 2 loc1 = reg['SIteA'] assert loc1 is loc loc2 = reg['sIte a'] assert loc2 is loc def test_non_EarthLocation(): """ A regression test for a typo bug pointed out at the bottom of https://github.com/astropy/astropy/pull/4042 """ class EarthLocation2(EarthLocation): pass # This lets keeps us from needing to do remote_data # note that this does *not* mess up the registry for EarthLocation because # registry is cached on a per-class basis EarthLocation2._get_site_registry(force_builtin=True) el2 = EarthLocation2.of_site('greenwich') assert type(el2) is EarthLocation2 assert el2.info.name == 'Royal Observatory Greenwich' def check_builtin_matches_remote(download_url=True): """ This function checks that the builtin sites registry is consistent with the remote registry (or a registry at some other location). Note that current this is *not* run by the testing suite (because it doesn't start with "test", and is instead meant to be used as a check before merging changes in astropy-data) """ builtin_registry = EarthLocation._get_site_registry(force_builtin=True) dl_registry = EarthLocation._get_site_registry(force_download=download_url) in_dl = {} matches = {} for name in builtin_registry.names: in_dl[name] = name in dl_registry if in_dl[name]: matches[name] = quantity_allclose(builtin_registry[name].geocentric, dl_registry[name].geocentric) else: matches[name] = False if not all(matches.values()): # this makes sure we actually see which don't match print("In builtin registry but not in download:") for name in in_dl: if not in_dl[name]: print(' ', name) print("In both but not the same value:") for name in matches: if not matches[name] and in_dl[name]: print(' ', name, 'builtin:', builtin_registry[name], 'download:', dl_registry[name]) assert False, "Builtin and download registry aren't consistent - failures printed to stdout" def test_meta_present(): reg = get_builtin_sites() greenwich = reg['greenwich'] assert greenwich.info.meta['source'] == ('Ordnance Survey via ' 'http://gpsinformation.net/main/greenwich.htm and UNESCO')
498a945061db3565b103afa3abb32c1ce347d223f39cc11e8d3f1c943393c536
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Tests for miscellaneous functionality in the `funcs` module """ import pytest import numpy as np from numpy import testing as npt from astropy import units as u from astropy.time import Time def test_sun(): """ Test that `get_sun` works and it behaves roughly as it should (in GCRS) """ from astropy.coordinates.funcs import get_sun northern_summer_solstice = Time('2010-6-21') northern_winter_solstice = Time('2010-12-21') equinox_1 = Time('2010-3-21') equinox_2 = Time('2010-9-21') gcrs1 = get_sun(equinox_1) assert np.abs(gcrs1.dec.deg) < 1 gcrs2 = get_sun(Time([northern_summer_solstice, equinox_2, northern_winter_solstice])) assert np.all(np.abs(gcrs2.dec - [23.5, 0, -23.5]*u.deg) < 1*u.deg) def test_constellations(recwarn): from astropy.coordinates import ICRS, FK5, SkyCoord from astropy.coordinates.funcs import get_constellation inuma = ICRS(9*u.hour, 65*u.deg) n_prewarn = len(recwarn) res = get_constellation(inuma) res_short = get_constellation(inuma, short_name=True) assert len(recwarn) == n_prewarn # neither version should not make warnings assert res == 'Ursa Major' assert res_short == 'UMa' assert isinstance(res, str) or getattr(res, 'shape', None) == tuple() # these are taken from the ReadMe for Roman 1987 ras = [9, 23.5, 5.12, 9.4555, 12.8888, 15.6687, 19, 6.2222] decs = [65, -20, 9.12, -19.9, 22, -12.1234, -40, -81.1234] shortnames = ['UMa', 'Aqr', 'Ori', 'Hya', 'Com', 'Lib', 'CrA', 'Men'] testcoos = FK5(ras*u.hour, decs*u.deg, equinox='B1950') npt.assert_equal(get_constellation(testcoos, short_name=True), shortnames) # test on a SkyCoord, *and* test Boötes, which is special in that it has a # non-ASCII character bootest = SkyCoord(15*u.hour, 30*u.deg, frame='icrs') boores = get_constellation(bootest) assert boores == 'Boötes' assert isinstance(boores, str) or getattr(boores, 'shape', None) == tuple() @pytest.mark.xfail def test_constellation_edge_cases(): from astropy.coordinates import FK5 from astropy.coordinates.funcs import get_constellation # Test edge cases close to borders, using B1875.0 coordinates # Look for HMS / DMS roundoff-to-decimal issues from Roman (1987) data, # and misuse of PrecessedGeocentric, as documented in # https://github.com/astropy/astropy/issues/9855 # Define eight test points. # The first four cross the boundary at 06h14m30 == 6.2416666666666... hours # with Monoceros on the west side of Orion at Dec +3.0. ras = [6.24100, 6.24160, 6.24166, 6.24171] # aka ['6h14m27.6s' '6h14m29.76s' '6h14m29.976s' '6h14m30.156s'] decs = [3.0, 3.0, 3.0, 3.0] # Correct constellations for given RA/Dec coordinates shortnames = ['Ori', 'Ori', 'Ori', 'Mon'] # The second four sample northward along RA 22 hours, crossing the boundary # at 86° 10' == 86.1666... degrees between Cepheus and Ursa Minor decs += [86.16, 86.1666, 86.16668, 86.1668] ras += [22.0, 22.0, 22.0, 22.0] shortnames += ['Cep', 'Cep', 'Umi', 'Umi'] testcoos = FK5(ras*u.hour, decs*u.deg, equinox='B1875') npt.assert_equal(get_constellation(testcoos, short_name=True), shortnames, "get_constellation() error: misusing Roman approximations, vs IAU boundaries from Delporte?") # TODO: When that's fixed, add other tests with coords that are in different constellations # depending on equinox def test_concatenate(): from astropy.coordinates import FK5, SkyCoord, ICRS from astropy.coordinates.funcs import concatenate # Just positions fk5 = FK5(1*u.deg, 2*u.deg) sc = SkyCoord(3*u.deg, 4*u.deg, frame='fk5') res = concatenate([fk5, sc]) np.testing.assert_allclose(res.ra, [1, 3]*u.deg) np.testing.assert_allclose(res.dec, [2, 4]*u.deg) with pytest.raises(TypeError): concatenate(fk5) with pytest.raises(TypeError): concatenate(1*u.deg) # positions and velocities fr = ICRS(ra=10*u.deg, dec=11.*u.deg, pm_ra_cosdec=12*u.mas/u.yr, pm_dec=13*u.mas/u.yr) sc = SkyCoord(ra=20*u.deg, dec=21.*u.deg, pm_ra_cosdec=22*u.mas/u.yr, pm_dec=23*u.mas/u.yr) res = concatenate([fr, sc]) with pytest.raises(ValueError): concatenate([fr, fk5]) fr2 = ICRS(ra=10*u.deg, dec=11.*u.deg) with pytest.raises(ValueError): concatenate([fr, fr2]) def test_concatenate_representations(): from astropy.coordinates.funcs import concatenate_representations from astropy.coordinates import representation as r reps = [r.CartesianRepresentation([1, 2, 3.]*u.kpc), r.SphericalRepresentation(lon=1*u.deg, lat=2.*u.deg, distance=10*u.pc), r.UnitSphericalRepresentation(lon=1*u.deg, lat=2.*u.deg), r.CartesianRepresentation(np.ones((3, 100)) * u.kpc), r.CartesianRepresentation(np.ones((3, 16, 8)) * u.kpc)] reps.append(reps[0].with_differentials( r.CartesianDifferential([1, 2, 3.] * u.km/u.s))) reps.append(reps[1].with_differentials( r.SphericalCosLatDifferential(1*u.mas/u.yr, 2*u.mas/u.yr, 3*u.km/u.s))) reps.append(reps[2].with_differentials( r.SphericalCosLatDifferential(1*u.mas/u.yr, 2*u.mas/u.yr, 3*u.km/u.s))) reps.append(reps[2].with_differentials( r.UnitSphericalCosLatDifferential(1*u.mas/u.yr, 2*u.mas/u.yr))) reps.append(reps[2].with_differentials( {'s': r.RadialDifferential(1*u.km/u.s)})) reps.append(reps[3].with_differentials( r.CartesianDifferential(*np.ones((3, 100)) * u.km/u.s))) reps.append(reps[4].with_differentials( r.CartesianDifferential(*np.ones((3, 16, 8)) * u.km/u.s))) # Test that combining all of the above with itself succeeds for rep in reps: if not rep.shape: expected_shape = (2, ) else: expected_shape = (2 * rep.shape[0], ) + rep.shape[1:] tmp = concatenate_representations((rep, rep)) assert tmp.shape == expected_shape if 's' in rep.differentials: assert tmp.differentials['s'].shape == expected_shape # Try combining 4, just for something different for rep in reps: if not rep.shape: expected_shape = (4, ) else: expected_shape = (4 * rep.shape[0], ) + rep.shape[1:] tmp = concatenate_representations((rep, rep, rep, rep)) assert tmp.shape == expected_shape if 's' in rep.differentials: assert tmp.differentials['s'].shape == expected_shape # Test that combining pairs fails with pytest.raises(TypeError): concatenate_representations((reps[0], reps[1])) with pytest.raises(ValueError): concatenate_representations((reps[0], reps[5])) # Check that passing in a single object fails with pytest.raises(TypeError): concatenate_representations(reps[0]) def test_concatenate_representations_different_units(): from astropy.coordinates.funcs import concatenate_representations from astropy.coordinates import representation as r reps = [r.CartesianRepresentation([1, 2, 3.]*u.pc), r.CartesianRepresentation([1, 2, 3.]*u.kpc)] concat = concatenate_representations(reps) assert concat.shape == (2,) assert np.all(concat.xyz == ([[1., 2., 3.], [1000., 2000., 3000.]] * u.pc).T)
4e43078833cbd52530dfb1a1a0bda5c8052d9cf850e2a23da285568e253f9877
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Tests for the SkyCoord class. Note that there are also SkyCoord tests in test_api_ape5.py """ import copy from copy import deepcopy import pytest import numpy as np import numpy.testing as npt from erfa import ErfaWarning from astropy import units as u from astropy.tests.helper import assert_quantity_allclose as assert_allclose from astropy.coordinates.representation import REPRESENTATION_CLASSES, DUPLICATE_REPRESENTATIONS from astropy.coordinates import (ICRS, FK4, FK5, Galactic, GCRS, SkyCoord, Angle, SphericalRepresentation, CartesianRepresentation, UnitSphericalRepresentation, AltAz, BaseCoordinateFrame, Attribute, frame_transform_graph, RepresentationMapping) from astropy.coordinates import Latitude, EarthLocation from astropy.coordinates.transformations import FunctionTransform from astropy.time import Time from astropy.utils import minversion, isiterable from astropy.units import allclose as quantity_allclose from astropy.io import fits from astropy.wcs import WCS from astropy.coordinates.tests.helper import skycoord_equal from astropy.utils.compat.optional_deps import HAS_SCIPY # noqa RA = 1.0 * u.deg DEC = 2.0 * u.deg C_ICRS = ICRS(RA, DEC) C_FK5 = C_ICRS.transform_to(FK5()) J2001 = Time('J2001') def allclose(a, b, rtol=0.0, atol=None): if atol is None: atol = 1.e-8 * getattr(a, 'unit', 1.) return quantity_allclose(a, b, rtol, atol) def setup_function(func): func.REPRESENTATION_CLASSES_ORIG = deepcopy(REPRESENTATION_CLASSES) func.DUPLICATE_REPRESENTATIONS_ORIG = deepcopy(DUPLICATE_REPRESENTATIONS) def teardown_function(func): REPRESENTATION_CLASSES.clear() REPRESENTATION_CLASSES.update(func.REPRESENTATION_CLASSES_ORIG) DUPLICATE_REPRESENTATIONS.clear() DUPLICATE_REPRESENTATIONS.update(func.DUPLICATE_REPRESENTATIONS_ORIG) def test_is_transformable_to_str_input(): """Test method ``is_transformable_to`` with string input. The only difference from the frame method of the same name is that strings are allowed. As the frame tests cover ``is_transform_to``, here we only test the added string option. """ # make example SkyCoord c = SkyCoord(90*u.deg, -11*u.deg) # iterate through some frames, checking consistency names = frame_transform_graph.get_names() for name in names: frame = frame_transform_graph.lookup_name(name)() assert c.is_transformable_to(name) == c.is_transformable_to(frame) def test_transform_to(): for frame in (FK5(), FK5(equinox=Time('J1975.0')), FK4(), FK4(equinox=Time('J1975.0')), SkyCoord(RA, DEC, frame='fk4', equinox='J1980')): c_frame = C_ICRS.transform_to(frame) s_icrs = SkyCoord(RA, DEC, frame='icrs') s_frame = s_icrs.transform_to(frame) assert allclose(c_frame.ra, s_frame.ra) assert allclose(c_frame.dec, s_frame.dec) assert allclose(c_frame.distance, s_frame.distance) # set up for parametrized test rt_sets = [] rt_frames = [ICRS, FK4, FK5, Galactic] for rt_frame0 in rt_frames: for rt_frame1 in rt_frames: for equinox0 in (None, 'J1975.0'): for obstime0 in (None, 'J1980.0'): for equinox1 in (None, 'J1975.0'): for obstime1 in (None, 'J1980.0'): rt_sets.append((rt_frame0, rt_frame1, equinox0, equinox1, obstime0, obstime1)) rt_args = ('frame0', 'frame1', 'equinox0', 'equinox1', 'obstime0', 'obstime1') @pytest.mark.parametrize(rt_args, rt_sets) def test_round_tripping(frame0, frame1, equinox0, equinox1, obstime0, obstime1): """ Test round tripping out and back using transform_to in every combination. """ attrs0 = {'equinox': equinox0, 'obstime': obstime0} attrs1 = {'equinox': equinox1, 'obstime': obstime1} # Remove None values attrs0 = {k: v for k, v in attrs0.items() if v is not None} attrs1 = {k: v for k, v in attrs1.items() if v is not None} # Go out and back sc = SkyCoord(RA, DEC, frame=frame0, **attrs0) # Keep only frame attributes for frame1 attrs1 = {attr: val for attr, val in attrs1.items() if attr in frame1.get_frame_attr_names()} sc2 = sc.transform_to(frame1(**attrs1)) # When coming back only keep frame0 attributes for transform_to attrs0 = {attr: val for attr, val in attrs0.items() if attr in frame0.get_frame_attr_names()} # also, if any are None, fill in with defaults for attrnm in frame0.get_frame_attr_names(): if attrs0.get(attrnm, None) is None: if attrnm == 'obstime' and frame0.get_frame_attr_names()[attrnm] is None: if 'equinox' in attrs0: attrs0[attrnm] = attrs0['equinox'] else: attrs0[attrnm] = frame0.get_frame_attr_names()[attrnm] sc_rt = sc2.transform_to(frame0(**attrs0)) if frame0 is Galactic: assert allclose(sc.l, sc_rt.l) assert allclose(sc.b, sc_rt.b) else: assert allclose(sc.ra, sc_rt.ra) assert allclose(sc.dec, sc_rt.dec) if equinox0: assert type(sc.equinox) is Time and sc.equinox == sc_rt.equinox if obstime0: assert type(sc.obstime) is Time and sc.obstime == sc_rt.obstime def test_coord_init_string(): """ Spherical or Cartesian representation input coordinates. """ sc = SkyCoord('1d 2d') assert allclose(sc.ra, 1 * u.deg) assert allclose(sc.dec, 2 * u.deg) sc = SkyCoord('1d', '2d') assert allclose(sc.ra, 1 * u.deg) assert allclose(sc.dec, 2 * u.deg) sc = SkyCoord('1°2′3″', '2°3′4″') assert allclose(sc.ra, Angle('1°2′3″')) assert allclose(sc.dec, Angle('2°3′4″')) sc = SkyCoord('1°2′3″ 2°3′4″') assert allclose(sc.ra, Angle('1°2′3″')) assert allclose(sc.dec, Angle('2°3′4″')) with pytest.raises(ValueError) as err: SkyCoord('1d 2d 3d') assert "Cannot parse first argument data" in str(err.value) sc1 = SkyCoord('8 00 00 +5 00 00.0', unit=(u.hour, u.deg), frame='icrs') assert isinstance(sc1, SkyCoord) assert allclose(sc1.ra, Angle(120 * u.deg)) assert allclose(sc1.dec, Angle(5 * u.deg)) sc11 = SkyCoord('8h00m00s+5d00m00.0s', unit=(u.hour, u.deg), frame='icrs') assert isinstance(sc11, SkyCoord) assert allclose(sc1.ra, Angle(120 * u.deg)) assert allclose(sc1.dec, Angle(5 * u.deg)) sc2 = SkyCoord('8 00 -5 00 00.0', unit=(u.hour, u.deg), frame='icrs') assert isinstance(sc2, SkyCoord) assert allclose(sc2.ra, Angle(120 * u.deg)) assert allclose(sc2.dec, Angle(-5 * u.deg)) sc3 = SkyCoord('8 00 -5 00.6', unit=(u.hour, u.deg), frame='icrs') assert isinstance(sc3, SkyCoord) assert allclose(sc3.ra, Angle(120 * u.deg)) assert allclose(sc3.dec, Angle(-5.01 * u.deg)) sc4 = SkyCoord('J080000.00-050036.00', unit=(u.hour, u.deg), frame='icrs') assert isinstance(sc4, SkyCoord) assert allclose(sc4.ra, Angle(120 * u.deg)) assert allclose(sc4.dec, Angle(-5.01 * u.deg)) sc41 = SkyCoord('J080000+050036', unit=(u.hour, u.deg), frame='icrs') assert isinstance(sc41, SkyCoord) assert allclose(sc41.ra, Angle(120 * u.deg)) assert allclose(sc41.dec, Angle(+5.01 * u.deg)) sc5 = SkyCoord('8h00.6m -5d00.6m', unit=(u.hour, u.deg), frame='icrs') assert isinstance(sc5, SkyCoord) assert allclose(sc5.ra, Angle(120.15 * u.deg)) assert allclose(sc5.dec, Angle(-5.01 * u.deg)) sc6 = SkyCoord('8h00.6m -5d00.6m', unit=(u.hour, u.deg), frame='fk4') assert isinstance(sc6, SkyCoord) assert allclose(sc6.ra, Angle(120.15 * u.deg)) assert allclose(sc6.dec, Angle(-5.01 * u.deg)) sc61 = SkyCoord('8h00.6m-5d00.6m', unit=(u.hour, u.deg), frame='fk4') assert isinstance(sc61, SkyCoord) assert allclose(sc6.ra, Angle(120.15 * u.deg)) assert allclose(sc6.dec, Angle(-5.01 * u.deg)) sc61 = SkyCoord('8h00.6-5d00.6', unit=(u.hour, u.deg), frame='fk4') assert isinstance(sc61, SkyCoord) assert allclose(sc6.ra, Angle(120.15 * u.deg)) assert allclose(sc6.dec, Angle(-5.01 * u.deg)) sc7 = SkyCoord("J1874221.60+122421.6", unit=u.deg) assert isinstance(sc7, SkyCoord) assert allclose(sc7.ra, Angle(187.706 * u.deg)) assert allclose(sc7.dec, Angle(12.406 * u.deg)) with pytest.raises(ValueError): SkyCoord('8 00 -5 00.6', unit=(u.deg, u.deg), frame='galactic') def test_coord_init_unit(): """ Test variations of the unit keyword. """ for unit in ('deg', 'deg,deg', ' deg , deg ', u.deg, (u.deg, u.deg), np.array(['deg', 'deg'])): sc = SkyCoord(1, 2, unit=unit) assert allclose(sc.ra, Angle(1 * u.deg)) assert allclose(sc.dec, Angle(2 * u.deg)) for unit in ('hourangle', 'hourangle,hourangle', ' hourangle , hourangle ', u.hourangle, [u.hourangle, u.hourangle]): sc = SkyCoord(1, 2, unit=unit) assert allclose(sc.ra, Angle(15 * u.deg)) assert allclose(sc.dec, Angle(30 * u.deg)) for unit in ('hourangle,deg', (u.hourangle, u.deg)): sc = SkyCoord(1, 2, unit=unit) assert allclose(sc.ra, Angle(15 * u.deg)) assert allclose(sc.dec, Angle(2 * u.deg)) for unit in ('deg,deg,deg,deg', [u.deg, u.deg, u.deg, u.deg], None): with pytest.raises(ValueError) as err: SkyCoord(1, 2, unit=unit) assert 'Unit keyword must have one to three unit values' in str(err.value) for unit in ('m', (u.m, u.deg), ''): with pytest.raises(u.UnitsError) as err: SkyCoord(1, 2, unit=unit) def test_coord_init_list(): """ Spherical or Cartesian representation input coordinates. """ sc = SkyCoord([('1d', '2d'), (1 * u.deg, 2 * u.deg), '1d 2d', ('1°', '2°'), '1° 2°'], unit='deg') assert allclose(sc.ra, Angle('1d')) assert allclose(sc.dec, Angle('2d')) with pytest.raises(ValueError) as err: SkyCoord(['1d 2d 3d']) assert "Cannot parse first argument data" in str(err.value) with pytest.raises(ValueError) as err: SkyCoord([('1d', '2d', '3d')]) assert "Cannot parse first argument data" in str(err.value) sc = SkyCoord([1 * u.deg, 1 * u.deg], [2 * u.deg, 2 * u.deg]) assert allclose(sc.ra, Angle('1d')) assert allclose(sc.dec, Angle('2d')) with pytest.raises(ValueError) as err: SkyCoord([1 * u.deg, 2 * u.deg]) # this list is taken as RA w/ missing dec assert "One or more elements of input sequence does not have a length" in str(err.value) def test_coord_init_array(): """ Input in the form of a list array or numpy array """ for a in (['1 2', '3 4'], [['1', '2'], ['3', '4']], [[1, 2], [3, 4]]): sc = SkyCoord(a, unit='deg') assert allclose(sc.ra - [1, 3] * u.deg, 0 * u.deg) assert allclose(sc.dec - [2, 4] * u.deg, 0 * u.deg) sc = SkyCoord(np.array(a), unit='deg') assert allclose(sc.ra - [1, 3] * u.deg, 0 * u.deg) assert allclose(sc.dec - [2, 4] * u.deg, 0 * u.deg) def test_coord_init_representation(): """ Spherical or Cartesian representation input coordinates. """ coord = SphericalRepresentation(lon=8 * u.deg, lat=5 * u.deg, distance=1 * u.kpc) sc = SkyCoord(coord, frame='icrs') assert allclose(sc.ra, coord.lon) assert allclose(sc.dec, coord.lat) assert allclose(sc.distance, coord.distance) with pytest.raises(ValueError) as err: SkyCoord(coord, frame='icrs', ra='1d') assert "conflicts with keyword argument 'ra'" in str(err.value) coord = CartesianRepresentation(1 * u.one, 2 * u.one, 3 * u.one) sc = SkyCoord(coord, frame='icrs') sc_cart = sc.represent_as(CartesianRepresentation) assert allclose(sc_cart.x, 1.0) assert allclose(sc_cart.y, 2.0) assert allclose(sc_cart.z, 3.0) def test_frame_init(): """ Different ways of providing the frame. """ sc = SkyCoord(RA, DEC, frame='icrs') assert sc.frame.name == 'icrs' sc = SkyCoord(RA, DEC, frame=ICRS) assert sc.frame.name == 'icrs' sc = SkyCoord(sc) assert sc.frame.name == 'icrs' sc = SkyCoord(C_ICRS) assert sc.frame.name == 'icrs' SkyCoord(C_ICRS, frame='icrs') assert sc.frame.name == 'icrs' with pytest.raises(ValueError) as err: SkyCoord(C_ICRS, frame='galactic') assert 'Cannot override frame=' in str(err.value) def test_equal(): obstime = 'B1955' sc1 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg, obstime=obstime) sc2 = SkyCoord([1, 20]*u.deg, [3, 4]*u.deg, obstime=obstime) # Compare arrays and scalars eq = sc1 == sc2 ne = sc1 != sc2 assert np.all(eq == [True, False]) assert np.all(ne == [False, True]) assert (sc1[0] == sc2[0]) == True # noqa (numpy True not Python True) assert (sc1[0] != sc2[0]) == False # noqa # Broadcasting eq = sc1[0] == sc2 ne = sc1[0] != sc2 assert np.all(eq == [True, False]) assert np.all(ne == [False, True]) # With diff only in velocity sc1 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg, radial_velocity=[1, 2]*u.km/u.s) sc2 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg, radial_velocity=[1, 20]*u.km/u.s) eq = sc1 == sc2 ne = sc1 != sc2 assert np.all(eq == [True, False]) assert np.all(ne == [False, True]) assert (sc1[0] == sc2[0]) == True # noqa assert (sc1[0] != sc2[0]) == False # noqa def test_equal_different_type(): sc1 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg, obstime='B1955') # Test equals and not equals operators against different types assert sc1 != 'a string' assert not (sc1 == 'a string') def test_equal_exceptions(): sc1 = SkyCoord(1*u.deg, 2*u.deg, obstime='B1955') sc2 = SkyCoord(1*u.deg, 2*u.deg) with pytest.raises(ValueError, match=r"cannot compare: extra frame " r"attribute 'obstime' is not equivalent \(perhaps compare the " r"frames directly to avoid this exception\)"): sc1 == sc2 # Note that this exception is the only one raised directly in SkyCoord. # All others come from lower-level classes and are tested in test_frames.py. def test_attr_inheritance(): """ When initializing from an existing coord the representation attrs like equinox should be inherited to the SkyCoord. If there is a conflict then raise an exception. """ sc = SkyCoord(1, 2, frame='icrs', unit='deg', equinox='J1999', obstime='J2001') sc2 = SkyCoord(sc) assert sc2.equinox == sc.equinox assert sc2.obstime == sc.obstime assert allclose(sc2.ra, sc.ra) assert allclose(sc2.dec, sc.dec) assert allclose(sc2.distance, sc.distance) sc2 = SkyCoord(sc.frame) # Doesn't have equinox there so we get FK4 defaults assert sc2.equinox != sc.equinox assert sc2.obstime != sc.obstime assert allclose(sc2.ra, sc.ra) assert allclose(sc2.dec, sc.dec) assert allclose(sc2.distance, sc.distance) sc = SkyCoord(1, 2, frame='fk4', unit='deg', equinox='J1999', obstime='J2001') sc2 = SkyCoord(sc) assert sc2.equinox == sc.equinox assert sc2.obstime == sc.obstime assert allclose(sc2.ra, sc.ra) assert allclose(sc2.dec, sc.dec) assert allclose(sc2.distance, sc.distance) sc2 = SkyCoord(sc.frame) # sc.frame has equinox, obstime assert sc2.equinox == sc.equinox assert sc2.obstime == sc.obstime assert allclose(sc2.ra, sc.ra) assert allclose(sc2.dec, sc.dec) assert allclose(sc2.distance, sc.distance) @pytest.mark.parametrize('frame', ['fk4', 'fk5', 'icrs']) def test_setitem_no_velocity(frame): """Test different flavors of item setting for a SkyCoord without a velocity for different frames. Include a frame attribute that is sometimes an actual frame attribute and sometimes an extra frame attribute. """ sc0 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg, obstime='B1955', frame=frame) sc2 = SkyCoord([10, 20]*u.deg, [30, 40]*u.deg, obstime='B1955', frame=frame) sc1 = sc0.copy() sc1[1] = sc2[0] assert np.allclose(sc1.ra.to_value(u.deg), [1, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [3, 30]) assert sc1.obstime == Time('B1955') assert sc1.frame.name == frame sc1 = sc0.copy() sc1[:] = sc2[0] assert np.allclose(sc1.ra.to_value(u.deg), [10, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [30, 30]) sc1 = sc0.copy() sc1[:] = sc2[:] assert np.allclose(sc1.ra.to_value(u.deg), [10, 20]) assert np.allclose(sc1.dec.to_value(u.deg), [30, 40]) sc1 = sc0.copy() sc1[[1, 0]] = sc2[:] assert np.allclose(sc1.ra.to_value(u.deg), [20, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [40, 30]) def test_setitem_initially_broadcast(): sc = SkyCoord(np.ones((2, 1))*u.deg, np.ones((1, 3))*u.deg) sc[1, 1] = SkyCoord(0*u.deg, 0*u.deg) expected = np.ones((2, 3))*u.deg expected[1, 1] = 0. assert np.all(sc.ra == expected) assert np.all(sc.dec == expected) def test_setitem_velocities(): """Test different flavors of item setting for a SkyCoord with a velocity. """ sc0 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg, radial_velocity=[1, 2]*u.km/u.s, obstime='B1950', frame='fk4') sc2 = SkyCoord([10, 20]*u.deg, [30, 40]*u.deg, radial_velocity=[10, 20]*u.km/u.s, obstime='B1950', frame='fk4') sc1 = sc0.copy() sc1[1] = sc2[0] assert np.allclose(sc1.ra.to_value(u.deg), [1, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [3, 30]) assert np.allclose(sc1.radial_velocity.to_value(u.km / u.s), [1, 10]) assert sc1.obstime == Time('B1950') assert sc1.frame.name == 'fk4' sc1 = sc0.copy() sc1[:] = sc2[0] assert np.allclose(sc1.ra.to_value(u.deg), [10, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [30, 30]) assert np.allclose(sc1.radial_velocity.to_value(u.km / u.s), [10, 10]) sc1 = sc0.copy() sc1[:] = sc2[:] assert np.allclose(sc1.ra.to_value(u.deg), [10, 20]) assert np.allclose(sc1.dec.to_value(u.deg), [30, 40]) assert np.allclose(sc1.radial_velocity.to_value(u.km / u.s), [10, 20]) sc1 = sc0.copy() sc1[[1, 0]] = sc2[:] assert np.allclose(sc1.ra.to_value(u.deg), [20, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [40, 30]) assert np.allclose(sc1.radial_velocity.to_value(u.km / u.s), [20, 10]) def test_setitem_exceptions(): class SkyCoordSub(SkyCoord): pass obstime = 'B1955' sc0 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg, frame='fk4') sc2 = SkyCoord([10, 20]*u.deg, [30, 40]*u.deg, frame='fk4', obstime=obstime) sc1 = SkyCoordSub(sc0) with pytest.raises(TypeError, match='an only set from object of same class: ' 'SkyCoordSub vs. SkyCoord'): sc1[0] = sc2[0] sc1 = SkyCoord(sc0.ra, sc0.dec, frame='fk4', obstime='B2001') with pytest.raises(ValueError, match='can only set frame item from an equivalent frame'): sc1.frame[0] = sc2.frame[0] sc1 = SkyCoord(sc0.ra[0], sc0.dec[0], frame='fk4', obstime=obstime) with pytest.raises(TypeError, match="scalar 'FK4' frame object does not support " 'item assignment'): sc1[0] = sc2[0] # Different differentials sc1 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg, pm_ra_cosdec=[1, 2]*u.mas/u.yr, pm_dec=[3, 4]*u.mas/u.yr) sc2 = SkyCoord([10, 20]*u.deg, [30, 40]*u.deg, radial_velocity=[10, 20]*u.km/u.s) with pytest.raises(TypeError, match='can only set from object of same class: ' 'UnitSphericalCosLatDifferential vs. RadialDifferential'): sc1[0] = sc2[0] def test_insert(): sc0 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg) sc1 = SkyCoord(5*u.deg, 6*u.deg) sc3 = SkyCoord([10, 20]*u.deg, [30, 40]*u.deg) sc4 = SkyCoord([[1, 2], [3, 4]]*u.deg, [[5, 6], [7, 8]]*u.deg) sc5 = SkyCoord([[10, 2], [30, 4]]*u.deg, [[50, 6], [70, 8]]*u.deg) # Insert a scalar sc = sc0.insert(1, sc1) assert skycoord_equal(sc, SkyCoord([1, 5, 2]*u.deg, [3, 6, 4]*u.deg)) # Insert length=2 array at start of array sc = sc0.insert(0, sc3) assert skycoord_equal(sc, SkyCoord([10, 20, 1, 2]*u.deg, [30, 40, 3, 4]*u.deg)) # Insert length=2 array at end of array sc = sc0.insert(2, sc3) assert skycoord_equal(sc, SkyCoord([1, 2, 10, 20]*u.deg, [3, 4, 30, 40]*u.deg)) # Multidimensional sc = sc4.insert(1, sc5) assert skycoord_equal(sc, SkyCoord([[1, 2], [10, 2], [30, 4], [3, 4]]*u.deg, [[5, 6], [50, 6], [70, 8], [7, 8]]*u.deg)) def test_insert_exceptions(): sc0 = SkyCoord([1, 2]*u.deg, [3, 4]*u.deg) sc1 = SkyCoord(5*u.deg, 6*u.deg) # sc3 = SkyCoord([10, 20]*u.deg, [30, 40]*u.deg) sc4 = SkyCoord([[1, 2], [3, 4]]*u.deg, [[5, 6], [7, 8]]*u.deg) with pytest.raises(TypeError, match='cannot insert into scalar'): sc1.insert(0, sc0) with pytest.raises(ValueError, match='axis must be 0'): sc0.insert(0, sc1, axis=1) with pytest.raises(TypeError, match='obj arg must be an integer'): sc0.insert(slice(None), sc0) with pytest.raises(IndexError, match='index -100 is out of bounds for axis 0 ' 'with size 2'): sc0.insert(-100, sc0) # Bad shape with pytest.raises(ValueError, match='could not broadcast input array from ' r'shape \(2,2\) into shape \(2,?\)'): sc0.insert(0, sc4) def test_attr_conflicts(): """ Check conflicts resolution between coordinate attributes and init kwargs. """ sc = SkyCoord(1, 2, frame='icrs', unit='deg', equinox='J1999', obstime='J2001') # OK if attrs both specified but with identical values SkyCoord(sc, equinox='J1999', obstime='J2001') # OK because sc.frame doesn't have obstime SkyCoord(sc.frame, equinox='J1999', obstime='J2100') # Not OK if attrs don't match with pytest.raises(ValueError) as err: SkyCoord(sc, equinox='J1999', obstime='J2002') assert "Coordinate attribute 'obstime'=" in str(err.value) # Same game but with fk4 which has equinox and obstime frame attrs sc = SkyCoord(1, 2, frame='fk4', unit='deg', equinox='J1999', obstime='J2001') # OK if attrs both specified but with identical values SkyCoord(sc, equinox='J1999', obstime='J2001') # Not OK if SkyCoord attrs don't match with pytest.raises(ValueError) as err: SkyCoord(sc, equinox='J1999', obstime='J2002') assert "Frame attribute 'obstime' has conflicting" in str(err.value) # Not OK because sc.frame has different attrs with pytest.raises(ValueError) as err: SkyCoord(sc.frame, equinox='J1999', obstime='J2002') assert "Frame attribute 'obstime' has conflicting" in str(err.value) def test_frame_attr_getattr(): """ When accessing frame attributes like equinox, the value should come from self.frame when that object has the relevant attribute, otherwise from self. """ sc = SkyCoord(1, 2, frame='icrs', unit='deg', equinox='J1999', obstime='J2001') assert sc.equinox == 'J1999' # Just the raw value (not validated) assert sc.obstime == 'J2001' sc = SkyCoord(1, 2, frame='fk4', unit='deg', equinox='J1999', obstime='J2001') assert sc.equinox == Time('J1999') # Coming from the self.frame object assert sc.obstime == Time('J2001') sc = SkyCoord(1, 2, frame='fk4', unit='deg', equinox='J1999') assert sc.equinox == Time('J1999') assert sc.obstime == Time('J1999') def test_to_string(): """ Basic testing of converting SkyCoord to strings. This just tests for a single input coordinate and and 1-element list. It does not test the underlying `Angle.to_string` method itself. """ coord = '1h2m3s 1d2m3s' for wrap in (lambda x: x, lambda x: [x]): sc = SkyCoord(wrap(coord)) assert sc.to_string() == wrap('15.5125 1.03417') assert sc.to_string('dms') == wrap('15d30m45s 1d02m03s') assert sc.to_string('hmsdms') == wrap('01h02m03s +01d02m03s') with_kwargs = sc.to_string('hmsdms', precision=3, pad=True, alwayssign=True) assert with_kwargs == wrap('+01h02m03.000s +01d02m03.000s') @pytest.mark.parametrize('cls_other', [SkyCoord, ICRS]) def test_seps(cls_other): sc1 = SkyCoord(0 * u.deg, 1 * u.deg) sc2 = cls_other(0 * u.deg, 2 * u.deg) sep = sc1.separation(sc2) assert (sep - 1 * u.deg)/u.deg < 1e-10 with pytest.raises(ValueError): sc1.separation_3d(sc2) sc3 = SkyCoord(1 * u.deg, 1 * u.deg, distance=1 * u.kpc) sc4 = cls_other(1 * u.deg, 1 * u.deg, distance=2 * u.kpc) sep3d = sc3.separation_3d(sc4) assert sep3d == 1 * u.kpc def test_repr(): sc1 = SkyCoord(0 * u.deg, 1 * u.deg, frame='icrs') sc2 = SkyCoord(1 * u.deg, 1 * u.deg, frame='icrs', distance=1 * u.kpc) assert repr(sc1) == ('<SkyCoord (ICRS): (ra, dec) in deg\n' ' (0., 1.)>') assert repr(sc2) == ('<SkyCoord (ICRS): (ra, dec, distance) in (deg, deg, kpc)\n' ' (1., 1., 1.)>') sc3 = SkyCoord(0.25 * u.deg, [1, 2.5] * u.deg, frame='icrs') assert repr(sc3).startswith('<SkyCoord (ICRS): (ra, dec) in deg\n') sc_default = SkyCoord(0 * u.deg, 1 * u.deg) assert repr(sc_default) == ('<SkyCoord (ICRS): (ra, dec) in deg\n' ' (0., 1.)>') def test_repr_altaz(): sc2 = SkyCoord(1 * u.deg, 1 * u.deg, frame='icrs', distance=1 * u.kpc) loc = EarthLocation(-2309223 * u.m, -3695529 * u.m, -4641767 * u.m) time = Time('2005-03-21 00:00:00') sc4 = sc2.transform_to(AltAz(location=loc, obstime=time)) assert repr(sc4).startswith("<SkyCoord (AltAz: obstime=2005-03-21 00:00:00.000, " "location=(-2309223., -3695529., " "-4641767.) m, pressure=0.0 hPa, " "temperature=0.0 deg_C, relative_humidity=0.0, " "obswl=1.0 micron): (az, alt, distance) in " "(deg, deg, kpc)\n") def test_ops(): """ Tests miscellaneous operations like `len` """ sc = SkyCoord(0 * u.deg, 1 * u.deg, frame='icrs') sc_arr = SkyCoord(0 * u.deg, [1, 2] * u.deg, frame='icrs') sc_empty = SkyCoord([] * u.deg, [] * u.deg, frame='icrs') assert sc.isscalar assert not sc_arr.isscalar assert not sc_empty.isscalar with pytest.raises(TypeError): len(sc) assert len(sc_arr) == 2 assert len(sc_empty) == 0 assert bool(sc) assert bool(sc_arr) assert not bool(sc_empty) assert sc_arr[0].isscalar assert len(sc_arr[:1]) == 1 # A scalar shouldn't be indexable with pytest.raises(TypeError): sc[0:] # but it should be possible to just get an item sc_item = sc[()] assert sc_item.shape == () # and to turn it into an array sc_1d = sc[np.newaxis] assert sc_1d.shape == (1,) with pytest.raises(TypeError): iter(sc) assert not isiterable(sc) assert isiterable(sc_arr) assert isiterable(sc_empty) it = iter(sc_arr) assert next(it).dec == sc_arr[0].dec assert next(it).dec == sc_arr[1].dec with pytest.raises(StopIteration): next(it) def test_none_transform(): """ Ensure that transforming from a SkyCoord with no frame provided works like ICRS """ sc = SkyCoord(0 * u.deg, 1 * u.deg) sc_arr = SkyCoord(0 * u.deg, [1, 2] * u.deg) sc2 = sc.transform_to(ICRS) assert sc.ra == sc2.ra and sc.dec == sc2.dec sc5 = sc.transform_to('fk5') assert sc5.ra == sc2.transform_to('fk5').ra sc_arr2 = sc_arr.transform_to(ICRS) sc_arr5 = sc_arr.transform_to('fk5') npt.assert_array_equal(sc_arr5.ra, sc_arr2.transform_to('fk5').ra) def test_position_angle(): c1 = SkyCoord(0*u.deg, 0*u.deg) c2 = SkyCoord(1*u.deg, 0*u.deg) assert_allclose(c1.position_angle(c2) - 90.0 * u.deg, 0*u.deg) c3 = SkyCoord(1*u.deg, 0.1*u.deg) assert c1.position_angle(c3) < 90*u.deg c4 = SkyCoord(0*u.deg, 1*u.deg) assert_allclose(c1.position_angle(c4), 0*u.deg) carr1 = SkyCoord(0*u.deg, [0, 1, 2]*u.deg) carr2 = SkyCoord([-1, -2, -3]*u.deg, [0.1, 1.1, 2.1]*u.deg) res = carr1.position_angle(carr2) assert res.shape == (3,) assert np.all(res < 360*u.degree) assert np.all(res > 270*u.degree) cicrs = SkyCoord(0*u.deg, 0*u.deg, frame='icrs') cfk5 = SkyCoord(1*u.deg, 0*u.deg, frame='fk5') # because of the frame transform, it's just a *bit* more than 90 degrees assert cicrs.position_angle(cfk5) > 90.0 * u.deg assert cicrs.position_angle(cfk5) < 91.0 * u.deg def test_position_angle_directly(): """Regression check for #3800: position_angle should accept floats.""" from astropy.coordinates.angle_utilities import position_angle result = position_angle(10., 20., 10., 20.) assert result.unit is u.radian assert result.value == 0. def test_sep_pa_equivalence(): """Regression check for bug in #5702. PA and separation from object 1 to 2 should be consistent with those from 2 to 1 """ cfk5 = SkyCoord(1*u.deg, 0*u.deg, frame='fk5') cfk5B1950 = SkyCoord(1*u.deg, 0*u.deg, frame='fk5', equinox='B1950') # test with both default and explicit equinox #5722 and #3106 sep_forward = cfk5.separation(cfk5B1950) sep_backward = cfk5B1950.separation(cfk5) assert sep_forward != 0 and sep_backward != 0 assert_allclose(sep_forward, sep_backward) posang_forward = cfk5.position_angle(cfk5B1950) posang_backward = cfk5B1950.position_angle(cfk5) assert posang_forward != 0 and posang_backward != 0 assert 179 < (posang_forward - posang_backward).wrap_at(360*u.deg).degree < 181 dcfk5 = SkyCoord(1*u.deg, 0*u.deg, frame='fk5', distance=1*u.pc) dcfk5B1950 = SkyCoord(1*u.deg, 0*u.deg, frame='fk5', equinox='B1950', distance=1.*u.pc) sep3d_forward = dcfk5.separation_3d(dcfk5B1950) sep3d_backward = dcfk5B1950.separation_3d(dcfk5) assert sep3d_forward != 0 and sep3d_backward != 0 assert_allclose(sep3d_forward, sep3d_backward) def test_directional_offset_by(): # Round-trip tests: where is sc2 from sc1? # Use those offsets from sc1 and verify you get to sc2. npoints = 7 # How many points when doing vectors of SkyCoords for sc1 in [SkyCoord(0*u.deg,-90*u.deg), # South pole SkyCoord(0 * u.deg, 90 * u.deg), # North pole SkyCoord(1*u.deg,2*u.deg), SkyCoord(np.linspace(0,359,npoints),np.linspace(-90, 90,npoints), unit=u.deg, frame='fk4'), SkyCoord(np.linspace(359,0,npoints),np.linspace(-90, 90,npoints), unit=u.deg, frame='icrs'), SkyCoord(np.linspace(-3,3,npoints),np.linspace(-90, 90,npoints), unit=(u.rad, u.deg), frame='barycentricmeanecliptic')]: for sc2 in [SkyCoord(5*u.deg,10*u.deg), SkyCoord(np.linspace(0, 359, npoints), np.linspace(-90, 90, npoints), unit=u.deg, frame='galactic')]: # Find the displacement from sc1 to sc2, posang = sc1.position_angle(sc2) sep = sc1.separation(sc2) # then do the offset from sc1 and verify that you are at sc2 sc2a = sc1.directional_offset_by(position_angle=posang, separation=sep) assert np.max(np.abs(sc2.separation(sc2a).arcsec)) < 1e-3 # Specific test cases # Go over the North pole a little way, and # over the South pole a long way, to get to same spot sc1 = SkyCoord(0*u.deg, 89*u.deg) for posang,sep in [(0*u.deg, 2*u.deg), (180*u.deg, 358*u.deg)]: sc2 = sc1.directional_offset_by(posang, sep) assert allclose([sc2.ra.degree, sc2.dec.degree], [180, 89]) # Go twice as far to ensure that dec is actually changing # and that >360deg is supported sc2 = sc1.directional_offset_by(posang, 2*sep) assert allclose([sc2.ra.degree, sc2.dec.degree], [180, 87]) # Verify that a separation of 180 deg in any direction gets to the antipode # and 360 deg returns to start sc1 = SkyCoord(10*u.deg, 47*u.deg) for posang in np.linspace(0, 377, npoints): sc2 = sc1.directional_offset_by(posang, 180*u.deg) assert allclose([sc2.ra.degree, sc2.dec.degree], [190, -47]) sc2 = sc1.directional_offset_by(posang, 360*u.deg) assert allclose([sc2.ra.degree, sc2.dec.degree], [10, 47]) # Verify that a 90 degree posang, which means East # corresponds to an increase in RA, by ~separation/cos(dec) and # a slight convergence to equator sc1 = SkyCoord(10*u.deg, 60*u.deg) sc2 = sc1.directional_offset_by(90*u.deg, 1.0*u.deg) assert 11.9 < sc2.ra.degree < 12.0 assert 59.9 < sc2.dec.degree < 60.0 def test_table_to_coord(): """ Checks "end-to-end" use of `Table` with `SkyCoord` - the `Quantity` initializer is the intermediary that translate the table columns into something coordinates understands. (Regression test for #1762 ) """ from astropy.table import Table, Column t = Table() t.add_column(Column(data=[1, 2, 3], name='ra', unit=u.deg)) t.add_column(Column(data=[4, 5, 6], name='dec', unit=u.deg)) c = SkyCoord(t['ra'], t['dec']) assert allclose(c.ra.to(u.deg), [1, 2, 3] * u.deg) assert allclose(c.dec.to(u.deg), [4, 5, 6] * u.deg) def assert_quantities_allclose(coord, q1s, attrs): """ Compare two tuples of quantities. This assumes that the values in q1 are of order(1) and uses atol=1e-13, rtol=0. It also asserts that the units of the two quantities are the *same*, in order to check that the representation output has the expected units. """ q2s = [getattr(coord, attr) for attr in attrs] assert len(q1s) == len(q2s) for q1, q2 in zip(q1s, q2s): assert q1.shape == q2.shape assert allclose(q1, q2, rtol=0, atol=1e-13 * q1.unit) # Sets of inputs corresponding to Galactic frame base_unit_attr_sets = [ ('spherical', u.karcsec, u.karcsec, u.kpc, Latitude, 'l', 'b', 'distance'), ('unitspherical', u.karcsec, u.karcsec, None, Latitude, 'l', 'b', None), ('physicsspherical', u.karcsec, u.karcsec, u.kpc, Angle, 'phi', 'theta', 'r'), ('cartesian', u.km, u.km, u.km, u.Quantity, 'u', 'v', 'w'), ('cylindrical', u.km, u.karcsec, u.km, Angle, 'rho', 'phi', 'z') ] units_attr_sets = [] for base_unit_attr_set in base_unit_attr_sets: repr_name = base_unit_attr_set[0] for representation in (repr_name, REPRESENTATION_CLASSES[repr_name]): for c1, c2, c3 in ((1, 2, 3), ([1], [2], [3])): for arrayify in True, False: if arrayify: c1 = np.array(c1) c2 = np.array(c2) c3 = np.array(c3) units_attr_sets.append(base_unit_attr_set + (representation, c1, c2, c3)) units_attr_args = ('repr_name', 'unit1', 'unit2', 'unit3', 'cls2', 'attr1', 'attr2', 'attr3', 'representation', 'c1', 'c2', 'c3') @pytest.mark.parametrize(units_attr_args, [x for x in units_attr_sets if x[0] != 'unitspherical']) def test_skycoord_three_components(repr_name, unit1, unit2, unit3, cls2, attr1, attr2, attr3, representation, c1, c2, c3): """ Tests positional inputs using components (COMP1, COMP2, COMP3) and various representations. Use weird units and Galactic frame. """ sc = SkyCoord(c1, c2, c3, unit=(unit1, unit2, unit3), representation_type=representation, frame=Galactic) assert_quantities_allclose(sc, (c1*unit1, c2*unit2, c3*unit3), (attr1, attr2, attr3)) sc = SkyCoord(1000*c1*u.Unit(unit1/1000), cls2(c2, unit=unit2), 1000*c3*u.Unit(unit3/1000), frame=Galactic, unit=(unit1, unit2, unit3), representation_type=representation) assert_quantities_allclose(sc, (c1*unit1, c2*unit2, c3*unit3), (attr1, attr2, attr3)) kwargs = {attr3: c3} sc = SkyCoord(c1, c2, unit=(unit1, unit2, unit3), frame=Galactic, representation_type=representation, **kwargs) assert_quantities_allclose(sc, (c1*unit1, c2*unit2, c3*unit3), (attr1, attr2, attr3)) kwargs = {attr1: c1, attr2: c2, attr3: c3} sc = SkyCoord(frame=Galactic, unit=(unit1, unit2, unit3), representation_type=representation, **kwargs) assert_quantities_allclose(sc, (c1*unit1, c2*unit2, c3*unit3), (attr1, attr2, attr3)) @pytest.mark.parametrize(units_attr_args, [x for x in units_attr_sets if x[0] in ('spherical', 'unitspherical')]) def test_skycoord_spherical_two_components(repr_name, unit1, unit2, unit3, cls2, attr1, attr2, attr3, representation, c1, c2, c3): """ Tests positional inputs using components (COMP1, COMP2) for spherical representations. Use weird units and Galactic frame. """ sc = SkyCoord(c1, c2, unit=(unit1, unit2), frame=Galactic, representation_type=representation) assert_quantities_allclose(sc, (c1*unit1, c2*unit2), (attr1, attr2)) sc = SkyCoord(1000*c1*u.Unit(unit1/1000), cls2(c2, unit=unit2), frame=Galactic, unit=(unit1, unit2, unit3), representation_type=representation) assert_quantities_allclose(sc, (c1*unit1, c2*unit2), (attr1, attr2)) kwargs = {attr1: c1, attr2: c2} sc = SkyCoord(frame=Galactic, unit=(unit1, unit2), representation_type=representation, **kwargs) assert_quantities_allclose(sc, (c1*unit1, c2*unit2), (attr1, attr2)) @pytest.mark.parametrize(units_attr_args, [x for x in units_attr_sets if x[0] != 'unitspherical']) def test_galactic_three_components(repr_name, unit1, unit2, unit3, cls2, attr1, attr2, attr3, representation, c1, c2, c3): """ Tests positional inputs using components (COMP1, COMP2, COMP3) and various representations. Use weird units and Galactic frame. """ sc = Galactic(1000*c1*u.Unit(unit1/1000), cls2(c2, unit=unit2), 1000*c3*u.Unit(unit3/1000), representation_type=representation) assert_quantities_allclose(sc, (c1*unit1, c2*unit2, c3*unit3), (attr1, attr2, attr3)) kwargs = {attr3: c3*unit3} sc = Galactic(c1*unit1, c2*unit2, representation_type=representation, **kwargs) assert_quantities_allclose(sc, (c1*unit1, c2*unit2, c3*unit3), (attr1, attr2, attr3)) kwargs = {attr1: c1*unit1, attr2: c2*unit2, attr3: c3*unit3} sc = Galactic(representation_type=representation, **kwargs) assert_quantities_allclose(sc, (c1*unit1, c2*unit2, c3*unit3), (attr1, attr2, attr3)) @pytest.mark.parametrize(units_attr_args, [x for x in units_attr_sets if x[0] in ('spherical', 'unitspherical')]) def test_galactic_spherical_two_components(repr_name, unit1, unit2, unit3, cls2, attr1, attr2, attr3, representation, c1, c2, c3): """ Tests positional inputs using components (COMP1, COMP2) for spherical representations. Use weird units and Galactic frame. """ sc = Galactic(1000*c1*u.Unit(unit1/1000), cls2(c2, unit=unit2), representation_type=representation) assert_quantities_allclose(sc, (c1*unit1, c2*unit2), (attr1, attr2)) sc = Galactic(c1*unit1, c2*unit2, representation_type=representation) assert_quantities_allclose(sc, (c1*unit1, c2*unit2), (attr1, attr2)) kwargs = {attr1: c1*unit1, attr2: c2*unit2} sc = Galactic(representation_type=representation, **kwargs) assert_quantities_allclose(sc, (c1*unit1, c2*unit2), (attr1, attr2)) @pytest.mark.parametrize(('repr_name', 'unit1', 'unit2', 'unit3', 'cls2', 'attr1', 'attr2', 'attr3'), [x for x in base_unit_attr_sets if x[0] != 'unitspherical']) def test_skycoord_coordinate_input(repr_name, unit1, unit2, unit3, cls2, attr1, attr2, attr3): c1, c2, c3 = 1, 2, 3 sc = SkyCoord([(c1, c2, c3)], unit=(unit1, unit2, unit3), representation_type=repr_name, frame='galactic') assert_quantities_allclose(sc, ([c1]*unit1, [c2]*unit2, [c3]*unit3), (attr1, attr2, attr3)) c1, c2, c3 = 1*unit1, 2*unit2, 3*unit3 sc = SkyCoord([(c1, c2, c3)], representation_type=repr_name, frame='galactic') assert_quantities_allclose(sc, ([1]*unit1, [2]*unit2, [3]*unit3), (attr1, attr2, attr3)) def test_skycoord_string_coordinate_input(): sc = SkyCoord('01 02 03 +02 03 04', unit='deg', representation_type='unitspherical') assert_quantities_allclose(sc, (Angle('01:02:03', unit='deg'), Angle('02:03:04', unit='deg')), ('ra', 'dec')) sc = SkyCoord(['01 02 03 +02 03 04'], unit='deg', representation_type='unitspherical') assert_quantities_allclose(sc, (Angle(['01:02:03'], unit='deg'), Angle(['02:03:04'], unit='deg')), ('ra', 'dec')) def test_units(): sc = SkyCoord(1, 2, 3, unit='m', representation_type='cartesian') # All get meters assert sc.x.unit is u.m assert sc.y.unit is u.m assert sc.z.unit is u.m sc = SkyCoord(1, 2*u.km, 3, unit='m', representation_type='cartesian') # All get u.m assert sc.x.unit is u.m assert sc.y.unit is u.m assert sc.z.unit is u.m sc = SkyCoord(1, 2, 3, unit=u.m, representation_type='cartesian') # All get u.m assert sc.x.unit is u.m assert sc.y.unit is u.m assert sc.z.unit is u.m sc = SkyCoord(1, 2, 3, unit='m, km, pc', representation_type='cartesian') assert_quantities_allclose(sc, (1*u.m, 2*u.km, 3*u.pc), ('x', 'y', 'z')) with pytest.raises(u.UnitsError) as err: SkyCoord(1, 2, 3, unit=(u.m, u.m), representation_type='cartesian') assert 'should have matching physical types' in str(err.value) SkyCoord(1, 2, 3, unit=(u.m, u.km, u.pc), representation_type='cartesian') assert_quantities_allclose(sc, (1*u.m, 2*u.km, 3*u.pc), ('x', 'y', 'z')) @pytest.mark.xfail def test_units_known_fail(): # should fail but doesn't => corner case oddity with pytest.raises(u.UnitsError): SkyCoord(1, 2, 3, unit=u.deg, representation_type='spherical') def test_nodata_failure(): with pytest.raises(ValueError): SkyCoord() @pytest.mark.parametrize(('mode', 'origin'), [('wcs', 0), ('all', 0), ('all', 1)]) def test_wcs_methods(mode, origin): from astropy.wcs import WCS from astropy.utils.data import get_pkg_data_contents from astropy.wcs.utils import pixel_to_skycoord header = get_pkg_data_contents('../../wcs/tests/data/maps/1904-66_TAN.hdr', encoding='binary') wcs = WCS(header) ref = SkyCoord(0.1 * u.deg, -89. * u.deg, frame='icrs') xp, yp = ref.to_pixel(wcs, mode=mode, origin=origin) # WCS is in FK5 so we need to transform back to ICRS new = pixel_to_skycoord(xp, yp, wcs, mode=mode, origin=origin).transform_to('icrs') assert_allclose(new.ra.degree, ref.ra.degree) assert_allclose(new.dec.degree, ref.dec.degree) # also try to round-trip with `from_pixel` scnew = SkyCoord.from_pixel(xp, yp, wcs, mode=mode, origin=origin).transform_to('icrs') assert_allclose(scnew.ra.degree, ref.ra.degree) assert_allclose(scnew.dec.degree, ref.dec.degree) # Also make sure the right type comes out class SkyCoord2(SkyCoord): pass scnew2 = SkyCoord2.from_pixel(xp, yp, wcs, mode=mode, origin=origin) assert scnew.__class__ is SkyCoord assert scnew2.__class__ is SkyCoord2 def test_frame_attr_transform_inherit(): """ Test that frame attributes get inherited as expected during transform. Driven by #3106. """ c = SkyCoord(1 * u.deg, 2 * u.deg, frame=FK5) c2 = c.transform_to(FK4) assert c2.equinox.value == 'B1950.000' assert c2.obstime.value == 'B1950.000' c2 = c.transform_to(FK4(equinox='J1975', obstime='J1980')) assert c2.equinox.value == 'J1975.000' assert c2.obstime.value == 'J1980.000' c = SkyCoord(1 * u.deg, 2 * u.deg, frame=FK4) c2 = c.transform_to(FK5) assert c2.equinox.value == 'J2000.000' assert c2.obstime is None c = SkyCoord(1 * u.deg, 2 * u.deg, frame=FK4, obstime='J1980') c2 = c.transform_to(FK5) assert c2.equinox.value == 'J2000.000' assert c2.obstime.value == 'J1980.000' c = SkyCoord(1 * u.deg, 2 * u.deg, frame=FK4, equinox='J1975', obstime='J1980') c2 = c.transform_to(FK5) assert c2.equinox.value == 'J1975.000' assert c2.obstime.value == 'J1980.000' c2 = c.transform_to(FK5(equinox='J1990')) assert c2.equinox.value == 'J1990.000' assert c2.obstime.value == 'J1980.000' # The work-around for #5722 c = SkyCoord(1 * u.deg, 2 * u.deg, frame='fk5') c1 = SkyCoord(1 * u.deg, 2 * u.deg, frame='fk5', equinox='B1950.000') c2 = c1.transform_to(c) assert not c2.is_equivalent_frame(c) # counterintuitive, but documented assert c2.equinox.value == 'B1950.000' c3 = c1.transform_to(c, merge_attributes=False) assert c3.equinox.value == 'J2000.000' assert c3.is_equivalent_frame(c) def test_deepcopy(): c1 = SkyCoord(1 * u.deg, 2 * u.deg) c2 = copy.copy(c1) c3 = copy.deepcopy(c1) c4 = SkyCoord([1, 2] * u.m, [2, 3] * u.m, [3, 4] * u.m, representation_type='cartesian', frame='fk5', obstime='J1999.9', equinox='J1988.8') c5 = copy.deepcopy(c4) assert np.all(c5.x == c4.x) # and y and z assert c5.frame.name == c4.frame.name assert c5.obstime == c4.obstime assert c5.equinox == c4.equinox assert c5.representation_type == c4.representation_type def test_no_copy(): c1 = SkyCoord(np.arange(10.) * u.hourangle, np.arange(20., 30.) * u.deg) c2 = SkyCoord(c1, copy=False) # Note: c1.ra and c2.ra will *not* share memory, as these are recalculated # to be in "preferred" units. See discussion in #4883. assert np.may_share_memory(c1.data.lon, c2.data.lon) c3 = SkyCoord(c1, copy=True) assert not np.may_share_memory(c1.data.lon, c3.data.lon) def test_immutable(): c1 = SkyCoord(1 * u.deg, 2 * u.deg) with pytest.raises(AttributeError): c1.ra = 3.0 c1.foo = 42 assert c1.foo == 42 @pytest.mark.skipif('not HAS_SCIPY') def test_search_around(): """ Test the search_around_* methods Here we don't actually test the values are right, just that the methods of SkyCoord work. The accuracy tests are in ``test_matching.py`` """ from astropy.utils import NumpyRNGContext with NumpyRNGContext(987654321): sc1 = SkyCoord(np.random.rand(20) * 360.*u.degree, (np.random.rand(20) * 180. - 90.)*u.degree) sc2 = SkyCoord(np.random.rand(100) * 360. * u.degree, (np.random.rand(100) * 180. - 90.)*u.degree) sc1ds = SkyCoord(ra=sc1.ra, dec=sc1.dec, distance=np.random.rand(20)*u.kpc) sc2ds = SkyCoord(ra=sc2.ra, dec=sc2.dec, distance=np.random.rand(100)*u.kpc) idx1_sky, idx2_sky, d2d_sky, d3d_sky = sc1.search_around_sky(sc2, 10*u.deg) idx1_3d, idx2_3d, d2d_3d, d3d_3d = sc1ds.search_around_3d(sc2ds, 250*u.pc) def test_init_with_frame_instance_keyword(): # Frame instance c1 = SkyCoord(3 * u.deg, 4 * u.deg, frame=FK5(equinox='J2010')) assert c1.equinox == Time('J2010') # Frame instance with data (data gets ignored) c2 = SkyCoord(3 * u.deg, 4 * u.deg, frame=FK5(1. * u.deg, 2 * u.deg, equinox='J2010')) assert c2.equinox == Time('J2010') assert allclose(c2.ra.degree, 3) assert allclose(c2.dec.degree, 4) # SkyCoord instance c3 = SkyCoord(3 * u.deg, 4 * u.deg, frame=c1) assert c3.equinox == Time('J2010') # Check duplicate arguments with pytest.raises(ValueError) as err: c = SkyCoord(3 * u.deg, 4 * u.deg, frame=FK5(equinox='J2010'), equinox='J2001') assert "Cannot specify frame attribute 'equinox'" in str(err.value) def test_guess_from_table(): from astropy.table import Table, Column from astropy.utils import NumpyRNGContext tab = Table() with NumpyRNGContext(987654321): tab.add_column(Column(data=np.random.rand(10), unit='deg', name='RA[J2000]')) tab.add_column(Column(data=np.random.rand(10), unit='deg', name='DEC[J2000]')) sc = SkyCoord.guess_from_table(tab) npt.assert_array_equal(sc.ra.deg, tab['RA[J2000]']) npt.assert_array_equal(sc.dec.deg, tab['DEC[J2000]']) # try without units in the table tab['RA[J2000]'].unit = None tab['DEC[J2000]'].unit = None # should fail if not given explicitly with pytest.raises(u.UnitsError): sc2 = SkyCoord.guess_from_table(tab) # but should work if provided sc2 = SkyCoord.guess_from_table(tab, unit=u.deg) npt.assert_array_equal(sc2.ra.deg, tab['RA[J2000]']) npt.assert_array_equal(sc2.dec.deg, tab['DEC[J2000]']) # should fail if two options are available - ambiguity bad! tab.add_column(Column(data=np.random.rand(10), name='RA_J1900')) with pytest.raises(ValueError) as excinfo: SkyCoord.guess_from_table(tab, unit=u.deg) assert 'J1900' in excinfo.value.args[0] and 'J2000' in excinfo.value.args[0] tab.remove_column('RA_J1900') tab['RA[J2000]'].unit = u.deg tab['DEC[J2000]'].unit = u.deg # but should succeed if the ambiguity can be broken b/c one of the matches # is the name of a different component tab.add_column(Column(data=np.random.rand(10)*u.mas/u.yr, name='pm_ra_cosdec')) tab.add_column(Column(data=np.random.rand(10)*u.mas/u.yr, name='pm_dec')) sc3 = SkyCoord.guess_from_table(tab) assert u.allclose(sc3.ra, tab['RA[J2000]']) assert u.allclose(sc3.dec, tab['DEC[J2000]']) assert u.allclose(sc3.pm_ra_cosdec, tab['pm_ra_cosdec']) assert u.allclose(sc3.pm_dec, tab['pm_dec']) # should fail if stuff doesn't have proper units tab['RA[J2000]'].unit = None tab['DEC[J2000]'].unit = None with pytest.raises(u.UnitTypeError, match="no unit was given."): SkyCoord.guess_from_table(tab) tab.remove_column('pm_ra_cosdec') tab.remove_column('pm_dec') # should also fail if user specifies something already in the table, but # should succeed even if the user has to give one of the components with pytest.raises(ValueError): SkyCoord.guess_from_table(tab, ra=tab['RA[J2000]'], unit=u.deg) oldra = tab['RA[J2000]'] tab.remove_column('RA[J2000]') sc3 = SkyCoord.guess_from_table(tab, ra=oldra, unit=u.deg) npt.assert_array_equal(sc3.ra.deg, oldra) npt.assert_array_equal(sc3.dec.deg, tab['DEC[J2000]']) # check a few non-ICRS/spherical systems x, y, z = np.arange(3).reshape(3, 1) * u.pc l, b = np.arange(2).reshape(2, 1) * u.deg tabcart = Table([x, y, z], names=('x', 'y', 'z')) tabgal = Table([b, l], names=('b', 'l')) sc_cart = SkyCoord.guess_from_table(tabcart, representation_type='cartesian') npt.assert_array_equal(sc_cart.x, x) npt.assert_array_equal(sc_cart.y, y) npt.assert_array_equal(sc_cart.z, z) sc_gal = SkyCoord.guess_from_table(tabgal, frame='galactic') npt.assert_array_equal(sc_gal.l, l) npt.assert_array_equal(sc_gal.b, b) # also try some column names that *end* with the attribute name tabgal['b'].name = 'gal_b' tabgal['l'].name = 'gal_l' SkyCoord.guess_from_table(tabgal, frame='galactic') tabgal['gal_b'].name = 'blob' tabgal['gal_l'].name = 'central' with pytest.raises(ValueError): SkyCoord.guess_from_table(tabgal, frame='galactic') def test_skycoord_list_creation(): """ Test that SkyCoord can be created in a reasonable way with lists of SkyCoords (regression for #2702) """ sc = SkyCoord(ra=[1, 2, 3]*u.deg, dec=[4, 5, 6]*u.deg) sc0 = sc[0] sc2 = sc[2] scnew = SkyCoord([sc0, sc2]) assert np.all(scnew.ra == [1, 3]*u.deg) assert np.all(scnew.dec == [4, 6]*u.deg) # also check ranges sc01 = sc[:2] scnew2 = SkyCoord([sc01, sc2]) assert np.all(scnew2.ra == sc.ra) assert np.all(scnew2.dec == sc.dec) # now try with a mix of skycoord, frame, and repr objects frobj = ICRS(2*u.deg, 5*u.deg) reprobj = UnitSphericalRepresentation(3*u.deg, 6*u.deg) scnew3 = SkyCoord([sc0, frobj, reprobj]) assert np.all(scnew3.ra == sc.ra) assert np.all(scnew3.dec == sc.dec) # should *fail* if different frame attributes or types are passed in scfk5_j2000 = SkyCoord(1*u.deg, 4*u.deg, frame='fk5') with pytest.raises(ValueError): SkyCoord([sc0, scfk5_j2000]) scfk5_j2010 = SkyCoord(1*u.deg, 4*u.deg, frame='fk5', equinox='J2010') with pytest.raises(ValueError): SkyCoord([scfk5_j2000, scfk5_j2010]) # but they should inherit if they're all consistent scfk5_2_j2010 = SkyCoord(2*u.deg, 5*u.deg, frame='fk5', equinox='J2010') scfk5_3_j2010 = SkyCoord(3*u.deg, 6*u.deg, frame='fk5', equinox='J2010') scnew4 = SkyCoord([scfk5_j2010, scfk5_2_j2010, scfk5_3_j2010]) assert np.all(scnew4.ra == sc.ra) assert np.all(scnew4.dec == sc.dec) assert scnew4.equinox == Time('J2010') def test_nd_skycoord_to_string(): c = SkyCoord(np.ones((2, 2)), 1, unit=('deg', 'deg')) ts = c.to_string() assert np.all(ts.shape == c.shape) assert np.all(ts == '1 1') def test_equiv_skycoord(): sci1 = SkyCoord(1*u.deg, 2*u.deg, frame='icrs') sci2 = SkyCoord(1*u.deg, 3*u.deg, frame='icrs') assert sci1.is_equivalent_frame(sci1) assert sci1.is_equivalent_frame(sci2) assert sci1.is_equivalent_frame(ICRS()) assert not sci1.is_equivalent_frame(FK5()) with pytest.raises(TypeError): sci1.is_equivalent_frame(10) scf1 = SkyCoord(1*u.deg, 2*u.deg, frame='fk5') scf2 = SkyCoord(1*u.deg, 2*u.deg, frame='fk5', equinox='J2005') # obstime is *not* an FK5 attribute, but we still want scf1 and scf3 to come # to come out different because they're part of SkyCoord scf3 = SkyCoord(1*u.deg, 2*u.deg, frame='fk5', obstime='J2005') assert scf1.is_equivalent_frame(scf1) assert not scf1.is_equivalent_frame(sci1) assert scf1.is_equivalent_frame(FK5()) assert not scf1.is_equivalent_frame(scf2) assert scf2.is_equivalent_frame(FK5(equinox='J2005')) assert not scf3.is_equivalent_frame(scf1) assert not scf3.is_equivalent_frame(FK5(equinox='J2005')) def test_equiv_skycoord_with_extra_attrs(): """Regression test for #10658.""" # GCRS has a CartesianRepresentationAttribute called obsgeoloc gcrs = GCRS(1*u.deg, 2*u.deg, obsgeoloc=CartesianRepresentation([1, 2, 3], unit=u.m)) # Create a SkyCoord where obsgeoloc tags along as an extra attribute sc1 = SkyCoord(gcrs).transform_to(ICRS) # Now create a SkyCoord with an equivalent frame but without the extra attribute sc2 = SkyCoord(sc1.frame) # The SkyCoords are therefore not equivalent, but check both directions assert not sc1.is_equivalent_frame(sc2) # This way around raised a TypeError which is fixed by #10658 assert not sc2.is_equivalent_frame(sc1) def test_constellations(): # the actual test for accuracy is in test_funcs - this is just meant to make # sure we get sensible answers sc = SkyCoord(135*u.deg, 65*u.deg) assert sc.get_constellation() == 'Ursa Major' assert sc.get_constellation(short_name=True) == 'UMa' scs = SkyCoord([135]*2*u.deg, [65]*2*u.deg) npt.assert_equal(scs.get_constellation(), ['Ursa Major']*2) npt.assert_equal(scs.get_constellation(short_name=True), ['UMa']*2) @pytest.mark.remote_data def test_constellations_with_nameresolve(): assert SkyCoord.from_name('And I').get_constellation(short_name=True) == 'And' # you'd think "And ..." should be in Andromeda. But you'd be wrong. assert SkyCoord.from_name('And VI').get_constellation() == 'Pegasus' # maybe it's because And VI isn't really a galaxy? assert SkyCoord.from_name('And XXII').get_constellation() == 'Pisces' assert SkyCoord.from_name('And XXX').get_constellation() == 'Cassiopeia' # ok maybe not # ok, but at least some of the others do make sense... assert SkyCoord.from_name('Coma Cluster').get_constellation(short_name=True) == 'Com' assert SkyCoord.from_name('Orion Nebula').get_constellation() == 'Orion' assert SkyCoord.from_name('Triangulum Galaxy').get_constellation() == 'Triangulum' def test_getitem_representation(): """ Make sure current representation survives __getitem__ even if different from data representation. """ sc = SkyCoord([1, 1] * u.deg, [2, 2] * u.deg) sc.representation_type = 'cartesian' assert sc[0].representation_type is CartesianRepresentation def test_spherical_offsets_to_api(): i00 = SkyCoord(0*u.arcmin, 0*u.arcmin, frame='icrs') fk5 = SkyCoord(0*u.arcmin, 0*u.arcmin, frame='fk5') with pytest.raises(ValueError): # different frames should fail i00.spherical_offsets_to(fk5) i1deg = ICRS(1*u.deg, 1*u.deg) dra, ddec = i00.spherical_offsets_to(i1deg) assert_allclose(dra, 1*u.deg) assert_allclose(ddec, 1*u.deg) # make sure an abbreviated array-based version of the above also works i00s = SkyCoord([0]*4*u.arcmin, [0]*4*u.arcmin, frame='icrs') i01s = SkyCoord([0]*4*u.arcmin, np.arange(4)*u.arcmin, frame='icrs') dra, ddec = i00s.spherical_offsets_to(i01s) assert_allclose(dra, 0*u.arcmin) assert_allclose(ddec, np.arange(4)*u.arcmin) @pytest.mark.parametrize('frame', ['icrs', 'galactic']) @pytest.mark.parametrize('comparison_data', [(0*u.arcmin, 1*u.arcmin), (1*u.arcmin, 0*u.arcmin), (1*u.arcmin, 1*u.arcmin)]) def test_spherical_offsets_roundtrip(frame, comparison_data): i00 = SkyCoord(0*u.arcmin, 0*u.arcmin, frame=frame) comparison = SkyCoord(*comparison_data, frame=frame) dlon, dlat = i00.spherical_offsets_to(comparison) assert_allclose(dlon, comparison.data.lon) assert_allclose(dlat, comparison.data.lat) i00_back = comparison.spherical_offsets_by(-dlon, -dlat) # This reaches machine precision when only one component is changed, but for # the third parametrized case (both lon and lat change), the transformation # will have finite accuracy: assert_allclose(i00_back.data.lon, i00.data.lon, atol=1e-10*u.rad) assert_allclose(i00_back.data.lat, i00.data.lat, atol=1e-10*u.rad) # Test roundtripping the other direction: init_c = SkyCoord(40.*u.deg, 40.*u.deg, frame=frame) new_c = init_c.spherical_offsets_by(3.534*u.deg, 2.2134*u.deg) dlon, dlat = new_c.spherical_offsets_to(init_c) back_c = new_c.spherical_offsets_by(dlon, dlat) assert init_c.separation(back_c) < 1e-10*u.deg def test_frame_attr_changes(): """ This tests the case where a frame is added with a new frame attribute after a SkyCoord has been created. This is necessary because SkyCoords get the attributes set at creation time, but the set of attributes can change as frames are added or removed from the transform graph. This makes sure that everything continues to work consistently. """ sc_before = SkyCoord(1*u.deg, 2*u.deg, frame='icrs') assert 'fakeattr' not in dir(sc_before) class FakeFrame(BaseCoordinateFrame): fakeattr = Attribute() # doesn't matter what this does as long as it just puts the frame in the # transform graph transset = (ICRS, FakeFrame, lambda c, f: c) frame_transform_graph.add_transform(*transset) try: assert 'fakeattr' in dir(sc_before) assert sc_before.fakeattr is None sc_after1 = SkyCoord(1*u.deg, 2*u.deg, frame='icrs') assert 'fakeattr' in dir(sc_after1) assert sc_after1.fakeattr is None sc_after2 = SkyCoord(1*u.deg, 2*u.deg, frame='icrs', fakeattr=1) assert sc_after2.fakeattr == 1 finally: frame_transform_graph.remove_transform(*transset) assert 'fakeattr' not in dir(sc_before) assert 'fakeattr' not in dir(sc_after1) assert 'fakeattr' not in dir(sc_after2) def test_cache_clear_sc(): from astropy.coordinates import SkyCoord i = SkyCoord(1*u.deg, 2*u.deg) # Add an in frame units version of the rep to the cache. repr(i) assert len(i.cache['representation']) == 2 i.cache.clear() assert len(i.cache['representation']) == 0 def test_set_attribute_exceptions(): """Ensure no attrbute for any frame can be set directly. Though it is fine if the current frame does not have it.""" sc = SkyCoord(1.*u.deg, 2.*u.deg, frame='fk5') assert hasattr(sc.frame, 'equinox') with pytest.raises(AttributeError): sc.equinox = 'B1950' assert sc.relative_humidity is None sc.relative_humidity = 0.5 assert sc.relative_humidity == 0.5 assert not hasattr(sc.frame, 'relative_humidity') def test_extra_attributes(): """Ensure any extra attributes are dealt with correctly. Regression test against #5743. """ obstime_string = ['2017-01-01T00:00', '2017-01-01T00:10'] obstime = Time(obstime_string) sc = SkyCoord([5, 10], [20, 30], unit=u.deg, obstime=obstime_string) assert not hasattr(sc.frame, 'obstime') assert type(sc.obstime) is Time assert sc.obstime.shape == (2,) assert np.all(sc.obstime == obstime) # ensure equivalency still works for more than one obstime. assert sc.is_equivalent_frame(sc) sc_1 = sc[1] assert sc_1.obstime == obstime[1] # Transforming to FK4 should use sc.obstime. sc_fk4 = sc.transform_to('fk4') assert np.all(sc_fk4.frame.obstime == obstime) # And transforming back should not loose it. sc2 = sc_fk4.transform_to('icrs') assert not hasattr(sc2.frame, 'obstime') assert np.all(sc2.obstime == obstime) # Ensure obstime get taken from the SkyCoord if passed in directly. # (regression test for #5749). sc3 = SkyCoord([0., 1.], [2., 3.], unit='deg', frame=sc) assert np.all(sc3.obstime == obstime) # Finally, check that we can delete such attributes. del sc3.obstime assert sc3.obstime is None def test_apply_space_motion(): # use this 12 year period because it's a multiple of 4 to avoid the quirks # of leap years while having 2 leap seconds in it t1 = Time('2000-01-01T00:00') t2 = Time('2012-01-01T00:00') # Check a very simple case first: frame = ICRS(ra=10.*u.deg, dec=0*u.deg, distance=10.*u.pc, pm_ra_cosdec=0.1*u.deg/u.yr, pm_dec=0*u.mas/u.yr, radial_velocity=0*u.km/u.s) # Cases that should work (just testing input for now): c1 = SkyCoord(frame, obstime=t1, pressure=101*u.kPa) with pytest.warns(ErfaWarning, match='ERFA function "pmsafe" yielded .*'): # warning raised due to high PM chosen above applied1 = c1.apply_space_motion(new_obstime=t2) applied2 = c1.apply_space_motion(dt=12*u.year) assert isinstance(applied1.frame, c1.frame.__class__) assert isinstance(applied2.frame, c1.frame.__class__) assert_allclose(applied1.ra, applied2.ra) assert_allclose(applied1.pm_ra_cosdec, applied2.pm_ra_cosdec) assert_allclose(applied1.dec, applied2.dec) assert_allclose(applied1.distance, applied2.distance) # ensure any frame attributes that were there before get passed through assert applied1.pressure == c1.pressure # there were 2 leap seconds between 2000 and 2010, so the difference in # the two forms of time evolution should be ~2 sec adt = np.abs(applied2.obstime - applied1.obstime) assert 1.9*u.second < adt.to(u.second) < 2.1*u.second c2 = SkyCoord(frame) with pytest.warns(ErfaWarning, match='ERFA function "pmsafe" yielded .*'): # warning raised due to high PM chosen above applied3 = c2.apply_space_motion(dt=6*u.year) assert isinstance(applied3.frame, c1.frame.__class__) assert applied3.obstime is None # this should *not* be .6 deg due to space-motion on a sphere, but it # should be fairly close assert 0.5*u.deg < applied3.ra-c1.ra < .7*u.deg # the two cases should only match somewhat due to it being space motion, but # they should be at least this close assert quantity_allclose(applied1.ra-c1.ra, (applied3.ra-c1.ra)*2, atol=1e-3*u.deg) # but *not* this close assert not quantity_allclose(applied1.ra-c1.ra, (applied3.ra-c1.ra)*2, atol=1e-4*u.deg) with pytest.raises(ValueError): c2.apply_space_motion(new_obstime=t2) def test_custom_frame_skycoord(): # also regression check for the case from #7069 class BlahBleeBlopFrame(BaseCoordinateFrame): default_representation = SphericalRepresentation # without a differential, SkyCoord creation fails # default_differential = SphericalDifferential _frame_specific_representation_info = { 'spherical': [ RepresentationMapping('lon', 'lon', 'recommended'), RepresentationMapping('lat', 'lat', 'recommended'), RepresentationMapping('distance', 'radius', 'recommended') ] } SkyCoord(lat=1*u.deg, lon=2*u.deg, frame=BlahBleeBlopFrame) def test_user_friendly_pm_error(): """ This checks that a more user-friendly error message is raised for the user if they pass, e.g., pm_ra instead of pm_ra_cosdec """ with pytest.raises(ValueError) as e: SkyCoord(ra=150*u.deg, dec=-11*u.deg, pm_ra=100*u.mas/u.yr, pm_dec=10*u.mas/u.yr) assert 'pm_ra_cosdec' in str(e.value) with pytest.raises(ValueError) as e: SkyCoord(l=150*u.deg, b=-11*u.deg, pm_l=100*u.mas/u.yr, pm_b=10*u.mas/u.yr, frame='galactic') assert 'pm_l_cosb' in str(e.value) # The special error should not turn on here: with pytest.raises(ValueError) as e: SkyCoord(x=1*u.pc, y=2*u.pc, z=3*u.pc, pm_ra=100*u.mas/u.yr, pm_dec=10*u.mas/u.yr, representation_type='cartesian') assert 'pm_ra_cosdec' not in str(e.value) def test_contained_by(): """ Test Skycoord.contained(wcs,image) """ header = """ WCSAXES = 2 / Number of coordinate axes CRPIX1 = 1045.0 / Pixel coordinate of reference point CRPIX2 = 1001.0 / Pixel coordinate of reference point PC1_1 = -0.00556448550786 / Coordinate transformation matrix element PC1_2 = -0.001042120133257 / Coordinate transformation matrix element PC2_1 = 0.001181477028705 / Coordinate transformation matrix element PC2_2 = -0.005590809742987 / Coordinate transformation matrix element CDELT1 = 1.0 / [deg] Coordinate increment at reference point CDELT2 = 1.0 / [deg] Coordinate increment at reference point CUNIT1 = 'deg' / Units of coordinate increment and value CUNIT2 = 'deg' / Units of coordinate increment and value CTYPE1 = 'RA---TAN' / TAN (gnomonic) projection + SIP distortions CTYPE2 = 'DEC--TAN' / TAN (gnomonic) projection + SIP distortions CRVAL1 = 250.34971683647 / [deg] Coordinate value at reference point CRVAL2 = 2.2808772582495 / [deg] Coordinate value at reference point LONPOLE = 180.0 / [deg] Native longitude of celestial pole LATPOLE = 2.2808772582495 / [deg] Native latitude of celestial pole RADESYS = 'ICRS' / Equatorial coordinate system MJD-OBS = 58612.339199259 / [d] MJD of observation matching DATE-OBS DATE-OBS= '2019-05-09T08:08:26.816Z' / ISO-8601 observation date matching MJD-OB NAXIS = 2 / NAXIS NAXIS1 = 2136 / length of first array dimension NAXIS2 = 2078 / length of second array dimension """ header = fits.Header.fromstring(header.strip(),'\n') test_wcs = WCS(header) coord = SkyCoord(254,2,unit='deg') assert coord.contained_by(test_wcs) == True coord = SkyCoord(240,2,unit='deg') assert coord.contained_by(test_wcs) == False img = np.zeros((2136,2078)) coord = SkyCoord(250,2,unit='deg') assert coord.contained_by(test_wcs, img) == True coord = SkyCoord(240,2,unit='deg') assert coord.contained_by(test_wcs, img) == False ra = np.array([254.2, 254.1]) dec = np.array([2, 12.1]) coords = SkyCoord(ra, dec, unit='deg') assert np.all(test_wcs.footprint_contains(coords) == np.array([True, False])) def test_none_differential_type(): """ This is a regression test for #8021 """ from astropy.coordinates import BaseCoordinateFrame class MockHeliographicStonyhurst(BaseCoordinateFrame): default_representation = SphericalRepresentation frame_specific_representation_info = { SphericalRepresentation: [RepresentationMapping(reprname='lon', framename='lon', defaultunit=u.deg), RepresentationMapping(reprname='lat', framename='lat', defaultunit=u.deg), RepresentationMapping(reprname='distance', framename='radius', defaultunit=None)] } fr = MockHeliographicStonyhurst(lon=1*u.deg, lat=2*u.deg, radius=10*u.au) SkyCoord(0*u.deg, fr.lat, fr.radius, frame=fr) # this was the failure def test_multiple_aliases(): # Define a frame with multiple aliases class MultipleAliasesFrame(BaseCoordinateFrame): name = ['alias_1', 'alias_2'] default_representation = SphericalRepresentation # Register a transform, which adds the aliases to the transform graph tfun = lambda c, f: f.__class__(lon=c.lon, lat=c.lat) ftrans = FunctionTransform(tfun, MultipleAliasesFrame, MultipleAliasesFrame, register_graph=frame_transform_graph) coord = SkyCoord(lon=1*u.deg, lat=2*u.deg, frame=MultipleAliasesFrame) # Test attribute-style access returns self (not a copy) assert coord.alias_1 is coord assert coord.alias_2 is coord # Test for aliases in __dir__() assert 'alias_1' in coord.__dir__() assert 'alias_2' in coord.__dir__() # Test transform_to() calls assert isinstance(coord.transform_to('alias_1').frame, MultipleAliasesFrame) assert isinstance(coord.transform_to('alias_2').frame, MultipleAliasesFrame) ftrans.unregister(frame_transform_graph) @pytest.mark.parametrize("kwargs, error_message", [ ( {"ra": 1, "dec": 1, "distance": 1 * u.pc, "unit": "deg"}, r"Unit 'deg' \(angle\) could not be applied to 'distance'. ", ), ( {"rho": 1 * u.m, "phi": 1, "z": 1 * u.m, "unit": "deg", "representation_type": "cylindrical"}, r"Unit 'deg' \(angle\) could not be applied to 'rho'. ", ), ]) def test_passing_inconsistent_coordinates_and_units_raises_helpful_error(kwargs, error_message): # https://github.com/astropy/astropy/issues/10725 with pytest.raises(ValueError, match=error_message): SkyCoord(**kwargs) @pytest.mark.skipif(not HAS_SCIPY, reason="Requires scipy.") def test_match_to_catalog_3d_and_sky(): # Test for issue #5857. See PR #11449 cfk5_default = SkyCoord([1, 2, 3, 4] * u.degree, [0, 0, 0, 0] * u.degree, distance=[1, 1, 1.5, 1] * u.kpc, frame='fk5') cfk5_J1950 = cfk5_default.transform_to(FK5(equinox='J1950')) idx, angle, quantity = cfk5_J1950.match_to_catalog_3d(cfk5_default) npt.assert_array_equal(idx, [0, 1, 2, 3]) assert_allclose(angle, 0*u.deg, atol=2e-15*u.deg, rtol=0) assert_allclose(quantity, 0*u.kpc, atol=1e-15*u.kpc, rtol=0) idx, angle, distance = cfk5_J1950.match_to_catalog_sky(cfk5_default) npt.assert_array_equal(idx, [0, 1, 2, 3]) assert_allclose(angle, 0 * u.deg, atol=2e-15*u.deg, rtol=0) assert_allclose(distance, 0*u.kpc, atol=2e-15*u.kpc, rtol=0)
d7c480eaa04c36659ff1c2671a510c6fe7209902f0de9496bdbd8a67cfa2a193
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This includes tests for the Distance class and related calculations """ import pytest import numpy as np from numpy import testing as npt from astropy import units as u from astropy.units import allclose as quantity_allclose from astropy.coordinates import Longitude, Latitude, Distance, CartesianRepresentation from astropy.coordinates.builtin_frames import ICRS, Galactic from astropy.utils.exceptions import AstropyWarning from astropy.utils.compat.optional_deps import HAS_SCIPY # noqa def test_distances(): """ Tests functionality for Coordinate class distances and cartesian transformations. """ ''' Distances can also be specified, and allow for a full 3D definition of a coordinate. ''' # try all the different ways to initialize a Distance distance = Distance(12, u.parsec) Distance(40, unit=u.au) Distance(value=5, unit=u.kpc) # need to provide a unit with pytest.raises(u.UnitsError): Distance(12) with pytest.raises(ValueError, match='none of `value`, `z`, `distmod`,'): Distance(unit=u.km) # standard units are pre-defined npt.assert_allclose(distance.lyr, 39.138765325702551) npt.assert_allclose(distance.km, 370281309776063.0) # Coordinate objects can be assigned a distance object, giving them a full # 3D position c = Galactic(l=158.558650*u.degree, b=-43.350066*u.degree, distance=Distance(12, u.parsec)) assert quantity_allclose(c.distance, 12 * u.pc) # or initialize distances via redshifts - this is actually tested in the # function below that checks for scipy. This is kept here as an example # c.distance = Distance(z=0.2) # uses current cosmology # with whatever your preferred cosmology may be # c.distance = Distance(z=0.2, cosmology=WMAP5) # Coordinate objects can be initialized with a distance using special # syntax c1 = Galactic(l=158.558650*u.deg, b=-43.350066*u.deg, distance=12 * u.kpc) # Coordinate objects can be instantiated with cartesian coordinates # Internally they will immediately be converted to two angles + a distance cart = CartesianRepresentation(x=2 * u.pc, y=4 * u.pc, z=8 * u.pc) c2 = Galactic(cart) sep12 = c1.separation_3d(c2) # returns a *3d* distance between the c1 and c2 coordinates # not that this does *not* assert isinstance(sep12, Distance) npt.assert_allclose(sep12.pc, 12005.784163916317, 10) ''' All spherical coordinate systems with distances can be converted to cartesian coordinates. ''' cartrep2 = c2.cartesian assert isinstance(cartrep2.x, u.Quantity) npt.assert_allclose(cartrep2.x.value, 2) npt.assert_allclose(cartrep2.y.value, 4) npt.assert_allclose(cartrep2.z.value, 8) # with no distance, the unit sphere is assumed when converting to cartesian c3 = Galactic(l=158.558650*u.degree, b=-43.350066*u.degree, distance=None) unitcart = c3.cartesian npt.assert_allclose(((unitcart.x**2 + unitcart.y**2 + unitcart.z**2)**0.5).value, 1.0) # TODO: choose between these when CartesianRepresentation gets a definite # decision on whether or not it gets __add__ # # CartesianRepresentation objects can be added and subtracted, which are # vector/elementwise they can also be given as arguments to a coordinate # system # csum = ICRS(c1.cartesian + c2.cartesian) csumrep = CartesianRepresentation(c1.cartesian.xyz + c2.cartesian.xyz) csum = ICRS(csumrep) npt.assert_allclose(csumrep.x.value, -8.12016610185) npt.assert_allclose(csumrep.y.value, 3.19380597435) npt.assert_allclose(csumrep.z.value, -8.2294483707) npt.assert_allclose(csum.ra.degree, 158.529401774) npt.assert_allclose(csum.dec.degree, -43.3235825777) npt.assert_allclose(csum.distance.kpc, 11.9942200501) @pytest.mark.skipif('not HAS_SCIPY') def test_distances_scipy(): """ The distance-related tests that require scipy due to the cosmology module needing scipy integration routines """ from astropy.cosmology import WMAP5 # try different ways to initialize a Distance d4 = Distance(z=0.23) # uses default cosmology - as of writing, WMAP7 npt.assert_allclose(d4.z, 0.23, rtol=1e-8) d5 = Distance(z=0.23, cosmology=WMAP5) npt.assert_allclose(d5.compute_z(WMAP5), 0.23, rtol=1e-8) d6 = Distance(z=0.23, cosmology=WMAP5, unit=u.km) npt.assert_allclose(d6.value, 3.5417046898762366e+22) with pytest.raises(ValueError, match='a `cosmology` was given but `z`'): Distance(parallax=1*u.mas, cosmology=WMAP5) # Regression test for #12531 with pytest.raises(ValueError, match='more than one'): Distance(z=0.23, parallax=1*u.mas) # vectors! regression test for #11949 d4 = Distance(z=[0.23, 0.45]) # as of writing, Planck18 npt.assert_allclose(d4.z, [0.23, 0.45], rtol=1e-8) def test_distance_change(): ra = Longitude("4:08:15.162342", unit=u.hour) dec = Latitude("-41:08:15.162342", unit=u.degree) c1 = ICRS(ra, dec, Distance(1, unit=u.kpc)) oldx = c1.cartesian.x.value assert (oldx - 0.35284083171901953) < 1e-10 # first make sure distances are immutable with pytest.raises(AttributeError): c1.distance = Distance(2, unit=u.kpc) # now x should increase with a bigger distance increases c2 = ICRS(ra, dec, Distance(2, unit=u.kpc)) assert c2.cartesian.x.value == oldx * 2 def test_distance_is_quantity(): """ test that distance behaves like a proper quantity """ Distance(2 * u.kpc) d = Distance([2, 3.1], u.kpc) assert d.shape == (2,) a = d.view(np.ndarray) q = d.view(u.Quantity) a[0] = 1.2 q.value[1] = 5.4 assert d[0].value == 1.2 assert d[1].value == 5.4 q = u.Quantity(d, copy=True) q.value[1] = 0 assert q.value[1] == 0 assert d.value[1] != 0 # regression test against #2261 d = Distance([2 * u.kpc, 250. * u.pc]) assert d.unit is u.kpc assert np.all(d.value == np.array([2., 0.25])) def test_distmod(): d = Distance(10, u.pc) assert d.distmod.value == 0 d = Distance(distmod=20) assert d.distmod.value == 20 assert d.kpc == 100 d = Distance(distmod=-1., unit=u.au) npt.assert_allclose(d.value, 1301442.9440836983) with pytest.raises(ValueError): d = Distance(value=d, distmod=20) with pytest.raises(ValueError): d = Distance(z=.23, distmod=20) # check the Mpc/kpc/pc behavior assert Distance(distmod=1).unit == u.pc assert Distance(distmod=11).unit == u.kpc assert Distance(distmod=26).unit == u.Mpc assert Distance(distmod=-21).unit == u.AU # if an array, uses the mean of the log of the distances assert Distance(distmod=[1, 11, 26]).unit == u.kpc def test_parallax(): d = Distance(parallax=1*u.arcsecond) assert d.pc == 1. with pytest.raises(ValueError): d = Distance(15*u.pc, parallax=20*u.milliarcsecond) with pytest.raises(ValueError): d = Distance(parallax=20*u.milliarcsecond, distmod=20) # array plx = [1, 10, 100.]*u.mas d = Distance(parallax=plx) assert quantity_allclose(d.pc, [1000., 100., 10.]) assert quantity_allclose(plx, d.parallax) # check behavior for negative parallax with pytest.raises(ValueError): Distance(parallax=-1 * u.mas) with pytest.raises(ValueError): Distance(parallax=[10, 1, -1] * u.mas) with pytest.warns(AstropyWarning): Distance(parallax=-1 * u.mas, allow_negative=True) with pytest.warns(AstropyWarning): Distance(parallax=[10, 1, -1] * u.mas, allow_negative=True) # Regression test for #12569; `unit` was ignored if `parallax` was given. d = Distance(parallax=1*u.mas, unit=u.kpc) assert d.value == 1. assert d.unit is u.kpc def test_distance_in_coordinates(): """ test that distances can be created from quantities and that cartesian representations come out right """ ra = Longitude("4:08:15.162342", unit=u.hour) dec = Latitude("-41:08:15.162342", unit=u.degree) coo = ICRS(ra, dec, distance=2*u.kpc) cart = coo.cartesian assert isinstance(cart.xyz, u.Quantity) def test_negative_distance(): """ Test optional kwarg allow_negative """ with pytest.raises(ValueError): Distance([-2, 3.1], u.kpc) with pytest.raises(ValueError): Distance([-2, -3.1], u.kpc) with pytest.raises(ValueError): Distance(-2, u.kpc) d = Distance(-2, u.kpc, allow_negative=True) assert d.value == -2 def test_distance_comparison(): """Ensure comparisons of distances work (#2206, #2250)""" a = Distance(15*u.kpc) b = Distance(15*u.kpc) assert a == b c = Distance(1.*u.Mpc) assert a < c def test_distance_to_quantity_when_not_units_of_length(): """Any operation that leaves units other than those of length should turn a distance into a quantity (#2206, #2250)""" d = Distance(15*u.kpc) twice = 2.*d assert isinstance(twice, Distance) area = 4.*np.pi*d**2 assert area.unit.is_equivalent(u.m**2) assert not isinstance(area, Distance) assert type(area) is u.Quantity def test_distance_nan(): # Check that giving NaNs to Distance doesn't emit a warning Distance([0, np.nan, 1] * u.m)
13878be49cd83de1e3391c897e554f97d247d1fc0500cdb106ce02831df44162
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Test initialization of angles not already covered by the API tests""" import pickle import pytest import numpy as np from astropy.coordinates.earth import EarthLocation, ELLIPSOIDS from astropy.coordinates.angles import Longitude, Latitude from astropy.units import allclose as quantity_allclose from astropy import units as u from astropy.time import Time from astropy import constants from astropy.coordinates.name_resolve import NameResolveError def allclose_m14(a, b, rtol=1.e-14, atol=None): if atol is None: atol = 1.e-14 * getattr(a, 'unit', 1) return quantity_allclose(a, b, rtol, atol) def allclose_m8(a, b, rtol=1.e-8, atol=None): if atol is None: atol = 1.e-8 * getattr(a, 'unit', 1) return quantity_allclose(a, b, rtol, atol) def isclose_m14(val, ref): return np.array([allclose_m14(v, r) for (v, r) in zip(val, ref)]) def isclose_m8(val, ref): return np.array([allclose_m8(v, r) for (v, r) in zip(val, ref)]) def vvd(val, valok, dval, func, test, status): """Mimic routine of erfa/src/t_erfa_c.c (to help copy & paste)""" assert quantity_allclose(val, valok * val.unit, atol=dval * val.unit) def test_gc2gd(): """Test that we reproduce erfa/src/t_erfa_c.c t_gc2gd""" x, y, z = (2e6, 3e6, 5.244e6) status = 0 # help for copy & paste of vvd location = EarthLocation.from_geocentric(x, y, z, u.m) e, p, h = location.to_geodetic('WGS84') e, p, h = e.to(u.radian), p.to(u.radian), h.to(u.m) vvd(e, 0.98279372324732907, 1e-14, "eraGc2gd", "e2", status) vvd(p, 0.97160184820607853, 1e-14, "eraGc2gd", "p2", status) vvd(h, 331.41731754844348, 1e-8, "eraGc2gd", "h2", status) e, p, h = location.to_geodetic('GRS80') e, p, h = e.to(u.radian), p.to(u.radian), h.to(u.m) vvd(e, 0.98279372324732907, 1e-14, "eraGc2gd", "e2", status) vvd(p, 0.97160184820607853, 1e-14, "eraGc2gd", "p2", status) vvd(h, 331.41731754844348, 1e-8, "eraGc2gd", "h2", status) e, p, h = location.to_geodetic('WGS72') e, p, h = e.to(u.radian), p.to(u.radian), h.to(u.m) vvd(e, 0.98279372324732907, 1e-14, "eraGc2gd", "e3", status) vvd(p, 0.97160181811015119, 1e-14, "eraGc2gd", "p3", status) vvd(h, 333.27707261303181, 1e-8, "eraGc2gd", "h3", status) def test_gd2gc(): """Test that we reproduce erfa/src/t_erfa_c.c t_gd2gc""" e = 3.1 * u.rad p = -0.5 * u.rad h = 2500.0 * u.m status = 0 # help for copy & paste of vvd location = EarthLocation.from_geodetic(e, p, h, ellipsoid='WGS84') xyz = tuple(v.to(u.m) for v in location.to_geocentric()) vvd(xyz[0], -5599000.5577049947, 1e-7, "eraGd2gc", "0/1", status) vvd(xyz[1], 233011.67223479203, 1e-7, "eraGd2gc", "1/1", status) vvd(xyz[2], -3040909.4706983363, 1e-7, "eraGd2gc", "2/1", status) location = EarthLocation.from_geodetic(e, p, h, ellipsoid='GRS80') xyz = tuple(v.to(u.m) for v in location.to_geocentric()) vvd(xyz[0], -5599000.5577260984, 1e-7, "eraGd2gc", "0/2", status) vvd(xyz[1], 233011.6722356703, 1e-7, "eraGd2gc", "1/2", status) vvd(xyz[2], -3040909.4706095476, 1e-7, "eraGd2gc", "2/2", status) location = EarthLocation.from_geodetic(e, p, h, ellipsoid='WGS72') xyz = tuple(v.to(u.m) for v in location.to_geocentric()) vvd(xyz[0], -5598998.7626301490, 1e-7, "eraGd2gc", "0/3", status) vvd(xyz[1], 233011.5975297822, 1e-7, "eraGd2gc", "1/3", status) vvd(xyz[2], -3040908.6861467111, 1e-7, "eraGd2gc", "2/3", status) class TestInput(): def setup(self): self.lon = Longitude([0., 45., 90., 135., 180., -180, -90, -45], u.deg, wrap_angle=180*u.deg) self.lat = Latitude([+0., 30., 60., +90., -90., -60., -30., 0.], u.deg) self.h = u.Quantity([0.1, 0.5, 1.0, -0.5, -1.0, +4.2, -11., -.1], u.m) self.location = EarthLocation.from_geodetic(self.lon, self.lat, self.h) self.x, self.y, self.z = self.location.to_geocentric() def test_default_ellipsoid(self): assert self.location.ellipsoid == EarthLocation._ellipsoid def test_geo_attributes(self): assert all(np.all(_1 == _2) for _1, _2 in zip(self.location.geodetic, self.location.to_geodetic())) assert all(np.all(_1 == _2) for _1, _2 in zip(self.location.geocentric, self.location.to_geocentric())) def test_attribute_classes(self): """Test that attribute classes are correct (and not EarthLocation)""" assert type(self.location.x) is u.Quantity assert type(self.location.y) is u.Quantity assert type(self.location.z) is u.Quantity assert type(self.location.lon) is Longitude assert type(self.location.lat) is Latitude assert type(self.location.height) is u.Quantity def test_input(self): """Check input is parsed correctly""" # units of length should be assumed geocentric geocentric = EarthLocation(self.x, self.y, self.z) assert np.all(geocentric == self.location) geocentric2 = EarthLocation(self.x.value, self.y.value, self.z.value, self.x.unit) assert np.all(geocentric2 == self.location) geodetic = EarthLocation(self.lon, self.lat, self.h) assert np.all(geodetic == self.location) geodetic2 = EarthLocation(self.lon.to_value(u.degree), self.lat.to_value(u.degree), self.h.to_value(u.m)) assert np.all(geodetic2 == self.location) geodetic3 = EarthLocation(self.lon, self.lat) assert allclose_m14(geodetic3.lon.value, self.location.lon.value) assert allclose_m14(geodetic3.lat.value, self.location.lat.value) assert not np.any(isclose_m14(geodetic3.height.value, self.location.height.value)) geodetic4 = EarthLocation(self.lon, self.lat, self.h[-1]) assert allclose_m14(geodetic4.lon.value, self.location.lon.value) assert allclose_m14(geodetic4.lat.value, self.location.lat.value) assert allclose_m14(geodetic4.height[-1].value, self.location.height[-1].value) assert not np.any(isclose_m14(geodetic4.height[:-1].value, self.location.height[:-1].value)) # check length unit preservation geocentric5 = EarthLocation(self.x, self.y, self.z, u.pc) assert geocentric5.unit is u.pc assert geocentric5.x.unit is u.pc assert geocentric5.height.unit is u.pc assert allclose_m14(geocentric5.x.to_value(self.x.unit), self.x.value) geodetic5 = EarthLocation(self.lon, self.lat, self.h.to(u.pc)) assert geodetic5.unit is u.pc assert geodetic5.x.unit is u.pc assert geodetic5.height.unit is u.pc assert allclose_m14(geodetic5.x.to_value(self.x.unit), self.x.value) def test_invalid_input(self): """Check invalid input raises exception""" # incomprehensible by either raises TypeError with pytest.raises(TypeError): EarthLocation(self.lon, self.y, self.z) # wrong units with pytest.raises(u.UnitsError): EarthLocation.from_geocentric(self.lon, self.lat, self.lat) # inconsistent units with pytest.raises(u.UnitsError): EarthLocation.from_geocentric(self.h, self.lon, self.lat) # floats without a unit with pytest.raises(TypeError): EarthLocation.from_geocentric(self.x.value, self.y.value, self.z.value) # inconsistent shape with pytest.raises(ValueError): EarthLocation.from_geocentric(self.x, self.y, self.z[:5]) # inconsistent units with pytest.raises(u.UnitsError): EarthLocation.from_geodetic(self.x, self.y, self.z) # inconsistent shape with pytest.raises(ValueError): EarthLocation.from_geodetic(self.lon, self.lat, self.h[:5]) def test_slicing(self): # test on WGS72 location, so we can check the ellipsoid is passed on locwgs72 = EarthLocation.from_geodetic(self.lon, self.lat, self.h, ellipsoid='WGS72') loc_slice1 = locwgs72[4] assert isinstance(loc_slice1, EarthLocation) assert loc_slice1.unit is locwgs72.unit assert loc_slice1.ellipsoid == locwgs72.ellipsoid == 'WGS72' assert not loc_slice1.shape with pytest.raises(TypeError): loc_slice1[0] with pytest.raises(IndexError): len(loc_slice1) loc_slice2 = locwgs72[4:6] assert isinstance(loc_slice2, EarthLocation) assert len(loc_slice2) == 2 assert loc_slice2.unit is locwgs72.unit assert loc_slice2.ellipsoid == locwgs72.ellipsoid assert loc_slice2.shape == (2,) loc_x = locwgs72['x'] assert type(loc_x) is u.Quantity assert loc_x.shape == locwgs72.shape assert loc_x.unit is locwgs72.unit def test_invalid_ellipsoid(self): # unknown ellipsoid with pytest.raises(ValueError): EarthLocation.from_geodetic(self.lon, self.lat, self.h, ellipsoid='foo') with pytest.raises(TypeError): EarthLocation(self.lon, self.lat, self.h, ellipsoid='foo') with pytest.raises(ValueError): self.location.ellipsoid = 'foo' with pytest.raises(ValueError): self.location.to_geodetic('foo') @pytest.mark.parametrize('ellipsoid', ELLIPSOIDS) def test_ellipsoid(self, ellipsoid): """Test that different ellipsoids are understood, and differ""" # check that heights differ for different ellipsoids # need different tolerance, since heights are relative to ~6000 km lon, lat, h = self.location.to_geodetic(ellipsoid) if ellipsoid == self.location.ellipsoid: assert allclose_m8(h.value, self.h.value) else: # Some heights are very similar for some; some lon, lat identical. assert not np.all(isclose_m8(h.value, self.h.value)) # given lon, lat, height, check that x,y,z differ location = EarthLocation.from_geodetic(self.lon, self.lat, self.h, ellipsoid=ellipsoid) if ellipsoid == self.location.ellipsoid: assert allclose_m14(location.z.value, self.z.value) else: assert not np.all(isclose_m14(location.z.value, self.z.value)) def test_to_value(self): loc = self.location loc_ndarray = loc.view(np.ndarray) assert np.all(loc.value == loc_ndarray) loc2 = self.location.to(u.km) loc2_ndarray = np.empty_like(loc_ndarray) for coo in 'x', 'y', 'z': loc2_ndarray[coo] = loc_ndarray[coo] / 1000. assert np.all(loc2.value == loc2_ndarray) loc2_value = self.location.to_value(u.km) assert np.all(loc2_value == loc2_ndarray) def test_pickling(): """Regression test against #4304.""" el = EarthLocation(0.*u.m, 6000*u.km, 6000*u.km) s = pickle.dumps(el) el2 = pickle.loads(s) assert el == el2 def test_repr_latex(): """ Regression test for issue #4542 """ somelocation = EarthLocation(lon='149:3:57.9', lat='-31:16:37.3') somelocation._repr_latex_() somelocation2 = EarthLocation(lon=[1., 2.]*u.deg, lat=[-1., 9.]*u.deg) somelocation2._repr_latex_() @pytest.mark.remote_data # TODO: this parametrize should include a second option with a valid Google API # key. For example, we should make an API key for Astropy, and add it to GitHub Actions # as an environment variable (for security). @pytest.mark.parametrize('google_api_key', [None]) def test_of_address(google_api_key): NYC_lon = -74.0 * u.deg NYC_lat = 40.7 * u.deg # ~10 km tolerance to address difference between OpenStreetMap and Google # for "New York, NY". This doesn't matter in practice because this test is # only used to verify that the query succeeded, not that the returned # position is precise. NYC_tol = 0.1 * u.deg # just a location try: loc = EarthLocation.of_address("New York, NY") except NameResolveError as e: # API limit might surface even here in CI. if 'unknown failure with' not in str(e): pytest.xfail(str(e)) else: assert quantity_allclose(loc.lat, NYC_lat, atol=NYC_tol) assert quantity_allclose(loc.lon, NYC_lon, atol=NYC_tol) assert np.allclose(loc.height.value, 0.) # Put this one here as buffer to get around Google map API limit per sec. # no match: This always raises NameResolveError with pytest.raises(NameResolveError): EarthLocation.of_address("lkjasdflkja") if google_api_key is not None: # a location and height try: loc = EarthLocation.of_address("New York, NY", get_height=True) except NameResolveError as e: # Buffer above sometimes insufficient to get around API limit but # we also do not want to drag things out with time.sleep(0.195), # where 0.195 was empirically determined on some physical machine. pytest.xfail(str(e.value)) else: assert quantity_allclose(loc.lat, NYC_lat, atol=NYC_tol) assert quantity_allclose(loc.lon, NYC_lon, atol=NYC_tol) assert quantity_allclose(loc.height, 10.438*u.meter, atol=1.*u.cm) def test_geodetic_tuple(): lat = 2*u.deg lon = 10*u.deg height = 100*u.m el = EarthLocation.from_geodetic(lat=lat, lon=lon, height=height) res1 = el.to_geodetic() res2 = el.geodetic assert res1.lat == res2.lat and quantity_allclose(res1.lat, lat) assert res1.lon == res2.lon and quantity_allclose(res1.lon, lon) assert res1.height == res2.height and quantity_allclose(res1.height, height) def test_gravitational_redshift(): someloc = EarthLocation(lon=-87.7*u.deg, lat=37*u.deg) sometime = Time('2017-8-21 18:26:40') zg0 = someloc.gravitational_redshift(sometime) # should be of order ~few mm/s change per week zg_week = someloc.gravitational_redshift(sometime + 7 * u.day) assert 1.*u.mm/u.s < abs(zg_week - zg0) < 1*u.cm/u.s # ~cm/s over a half-year zg_halfyear = someloc.gravitational_redshift(sometime + 0.5 * u.yr) assert 1*u.cm/u.s < abs(zg_halfyear - zg0) < 1*u.dm/u.s # but when back to the same time in a year, should be tenths of mm # even over decades zg_year = someloc.gravitational_redshift(sometime - 20 * u.year) assert .1*u.mm/u.s < abs(zg_year - zg0) < 1*u.mm/u.s # Check mass adjustments. # If Jupiter and the moon are ignored, effect should be off by ~ .5 mm/s masses = {'sun': constants.G*constants.M_sun, 'jupiter': 0*constants.G*u.kg, 'moon': 0*constants.G*u.kg} zg_moonjup = someloc.gravitational_redshift(sometime, masses=masses) assert .1*u.mm/u.s < abs(zg_moonjup - zg0) < 1*u.mm/u.s # Check that simply not including the bodies gives the same result. assert zg_moonjup == someloc.gravitational_redshift(sometime, bodies=('sun',)) # And that earth can be given, even not as last argument assert zg_moonjup == someloc.gravitational_redshift( sometime, bodies=('earth', 'sun',)) # If the earth is also ignored, effect should be off by ~ 20 cm/s # This also tests the conversion of kg to gravitational units. masses['earth'] = 0*u.kg zg_moonjupearth = someloc.gravitational_redshift(sometime, masses=masses) assert 1*u.dm/u.s < abs(zg_moonjupearth - zg0) < 1*u.m/u.s # If all masses are zero, redshift should be 0 as well. masses['sun'] = 0*u.kg assert someloc.gravitational_redshift(sometime, masses=masses) == 0 with pytest.raises(KeyError): someloc.gravitational_redshift(sometime, bodies=('saturn',)) with pytest.raises(u.UnitsError): masses = {'sun': constants.G*constants.M_sun, 'jupiter': constants.G*constants.M_jup, 'moon': 1*u.km, # wrong units! 'earth': constants.G*constants.M_earth} someloc.gravitational_redshift(sometime, masses=masses) def test_read_only_input(): lon = np.array([80., 440.]) * u.deg lat = np.array([45.]) * u.deg lon.flags.writeable = lat.flags.writeable = False loc = EarthLocation.from_geodetic(lon=lon, lat=lat) assert quantity_allclose(loc[1].x, loc[0].x) def test_info(): EarthLocation._get_site_registry(force_builtin=True) greenwich = EarthLocation.of_site('greenwich') assert str(greenwich.info).startswith('name = Royal Observatory Greenwich')
4d7a332f4b61e307ce34170d702dd601b240ff01de95a05eb3705a7c09c21cbf
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np from astropy.units import allclose as quantity_allclose from astropy import units as u from astropy import constants from astropy.time import Time from astropy.coordinates.builtin_frames import ICRS, AltAz, LSR, GCRS, Galactic, FK5 from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.sites import get_builtin_sites from astropy.coordinates import (TimeAttribute, FunctionTransformWithFiniteDifference, get_sun, CartesianRepresentation, SphericalRepresentation, CartesianDifferential, SphericalDifferential, DynamicMatrixTransform) J2000 = Time('J2000') @pytest.mark.parametrize("dt, symmetric", [(1*u.second, True), (1*u.year, True), (1*u.second, False), (1*u.year, False)]) def test_faux_lsr(dt, symmetric): class LSR2(LSR): obstime = TimeAttribute(default=J2000) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, ICRS, LSR2, finite_difference_dt=dt, symmetric_finite_difference=symmetric) def icrs_to_lsr(icrs_coo, lsr_frame): dt = lsr_frame.obstime - J2000 offset = lsr_frame.v_bary * dt.to(u.second) return lsr_frame.realize_frame(icrs_coo.data.without_differentials() + offset) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, LSR2, ICRS, finite_difference_dt=dt, symmetric_finite_difference=symmetric) def lsr_to_icrs(lsr_coo, icrs_frame): dt = lsr_coo.obstime - J2000 offset = lsr_coo.v_bary * dt.to(u.second) return icrs_frame.realize_frame(lsr_coo.data - offset) ic = ICRS(ra=12.3*u.deg, dec=45.6*u.deg, distance=7.8*u.au, pm_ra_cosdec=0*u.marcsec/u.yr, pm_dec=0*u.marcsec/u.yr, radial_velocity=0*u.km/u.s) lsrc = ic.transform_to(LSR2()) assert quantity_allclose(ic.cartesian.xyz, lsrc.cartesian.xyz) idiff = ic.cartesian.differentials['s'] ldiff = lsrc.cartesian.differentials['s'] change = (ldiff.d_xyz - idiff.d_xyz).to(u.km/u.s) totchange = np.sum(change**2)**0.5 assert quantity_allclose(totchange, np.sum(lsrc.v_bary.d_xyz**2)**0.5) ic2 = ICRS(ra=120.3*u.deg, dec=45.6*u.deg, distance=7.8*u.au, pm_ra_cosdec=0*u.marcsec/u.yr, pm_dec=10*u.marcsec/u.yr, radial_velocity=1000*u.km/u.s) lsrc2 = ic2.transform_to(LSR2()) ic2_roundtrip = lsrc2.transform_to(ICRS()) tot = np.sum(lsrc2.cartesian.differentials['s'].d_xyz**2)**0.5 assert np.abs(tot.to('km/s') - 1000*u.km/u.s) < 20*u.km/u.s assert quantity_allclose(ic2.cartesian.xyz, ic2_roundtrip.cartesian.xyz) def test_faux_fk5_galactic(): from astropy.coordinates.builtin_frames.galactic_transforms import fk5_to_gal, _gal_to_fk5 class Galactic2(Galactic): pass dt = 1000*u.s @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, FK5, Galactic2, finite_difference_dt=dt, symmetric_finite_difference=True, finite_difference_frameattr_name=None) def fk5_to_gal2(fk5_coo, gal_frame): trans = DynamicMatrixTransform(fk5_to_gal, FK5, Galactic2) return trans(fk5_coo, gal_frame) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, Galactic2, ICRS, finite_difference_dt=dt, symmetric_finite_difference=True, finite_difference_frameattr_name=None) def gal2_to_fk5(gal_coo, fk5_frame): trans = DynamicMatrixTransform(_gal_to_fk5, Galactic2, FK5) return trans(gal_coo, fk5_frame) c1 = FK5(ra=150*u.deg, dec=-17*u.deg, radial_velocity=83*u.km/u.s, pm_ra_cosdec=-41*u.mas/u.yr, pm_dec=16*u.mas/u.yr, distance=150*u.pc) c2 = c1.transform_to(Galactic2()) c3 = c1.transform_to(Galactic()) # compare the matrix and finite-difference calculations assert quantity_allclose(c2.pm_l_cosb, c3.pm_l_cosb, rtol=1e-4) assert quantity_allclose(c2.pm_b, c3.pm_b, rtol=1e-4) def test_gcrs_diffs(): time = Time('2017-01-01') gf = GCRS(obstime=time) sung = get_sun(time) # should have very little vhelio # qtr-year off sun location should be the direction of ~ maximal vhelio qtrsung = get_sun(time-.25*u.year) # now we use those essentially as directions where the velocities should # be either maximal or minimal - with or perpendiculat to Earh's orbit msungr = CartesianRepresentation(-sung.cartesian.xyz).represent_as(SphericalRepresentation) suni = ICRS(ra=msungr.lon, dec=msungr.lat, distance=100*u.au, pm_ra_cosdec=0*u.marcsec/u.yr, pm_dec=0*u.marcsec/u.yr, radial_velocity=0*u.km/u.s) qtrsuni = ICRS(ra=qtrsung.ra, dec=qtrsung.dec, distance=100*u.au, pm_ra_cosdec=0*u.marcsec/u.yr, pm_dec=0*u.marcsec/u.yr, radial_velocity=0*u.km/u.s) # Now we transform those parallel- and perpendicular-to Earth's orbit # directions to GCRS, which should shift the velocity to either include # the Earth's velocity vector, or not (for parallel and perpendicular, # respectively). sung = suni.transform_to(gf) qtrsung = qtrsuni.transform_to(gf) # should be high along the ecliptic-not-sun sun axis and # low along the sun axis assert np.abs(qtrsung.radial_velocity) > 30*u.km/u.s assert np.abs(qtrsung.radial_velocity) < 40*u.km/u.s assert np.abs(sung.radial_velocity) < 1*u.km/u.s suni2 = sung.transform_to(ICRS()) assert np.all(np.abs(suni2.data.differentials['s'].d_xyz) < 3e-5*u.km/u.s) qtrisun2 = qtrsung.transform_to(ICRS()) assert np.all(np.abs(qtrisun2.data.differentials['s'].d_xyz) < 3e-5*u.km/u.s) def test_altaz_diffs(): time = Time('J2015') + np.linspace(-1, 1, 1000)*u.day loc = get_builtin_sites()['greenwich'] aa = AltAz(obstime=time, location=loc) icoo = ICRS(np.zeros(time.shape)*u.deg, 10*u.deg, 100*u.au, pm_ra_cosdec=np.zeros(time.shape)*u.marcsec/u.yr, pm_dec=0*u.marcsec/u.yr, radial_velocity=0*u.km/u.s) acoo = icoo.transform_to(aa) # Make sure the change in radial velocity over ~2 days isn't too much # more than the rotation speed of the Earth - some excess is expected # because the orbit also shifts the RV, but it should be pretty small # over this short a time. assert np.ptp(acoo.radial_velocity)/2 < (2*np.pi*constants.R_earth/u.day)*1.2 # MAGIC NUMBER cdiff = acoo.data.differentials['s'].represent_as(CartesianDifferential, acoo.data) # The "total" velocity should be > c, because the *tangential* velocity # isn't a True velocity, but rather an induced velocity due to the Earth's # rotation at a distance of 100 AU assert np.all(np.sum(cdiff.d_xyz**2, axis=0)**0.5 > constants.c) _xfail = pytest.mark.xfail @pytest.mark.parametrize('distance', [1000*u.au, 10*u.pc, pytest.param(10*u.kpc, marks=_xfail), pytest.param(100*u.kpc, marks=_xfail)]) # TODO: make these not fail when the # finite-difference numerical stability # is improved def test_numerical_limits(distance): """ Tests the numerical stability of the default settings for the finite difference transformation calculation. This is *known* to fail for at >~1kpc, but this may be improved in future versions. """ time = Time('J2017') + np.linspace(-.5, .5, 100)*u.year icoo = ICRS(ra=0*u.deg, dec=10*u.deg, distance=distance, pm_ra_cosdec=0*u.marcsec/u.yr, pm_dec=0*u.marcsec/u.yr, radial_velocity=0*u.km/u.s) gcoo = icoo.transform_to(GCRS(obstime=time)) rv = gcoo.radial_velocity.to('km/s') # if its a lot bigger than this - ~the maximal velocity shift along # the direction above with a small allowance for noise - finite-difference # rounding errors have ruined the calculation assert np.ptp(rv) < 65*u.km/u.s def diff_info_plot(frame, time): """ Useful for plotting a frame with multiple times. *Not* used in the testing suite per se, but extremely useful for interactive plotting of results from tests in this module. """ from matplotlib import pyplot as plt fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(20, 12)) ax1.plot_date(time.plot_date, frame.data.differentials['s'].d_xyz.to(u.km/u.s).T, fmt='-') ax1.legend(['x', 'y', 'z']) ax2.plot_date(time.plot_date, np.sum(frame.data.differentials['s'].d_xyz.to(u.km/u.s)**2, axis=0)**0.5, fmt='-') ax2.set_title('total') sd = frame.data.differentials['s'].represent_as(SphericalDifferential, frame.data) ax3.plot_date(time.plot_date, sd.d_distance.to(u.km/u.s), fmt='-') ax3.set_title('radial') ax4.plot_date(time.plot_date, sd.d_lat.to(u.marcsec/u.yr), fmt='-', label='lat') ax4.plot_date(time.plot_date, sd.d_lon.to(u.marcsec/u.yr), fmt='-', label='lon') return fig
36cdf741b7dcb047a07f2f51fbf3bb99bc3e62c9d494eb93e480e6b4775c4d40
""" The modules in the accuracy testing subpackage are primarily intended for comparison with "known-good" (or at least "known-familiar") datasets. More basic functionality and sanity checks are in the main ``coordinates/tests`` testing modules. """ N_ACCURACY_TESTS = 10 # the number of samples to use per accuracy test
97967f5f85016afa9dc0b5ac17d96d2a7cb0e6cf75f3b4c429511e1765568381
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Facilities for diffing two FITS files. Includes objects for diffing entire FITS files, individual HDUs, FITS headers, or just FITS data. Used to implement the fitsdiff program. """ import fnmatch import glob import io import operator import os import os.path import textwrap from collections import defaultdict from inspect import signature from itertools import islice import numpy as np from astropy import __version__ from .card import Card, BLANK_CARD from .header import Header # HDUList is used in one of the doctests from .hdu.hdulist import fitsopen, HDUList # pylint: disable=W0611 from .hdu.table import _TableLikeHDU from astropy.utils.diff import (report_diff_values, fixed_width_indent, where_not_allclose, diff_values) from astropy.utils.misc import NOT_OVERWRITING_MSG __all__ = ['FITSDiff', 'HDUDiff', 'HeaderDiff', 'ImageDataDiff', 'RawDataDiff', 'TableDataDiff'] # Column attributes of interest for comparison _COL_ATTRS = [('unit', 'units'), ('null', 'null values'), ('bscale', 'bscales'), ('bzero', 'bzeros'), ('disp', 'display formats'), ('dim', 'dimensions')] class _BaseDiff: """ Base class for all FITS diff objects. When instantiating a FITS diff object, the first two arguments are always the two objects to diff (two FITS files, two FITS headers, etc.). Instantiating a ``_BaseDiff`` also causes the diff itself to be executed. The returned ``_BaseDiff`` instance has a number of attribute that describe the results of the diff operation. The most basic attribute, present on all ``_BaseDiff`` instances, is ``.identical`` which is `True` if the two objects being compared are identical according to the diff method for objects of that type. """ def __init__(self, a, b): """ The ``_BaseDiff`` class does not implement a ``_diff`` method and should not be instantiated directly. Instead instantiate the appropriate subclass of ``_BaseDiff`` for the objects being compared (for example, use `HeaderDiff` to compare two `Header` objects. """ self.a = a self.b = b # For internal use in report output self._fileobj = None self._indent = 0 self._diff() def __bool__(self): """ A ``_BaseDiff`` object acts as `True` in a boolean context if the two objects compared are identical. Otherwise it acts as `False`. """ return not self.identical @classmethod def fromdiff(cls, other, a, b): """ Returns a new Diff object of a specific subclass from an existing diff object, passing on the values for any arguments they share in common (such as ignore_keywords). For example:: >>> from astropy.io import fits >>> hdul1, hdul2 = fits.HDUList(), fits.HDUList() >>> headera, headerb = fits.Header(), fits.Header() >>> fd = fits.FITSDiff(hdul1, hdul2, ignore_keywords=['*']) >>> hd = fits.HeaderDiff.fromdiff(fd, headera, headerb) >>> list(hd.ignore_keywords) ['*'] """ sig = signature(cls.__init__) # The first 3 arguments of any Diff initializer are self, a, and b. kwargs = {} for arg in list(sig.parameters.keys())[3:]: if hasattr(other, arg): kwargs[arg] = getattr(other, arg) return cls(a, b, **kwargs) @property def identical(self): """ `True` if all the ``.diff_*`` attributes on this diff instance are empty, implying that no differences were found. Any subclass of ``_BaseDiff`` must have at least one ``.diff_*`` attribute, which contains a non-empty value if and only if some difference was found between the two objects being compared. """ return not any(getattr(self, attr) for attr in self.__dict__ if attr.startswith('diff_')) def report(self, fileobj=None, indent=0, overwrite=False): """ Generates a text report on the differences (if any) between two objects, and either returns it as a string or writes it to a file-like object. Parameters ---------- fileobj : file-like, string, or None, optional If `None`, this method returns the report as a string. Otherwise it returns `None` and writes the report to the given file-like object (which must have a ``.write()`` method at a minimum), or to a new file at the path specified. indent : int The number of 4 space tabs to indent the report. overwrite : bool, optional If ``True``, overwrite the output file if it exists. Raises an ``OSError`` if ``False`` and the output file exists. Default is ``False``. Returns ------- report : str or None """ return_string = False filepath = None if isinstance(fileobj, str): if os.path.exists(fileobj) and not overwrite: raise OSError(NOT_OVERWRITING_MSG.format(fileobj)) else: filepath = fileobj fileobj = open(filepath, 'w') elif fileobj is None: fileobj = io.StringIO() return_string = True self._fileobj = fileobj self._indent = indent # This is used internally by _writeln try: self._report() finally: if filepath: fileobj.close() if return_string: return fileobj.getvalue() def _writeln(self, text): self._fileobj.write(fixed_width_indent(text, self._indent) + '\n') def _diff(self): raise NotImplementedError def _report(self): raise NotImplementedError class FITSDiff(_BaseDiff): """Diff two FITS files by filename, or two `HDUList` objects. `FITSDiff` objects have the following diff attributes: - ``diff_hdu_count``: If the FITS files being compared have different numbers of HDUs, this contains a 2-tuple of the number of HDUs in each file. - ``diff_hdus``: If any HDUs with the same index are different, this contains a list of 2-tuples of the HDU index and the `HDUDiff` object representing the differences between the two HDUs. """ def __init__(self, a, b, ignore_hdus=[], ignore_keywords=[], ignore_comments=[], ignore_fields=[], numdiffs=10, rtol=0.0, atol=0.0, ignore_blanks=True, ignore_blank_cards=True): """ Parameters ---------- a : str or `HDUList` The filename of a FITS file on disk, or an `HDUList` object. b : str or `HDUList` The filename of a FITS file on disk, or an `HDUList` object to compare to the first file. ignore_hdus : sequence, optional HDU names to ignore when comparing two FITS files or HDU lists; the presence of these HDUs and their contents are ignored. Wildcard strings may also be included in the list. ignore_keywords : sequence, optional Header keywords to ignore when comparing two headers; the presence of these keywords and their values are ignored. Wildcard strings may also be included in the list. ignore_comments : sequence, optional A list of header keywords whose comments should be ignored in the comparison. May contain wildcard strings as with ignore_keywords. ignore_fields : sequence, optional The (case-insensitive) names of any table columns to ignore if any table data is to be compared. numdiffs : int, optional The number of pixel/table values to output when reporting HDU data differences. Though the count of differences is the same either way, this allows controlling the number of different values that are kept in memory or output. If a negative value is given, then numdiffs is treated as unlimited (default: 10). rtol : float, optional The relative difference to allow when comparing two float values either in header values, image arrays, or table columns (default: 0.0). Values which satisfy the expression .. math:: \\left| a - b \\right| > \\text{atol} + \\text{rtol} \\cdot \\left| b \\right| are considered to be different. The underlying function used for comparison is `numpy.allclose`. .. versionadded:: 2.0 atol : float, optional The allowed absolute difference. See also ``rtol`` parameter. .. versionadded:: 2.0 ignore_blanks : bool, optional Ignore extra whitespace at the end of string values either in headers or data. Extra leading whitespace is not ignored (default: True). ignore_blank_cards : bool, optional Ignore all cards that are blank, i.e. they only contain whitespace (default: True). """ if isinstance(a, (str, os.PathLike)): try: a = fitsopen(a) except Exception as exc: raise OSError("error opening file a ({}): {}: {}".format( a, exc.__class__.__name__, exc.args[0])) close_a = True else: close_a = False if isinstance(b, (str, os.PathLike)): try: b = fitsopen(b) except Exception as exc: raise OSError("error opening file b ({}): {}: {}".format( b, exc.__class__.__name__, exc.args[0])) close_b = True else: close_b = False # Normalize keywords/fields to ignore to upper case self.ignore_hdus = {k.upper() for k in ignore_hdus} self.ignore_keywords = {k.upper() for k in ignore_keywords} self.ignore_comments = {k.upper() for k in ignore_comments} self.ignore_fields = {k.upper() for k in ignore_fields} self.numdiffs = numdiffs self.rtol = rtol self.atol = atol self.ignore_blanks = ignore_blanks self.ignore_blank_cards = ignore_blank_cards # Some hdu names may be pattern wildcards. Find them. self.ignore_hdu_patterns = set() for name in list(self.ignore_hdus): if name != '*' and glob.has_magic(name): self.ignore_hdus.remove(name) self.ignore_hdu_patterns.add(name) self.diff_hdu_count = () self.diff_hdus = [] try: super().__init__(a, b) finally: if close_a: a.close() if close_b: b.close() def _diff(self): if len(self.a) != len(self.b): self.diff_hdu_count = (len(self.a), len(self.b)) # Record filenames for use later in _report self.filenamea = self.a.filename() if not self.filenamea: self.filenamea = f'<{self.a.__class__.__name__} object at {id(self.a):#x}>' self.filenameb = self.b.filename() if not self.filenameb: self.filenameb = f'<{self.b.__class__.__name__} object at {id(self.b):#x}>' if self.ignore_hdus: self.a = HDUList([h for h in self.a if h.name not in self.ignore_hdus]) self.b = HDUList([h for h in self.b if h.name not in self.ignore_hdus]) if self.ignore_hdu_patterns: a_names = [hdu.name for hdu in self.a] b_names = [hdu.name for hdu in self.b] for pattern in self.ignore_hdu_patterns: self.a = HDUList([h for h in self.a if h.name not in fnmatch.filter( a_names, pattern)]) self.b = HDUList([h for h in self.b if h.name not in fnmatch.filter( b_names, pattern)]) # For now, just compare the extensions one by one in order. # Might allow some more sophisticated types of diffing later. # TODO: Somehow or another simplify the passing around of diff # options--this will become important as the number of options grows for idx in range(min(len(self.a), len(self.b))): hdu_diff = HDUDiff.fromdiff(self, self.a[idx], self.b[idx]) if not hdu_diff.identical: if self.a[idx].name == self.b[idx].name and self.a[idx].ver == self.b[idx].ver: self.diff_hdus.append((idx, hdu_diff, self.a[idx].name, self.a[idx].ver)) else: self.diff_hdus.append((idx, hdu_diff, "", self.a[idx].ver)) def _report(self): wrapper = textwrap.TextWrapper(initial_indent=' ', subsequent_indent=' ') self._fileobj.write('\n') self._writeln(f' fitsdiff: {__version__}') self._writeln(f' a: {self.filenamea}\n b: {self.filenameb}') if self.ignore_hdus: ignore_hdus = ' '.join(sorted(self.ignore_hdus)) self._writeln(f' HDU(s) not to be compared:\n{wrapper.fill(ignore_hdus)}') if self.ignore_hdu_patterns: ignore_hdu_patterns = ' '.join(sorted(self.ignore_hdu_patterns)) self._writeln(' HDU(s) not to be compared:\n{}' .format(wrapper.fill(ignore_hdu_patterns))) if self.ignore_keywords: ignore_keywords = ' '.join(sorted(self.ignore_keywords)) self._writeln(' Keyword(s) not to be compared:\n{}' .format(wrapper.fill(ignore_keywords))) if self.ignore_comments: ignore_comments = ' '.join(sorted(self.ignore_comments)) self._writeln(' Keyword(s) whose comments are not to be compared' ':\n{}'.format(wrapper.fill(ignore_comments))) if self.ignore_fields: ignore_fields = ' '.join(sorted(self.ignore_fields)) self._writeln(' Table column(s) not to be compared:\n{}' .format(wrapper.fill(ignore_fields))) self._writeln(' Maximum number of different data values to be ' 'reported: {}'.format(self.numdiffs)) self._writeln(' Relative tolerance: {}, Absolute tolerance: {}' .format(self.rtol, self.atol)) if self.diff_hdu_count: self._fileobj.write('\n') self._writeln('Files contain different numbers of HDUs:') self._writeln(f' a: {self.diff_hdu_count[0]}') self._writeln(f' b: {self.diff_hdu_count[1]}') if not self.diff_hdus: self._writeln('No differences found between common HDUs.') return elif not self.diff_hdus: self._fileobj.write('\n') self._writeln('No differences found.') return for idx, hdu_diff, extname, extver in self.diff_hdus: # print out the extension heading if idx == 0: self._fileobj.write('\n') self._writeln('Primary HDU:') else: self._fileobj.write('\n') if extname: self._writeln(f'Extension HDU {idx} ({extname}, {extver}):') else: self._writeln(f'Extension HDU {idx}:') hdu_diff.report(self._fileobj, indent=self._indent + 1) class HDUDiff(_BaseDiff): """ Diff two HDU objects, including their headers and their data (but only if both HDUs contain the same type of data (image, table, or unknown). `HDUDiff` objects have the following diff attributes: - ``diff_extnames``: If the two HDUs have different EXTNAME values, this contains a 2-tuple of the different extension names. - ``diff_extvers``: If the two HDUS have different EXTVER values, this contains a 2-tuple of the different extension versions. - ``diff_extlevels``: If the two HDUs have different EXTLEVEL values, this contains a 2-tuple of the different extension levels. - ``diff_extension_types``: If the two HDUs have different XTENSION values, this contains a 2-tuple of the different extension types. - ``diff_headers``: Contains a `HeaderDiff` object for the headers of the two HDUs. This will always contain an object--it may be determined whether the headers are different through ``diff_headers.identical``. - ``diff_data``: Contains either a `ImageDataDiff`, `TableDataDiff`, or `RawDataDiff` as appropriate for the data in the HDUs, and only if the two HDUs have non-empty data of the same type (`RawDataDiff` is used for HDUs containing non-empty data of an indeterminate type). """ def __init__(self, a, b, ignore_keywords=[], ignore_comments=[], ignore_fields=[], numdiffs=10, rtol=0.0, atol=0.0, ignore_blanks=True, ignore_blank_cards=True): """ Parameters ---------- a : BaseHDU An HDU object. b : BaseHDU An HDU object to compare to the first HDU object. ignore_keywords : sequence, optional Header keywords to ignore when comparing two headers; the presence of these keywords and their values are ignored. Wildcard strings may also be included in the list. ignore_comments : sequence, optional A list of header keywords whose comments should be ignored in the comparison. May contain wildcard strings as with ignore_keywords. ignore_fields : sequence, optional The (case-insensitive) names of any table columns to ignore if any table data is to be compared. numdiffs : int, optional The number of pixel/table values to output when reporting HDU data differences. Though the count of differences is the same either way, this allows controlling the number of different values that are kept in memory or output. If a negative value is given, then numdiffs is treated as unlimited (default: 10). rtol : float, optional The relative difference to allow when comparing two float values either in header values, image arrays, or table columns (default: 0.0). Values which satisfy the expression .. math:: \\left| a - b \\right| > \\text{atol} + \\text{rtol} \\cdot \\left| b \\right| are considered to be different. The underlying function used for comparison is `numpy.allclose`. .. versionadded:: 2.0 atol : float, optional The allowed absolute difference. See also ``rtol`` parameter. .. versionadded:: 2.0 ignore_blanks : bool, optional Ignore extra whitespace at the end of string values either in headers or data. Extra leading whitespace is not ignored (default: True). ignore_blank_cards : bool, optional Ignore all cards that are blank, i.e. they only contain whitespace (default: True). """ self.ignore_keywords = {k.upper() for k in ignore_keywords} self.ignore_comments = {k.upper() for k in ignore_comments} self.ignore_fields = {k.upper() for k in ignore_fields} self.rtol = rtol self.atol = atol self.numdiffs = numdiffs self.ignore_blanks = ignore_blanks self.ignore_blank_cards = ignore_blank_cards self.diff_extnames = () self.diff_extvers = () self.diff_extlevels = () self.diff_extension_types = () self.diff_headers = None self.diff_data = None super().__init__(a, b) def _diff(self): if self.a.name != self.b.name: self.diff_extnames = (self.a.name, self.b.name) if self.a.ver != self.b.ver: self.diff_extvers = (self.a.ver, self.b.ver) if self.a.level != self.b.level: self.diff_extlevels = (self.a.level, self.b.level) if self.a.header.get('XTENSION') != self.b.header.get('XTENSION'): self.diff_extension_types = (self.a.header.get('XTENSION'), self.b.header.get('XTENSION')) self.diff_headers = HeaderDiff.fromdiff(self, self.a.header.copy(), self.b.header.copy()) if self.a.data is None or self.b.data is None: # TODO: Perhaps have some means of marking this case pass elif self.a.is_image and self.b.is_image: self.diff_data = ImageDataDiff.fromdiff(self, self.a.data, self.b.data) # Clean up references to (possibly) memmapped arrays so they can # be closed by .close() self.diff_data.a = None self.diff_data.b = None elif (isinstance(self.a, _TableLikeHDU) and isinstance(self.b, _TableLikeHDU)): # TODO: Replace this if/when _BaseHDU grows a .is_table property self.diff_data = TableDataDiff.fromdiff(self, self.a.data, self.b.data) # Clean up references to (possibly) memmapped arrays so they can # be closed by .close() self.diff_data.a = None self.diff_data.b = None elif not self.diff_extension_types: # Don't diff the data for unequal extension types that are not # recognized image or table types self.diff_data = RawDataDiff.fromdiff(self, self.a.data, self.b.data) # Clean up references to (possibly) memmapped arrays so they can # be closed by .close() self.diff_data.a = None self.diff_data.b = None def _report(self): if self.identical: self._writeln(" No differences found.") if self.diff_extension_types: self._writeln(" Extension types differ:\n a: {}\n " "b: {}".format(*self.diff_extension_types)) if self.diff_extnames: self._writeln(" Extension names differ:\n a: {}\n " "b: {}".format(*self.diff_extnames)) if self.diff_extvers: self._writeln(" Extension versions differ:\n a: {}\n " "b: {}".format(*self.diff_extvers)) if self.diff_extlevels: self._writeln(" Extension levels differ:\n a: {}\n " "b: {}".format(*self.diff_extlevels)) if not self.diff_headers.identical: self._fileobj.write('\n') self._writeln(" Headers contain differences:") self.diff_headers.report(self._fileobj, indent=self._indent + 1) if self.diff_data is not None and not self.diff_data.identical: self._fileobj.write('\n') self._writeln(" Data contains differences:") self.diff_data.report(self._fileobj, indent=self._indent + 1) class HeaderDiff(_BaseDiff): """ Diff two `Header` objects. `HeaderDiff` objects have the following diff attributes: - ``diff_keyword_count``: If the two headers contain a different number of keywords, this contains a 2-tuple of the keyword count for each header. - ``diff_keywords``: If either header contains one or more keywords that don't appear at all in the other header, this contains a 2-tuple consisting of a list of the keywords only appearing in header a, and a list of the keywords only appearing in header b. - ``diff_duplicate_keywords``: If a keyword appears in both headers at least once, but contains a different number of duplicates (for example, a different number of HISTORY cards in each header), an item is added to this dict with the keyword as the key, and a 2-tuple of the different counts of that keyword as the value. For example:: {'HISTORY': (20, 19)} means that header a contains 20 HISTORY cards, while header b contains only 19 HISTORY cards. - ``diff_keyword_values``: If any of the common keyword between the two headers have different values, they appear in this dict. It has a structure similar to ``diff_duplicate_keywords``, with the keyword as the key, and a 2-tuple of the different values as the value. For example:: {'NAXIS': (2, 3)} means that the NAXIS keyword has a value of 2 in header a, and a value of 3 in header b. This excludes any keywords matched by the ``ignore_keywords`` list. - ``diff_keyword_comments``: Like ``diff_keyword_values``, but contains differences between keyword comments. `HeaderDiff` objects also have a ``common_keywords`` attribute that lists all keywords that appear in both headers. """ def __init__(self, a, b, ignore_keywords=[], ignore_comments=[], rtol=0.0, atol=0.0, ignore_blanks=True, ignore_blank_cards=True): """ Parameters ---------- a : `~astropy.io.fits.Header` or string or bytes A header. b : `~astropy.io.fits.Header` or string or bytes A header to compare to the first header. ignore_keywords : sequence, optional Header keywords to ignore when comparing two headers; the presence of these keywords and their values are ignored. Wildcard strings may also be included in the list. ignore_comments : sequence, optional A list of header keywords whose comments should be ignored in the comparison. May contain wildcard strings as with ignore_keywords. numdiffs : int, optional The number of pixel/table values to output when reporting HDU data differences. Though the count of differences is the same either way, this allows controlling the number of different values that are kept in memory or output. If a negative value is given, then numdiffs is treated as unlimited (default: 10). rtol : float, optional The relative difference to allow when comparing two float values either in header values, image arrays, or table columns (default: 0.0). Values which satisfy the expression .. math:: \\left| a - b \\right| > \\text{atol} + \\text{rtol} \\cdot \\left| b \\right| are considered to be different. The underlying function used for comparison is `numpy.allclose`. .. versionadded:: 2.0 atol : float, optional The allowed absolute difference. See also ``rtol`` parameter. .. versionadded:: 2.0 ignore_blanks : bool, optional Ignore extra whitespace at the end of string values either in headers or data. Extra leading whitespace is not ignored (default: True). ignore_blank_cards : bool, optional Ignore all cards that are blank, i.e. they only contain whitespace (default: True). """ self.ignore_keywords = {k.upper() for k in ignore_keywords} self.ignore_comments = {k.upper() for k in ignore_comments} self.rtol = rtol self.atol = atol self.ignore_blanks = ignore_blanks self.ignore_blank_cards = ignore_blank_cards self.ignore_keyword_patterns = set() self.ignore_comment_patterns = set() for keyword in list(self.ignore_keywords): keyword = keyword.upper() if keyword != '*' and glob.has_magic(keyword): self.ignore_keywords.remove(keyword) self.ignore_keyword_patterns.add(keyword) for keyword in list(self.ignore_comments): keyword = keyword.upper() if keyword != '*' and glob.has_magic(keyword): self.ignore_comments.remove(keyword) self.ignore_comment_patterns.add(keyword) # Keywords appearing in each header self.common_keywords = [] # Set to the number of keywords in each header if the counts differ self.diff_keyword_count = () # Set if the keywords common to each header (excluding ignore_keywords) # appear in different positions within the header # TODO: Implement this self.diff_keyword_positions = () # Keywords unique to each header (excluding keywords in # ignore_keywords) self.diff_keywords = () # Keywords that have different numbers of duplicates in each header # (excluding keywords in ignore_keywords) self.diff_duplicate_keywords = {} # Keywords common to each header but having different values (excluding # keywords in ignore_keywords) self.diff_keyword_values = defaultdict(list) # Keywords common to each header but having different comments # (excluding keywords in ignore_keywords or in ignore_comments) self.diff_keyword_comments = defaultdict(list) if isinstance(a, str): a = Header.fromstring(a) if isinstance(b, str): b = Header.fromstring(b) if not (isinstance(a, Header) and isinstance(b, Header)): raise TypeError('HeaderDiff can only diff astropy.io.fits.Header ' 'objects or strings containing FITS headers.') super().__init__(a, b) # TODO: This doesn't pay much attention to the *order* of the keywords, # except in the case of duplicate keywords. The order should be checked # too, or at least it should be an option. def _diff(self): if self.ignore_blank_cards: cardsa = [c for c in self.a.cards if str(c) != BLANK_CARD] cardsb = [c for c in self.b.cards if str(c) != BLANK_CARD] else: cardsa = list(self.a.cards) cardsb = list(self.b.cards) # build dictionaries of keyword values and comments def get_header_values_comments(cards): values = {} comments = {} for card in cards: value = card.value if self.ignore_blanks and isinstance(value, str): value = value.rstrip() values.setdefault(card.keyword, []).append(value) comments.setdefault(card.keyword, []).append(card.comment) return values, comments valuesa, commentsa = get_header_values_comments(cardsa) valuesb, commentsb = get_header_values_comments(cardsb) # Normalize all keyword to upper-case for comparison's sake; # TODO: HIERARCH keywords should be handled case-sensitively I think keywordsa = {k.upper() for k in valuesa} keywordsb = {k.upper() for k in valuesb} self.common_keywords = sorted(keywordsa.intersection(keywordsb)) if len(cardsa) != len(cardsb): self.diff_keyword_count = (len(cardsa), len(cardsb)) # Any other diff attributes should exclude ignored keywords keywordsa = keywordsa.difference(self.ignore_keywords) keywordsb = keywordsb.difference(self.ignore_keywords) if self.ignore_keyword_patterns: for pattern in self.ignore_keyword_patterns: keywordsa = keywordsa.difference(fnmatch.filter(keywordsa, pattern)) keywordsb = keywordsb.difference(fnmatch.filter(keywordsb, pattern)) if '*' in self.ignore_keywords: # Any other differences between keywords are to be ignored return left_only_keywords = sorted(keywordsa.difference(keywordsb)) right_only_keywords = sorted(keywordsb.difference(keywordsa)) if left_only_keywords or right_only_keywords: self.diff_keywords = (left_only_keywords, right_only_keywords) # Compare count of each common keyword for keyword in self.common_keywords: if keyword in self.ignore_keywords: continue if self.ignore_keyword_patterns: skip = False for pattern in self.ignore_keyword_patterns: if fnmatch.fnmatch(keyword, pattern): skip = True break if skip: continue counta = len(valuesa[keyword]) countb = len(valuesb[keyword]) if counta != countb: self.diff_duplicate_keywords[keyword] = (counta, countb) # Compare keywords' values and comments for a, b in zip(valuesa[keyword], valuesb[keyword]): if diff_values(a, b, rtol=self.rtol, atol=self.atol): self.diff_keyword_values[keyword].append((a, b)) else: # If there are duplicate keywords we need to be able to # index each duplicate; if the values of a duplicate # are identical use None here self.diff_keyword_values[keyword].append(None) if not any(self.diff_keyword_values[keyword]): # No differences found; delete the array of Nones del self.diff_keyword_values[keyword] if '*' in self.ignore_comments or keyword in self.ignore_comments: continue if self.ignore_comment_patterns: skip = False for pattern in self.ignore_comment_patterns: if fnmatch.fnmatch(keyword, pattern): skip = True break if skip: continue for a, b in zip(commentsa[keyword], commentsb[keyword]): if diff_values(a, b): self.diff_keyword_comments[keyword].append((a, b)) else: self.diff_keyword_comments[keyword].append(None) if not any(self.diff_keyword_comments[keyword]): del self.diff_keyword_comments[keyword] def _report(self): if self.diff_keyword_count: self._writeln(' Headers have different number of cards:') self._writeln(f' a: {self.diff_keyword_count[0]}') self._writeln(f' b: {self.diff_keyword_count[1]}') if self.diff_keywords: for keyword in self.diff_keywords[0]: if keyword in Card._commentary_keywords: val = self.a[keyword][0] else: val = self.a[keyword] self._writeln(f' Extra keyword {keyword!r:8} in a: {val!r}') for keyword in self.diff_keywords[1]: if keyword in Card._commentary_keywords: val = self.b[keyword][0] else: val = self.b[keyword] self._writeln(f' Extra keyword {keyword!r:8} in b: {val!r}') if self.diff_duplicate_keywords: for keyword, count in sorted(self.diff_duplicate_keywords.items()): self._writeln(f' Inconsistent duplicates of keyword {keyword!r:8}:') self._writeln(' Occurs {} time(s) in a, {} times in (b)' .format(*count)) if self.diff_keyword_values or self.diff_keyword_comments: for keyword in self.common_keywords: report_diff_keyword_attr(self._fileobj, 'values', self.diff_keyword_values, keyword, ind=self._indent) report_diff_keyword_attr(self._fileobj, 'comments', self.diff_keyword_comments, keyword, ind=self._indent) # TODO: It might be good if there was also a threshold option for percentage of # different pixels: For example ignore if only 1% of the pixels are different # within some threshold. There are lots of possibilities here, but hold off # for now until specific cases come up. class ImageDataDiff(_BaseDiff): """ Diff two image data arrays (really any array from a PRIMARY HDU or an IMAGE extension HDU, though the data unit is assumed to be "pixels"). `ImageDataDiff` objects have the following diff attributes: - ``diff_dimensions``: If the two arrays contain either a different number of dimensions or different sizes in any dimension, this contains a 2-tuple of the shapes of each array. Currently no further comparison is performed on images that don't have the exact same dimensions. - ``diff_pixels``: If the two images contain any different pixels, this contains a list of 2-tuples of the array index where the difference was found, and another 2-tuple containing the different values. For example, if the pixel at (0, 0) contains different values this would look like:: [(0, 0), (1.1, 2.2)] where 1.1 and 2.2 are the values of that pixel in each array. This array only contains up to ``self.numdiffs`` differences, for storage efficiency. - ``diff_total``: The total number of different pixels found between the arrays. Although ``diff_pixels`` does not necessarily contain all the different pixel values, this can be used to get a count of the total number of differences found. - ``diff_ratio``: Contains the ratio of ``diff_total`` to the total number of pixels in the arrays. """ def __init__(self, a, b, numdiffs=10, rtol=0.0, atol=0.0): """ Parameters ---------- a : BaseHDU An HDU object. b : BaseHDU An HDU object to compare to the first HDU object. numdiffs : int, optional The number of pixel/table values to output when reporting HDU data differences. Though the count of differences is the same either way, this allows controlling the number of different values that are kept in memory or output. If a negative value is given, then numdiffs is treated as unlimited (default: 10). rtol : float, optional The relative difference to allow when comparing two float values either in header values, image arrays, or table columns (default: 0.0). Values which satisfy the expression .. math:: \\left| a - b \\right| > \\text{atol} + \\text{rtol} \\cdot \\left| b \\right| are considered to be different. The underlying function used for comparison is `numpy.allclose`. .. versionadded:: 2.0 atol : float, optional The allowed absolute difference. See also ``rtol`` parameter. .. versionadded:: 2.0 """ self.numdiffs = numdiffs self.rtol = rtol self.atol = atol self.diff_dimensions = () self.diff_pixels = [] self.diff_ratio = 0 # self.diff_pixels only holds up to numdiffs differing pixels, but this # self.diff_total stores the total count of differences between # the images, but not the different values self.diff_total = 0 super().__init__(a, b) def _diff(self): if self.a.shape != self.b.shape: self.diff_dimensions = (self.a.shape, self.b.shape) # Don't do any further comparison if the dimensions differ # TODO: Perhaps we could, however, diff just the intersection # between the two images return # Find the indices where the values are not equal # If neither a nor b are floating point (or complex), ignore rtol and # atol if not (np.issubdtype(self.a.dtype, np.inexact) or np.issubdtype(self.b.dtype, np.inexact)): rtol = 0 atol = 0 else: rtol = self.rtol atol = self.atol diffs = where_not_allclose(self.a, self.b, atol=atol, rtol=rtol) self.diff_total = len(diffs[0]) if self.diff_total == 0: # Then we're done return if self.numdiffs < 0: numdiffs = self.diff_total else: numdiffs = self.numdiffs self.diff_pixels = [(idx, (self.a[idx], self.b[idx])) for idx in islice(zip(*diffs), 0, numdiffs)] self.diff_ratio = float(self.diff_total) / float(len(self.a.flat)) def _report(self): if self.diff_dimensions: dimsa = ' x '.join(str(d) for d in reversed(self.diff_dimensions[0])) dimsb = ' x '.join(str(d) for d in reversed(self.diff_dimensions[1])) self._writeln(' Data dimensions differ:') self._writeln(f' a: {dimsa}') self._writeln(f' b: {dimsb}') # For now we don't do any further comparison if the dimensions # differ; though in the future it might be nice to be able to # compare at least where the images intersect self._writeln(' No further data comparison performed.') return if not self.diff_pixels: return for index, values in self.diff_pixels: index = [x + 1 for x in reversed(index)] self._writeln(f' Data differs at {index}:') report_diff_values(values[0], values[1], fileobj=self._fileobj, indent_width=self._indent + 1) if self.diff_total > self.numdiffs: self._writeln(' ...') self._writeln(' {} different pixels found ({:.2%} different).' .format(self.diff_total, self.diff_ratio)) class RawDataDiff(ImageDataDiff): """ `RawDataDiff` is just a special case of `ImageDataDiff` where the images are one-dimensional, and the data is treated as a 1-dimensional array of bytes instead of pixel values. This is used to compare the data of two non-standard extension HDUs that were not recognized as containing image or table data. `ImageDataDiff` objects have the following diff attributes: - ``diff_dimensions``: Same as the ``diff_dimensions`` attribute of `ImageDataDiff` objects. Though the "dimension" of each array is just an integer representing the number of bytes in the data. - ``diff_bytes``: Like the ``diff_pixels`` attribute of `ImageDataDiff` objects, but renamed to reflect the minor semantic difference that these are raw bytes and not pixel values. Also the indices are integers instead of tuples. - ``diff_total`` and ``diff_ratio``: Same as `ImageDataDiff`. """ def __init__(self, a, b, numdiffs=10): """ Parameters ---------- a : BaseHDU An HDU object. b : BaseHDU An HDU object to compare to the first HDU object. numdiffs : int, optional The number of pixel/table values to output when reporting HDU data differences. Though the count of differences is the same either way, this allows controlling the number of different values that are kept in memory or output. If a negative value is given, then numdiffs is treated as unlimited (default: 10). """ self.diff_dimensions = () self.diff_bytes = [] super().__init__(a, b, numdiffs=numdiffs) def _diff(self): super()._diff() if self.diff_dimensions: self.diff_dimensions = (self.diff_dimensions[0][0], self.diff_dimensions[1][0]) self.diff_bytes = [(x[0], y) for x, y in self.diff_pixels] del self.diff_pixels def _report(self): if self.diff_dimensions: self._writeln(' Data sizes differ:') self._writeln(f' a: {self.diff_dimensions[0]} bytes') self._writeln(f' b: {self.diff_dimensions[1]} bytes') # For now we don't do any further comparison if the dimensions # differ; though in the future it might be nice to be able to # compare at least where the images intersect self._writeln(' No further data comparison performed.') return if not self.diff_bytes: return for index, values in self.diff_bytes: self._writeln(f' Data differs at byte {index}:') report_diff_values(values[0], values[1], fileobj=self._fileobj, indent_width=self._indent + 1) self._writeln(' ...') self._writeln(' {} different bytes found ({:.2%} different).' .format(self.diff_total, self.diff_ratio)) class TableDataDiff(_BaseDiff): """ Diff two table data arrays. It doesn't matter whether the data originally came from a binary or ASCII table--the data should be passed in as a recarray. `TableDataDiff` objects have the following diff attributes: - ``diff_column_count``: If the tables being compared have different numbers of columns, this contains a 2-tuple of the column count in each table. Even if the tables have different column counts, an attempt is still made to compare any columns they have in common. - ``diff_columns``: If either table contains columns unique to that table, either in name or format, this contains a 2-tuple of lists. The first element is a list of columns (these are full `Column` objects) that appear only in table a. The second element is a list of tables that appear only in table b. This only lists columns with different column definitions, and has nothing to do with the data in those columns. - ``diff_column_names``: This is like ``diff_columns``, but lists only the names of columns unique to either table, rather than the full `Column` objects. - ``diff_column_attributes``: Lists columns that are in both tables but have different secondary attributes, such as TUNIT or TDISP. The format is a list of 2-tuples: The first a tuple of the column name and the attribute, the second a tuple of the different values. - ``diff_values``: `TableDataDiff` compares the data in each table on a column-by-column basis. If any different data is found, it is added to this list. The format of this list is similar to the ``diff_pixels`` attribute on `ImageDataDiff` objects, though the "index" consists of a (column_name, row) tuple. For example:: [('TARGET', 0), ('NGC1001', 'NGC1002')] shows that the tables contain different values in the 0-th row of the 'TARGET' column. - ``diff_total`` and ``diff_ratio``: Same as `ImageDataDiff`. `TableDataDiff` objects also have a ``common_columns`` attribute that lists the `Column` objects for columns that are identical in both tables, and a ``common_column_names`` attribute which contains a set of the names of those columns. """ def __init__(self, a, b, ignore_fields=[], numdiffs=10, rtol=0.0, atol=0.0): """ Parameters ---------- a : BaseHDU An HDU object. b : BaseHDU An HDU object to compare to the first HDU object. ignore_fields : sequence, optional The (case-insensitive) names of any table columns to ignore if any table data is to be compared. numdiffs : int, optional The number of pixel/table values to output when reporting HDU data differences. Though the count of differences is the same either way, this allows controlling the number of different values that are kept in memory or output. If a negative value is given, then numdiffs is treated as unlimited (default: 10). rtol : float, optional The relative difference to allow when comparing two float values either in header values, image arrays, or table columns (default: 0.0). Values which satisfy the expression .. math:: \\left| a - b \\right| > \\text{atol} + \\text{rtol} \\cdot \\left| b \\right| are considered to be different. The underlying function used for comparison is `numpy.allclose`. .. versionadded:: 2.0 atol : float, optional The allowed absolute difference. See also ``rtol`` parameter. .. versionadded:: 2.0 """ self.ignore_fields = set(ignore_fields) self.numdiffs = numdiffs self.rtol = rtol self.atol = atol self.common_columns = [] self.common_column_names = set() # self.diff_columns contains columns with different column definitions, # but not different column data. Column data is only compared in # columns that have the same definitions self.diff_rows = () self.diff_column_count = () self.diff_columns = () # If two columns have the same name+format, but other attributes are # different (such as TUNIT or such) they are listed here self.diff_column_attributes = [] # Like self.diff_columns, but just contains a list of the column names # unique to each table, and in the order they appear in the tables self.diff_column_names = () self.diff_values = [] self.diff_ratio = 0 self.diff_total = 0 super().__init__(a, b) def _diff(self): # Much of the code for comparing columns is similar to the code for # comparing headers--consider refactoring colsa = self.a.columns colsb = self.b.columns if len(colsa) != len(colsb): self.diff_column_count = (len(colsa), len(colsb)) # Even if the number of columns are unequal, we still do comparison of # any common columns colsa = {c.name.lower(): c for c in colsa} colsb = {c.name.lower(): c for c in colsb} if '*' in self.ignore_fields: # If all columns are to be ignored, ignore any further differences # between the columns return # Keep the user's original ignore_fields list for reporting purposes, # but internally use a case-insensitive version ignore_fields = {f.lower() for f in self.ignore_fields} # It might be nice if there were a cleaner way to do this, but for now # it'll do for fieldname in ignore_fields: fieldname = fieldname.lower() if fieldname in colsa: del colsa[fieldname] if fieldname in colsb: del colsb[fieldname] colsa_set = set(colsa.values()) colsb_set = set(colsb.values()) self.common_columns = sorted(colsa_set.intersection(colsb_set), key=operator.attrgetter('name')) self.common_column_names = {col.name.lower() for col in self.common_columns} left_only_columns = {col.name.lower(): col for col in colsa_set.difference(colsb_set)} right_only_columns = {col.name.lower(): col for col in colsb_set.difference(colsa_set)} if left_only_columns or right_only_columns: self.diff_columns = (left_only_columns, right_only_columns) self.diff_column_names = ([], []) if left_only_columns: for col in self.a.columns: if col.name.lower() in left_only_columns: self.diff_column_names[0].append(col.name) if right_only_columns: for col in self.b.columns: if col.name.lower() in right_only_columns: self.diff_column_names[1].append(col.name) # If the tables have a different number of rows, we don't compare the # columns right now. # TODO: It might be nice to optionally compare the first n rows where n # is the minimum of the row counts between the two tables. if len(self.a) != len(self.b): self.diff_rows = (len(self.a), len(self.b)) return # If the tables contain no rows there's no data to compare, so we're # done at this point. (See ticket #178) if len(self.a) == len(self.b) == 0: return # Like in the old fitsdiff, compare tables on a column by column basis # The difficulty here is that, while FITS column names are meant to be # case-insensitive, Astropy still allows, for the sake of flexibility, # two columns with the same name but different case. When columns are # accessed in FITS tables, a case-sensitive is tried first, and failing # that a case-insensitive match is made. # It's conceivable that the same column could appear in both tables # being compared, but with different case. # Though it *may* lead to inconsistencies in these rare cases, this # just assumes that there are no duplicated column names in either # table, and that the column names can be treated case-insensitively. for col in self.common_columns: name_lower = col.name.lower() if name_lower in ignore_fields: continue cola = colsa[name_lower] colb = colsb[name_lower] for attr, _ in _COL_ATTRS: vala = getattr(cola, attr, None) valb = getattr(colb, attr, None) if diff_values(vala, valb): self.diff_column_attributes.append( ((col.name.upper(), attr), (vala, valb))) arra = self.a[col.name] arrb = self.b[col.name] if (np.issubdtype(arra.dtype, np.floating) and np.issubdtype(arrb.dtype, np.floating)): diffs = where_not_allclose(arra, arrb, rtol=self.rtol, atol=self.atol) elif 'P' in col.format: diffs = ([idx for idx in range(len(arra)) if not np.allclose(arra[idx], arrb[idx], rtol=self.rtol, atol=self.atol)],) else: diffs = np.where(arra != arrb) self.diff_total += len(set(diffs[0])) if self.numdiffs >= 0: if len(self.diff_values) >= self.numdiffs: # Don't save any more diff values continue # Add no more diff'd values than this max_diffs = self.numdiffs - len(self.diff_values) else: max_diffs = len(diffs[0]) last_seen_idx = None for idx in islice(diffs[0], 0, max_diffs): if idx == last_seen_idx: # Skip duplicate indices, which my occur when the column # data contains multi-dimensional values; we're only # interested in storing row-by-row differences continue last_seen_idx = idx self.diff_values.append(((col.name, idx), (arra[idx], arrb[idx]))) total_values = len(self.a) * len(self.a.dtype.fields) self.diff_ratio = float(self.diff_total) / float(total_values) def _report(self): if self.diff_column_count: self._writeln(' Tables have different number of columns:') self._writeln(f' a: {self.diff_column_count[0]}') self._writeln(f' b: {self.diff_column_count[1]}') if self.diff_column_names: # Show columns with names unique to either table for name in self.diff_column_names[0]: format = self.diff_columns[0][name.lower()].format self._writeln(f' Extra column {name} of format {format} in a') for name in self.diff_column_names[1]: format = self.diff_columns[1][name.lower()].format self._writeln(f' Extra column {name} of format {format} in b') col_attrs = dict(_COL_ATTRS) # Now go through each table again and show columns with common # names but other property differences... for col_attr, vals in self.diff_column_attributes: name, attr = col_attr self._writeln(f' Column {name} has different {col_attrs[attr]}:') report_diff_values(vals[0], vals[1], fileobj=self._fileobj, indent_width=self._indent + 1) if self.diff_rows: self._writeln(' Table rows differ:') self._writeln(f' a: {self.diff_rows[0]}') self._writeln(f' b: {self.diff_rows[1]}') self._writeln(' No further data comparison performed.') return if not self.diff_values: return # Finally, let's go through and report column data differences: for indx, values in self.diff_values: self._writeln(' Column {} data differs in row {}:'.format(*indx)) report_diff_values(values[0], values[1], fileobj=self._fileobj, indent_width=self._indent + 1) if self.diff_values and self.numdiffs < self.diff_total: self._writeln(' ...{} additional difference(s) found.'.format( self.diff_total - self.numdiffs)) if self.diff_total > self.numdiffs: self._writeln(' ...') self._writeln(' {} different table data element(s) found ' '({:.2%} different).' .format(self.diff_total, self.diff_ratio)) def report_diff_keyword_attr(fileobj, attr, diffs, keyword, ind=0): """ Write a diff between two header keyword values or comments to the specified file-like object. """ if keyword in diffs: vals = diffs[keyword] for idx, val in enumerate(vals): if val is None: continue if idx == 0: dup = '' else: dup = f'[{idx + 1}]' fileobj.write( fixed_width_indent(' Keyword {:8}{} has different {}:\n' .format(keyword, dup, attr), ind)) report_diff_values(val[0], val[1], fileobj=fileobj, indent_width=ind + 1)
8ee71d2c04c5d0ce59ca67f5c2a5292401c55a421e85d5a4e3f2270ceded532a
# Licensed under a 3-clause BSD style license - see PYFITS.rst import collections import copy import itertools import numbers import re import warnings from .card import Card, _pad, KEYWORD_LENGTH, UNDEFINED from .file import _File from .util import (encode_ascii, decode_ascii, fileobj_closed, fileobj_is_binary, path_like) from ._utils import parse_header from astropy.utils import isiterable from astropy.utils.exceptions import AstropyUserWarning BLOCK_SIZE = 2880 # the FITS block size # This regular expression can match a *valid* END card which just consists of # the string 'END' followed by all spaces, or an *invalid* end card which # consists of END, followed by any character that is *not* a valid character # for a valid FITS keyword (that is, this is not a keyword like 'ENDER' which # starts with 'END' but is not 'END'), followed by any arbitrary bytes. An # invalid end card may also consist of just 'END' with no trailing bytes. HEADER_END_RE = re.compile(encode_ascii( r'(?:(?P<valid>END {77}) *)|(?P<invalid>END$|END {0,76}[^A-Z0-9_-])')) # According to the FITS standard the only characters that may appear in a # header record are the restricted ASCII chars from 0x20 through 0x7E. VALID_HEADER_CHARS = set(map(chr, range(0x20, 0x7F))) END_CARD = 'END' + ' ' * 77 __doctest_skip__ = ['Header', 'Header.comments', 'Header.fromtextfile', 'Header.totextfile', 'Header.set', 'Header.update'] class Header: """ FITS header class. This class exposes both a dict-like interface and a list-like interface to FITS headers. The header may be indexed by keyword and, like a dict, the associated value will be returned. When the header contains cards with duplicate keywords, only the value of the first card with the given keyword will be returned. It is also possible to use a 2-tuple as the index in the form (keyword, n)--this returns the n-th value with that keyword, in the case where there are duplicate keywords. For example:: >>> header['NAXIS'] 0 >>> header[('FOO', 1)] # Return the value of the second FOO keyword 'foo' The header may also be indexed by card number:: >>> header[0] # Return the value of the first card in the header 'T' Commentary keywords such as HISTORY and COMMENT are special cases: When indexing the Header object with either 'HISTORY' or 'COMMENT' a list of all the HISTORY/COMMENT values is returned:: >>> header['HISTORY'] This is the first history entry in this header. This is the second history entry in this header. ... See the Astropy documentation for more details on working with headers. Notes ----- Although FITS keywords must be exclusively upper case, retrieving an item in a `Header` object is case insensitive. """ def __init__(self, cards=[], copy=False): """ Construct a `Header` from an iterable and/or text file. Parameters ---------- cards : list of `Card`, optional The cards to initialize the header with. Also allowed are other `Header` (or `dict`-like) objects. .. versionchanged:: 1.2 Allowed ``cards`` to be a `dict`-like object. copy : bool, optional If ``True`` copies the ``cards`` if they were another `Header` instance. Default is ``False``. .. versionadded:: 1.3 """ self.clear() if isinstance(cards, Header): if copy: cards = cards.copy() cards = cards.cards elif isinstance(cards, dict): cards = cards.items() for card in cards: self.append(card, end=True) self._modified = False def __len__(self): return len(self._cards) def __iter__(self): for card in self._cards: yield card.keyword def __contains__(self, keyword): if keyword in self._keyword_indices or keyword in self._rvkc_indices: # For the most common case (single, standard form keyword lookup) # this will work and is an O(1) check. If it fails that doesn't # guarantee absence, just that we have to perform the full set of # checks in self._cardindex return True try: self._cardindex(keyword) except (KeyError, IndexError): return False return True def __getitem__(self, key): if isinstance(key, slice): return self.__class__([copy.copy(c) for c in self._cards[key]]) elif self._haswildcard(key): return self.__class__([copy.copy(self._cards[idx]) for idx in self._wildcardmatch(key)]) elif isinstance(key, str): key = key.strip() if key.upper() in Card._commentary_keywords: key = key.upper() # Special case for commentary cards return _HeaderCommentaryCards(self, key) if isinstance(key, tuple): keyword = key[0] else: keyword = key card = self._cards[self._cardindex(key)] if card.field_specifier is not None and keyword == card.rawkeyword: # This is RVKC; if only the top-level keyword was specified return # the raw value, not the parsed out float value return card.rawvalue value = card.value if value == UNDEFINED: return None return value def __setitem__(self, key, value): if self._set_slice(key, value, self): return if isinstance(value, tuple): if len(value) > 2: raise ValueError( 'A Header item may be set with either a scalar value, ' 'a 1-tuple containing a scalar value, or a 2-tuple ' 'containing a scalar value and comment string.') if len(value) == 1: value, comment = value[0], None if value is None: value = UNDEFINED elif len(value) == 2: value, comment = value if value is None: value = UNDEFINED if comment is None: comment = '' else: comment = None card = None if isinstance(key, numbers.Integral): card = self._cards[key] elif isinstance(key, tuple): card = self._cards[self._cardindex(key)] if value is None: value = UNDEFINED if card: card.value = value if comment is not None: card.comment = comment if card._modified: self._modified = True else: # If we get an IndexError that should be raised; we don't allow # assignment to non-existing indices self._update((key, value, comment)) def __delitem__(self, key): if isinstance(key, slice) or self._haswildcard(key): # This is very inefficient but it's not a commonly used feature. # If someone out there complains that they make heavy use of slice # deletions and it's too slow, well, we can worry about it then # [the solution is not too complicated--it would be wait 'til all # the cards are deleted before updating _keyword_indices rather # than updating it once for each card that gets deleted] if isinstance(key, slice): indices = range(*key.indices(len(self))) # If the slice step is backwards we want to reverse it, because # it will be reversed in a few lines... if key.step and key.step < 0: indices = reversed(indices) else: indices = self._wildcardmatch(key) for idx in reversed(indices): del self[idx] return elif isinstance(key, str): # delete ALL cards with the same keyword name key = Card.normalize_keyword(key) indices = self._keyword_indices if key not in self._keyword_indices: indices = self._rvkc_indices if key not in indices: # if keyword is not present raise KeyError. # To delete keyword without caring if they were present, # Header.remove(Keyword) can be used with optional argument ignore_missing as True raise KeyError(f"Keyword '{key}' not found.") for idx in reversed(indices[key]): # Have to copy the indices list since it will be modified below del self[idx] return idx = self._cardindex(key) card = self._cards[idx] keyword = card.keyword del self._cards[idx] keyword = Card.normalize_keyword(keyword) indices = self._keyword_indices[keyword] indices.remove(idx) if not indices: del self._keyword_indices[keyword] # Also update RVKC indices if necessary :/ if card.field_specifier is not None: indices = self._rvkc_indices[card.rawkeyword] indices.remove(idx) if not indices: del self._rvkc_indices[card.rawkeyword] # We also need to update all other indices self._updateindices(idx, increment=False) self._modified = True def __repr__(self): return self.tostring(sep='\n', endcard=False, padding=False) def __str__(self): return self.tostring() def __eq__(self, other): """ Two Headers are equal only if they have the exact same string representation. """ return str(self) == str(other) def __add__(self, other): temp = self.copy(strip=False) temp.extend(other) return temp def __iadd__(self, other): self.extend(other) return self def _ipython_key_completions_(self): return self.__iter__() @property def cards(self): """ The underlying physical cards that make up this Header; it can be looked at, but it should not be modified directly. """ return _CardAccessor(self) @property def comments(self): """ View the comments associated with each keyword, if any. For example, to see the comment on the NAXIS keyword: >>> header.comments['NAXIS'] number of data axes Comments can also be updated through this interface: >>> header.comments['NAXIS'] = 'Number of data axes' """ return _HeaderComments(self) @property def _modified(self): """ Whether or not the header has been modified; this is a property so that it can also check each card for modifications--cards may have been modified directly without the header containing it otherwise knowing. """ modified_cards = any(c._modified for c in self._cards) if modified_cards: # If any cards were modified then by definition the header was # modified self.__dict__['_modified'] = True return self.__dict__['_modified'] @_modified.setter def _modified(self, val): self.__dict__['_modified'] = val @classmethod def fromstring(cls, data, sep=''): """ Creates an HDU header from a byte string containing the entire header data. Parameters ---------- data : str or bytes String or bytes containing the entire header. In the case of bytes they will be decoded using latin-1 (only plain ASCII characters are allowed in FITS headers but latin-1 allows us to retain any invalid bytes that might appear in malformatted FITS files). sep : str, optional The string separating cards from each other, such as a newline. By default there is no card separator (as is the case in a raw FITS file). In general this is only used in cases where a header was printed as text (e.g. with newlines after each card) and you want to create a new `Header` from it by copy/pasting. Examples -------- >>> from astropy.io.fits import Header >>> hdr = Header({'SIMPLE': True}) >>> Header.fromstring(hdr.tostring()) == hdr True If you want to create a `Header` from printed text it's not necessary to have the exact binary structure as it would appear in a FITS file, with the full 80 byte card length. Rather, each "card" can end in a newline and does not have to be padded out to a full card length as long as it "looks like" a FITS header: >>> hdr = Header.fromstring(\"\"\"\\ ... SIMPLE = T / conforms to FITS standard ... BITPIX = 8 / array data type ... NAXIS = 0 / number of array dimensions ... EXTEND = T ... \"\"\", sep='\\n') >>> hdr['SIMPLE'] True >>> hdr['BITPIX'] 8 >>> len(hdr) 4 Returns ------- `Header` A new `Header` instance. """ cards = [] # If the card separator contains characters that may validly appear in # a card, the only way to unambiguously distinguish between cards is to # require that they be Card.length long. However, if the separator # contains non-valid characters (namely \n) the cards may be split # immediately at the separator require_full_cardlength = set(sep).issubset(VALID_HEADER_CHARS) if isinstance(data, bytes): # FITS supports only ASCII, but decode as latin1 and just take all # bytes for now; if it results in mojibake due to e.g. UTF-8 # encoded data in a FITS header that's OK because it shouldn't be # there in the first place--accepting it here still gives us the # opportunity to display warnings later during validation CONTINUE = b'CONTINUE' END = b'END' end_card = END_CARD.encode('ascii') sep = sep.encode('latin1') empty = b'' else: CONTINUE = 'CONTINUE' END = 'END' end_card = END_CARD empty = '' # Split the header into individual cards idx = 0 image = [] while idx < len(data): if require_full_cardlength: end_idx = idx + Card.length else: try: end_idx = data.index(sep, idx) except ValueError: end_idx = len(data) next_image = data[idx:end_idx] idx = end_idx + len(sep) if image: if next_image[:8] == CONTINUE: image.append(next_image) continue cards.append(Card.fromstring(empty.join(image))) if require_full_cardlength: if next_image == end_card: image = [] break else: if next_image.split(sep)[0].rstrip() == END: image = [] break image = [next_image] # Add the last image that was found before the end, if any if image: cards.append(Card.fromstring(empty.join(image))) return cls._fromcards(cards) @classmethod def fromfile(cls, fileobj, sep='', endcard=True, padding=True): """ Similar to :meth:`Header.fromstring`, but reads the header string from a given file-like object or filename. Parameters ---------- fileobj : str, file-like A filename or an open file-like object from which a FITS header is to be read. For open file handles the file pointer must be at the beginning of the header. sep : str, optional The string separating cards from each other, such as a newline. By default there is no card separator (as is the case in a raw FITS file). endcard : bool, optional If True (the default) the header must end with an END card in order to be considered valid. If an END card is not found an `OSError` is raised. padding : bool, optional If True (the default) the header will be required to be padded out to a multiple of 2880, the FITS header block size. Otherwise any padding, or lack thereof, is ignored. Returns ------- `Header` A new `Header` instance. """ close_file = False if isinstance(fileobj, path_like): # If sep is non-empty we are trying to read a header printed to a # text file, so open in text mode by default to support newline # handling; if a binary-mode file object is passed in, the user is # then on their own w.r.t. newline handling. # # Otherwise assume we are reading from an actual FITS file and open # in binary mode. if sep: fileobj = open(fileobj, encoding='latin1') else: fileobj = open(fileobj, 'rb') close_file = True try: is_binary = fileobj_is_binary(fileobj) def block_iter(nbytes): while True: data = fileobj.read(nbytes) if data: yield data else: break return cls._from_blocks(block_iter, is_binary, sep, endcard, padding)[1] finally: if close_file: fileobj.close() @classmethod def _fromcards(cls, cards): header = cls() for idx, card in enumerate(cards): header._cards.append(card) keyword = Card.normalize_keyword(card.keyword) header._keyword_indices[keyword].append(idx) if card.field_specifier is not None: header._rvkc_indices[card.rawkeyword].append(idx) header._modified = False return header @classmethod def _from_blocks(cls, block_iter, is_binary, sep, endcard, padding): """ The meat of `Header.fromfile`; in a separate method so that `Header.fromfile` itself is just responsible for wrapping file handling. Also used by `_BaseHDU.fromstring`. ``block_iter`` should be a callable which, given a block size n (typically 2880 bytes as used by the FITS standard) returns an iterator of byte strings of that block size. ``is_binary`` specifies whether the returned blocks are bytes or text Returns both the entire header *string*, and the `Header` object returned by Header.fromstring on that string. """ actual_block_size = _block_size(sep) clen = Card.length + len(sep) blocks = block_iter(actual_block_size) # Read the first header block. try: block = next(blocks) except StopIteration: raise EOFError() if not is_binary: # TODO: There needs to be error handling at *this* level for # non-ASCII characters; maybe at this stage decoding latin-1 might # be safer block = encode_ascii(block) read_blocks = [] is_eof = False end_found = False # continue reading header blocks until END card or EOF is reached while True: # find the END card end_found, block = cls._find_end_card(block, clen) read_blocks.append(decode_ascii(block)) if end_found: break try: block = next(blocks) except StopIteration: is_eof = True break if not block: is_eof = True break if not is_binary: block = encode_ascii(block) header_str = ''.join(read_blocks) _check_padding(header_str, actual_block_size, is_eof, check_block_size=padding) if not end_found and is_eof and endcard: # TODO: Pass this error to validation framework as an ERROR, # rather than raising an exception raise OSError('Header missing END card.') return header_str, cls.fromstring(header_str, sep=sep) @classmethod def _find_end_card(cls, block, card_len): """ Utility method to search a header block for the END card and handle invalid END cards. This method can also returned a modified copy of the input header block in case an invalid end card needs to be sanitized. """ for mo in HEADER_END_RE.finditer(block): # Ensure the END card was found, and it started on the # boundary of a new card (see ticket #142) if mo.start() % card_len != 0: continue # This must be the last header block, otherwise the # file is malformatted if mo.group('invalid'): offset = mo.start() trailing = block[offset + 3:offset + card_len - 3].rstrip() if trailing: trailing = repr(trailing).lstrip('ub') # TODO: Pass this warning up to the validation framework warnings.warn( 'Unexpected bytes trailing END keyword: {}; these ' 'bytes will be replaced with spaces on write.'.format( trailing), AstropyUserWarning) else: # TODO: Pass this warning up to the validation framework warnings.warn( 'Missing padding to end of the FITS block after the ' 'END keyword; additional spaces will be appended to ' 'the file upon writing to pad out to {} ' 'bytes.'.format(BLOCK_SIZE), AstropyUserWarning) # Sanitize out invalid END card now that the appropriate # warnings have been issued block = (block[:offset] + encode_ascii(END_CARD) + block[offset + len(END_CARD):]) return True, block return False, block def tostring(self, sep='', endcard=True, padding=True): r""" Returns a string representation of the header. By default this uses no separator between cards, adds the END card, and pads the string with spaces to the next multiple of 2880 bytes. That is, it returns the header exactly as it would appear in a FITS file. Parameters ---------- sep : str, optional The character or string with which to separate cards. By default there is no separator, but one could use ``'\\n'``, for example, to separate each card with a new line endcard : bool, optional If True (default) adds the END card to the end of the header string padding : bool, optional If True (default) pads the string with spaces out to the next multiple of 2880 characters Returns ------- str A string representing a FITS header. """ lines = [] for card in self._cards: s = str(card) # Cards with CONTINUE cards may be longer than 80 chars; so break # them into multiple lines while s: lines.append(s[:Card.length]) s = s[Card.length:] s = sep.join(lines) if endcard: s += sep + _pad('END') if padding: s += ' ' * _pad_length(len(s)) return s def tofile(self, fileobj, sep='', endcard=True, padding=True, overwrite=False): r""" Writes the header to file or file-like object. By default this writes the header exactly as it would be written to a FITS file, with the END card included and padding to the next multiple of 2880 bytes. However, aspects of this may be controlled. Parameters ---------- fileobj : path-like or file-like, optional Either the pathname of a file, or an open file handle or file-like object. sep : str, optional The character or string with which to separate cards. By default there is no separator, but one could use ``'\\n'``, for example, to separate each card with a new line endcard : bool, optional If `True` (default) adds the END card to the end of the header string padding : bool, optional If `True` (default) pads the string with spaces out to the next multiple of 2880 characters overwrite : bool, optional If ``True``, overwrite the output file if it exists. Raises an ``OSError`` if ``False`` and the output file exists. Default is ``False``. """ close_file = fileobj_closed(fileobj) if not isinstance(fileobj, _File): fileobj = _File(fileobj, mode='ostream', overwrite=overwrite) try: blocks = self.tostring(sep=sep, endcard=endcard, padding=padding) actual_block_size = _block_size(sep) if padding and len(blocks) % actual_block_size != 0: raise OSError( 'Header size ({}) is not a multiple of block ' 'size ({}).'.format( len(blocks) - actual_block_size + BLOCK_SIZE, BLOCK_SIZE)) fileobj.flush() fileobj.write(blocks.encode('ascii')) fileobj.flush() finally: if close_file: fileobj.close() @classmethod def fromtextfile(cls, fileobj, endcard=False): """ Read a header from a simple text file or file-like object. Equivalent to:: >>> Header.fromfile(fileobj, sep='\\n', endcard=False, ... padding=False) See Also -------- fromfile """ return cls.fromfile(fileobj, sep='\n', endcard=endcard, padding=False) def totextfile(self, fileobj, endcard=False, overwrite=False): """ Write the header as text to a file or a file-like object. Equivalent to:: >>> Header.tofile(fileobj, sep='\\n', endcard=False, ... padding=False, overwrite=overwrite) See Also -------- tofile """ self.tofile(fileobj, sep='\n', endcard=endcard, padding=False, overwrite=overwrite) def clear(self): """ Remove all cards from the header. """ self._cards = [] self._keyword_indices = collections.defaultdict(list) self._rvkc_indices = collections.defaultdict(list) def copy(self, strip=False): """ Make a copy of the :class:`Header`. .. versionchanged:: 1.3 `copy.copy` and `copy.deepcopy` on a `Header` will call this method. Parameters ---------- strip : bool, optional If `True`, strip any headers that are specific to one of the standard HDU types, so that this header can be used in a different HDU. Returns ------- `Header` A new :class:`Header` instance. """ tmp = self.__class__(copy.copy(card) for card in self._cards) if strip: tmp.strip() return tmp def __copy__(self): return self.copy() def __deepcopy__(self, *args, **kwargs): return self.copy() @classmethod def fromkeys(cls, iterable, value=None): """ Similar to :meth:`dict.fromkeys`--creates a new `Header` from an iterable of keywords and an optional default value. This method is not likely to be particularly useful for creating real world FITS headers, but it is useful for testing. Parameters ---------- iterable Any iterable that returns strings representing FITS keywords. value : optional A default value to assign to each keyword; must be a valid type for FITS keywords. Returns ------- `Header` A new `Header` instance. """ d = cls() if not isinstance(value, tuple): value = (value,) for key in iterable: d.append((key,) + value) return d def get(self, key, default=None): """ Similar to :meth:`dict.get`--returns the value associated with keyword in the header, or a default value if the keyword is not found. Parameters ---------- key : str A keyword that may or may not be in the header. default : optional A default value to return if the keyword is not found in the header. Returns ------- value: str, number, complex, bool, or ``astropy.io.fits.card.Undefined`` The value associated with the given keyword, or the default value if the keyword is not in the header. """ try: return self[key] except (KeyError, IndexError): return default def set(self, keyword, value=None, comment=None, before=None, after=None): """ Set the value and/or comment and/or position of a specified keyword. If the keyword does not already exist in the header, a new keyword is created in the specified position, or appended to the end of the header if no position is specified. This method is similar to :meth:`Header.update` prior to Astropy v0.1. .. note:: It should be noted that ``header.set(keyword, value)`` and ``header.set(keyword, value, comment)`` are equivalent to ``header[keyword] = value`` and ``header[keyword] = (value, comment)`` respectively. New keywords can also be inserted relative to existing keywords using, for example:: >>> header.insert('NAXIS1', ('NAXIS', 2, 'Number of axes')) to insert before an existing keyword, or:: >>> header.insert('NAXIS', ('NAXIS1', 4096), after=True) to insert after an existing keyword. The only advantage of using :meth:`Header.set` is that it easily replaces the old usage of :meth:`Header.update` both conceptually and in terms of function signature. Parameters ---------- keyword : str A header keyword value : str, optional The value to set for the given keyword; if None the existing value is kept, but '' may be used to set a blank value comment : str, optional The comment to set for the given keyword; if None the existing comment is kept, but ``''`` may be used to set a blank comment before : str, int, optional Name of the keyword, or index of the `Card` before which this card should be located in the header. The argument ``before`` takes precedence over ``after`` if both specified. after : str, int, optional Name of the keyword, or index of the `Card` after which this card should be located in the header. """ # Create a temporary card that looks like the one being set; if the # temporary card turns out to be a RVKC this will make it easier to # deal with the idiosyncrasies thereof # Don't try to make a temporary card though if they keyword looks like # it might be a HIERARCH card or is otherwise invalid--this step is # only for validating RVKCs. if (len(keyword) <= KEYWORD_LENGTH and Card._keywd_FSC_RE.match(keyword) and keyword not in self._keyword_indices): new_card = Card(keyword, value, comment) new_keyword = new_card.keyword else: new_keyword = keyword if (new_keyword not in Card._commentary_keywords and new_keyword in self): if comment is None: comment = self.comments[keyword] if value is None: value = self[keyword] self[keyword] = (value, comment) if before is not None or after is not None: card = self._cards[self._cardindex(keyword)] self._relativeinsert(card, before=before, after=after, replace=True) elif before is not None or after is not None: self._relativeinsert((keyword, value, comment), before=before, after=after) else: self[keyword] = (value, comment) def items(self): """Like :meth:`dict.items`.""" for card in self._cards: yield card.keyword, None if card.value == UNDEFINED else card.value def keys(self): """ Like :meth:`dict.keys`--iterating directly over the `Header` instance has the same behavior. """ for card in self._cards: yield card.keyword def values(self): """Like :meth:`dict.values`.""" for card in self._cards: yield None if card.value == UNDEFINED else card.value def pop(self, *args): """ Works like :meth:`list.pop` if no arguments or an index argument are supplied; otherwise works like :meth:`dict.pop`. """ if len(args) > 2: raise TypeError(f'Header.pop expected at most 2 arguments, got {len(args)}') if len(args) == 0: key = -1 else: key = args[0] try: value = self[key] except (KeyError, IndexError): if len(args) == 2: return args[1] raise del self[key] return value def popitem(self): """Similar to :meth:`dict.popitem`.""" try: k, v = next(self.items()) except StopIteration: raise KeyError('Header is empty') del self[k] return k, v def setdefault(self, key, default=None): """Similar to :meth:`dict.setdefault`.""" try: return self[key] except (KeyError, IndexError): self[key] = default return default def update(self, *args, **kwargs): """ Update the Header with new keyword values, updating the values of existing keywords and appending new keywords otherwise; similar to `dict.update`. `update` accepts either a dict-like object or an iterable. In the former case the keys must be header keywords and the values may be either scalar values or (value, comment) tuples. In the case of an iterable the items must be (keyword, value) tuples or (keyword, value, comment) tuples. Arbitrary arguments are also accepted, in which case the update() is called again with the kwargs dict as its only argument. That is, :: >>> header.update(NAXIS1=100, NAXIS2=100) is equivalent to:: header.update({'NAXIS1': 100, 'NAXIS2': 100}) .. warning:: As this method works similarly to `dict.update` it is very different from the ``Header.update()`` method in Astropy v0.1. Use of the old API was **deprecated** for a long time and is now removed. Most uses of the old API can be replaced as follows: * Replace :: header.update(keyword, value) with :: header[keyword] = value * Replace :: header.update(keyword, value, comment=comment) with :: header[keyword] = (value, comment) * Replace :: header.update(keyword, value, before=before_keyword) with :: header.insert(before_keyword, (keyword, value)) * Replace :: header.update(keyword, value, after=after_keyword) with :: header.insert(after_keyword, (keyword, value), after=True) See also :meth:`Header.set` which is a new method that provides an interface similar to the old ``Header.update()`` and may help make transition a little easier. """ if args: other = args[0] else: other = None def update_from_dict(k, v): if not isinstance(v, tuple): card = Card(k, v) elif 0 < len(v) <= 2: card = Card(*((k,) + v)) else: raise ValueError( 'Header update value for key %r is invalid; the ' 'value must be either a scalar, a 1-tuple ' 'containing the scalar value, or a 2-tuple ' 'containing the value and a comment string.' % k) self._update(card) if other is None: pass elif isinstance(other, Header): for card in other.cards: self._update(card) elif hasattr(other, 'items'): for k, v in other.items(): update_from_dict(k, v) elif hasattr(other, 'keys'): for k in other.keys(): update_from_dict(k, other[k]) else: for idx, card in enumerate(other): if isinstance(card, Card): self._update(card) elif isinstance(card, tuple) and (1 < len(card) <= 3): self._update(Card(*card)) else: raise ValueError( 'Header update sequence item #{} is invalid; ' 'the item must either be a 2-tuple containing ' 'a keyword and value, or a 3-tuple containing ' 'a keyword, value, and comment string.'.format(idx)) if kwargs: self.update(kwargs) def append(self, card=None, useblanks=True, bottom=False, end=False): """ Appends a new keyword+value card to the end of the Header, similar to `list.append`. By default if the last cards in the Header have commentary keywords, this will append the new keyword before the commentary (unless the new keyword is also commentary). Also differs from `list.append` in that it can be called with no arguments: In this case a blank card is appended to the end of the Header. In the case all the keyword arguments are ignored. Parameters ---------- card : str, tuple A keyword or a (keyword, value, [comment]) tuple representing a single header card; the comment is optional in which case a 2-tuple may be used useblanks : bool, optional If there are blank cards at the end of the Header, replace the first blank card so that the total number of cards in the Header does not increase. Otherwise preserve the number of blank cards. bottom : bool, optional If True, instead of appending after the last non-commentary card, append after the last non-blank card. end : bool, optional If True, ignore the useblanks and bottom options, and append at the very end of the Header. """ if isinstance(card, str): card = Card(card) elif isinstance(card, tuple): card = Card(*card) elif card is None: card = Card() elif not isinstance(card, Card): raise ValueError( 'The value appended to a Header must be either a keyword or ' '(keyword, value, [comment]) tuple; got: {!r}'.format(card)) if not end and card.is_blank: # Blank cards should always just be appended to the end end = True if end: self._cards.append(card) idx = len(self._cards) - 1 else: idx = len(self._cards) - 1 while idx >= 0 and self._cards[idx].is_blank: idx -= 1 if not bottom and card.keyword not in Card._commentary_keywords: while (idx >= 0 and self._cards[idx].keyword in Card._commentary_keywords): idx -= 1 idx += 1 self._cards.insert(idx, card) self._updateindices(idx) keyword = Card.normalize_keyword(card.keyword) self._keyword_indices[keyword].append(idx) if card.field_specifier is not None: self._rvkc_indices[card.rawkeyword].append(idx) if not end: # If the appended card was a commentary card, and it was appended # before existing cards with the same keyword, the indices for # cards with that keyword may have changed if not bottom and card.keyword in Card._commentary_keywords: self._keyword_indices[keyword].sort() # Finally, if useblanks, delete a blank cards from the end if useblanks and self._countblanks(): # Don't do this unless there is at least one blanks at the end # of the header; we need to convert the card to its string # image to see how long it is. In the vast majority of cases # this will just be 80 (Card.length) but it may be longer for # CONTINUE cards self._useblanks(len(str(card)) // Card.length) self._modified = True def extend(self, cards, strip=True, unique=False, update=False, update_first=False, useblanks=True, bottom=False, end=False): """ Appends multiple keyword+value cards to the end of the header, similar to `list.extend`. Parameters ---------- cards : iterable An iterable of (keyword, value, [comment]) tuples; see `Header.append`. strip : bool, optional Remove any keywords that have meaning only to specific types of HDUs, so that only more general keywords are added from extension Header or Card list (default: `True`). unique : bool, optional If `True`, ensures that no duplicate keywords are appended; keywords already in this header are simply discarded. The exception is commentary keywords (COMMENT, HISTORY, etc.): they are only treated as duplicates if their values match. update : bool, optional If `True`, update the current header with the values and comments from duplicate keywords in the input header. This supersedes the ``unique`` argument. Commentary keywords are treated the same as if ``unique=True``. update_first : bool, optional If the first keyword in the header is 'SIMPLE', and the first keyword in the input header is 'XTENSION', the 'SIMPLE' keyword is replaced by the 'XTENSION' keyword. Likewise if the first keyword in the header is 'XTENSION' and the first keyword in the input header is 'SIMPLE', the 'XTENSION' keyword is replaced by the 'SIMPLE' keyword. This behavior is otherwise dumb as to whether or not the resulting header is a valid primary or extension header. This is mostly provided to support backwards compatibility with the old ``Header.fromTxtFile`` method, and only applies if ``update=True``. useblanks, bottom, end : bool, optional These arguments are passed to :meth:`Header.append` while appending new cards to the header. """ temp = self.__class__(cards) if strip: temp.strip() if len(self): first = self._cards[0].keyword else: first = None # We don't immediately modify the header, because first we need to sift # out any duplicates in the new header prior to adding them to the # existing header, but while *allowing* duplicates from the header # being extended from (see ticket #156) extend_cards = [] for idx, card in enumerate(temp.cards): keyword = card.keyword if keyword not in Card._commentary_keywords: if unique and not update and keyword in self: continue elif update: if idx == 0 and update_first: # Dumbly update the first keyword to either SIMPLE or # XTENSION as the case may be, as was in the case in # Header.fromTxtFile if ((keyword == 'SIMPLE' and first == 'XTENSION') or (keyword == 'XTENSION' and first == 'SIMPLE')): del self[0] self.insert(0, card) else: self[keyword] = (card.value, card.comment) elif keyword in self: self[keyword] = (card.value, card.comment) else: extend_cards.append(card) else: extend_cards.append(card) else: if (unique or update) and keyword in self: if card.is_blank: extend_cards.append(card) continue for value in self[keyword]: if value == card.value: break else: extend_cards.append(card) else: extend_cards.append(card) for card in extend_cards: self.append(card, useblanks=useblanks, bottom=bottom, end=end) def count(self, keyword): """ Returns the count of the given keyword in the header, similar to `list.count` if the Header object is treated as a list of keywords. Parameters ---------- keyword : str The keyword to count instances of in the header """ keyword = Card.normalize_keyword(keyword) # We have to look before we leap, since otherwise _keyword_indices, # being a defaultdict, will create an entry for the nonexistent keyword if keyword not in self._keyword_indices: raise KeyError(f"Keyword {keyword!r} not found.") return len(self._keyword_indices[keyword]) def index(self, keyword, start=None, stop=None): """ Returns the index if the first instance of the given keyword in the header, similar to `list.index` if the Header object is treated as a list of keywords. Parameters ---------- keyword : str The keyword to look up in the list of all keywords in the header start : int, optional The lower bound for the index stop : int, optional The upper bound for the index """ if start is None: start = 0 if stop is None: stop = len(self._cards) if stop < start: step = -1 else: step = 1 norm_keyword = Card.normalize_keyword(keyword) for idx in range(start, stop, step): if self._cards[idx].keyword.upper() == norm_keyword: return idx else: raise ValueError(f'The keyword {keyword!r} is not in the header.') def insert(self, key, card, useblanks=True, after=False): """ Inserts a new keyword+value card into the Header at a given location, similar to `list.insert`. Parameters ---------- key : int, str, or tuple The index into the list of header keywords before which the new keyword should be inserted, or the name of a keyword before which the new keyword should be inserted. Can also accept a (keyword, index) tuple for inserting around duplicate keywords. card : str, tuple A keyword or a (keyword, value, [comment]) tuple; see `Header.append` useblanks : bool, optional If there are blank cards at the end of the Header, replace the first blank card so that the total number of cards in the Header does not increase. Otherwise preserve the number of blank cards. after : bool, optional If set to `True`, insert *after* the specified index or keyword, rather than before it. Defaults to `False`. """ if not isinstance(key, numbers.Integral): # Don't pass through ints to _cardindex because it will not take # kindly to indices outside the existing number of cards in the # header, which insert needs to be able to support (for example # when inserting into empty headers) idx = self._cardindex(key) else: idx = key if after: if idx == -1: idx = len(self._cards) else: idx += 1 if idx >= len(self._cards): # This is just an append (Though it must be an append absolutely to # the bottom, ignoring blanks, etc.--the point of the insert method # is that you get exactly what you asked for with no surprises) self.append(card, end=True) return if isinstance(card, str): card = Card(card) elif isinstance(card, tuple): card = Card(*card) elif not isinstance(card, Card): raise ValueError( 'The value inserted into a Header must be either a keyword or ' '(keyword, value, [comment]) tuple; got: {!r}'.format(card)) self._cards.insert(idx, card) keyword = card.keyword # If idx was < 0, determine the actual index according to the rules # used by list.insert() if idx < 0: idx += len(self._cards) - 1 if idx < 0: idx = 0 # All the keyword indices above the insertion point must be updated self._updateindices(idx) keyword = Card.normalize_keyword(keyword) self._keyword_indices[keyword].append(idx) count = len(self._keyword_indices[keyword]) if count > 1: # There were already keywords with this same name if keyword not in Card._commentary_keywords: warnings.warn( 'A {!r} keyword already exists in this header. Inserting ' 'duplicate keyword.'.format(keyword), AstropyUserWarning) self._keyword_indices[keyword].sort() if card.field_specifier is not None: # Update the index of RVKC as well rvkc_indices = self._rvkc_indices[card.rawkeyword] rvkc_indices.append(idx) rvkc_indices.sort() if useblanks: self._useblanks(len(str(card)) // Card.length) self._modified = True def remove(self, keyword, ignore_missing=False, remove_all=False): """ Removes the first instance of the given keyword from the header similar to `list.remove` if the Header object is treated as a list of keywords. Parameters ---------- keyword : str The keyword of which to remove the first instance in the header. ignore_missing : bool, optional When True, ignores missing keywords. Otherwise, if the keyword is not present in the header a KeyError is raised. remove_all : bool, optional When True, all instances of keyword will be removed. Otherwise only the first instance of the given keyword is removed. """ keyword = Card.normalize_keyword(keyword) if keyword in self._keyword_indices: del self[self._keyword_indices[keyword][0]] if remove_all: while keyword in self._keyword_indices: del self[self._keyword_indices[keyword][0]] elif not ignore_missing: raise KeyError(f"Keyword '{keyword}' not found.") def rename_keyword(self, oldkeyword, newkeyword, force=False): """ Rename a card's keyword in the header. Parameters ---------- oldkeyword : str or int Old keyword or card index newkeyword : str New keyword force : bool, optional When `True`, if the new keyword already exists in the header, force the creation of a duplicate keyword. Otherwise a `ValueError` is raised. """ oldkeyword = Card.normalize_keyword(oldkeyword) newkeyword = Card.normalize_keyword(newkeyword) if newkeyword == 'CONTINUE': raise ValueError('Can not rename to CONTINUE') if (newkeyword in Card._commentary_keywords or oldkeyword in Card._commentary_keywords): if not (newkeyword in Card._commentary_keywords and oldkeyword in Card._commentary_keywords): raise ValueError('Regular and commentary keys can not be ' 'renamed to each other.') elif not force and newkeyword in self: raise ValueError(f'Intended keyword {newkeyword} already exists in header.') idx = self.index(oldkeyword) card = self._cards[idx] del self[idx] self.insert(idx, (newkeyword, card.value, card.comment)) def add_history(self, value, before=None, after=None): """ Add a ``HISTORY`` card. Parameters ---------- value : str History text to be added. before : str or int, optional Same as in `Header.update` after : str or int, optional Same as in `Header.update` """ self._add_commentary('HISTORY', value, before=before, after=after) def add_comment(self, value, before=None, after=None): """ Add a ``COMMENT`` card. Parameters ---------- value : str Text to be added. before : str or int, optional Same as in `Header.update` after : str or int, optional Same as in `Header.update` """ self._add_commentary('COMMENT', value, before=before, after=after) def add_blank(self, value='', before=None, after=None): """ Add a blank card. Parameters ---------- value : str, optional Text to be added. before : str or int, optional Same as in `Header.update` after : str or int, optional Same as in `Header.update` """ self._add_commentary('', value, before=before, after=after) def strip(self): """ Strip cards specific to a certain kind of header. Strip cards like ``SIMPLE``, ``BITPIX``, etc. so the rest of the header can be used to reconstruct another kind of header. """ # TODO: Previously this only deleted some cards specific to an HDU if # _hdutype matched that type. But it seemed simple enough to just # delete all desired cards anyways, and just ignore the KeyErrors if # they don't exist. # However, it might be desirable to make this extendable somehow--have # a way for HDU classes to specify some headers that are specific only # to that type, and should be removed otherwise. naxis = self.get('NAXIS', 0) tfields = self.get('TFIELDS', 0) for idx in range(naxis): self.remove('NAXIS' + str(idx + 1), ignore_missing=True) for name in ('TFORM', 'TSCAL', 'TZERO', 'TNULL', 'TTYPE', 'TUNIT', 'TDISP', 'TDIM', 'THEAP', 'TBCOL'): for idx in range(tfields): self.remove(name + str(idx + 1), ignore_missing=True) for name in ('SIMPLE', 'XTENSION', 'BITPIX', 'NAXIS', 'EXTEND', 'PCOUNT', 'GCOUNT', 'GROUPS', 'BSCALE', 'BZERO', 'TFIELDS'): self.remove(name, ignore_missing=True) @property def data_size(self): """ Return the size (in bytes) of the data portion following the `Header`. """ return _hdr_data_size(self) @property def data_size_padded(self): """ Return the size (in bytes) of the data portion following the `Header` including padding. """ size = self.data_size return size + _pad_length(size) def _update(self, card): """ The real update code. If keyword already exists, its value and/or comment will be updated. Otherwise a new card will be appended. This will not create a duplicate keyword except in the case of commentary cards. The only other way to force creation of a duplicate is to use the insert(), append(), or extend() methods. """ keyword, value, comment = card # Lookups for existing/known keywords are case-insensitive keyword = keyword.strip().upper() if keyword.startswith('HIERARCH '): keyword = keyword[9:] if (keyword not in Card._commentary_keywords and keyword in self._keyword_indices): # Easy; just update the value/comment idx = self._keyword_indices[keyword][0] existing_card = self._cards[idx] existing_card.value = value if comment is not None: # '' should be used to explicitly blank a comment existing_card.comment = comment if existing_card._modified: self._modified = True elif keyword in Card._commentary_keywords: cards = self._splitcommentary(keyword, value) if keyword in self._keyword_indices: # Append after the last keyword of the same type idx = self.index(keyword, start=len(self) - 1, stop=-1) isblank = not (keyword or value or comment) for c in reversed(cards): self.insert(idx + 1, c, useblanks=(not isblank)) else: for c in cards: self.append(c, bottom=True) else: # A new keyword! self.append() will handle updating _modified self.append(card) def _cardindex(self, key): """Returns an index into the ._cards list given a valid lookup key.""" # This used to just set key = (key, 0) and then go on to act as if the # user passed in a tuple, but it's much more common to just be given a # string as the key, so optimize more for that case if isinstance(key, str): keyword = key n = 0 elif isinstance(key, numbers.Integral): # If < 0, determine the actual index if key < 0: key += len(self._cards) if key < 0 or key >= len(self._cards): raise IndexError('Header index out of range.') return key elif isinstance(key, slice): return key elif isinstance(key, tuple): if (len(key) != 2 or not isinstance(key[0], str) or not isinstance(key[1], numbers.Integral)): raise ValueError( 'Tuple indices must be 2-tuples consisting of a ' 'keyword string and an integer index.') keyword, n = key else: raise ValueError( 'Header indices must be either a string, a 2-tuple, or ' 'an integer.') keyword = Card.normalize_keyword(keyword) # Returns the index into _cards for the n-th card with the given # keyword (where n is 0-based) indices = self._keyword_indices.get(keyword, None) if keyword and not indices: if len(keyword) > KEYWORD_LENGTH or '.' in keyword: raise KeyError(f"Keyword {keyword!r} not found.") else: # Maybe it's a RVKC? indices = self._rvkc_indices.get(keyword, None) if not indices: raise KeyError(f"Keyword {keyword!r} not found.") try: return indices[n] except IndexError: raise IndexError('There are only {} {!r} cards in the ' 'header.'.format(len(indices), keyword)) def _keyword_from_index(self, idx): """ Given an integer index, return the (keyword, repeat) tuple that index refers to. For most keywords the repeat will always be zero, but it may be greater than zero for keywords that are duplicated (especially commentary keywords). In a sense this is the inverse of self.index, except that it also supports duplicates. """ if idx < 0: idx += len(self._cards) keyword = self._cards[idx].keyword keyword = Card.normalize_keyword(keyword) repeat = self._keyword_indices[keyword].index(idx) return keyword, repeat def _relativeinsert(self, card, before=None, after=None, replace=False): """ Inserts a new card before or after an existing card; used to implement support for the legacy before/after keyword arguments to Header.update(). If replace=True, move an existing card with the same keyword. """ if before is None: insertionkey = after else: insertionkey = before def get_insertion_idx(): if not (isinstance(insertionkey, numbers.Integral) and insertionkey >= len(self._cards)): idx = self._cardindex(insertionkey) else: idx = insertionkey if before is None: idx += 1 return idx if replace: # The card presumably already exists somewhere in the header. # Check whether or not we actually have to move it; if it does need # to be moved we just delete it and then it will be reinserted # below old_idx = self._cardindex(card.keyword) insertion_idx = get_insertion_idx() if (insertion_idx >= len(self._cards) and old_idx == len(self._cards) - 1): # The card would be appended to the end, but it's already at # the end return if before is not None: if old_idx == insertion_idx - 1: return elif after is not None and old_idx == insertion_idx: return del self[old_idx] # Even if replace=True, the insertion idx may have changed since the # old card was deleted idx = get_insertion_idx() if card[0] in Card._commentary_keywords: cards = reversed(self._splitcommentary(card[0], card[1])) else: cards = [card] for c in cards: self.insert(idx, c) def _updateindices(self, idx, increment=True): """ For all cards with index above idx, increment or decrement its index value in the keyword_indices dict. """ if idx > len(self._cards): # Save us some effort return increment = 1 if increment else -1 for index_sets in (self._keyword_indices, self._rvkc_indices): for indices in index_sets.values(): for jdx, keyword_index in enumerate(indices): if keyword_index >= idx: indices[jdx] += increment def _countblanks(self): """Returns the number of blank cards at the end of the Header.""" for idx in range(1, len(self._cards)): if not self._cards[-idx].is_blank: return idx - 1 return 0 def _useblanks(self, count): for _ in range(count): if self._cards[-1].is_blank: del self[-1] else: break def _haswildcard(self, keyword): """Return `True` if the input keyword contains a wildcard pattern.""" return (isinstance(keyword, str) and (keyword.endswith('...') or '*' in keyword or '?' in keyword)) def _wildcardmatch(self, pattern): """ Returns a list of indices of the cards matching the given wildcard pattern. * '*' matches 0 or more characters * '?' matches a single character * '...' matches 0 or more of any non-whitespace character """ pattern = pattern.replace('*', r'.*').replace('?', r'.') pattern = pattern.replace('...', r'\S*') + '$' pattern_re = re.compile(pattern, re.I) return [idx for idx, card in enumerate(self._cards) if pattern_re.match(card.keyword)] def _set_slice(self, key, value, target): """ Used to implement Header.__setitem__ and CardAccessor.__setitem__. """ if isinstance(key, slice) or self._haswildcard(key): if isinstance(key, slice): indices = range(*key.indices(len(target))) else: indices = self._wildcardmatch(key) if isinstance(value, str) or not isiterable(value): value = itertools.repeat(value, len(indices)) for idx, val in zip(indices, value): target[idx] = val return True return False def _splitcommentary(self, keyword, value): """ Given a commentary keyword and value, returns a list of the one or more cards needed to represent the full value. This is primarily used to create the multiple commentary cards needed to represent a long value that won't fit into a single commentary card. """ # The maximum value in each card can be the maximum card length minus # the maximum key length (which can include spaces if they key length # less than 8 maxlen = Card.length - KEYWORD_LENGTH valuestr = str(value) if len(valuestr) <= maxlen: # The value can fit in a single card cards = [Card(keyword, value)] else: # The value must be split across multiple consecutive commentary # cards idx = 0 cards = [] while idx < len(valuestr): cards.append(Card(keyword, valuestr[idx:idx + maxlen])) idx += maxlen return cards def _add_commentary(self, key, value, before=None, after=None): """ Add a commentary card. If ``before`` and ``after`` are `None`, add to the last occurrence of cards of the same name (except blank card). If there is no card (or blank card), append at the end. """ if before is not None or after is not None: self._relativeinsert((key, value), before=before, after=after) else: self[key] = value collections.abc.MutableSequence.register(Header) collections.abc.MutableMapping.register(Header) class _DelayedHeader: """ Descriptor used to create the Header object from the header string that was stored in HDU._header_str when parsing the file. """ def __get__(self, obj, owner=None): try: return obj.__dict__['_header'] except KeyError: if obj._header_str is not None: hdr = Header.fromstring(obj._header_str) obj._header_str = None else: raise AttributeError("'{}' object has no attribute '_header'" .format(obj.__class__.__name__)) obj.__dict__['_header'] = hdr return hdr def __set__(self, obj, val): obj.__dict__['_header'] = val def __delete__(self, obj): del obj.__dict__['_header'] class _BasicHeaderCards: """ This class allows to access cards with the _BasicHeader.cards attribute. This is needed because during the HDU class detection, some HDUs uses the .cards interface. Cards cannot be modified here as the _BasicHeader object will be deleted once the HDU object is created. """ def __init__(self, header): self.header = header def __getitem__(self, key): # .cards is a list of cards, so key here is an integer. # get the keyword name from its index. key = self.header._keys[key] # then we get the card from the _BasicHeader._cards list, or parse it # if needed. try: return self.header._cards[key] except KeyError: cardstr = self.header._raw_cards[key] card = Card.fromstring(cardstr) self.header._cards[key] = card return card class _BasicHeader(collections.abc.Mapping): """This class provides a fast header parsing, without all the additional features of the Header class. Here only standard keywords are parsed, no support for CONTINUE, HIERARCH, COMMENT, HISTORY, or rvkc. The raw card images are stored and parsed only if needed. The idea is that to create the HDU objects, only a small subset of standard cards is needed. Once a card is parsed, which is deferred to the Card class, the Card object is kept in a cache. This is useful because a small subset of cards is used a lot in the HDU creation process (NAXIS, XTENSION, ...). """ def __init__(self, cards): # dict of (keywords, card images) self._raw_cards = cards self._keys = list(cards.keys()) # dict of (keyword, Card object) storing the parsed cards self._cards = {} # the _BasicHeaderCards object allows to access Card objects from # keyword indices self.cards = _BasicHeaderCards(self) self._modified = False def __getitem__(self, key): if isinstance(key, numbers.Integral): key = self._keys[key] try: return self._cards[key].value except KeyError: # parse the Card and store it cardstr = self._raw_cards[key] self._cards[key] = card = Card.fromstring(cardstr) return card.value def __len__(self): return len(self._raw_cards) def __iter__(self): return iter(self._raw_cards) def index(self, keyword): return self._keys.index(keyword) @property def data_size(self): """ Return the size (in bytes) of the data portion following the `Header`. """ return _hdr_data_size(self) @property def data_size_padded(self): """ Return the size (in bytes) of the data portion following the `Header` including padding. """ size = self.data_size return size + _pad_length(size) @classmethod def fromfile(cls, fileobj): """The main method to parse a FITS header from a file. The parsing is done with the parse_header function implemented in Cython.""" close_file = False if isinstance(fileobj, str): fileobj = open(fileobj, 'rb') close_file = True try: header_str, cards = parse_header(fileobj) _check_padding(header_str, BLOCK_SIZE, False) return header_str, cls(cards) finally: if close_file: fileobj.close() class _CardAccessor: """ This is a generic class for wrapping a Header in such a way that you can use the header's slice/filtering capabilities to return a subset of cards and do something with them. This is sort of the opposite notion of the old CardList class--whereas Header used to use CardList to get lists of cards, this uses Header to get lists of cards. """ # TODO: Consider giving this dict/list methods like Header itself def __init__(self, header): self._header = header def __repr__(self): return '\n'.join(repr(c) for c in self._header._cards) def __len__(self): return len(self._header._cards) def __iter__(self): return iter(self._header._cards) def __eq__(self, other): # If the `other` item is a scalar we will still treat it as equal if # this _CardAccessor only contains one item if not isiterable(other) or isinstance(other, str): if len(self) == 1: other = [other] else: return False for a, b in itertools.zip_longest(self, other): if a != b: return False else: return True def __ne__(self, other): return not (self == other) def __getitem__(self, item): if isinstance(item, slice) or self._header._haswildcard(item): return self.__class__(self._header[item]) idx = self._header._cardindex(item) return self._header._cards[idx] def _setslice(self, item, value): """ Helper for implementing __setitem__ on _CardAccessor subclasses; slices should always be handled in this same way. """ if isinstance(item, slice) or self._header._haswildcard(item): if isinstance(item, slice): indices = range(*item.indices(len(self))) else: indices = self._header._wildcardmatch(item) if isinstance(value, str) or not isiterable(value): value = itertools.repeat(value, len(indices)) for idx, val in zip(indices, value): self[idx] = val return True return False class _HeaderComments(_CardAccessor): """ A class used internally by the Header class for the Header.comments attribute access. This object can be used to display all the keyword comments in the Header, or look up the comments on specific keywords. It allows all the same forms of keyword lookup as the Header class itself, but returns comments instead of values. """ def __iter__(self): for card in self._header._cards: yield card.comment def __repr__(self): """Returns a simple list of all keywords and their comments.""" keyword_length = KEYWORD_LENGTH for card in self._header._cards: keyword_length = max(keyword_length, len(card.keyword)) return '\n'.join('{:>{len}} {}'.format(c.keyword, c.comment, len=keyword_length) for c in self._header._cards) def __getitem__(self, item): """ Slices and filter strings return a new _HeaderComments containing the returned cards. Otherwise the comment of a single card is returned. """ item = super().__getitem__(item) if isinstance(item, _HeaderComments): # The item key was a slice return item return item.comment def __setitem__(self, item, comment): """ Set/update the comment on specified card or cards. Slice/filter updates work similarly to how Header.__setitem__ works. """ if self._header._set_slice(item, comment, self): return # In this case, key/index errors should be raised; don't update # comments of nonexistent cards idx = self._header._cardindex(item) value = self._header[idx] self._header[idx] = (value, comment) class _HeaderCommentaryCards(_CardAccessor): """ This is used to return a list-like sequence over all the values in the header for a given commentary keyword, such as HISTORY. """ def __init__(self, header, keyword=''): super().__init__(header) self._keyword = keyword self._count = self._header.count(self._keyword) self._indices = slice(self._count).indices(self._count) # __len__ and __iter__ need to be overridden from the base class due to the # different approach this class has to take for slicing def __len__(self): return len(range(*self._indices)) def __iter__(self): for idx in range(*self._indices): yield self._header[(self._keyword, idx)] def __repr__(self): return '\n'.join(str(x) for x in self) def __getitem__(self, idx): if isinstance(idx, slice): n = self.__class__(self._header, self._keyword) n._indices = idx.indices(self._count) return n elif not isinstance(idx, numbers.Integral): raise ValueError(f'{self._keyword} index must be an integer') idx = list(range(*self._indices))[idx] return self._header[(self._keyword, idx)] def __setitem__(self, item, value): """ Set the value of a specified commentary card or cards. Slice/filter updates work similarly to how Header.__setitem__ works. """ if self._header._set_slice(item, value, self): return # In this case, key/index errors should be raised; don't update # comments of nonexistent cards self._header[(self._keyword, item)] = value def _block_size(sep): """ Determine the size of a FITS header block if a non-blank separator is used between cards. """ return BLOCK_SIZE + (len(sep) * (BLOCK_SIZE // Card.length - 1)) def _pad_length(stringlen): """Bytes needed to pad the input stringlen to the next FITS block.""" return (BLOCK_SIZE - (stringlen % BLOCK_SIZE)) % BLOCK_SIZE def _check_padding(header_str, block_size, is_eof, check_block_size=True): # Strip any zero-padding (see ticket #106) if header_str and header_str[-1] == '\0': if is_eof and header_str.strip('\0') == '': # TODO: Pass this warning to validation framework warnings.warn( 'Unexpected extra padding at the end of the file. This ' 'padding may not be preserved when saving changes.', AstropyUserWarning) raise EOFError() else: # Replace the illegal null bytes with spaces as required by # the FITS standard, and issue a nasty warning # TODO: Pass this warning to validation framework warnings.warn( 'Header block contains null bytes instead of spaces for ' 'padding, and is not FITS-compliant. Nulls may be ' 'replaced with spaces upon writing.', AstropyUserWarning) header_str.replace('\0', ' ') if check_block_size and (len(header_str) % block_size) != 0: # This error message ignores the length of the separator for # now, but maybe it shouldn't? actual_len = len(header_str) - block_size + BLOCK_SIZE # TODO: Pass this error to validation framework raise ValueError(f'Header size is not multiple of {BLOCK_SIZE}: {actual_len}') def _hdr_data_size(header): """Calculate the data size (in bytes) following the given `Header`""" size = 0 naxis = header.get('NAXIS', 0) if naxis > 0: size = 1 for idx in range(naxis): size = size * header['NAXIS' + str(idx + 1)] bitpix = header['BITPIX'] gcount = header.get('GCOUNT', 1) pcount = header.get('PCOUNT', 0) size = abs(bitpix) * gcount * (pcount + size) // 8 return size
9489e393948bd4e6b26e07d827797cfafaf789eba5390cfac49aec584978a22e
# Licensed under a 3-clause BSD style license - see PYFITS.rst import operator import warnings from astropy.utils import indent from astropy.utils.exceptions import AstropyUserWarning class VerifyError(Exception): """ Verify exception class. """ class VerifyWarning(AstropyUserWarning): """ Verify warning class. """ VERIFY_OPTIONS = ['ignore', 'warn', 'exception', 'fix', 'silentfix', 'fix+ignore', 'fix+warn', 'fix+exception', 'silentfix+ignore', 'silentfix+warn', 'silentfix+exception'] class _Verify: """ Shared methods for verification. """ def run_option(self, option='warn', err_text='', fix_text='Fixed.', fix=None, fixable=True): """ Execute the verification with selected option. """ text = err_text if option in ['warn', 'exception']: fixable = False # fix the value elif not fixable: text = f'Unfixable error: {text}' else: if fix: fix() text += ' ' + fix_text return (fixable, text) def verify(self, option='warn'): """ Verify all values in the instance. Parameters ---------- option : str Output verification option. Must be one of ``"fix"``, ``"silentfix"``, ``"ignore"``, ``"warn"``, or ``"exception"``. May also be any combination of ``"fix"`` or ``"silentfix"`` with ``"+ignore"``, ``"+warn"``, or ``"+exception"`` (e.g. ``"fix+warn"``). See :ref:`astropy:verify` for more info. """ opt = option.lower() if opt not in VERIFY_OPTIONS: raise ValueError(f'Option {option!r} not recognized.') if opt == 'ignore': return errs = self._verify(opt) # Break the verify option into separate options related to reporting of # errors, and fixing of fixable errors if '+' in opt: fix_opt, report_opt = opt.split('+') elif opt in ['fix', 'silentfix']: # The original default behavior for 'fix' and 'silentfix' was to # raise an exception for unfixable errors fix_opt, report_opt = opt, 'exception' else: fix_opt, report_opt = None, opt if fix_opt == 'silentfix' and report_opt == 'ignore': # Fixable errors were fixed, but don't report anything return if fix_opt == 'silentfix': # Don't print out fixable issues; the first element of each verify # item is a boolean indicating whether or not the issue was fixable line_filter = lambda x: not x[0] elif fix_opt == 'fix' and report_opt == 'ignore': # Don't print *unfixable* issues, but do print fixed issues; this # is probably not very useful but the option exists for # completeness line_filter = operator.itemgetter(0) else: line_filter = None unfixable = False messages = [] for fixable, message in errs.iter_lines(filter=line_filter): if fixable is not None: unfixable = not fixable messages.append(message) if messages: messages.insert(0, 'Verification reported errors:') messages.append('Note: astropy.io.fits uses zero-based indexing.\n') if fix_opt == 'silentfix' and not unfixable: return elif report_opt == 'warn' or (fix_opt == 'fix' and not unfixable): for line in messages: warnings.warn(line, VerifyWarning) else: raise VerifyError('\n' + '\n'.join(messages)) class _ErrList(list): """ Verification errors list class. It has a nested list structure constructed by error messages generated by verifications at different class levels. """ def __init__(self, val=(), unit='Element'): super().__init__(val) self.unit = unit def __str__(self): return '\n'.join(item[1] for item in self.iter_lines()) def iter_lines(self, filter=None, shift=0): """ Iterate the nested structure as a list of strings with appropriate indentations for each level of structure. """ element = 0 # go through the list twice, first time print out all top level # messages for item in self: if not isinstance(item, _ErrList): if filter is None or filter(item): yield item[0], indent(item[1], shift=shift) # second time go through the next level items, each of the next level # must present, even it has nothing. for item in self: if isinstance(item, _ErrList): next_lines = item.iter_lines(filter=filter, shift=shift + 1) try: first_line = next(next_lines) except StopIteration: first_line = None if first_line is not None: if self.unit: # This line is sort of a header for the next level in # the hierarchy yield None, indent(f'{self.unit} {element}:', shift=shift) yield first_line yield from next_lines element += 1
6ab28a86a174b5c72e04023010c44a864feed75bb8f142143f9dabb71d7576cd
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ An extensible ASCII table reader and writer. core.py: Core base classes and functions for reading and writing tables. :Copyright: Smithsonian Astrophysical Observatory (2010) :Author: Tom Aldcroft ([email protected]) """ import copy import csv import functools import itertools import operator import os import re import warnings import inspect import fnmatch from collections import OrderedDict from contextlib import suppress from io import StringIO import numpy from astropy.utils.exceptions import AstropyWarning from astropy.table import Table from astropy.utils.data import get_readable_fileobj from . import connect from .docs import READ_DOCSTRING, WRITE_DOCSTRING # Global dictionary mapping format arg to the corresponding Reader class FORMAT_CLASSES = {} # Similar dictionary for fast readers FAST_CLASSES = {} def _check_multidim_table(table, max_ndim): """Check that ``table`` has only columns with ndim <= ``max_ndim`` Currently ECSV is the only built-in format that supports output of arbitrary N-d columns, but HTML supports 2-d. """ # No limit? if max_ndim is None: return # Check for N-d columns nd_names = [col.info.name for col in table.itercols() if len(col.shape) > max_ndim] if nd_names: raise ValueError(f'column(s) with dimension > {max_ndim} ' "cannot be be written with this format, try using 'ecsv' " "(Enhanced CSV) format") class CsvWriter: """ Internal class to replace the csv writer ``writerow`` and ``writerows`` functions so that in the case of ``delimiter=' '`` and ``quoting=csv.QUOTE_MINIMAL``, the output field value is quoted for empty fields (when value == ''). This changes the API slightly in that the writerow() and writerows() methods return the output written string instead of the length of that string. Examples -------- >>> from astropy.io.ascii.core import CsvWriter >>> writer = CsvWriter(delimiter=' ') >>> print(writer.writerow(['hello', '', 'world'])) hello "" world """ # Random 16-character string that gets injected instead of any # empty fields and is then replaced post-write with doubled-quotechar. # Created with: # ''.join(random.choice(string.printable[:90]) for _ in range(16)) replace_sentinel = '2b=48Av%0-V3p>bX' def __init__(self, csvfile=None, **kwargs): self.csvfile = csvfile # Temporary StringIO for catching the real csv.writer() object output self.temp_out = StringIO() self.writer = csv.writer(self.temp_out, **kwargs) dialect = self.writer.dialect self.quotechar2 = dialect.quotechar * 2 self.quote_empty = (dialect.quoting == csv.QUOTE_MINIMAL) and (dialect.delimiter == ' ') def writerow(self, values): """ Similar to csv.writer.writerow but with the custom quoting behavior. Returns the written string instead of the length of that string. """ has_empty = False # If QUOTE_MINIMAL and space-delimited then replace empty fields with # the sentinel value. if self.quote_empty: for i, value in enumerate(values): if value == '': has_empty = True values[i] = self.replace_sentinel return self._writerow(self.writer.writerow, values, has_empty) def writerows(self, values_list): """ Similar to csv.writer.writerows but with the custom quoting behavior. Returns the written string instead of the length of that string. """ has_empty = False # If QUOTE_MINIMAL and space-delimited then replace empty fields with # the sentinel value. if self.quote_empty: for values in values_list: for i, value in enumerate(values): if value == '': has_empty = True values[i] = self.replace_sentinel return self._writerow(self.writer.writerows, values_list, has_empty) def _writerow(self, writerow_func, values, has_empty): """ Call ``writerow_func`` (either writerow or writerows) with ``values``. If it has empty fields that have been replaced then change those sentinel strings back to quoted empty strings, e.g. ``""``. """ # Clear the temporary StringIO buffer that self.writer writes into and # then call the real csv.writer().writerow or writerows with values. self.temp_out.seek(0) self.temp_out.truncate() writerow_func(values) row_string = self.temp_out.getvalue() if self.quote_empty and has_empty: row_string = re.sub(self.replace_sentinel, self.quotechar2, row_string) # self.csvfile is defined then write the output. In practice the pure # Python writer calls with csvfile=None, while the fast writer calls with # a file-like object. if self.csvfile: self.csvfile.write(row_string) return row_string class MaskedConstant(numpy.ma.core.MaskedConstant): """A trivial extension of numpy.ma.masked We want to be able to put the generic term ``masked`` into a dictionary. The constant ``numpy.ma.masked`` is not hashable (see https://github.com/numpy/numpy/issues/4660), so we need to extend it here with a hash value. See https://github.com/numpy/numpy/issues/11021 for rationale for __copy__ and __deepcopy__ methods. """ def __hash__(self): '''All instances of this class shall have the same hash.''' # Any large number will do. return 1234567890 def __copy__(self): """This is a singleton so just return self.""" return self def __deepcopy__(self, memo): return self masked = MaskedConstant() class InconsistentTableError(ValueError): """ Indicates that an input table is inconsistent in some way. The default behavior of ``BaseReader`` is to throw an instance of this class if a data row doesn't match the header. """ class OptionalTableImportError(ImportError): """ Indicates that a dependency for table reading is not present. An instance of this class is raised whenever an optional reader with certain required dependencies cannot operate because of an ImportError. """ class ParameterError(NotImplementedError): """ Indicates that a reader cannot handle a passed parameter. The C-based fast readers in ``io.ascii`` raise an instance of this error class upon encountering a parameter that the C engine cannot handle. """ class FastOptionsError(NotImplementedError): """ Indicates that one of the specified options for fast reading is invalid. """ class NoType: """ Superclass for ``StrType`` and ``NumType`` classes. This class is the default type of ``Column`` and provides a base class for other data types. """ class StrType(NoType): """ Indicates that a column consists of text data. """ class NumType(NoType): """ Indicates that a column consists of numerical data. """ class FloatType(NumType): """ Describes floating-point data. """ class BoolType(NoType): """ Describes boolean data. """ class IntType(NumType): """ Describes integer data. """ class AllType(StrType, FloatType, IntType): """ Subclass of all other data types. This type is returned by ``convert_numpy`` if the given numpy type does not match ``StrType``, ``FloatType``, or ``IntType``. """ class Column: """Table column. The key attributes of a Column object are: * **name** : column name * **type** : column type (NoType, StrType, NumType, FloatType, IntType) * **dtype** : numpy dtype (optional, overrides **type** if set) * **str_vals** : list of column values as strings * **fill_values** : dict of fill values * **shape** : list of element shape (default [] => scalar) * **data** : list of converted column values * **subtype** : actual datatype for columns serialized with JSON """ def __init__(self, name): self.name = name self.type = NoType # Generic type (Int, Float, Str etc) self.dtype = None # Numpy dtype if available self.str_vals = [] self.fill_values = {} self.shape = [] self.subtype = None class BaseInputter: """ Get the lines from the table input and return a list of lines. """ encoding = None """Encoding used to read the file""" def get_lines(self, table, newline=None): """ Get the lines from the ``table`` input. The input table can be one of: * File name * String (newline separated) with all header and data lines (must have at least 2 lines) * File-like object with read() method * List of strings Parameters ---------- table : str, file-like, list Can be either a file name, string (newline separated) with all header and data lines (must have at least 2 lines), a file-like object with a ``read()`` method, or a list of strings. newline : Line separator. If `None` use OS default from ``splitlines()``. Returns ------- lines : list List of lines """ try: if (hasattr(table, 'read') or ('\n' not in table + '' and '\r' not in table + '')): with get_readable_fileobj(table, encoding=self.encoding) as fileobj: table = fileobj.read() if newline is None: lines = table.splitlines() else: lines = table.split(newline) except TypeError: try: # See if table supports indexing, slicing, and iteration table[0] table[0:1] iter(table) if len(table) > 1: lines = table else: # treat single entry as if string had been passed directly if newline is None: lines = table[0].splitlines() else: lines = table[0].split(newline) except TypeError: raise TypeError( 'Input "table" must be a string (filename or data) or an iterable') return self.process_lines(lines) def process_lines(self, lines): """Process lines for subsequent use. In the default case do nothing. This routine is not generally intended for removing comment lines or stripping whitespace. These are done (if needed) in the header and data line processing. Override this method if something more has to be done to convert raw input lines to the table rows. For example the ContinuationLinesInputter derived class accounts for continuation characters if a row is split into lines.""" return lines class BaseSplitter: """ Base splitter that uses python's split method to do the work. This does not handle quoted values. A key feature is the formulation of __call__ as a generator that returns a list of the split line values at each iteration. There are two methods that are intended to be overridden, first ``process_line()`` to do pre-processing on each input line before splitting and ``process_val()`` to do post-processing on each split string value. By default these apply the string ``strip()`` function. These can be set to another function via the instance attribute or be disabled entirely, for example:: reader.header.splitter.process_val = lambda x: x.lstrip() reader.data.splitter.process_val = None """ delimiter = None """ one-character string used to separate fields """ def process_line(self, line): """Remove whitespace at the beginning or end of line. This is especially useful for whitespace-delimited files to prevent spurious columns at the beginning or end.""" return line.strip() def process_val(self, val): """Remove whitespace at the beginning or end of value.""" return val.strip() def __call__(self, lines): if self.process_line: lines = (self.process_line(x) for x in lines) for line in lines: vals = line.split(self.delimiter) if self.process_val: yield [self.process_val(x) for x in vals] else: yield vals def join(self, vals): if self.delimiter is None: delimiter = ' ' else: delimiter = self.delimiter return delimiter.join(str(x) for x in vals) class DefaultSplitter(BaseSplitter): """Default class to split strings into columns using python csv. The class attributes are taken from the csv Dialect class. Typical usage:: # lines = .. splitter = ascii.DefaultSplitter() for col_vals in splitter(lines): for col_val in col_vals: ... """ delimiter = ' ' """ one-character string used to separate fields. """ quotechar = '"' """ control how instances of *quotechar* in a field are quoted """ doublequote = True """ character to remove special meaning from following character """ escapechar = None """ one-character stringto quote fields containing special characters """ quoting = csv.QUOTE_MINIMAL """ control when quotes are recognized by the reader """ skipinitialspace = True """ ignore whitespace immediately following the delimiter """ csv_writer = None csv_writer_out = StringIO() def process_line(self, line): """Remove whitespace at the beginning or end of line. This is especially useful for whitespace-delimited files to prevent spurious columns at the beginning or end. If splitting on whitespace then replace unquoted tabs with space first""" if self.delimiter == r'\s': line = _replace_tab_with_space(line, self.escapechar, self.quotechar) return line.strip() + '\n' def process_val(self, val): """Remove whitespace at the beginning or end of value.""" return val.strip(' \t') def __call__(self, lines): """Return an iterator over the table ``lines``, where each iterator output is a list of the split line values. Parameters ---------- lines : list List of table lines Yields ------ line : list of str Each line's split values. """ if self.process_line: lines = [self.process_line(x) for x in lines] delimiter = ' ' if self.delimiter == r'\s' else self.delimiter csv_reader = csv.reader(lines, delimiter=delimiter, doublequote=self.doublequote, escapechar=self.escapechar, quotechar=self.quotechar, quoting=self.quoting, skipinitialspace=self.skipinitialspace ) for vals in csv_reader: if self.process_val: yield [self.process_val(x) for x in vals] else: yield vals def join(self, vals): delimiter = ' ' if self.delimiter is None else str(self.delimiter) if self.csv_writer is None: self.csv_writer = CsvWriter(delimiter=delimiter, doublequote=self.doublequote, escapechar=self.escapechar, quotechar=self.quotechar, quoting=self.quoting) if self.process_val: vals = [self.process_val(x) for x in vals] out = self.csv_writer.writerow(vals).rstrip('\r\n') return out def _replace_tab_with_space(line, escapechar, quotechar): """Replace tabs with spaces in given string, preserving quoted substrings Parameters ---------- line : str String containing tabs to be replaced with spaces. escapechar : str Character in ``line`` used to escape special characters. quotechar : str Character in ``line`` indicating the start/end of a substring. Returns ------- line : str A copy of ``line`` with tabs replaced by spaces, preserving quoted substrings. """ newline = [] in_quote = False lastchar = 'NONE' for char in line: if char == quotechar and lastchar != escapechar: in_quote = not in_quote if char == '\t' and not in_quote: char = ' ' lastchar = char newline.append(char) return ''.join(newline) def _get_line_index(line_or_func, lines): """Return the appropriate line index, depending on ``line_or_func`` which can be either a function, a positive or negative int, or None. """ if hasattr(line_or_func, '__call__'): return line_or_func(lines) elif line_or_func: if line_or_func >= 0: return line_or_func else: n_lines = sum(1 for line in lines) return n_lines + line_or_func else: return line_or_func class BaseHeader: """ Base table header reader """ auto_format = 'col{}' """ format string for auto-generating column names """ start_line = None """ None, int, or a function of ``lines`` that returns None or int """ comment = None """ regular expression for comment lines """ splitter_class = DefaultSplitter """ Splitter class for splitting data lines into columns """ names = None """ list of names corresponding to each data column """ write_comment = False write_spacer_lines = ['ASCII_TABLE_WRITE_SPACER_LINE'] def __init__(self): self.splitter = self.splitter_class() def _set_cols_from_names(self): self.cols = [Column(name=x) for x in self.names] def update_meta(self, lines, meta): """ Extract any table-level metadata, e.g. keywords, comments, column metadata, from the table ``lines`` and update the OrderedDict ``meta`` in place. This base method extracts comment lines and stores them in ``meta`` for output. """ if self.comment: re_comment = re.compile(self.comment) comment_lines = [x for x in lines if re_comment.match(x)] else: comment_lines = [] comment_lines = [re.sub('^' + self.comment, '', x).strip() for x in comment_lines] if comment_lines: meta.setdefault('table', {})['comments'] = comment_lines def get_cols(self, lines): """Initialize the header Column objects from the table ``lines``. Based on the previously set Header attributes find or create the column names. Sets ``self.cols`` with the list of Columns. Parameters ---------- lines : list List of table lines """ start_line = _get_line_index(self.start_line, self.process_lines(lines)) if start_line is None: # No header line so auto-generate names from n_data_cols # Get the data values from the first line of table data to determine n_data_cols try: first_data_vals = next(self.data.get_str_vals()) except StopIteration: raise InconsistentTableError('No data lines found so cannot autogenerate ' 'column names') n_data_cols = len(first_data_vals) self.names = [self.auto_format.format(i) for i in range(1, n_data_cols + 1)] else: for i, line in enumerate(self.process_lines(lines)): if i == start_line: break else: # No header line matching raise ValueError('No header line found in table') self.names = next(self.splitter([line])) self._set_cols_from_names() def process_lines(self, lines): """Generator to yield non-blank and non-comment lines""" re_comment = re.compile(self.comment) if self.comment else None # Yield non-comment lines for line in lines: if line.strip() and (not self.comment or not re_comment.match(line)): yield line def write_comments(self, lines, meta): if self.write_comment not in (False, None): for comment in meta.get('comments', []): lines.append(self.write_comment + comment) def write(self, lines): if self.start_line is not None: for i, spacer_line in zip(range(self.start_line), itertools.cycle(self.write_spacer_lines)): lines.append(spacer_line) lines.append(self.splitter.join([x.info.name for x in self.cols])) @property def colnames(self): """Return the column names of the table""" return tuple(col.name if isinstance(col, Column) else col.info.name for col in self.cols) def remove_columns(self, names): """ Remove several columns from the table. Parameters ---------- names : list A list containing the names of the columns to remove """ colnames = self.colnames for name in names: if name not in colnames: raise KeyError(f"Column {name} does not exist") self.cols = [col for col in self.cols if col.name not in names] def rename_column(self, name, new_name): """ Rename a column. Parameters ---------- name : str The current name of the column. new_name : str The new name for the column """ try: idx = self.colnames.index(name) except ValueError: raise KeyError(f"Column {name} does not exist") col = self.cols[idx] # For writing self.cols can contain cols that are not Column. Raise # exception in that case. if isinstance(col, Column): col.name = new_name else: raise TypeError(f'got column type {type(col)} instead of required ' f'{Column}') def get_type_map_key(self, col): return col.raw_type def get_col_type(self, col): try: type_map_key = self.get_type_map_key(col) return self.col_type_map[type_map_key.lower()] except KeyError: raise ValueError('Unknown data type ""{}"" for column "{}"'.format( col.raw_type, col.name)) def check_column_names(self, names, strict_names, guessing): """ Check column names. This must be done before applying the names transformation so that guessing will fail appropriately if ``names`` is supplied. For instance if the basic reader is given a table with no column header row. Parameters ---------- names : list User-supplied list of column names strict_names : bool Whether to impose extra requirements on names guessing : bool True if this method is being called while guessing the table format """ if strict_names: # Impose strict requirements on column names (normally used in guessing) bads = [" ", ",", "|", "\t", "'", '"'] for name in self.colnames: if (_is_number(name) or len(name) == 0 or name[0] in bads or name[-1] in bads): raise InconsistentTableError( f'Column name {name!r} does not meet strict name requirements') # When guessing require at least two columns, except for ECSV which can # reliably be guessed from the header requirements. if guessing and len(self.colnames) <= 1 and self.__class__.__name__ != 'EcsvHeader': raise ValueError('Table format guessing requires at least two columns, got {}' .format(list(self.colnames))) if names is not None and len(names) != len(self.colnames): raise InconsistentTableError( 'Length of names argument ({}) does not match number' ' of table columns ({})'.format(len(names), len(self.colnames))) class BaseData: """ Base table data reader. """ start_line = None """ None, int, or a function of ``lines`` that returns None or int """ end_line = None """ None, int, or a function of ``lines`` that returns None or int """ comment = None """ Regular expression for comment lines """ splitter_class = DefaultSplitter """ Splitter class for splitting data lines into columns """ write_spacer_lines = ['ASCII_TABLE_WRITE_SPACER_LINE'] fill_include_names = None fill_exclude_names = None fill_values = [(masked, '')] formats = {} def __init__(self): # Need to make sure fill_values list is instance attribute, not class attribute. # On read, this will be overwritten by the default in the ui.read (thus, in # the current implementation there can be no different default for different # Readers). On write, ui.py does not specify a default, so this line here matters. self.fill_values = copy.copy(self.fill_values) self.formats = copy.copy(self.formats) self.splitter = self.splitter_class() def process_lines(self, lines): """ READ: Strip out comment lines and blank lines from list of ``lines`` Parameters ---------- lines : list All lines in table Returns ------- lines : list List of lines """ nonblank_lines = (x for x in lines if x.strip()) if self.comment: re_comment = re.compile(self.comment) return [x for x in nonblank_lines if not re_comment.match(x)] else: return [x for x in nonblank_lines] def get_data_lines(self, lines): """READ: Set ``data_lines`` attribute to lines slice comprising table data values. """ data_lines = self.process_lines(lines) start_line = _get_line_index(self.start_line, data_lines) end_line = _get_line_index(self.end_line, data_lines) if start_line is not None or end_line is not None: self.data_lines = data_lines[slice(start_line, end_line)] else: # Don't copy entire data lines unless necessary self.data_lines = data_lines def get_str_vals(self): """Return a generator that returns a list of column values (as strings) for each data line.""" return self.splitter(self.data_lines) def masks(self, cols): """READ: Set fill value for each column and then apply that fill value In the first step it is evaluated with value from ``fill_values`` applies to which column using ``fill_include_names`` and ``fill_exclude_names``. In the second step all replacements are done for the appropriate columns. """ if self.fill_values: self._set_fill_values(cols) self._set_masks(cols) def _set_fill_values(self, cols): """READ, WRITE: Set fill values of individual cols based on fill_values of BaseData fill values has the following form: <fill_spec> = (<bad_value>, <fill_value>, <optional col_name>...) fill_values = <fill_spec> or list of <fill_spec>'s """ if self.fill_values: # when we write tables the columns may be astropy.table.Columns # which don't carry a fill_values by default for col in cols: if not hasattr(col, 'fill_values'): col.fill_values = {} # if input is only one <fill_spec>, then make it a list with suppress(TypeError): self.fill_values[0] + '' self.fill_values = [self.fill_values] # Step 1: Set the default list of columns which are affected by # fill_values colnames = set(self.header.colnames) if self.fill_include_names is not None: colnames.intersection_update(self.fill_include_names) if self.fill_exclude_names is not None: colnames.difference_update(self.fill_exclude_names) # Step 2a: Find out which columns are affected by this tuple # iterate over reversed order, so last condition is set first and # overwritten by earlier conditions for replacement in reversed(self.fill_values): if len(replacement) < 2: raise ValueError("Format of fill_values must be " "(<bad>, <fill>, <optional col1>, ...)") elif len(replacement) == 2: affect_cols = colnames else: affect_cols = replacement[2:] for i, key in ((i, x) for i, x in enumerate(self.header.colnames) if x in affect_cols): cols[i].fill_values[replacement[0]] = str(replacement[1]) def _set_masks(self, cols): """READ: Replace string values in col.str_vals and set masks""" if self.fill_values: for col in (col for col in cols if col.fill_values): col.mask = numpy.zeros(len(col.str_vals), dtype=bool) for i, str_val in ((i, x) for i, x in enumerate(col.str_vals) if x in col.fill_values): col.str_vals[i] = col.fill_values[str_val] col.mask[i] = True def _replace_vals(self, cols): """WRITE: replace string values in col.str_vals""" if self.fill_values: for col in (col for col in cols if col.fill_values): for i, str_val in ((i, x) for i, x in enumerate(col.str_vals) if x in col.fill_values): col.str_vals[i] = col.fill_values[str_val] if masked in col.fill_values and hasattr(col, 'mask'): mask_val = col.fill_values[masked] for i in col.mask.nonzero()[0]: col.str_vals[i] = mask_val def str_vals(self): """WRITE: convert all values in table to a list of lists of strings This sets the fill values and possibly column formats from the input formats={} keyword, then ends up calling table.pprint._pformat_col_iter() by a circuitous path. That function does the real work of formatting. Finally replace anything matching the fill_values. Returns ------- values : list of list of str """ self._set_fill_values(self.cols) self._set_col_formats() for col in self.cols: col.str_vals = list(col.info.iter_str_vals()) self._replace_vals(self.cols) return [col.str_vals for col in self.cols] def write(self, lines): """Write ``self.cols`` in place to ``lines``. Parameters ---------- lines : list List for collecting output of writing self.cols. """ if hasattr(self.start_line, '__call__'): raise TypeError('Start_line attribute cannot be callable for write()') else: data_start_line = self.start_line or 0 while len(lines) < data_start_line: lines.append(itertools.cycle(self.write_spacer_lines)) col_str_iters = self.str_vals() for vals in zip(*col_str_iters): lines.append(self.splitter.join(vals)) def _set_col_formats(self): """WRITE: set column formats.""" for col in self.cols: if col.info.name in self.formats: col.info.format = self.formats[col.info.name] def convert_numpy(numpy_type): """Return a tuple containing a function which converts a list into a numpy array and the type produced by the converter function. Parameters ---------- numpy_type : numpy data-type The numpy type required of an array returned by ``converter``. Must be a valid `numpy type <https://numpy.org/doc/stable/user/basics.types.html>`_ (e.g., numpy.uint, numpy.int8, numpy.int64, numpy.float64) or a python type covered by a numpy type (e.g., int, float, str, bool). Returns ------- converter : callable ``converter`` is a function which accepts a list and converts it to a numpy array of type ``numpy_type``. converter_type : type ``converter_type`` tracks the generic data type produced by the converter function. Raises ------ ValueError Raised by ``converter`` if the list elements could not be converted to the required type. """ # Infer converter type from an instance of numpy_type. type_name = numpy.array([], dtype=numpy_type).dtype.name if 'int' in type_name: converter_type = IntType elif 'float' in type_name: converter_type = FloatType elif 'bool' in type_name: converter_type = BoolType elif 'str' in type_name: converter_type = StrType else: converter_type = AllType def bool_converter(vals): """ Convert values "False" and "True" to bools. Raise an exception for any other string values. """ if len(vals) == 0: return numpy.array([], dtype=bool) # Try a smaller subset first for a long array if len(vals) > 10000: svals = numpy.asarray(vals[:1000]) if not numpy.all((svals == 'False') | (svals == 'True') | (svals == '0') | (svals == '1')): raise ValueError('bool input strings must be False, True, 0, 1, or ""') vals = numpy.asarray(vals) trues = (vals == 'True') | (vals == '1') falses = (vals == 'False') | (vals == '0') if not numpy.all(trues | falses): raise ValueError('bool input strings must be only False, True, 0, 1, or ""') return trues def generic_converter(vals): return numpy.array(vals, numpy_type) converter = bool_converter if converter_type is BoolType else generic_converter return converter, converter_type class BaseOutputter: """Output table as a dict of column objects keyed on column name. The table data are stored as plain python lists within the column objects. """ # User-defined converters which gets set in ascii.ui if a `converter` kwarg # is supplied. converters = {} # Derived classes must define default_converters and __call__ @staticmethod def _validate_and_copy(col, converters): """Validate the format for the type converters and then copy those which are valid converters for this column (i.e. converter type is a subclass of col.type)""" # Allow specifying a single converter instead of a list of converters. # The input `converters` must be a ``type`` value that can init np.dtype. try: # Don't allow list-like things that dtype accepts assert type(converters) is type converters = [numpy.dtype(converters)] except (AssertionError, TypeError): pass converters_out = [] try: for converter in converters: try: converter_func, converter_type = converter except TypeError as err: if str(err).startswith('cannot unpack'): converter_func, converter_type = convert_numpy(converter) else: raise if not issubclass(converter_type, NoType): raise ValueError('converter_type must be a subclass of NoType') if issubclass(converter_type, col.type): converters_out.append((converter_func, converter_type)) except (ValueError, TypeError) as err: raise ValueError('Error: invalid format for converters, see ' f'documentation\n{converters}: {err}') return converters_out def _convert_vals(self, cols): for col in cols: for key, converters in self.converters.items(): if fnmatch.fnmatch(col.name, key): break else: if col.dtype is not None: converters = [convert_numpy(col.dtype)] else: converters = self.default_converters col.converters = self._validate_and_copy(col, converters) # Catch the last error in order to provide additional information # in case all attempts at column conversion fail. The initial # value of of last_error will apply if no converters are defined # and the first col.converters[0] access raises IndexError. last_err = 'no converters defined' while not hasattr(col, 'data'): # Try converters, popping the unsuccessful ones from the list. # If there are no converters left here then fail. if not col.converters: raise ValueError(f'Column {col.name} failed to convert: {last_err}') converter_func, converter_type = col.converters[0] if not issubclass(converter_type, col.type): raise TypeError('converter type does not match column type') try: col.data = converter_func(col.str_vals) col.type = converter_type except (TypeError, ValueError) as err: col.converters.pop(0) last_err = err except OverflowError as err: # Overflow during conversion (most likely an int that # doesn't fit in native C long). Put string at the top of # the converters list for the next while iteration. warnings.warn( "OverflowError converting to {} in column {}, reverting to String." .format(converter_type.__name__, col.name), AstropyWarning) col.converters.insert(0, convert_numpy(numpy.str)) last_err = err def _deduplicate_names(names): """Ensure there are no duplicates in ``names`` This is done by iteratively adding ``_<N>`` to the name for increasing N until the name is unique. """ new_names = [] existing_names = set() for name in names: base_name = name + '_' i = 1 while name in existing_names: # Iterate until a unique name is found name = base_name + str(i) i += 1 new_names.append(name) existing_names.add(name) return new_names class TableOutputter(BaseOutputter): """ Output the table as an astropy.table.Table object. """ default_converters = [convert_numpy(int), convert_numpy(float), convert_numpy(str)] def __call__(self, cols, meta): # Sets col.data to numpy array and col.type to io.ascii Type class (e.g. # FloatType) for each col. self._convert_vals(cols) t_cols = [numpy.ma.MaskedArray(x.data, mask=x.mask) if hasattr(x, 'mask') and numpy.any(x.mask) else x.data for x in cols] out = Table(t_cols, names=[x.name for x in cols], meta=meta['table']) for col, out_col in zip(cols, out.columns.values()): for attr in ('format', 'unit', 'description'): if hasattr(col, attr): setattr(out_col, attr, getattr(col, attr)) if hasattr(col, 'meta'): out_col.meta.update(col.meta) return out class MetaBaseReader(type): def __init__(cls, name, bases, dct): super().__init__(name, bases, dct) format = dct.get('_format_name') if format is None: return fast = dct.get('_fast') if fast is not None: FAST_CLASSES[format] = cls FORMAT_CLASSES[format] = cls io_formats = ['ascii.' + format] + dct.get('_io_registry_format_aliases', []) if dct.get('_io_registry_suffix'): func = functools.partial(connect.io_identify, dct['_io_registry_suffix']) connect.io_registry.register_identifier(io_formats[0], Table, func) for io_format in io_formats: func = functools.partial(connect.io_read, io_format) header = f"ASCII reader '{io_format}' details\n" func.__doc__ = (inspect.cleandoc(READ_DOCSTRING).strip() + '\n\n' + header + re.sub('.', '=', header) + '\n') func.__doc__ += inspect.cleandoc(cls.__doc__).strip() connect.io_registry.register_reader(io_format, Table, func) if dct.get('_io_registry_can_write', True): func = functools.partial(connect.io_write, io_format) header = f"ASCII writer '{io_format}' details\n" func.__doc__ = (inspect.cleandoc(WRITE_DOCSTRING).strip() + '\n\n' + header + re.sub('.', '=', header) + '\n') func.__doc__ += inspect.cleandoc(cls.__doc__).strip() connect.io_registry.register_writer(io_format, Table, func) def _is_number(x): with suppress(ValueError): x = float(x) return True return False def _apply_include_exclude_names(table, names, include_names, exclude_names): """ Apply names, include_names and exclude_names to a table or BaseHeader. For the latter this relies on BaseHeader implementing ``colnames``, ``rename_column``, and ``remove_columns``. Parameters ---------- table : `~astropy.table.Table`, `~astropy.io.ascii.BaseHeader` Input table or BaseHeader subclass instance names : list List of names to override those in table (set to None to use existing names) include_names : list List of names to include in output exclude_names : list List of names to exclude from output (applied after ``include_names``) """ def rename_columns(table, names): # Rename table column names to those passed by user # Temporarily rename with names that are not in `names` or `table.colnames`. # This ensures that rename succeeds regardless of existing names. xxxs = 'x' * max(len(name) for name in list(names) + list(table.colnames)) for ii, colname in enumerate(table.colnames): table.rename_column(colname, xxxs + str(ii)) for ii, name in enumerate(names): table.rename_column(xxxs + str(ii), name) if names is not None: rename_columns(table, names) else: colnames_uniq = _deduplicate_names(table.colnames) if colnames_uniq != list(table.colnames): rename_columns(table, colnames_uniq) names_set = set(table.colnames) if include_names is not None: names_set.intersection_update(include_names) if exclude_names is not None: names_set.difference_update(exclude_names) if names_set != set(table.colnames): remove_names = set(table.colnames) - names_set table.remove_columns(remove_names) class BaseReader(metaclass=MetaBaseReader): """Class providing methods to read and write an ASCII table using the specified header, data, inputter, and outputter instances. Typical usage is to instantiate a Reader() object and customize the ``header``, ``data``, ``inputter``, and ``outputter`` attributes. Each of these is an object of the corresponding class. There is one method ``inconsistent_handler`` that can be used to customize the behavior of ``read()`` in the event that a data row doesn't match the header. The default behavior is to raise an InconsistentTableError. """ names = None include_names = None exclude_names = None strict_names = False guessing = False encoding = None header_class = BaseHeader data_class = BaseData inputter_class = BaseInputter outputter_class = TableOutputter # Max column dimension that writer supports for this format. Exceptions # include ECSV (no limit) and HTML (max_ndim=2). max_ndim = 1 def __init__(self): self.header = self.header_class() self.data = self.data_class() self.inputter = self.inputter_class() self.outputter = self.outputter_class() # Data and Header instances benefit from a little cross-coupling. Header may need to # know about number of data columns for auto-column name generation and Data may # need to know about header (e.g. for fixed-width tables where widths are spec'd in header. self.data.header = self.header self.header.data = self.data # Metadata, consisting of table-level meta and column-level meta. The latter # could include information about column type, description, formatting, etc, # depending on the table meta format. self.meta = OrderedDict(table=OrderedDict(), cols=OrderedDict()) def _check_multidim_table(self, table): """Check that the dimensions of columns in ``table`` are acceptable. The reader class attribute ``max_ndim`` defines the maximum dimension of columns that can be written using this format. The base value is ``1``, corresponding to normal scalar columns with just a length. Parameters ---------- table : `~astropy.table.Table` Input table. Raises ------ ValueError If any column exceeds the number of allowed dimensions """ _check_multidim_table(table, self.max_ndim) def read(self, table): """Read the ``table`` and return the results in a format determined by the ``outputter`` attribute. The ``table`` parameter is any string or object that can be processed by the instance ``inputter``. For the base Inputter class ``table`` can be one of: * File name * File-like object * String (newline separated) with all header and data lines (must have at least 2 lines) * List of strings Parameters ---------- table : str, file-like, list Input table. Returns ------- table : `~astropy.table.Table` Output table """ # If ``table`` is a file then store the name in the ``data`` # attribute. The ``table`` is a "file" if it is a string # without the new line specific to the OS. with suppress(TypeError): # Strings only if os.linesep not in table + '': self.data.table_name = os.path.basename(table) # If one of the newline chars is set as field delimiter, only # accept the other one as line splitter if self.header.splitter.delimiter == '\n': newline = '\r' elif self.header.splitter.delimiter == '\r': newline = '\n' else: newline = None # Get a list of the lines (rows) in the table self.lines = self.inputter.get_lines(table, newline=newline) # Set self.data.data_lines to a slice of lines contain the data rows self.data.get_data_lines(self.lines) # Extract table meta values (e.g. keywords, comments, etc). Updates self.meta. self.header.update_meta(self.lines, self.meta) # Get the table column definitions self.header.get_cols(self.lines) # Make sure columns are valid self.header.check_column_names(self.names, self.strict_names, self.guessing) self.cols = cols = self.header.cols self.data.splitter.cols = cols n_cols = len(cols) for i, str_vals in enumerate(self.data.get_str_vals()): if len(str_vals) != n_cols: str_vals = self.inconsistent_handler(str_vals, n_cols) # if str_vals is None, we skip this row if str_vals is None: continue # otherwise, we raise an error only if it is still inconsistent if len(str_vals) != n_cols: errmsg = ('Number of header columns ({}) inconsistent with' ' data columns ({}) at data line {}\n' 'Header values: {}\n' 'Data values: {}'.format( n_cols, len(str_vals), i, [x.name for x in cols], str_vals)) raise InconsistentTableError(errmsg) for j, col in enumerate(cols): col.str_vals.append(str_vals[j]) self.data.masks(cols) if hasattr(self.header, 'table_meta'): self.meta['table'].update(self.header.table_meta) _apply_include_exclude_names(self.header, self.names, self.include_names, self.exclude_names) table = self.outputter(self.header.cols, self.meta) self.cols = self.header.cols return table def inconsistent_handler(self, str_vals, ncols): """ Adjust or skip data entries if a row is inconsistent with the header. The default implementation does no adjustment, and hence will always trigger an exception in read() any time the number of data entries does not match the header. Note that this will *not* be called if the row already matches the header. Parameters ---------- str_vals : list A list of value strings from the current row of the table. ncols : int The expected number of entries from the table header. Returns ------- str_vals : list List of strings to be parsed into data entries in the output table. If the length of this list does not match ``ncols``, an exception will be raised in read(). Can also be None, in which case the row will be skipped. """ # an empty list will always trigger an InconsistentTableError in read() return str_vals @property def comment_lines(self): """Return lines in the table that match header.comment regexp""" if not hasattr(self, 'lines'): raise ValueError('Table must be read prior to accessing the header comment lines') if self.header.comment: re_comment = re.compile(self.header.comment) comment_lines = [x for x in self.lines if re_comment.match(x)] else: comment_lines = [] return comment_lines def update_table_data(self, table): """ Update table columns in place if needed. This is a hook to allow updating the table columns after name filtering but before setting up to write the data. This is currently only used by ECSV and is otherwise just a pass-through. Parameters ---------- table : `astropy.table.Table` Input table for writing Returns ------- table : `astropy.table.Table` Output table for writing """ return table def write_header(self, lines, meta): self.header.write_comments(lines, meta) self.header.write(lines) def write(self, table): """ Write ``table`` as list of strings. Parameters ---------- table : `~astropy.table.Table` Input table data. Returns ------- lines : list List of strings corresponding to ASCII table """ # Check column names before altering self.header.cols = list(table.columns.values()) self.header.check_column_names(self.names, self.strict_names, False) # In-place update of columns in input ``table`` to reflect column # filtering. Note that ``table`` is guaranteed to be a copy of the # original user-supplied table. _apply_include_exclude_names(table, self.names, self.include_names, self.exclude_names) # This is a hook to allow updating the table columns after name # filtering but before setting up to write the data. This is currently # only used by ECSV and is otherwise just a pass-through. table = self.update_table_data(table) # Check that table column dimensions are supported by this format class. # Most formats support only 1-d columns, but some like ECSV support N-d. self._check_multidim_table(table) # Now use altered columns new_cols = list(table.columns.values()) # link information about the columns to the writer object (i.e. self) self.header.cols = new_cols self.data.cols = new_cols self.header.table_meta = table.meta # Write header and data to lines list lines = [] self.write_header(lines, table.meta) self.data.write(lines) return lines class ContinuationLinesInputter(BaseInputter): """Inputter where lines ending in ``continuation_char`` are joined with the subsequent line. Example:: col1 col2 col3 1 \ 2 3 4 5 \ 6 """ continuation_char = '\\' replace_char = ' ' # If no_continue is not None then lines matching this regex are not subject # to line continuation. The initial use case here is Daophot. In this # case the continuation character is just replaced with replace_char. no_continue = None def process_lines(self, lines): re_no_continue = re.compile(self.no_continue) if self.no_continue else None parts = [] outlines = [] for line in lines: if re_no_continue and re_no_continue.match(line): line = line.replace(self.continuation_char, self.replace_char) if line.endswith(self.continuation_char): parts.append(line.replace(self.continuation_char, self.replace_char)) else: parts.append(line) outlines.append(''.join(parts)) parts = [] return outlines class WhitespaceSplitter(DefaultSplitter): def process_line(self, line): """Replace tab with space within ``line`` while respecting quoted substrings""" newline = [] in_quote = False lastchar = None for char in line: if char == self.quotechar and (self.escapechar is None or lastchar != self.escapechar): in_quote = not in_quote if char == '\t' and not in_quote: char = ' ' lastchar = char newline.append(char) return ''.join(newline) extra_reader_pars = ('Reader', 'Inputter', 'Outputter', 'delimiter', 'comment', 'quotechar', 'header_start', 'data_start', 'data_end', 'converters', 'encoding', 'data_Splitter', 'header_Splitter', 'names', 'include_names', 'exclude_names', 'strict_names', 'fill_values', 'fill_include_names', 'fill_exclude_names') def _get_reader(Reader, Inputter=None, Outputter=None, **kwargs): """Initialize a table reader allowing for common customizations. See ui.get_reader() for param docs. This routine is for internal (package) use only and is useful because it depends only on the "core" module. """ from .fastbasic import FastBasic if issubclass(Reader, FastBasic): # Fast readers handle args separately if Inputter is not None: kwargs['Inputter'] = Inputter return Reader(**kwargs) # If user explicitly passed a fast reader with enable='force' # (e.g. by passing non-default options), raise an error for slow readers if 'fast_reader' in kwargs: if kwargs['fast_reader']['enable'] == 'force': raise ParameterError('fast_reader required with ' '{}, but this is not a fast C reader: {}' .format(kwargs['fast_reader'], Reader)) else: del kwargs['fast_reader'] # Otherwise ignore fast_reader parameter reader_kwargs = {k: v for k, v in kwargs.items() if k not in extra_reader_pars} reader = Reader(**reader_kwargs) if Inputter is not None: reader.inputter = Inputter() if Outputter is not None: reader.outputter = Outputter() # Issue #855 suggested to set data_start to header_start + default_header_length # Thus, we need to retrieve this from the class definition before resetting these numbers. try: default_header_length = reader.data.start_line - reader.header.start_line except TypeError: # Start line could be None or an instancemethod default_header_length = None # csv.reader is hard-coded to recognise either '\r' or '\n' as end-of-line, # therefore DefaultSplitter cannot handle these as delimiters. if 'delimiter' in kwargs: if kwargs['delimiter'] in ('\n', '\r', '\r\n'): reader.header.splitter = BaseSplitter() reader.data.splitter = BaseSplitter() reader.header.splitter.delimiter = kwargs['delimiter'] reader.data.splitter.delimiter = kwargs['delimiter'] if 'comment' in kwargs: reader.header.comment = kwargs['comment'] reader.data.comment = kwargs['comment'] if 'quotechar' in kwargs: reader.header.splitter.quotechar = kwargs['quotechar'] reader.data.splitter.quotechar = kwargs['quotechar'] if 'data_start' in kwargs: reader.data.start_line = kwargs['data_start'] if 'data_end' in kwargs: reader.data.end_line = kwargs['data_end'] if 'header_start' in kwargs: if (reader.header.start_line is not None): reader.header.start_line = kwargs['header_start'] # For FixedWidthTwoLine the data_start is calculated relative to the position line. # However, position_line is given as absolute number and not relative to header_start. # So, ignore this Reader here. if (('data_start' not in kwargs) and (default_header_length is not None) and reader._format_name not in ['fixed_width_two_line', 'commented_header']): reader.data.start_line = reader.header.start_line + default_header_length elif kwargs['header_start'] is not None: # User trying to set a None header start to some value other than None raise ValueError('header_start cannot be modified for this Reader') if 'converters' in kwargs: reader.outputter.converters = kwargs['converters'] if 'data_Splitter' in kwargs: reader.data.splitter = kwargs['data_Splitter']() if 'header_Splitter' in kwargs: reader.header.splitter = kwargs['header_Splitter']() if 'names' in kwargs: reader.names = kwargs['names'] if None in reader.names: raise TypeError('Cannot have None for column name') if len(set(reader.names)) != len(reader.names): raise ValueError('Duplicate column names') if 'include_names' in kwargs: reader.include_names = kwargs['include_names'] if 'exclude_names' in kwargs: reader.exclude_names = kwargs['exclude_names'] # Strict names is normally set only within the guessing process to # indicate that column names cannot be numeric or have certain # characters at the beginning or end. It gets used in # BaseHeader.check_column_names(). if 'strict_names' in kwargs: reader.strict_names = kwargs['strict_names'] if 'fill_values' in kwargs: reader.data.fill_values = kwargs['fill_values'] if 'fill_include_names' in kwargs: reader.data.fill_include_names = kwargs['fill_include_names'] if 'fill_exclude_names' in kwargs: reader.data.fill_exclude_names = kwargs['fill_exclude_names'] if 'encoding' in kwargs: reader.encoding = kwargs['encoding'] reader.inputter.encoding = kwargs['encoding'] return reader extra_writer_pars = ('delimiter', 'comment', 'quotechar', 'formats', 'strip_whitespace', 'names', 'include_names', 'exclude_names', 'fill_values', 'fill_include_names', 'fill_exclude_names') def _get_writer(Writer, fast_writer, **kwargs): """Initialize a table writer allowing for common customizations. This routine is for internal (package) use only and is useful because it depends only on the "core" module.""" from .fastbasic import FastBasic # A value of None for fill_values imply getting the default string # representation of masked values (depending on the writer class), but the # machinery expects a list. The easiest here is to just pop the value off, # i.e. fill_values=None is the same as not providing it at all. if 'fill_values' in kwargs and kwargs['fill_values'] is None: del kwargs['fill_values'] if issubclass(Writer, FastBasic): # Fast writers handle args separately return Writer(**kwargs) elif fast_writer and f'fast_{Writer._format_name}' in FAST_CLASSES: # Switch to fast writer kwargs['fast_writer'] = fast_writer return FAST_CLASSES[f'fast_{Writer._format_name}'](**kwargs) writer_kwargs = {k: v for k, v in kwargs.items() if k not in extra_writer_pars} writer = Writer(**writer_kwargs) if 'delimiter' in kwargs: writer.header.splitter.delimiter = kwargs['delimiter'] writer.data.splitter.delimiter = kwargs['delimiter'] if 'comment' in kwargs: writer.header.write_comment = kwargs['comment'] writer.data.write_comment = kwargs['comment'] if 'quotechar' in kwargs: writer.header.splitter.quotechar = kwargs['quotechar'] writer.data.splitter.quotechar = kwargs['quotechar'] if 'formats' in kwargs: writer.data.formats = kwargs['formats'] if 'strip_whitespace' in kwargs: if kwargs['strip_whitespace']: # Restore the default SplitterClass process_val method which strips # whitespace. This may have been changed in the Writer # initialization (e.g. Rdb and Tab) writer.data.splitter.process_val = operator.methodcaller('strip', ' \t') else: writer.data.splitter.process_val = None if 'names' in kwargs: writer.header.names = kwargs['names'] if 'include_names' in kwargs: writer.include_names = kwargs['include_names'] if 'exclude_names' in kwargs: writer.exclude_names = kwargs['exclude_names'] if 'fill_values' in kwargs: # Prepend user-specified values to the class default. with suppress(TypeError, IndexError): # Test if it looks like (match, replace_string, optional_colname), # in which case make it a list kwargs['fill_values'][1] + '' kwargs['fill_values'] = [kwargs['fill_values']] writer.data.fill_values = kwargs['fill_values'] + writer.data.fill_values if 'fill_include_names' in kwargs: writer.data.fill_include_names = kwargs['fill_include_names'] if 'fill_exclude_names' in kwargs: writer.data.fill_exclude_names = kwargs['fill_exclude_names'] return writer
1f2a3caa395400ee63fb60e8654d06c69ca43545becf5dd7c041b38ce31bb451
# Licensed under a 3-clause BSD style license - see LICENSE.rst """An extensible ASCII table reader and writer. fixedwidth.py: Read or write a table with fixed width columns. :Copyright: Smithsonian Astrophysical Observatory (2011) :Author: Tom Aldcroft ([email protected]) """ from . import core from .core import InconsistentTableError, DefaultSplitter from . import basic class FixedWidthSplitter(core.BaseSplitter): """ Split line based on fixed start and end positions for each ``col`` in ``self.cols``. This class requires that the Header class will have defined ``col.start`` and ``col.end`` for each column. The reference to the ``header.cols`` gets put in the splitter object by the base Reader.read() function just in time for splitting data lines by a ``data`` object. Note that the ``start`` and ``end`` positions are defined in the pythonic style so line[start:end] is the desired substring for a column. This splitter class does not have a hook for ``process_lines`` since that is generally not useful for fixed-width input. """ delimiter_pad = '' bookend = False delimiter = '|' def __call__(self, lines): for line in lines: vals = [line[x.start:x.end] for x in self.cols] if self.process_val: yield [self.process_val(x) for x in vals] else: yield vals def join(self, vals, widths): pad = self.delimiter_pad or '' delimiter = self.delimiter or '' padded_delim = pad + delimiter + pad if self.bookend: bookend_left = delimiter + pad bookend_right = pad + delimiter else: bookend_left = '' bookend_right = '' vals = [' ' * (width - len(val)) + val for val, width in zip(vals, widths)] return bookend_left + padded_delim.join(vals) + bookend_right class FixedWidthHeaderSplitter(DefaultSplitter): '''Splitter class that splits on ``|``.''' delimiter = '|' class FixedWidthHeader(basic.BasicHeader): """ Fixed width table header reader. """ splitter_class = FixedWidthHeaderSplitter """ Splitter class for splitting data lines into columns """ position_line = None # secondary header line position """ row index of line that specifies position (default = 1) """ set_of_position_line_characters = set(r'`~!#$%^&*-_+=\|":' + "'") def get_line(self, lines, index): for i, line in enumerate(self.process_lines(lines)): if i == index: break else: # No header line matching raise InconsistentTableError('No header line found in table') return line def get_cols(self, lines): """ Initialize the header Column objects from the table ``lines``. Based on the previously set Header attributes find or create the column names. Sets ``self.cols`` with the list of Columns. Parameters ---------- lines : list List of table lines """ # See "else" clause below for explanation of start_line and position_line start_line = core._get_line_index(self.start_line, self.process_lines(lines)) position_line = core._get_line_index(self.position_line, self.process_lines(lines)) # If start_line is none then there is no header line. Column positions are # determined from first data line and column names are either supplied by user # or auto-generated. if start_line is None: if position_line is not None: raise ValueError("Cannot set position_line without also setting header_start") # data.data_lines attribute already set via self.data.get_data_lines(lines) # in BaseReader.read(). This includes slicing for data_start / data_end. data_lines = self.data.data_lines if not data_lines: raise InconsistentTableError( 'No data lines found so cannot autogenerate column names') vals, starts, ends = self.get_fixedwidth_params(data_lines[0]) self.names = [self.auto_format.format(i) for i in range(1, len(vals) + 1)] else: # This bit of code handles two cases: # start_line = <index> and position_line = None # Single header line where that line is used to determine both the # column positions and names. # start_line = <index> and position_line = <index2> # Two header lines where the first line defines the column names and # the second line defines the column positions if position_line is not None: # Define self.col_starts and self.col_ends so that the call to # get_fixedwidth_params below will use those to find the header # column names. Note that get_fixedwidth_params returns Python # slice col_ends but expects inclusive col_ends on input (for # more intuitive user interface). line = self.get_line(lines, position_line) if len(set(line) - {self.splitter.delimiter, ' '}) != 1: raise InconsistentTableError( 'Position line should only contain delimiters and ' 'one other character, e.g. "--- ------- ---".') # The line above lies. It accepts white space as well. # We don't want to encourage using three different # characters, because that can cause ambiguities, but white # spaces are so common everywhere that practicality beats # purity here. charset = self.set_of_position_line_characters.union( {self.splitter.delimiter, ' '}) if not set(line).issubset(charset): raise InconsistentTableError( f'Characters in position line must be part of {charset}') vals, self.col_starts, col_ends = self.get_fixedwidth_params(line) self.col_ends = [x - 1 if x is not None else None for x in col_ends] # Get the header column names and column positions line = self.get_line(lines, start_line) vals, starts, ends = self.get_fixedwidth_params(line) self.names = vals self._set_cols_from_names() # Set column start and end positions. for i, col in enumerate(self.cols): col.start = starts[i] col.end = ends[i] def get_fixedwidth_params(self, line): """ Split ``line`` on the delimiter and determine column values and column start and end positions. This might include null columns with zero length (e.g. for ``header row = "| col1 || col2 | col3 |"`` or ``header2_row = "----- ------- -----"``). The null columns are stripped out. Returns the values between delimiters and the corresponding start and end positions. Parameters ---------- line : str Input line Returns ------- vals : list List of values. starts : list List of starting indices. ends : list List of ending indices. """ # If column positions are already specified then just use those. # If neither column starts or ends are given, figure out positions # between delimiters. Otherwise, either the starts or the ends have # been given, so figure out whichever wasn't given. if self.col_starts is not None and self.col_ends is not None: starts = list(self.col_starts) # could be any iterable, e.g. np.array # user supplies inclusive endpoint ends = [x + 1 if x is not None else None for x in self.col_ends] if len(starts) != len(ends): raise ValueError('Fixed width col_starts and col_ends must have the same length') vals = [line[start:end].strip() for start, end in zip(starts, ends)] elif self.col_starts is None and self.col_ends is None: # There might be a cleaner way to do this but it works... vals = line.split(self.splitter.delimiter) starts = [0] ends = [] for val in vals: if val: ends.append(starts[-1] + len(val)) starts.append(ends[-1] + 1) else: starts[-1] += 1 starts = starts[:-1] vals = [x.strip() for x in vals if x] if len(vals) != len(starts) or len(vals) != len(ends): raise InconsistentTableError('Error parsing fixed width header') else: # exactly one of col_starts or col_ends is given... if self.col_starts is not None: starts = list(self.col_starts) ends = starts[1:] + [None] # Assume each col ends where the next starts else: # self.col_ends is not None ends = [x + 1 for x in self.col_ends] starts = [0] + ends[:-1] # Assume each col starts where the last ended vals = [line[start:end].strip() for start, end in zip(starts, ends)] return vals, starts, ends def write(self, lines): # Header line not written until data are formatted. Until then it is # not known how wide each column will be for fixed width. pass class FixedWidthData(basic.BasicData): """ Base table data reader. """ splitter_class = FixedWidthSplitter """ Splitter class for splitting data lines into columns """ def write(self, lines): vals_list = [] col_str_iters = self.str_vals() for vals in zip(*col_str_iters): vals_list.append(vals) for i, col in enumerate(self.cols): col.width = max(len(vals[i]) for vals in vals_list) if self.header.start_line is not None: col.width = max(col.width, len(col.info.name)) widths = [col.width for col in self.cols] if self.header.start_line is not None: lines.append(self.splitter.join([col.info.name for col in self.cols], widths)) if self.header.position_line is not None: char = self.header.position_char if len(char) != 1: raise ValueError(f'Position_char="{char}" must be a single character') vals = [char * col.width for col in self.cols] lines.append(self.splitter.join(vals, widths)) for vals in vals_list: lines.append(self.splitter.join(vals, widths)) return lines class FixedWidth(basic.Basic): """Fixed width table with single header line defining column names and positions. Examples:: # Bar delimiter in header and data | Col1 | Col2 | Col3 | | 1.2 | hello there | 3 | | 2.4 | many words | 7 | # Bar delimiter in header only Col1 | Col2 | Col3 1.2 hello there 3 2.4 many words 7 # No delimiter with column positions specified as input Col1 Col2Col3 1.2hello there 3 2.4many words 7 See the :ref:`astropy:fixed_width_gallery` for specific usage examples. """ _format_name = 'fixed_width' _description = 'Fixed width' header_class = FixedWidthHeader data_class = FixedWidthData def __init__(self, col_starts=None, col_ends=None, delimiter_pad=' ', bookend=True): super().__init__() self.data.splitter.delimiter_pad = delimiter_pad self.data.splitter.bookend = bookend self.header.col_starts = col_starts self.header.col_ends = col_ends class FixedWidthNoHeaderHeader(FixedWidthHeader): '''Header reader for fixed with tables with no header line''' start_line = None class FixedWidthNoHeaderData(FixedWidthData): '''Data reader for fixed width tables with no header line''' start_line = 0 class FixedWidthNoHeader(FixedWidth): """Fixed width table which has no header line. When reading, column names are either input (``names`` keyword) or auto-generated. Column positions are determined either by input (``col_starts`` and ``col_stops`` keywords) or by splitting the first data line. In the latter case a ``delimiter`` is required to split the data line. Examples:: # Bar delimiter in header and data | 1.2 | hello there | 3 | | 2.4 | many words | 7 | # Compact table having no delimiter and column positions specified as input 1.2hello there3 2.4many words 7 This class is just a convenience wrapper around the ``FixedWidth`` reader but with ``header_start=None`` and ``data_start=0``. See the :ref:`astropy:fixed_width_gallery` for specific usage examples. """ _format_name = 'fixed_width_no_header' _description = 'Fixed width with no header' header_class = FixedWidthNoHeaderHeader data_class = FixedWidthNoHeaderData def __init__(self, col_starts=None, col_ends=None, delimiter_pad=' ', bookend=True): super().__init__(col_starts, col_ends, delimiter_pad=delimiter_pad, bookend=bookend) class FixedWidthTwoLineHeader(FixedWidthHeader): '''Header reader for fixed width tables splitting on whitespace. For fixed width tables with several header lines, there is typically a white-space delimited format line, so splitting on white space is needed. ''' splitter_class = DefaultSplitter class FixedWidthTwoLineDataSplitter(FixedWidthSplitter): '''Splitter for fixed width tables splitting on ``' '``.''' delimiter = ' ' class FixedWidthTwoLineData(FixedWidthData): '''Data reader for fixed with tables with two header lines.''' splitter_class = FixedWidthTwoLineDataSplitter class FixedWidthTwoLine(FixedWidth): """Fixed width table which has two header lines. The first header line defines the column names and the second implicitly defines the column positions. Examples:: # Typical case with column extent defined by ---- under column names. col1 col2 <== header_start = 0 ----- ------------ <== position_line = 1, position_char = "-" 1 bee flies <== data_start = 2 2 fish swims # Pretty-printed table +------+------------+ | Col1 | Col2 | +------+------------+ | 1.2 | "hello" | | 2.4 | there world| +------+------------+ See the :ref:`astropy:fixed_width_gallery` for specific usage examples. """ _format_name = 'fixed_width_two_line' _description = 'Fixed width with second header line' data_class = FixedWidthTwoLineData header_class = FixedWidthTwoLineHeader def __init__(self, position_line=1, position_char='-', delimiter_pad=None, bookend=False): super().__init__(delimiter_pad=delimiter_pad, bookend=bookend) self.header.position_line = position_line self.header.position_char = position_char self.data.start_line = position_line + 1
c924c1936a1ef42a0f20d96fc80c496ecfa4b461b59f3bbed0e540398da5eef0
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Classes to read AAS MRT table format Ref: https://journals.aas.org/mrt-standards :Copyright: Smithsonian Astrophysical Observatory (2021) :Author: Tom Aldcroft ([email protected]), \ Suyog Garg ([email protected]) """ import re import math import warnings import numpy as np from io import StringIO from math import floor, ceil from . import core from . import fixedwidth, cds from astropy import units as u from astropy.table import Table from astropy.table import Column, MaskedColumn from string import Template from textwrap import wrap MAX_SIZE_README_LINE = 80 MAX_COL_INTLIMIT = 100000 __doctest_skip__ = ['*'] BYTE_BY_BYTE_TEMPLATE = [ "Byte-by-byte Description of file: $file", "--------------------------------------------------------------------------------", " Bytes Format Units Label Explanations", "--------------------------------------------------------------------------------", "$bytebybyte", "--------------------------------------------------------------------------------"] MRT_TEMPLATE = [ "Title:", "Authors:", "Table:", "================================================================================", "$bytebybyte", "Notes:", "--------------------------------------------------------------------------------"] class MrtSplitter(fixedwidth.FixedWidthSplitter): """ Contains the join function to left align the MRT columns when writing to a file. """ def join(self, vals, widths): vals = [val + ' ' * (width - len(val)) for val, width in zip(vals, widths)] return self.delimiter.join(vals) class MrtHeader(cds.CdsHeader): _subfmt = 'MRT' def _split_float_format(self, value): """ Splits a Float string into different parts to find number of digits after decimal and check if the value is in Scientific notation. Parameters ---------- value : str String containing the float value to split. Returns ------- fmt: (int, int, int, bool, bool) List of values describing the Float sting. (size, dec, ent, sign, exp) size, length of the given string. ent, number of digits before decimal point. dec, number of digits after decimal point. sign, whether or not given value signed. exp, is value in Scientific notation? """ regfloat = re.compile(r"""(?P<sign> [+-]*) (?P<ent> [^eE.]+) (?P<deciPt> [.]*) (?P<decimals> [0-9]*) (?P<exp> [eE]*-*)[0-9]*""", re.VERBOSE) mo = regfloat.match(value) if mo is None: raise Exception(f'{value} is not a float number') return (len(value), len(mo.group('ent')), len(mo.group('decimals')), mo.group('sign') != "", mo.group('exp') != "") def _set_column_val_limits(self, col): """ Sets the ``col.min`` and ``col.max`` column attributes, taking into account columns with Null values. """ col.max = max(col) col.min = min(col) if col.max is np.ma.core.MaskedConstant: col.max = None if col.min is np.ma.core.MaskedConstant: col.min = None def column_float_formatter(self, col): """ String formatter function for a column containing Float values. Checks if the values in the given column are in Scientific notation, by spliting the value string. It is assumed that the column either has float values or Scientific notation. A ``col.formatted_width`` attribute is added to the column. It is not added if such an attribute is already present, say when the ``formats`` argument is passed to the writer. A properly formatted format string is also added as the ``col.format`` attribute. Parameters ---------- col : A ``Table.Column`` object. """ # maxsize: maximum length of string containing the float value. # maxent: maximum number of digits places before decimal point. # maxdec: maximum number of digits places after decimal point. # maxprec: maximum precision of the column values, sum of maxent and maxdec. maxsize, maxprec, maxent, maxdec = 1, 0, 1, 0 sign = False fformat = 'F' # Find maximum sized value in the col for val in col.str_vals: # Skip null values if val is None or val == '': continue # Find format of the Float string fmt = self._split_float_format(val) # If value is in Scientific notation if fmt[4] is True: # if the previous column value was in normal Float format # set maxsize, maxprec and maxdec to default. if fformat == 'F': maxsize, maxprec, maxdec = 1, 0, 0 # Designate the column to be in Scientific notation. fformat = 'E' else: # Move to next column value if # current value is not in Scientific notation # but the column is designated as such because # one of the previous values was. if fformat == 'E': continue if maxsize < fmt[0]: maxsize = fmt[0] if maxent < fmt[1]: maxent = fmt[1] if maxdec < fmt[2]: maxdec = fmt[2] if fmt[3]: sign = True if maxprec < fmt[1] + fmt[2]: maxprec = fmt[1] + fmt[2] if fformat == 'E': if getattr(col, 'formatted_width', None) is None: # If ``formats`` not passed. col.formatted_width = maxsize if sign: col.formatted_width += 1 # Number of digits after decimal is replaced by the precision # for values in Scientific notation, when writing that Format. col.fortran_format = fformat + str(col.formatted_width) + "." + str(maxprec) col.format = str(col.formatted_width) + "." + str(maxdec) + "e" else: lead = '' if getattr(col, 'formatted_width', None) is None: # If ``formats`` not passed. col.formatted_width = maxent + maxdec + 1 if sign: col.formatted_width += 1 elif col.format.startswith('0'): # Keep leading zero, if already set in format - primarily for `seconds` columns # in coordinates; may need extra case if this is to be also supported with `sign`. lead = '0' col.fortran_format = fformat + str(col.formatted_width) + "." + str(maxdec) col.format = lead + col.fortran_format[1:] + "f" def write_byte_by_byte(self): """ Writes the Byte-By-Byte description of the table. Columns that are `astropy.coordinates.SkyCoord` or `astropy.time.TimeSeries` objects or columns with values that are such objects are recognized as such, and some predefined labels and description is used for them. See the Vizier MRT Standard documentation in the link below for more details on these. An example Byte-By-Byte table is shown here. See: http://vizier.u-strasbg.fr/doc/catstd-3.1.htx Example:: -------------------------------------------------------------------------------- Byte-by-byte Description of file: table.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- names Description of names 10-14 E5.1 --- e [-3160000.0/0.01] Description of e 16-23 F8.5 --- d [22.25/27.25] Description of d 25-31 E7.1 --- s [-9e+34/2.0] Description of s 33-35 I3 --- i [-30/67] Description of i 37-39 F3.1 --- sameF [5.0/5.0] Description of sameF 41-42 I2 --- sameI [20] Description of sameI 44-45 I2 h RAh Right Ascension (hour) 47-48 I2 min RAm Right Ascension (minute) 50-67 F18.15 s RAs Right Ascension (second) 69 A1 --- DE- Sign of Declination 70-71 I2 deg DEd Declination (degree) 73-74 I2 arcmin DEm Declination (arcmin) 76-91 F16.13 arcsec DEs Declination (arcsec) -------------------------------------------------------------------------------- """ # Get column widths vals_list = [] col_str_iters = self.data.str_vals() for vals in zip(*col_str_iters): vals_list.append(vals) for i, col in enumerate(self.cols): col.width = max(len(vals[i]) for vals in vals_list) if self.start_line is not None: col.width = max(col.width, len(col.info.name)) widths = [col.width for col in self.cols] startb = 1 # Byte count starts at 1. # Set default width of the Bytes count column of the Byte-By-Byte table. # This ``byte_count_width`` value helps align byte counts with respect # to the hyphen using a format string. byte_count_width = len(str(sum(widths) + len(self.cols) - 1)) # Format string for Start Byte and End Byte singlebfmt = "{:" + str(byte_count_width) + "d}" fmtb = singlebfmt + "-" + singlebfmt # Add trailing single whitespaces to Bytes column for better visibility. singlebfmt += " " fmtb += " " # Set default width of Label and Description Byte-By-Byte columns. max_label_width, max_descrip_size = 7, 16 bbb = Table(names=['Bytes', 'Format', 'Units', 'Label', 'Explanations'], dtype=[str] * 5) # Iterate over the columns to write Byte-By-Byte rows. for i, col in enumerate(self.cols): # Check if column is MaskedColumn col.has_null = isinstance(col, MaskedColumn) if col.format is not None: col.formatted_width = max(len(sval) for sval in col.str_vals) # Set MRTColumn type, size and format. if np.issubdtype(col.dtype, np.integer): # Integer formatter self._set_column_val_limits(col) if getattr(col, 'formatted_width', None) is None: # If ``formats`` not passed. col.formatted_width = max(len(str(col.max)), len(str(col.min))) col.fortran_format = "I" + str(col.formatted_width) if col.format is None: col.format = ">" + col.fortran_format[1:] elif np.issubdtype(col.dtype, np.dtype(float).type): # Float formatter self._set_column_val_limits(col) self.column_float_formatter(col) else: # String formatter, ``np.issubdtype(col.dtype, str)`` is ``True``. dtype = col.dtype.str if col.has_null: mcol = col mcol.fill_value = "" coltmp = Column(mcol.filled(), dtype=str) dtype = coltmp.dtype.str if getattr(col, 'formatted_width', None) is None: # If ``formats`` not passed. col.formatted_width = int(re.search(r'(\d+)$', dtype).group(1)) col.fortran_format = "A" + str(col.formatted_width) col.format = str(col.formatted_width) + "s" endb = col.formatted_width + startb - 1 # ``mixin`` columns converted to string valued columns will not have a name # attribute. In those cases, a ``Unknown`` column label is put, indicating that # such columns can be better formatted with some manipulation before calling # the MRT writer. if col.name is None: col.name = "Unknown" # Set column description. if col.description is not None: description = col.description else: description = "Description of " + col.name # Set null flag in column description nullflag = "" if col.has_null: nullflag = "?" # Set column unit if col.unit is not None: col_unit = col.unit.to_string("cds") elif col.name.lower().find("magnitude") > -1: # ``col.unit`` can still be ``None``, if the unit of column values # is ``Magnitude``, because ``astropy.units.Magnitude`` is actually a class. # Unlike other units which are instances of ``astropy.units.Unit``, # application of the ``Magnitude`` unit calculates the logarithm # of the values. Thus, the only way to check for if the column values # have ``Magnitude`` unit is to check the column name. col_unit = "mag" else: col_unit = "---" # Add col limit values to col description lim_vals = "" if (col.min and col.max and not any(x in col.name for x in ['RA', 'DE', 'LON', 'LAT', 'PLN', 'PLT'])): # No col limit values for coordinate columns. if col.fortran_format[0] == 'I': if abs(col.min) < MAX_COL_INTLIMIT and abs(col.max) < MAX_COL_INTLIMIT: if col.min == col.max: lim_vals = f"[{col.min}]" else: lim_vals = f"[{col.min}/{col.max}]" elif col.fortran_format[0] in ('E', 'F'): lim_vals = f"[{floor(col.min * 100) / 100.}/{ceil(col.max * 100) / 100.}]" if lim_vals != '' or nullflag != '': description = f"{lim_vals}{nullflag} {description}" # Find the maximum label and description column widths. if len(col.name) > max_label_width: max_label_width = len(col.name) if len(description) > max_descrip_size: max_descrip_size = len(description) # Add a row for the Sign of Declination in the bbb table if col.name == 'DEd': bbb.add_row([singlebfmt.format(startb), "A1", "---", "DE-", "Sign of Declination"]) col.fortran_format = 'I2' startb += 1 # Add Byte-By-Byte row to bbb table bbb.add_row([singlebfmt.format(startb) if startb == endb else fmtb.format(startb, endb), "" if col.fortran_format is None else col.fortran_format, col_unit, "" if col.name is None else col.name, description]) startb = endb + 2 # Properly format bbb columns bbblines = StringIO() bbb.write(bbblines, format='ascii.fixed_width_no_header', delimiter=' ', bookend=False, delimiter_pad=None, formats={'Format': '<6s', 'Units': '<6s', 'Label': '<' + str(max_label_width) + 's', 'Explanations': '' + str(max_descrip_size) + 's'}) # Get formatted bbb lines bbblines = bbblines.getvalue().splitlines() # ``nsplit`` is the number of whitespaces to prefix to long description # lines in order to wrap them. It is the sum of the widths of the # previous 4 columns plus the number of single spacing between them. # The hyphen in the Bytes column is also counted. nsplit = byte_count_width * 2 + 1 + 12 + max_label_width + 4 # Wrap line if it is too long buff = "" for newline in bbblines: if len(newline) > MAX_SIZE_README_LINE: buff += ("\n").join(wrap(newline, subsequent_indent=" " * nsplit, width=MAX_SIZE_README_LINE)) buff += "\n" else: buff += newline + "\n" # Last value of ``endb`` is the sum of column widths after formatting. self.linewidth = endb # Remove the last extra newline character from Byte-By-Byte. buff = buff[:-1] return buff def write(self, lines): """ Writes the Header of the MRT table, aka ReadMe, which also contains the Byte-By-Byte description of the table. """ from astropy.coordinates import SkyCoord # Recognised ``SkyCoord.name`` forms with their default column names (helio* require SunPy). coord_systems = {'galactic': ('GLAT', 'GLON', 'b', 'l'), 'ecliptic': ('ELAT', 'ELON', 'lat', 'lon'), # 'geocentric*ecliptic' 'heliographic': ('HLAT', 'HLON', 'lat', 'lon'), # '_carrington|stonyhurst' 'helioprojective': ('HPLT', 'HPLN', 'Ty', 'Tx')} eqtnames = ['RAh', 'RAm', 'RAs', 'DEd', 'DEm', 'DEs'] # list to store indices of columns that are modified. to_pop = [] # For columns that are instances of ``SkyCoord`` and other ``mixin`` columns # or whose values are objects of these classes. for i, col in enumerate(self.cols): # If col is a ``Column`` object but its values are ``SkyCoord`` objects, # convert the whole column to ``SkyCoord`` object, which helps in applying # SkyCoord methods directly. if not isinstance(col, SkyCoord) and isinstance(col[0], SkyCoord): try: col = SkyCoord(col) except (ValueError, TypeError): # If only the first value of the column is a ``SkyCoord`` object, # the column cannot be converted to a ``SkyCoord`` object. # These columns are converted to ``Column`` object and then converted # to string valued column. if not isinstance(col, Column): col = Column(col) col = Column([str(val) for val in col]) self.cols[i] = col continue # Replace single ``SkyCoord`` column by its coordinate components if no coordinate # columns of the correspoding type exist yet. if isinstance(col, SkyCoord): # If coordinates are given in RA/DEC, divide each them into hour/deg, # minute/arcminute, second/arcsecond columns. if ('ra' in col.representation_component_names.keys() and len(set(eqtnames) - set(self.colnames)) == 6): ra_c, dec_c = col.ra.hms, col.dec.dms coords = [ra_c.h.round().astype('i1'), ra_c.m.round().astype('i1'), ra_c.s, dec_c.d.round().astype('i1'), dec_c.m.round().astype('i1'), dec_c.s] coord_units = [u.h, u.min, u.second, u.deg, u.arcmin, u.arcsec] coord_descrip = ['Right Ascension (hour)', 'Right Ascension (minute)', 'Right Ascension (second)', 'Declination (degree)', 'Declination (arcmin)', 'Declination (arcsec)'] for coord, name, coord_unit, descrip in zip( coords, eqtnames, coord_units, coord_descrip): # Have Sign of Declination only in the DEd column. if name in ['DEm', 'DEs']: coord_col = Column(list(np.abs(coord)), name=name, unit=coord_unit, description=descrip) else: coord_col = Column(list(coord), name=name, unit=coord_unit, description=descrip) # Set default number of digits after decimal point for the # second values, and deg-min to (signed) 2-digit zero-padded integer. if name == 'RAs': coord_col.format = '013.10f' elif name == 'DEs': coord_col.format = '012.9f' elif name == 'RAh': coord_col.format = '2d' elif name == 'DEd': coord_col.format = '+03d' elif name.startswith(('RA', 'DE')): coord_col.format = '02d' self.cols.append(coord_col) to_pop.append(i) # Delete original ``SkyCoord`` column. # For all other coordinate types, simply divide into two columns # for latitude and longitude resp. with the unit used been as it is. else: frminfo = '' for frame, latlon in coord_systems.items(): if frame in col.name and len(set(latlon[:2]) - set(self.colnames)) == 2: if frame != col.name: frminfo = f' ({col.name})' lon_col = Column(getattr(col, latlon[3]), name=latlon[1], description=f'{frame.capitalize()} Longitude{frminfo}', unit=col.representation_component_units[latlon[3]], format='.12f') lat_col = Column(getattr(col, latlon[2]), name=latlon[0], description=f'{frame.capitalize()} Latitude{frminfo}', unit=col.representation_component_units[latlon[2]], format='+.12f') self.cols.append(lon_col) self.cols.append(lat_col) to_pop.append(i) # Delete original ``SkyCoord`` column. # Convert all other ``SkyCoord`` columns that are not in the above three # representations to string valued columns. Those could either be types not # supported yet (e.g. 'helioprojective'), or already present and converted. # If there were any extra ``SkyCoord`` columns of one kind after the first one, # then their decomposition into their component columns has been skipped. # This is done in order to not create duplicate component columns. # Explicit renaming of the extra coordinate component columns by appending some # suffix to their name, so as to distinguish them, is not yet implemented. if i not in to_pop: warnings.warn(f"Coordinate system of type '{col.name}' already stored in table " f"as CDS/MRT-syle columns or of unrecognized type. So column {i} " f"is being skipped with designation of a string valued column " f"`{self.colnames[i]}`.", UserWarning) self.cols.append(Column(col.to_string(), name=self.colnames[i])) to_pop.append(i) # Delete original ``SkyCoord`` column. # Convert all other ``mixin`` columns to ``Column`` objects. # Parsing these may still lead to errors! elif not isinstance(col, Column): col = Column(col) # If column values are ``object`` types, convert them to string. if np.issubdtype(col.dtype, np.dtype(object).type): col = Column([str(val) for val in col]) self.cols[i] = col # Delete original ``SkyCoord`` columns, if there were any. for i in to_pop[::-1]: self.cols.pop(i) # Check for any left over extra coordinate columns. if any(x in self.colnames for x in ['RAh', 'DEd', 'ELON', 'GLAT']): # At this point any extra ``SkyCoord`` columns should have been converted to string # valued columns, together with issuance of a warning, by the coordinate parser above. # This test is just left here as a safeguard. for i, col in enumerate(self.cols): if isinstance(col, SkyCoord): self.cols[i] = Column(col.to_string(), name=self.colnames[i]) message = ('Table already has coordinate system in CDS/MRT-syle columns. ' f'So column {i} should have been replaced already with ' f'a string valued column `{self.colnames[i]}`.') raise core.InconsistentTableError(message) # Get Byte-By-Byte description and fill the template bbb_template = Template('\n'.join(BYTE_BY_BYTE_TEMPLATE)) byte_by_byte = bbb_template.substitute({'file': 'table.dat', 'bytebybyte': self.write_byte_by_byte()}) # Fill up the full ReadMe rm_template = Template('\n'.join(MRT_TEMPLATE)) readme_filled = rm_template.substitute({'bytebybyte': byte_by_byte}) lines.append(readme_filled) class MrtData(cds.CdsData): """MRT table data reader """ _subfmt = 'MRT' splitter_class = MrtSplitter def write(self, lines): self.splitter.delimiter = ' ' fixedwidth.FixedWidthData.write(self, lines) class Mrt(core.BaseReader): """AAS MRT (Machine-Readable Table) format table. **Reading** :: >>> from astropy.io import ascii >>> table = ascii.read('data.mrt', format='mrt') **Writing** Use ``ascii.write(table, 'data.mrt', format='mrt')`` to write tables to Machine Readable Table (MRT) format. Note that the metadata of the table, apart from units, column names and description, will not be written. These have to be filled in by hand later. See also: :ref:`cds_mrt_format`. Caveats: * The Units and Explanations are available in the column ``unit`` and ``description`` attributes, respectively. * The other metadata defined by this format is not available in the output table. """ _format_name = 'mrt' _io_registry_format_aliases = ['mrt'] _io_registry_can_write = True _description = 'MRT format table' data_class = MrtData header_class = MrtHeader def write(self, table=None): # Construct for writing empty table is not yet done. if len(table) == 0: raise NotImplementedError self.data.header = self.header self.header.position_line = None self.header.start_line = None # Create a copy of the ``table``, so that it the copy gets modified and # written to the file, while the original table remains as it is. table = table.copy() return super().write(table)
0c87a44b5a6170b1b48b677ed6a8f98139701d828d3bba71618d7333c5e0a8ac
# Licensed under a 3-clause BSD style license - see LICENSE.rst """An extensible ASCII table reader and writer. ipac.py: Classes to read IPAC table format :Copyright: Smithsonian Astrophysical Observatory (2011) :Author: Tom Aldcroft ([email protected]) """ import re from collections import defaultdict, OrderedDict from textwrap import wrap from warnings import warn from . import core from . import fixedwidth from . import basic from astropy.utils.exceptions import AstropyUserWarning from astropy.table.pprint import get_auto_format_func class IpacFormatErrorDBMS(Exception): def __str__(self): return '{}\nSee {}'.format( super().__str__(), 'https://irsa.ipac.caltech.edu/applications/DDGEN/Doc/DBMSrestriction.html') class IpacFormatError(Exception): def __str__(self): return '{}\nSee {}'.format( super().__str__(), 'https://irsa.ipac.caltech.edu/applications/DDGEN/Doc/ipac_tbl.html') class IpacHeaderSplitter(core.BaseSplitter): '''Splitter for Ipac Headers. This splitter is similar its parent when reading, but supports a fixed width format (as required for Ipac table headers) for writing. ''' process_line = None process_val = None delimiter = '|' delimiter_pad = '' skipinitialspace = False comment = r'\s*\\' write_comment = r'\\' col_starts = None col_ends = None def join(self, vals, widths): pad = self.delimiter_pad or '' delimiter = self.delimiter or '' padded_delim = pad + delimiter + pad bookend_left = delimiter + pad bookend_right = pad + delimiter vals = [' ' * (width - len(val)) + val for val, width in zip(vals, widths)] return bookend_left + padded_delim.join(vals) + bookend_right class IpacHeader(fixedwidth.FixedWidthHeader): """IPAC table header""" splitter_class = IpacHeaderSplitter # Defined ordered list of possible types. Ordering is needed to # distinguish between "d" (double) and "da" (date) as defined by # the IPAC standard for abbreviations. This gets used in get_col_type(). col_type_list = (('integer', core.IntType), ('long', core.IntType), ('double', core.FloatType), ('float', core.FloatType), ('real', core.FloatType), ('char', core.StrType), ('date', core.StrType)) definition = 'ignore' start_line = None def process_lines(self, lines): """Generator to yield IPAC header lines, i.e. those starting and ending with delimiter character (with trailing whitespace stripped)""" delim = self.splitter.delimiter for line in lines: line = line.rstrip() if line.startswith(delim) and line.endswith(delim): yield line.strip(delim) def update_meta(self, lines, meta): """ Extract table-level comments and keywords for IPAC table. See: https://irsa.ipac.caltech.edu/applications/DDGEN/Doc/ipac_tbl.html#kw """ def process_keyword_value(val): """ Take a string value and convert to float, int or str, and strip quotes as needed. """ val = val.strip() try: val = int(val) except Exception: try: val = float(val) except Exception: # Strip leading/trailing quote. The spec says that a matched pair # of quotes is required, but this code will allow a non-quoted value. for quote in ('"', "'"): if val.startswith(quote) and val.endswith(quote): val = val[1:-1] break return val table_meta = meta['table'] table_meta['comments'] = [] table_meta['keywords'] = OrderedDict() keywords = table_meta['keywords'] re_keyword = re.compile(r'\\' r'(?P<name> \w+)' r'\s* = (?P<value> .+) $', re.VERBOSE) for line in lines: # Keywords and comments start with "\". Once the first non-slash # line is seen then bail out. if not line.startswith('\\'): break m = re_keyword.match(line) if m: name = m.group('name') val = process_keyword_value(m.group('value')) # IPAC allows for continuation keywords, e.g. # \SQL = 'WHERE ' # \SQL = 'SELECT (25 column names follow in next row.)' if name in keywords and isinstance(val, str): prev_val = keywords[name]['value'] if isinstance(prev_val, str): val = prev_val + val keywords[name] = {'value': val} else: # Comment is required to start with "\ " if line.startswith('\\ '): val = line[2:].strip() if val: table_meta['comments'].append(val) def get_col_type(self, col): for (col_type_key, col_type) in self.col_type_list: if col_type_key.startswith(col.raw_type.lower()): return col_type else: raise ValueError('Unknown data type ""{}"" for column "{}"'.format( col.raw_type, col.name)) def get_cols(self, lines): """ Initialize the header Column objects from the table ``lines``. Based on the previously set Header attributes find or create the column names. Sets ``self.cols`` with the list of Columns. Parameters ---------- lines : list List of table lines """ header_lines = self.process_lines(lines) # generator returning valid header lines header_vals = [vals for vals in self.splitter(header_lines)] if len(header_vals) == 0: raise ValueError('At least one header line beginning and ending with ' 'delimiter required') elif len(header_vals) > 4: raise ValueError('More than four header lines were found') # Generate column definitions cols = [] start = 1 for i, name in enumerate(header_vals[0]): col = core.Column(name=name.strip(' -')) col.start = start col.end = start + len(name) if len(header_vals) > 1: col.raw_type = header_vals[1][i].strip(' -') col.type = self.get_col_type(col) if len(header_vals) > 2: col.unit = header_vals[2][i].strip() or None # Can't strip dashes here if len(header_vals) > 3: # The IPAC null value corresponds to the io.ascii bad_value. # In this case there isn't a fill_value defined, so just put # in the minimal entry that is sure to convert properly to the # required type. # # Strip spaces but not dashes (not allowed in NULL row per # https://github.com/astropy/astropy/issues/361) null = header_vals[3][i].strip() fillval = '' if issubclass(col.type, core.StrType) else '0' self.data.fill_values.append((null, fillval, col.name)) start = col.end + 1 cols.append(col) # Correct column start/end based on definition if self.ipac_definition == 'right': col.start -= 1 elif self.ipac_definition == 'left': col.end += 1 self.names = [x.name for x in cols] self.cols = cols def str_vals(self): if self.DBMS: IpacFormatE = IpacFormatErrorDBMS else: IpacFormatE = IpacFormatError namelist = self.colnames if self.DBMS: countnamelist = defaultdict(int) for name in self.colnames: countnamelist[name.lower()] += 1 doublenames = [x for x in countnamelist if countnamelist[x] > 1] if doublenames != []: raise IpacFormatE('IPAC DBMS tables are not case sensitive. ' 'This causes duplicate column names: {}'.format(doublenames)) for name in namelist: m = re.match(r'\w+', name) if m.end() != len(name): raise IpacFormatE('{} - Only alphanumeric characters and _ ' 'are allowed in column names.'.format(name)) if self.DBMS and not(name[0].isalpha() or (name[0] == '_')): raise IpacFormatE(f'Column name cannot start with numbers: {name}') if self.DBMS: if name in ['x', 'y', 'z', 'X', 'Y', 'Z']: raise IpacFormatE('{} - x, y, z, X, Y, Z are reserved names and ' 'cannot be used as column names.'.format(name)) if len(name) > 16: raise IpacFormatE( f'{name} - Maximum length for column name is 16 characters') else: if len(name) > 40: raise IpacFormatE( f'{name} - Maximum length for column name is 40 characters.') dtypelist = [] unitlist = [] nullist = [] for col in self.cols: col_dtype = col.info.dtype col_unit = col.info.unit col_format = col.info.format if col_dtype.kind in ['i', 'u']: if col_dtype.itemsize <= 2: dtypelist.append('int') else: dtypelist.append('long') elif col_dtype.kind == 'f': if col_dtype.itemsize <= 4: dtypelist.append('float') else: dtypelist.append('double') else: dtypelist.append('char') if col_unit is None: unitlist.append('') else: unitlist.append(str(col.info.unit)) # This may be incompatible with mixin columns null = col.fill_values[core.masked] try: auto_format_func = get_auto_format_func(col) format_func = col.info._format_funcs.get(col_format, auto_format_func) nullist.append((format_func(col_format, null)).strip()) except Exception: # It is possible that null and the column values have different # data types (e.g. number and null = 'null' (i.e. a string). # This could cause all kinds of exceptions, so a catch all # block is needed here nullist.append(str(null).strip()) return [namelist, dtypelist, unitlist, nullist] def write(self, lines, widths): '''Write header. The width of each column is determined in Ipac.write. Writing the header must be delayed until that time. This function is called from there, once the width information is available.''' for vals in self.str_vals(): lines.append(self.splitter.join(vals, widths)) return lines class IpacDataSplitter(fixedwidth.FixedWidthSplitter): delimiter = ' ' delimiter_pad = '' bookend = True class IpacData(fixedwidth.FixedWidthData): """IPAC table data reader""" comment = r'[|\\]' start_line = 0 splitter_class = IpacDataSplitter fill_values = [(core.masked, 'null')] def write(self, lines, widths, vals_list): """ IPAC writer, modified from FixedWidth writer """ for vals in vals_list: lines.append(self.splitter.join(vals, widths)) return lines class Ipac(basic.Basic): r"""IPAC format table. See: https://irsa.ipac.caltech.edu/applications/DDGEN/Doc/ipac_tbl.html Example:: \\name=value \\ Comment | column1 | column2 | column3 | column4 | column5 | | double | double | int | double | char | | unit | unit | unit | unit | unit | | null | null | null | null | null | 2.0978 29.09056 73765 2.06000 B8IVpMnHg Or:: |-----ra---|----dec---|---sao---|------v---|----sptype--------| 2.09708 29.09056 73765 2.06000 B8IVpMnHg The comments and keywords defined in the header are available via the output table ``meta`` attribute:: >>> import os >>> from astropy.io import ascii >>> filename = os.path.join(ascii.__path__[0], 'tests/data/ipac.dat') >>> data = ascii.read(filename) >>> print(data.meta['comments']) ['This is an example of a valid comment'] >>> for name, keyword in data.meta['keywords'].items(): ... print(name, keyword['value']) ... intval 1 floatval 2300.0 date Wed Sp 20 09:48:36 1995 key_continue IPAC keywords can continue across lines Note that there are different conventions for characters occurring below the position of the ``|`` symbol in IPAC tables. By default, any character below a ``|`` will be ignored (since this is the current standard), but if you need to read files that assume characters below the ``|`` symbols belong to the column before or after the ``|``, you can specify ``definition='left'`` or ``definition='right'`` respectively when reading the table (the default is ``definition='ignore'``). The following examples demonstrate the different conventions: * ``definition='ignore'``:: | ra | dec | | float | float | 1.2345 6.7890 * ``definition='left'``:: | ra | dec | | float | float | 1.2345 6.7890 * ``definition='right'``:: | ra | dec | | float | float | 1.2345 6.7890 IPAC tables can specify a null value in the header that is shown in place of missing or bad data. On writing, this value defaults to ``null``. To specify a different null value, use the ``fill_values`` option to replace masked values with a string or number of your choice as described in :ref:`astropy:io_ascii_write_parameters`:: >>> from astropy.io.ascii import masked >>> fill = [(masked, 'N/A', 'ra'), (masked, -999, 'sptype')] >>> ascii.write(data, format='ipac', fill_values=fill) \ This is an example of a valid comment ... | ra| dec| sai| v2| sptype| | double| double| long| double| char| | unit| unit| unit| unit| ergs| | N/A| null| null| null| -999| N/A 29.09056 null 2.06 -999 2345678901.0 3456789012.0 456789012 4567890123.0 567890123456789012 When writing a table with a column of integers, the data type is output as ``int`` when the column ``dtype.itemsize`` is less than or equal to 2; otherwise the data type is ``long``. For a column of floating-point values, the data type is ``float`` when ``dtype.itemsize`` is less than or equal to 4; otherwise the data type is ``double``. Parameters ---------- definition : str, optional Specify the convention for characters in the data table that occur directly below the pipe (``|``) symbol in the header column definition: * 'ignore' - Any character beneath a pipe symbol is ignored (default) * 'right' - Character is associated with the column to the right * 'left' - Character is associated with the column to the left DBMS : bool, optional If true, this verifies that written tables adhere (semantically) to the `IPAC/DBMS <https://irsa.ipac.caltech.edu/applications/DDGEN/Doc/DBMSrestriction.html>`_ definition of IPAC tables. If 'False' it only checks for the (less strict) `IPAC <https://irsa.ipac.caltech.edu/applications/DDGEN/Doc/ipac_tbl.html>`_ definition. """ _format_name = 'ipac' _io_registry_format_aliases = ['ipac'] _io_registry_can_write = True _description = 'IPAC format table' data_class = IpacData header_class = IpacHeader def __init__(self, definition='ignore', DBMS=False): super().__init__() # Usually the header is not defined in __init__, but here it need a keyword if definition in ['ignore', 'left', 'right']: self.header.ipac_definition = definition else: raise ValueError("definition should be one of ignore/left/right") self.header.DBMS = DBMS def write(self, table): """ Write ``table`` as list of strings. Parameters ---------- table : `~astropy.table.Table` Input table data Returns ------- lines : list List of strings corresponding to ASCII table """ # Set a default null value for all columns by adding at the end, which # is the position with the lowest priority. # We have to do it this late, because the fill_value # defined in the class can be overwritten by ui.write self.data.fill_values.append((core.masked, 'null')) # Check column names before altering self.header.cols = list(table.columns.values()) self.header.check_column_names(self.names, self.strict_names, self.guessing) core._apply_include_exclude_names(table, self.names, self.include_names, self.exclude_names) # Check that table has only 1-d columns. self._check_multidim_table(table) # Now use altered columns new_cols = list(table.columns.values()) # link information about the columns to the writer object (i.e. self) self.header.cols = new_cols self.data.cols = new_cols # Write header and data to lines list lines = [] # Write meta information if 'comments' in table.meta: for comment in table.meta['comments']: if len(str(comment)) > 78: warn('Comment string > 78 characters was automatically wrapped.', AstropyUserWarning) for line in wrap(str(comment), 80, initial_indent='\\ ', subsequent_indent='\\ '): lines.append(line) if 'keywords' in table.meta: keydict = table.meta['keywords'] for keyword in keydict: try: val = keydict[keyword]['value'] lines.append(f'\\{keyword.strip()}={val!r}') # meta is not standardized: Catch some common Errors. except TypeError: warn("Table metadata keyword {0} has been skipped. " "IPAC metadata must be in the form {{'keywords':" "{{'keyword': {{'value': value}} }}".format(keyword), AstropyUserWarning) ignored_keys = [key for key in table.meta if key not in ('keywords', 'comments')] if any(ignored_keys): warn("Table metadata keyword(s) {0} were not written. " "IPAC metadata must be in the form {{'keywords':" "{{'keyword': {{'value': value}} }}".format(ignored_keys), AstropyUserWarning ) # Usually, this is done in data.write, but since the header is written # first, we need that here. self.data._set_fill_values(self.data.cols) # get header and data as strings to find width of each column for i, col in enumerate(table.columns.values()): col.headwidth = max(len(vals[i]) for vals in self.header.str_vals()) # keep data_str_vals because they take some time to make data_str_vals = [] col_str_iters = self.data.str_vals() for vals in zip(*col_str_iters): data_str_vals.append(vals) for i, col in enumerate(table.columns.values()): # FIXME: In Python 3.4, use max([], default=0). # See: https://docs.python.org/3/library/functions.html#max if data_str_vals: col.width = max(len(vals[i]) for vals in data_str_vals) else: col.width = 0 widths = [max(col.width, col.headwidth) for col in table.columns.values()] # then write table self.header.write(lines, widths) self.data.write(lines, widths, data_str_vals) return lines
81f1a040b9ac39b41c64c0475964e173d0e1b45b8dfb53ef8864e2b736f1b1a8
# Licensed under a 3-clause BSD style license - see LICENSE.rst """An extensible HTML table reader and writer. html.py: Classes to read and write HTML tables `BeautifulSoup <http://www.crummy.com/software/BeautifulSoup/>`_ must be installed to read HTML tables. """ import warnings from . import core from astropy.table import Column from astropy.utils.xml import writer from copy import deepcopy class SoupString(str): """ Allows for strings to hold BeautifulSoup data. """ def __new__(cls, *args, **kwargs): return str.__new__(cls, *args, **kwargs) def __init__(self, val): self.soup = val class ListWriter: """ Allows for XMLWriter to write to a list instead of a file. """ def __init__(self, out): self.out = out def write(self, data): self.out.append(data) def identify_table(soup, htmldict, numtable): """ Checks whether the given BeautifulSoup tag is the table the user intends to process. """ if soup is None or soup.name != 'table': return False # Tag is not a <table> elif 'table_id' not in htmldict: return numtable == 1 table_id = htmldict['table_id'] if isinstance(table_id, str): return 'id' in soup.attrs and soup['id'] == table_id elif isinstance(table_id, int): return table_id == numtable # Return False if an invalid parameter is given return False class HTMLInputter(core.BaseInputter): """ Input lines of HTML in a valid form. This requires `BeautifulSoup <http://www.crummy.com/software/BeautifulSoup/>`_ to be installed. """ def process_lines(self, lines): """ Convert the given input into a list of SoupString rows for further processing. """ try: from bs4 import BeautifulSoup except ImportError: raise core.OptionalTableImportError('BeautifulSoup must be ' 'installed to read HTML tables') if 'parser' not in self.html: with warnings.catch_warnings(): # Ignore bs4 parser warning #4550. warnings.filterwarnings('ignore', '.*no parser was explicitly specified.*') soup = BeautifulSoup('\n'.join(lines)) else: # use a custom backend parser soup = BeautifulSoup('\n'.join(lines), self.html['parser']) tables = soup.find_all('table') for i, possible_table in enumerate(tables): if identify_table(possible_table, self.html, i + 1): table = possible_table # Find the correct table break else: if isinstance(self.html['table_id'], int): err_descr = f"number {self.html['table_id']}" else: err_descr = f"id '{self.html['table_id']}'" raise core.InconsistentTableError( f'ERROR: HTML table {err_descr} not found') # Get all table rows soup_list = [SoupString(x) for x in table.find_all('tr')] return soup_list class HTMLSplitter(core.BaseSplitter): """ Split HTML table data. """ def __call__(self, lines): """ Return HTML data from lines as a generator. """ for line in lines: if not isinstance(line, SoupString): raise TypeError('HTML lines should be of type SoupString') soup = line.soup header_elements = soup.find_all('th') if header_elements: # Return multicolumns as tuples for HTMLHeader handling yield [(el.text.strip(), el['colspan']) if el.has_attr('colspan') else el.text.strip() for el in header_elements] data_elements = soup.find_all('td') if data_elements: yield [el.text.strip() for el in data_elements] if len(lines) == 0: raise core.InconsistentTableError('HTML tables must contain data ' 'in a <table> tag') class HTMLOutputter(core.TableOutputter): """ Output the HTML data as an ``astropy.table.Table`` object. This subclass allows for the final table to contain multidimensional columns (defined using the colspan attribute of <th>). """ default_converters = [core.convert_numpy(int), core.convert_numpy(float), core.convert_numpy(str)] def __call__(self, cols, meta): """ Process the data in multidimensional columns. """ new_cols = [] col_num = 0 while col_num < len(cols): col = cols[col_num] if hasattr(col, 'colspan'): # Join elements of spanned columns together into list of tuples span_cols = cols[col_num:col_num + col.colspan] new_col = core.Column(col.name) new_col.str_vals = list(zip(*[x.str_vals for x in span_cols])) new_cols.append(new_col) col_num += col.colspan else: new_cols.append(col) col_num += 1 return super().__call__(new_cols, meta) class HTMLHeader(core.BaseHeader): splitter_class = HTMLSplitter def start_line(self, lines): """ Return the line number at which header data begins. """ for i, line in enumerate(lines): if not isinstance(line, SoupString): raise TypeError('HTML lines should be of type SoupString') soup = line.soup if soup.th is not None: return i return None def _set_cols_from_names(self): """ Set columns from header names, handling multicolumns appropriately. """ self.cols = [] new_names = [] for name in self.names: if isinstance(name, tuple): col = core.Column(name=name[0]) col.colspan = int(name[1]) self.cols.append(col) new_names.append(name[0]) for i in range(1, int(name[1])): # Add dummy columns self.cols.append(core.Column('')) new_names.append('') else: self.cols.append(core.Column(name=name)) new_names.append(name) self.names = new_names class HTMLData(core.BaseData): splitter_class = HTMLSplitter def start_line(self, lines): """ Return the line number at which table data begins. """ for i, line in enumerate(lines): if not isinstance(line, SoupString): raise TypeError('HTML lines should be of type SoupString') soup = line.soup if soup.td is not None: if soup.th is not None: raise core.InconsistentTableError('HTML tables cannot ' 'have headings and data in the same row') return i raise core.InconsistentTableError('No start line found for HTML data') def end_line(self, lines): """ Return the line number at which table data ends. """ last_index = -1 for i, line in enumerate(lines): if not isinstance(line, SoupString): raise TypeError('HTML lines should be of type SoupString') soup = line.soup if soup.td is not None: last_index = i if last_index == -1: return None return last_index + 1 class HTML(core.BaseReader): """HTML format table. In order to customize input and output, a dict of parameters may be passed to this class holding specific customizations. **htmldict** : Dictionary of parameters for HTML input/output. * css : Customized styling If present, this parameter will be included in a <style> tag and will define stylistic attributes of the output. * table_id : ID for the input table If a string, this defines the HTML id of the table to be processed. If an integer, this specifies the index of the input table in the available tables. Unless this parameter is given, the reader will use the first table found in the input file. * multicol : Use multi-dimensional columns for output The writer will output tuples as elements of multi-dimensional columns if this parameter is true, and if not then it will use the syntax 1.36583e-13 .. 1.36583e-13 for output. If not present, this parameter will be true by default. * raw_html_cols : column name or list of names with raw HTML content This allows one to include raw HTML content in the column output, for instance to include link references in a table. This option requires that the bleach package be installed. Only whitelisted tags are allowed through for security reasons (see the raw_html_clean_kwargs arg). * raw_html_clean_kwargs : dict of keyword args controlling HTML cleaning Raw HTML will be cleaned to prevent unsafe HTML from ending up in the table output. This is done by calling ``bleach.clean(data, **raw_html_clean_kwargs)``. For details on the available options (e.g. tag whitelist) see: https://bleach.readthedocs.io/en/latest/clean.html * parser : Specific HTML parsing library to use If specified, this specifies which HTML parsing library BeautifulSoup should use as a backend. The options to choose from are 'html.parser' (the standard library parser), 'lxml' (the recommended parser), 'xml' (lxml's XML parser), and 'html5lib'. html5lib is a highly lenient parser and therefore might work correctly for unusual input if a different parser fails. * jsfiles : list of js files to include when writing table. * cssfiles : list of css files to include when writing table. * js : js script to include in the body when writing table. * table_class : css class for the table """ _format_name = 'html' _io_registry_format_aliases = ['html'] _io_registry_suffix = '.html' _description = 'HTML table' header_class = HTMLHeader data_class = HTMLData inputter_class = HTMLInputter max_ndim = 2 # HTML supports writing 2-d columns with shape (n, m) def __init__(self, htmldict={}): """ Initialize classes for HTML reading and writing. """ super().__init__() self.html = deepcopy(htmldict) if 'multicol' not in htmldict: self.html['multicol'] = True if 'table_id' not in htmldict: self.html['table_id'] = 1 self.inputter.html = self.html def read(self, table): """ Read the ``table`` in HTML format and return a resulting ``Table``. """ self.outputter = HTMLOutputter() return super().read(table) def write(self, table): """ Return data in ``table`` converted to HTML as a list of strings. """ # Check that table has only 1-d or 2-d columns. Above that fails. self._check_multidim_table(table) cols = list(table.columns.values()) self.data.header.cols = cols self.data.cols = cols if isinstance(self.data.fill_values, tuple): self.data.fill_values = [self.data.fill_values] self.data._set_fill_values(cols) self.data._set_col_formats() lines = [] # Set HTML escaping to False for any column in the raw_html_cols input raw_html_cols = self.html.get('raw_html_cols', []) if isinstance(raw_html_cols, str): raw_html_cols = [raw_html_cols] # Allow for a single string as input cols_escaped = [col.info.name not in raw_html_cols for col in cols] # Kwargs that get passed on to bleach.clean() if that is available. raw_html_clean_kwargs = self.html.get('raw_html_clean_kwargs', {}) # Use XMLWriter to output HTML to lines w = writer.XMLWriter(ListWriter(lines)) with w.tag('html'): with w.tag('head'): # Declare encoding and set CSS style for table with w.tag('meta', attrib={'charset': 'utf-8'}): pass with w.tag('meta', attrib={'http-equiv': 'Content-type', 'content': 'text/html;charset=UTF-8'}): pass if 'css' in self.html: with w.tag('style'): w.data(self.html['css']) if 'cssfiles' in self.html: for filename in self.html['cssfiles']: with w.tag('link', rel="stylesheet", href=filename, type='text/css'): pass if 'jsfiles' in self.html: for filename in self.html['jsfiles']: with w.tag('script', src=filename): w.data('') # need this instead of pass to get <script></script> with w.tag('body'): if 'js' in self.html: with w.xml_cleaning_method('none'): with w.tag('script'): w.data(self.html['js']) if isinstance(self.html['table_id'], str): html_table_id = self.html['table_id'] else: html_table_id = None if 'table_class' in self.html: html_table_class = self.html['table_class'] attrib = {"class": html_table_class} else: attrib = {} with w.tag('table', id=html_table_id, attrib=attrib): with w.tag('thead'): with w.tag('tr'): for col in cols: if len(col.shape) > 1 and self.html['multicol']: # Set colspan attribute for multicolumns w.start('th', colspan=col.shape[1]) else: w.start('th') w.data(col.info.name.strip()) w.end(indent=False) col_str_iters = [] new_cols_escaped = [] # Make a container to hold any new_col objects created # below for multicolumn elements. This is purely to # maintain a reference for these objects during # subsequent iteration to format column values. This # requires that the weakref info._parent be maintained. new_cols = [] for col, col_escaped in zip(cols, cols_escaped): if len(col.shape) > 1 and self.html['multicol']: span = col.shape[1] for i in range(span): # Split up multicolumns into separate columns new_col = Column([el[i] for el in col]) new_col_iter_str_vals = self.fill_values( col, new_col.info.iter_str_vals()) col_str_iters.append(new_col_iter_str_vals) new_cols_escaped.append(col_escaped) new_cols.append(new_col) else: col_iter_str_vals = self.fill_values(col, col.info.iter_str_vals()) col_str_iters.append(col_iter_str_vals) new_cols_escaped.append(col_escaped) for row in zip(*col_str_iters): with w.tag('tr'): for el, col_escaped in zip(row, new_cols_escaped): # Potentially disable HTML escaping for column method = ('escape_xml' if col_escaped else 'bleach_clean') with w.xml_cleaning_method(method, **raw_html_clean_kwargs): w.start('td') w.data(el.strip()) w.end(indent=False) # Fixes XMLWriter's insertion of unwanted line breaks return [''.join(lines)] def fill_values(self, col, col_str_iters): """ Return an iterator of the values with replacements based on fill_values """ # check if the col is a masked column and has fill values is_masked_column = hasattr(col, 'mask') has_fill_values = hasattr(col, 'fill_values') for idx, col_str in enumerate(col_str_iters): if is_masked_column and has_fill_values: if col.mask[idx]: yield col.fill_values[core.masked] continue if has_fill_values: if col_str in col.fill_values: yield col.fill_values[col_str] continue yield col_str
ee8079714be65be23900f9c9ea85e48a75eb4beb25d1f025beb9101affc82416
# Licensed under a 3-clause BSD style license - see LICENSE.rst """An extensible ASCII table reader and writer. ui.py: Provides the main user functions for reading and writing tables. :Copyright: Smithsonian Astrophysical Observatory (2010) :Author: Tom Aldcroft ([email protected]) """ import re import os import sys import copy import time import warnings import contextlib import collections from io import StringIO import numpy as np from . import core from . import basic from . import cds from . import mrt from . import daophot from . import ecsv from . import sextractor from . import ipac from . import latex from . import html from . import rst from . import fastbasic from . import cparser from . import fixedwidth from .docs import READ_KWARG_TYPES, WRITE_KWARG_TYPES from astropy.table import Table, MaskedColumn from astropy.utils.data import get_readable_fileobj from astropy.utils.exceptions import AstropyWarning from astropy.utils.misc import NOT_OVERWRITING_MSG _read_trace = [] # Default setting for guess parameter in read() _GUESS = True def _probably_html(table, maxchars=100000): """ Determine if ``table`` probably contains HTML content. See PR #3693 and issue #3691 for context. """ if not isinstance(table, str): try: # If table is an iterable (list of strings) then take the first # maxchars of these. Make sure this is something with random # access to exclude a file-like object table[0] table[:1] size = 0 for i, line in enumerate(table): size += len(line) if size > maxchars: table = table[:i + 1] break table = os.linesep.join(table) except Exception: pass if isinstance(table, str): # Look for signs of an HTML table in the first maxchars characters table = table[:maxchars] # URL ending in .htm or .html if re.match(r'( http[s]? | ftp | file ) :// .+ \.htm[l]?$', table, re.IGNORECASE | re.VERBOSE): return True # Filename ending in .htm or .html which exists if (re.search(r'\.htm[l]?$', table[-5:], re.IGNORECASE) and os.path.exists(os.path.expanduser(table))): return True # Table starts with HTML document type declaration if re.match(r'\s* <! \s* DOCTYPE \s* HTML', table, re.IGNORECASE | re.VERBOSE): return True # Look for <TABLE .. >, <TR .. >, <TD .. > tag openers. if all(re.search(fr'< \s* {element} [^>]* >', table, re.IGNORECASE | re.VERBOSE) for element in ('table', 'tr', 'td')): return True return False def set_guess(guess): """ Set the default value of the ``guess`` parameter for read() Parameters ---------- guess : bool New default ``guess`` value (e.g., True or False) """ global _GUESS _GUESS = guess def get_reader(Reader=None, Inputter=None, Outputter=None, **kwargs): """ Initialize a table reader allowing for common customizations. Most of the default behavior for various parameters is determined by the Reader class. Parameters ---------- Reader : `~astropy.io.ascii.BaseReader` Reader class (DEPRECATED). Default is :class:`Basic`. Inputter : `~astropy.io.ascii.BaseInputter` Inputter class Outputter : `~astropy.io.ascii.BaseOutputter` Outputter class delimiter : str Column delimiter string comment : str Regular expression defining a comment line in table quotechar : str One-character string to quote fields containing special characters header_start : int Line index for the header line not counting comment or blank lines. A line with only whitespace is considered blank. data_start : int Line index for the start of data not counting comment or blank lines. A line with only whitespace is considered blank. data_end : int Line index for the end of data not counting comment or blank lines. This value can be negative to count from the end. converters : dict Dict of converters. data_Splitter : `~astropy.io.ascii.BaseSplitter` Splitter class to split data columns. header_Splitter : `~astropy.io.ascii.BaseSplitter` Splitter class to split header columns. names : list List of names corresponding to each data column. include_names : list, optional List of names to include in output. exclude_names : list List of names to exclude from output (applied after ``include_names``). fill_values : tuple, list of tuple Specification of fill values for bad or missing table values. fill_include_names : list List of names to include in fill_values. fill_exclude_names : list List of names to exclude from fill_values (applied after ``fill_include_names``). Returns ------- reader : `~astropy.io.ascii.BaseReader` subclass ASCII format reader instance """ # This function is a light wrapper around core._get_reader to provide a # public interface with a default Reader. if Reader is None: # Default reader is Basic unless fast reader is forced fast_reader = _get_fast_reader_dict(kwargs) if fast_reader['enable'] == 'force': Reader = fastbasic.FastBasic else: Reader = basic.Basic reader = core._get_reader(Reader, Inputter=Inputter, Outputter=Outputter, **kwargs) return reader def _get_format_class(format, ReaderWriter, label): if format is not None and ReaderWriter is not None: raise ValueError(f'Cannot supply both format and {label} keywords') if format is not None: if format in core.FORMAT_CLASSES: ReaderWriter = core.FORMAT_CLASSES[format] else: raise ValueError('ASCII format {!r} not in allowed list {}' .format(format, sorted(core.FORMAT_CLASSES))) return ReaderWriter def _get_fast_reader_dict(kwargs): """Convert 'fast_reader' key in kwargs into a dict if not already and make sure 'enable' key is available. """ fast_reader = copy.deepcopy(kwargs.get('fast_reader', True)) if isinstance(fast_reader, dict): fast_reader.setdefault('enable', 'force') else: fast_reader = {'enable': fast_reader} return fast_reader def _validate_read_write_kwargs(read_write, **kwargs): """Validate types of keyword arg inputs to read() or write().""" def is_ducktype(val, cls): """Check if ``val`` is an instance of ``cls`` or "seems" like one: ``cls(val) == val`` does not raise and exception and is `True`. In this way you can pass in ``np.int16(2)`` and have that count as `int`. This has a special-case of ``cls`` being 'list-like', meaning it is an iterable but not a string. """ if cls == 'list-like': ok = (not isinstance(val, str) and isinstance(val, collections.abc.Iterable)) else: ok = isinstance(val, cls) if not ok: # See if ``val`` walks and quacks like a ``cls```. try: new_val = cls(val) assert new_val == val except Exception: ok = False else: ok = True return ok kwarg_types = READ_KWARG_TYPES if read_write == 'read' else WRITE_KWARG_TYPES for arg, val in kwargs.items(): # Kwarg type checking is opt-in, so kwargs not in the list are considered OK. # This reflects that some readers allow additional arguments that may not # be well-specified, e.g. ```__init__(self, **kwargs)`` is an option. if arg not in kwarg_types or val is None: continue # Single type or tuple of types for this arg (like isinstance()) types = kwarg_types[arg] err_msg = (f"{read_write}() argument '{arg}' must be a " f"{types} object, got {type(val)} instead") # Force `types` to be a tuple for the any() check below if not isinstance(types, tuple): types = (types,) if not any(is_ducktype(val, cls) for cls in types): raise TypeError(err_msg) def _expand_user_if_path(argument): if isinstance(argument, (str, bytes, os.PathLike)): # For the `read()` method, a `str` input can be either a file path or # the table data itself. File names for io.ascii cannot have newlines # in them and io.ascii does not accept table data as `bytes`, so we can # attempt to detect data strings like this. is_str_data = (isinstance(argument, str) and ('\n' in argument or '\r' in argument)) if not is_str_data: # Remain conservative in expanding the presumed-path ex_user = os.path.expanduser(argument) if os.path.exists(ex_user): argument = ex_user return argument def read(table, guess=None, **kwargs): # This the final output from reading. Static analysis indicates the reading # logic (which is indeed complex) might not define `dat`, thus do so here. dat = None # Docstring defined below del _read_trace[:] # Downstream readers might munge kwargs kwargs = copy.deepcopy(kwargs) _validate_read_write_kwargs('read', **kwargs) # Convert 'fast_reader' key in kwargs into a dict if not already and make sure # 'enable' key is available. fast_reader = _get_fast_reader_dict(kwargs) kwargs['fast_reader'] = fast_reader if fast_reader['enable'] and fast_reader.get('chunk_size'): return _read_in_chunks(table, **kwargs) if 'fill_values' not in kwargs: kwargs['fill_values'] = [('', '0')] # If an Outputter is supplied in kwargs that will take precedence. if 'Outputter' in kwargs: # user specified Outputter, not supported for fast reading fast_reader['enable'] = False format = kwargs.get('format') # Dictionary arguments are passed by reference per default and thus need # special protection: new_kwargs = copy.deepcopy(kwargs) kwargs['fast_reader'] = copy.deepcopy(fast_reader) # Get the Reader class based on possible format and Reader kwarg inputs. Reader = _get_format_class(format, kwargs.get('Reader'), 'Reader') if Reader is not None: new_kwargs['Reader'] = Reader format = Reader._format_name # Remove format keyword if there, this is only allowed in read() not get_reader() if 'format' in new_kwargs: del new_kwargs['format'] if guess is None: guess = _GUESS if guess: # If ``table`` is probably an HTML file then tell guess function to add # the HTML reader at the top of the guess list. This is in response to # issue #3691 (and others) where libxml can segfault on a long non-HTML # file, thus prompting removal of the HTML reader from the default # guess list. new_kwargs['guess_html'] = _probably_html(table) # If `table` is a filename or readable file object then read in the # file now. This prevents problems in Python 3 with the file object # getting closed or left at the file end. See #3132, #3013, #3109, # #2001. If a `readme` arg was passed that implies CDS format, in # which case the original `table` as the data filename must be left # intact. if 'readme' not in new_kwargs: encoding = kwargs.get('encoding') try: table = _expand_user_if_path(table) with get_readable_fileobj(table, encoding=encoding) as fileobj: table = fileobj.read() except ValueError: # unreadable or invalid binary file raise except Exception: pass else: # Ensure that `table` has at least one \r or \n in it # so that the core.BaseInputter test of # ('\n' not in table and '\r' not in table) # will fail and so `table` cannot be interpreted there # as a filename. See #4160. if not re.search(r'[\r\n]', table): table = table + os.linesep # If the table got successfully read then look at the content # to see if is probably HTML, but only if it wasn't already # identified as HTML based on the filename. if not new_kwargs['guess_html']: new_kwargs['guess_html'] = _probably_html(table) # Get the table from guess in ``dat``. If ``dat`` comes back as None # then there was just one set of kwargs in the guess list so fall # through below to the non-guess way so that any problems result in a # more useful traceback. dat = _guess(table, new_kwargs, format, fast_reader) if dat is None: guess = False if not guess: if format is None: reader = get_reader(**new_kwargs) format = reader._format_name table = _expand_user_if_path(table) # Try the fast reader version of `format` first if applicable. Note that # if user specified a fast format (e.g. format='fast_basic') this test # will fail and the else-clause below will be used. if fast_reader['enable'] and f'fast_{format}' in core.FAST_CLASSES: fast_kwargs = copy.deepcopy(new_kwargs) fast_kwargs['Reader'] = core.FAST_CLASSES[f'fast_{format}'] fast_reader_rdr = get_reader(**fast_kwargs) try: dat = fast_reader_rdr.read(table) _read_trace.append({'kwargs': copy.deepcopy(fast_kwargs), 'Reader': fast_reader_rdr.__class__, 'status': 'Success with fast reader (no guessing)'}) except (core.ParameterError, cparser.CParserError, UnicodeEncodeError) as err: # special testing value to avoid falling back on the slow reader if fast_reader['enable'] == 'force': raise core.InconsistentTableError( f'fast reader {fast_reader_rdr.__class__} exception: {err}') # If the fast reader doesn't work, try the slow version reader = get_reader(**new_kwargs) dat = reader.read(table) _read_trace.append({'kwargs': copy.deepcopy(new_kwargs), 'Reader': reader.__class__, 'status': 'Success with slow reader after failing' ' with fast (no guessing)'}) else: reader = get_reader(**new_kwargs) dat = reader.read(table) _read_trace.append({'kwargs': copy.deepcopy(new_kwargs), 'Reader': reader.__class__, 'status': 'Success with specified Reader class ' '(no guessing)'}) # Static analysis (pyright) indicates `dat` might be left undefined, so just # to be sure define it at the beginning and check here. if dat is None: raise RuntimeError('read() function failed due to code logic error, ' 'please report this bug on github') return dat read.__doc__ = core.READ_DOCSTRING def _guess(table, read_kwargs, format, fast_reader): """ Try to read the table using various sets of keyword args. Start with the standard guess list and filter to make it unique and consistent with user-supplied read keyword args. Finally, if none of those work then try the original user-supplied keyword args. Parameters ---------- table : str, file-like, list Input table as a file name, file-like object, list of strings, or single newline-separated string. read_kwargs : dict Keyword arguments from user to be supplied to reader format : str Table format fast_reader : dict Options for the C engine fast reader. See read() function for details. Returns ------- dat : `~astropy.table.Table` or None Output table or None if only one guess format was available """ # Keep a trace of all failed guesses kwarg failed_kwargs = [] # Get an ordered list of read() keyword arg dicts that will be cycled # through in order to guess the format. full_list_guess = _get_guess_kwargs_list(read_kwargs) # If a fast version of the reader is available, try that before the slow version if (fast_reader['enable'] and format is not None and f'fast_{format}' in core.FAST_CLASSES): fast_kwargs = copy.deepcopy(read_kwargs) fast_kwargs['Reader'] = core.FAST_CLASSES[f'fast_{format}'] full_list_guess = [fast_kwargs] + full_list_guess else: fast_kwargs = None # Filter the full guess list so that each entry is consistent with user kwarg inputs. # This also removes any duplicates from the list. filtered_guess_kwargs = [] fast_reader = read_kwargs.get('fast_reader') for guess_kwargs in full_list_guess: # If user specified slow reader then skip all fast readers if (fast_reader['enable'] is False and guess_kwargs['Reader'] in core.FAST_CLASSES.values()): _read_trace.append({'kwargs': copy.deepcopy(guess_kwargs), 'Reader': guess_kwargs['Reader'].__class__, 'status': 'Disabled: reader only available in fast version', 'dt': f'{0.0:.3f} ms'}) continue # If user required a fast reader then skip all non-fast readers if (fast_reader['enable'] == 'force' and guess_kwargs['Reader'] not in core.FAST_CLASSES.values()): _read_trace.append({'kwargs': copy.deepcopy(guess_kwargs), 'Reader': guess_kwargs['Reader'].__class__, 'status': 'Disabled: no fast version of reader available', 'dt': f'{0.0:.3f} ms'}) continue guess_kwargs_ok = True # guess_kwargs are consistent with user_kwargs? for key, val in read_kwargs.items(): # Do guess_kwargs.update(read_kwargs) except that if guess_args has # a conflicting key/val pair then skip this guess entirely. if key not in guess_kwargs: guess_kwargs[key] = copy.deepcopy(val) elif val != guess_kwargs[key] and guess_kwargs != fast_kwargs: guess_kwargs_ok = False break if not guess_kwargs_ok: # User-supplied kwarg is inconsistent with the guess-supplied kwarg, e.g. # user supplies delimiter="|" but the guess wants to try delimiter=" ", # so skip the guess entirely. continue # Add the guess_kwargs to filtered list only if it is not already there. if guess_kwargs not in filtered_guess_kwargs: filtered_guess_kwargs.append(guess_kwargs) # If there are not at least two formats to guess then return no table # (None) to indicate that guessing did not occur. In that case the # non-guess read() will occur and any problems will result in a more useful # traceback. if len(filtered_guess_kwargs) <= 1: return None # Define whitelist of exceptions that are expected from readers when # processing invalid inputs. Note that OSError must fall through here # so one cannot simply catch any exception. guess_exception_classes = (core.InconsistentTableError, ValueError, TypeError, AttributeError, core.OptionalTableImportError, core.ParameterError, cparser.CParserError) # Now cycle through each possible reader and associated keyword arguments. # Try to read the table using those args, and if an exception occurs then # keep track of the failed guess and move on. for guess_kwargs in filtered_guess_kwargs: t0 = time.time() try: # If guessing will try all Readers then use strict req'ts on column names if 'Reader' not in read_kwargs: guess_kwargs['strict_names'] = True reader = get_reader(**guess_kwargs) reader.guessing = True dat = reader.read(table) _read_trace.append({'kwargs': copy.deepcopy(guess_kwargs), 'Reader': reader.__class__, 'status': 'Success (guessing)', 'dt': f'{(time.time() - t0) * 1000:.3f} ms'}) return dat except guess_exception_classes as err: _read_trace.append({'kwargs': copy.deepcopy(guess_kwargs), 'status': f'{err.__class__.__name__}: {str(err)}', 'dt': f'{(time.time() - t0) * 1000:.3f} ms'}) failed_kwargs.append(guess_kwargs) else: # Failed all guesses, try the original read_kwargs without column requirements try: reader = get_reader(**read_kwargs) dat = reader.read(table) _read_trace.append({'kwargs': copy.deepcopy(read_kwargs), 'Reader': reader.__class__, 'status': 'Success with original kwargs without strict_names ' '(guessing)'}) return dat except guess_exception_classes as err: _read_trace.append({'kwargs': copy.deepcopy(read_kwargs), 'status': f'{err.__class__.__name__}: {str(err)}'}) failed_kwargs.append(read_kwargs) lines = ['\nERROR: Unable to guess table format with the guesses listed below:'] for kwargs in failed_kwargs: sorted_keys = sorted(x for x in sorted(kwargs) if x not in ('Reader', 'Outputter')) reader_repr = repr(kwargs.get('Reader', basic.Basic)) keys_vals = ['Reader:' + re.search(r"\.(\w+)'>", reader_repr).group(1)] kwargs_sorted = ((key, kwargs[key]) for key in sorted_keys) keys_vals.extend([f'{key}: {val!r}' for key, val in kwargs_sorted]) lines.append(' '.join(keys_vals)) msg = ['', '************************************************************************', '** ERROR: Unable to guess table format with the guesses listed above. **', '** **', '** To figure out why the table did not read, use guess=False and **', '** fast_reader=False, along with any appropriate arguments to read(). **', '** In particular specify the format and any known attributes like the **', '** delimiter. **', '************************************************************************'] lines.extend(msg) raise core.InconsistentTableError('\n'.join(lines)) def _get_guess_kwargs_list(read_kwargs): """ Get the full list of reader keyword argument dicts that are the basis for the format guessing process. The returned full list will then be: - Filtered to be consistent with user-supplied kwargs - Cleaned to have only unique entries - Used one by one to try reading the input table Note that the order of the guess list has been tuned over years of usage. Maintainers need to be very careful about any adjustments as the reasoning may not be immediately evident in all cases. This list can (and usually does) include duplicates. This is a result of the order tuning, but these duplicates get removed later. Parameters ---------- read_kwargs : dict User-supplied read keyword args Returns ------- guess_kwargs_list : list List of read format keyword arg dicts """ guess_kwargs_list = [] # If the table is probably HTML based on some heuristics then start with the # HTML reader. if read_kwargs.pop('guess_html', None): guess_kwargs_list.append(dict(Reader=html.HTML)) # Start with ECSV because an ECSV file will be read by Basic. This format # has very specific header requirements and fails out quickly. guess_kwargs_list.append(dict(Reader=ecsv.Ecsv)) # Now try readers that accept the user-supplied keyword arguments # (actually include all here - check for compatibility of arguments later). # FixedWidthTwoLine would also be read by Basic, so it needs to come first; # same for RST. for reader in (fixedwidth.FixedWidthTwoLine, rst.RST, fastbasic.FastBasic, basic.Basic, fastbasic.FastRdb, basic.Rdb, fastbasic.FastTab, basic.Tab, cds.Cds, mrt.Mrt, daophot.Daophot, sextractor.SExtractor, ipac.Ipac, latex.Latex, latex.AASTex): guess_kwargs_list.append(dict(Reader=reader)) # Cycle through the basic-style readers using all combinations of delimiter # and quotechar. for Reader in (fastbasic.FastCommentedHeader, basic.CommentedHeader, fastbasic.FastBasic, basic.Basic, fastbasic.FastNoHeader, basic.NoHeader): for delimiter in ("|", ",", " ", r"\s"): for quotechar in ('"', "'"): guess_kwargs_list.append(dict( Reader=Reader, delimiter=delimiter, quotechar=quotechar)) return guess_kwargs_list def _read_in_chunks(table, **kwargs): """ For fast_reader read the ``table`` in chunks and vstack to create a single table, OR return a generator of chunk tables. """ fast_reader = kwargs['fast_reader'] chunk_size = fast_reader.pop('chunk_size') chunk_generator = fast_reader.pop('chunk_generator', False) fast_reader['parallel'] = False # No parallel with chunks tbl_chunks = _read_in_chunks_generator(table, chunk_size, **kwargs) if chunk_generator: return tbl_chunks tbl0 = next(tbl_chunks) masked = tbl0.masked # Numpy won't allow resizing the original so make a copy here. out_cols = {col.name: col.data.copy() for col in tbl0.itercols()} str_kinds = ('S', 'U') for tbl in tbl_chunks: masked |= tbl.masked for name, col in tbl.columns.items(): # Concatenate current column data and new column data # If one of the inputs is string-like and the other is not, then # convert the non-string to a string. In a perfect world this would # be handled by numpy, but as of numpy 1.13 this results in a string # dtype that is too long (https://github.com/numpy/numpy/issues/10062). col1, col2 = out_cols[name], col.data if col1.dtype.kind in str_kinds and col2.dtype.kind not in str_kinds: col2 = np.array(col2.tolist(), dtype=col1.dtype.kind) elif col2.dtype.kind in str_kinds and col1.dtype.kind not in str_kinds: col1 = np.array(col1.tolist(), dtype=col2.dtype.kind) # Choose either masked or normal concatenation concatenate = np.ma.concatenate if masked else np.concatenate out_cols[name] = concatenate([col1, col2]) # Make final table from numpy arrays, converting dict to list out_cols = [out_cols[name] for name in tbl0.colnames] out = tbl0.__class__(out_cols, names=tbl0.colnames, meta=tbl0.meta, copy=False) return out def _read_in_chunks_generator(table, chunk_size, **kwargs): """ For fast_reader read the ``table`` in chunks and return a generator of tables for each chunk. """ @contextlib.contextmanager def passthrough_fileobj(fileobj, encoding=None): """Stub for get_readable_fileobj, which does not seem to work in Py3 for input file-like object, see #6460""" yield fileobj # Set up to coerce `table` input into a readable file object by selecting # an appropriate function. # Convert table-as-string to a File object. Finding a newline implies # that the string is not a filename. if (isinstance(table, str) and ('\n' in table or '\r' in table)): table = StringIO(table) fileobj_context = passthrough_fileobj elif hasattr(table, 'read') and hasattr(table, 'seek'): fileobj_context = passthrough_fileobj else: # string filename or pathlib fileobj_context = get_readable_fileobj # Set up for iterating over chunks kwargs['fast_reader']['return_header_chars'] = True header = '' # Table header (up to start of data) prev_chunk_chars = '' # Chars from previous chunk after last newline first_chunk = True # True for the first chunk, False afterward with fileobj_context(table, encoding=kwargs.get('encoding')) as fh: while True: chunk = fh.read(chunk_size) # Got fewer chars than requested, must be end of file final_chunk = len(chunk) < chunk_size # If this is the last chunk and there is only whitespace then break if final_chunk and not re.search(r'\S', chunk): break # Step backwards from last character in chunk and find first newline for idx in range(len(chunk) - 1, -1, -1): if final_chunk or chunk[idx] == '\n': break else: raise ValueError('no newline found in chunk (chunk_size too small?)') # Stick on the header to the chunk part up to (and including) the # last newline. Make sure the small strings are concatenated first. complete_chunk = (header + prev_chunk_chars) + chunk[:idx + 1] prev_chunk_chars = chunk[idx + 1:] # Now read the chunk as a complete table tbl = read(complete_chunk, guess=False, **kwargs) # For the first chunk pop the meta key which contains the header # characters (everything up to the start of data) then fix kwargs # so it doesn't return that in meta any more. if first_chunk: header = tbl.meta.pop('__ascii_fast_reader_header_chars__') first_chunk = False yield tbl if final_chunk: break extra_writer_pars = ('delimiter', 'comment', 'quotechar', 'formats', 'names', 'include_names', 'exclude_names', 'strip_whitespace') def get_writer(Writer=None, fast_writer=True, **kwargs): """ Initialize a table writer allowing for common customizations. Most of the default behavior for various parameters is determined by the Writer class. Parameters ---------- Writer : ``Writer`` Writer class (DEPRECATED). Defaults to :class:`Basic`. delimiter : str Column delimiter string comment : str String defining a comment line in table quotechar : str One-character string to quote fields containing special characters formats : dict Dictionary of format specifiers or formatting functions strip_whitespace : bool Strip surrounding whitespace from column values. names : list List of names corresponding to each data column include_names : list List of names to include in output. exclude_names : list List of names to exclude from output (applied after ``include_names``) fast_writer : bool Whether to use the fast Cython writer. Returns ------- writer : `~astropy.io.ascii.BaseReader` subclass ASCII format writer instance """ if Writer is None: Writer = basic.Basic if 'strip_whitespace' not in kwargs: kwargs['strip_whitespace'] = True writer = core._get_writer(Writer, fast_writer, **kwargs) # Handle the corner case of wanting to disable writing table comments for the # commented_header format. This format *requires* a string for `write_comment` # because that is used for the header column row, so it is not possible to # set the input `comment` to None. Without adding a new keyword or assuming # a default comment character, there is no other option but to tell user to # simply remove the meta['comments']. if (isinstance(writer, (basic.CommentedHeader, fastbasic.FastCommentedHeader)) and not isinstance(kwargs.get('comment', ''), str)): raise ValueError("for the commented_header writer you must supply a string\n" "value for the `comment` keyword. In order to disable writing\n" "table comments use `del t.meta['comments']` prior to writing.") return writer def write(table, output=None, format=None, Writer=None, fast_writer=True, *, overwrite=False, **kwargs): # Docstring inserted below _validate_read_write_kwargs('write', format=format, fast_writer=fast_writer, overwrite=overwrite, **kwargs) if isinstance(output, (str, bytes, os.PathLike)): output = os.path.expanduser(output) if not overwrite and os.path.lexists(output): raise OSError(NOT_OVERWRITING_MSG.format(output)) if output is None: output = sys.stdout # Ensure that `table` is a Table subclass. names = kwargs.get('names') if isinstance(table, Table): # While we are only going to read data from columns, we may need to # to adjust info attributes such as format, so we make a shallow copy. table = table.__class__(table, names=names, copy=False) else: # Otherwise, create a table from the input. table = Table(table, names=names, copy=False) table0 = table[:0].copy() core._apply_include_exclude_names(table0, kwargs.get('names'), kwargs.get('include_names'), kwargs.get('exclude_names')) diff_format_with_names = set(kwargs.get('formats', [])) - set(table0.colnames) if diff_format_with_names: warnings.warn( 'The key(s) {} specified in the formats argument do not match a column name.' .format(diff_format_with_names), AstropyWarning) if table.has_mixin_columns: fast_writer = False Writer = _get_format_class(format, Writer, 'Writer') writer = get_writer(Writer=Writer, fast_writer=fast_writer, **kwargs) if writer._format_name in core.FAST_CLASSES: writer.write(table, output) return lines = writer.write(table) # Write the lines to output outstr = os.linesep.join(lines) if not hasattr(output, 'write'): # NOTE: we need to specify newline='', otherwise the default # behavior is for Python to translate \r\n (which we write because # of os.linesep) into \r\r\n. Specifying newline='' disables any # auto-translation. output = open(output, 'w', newline='') output.write(outstr) output.write(os.linesep) output.close() else: output.write(outstr) output.write(os.linesep) write.__doc__ = core.WRITE_DOCSTRING def get_read_trace(): """ Return a traceback of the attempted read formats for the last call to `~astropy.io.ascii.read` where guessing was enabled. This is primarily for debugging. The return value is a list of dicts, where each dict includes the keyword args ``kwargs`` used in the read call and the returned ``status``. Returns ------- trace : list of dict Ordered list of format guesses and status """ return copy.deepcopy(_read_trace)
f32408958614a66f9b6dfbce30ea352f819b54ce0713398a74ee520ff08a7a27
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ An extensible ASCII table reader and writer. Classes to read DAOphot table format :Copyright: Smithsonian Astrophysical Observatory (2011) :Author: Tom Aldcroft ([email protected]) """ import re import numpy as np import itertools as itt from collections import defaultdict, OrderedDict from . import core from . import fixedwidth from .misc import first_true_index, first_false_index, groupmore class DaophotHeader(core.BaseHeader): """ Read the header from a file produced by the IRAF DAOphot routine. """ comment = r'\s*#K' # Regex for extracting the format strings re_format = re.compile(r'%-?(\d+)\.?\d?[sdfg]') re_header_keyword = re.compile(r'[#]K' r'\s+ (?P<name> \w+)' r'\s* = (?P<stuff> .+) $', re.VERBOSE) aperture_values = () def __init__(self): core.BaseHeader.__init__(self) def parse_col_defs(self, grouped_lines_dict): """ Parse a series of column definition lines like below. There may be several such blocks in a single file (where continuation characters have already been stripped). #N ID XCENTER YCENTER MAG MERR MSKY NITER #U ## pixels pixels magnitudes magnitudes counts ## #F %-9d %-10.3f %-10.3f %-12.3f %-14.3f %-15.7g %-6d """ line_ids = ('#N', '#U', '#F') coldef_dict = defaultdict(list) # Function to strip identifier lines stripper = lambda s: s[2:].strip(' \\') for defblock in zip(*map(grouped_lines_dict.get, line_ids)): for key, line in zip(line_ids, map(stripper, defblock)): coldef_dict[key].append(line.split()) # Save the original columns so we can use it later to reconstruct the # original header for writing if self.data.is_multiline: # Database contains multi-aperture data. # Autogen column names, units, formats from last row of column headers last_names, last_units, last_formats = list(zip(*map(coldef_dict.get, line_ids)))[-1] N_multiline = len(self.data.first_block) for i in np.arange(1, N_multiline + 1).astype('U2'): # extra column names eg. RAPERT2, SUM2 etc... extended_names = list(map(''.join, zip(last_names, itt.repeat(i)))) if i == '1': # Enumerate the names starting at 1 coldef_dict['#N'][-1] = extended_names else: coldef_dict['#N'].append(extended_names) coldef_dict['#U'].append(last_units) coldef_dict['#F'].append(last_formats) # Get column widths from column format specifiers get_col_width = lambda s: int(self.re_format.search(s).groups()[0]) col_widths = [[get_col_width(f) for f in formats] for formats in coldef_dict['#F']] # original data format might be shorter than 80 characters and filled with spaces row_widths = np.fromiter(map(sum, col_widths), int) row_short = Daophot.table_width - row_widths # fix last column widths for w, r in zip(col_widths, row_short): w[-1] += r self.col_widths = col_widths # merge the multi-line header data into single line data coldef_dict = {k: sum(v, []) for (k, v) in coldef_dict.items()} return coldef_dict def update_meta(self, lines, meta): """ Extract table-level keywords for DAOphot table. These are indicated by a leading '#K ' prefix. """ table_meta = meta['table'] # self.lines = self.get_header_lines(lines) Nlines = len(self.lines) if Nlines > 0: # Group the header lines according to their line identifiers (#K, # #N, #U, #F or just # (spacer line)) function that grabs the line # identifier get_line_id = lambda s: s.split(None, 1)[0] # Group lines by the line identifier ('#N', '#U', '#F', '#K') and # capture line index gid, groups = zip(*groupmore(get_line_id, self.lines, range(Nlines))) # Groups of lines and their indices grouped_lines, gix = zip(*groups) # Dict of line groups keyed by line identifiers grouped_lines_dict = dict(zip(gid, grouped_lines)) # Update the table_meta keywords if necessary if '#K' in grouped_lines_dict: keywords = OrderedDict(map(self.extract_keyword_line, grouped_lines_dict['#K'])) table_meta['keywords'] = keywords coldef_dict = self.parse_col_defs(grouped_lines_dict) line_ids = ('#N', '#U', '#F') for name, unit, fmt in zip(*map(coldef_dict.get, line_ids)): meta['cols'][name] = {'unit': unit, 'format': fmt} self.meta = meta self.names = coldef_dict['#N'] def extract_keyword_line(self, line): """ Extract info from a header keyword line (#K) """ m = self.re_header_keyword.match(line) if m: vals = m.group('stuff').strip().rsplit(None, 2) keyword_dict = {'units': vals[-2], 'format': vals[-1], 'value': (vals[0] if len(vals) > 2 else "")} return m.group('name'), keyword_dict def get_cols(self, lines): """ Initialize the header Column objects from the table ``lines`` for a DAOphot header. The DAOphot header is specialized so that we just copy the entire BaseHeader get_cols routine and modify as needed. Parameters ---------- lines : list List of table lines Returns ------- col : list List of table Columns """ if not self.names: raise core.InconsistentTableError('No column names found in DAOphot header') # Create the list of io.ascii column objects self._set_cols_from_names() # Set unit and format as needed. coldefs = self.meta['cols'] for col in self.cols: unit, fmt = map(coldefs[col.name].get, ('unit', 'format')) if unit != '##': col.unit = unit if fmt != '##': col.format = fmt # Set column start and end positions. col_width = sum(self.col_widths, []) ends = np.cumsum(col_width) starts = ends - col_width for i, col in enumerate(self.cols): col.start, col.end = starts[i], ends[i] col.span = col.end - col.start if hasattr(col, 'format'): if any(x in col.format for x in 'fg'): col.type = core.FloatType elif 'd' in col.format: col.type = core.IntType elif 's' in col.format: col.type = core.StrType # INDEF is the missing value marker self.data.fill_values.append(('INDEF', '0')) class DaophotData(core.BaseData): splitter_class = fixedwidth.FixedWidthSplitter start_line = 0 comment = r'\s*#' def __init__(self): core.BaseData.__init__(self) self.is_multiline = False def get_data_lines(self, lines): # Special case for multiline daophot databases. Extract the aperture # values from the first multiline data block if self.is_multiline: # Grab the first column of the special block (aperture values) and # recreate the aperture description string aplist = next(zip(*map(str.split, self.first_block))) self.header.aperture_values = tuple(map(float, aplist)) # Set self.data.data_lines to a slice of lines contain the data rows core.BaseData.get_data_lines(self, lines) class DaophotInputter(core.ContinuationLinesInputter): continuation_char = '\\' multiline_char = '*' replace_char = ' ' re_multiline = re.compile(r'(#?)[^\\*#]*(\*?)(\\*) ?$') def search_multiline(self, lines, depth=150): """ Search lines for special continuation character to determine number of continued rows in a datablock. For efficiency, depth gives the upper limit of lines to search. """ # The list of apertures given in the #K APERTURES keyword may not be # complete!! This happens if the string description of the aperture # list is longer than the field width of the #K APERTURES field. In # this case we have to figure out how many apertures there are based on # the file structure. comment, special, cont = zip(*(self.re_multiline.search(line).groups() for line in lines[:depth])) # Find first non-comment line data_start = first_false_index(comment) # No data in lines[:depth]. This may be because there is no data in # the file, or because the header is really huge. If the latter, # increasing the search depth should help if data_start is None: return None, None, lines[:depth] header_lines = lines[:data_start] # Find first line ending on special row continuation character '*' # indexed relative to data_start first_special = first_true_index(special[data_start:depth]) if first_special is None: # no special lines return None, None, header_lines # last line ending on special '*', but not on line continue '/' last_special = first_false_index(special[data_start + first_special:depth]) # index relative to first_special # if first_special is None: #no end of special lines within search # depth! increase search depth return self.search_multiline( lines, # depth=2*depth ) # indexing now relative to line[0] markers = np.cumsum([data_start, first_special, last_special]) # multiline portion of first data block multiline_block = lines[markers[1]:markers[-1]] return markers, multiline_block, header_lines def process_lines(self, lines): markers, block, header = self.search_multiline(lines) self.data.is_multiline = markers is not None self.data.markers = markers self.data.first_block = block # set the header lines returned by the search as a attribute of the header self.data.header.lines = header if markers is not None: lines = lines[markers[0]:] continuation_char = self.continuation_char multiline_char = self.multiline_char replace_char = self.replace_char parts = [] outlines = [] for i, line in enumerate(lines): mo = self.re_multiline.search(line) if mo: comment, special, cont = mo.groups() if comment or cont: line = line.replace(continuation_char, replace_char) if special: line = line.replace(multiline_char, replace_char) if cont and not comment: parts.append(line) if not cont: parts.append(line) outlines.append(''.join(parts)) parts = [] else: raise core.InconsistentTableError('multiline re could not match line ' '{}: {}'.format(i, line)) return outlines class Daophot(core.BaseReader): """ DAOphot format table. Example:: #K MERGERAD = INDEF scaleunit %-23.7g #K IRAF = NOAO/IRAFV2.10EXPORT version %-23s #K USER = davis name %-23s #K HOST = tucana computer %-23s # #N ID XCENTER YCENTER MAG MERR MSKY NITER \\ #U ## pixels pixels magnitudes magnitudes counts ## \\ #F %-9d %-10.3f %-10.3f %-12.3f %-14.3f %-15.7g %-6d # #N SHARPNESS CHI PIER PERROR \\ #U ## ## ## perrors \\ #F %-23.3f %-12.3f %-6d %-13s # 14 138.538 INDEF 15.461 0.003 34.85955 4 \\ -0.032 0.802 0 No_error The keywords defined in the #K records are available via the output table ``meta`` attribute:: >>> import os >>> from astropy.io import ascii >>> filename = os.path.join(ascii.__path__[0], 'tests/data/daophot.dat') >>> data = ascii.read(filename) >>> for name, keyword in data.meta['keywords'].items(): ... print(name, keyword['value'], keyword['units'], keyword['format']) ... MERGERAD INDEF scaleunit %-23.7g IRAF NOAO/IRAFV2.10EXPORT version %-23s USER name %-23s ... The unit and formats are available in the output table columns:: >>> for colname in data.colnames: ... col = data[colname] ... print(colname, col.unit, col.format) ... ID None %-9d XCENTER pixels %-10.3f YCENTER pixels %-10.3f ... Any column values of INDEF are interpreted as a missing value and will be masked out in the resultant table. In case of multi-aperture daophot files containing repeated entries for the last row of fields, extra unique column names will be created by suffixing corresponding field names with numbers starting from 2 to N (where N is the total number of apertures). For example, first aperture radius will be RAPERT and corresponding magnitude will be MAG, second aperture radius will be RAPERT2 and corresponding magnitude will be MAG2, third aperture radius will be RAPERT3 and corresponding magnitude will be MAG3, and so on. """ _format_name = 'daophot' _io_registry_format_aliases = ['daophot'] _io_registry_can_write = False _description = 'IRAF DAOphot format table' header_class = DaophotHeader data_class = DaophotData inputter_class = DaophotInputter table_width = 80 def __init__(self): core.BaseReader.__init__(self) # The inputter needs to know about the data (see DaophotInputter.process_lines) self.inputter.data = self.data def write(self, table=None): raise NotImplementedError
e34f42f7c6e900f584e06a09544c607143069dc67212d65202f74e5af3ed5296
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This package contains functions for reading and writing HDF5 tables that are not meant to be used directly, but instead are available as readers/writers in `astropy.table`. See :ref:`astropy:table_io` for more details. """ import os import warnings import numpy as np # NOTE: Do not import anything from astropy.table here. # https://github.com/astropy/astropy/issues/6604 from astropy.utils.exceptions import AstropyUserWarning from astropy.utils.misc import NOT_OVERWRITING_MSG HDF5_SIGNATURE = b'\x89HDF\r\n\x1a\n' META_KEY = '__table_column_meta__' __all__ = ['read_table_hdf5', 'write_table_hdf5'] def meta_path(path): return path + '.' + META_KEY def _find_all_structured_arrays(handle): """ Find all structured arrays in an HDF5 file """ import h5py structured_arrays = [] def append_structured_arrays(name, obj): if isinstance(obj, h5py.Dataset) and obj.dtype.kind == 'V': structured_arrays.append(name) handle.visititems(append_structured_arrays) return structured_arrays def is_hdf5(origin, filepath, fileobj, *args, **kwargs): if fileobj is not None: loc = fileobj.tell() try: signature = fileobj.read(8) finally: fileobj.seek(loc) return signature == HDF5_SIGNATURE elif filepath is not None: return filepath.endswith(('.hdf5', '.h5')) try: import h5py except ImportError: return False else: return isinstance(args[0], (h5py.File, h5py.Group, h5py.Dataset)) def read_table_hdf5(input, path=None, character_as_bytes=True): """ Read a Table object from an HDF5 file This requires `h5py <http://www.h5py.org/>`_ to be installed. If more than one table is present in the HDF5 file or group, the first table is read in and a warning is displayed. Parameters ---------- input : str or :class:`h5py.File` or :class:`h5py.Group` or :class:`h5py.Dataset` If a string, the filename to read the table from. If an h5py object, either the file or the group object to read the table from. path : str The path from which to read the table inside the HDF5 file. This should be relative to the input file or group. character_as_bytes : bool If `True` then Table columns are left as bytes. If `False` then Table columns are converted to unicode. """ try: import h5py except ImportError: raise Exception("h5py is required to read and write HDF5 files") # This function is iterative, and only gets to writing the file when # the input is an hdf5 Group. Moreover, the input variable is changed in # place. # Here, we save its value to be used at the end when the conditions are # right. input_save = input if isinstance(input, (h5py.File, h5py.Group)): # If a path was specified, follow the path if path is not None: try: input = input[path] except (KeyError, ValueError): raise OSError(f"Path {path} does not exist") # `input` is now either a group or a dataset. If it is a group, we # will search for all structured arrays inside the group, and if there # is one we can proceed otherwise an error is raised. If it is a # dataset, we just proceed with the reading. if isinstance(input, h5py.Group): # Find all structured arrays in group arrays = _find_all_structured_arrays(input) if len(arrays) == 0: raise ValueError(f"no table found in HDF5 group {path}") elif len(arrays) > 0: path = arrays[0] if path is None else path + '/' + arrays[0] if len(arrays) > 1: warnings.warn("path= was not specified but multiple tables" " are present, reading in first available" " table (path={})".format(path), AstropyUserWarning) return read_table_hdf5(input, path=path) elif not isinstance(input, h5py.Dataset): # If a file object was passed, then we need to extract the filename # because h5py cannot properly read in file objects. if hasattr(input, 'read'): try: input = input.name except AttributeError: raise TypeError("h5py can only open regular files") # Open the file for reading, and recursively call read_table_hdf5 with # the file object and the path. f = h5py.File(input, 'r') try: return read_table_hdf5(f, path=path, character_as_bytes=character_as_bytes) finally: f.close() # If we are here, `input` should be a Dataset object, which we can now # convert to a Table. # Create a Table object from astropy.table import Table, meta, serialize table = Table(np.array(input)) # Read the meta-data from the file. For back-compatibility, we can read # the old file format where the serialized metadata were saved in the # attributes of the HDF5 dataset. # In the new format, instead, metadata are stored in a new dataset in the # same file. This is introduced in Astropy 3.0 old_version_meta = META_KEY in input.attrs new_version_meta = path is not None and meta_path(path) in input_save if old_version_meta or new_version_meta: if new_version_meta: header = meta.get_header_from_yaml( h.decode('utf-8') for h in input_save[meta_path(path)]) else: # Must be old_version_meta is True. if (A or B) and not A then B is True header = meta.get_header_from_yaml( h.decode('utf-8') for h in input.attrs[META_KEY]) if 'meta' in list(header.keys()): table.meta = header['meta'] header_cols = {x['name']: x for x in header['datatype']} for col in table.columns.values(): for attr in ('description', 'format', 'unit', 'meta'): if attr in header_cols[col.name]: setattr(col, attr, header_cols[col.name][attr]) # Construct new table with mixins, using tbl.meta['__serialized_columns__'] # as guidance. table = serialize._construct_mixins_from_columns(table) else: # Read the meta-data from the file table.meta.update(input.attrs) if not character_as_bytes: table.convert_bytestring_to_unicode() return table def _encode_mixins(tbl): """Encode a Table ``tbl`` that may have mixin columns to a Table with only astropy Columns + appropriate meta-data to allow subsequent decoding. """ from astropy.table import serialize from astropy import units as u from astropy.utils.data_info import serialize_context_as # Convert the table to one with no mixins, only Column objects. This adds # meta data which is extracted with meta.get_yaml_from_table. with serialize_context_as('hdf5'): encode_tbl = serialize.represent_mixins_as_columns(tbl) return encode_tbl def write_table_hdf5(table, output, path=None, compression=False, append=False, overwrite=False, serialize_meta=False, **create_dataset_kwargs): """ Write a Table object to an HDF5 file This requires `h5py <http://www.h5py.org/>`_ to be installed. Parameters ---------- table : `~astropy.table.Table` Data table that is to be written to file. output : str or :class:`h5py.File` or :class:`h5py.Group` If a string, the filename to write the table to. If an h5py object, either the file or the group object to write the table to. path : str The path to which to write the table inside the HDF5 file. This should be relative to the input file or group. If not specified, defaults to ``__astropy_table__``. compression : bool or str or int Whether to compress the table inside the HDF5 file. If set to `True`, ``'gzip'`` compression is used. If a string is specified, it should be one of ``'gzip'``, ``'szip'``, or ``'lzf'``. If an integer is specified (in the range 0-9), ``'gzip'`` compression is used, and the integer denotes the compression level. append : bool Whether to append the table to an existing HDF5 file. overwrite : bool Whether to overwrite any existing file without warning. If ``append=True`` and ``overwrite=True`` then only the dataset will be replaced; the file/group will not be overwritten. serialize_meta : bool Whether to serialize rich table meta-data when writing the HDF5 file, in particular such data required to write and read back mixin columns like ``Time``, ``SkyCoord``, or ``Quantity`` to the file. **create_dataset_kwargs Additional keyword arguments are passed to ``h5py.File.create_dataset()`` or ``h5py.Group.create_dataset()``. """ from astropy.table import meta try: import h5py except ImportError: raise Exception("h5py is required to read and write HDF5 files") if path is None: # table is just an arbitrary, hardcoded string here. path = '__astropy_table__' elif path.endswith('/'): raise ValueError("table path should end with table name, not /") if '/' in path: group, name = path.rsplit('/', 1) else: group, name = None, path if isinstance(output, (h5py.File, h5py.Group)): if len(list(output.keys())) > 0 and name == '__astropy_table__': raise ValueError("table path should always be set via the " "path= argument when writing to existing " "files") elif name == '__astropy_table__': warnings.warn("table path was not set via the path= argument; " "using default path {}".format(path)) if group: try: output_group = output[group] except (KeyError, ValueError): output_group = output.create_group(group) else: output_group = output elif isinstance(output, str): if os.path.exists(output) and not append: if overwrite and not append: os.remove(output) else: raise OSError(NOT_OVERWRITING_MSG.format(output)) # Open the file for appending or writing f = h5py.File(output, 'a' if append else 'w') # Recursively call the write function try: return write_table_hdf5(table, f, path=path, compression=compression, append=append, overwrite=overwrite, serialize_meta=serialize_meta) finally: f.close() else: raise TypeError('output should be a string or an h5py File or ' 'Group object') # Check whether table already exists if name in output_group: if append and overwrite: # Delete only the dataset itself del output_group[name] if serialize_meta and name + '.__table_column_meta__' in output_group: del output_group[name + '.__table_column_meta__'] else: raise OSError(f"Table {path} already exists") # Encode any mixin columns as plain columns + appropriate metadata table = _encode_mixins(table) # Table with numpy unicode strings can't be written in HDF5 so # to write such a table a copy of table is made containing columns as # bytestrings. Now this copy of the table can be written in HDF5. if any(col.info.dtype.kind == 'U' for col in table.itercols()): table = table.copy(copy_data=False) table.convert_unicode_to_bytestring() # Warn if information will be lost when serialize_meta=False. This is # hardcoded to the set difference between column info attributes and what # HDF5 can store natively (name, dtype) with no meta. if serialize_meta is False: for col in table.itercols(): for attr in ('unit', 'format', 'description', 'meta'): if getattr(col.info, attr, None) not in (None, {}): warnings.warn("table contains column(s) with defined 'unit', 'format'," " 'description', or 'meta' info attributes. These will" " be dropped since serialize_meta=False.", AstropyUserWarning) # Write the table to the file if compression: if compression is True: compression = 'gzip' dset = output_group.create_dataset(name, data=table.as_array(), compression=compression, **create_dataset_kwargs) else: dset = output_group.create_dataset(name, data=table.as_array(), **create_dataset_kwargs) if serialize_meta: header_yaml = meta.get_yaml_from_table(table) header_encoded = np.array([h.encode('utf-8') for h in header_yaml]) output_group.create_dataset(meta_path(name), data=header_encoded) else: # Write the Table meta dict key:value pairs to the file as HDF5 # attributes. This works only for a limited set of scalar data types # like numbers, strings, etc., but not any complex types. This path # also ignores column meta like unit or format. for key in table.meta: val = table.meta[key] try: dset.attrs[key] = val except TypeError: warnings.warn("Attribute `{}` of type {} cannot be written to " "HDF5 files - skipping. (Consider specifying " "serialize_meta=True to write all meta data)".format(key, type(val)), AstropyUserWarning) def register_hdf5(): """ Register HDF5 with Unified I/O. """ from astropy.io import registry as io_registry from astropy.table import Table io_registry.register_reader('hdf5', Table, read_table_hdf5) io_registry.register_writer('hdf5', Table, write_table_hdf5) io_registry.register_identifier('hdf5', Table, is_hdf5)
868efc68aa5f62dc295bfcaea9a8e8cdc9e17ce3eedf605f1dd2d244efd86134
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This package contains functions for reading and writing Parquet tables that are not meant to be used directly, but instead are available as readers/writers in `astropy.table`. See :ref:`astropy:table_io` for more details. """ import os import warnings import numpy as np # NOTE: Do not import anything from astropy.table here. # https://github.com/astropy/astropy/issues/6604 from astropy.utils.exceptions import AstropyUserWarning from astropy.utils.misc import NOT_OVERWRITING_MSG from astropy.utils import minversion PARQUET_SIGNATURE = b'PAR1' __all__ = [] # nothing is publicly scoped def parquet_identify(origin, filepath, fileobj, *args, **kwargs): """Checks if input is in the Parquet format. Parameters ---------- origin : Any filepath : str or None fileobj : `~pyarrow.NativeFile` or None *args, **kwargs Returns ------- is_parquet : bool True if 'fileobj' is not None and is a pyarrow file, or if 'filepath' is a string ending with '.parquet' or '.parq'. False otherwise. """ if fileobj is not None: try: # safely test if pyarrow file pos = fileobj.tell() # store current stream position except AttributeError: return False signature = fileobj.read(4) # read first 4 bytes fileobj.seek(pos) # return to original location return signature == PARQUET_SIGNATURE elif filepath is not None: return filepath.endswith(('.parquet', '.parq')) else: return False def read_table_parquet(input, include_names=None, exclude_names=None, schema_only=False, filters=None): """ Read a Table object from a Parquet file. This requires `pyarrow <https://arrow.apache.org/docs/python/>`_ to be installed. The ``filters`` parameter consists of predicates that are expressed in disjunctive normal form (DNF), like ``[[('x', '=', 0), ...], ...]``. DNF allows arbitrary boolean logical combinations of single column predicates. The innermost tuples each describe a single column predicate. The list of inner predicates is interpreted as a conjunction (AND), forming a more selective and multiple column predicate. Finally, the most outer list combines these filters as a disjunction (OR). Predicates may also be passed as List[Tuple]. This form is interpreted as a single conjunction. To express OR in predicates, one must use the (preferred) List[List[Tuple]] notation. Each tuple has format: (``key``, ``op``, ``value``) and compares the ``key`` with the ``value``. The supported ``op`` are: ``=`` or ``==``, ``!=``, ``<``, ``>``, ``<=``, ``>=``, ``in`` and ``not in``. If the ``op`` is ``in`` or ``not in``, the ``value`` must be a collection such as a ``list``, a ``set`` or a ``tuple``. Examples: .. code-block:: python ('x', '=', 0) ('y', 'in', ['a', 'b', 'c']) ('z', 'not in', {'a','b'}) Parameters ---------- input : str or path-like or file-like object If a string or path-like object, the filename to read the table from. If a file-like object, the stream to read data. include_names : list [str], optional List of names to include in output. If not supplied, then include all columns. exclude_names : list [str], optional List of names to exclude from output (applied after ``include_names``). If not supplied then no columns are excluded. schema_only : bool, optional Only read the schema/metadata with table information. filters : list [tuple] or list [list [tuple] ] or None, optional Rows which do not match the filter predicate will be removed from scanned data. See `pyarrow.parquet.read_table()` for details. Returns ------- table : `~astropy.table.Table` Table will have zero rows and only metadata information if schema_only is True. """ pa, parquet, _ = get_pyarrow() if not isinstance(input, (str, os.PathLike)): # The 'read' attribute is the key component of a generic # file-like object. if not hasattr(input, 'read'): raise TypeError("pyarrow can only open path-like or file-like objects.") schema = parquet.read_schema(input) # Pyarrow stores all metadata as byte-strings, so we convert # to UTF-8 strings here. if schema.metadata is not None: md = {k.decode('UTF-8'): v.decode('UTF-8') for k, v in schema.metadata.items()} else: md = {} from astropy.table import Table, meta, serialize # parse metadata from table yaml meta_dict = {} if 'table_meta_yaml' in md: meta_yaml = md.pop('table_meta_yaml').split('\n') meta_hdr = meta.get_header_from_yaml(meta_yaml) if 'meta' in meta_hdr: meta_dict = meta_hdr['meta'] else: meta_hdr = None # parse and set serialized columns full_table_columns = {name: name for name in schema.names} has_serialized_columns = False if '__serialized_columns__' in meta_dict: has_serialized_columns = True serialized_columns = meta_dict['__serialized_columns__'] for scol in serialized_columns: for name in _get_names(serialized_columns[scol]): full_table_columns[name] = scol use_names = set(full_table_columns.values()) # Apply include_names before exclude_names if include_names is not None: use_names.intersection_update(include_names) if exclude_names is not None: use_names.difference_update(exclude_names) # Preserve column ordering via list, and use this dict trick # to remove duplicates and preserve ordering (for mixin columns) use_names = list(dict.fromkeys([x for x in full_table_columns.values() if x in use_names])) # names_to_read is a list of actual serialized column names, where # e.g. the requested name 'time' becomes ['time.jd1', 'time.jd2'] names_to_read = [] for name in use_names: names = [n for n, col in full_table_columns.items() if name == col] names_to_read.extend(names) if not names_to_read: raise ValueError("No include_names specified were found in the table.") # We need to pop any unread serialized columns out of the meta_dict. if has_serialized_columns: for scol in list(meta_dict['__serialized_columns__'].keys()): if scol not in use_names: meta_dict['__serialized_columns__'].pop(scol) # whether to return the whole table or a formatted empty table. if not schema_only: # Read the pyarrow table, specifying columns and filters. pa_table = parquet.read_table(input, columns=names_to_read, filters=filters) num_rows = pa_table.num_rows else: num_rows = 0 # Now need to convert parquet table to Astropy dtype = [] for name in names_to_read: # Pyarrow string and byte columns do not have native length information # so we must determine those here. if schema.field(name).type not in (pa.string(), pa.binary()): # Convert the pyarrow type into a numpy dtype (which is returned # by the to_pandas_type() method). dtype.append(schema.field(name).type.to_pandas_dtype()) continue # Special-case for string and binary columns md_name = f'table::len::{name}' if md_name in md: # String/bytes length from header. strlen = int(md[md_name]) elif schema_only: # Find the maximum string length. # Choose an arbitrary string length since # are not reading in the table. strlen = 10 warnings.warn(f"No {md_name} found in metadata. " f"Guessing {{strlen}} for schema.", AstropyUserWarning) else: strlen = max(len(row.as_py()) for row in pa_table[name]) warnings.warn(f"No {md_name} found in metadata. " f"Using longest string ({{strlen}} characters).", AstropyUserWarning) dtype.append(f'U{strlen}' if schema.field(name).type == pa.string() else f'|S{strlen}') # Create the empty numpy record array to store the pyarrow data. data = np.zeros(num_rows, dtype=list(zip(names_to_read, dtype))) if not schema_only: # Convert each column in the pyarrow table to a numpy array for name in names_to_read: data[name][:] = pa_table[name].to_numpy() table = Table(data=data, meta=meta_dict) if meta_hdr is not None: # Set description, format, unit, meta from the column # metadata that was serialized with the table. header_cols = {x['name']: x for x in meta_hdr['datatype']} for col in table.columns.values(): for attr in ('description', 'format', 'unit', 'meta'): if attr in header_cols[col.name]: setattr(col, attr, header_cols[col.name][attr]) # Convert all compound columns to astropy objects # (e.g. time.jd1, time.jd2 into a single time column) table = serialize._construct_mixins_from_columns(table) return table def write_table_parquet(table, output, overwrite=False): """ Write a Table object to a Parquet file This requires `pyarrow <https://arrow.apache.org/docs/python/>`_ to be installed. Parameters ---------- table : `~astropy.table.Table` Data table that is to be written to file. output : str or path-like The filename to write the table to. overwrite : bool, optional Whether to overwrite any existing file without warning. Default `False`. """ from astropy.table import meta, serialize from astropy.utils.data_info import serialize_context_as pa, parquet, writer_version = get_pyarrow() if not isinstance(output, (str, os.PathLike)): raise TypeError(f'`output` should be a string or path-like, not {output}') # Convert all compound columns into serialized column names, where # e.g. 'time' becomes ['time.jd1', 'time.jd2']. with serialize_context_as('parquet'): encode_table = serialize.represent_mixins_as_columns(table) # We store the encoded serialization metadata as a yaml string. meta_yaml = meta.get_yaml_from_table(encode_table) meta_yaml_str = '\n'.join(meta_yaml) metadata = {} for name, col in encode_table.columns.items(): # Parquet will retain the datatypes of columns, but string and # byte column length is lost. Therefore, we special-case these # types to record the length for precise round-tripping. if col.dtype.type is np.str_: metadata[f'table::len::{name}'] = str(col.dtype.itemsize//4) elif col.dtype.type is np.bytes_: metadata[f'table::len::{name}'] = str(col.dtype.itemsize) metadata['table_meta_yaml'] = meta_yaml_str # Pyarrow stores all metadata as byte strings, so we explicitly encode # our unicode strings in metadata as UTF-8 byte strings here. metadata_encode = {k.encode('UTF-8'): v.encode('UTF-8') for k, v in metadata.items()} # Build the pyarrow schema by converting from the numpy dtype of each # column to an equivalent pyarrow type with from_numpy_dtype() type_list = [(name, pa.from_numpy_dtype(encode_table.dtype[name].type)) for name in encode_table.dtype.names] schema = pa.schema(type_list, metadata=metadata_encode) if os.path.exists(output): if overwrite: # We must remove the file prior to writing below. os.remove(output) else: raise OSError(NOT_OVERWRITING_MSG.format(output)) # We use version='2.0' for full support of datatypes including uint32. with parquet.ParquetWriter(output, schema, version=writer_version) as writer: # Convert each Table column to a pyarrow array arrays = [pa.array(col) for col in encode_table.itercols()] # Create a pyarrow table from the list of arrays and the schema pa_table = pa.Table.from_arrays(arrays, schema=schema) # Write the pyarrow table to a file writer.write_table(pa_table) def _get_names(_dict): """Recursively find the names in a serialized column dictionary. Parameters ---------- _dict : `dict` Dictionary from astropy __serialized_columns__ Returns ------- all_names : `list` [`str`] All the column names mentioned in _dict and sub-dicts. """ all_names = [] for k, v in _dict.items(): if isinstance(v, dict): all_names.extend(_get_names(v)) elif k == 'name': all_names.append(v) return all_names def register_parquet(): """ Register Parquet with Unified I/O. """ from astropy.io import registry as io_registry from astropy.table import Table io_registry.register_reader('parquet', Table, read_table_parquet) io_registry.register_writer('parquet', Table, write_table_parquet) io_registry.register_identifier('parquet', Table, parquet_identify) def get_pyarrow(): try: import pyarrow as pa from pyarrow import parquet except ImportError: raise Exception("pyarrow is required to read and write parquet files") if minversion(pa, '6.0.0'): writer_version = '2.4' else: writer_version = '2.0' return pa, parquet, writer_version
a170a6369d3c69b533dd4636585c24107ff64d8a76f7ce3792eff8a6eadac23b
# Licensed under a 3-clause BSD style license - see LICENSE.rst # TODO: Test FITS parsing # STDLIB import io import re import gzip import base64 import codecs import urllib.request import warnings # THIRD-PARTY import numpy as np from numpy import ma # LOCAL from astropy.io import fits from astropy import __version__ as astropy_version from astropy.utils.collections import HomogeneousList from astropy.utils.xml.writer import XMLWriter from astropy.utils.exceptions import AstropyDeprecationWarning from . import converters from .exceptions import (warn_or_raise, vo_warn, vo_raise, vo_reraise, warn_unknown_attrs, W06, W07, W08, W09, W10, W11, W12, W13, W15, W17, W18, W19, W20, W21, W22, W26, W27, W28, W29, W32, W33, W35, W36, W37, W38, W40, W41, W42, W43, W44, W45, W50, W52, W53, W54, E06, E08, E09, E10, E11, E12, E13, E15, E16, E17, E18, E19, E20, E21, E22, E23, E25) from . import ucd as ucd_mod from . import util from . import xmlutil try: from . import tablewriter _has_c_tabledata_writer = True except ImportError: _has_c_tabledata_writer = False __all__ = [ 'Link', 'Info', 'Values', 'Field', 'Param', 'CooSys', 'TimeSys', 'FieldRef', 'ParamRef', 'Group', 'Table', 'Resource', 'VOTableFile', 'Element' ] # The default number of rows to read in each chunk before converting # to an array. DEFAULT_CHUNK_SIZE = 256 RESIZE_AMOUNT = 1.5 ###################################################################### # FACTORY FUNCTIONS def _resize(masked, new_size): """ Masked arrays can not be resized inplace, and `np.resize` and `ma.resize` are both incompatible with structured arrays. Therefore, we do all this. """ new_array = ma.zeros((new_size,), dtype=masked.dtype) length = min(len(masked), new_size) new_array[:length] = masked[:length] return new_array def _lookup_by_attr_factory(attr, unique, iterator, element_name, doc): """ Creates a function useful for looking up an element by a given attribute. Parameters ---------- attr : str The attribute name unique : bool Should be `True` if the attribute is unique and therefore this should return only one value. Otherwise, returns a list of values. iterator : generator A generator that iterates over some arbitrary set of elements element_name : str The XML element name of the elements being iterated over (used for error messages only). doc : str A docstring to apply to the generated function. Returns ------- factory : function A function that looks up an element by the given attribute. """ def lookup_by_attr(self, ref, before=None): """ Given a string *ref*, finds the first element in the iterator where the given attribute == *ref*. If *before* is provided, will stop searching at the object *before*. This is important, since "forward references" are not allowed in the VOTABLE format. """ for element in getattr(self, iterator)(): if element is before: if getattr(element, attr, None) == ref: vo_raise( f"{element_name} references itself", element._config, element._pos, KeyError) break if getattr(element, attr, None) == ref: yield element def lookup_by_attr_unique(self, ref, before=None): for element in lookup_by_attr(self, ref, before=before): return element raise KeyError( "No {} with {} '{}' found before the referencing {}".format( element_name, attr, ref, element_name)) if unique: lookup_by_attr_unique.__doc__ = doc return lookup_by_attr_unique else: lookup_by_attr.__doc__ = doc return lookup_by_attr def _lookup_by_id_or_name_factory(iterator, element_name, doc): """ Like `_lookup_by_attr_factory`, but looks in both the "ID" and "name" attributes. """ def lookup_by_id_or_name(self, ref, before=None): """ Given an key *ref*, finds the first element in the iterator with the attribute ID == *ref* or name == *ref*. If *before* is provided, will stop searching at the object *before*. This is important, since "forward references" are not allowed in the VOTABLE format. """ for element in getattr(self, iterator)(): if element is before: if ref in (element.ID, element.name): vo_raise( f"{element_name} references itself", element._config, element._pos, KeyError) break if ref in (element.ID, element.name): return element raise KeyError( "No {} with ID or name '{}' found before the referencing {}".format( element_name, ref, element_name)) lookup_by_id_or_name.__doc__ = doc return lookup_by_id_or_name def _get_default_unit_format(config): """ Get the default unit format as specified in the VOTable spec. """ # The unit format changed between VOTable versions 1.3 and 1.4, # see issue #10791. if config['version_1_4_or_later']: return 'vounit' else: return 'cds' def _get_unit_format(config): """ Get the unit format based on the configuration. """ if config.get('unit_format') is None: format = _get_default_unit_format(config) else: format = config['unit_format'] return format ###################################################################### # ATTRIBUTE CHECKERS def check_astroyear(year, field, config=None, pos=None): """ Raises a `~astropy.io.votable.exceptions.VOTableSpecError` if *year* is not a valid astronomical year as defined by the VOTABLE standard. Parameters ---------- year : str An astronomical year string field : str The name of the field this year was found in (used for error message) config, pos : optional Information about the source of the value """ if (year is not None and re.match(r"^[JB]?[0-9]+([.][0-9]*)?$", year) is None): warn_or_raise(W07, W07, (field, year), config, pos) return False return True def check_string(string, attr_name, config=None, pos=None): """ Raises a `~astropy.io.votable.exceptions.VOTableSpecError` if *string* is not a string or Unicode string. Parameters ---------- string : str An astronomical year string attr_name : str The name of the field this year was found in (used for error message) config, pos : optional Information about the source of the value """ if string is not None and not isinstance(string, str): warn_or_raise(W08, W08, attr_name, config, pos) return False return True def resolve_id(ID, id, config=None, pos=None): if ID is None and id is not None: warn_or_raise(W09, W09, (), config, pos) return id return ID def check_ucd(ucd, config=None, pos=None): """ Warns or raises a `~astropy.io.votable.exceptions.VOTableSpecError` if *ucd* is not a valid `unified content descriptor`_ string as defined by the VOTABLE standard. Parameters ---------- ucd : str A UCD string. config, pos : optional Information about the source of the value """ if config is None: config = {} if config.get('version_1_1_or_later'): try: ucd_mod.parse_ucd( ucd, check_controlled_vocabulary=config.get( 'version_1_2_or_later', False), has_colon=config.get('version_1_2_or_later', False)) except ValueError as e: # This weird construction is for Python 3 compatibility if config.get('verify', 'ignore') == 'exception': vo_raise(W06, (ucd, str(e)), config, pos) elif config.get('verify', 'ignore') == 'warn': vo_warn(W06, (ucd, str(e)), config, pos) return False else: return False return True ###################################################################### # PROPERTY MIXINS class _IDProperty: @property def ID(self): """ The XML ID_ of the element. May be `None` or a string conforming to XML ID_ syntax. """ return self._ID @ID.setter def ID(self, ID): xmlutil.check_id(ID, 'ID', self._config, self._pos) self._ID = ID @ID.deleter def ID(self): self._ID = None class _NameProperty: @property def name(self): """An optional name for the element.""" return self._name @name.setter def name(self, name): xmlutil.check_token(name, 'name', self._config, self._pos) self._name = name @name.deleter def name(self): self._name = None class _XtypeProperty: @property def xtype(self): """Extended data type information.""" return self._xtype @xtype.setter def xtype(self, xtype): if xtype is not None and not self._config.get('version_1_2_or_later'): warn_or_raise( W28, W28, ('xtype', self._element_name, '1.2'), self._config, self._pos) check_string(xtype, 'xtype', self._config, self._pos) self._xtype = xtype @xtype.deleter def xtype(self): self._xtype = None class _UtypeProperty: _utype_in_v1_2 = False @property def utype(self): """The usage-specific or `unique type`_ of the element.""" return self._utype @utype.setter def utype(self, utype): if (self._utype_in_v1_2 and utype is not None and not self._config.get('version_1_2_or_later')): warn_or_raise( W28, W28, ('utype', self._element_name, '1.2'), self._config, self._pos) check_string(utype, 'utype', self._config, self._pos) self._utype = utype @utype.deleter def utype(self): self._utype = None class _UcdProperty: _ucd_in_v1_2 = False @property def ucd(self): """The `unified content descriptor`_ for the element.""" return self._ucd @ucd.setter def ucd(self, ucd): if ucd is not None and ucd.strip() == '': ucd = None if ucd is not None: if (self._ucd_in_v1_2 and not self._config.get('version_1_2_or_later')): warn_or_raise( W28, W28, ('ucd', self._element_name, '1.2'), self._config, self._pos) check_ucd(ucd, self._config, self._pos) self._ucd = ucd @ucd.deleter def ucd(self): self._ucd = None class _DescriptionProperty: @property def description(self): """ An optional string describing the element. Corresponds to the DESCRIPTION_ element. """ return self._description @description.setter def description(self, description): self._description = description @description.deleter def description(self): self._description = None ###################################################################### # ELEMENT CLASSES class Element: """ A base class for all classes that represent XML elements in the VOTABLE file. """ _element_name = '' _attr_list = [] def _add_unknown_tag(self, iterator, tag, data, config, pos): warn_or_raise(W10, W10, tag, config, pos) def _ignore_add(self, iterator, tag, data, config, pos): warn_unknown_attrs(tag, data.keys(), config, pos) def _add_definitions(self, iterator, tag, data, config, pos): if config.get('version_1_1_or_later'): warn_or_raise(W22, W22, (), config, pos) warn_unknown_attrs(tag, data.keys(), config, pos) def parse(self, iterator, config): """ For internal use. Parse the XML content of the children of the element. Parameters ---------- iterator : xml iterable An iterator over XML elements as returned by `~astropy.utils.xml.iterparser.get_xml_iterator`. config : dict The configuration dictionary that affects how certain elements are read. Returns ------- self : `~astropy.io.votable.tree.Element` Returns self as a convenience. """ raise NotImplementedError() def to_xml(self, w, **kwargs): """ For internal use. Output the element to XML. Parameters ---------- w : astropy.utils.xml.writer.XMLWriter object An XML writer to write to. **kwargs : dict Any configuration parameters to control the output. """ raise NotImplementedError() class SimpleElement(Element): """ A base class for simple elements, such as FIELD, PARAM and INFO that don't require any special parsing or outputting machinery. """ def __init__(self): Element.__init__(self) def __repr__(self): buff = io.StringIO() SimpleElement.to_xml(self, XMLWriter(buff)) return buff.getvalue().strip() def parse(self, iterator, config): for start, tag, data, pos in iterator: if start and tag != self._element_name: self._add_unknown_tag(iterator, tag, data, config, pos) elif tag == self._element_name: break return self def to_xml(self, w, **kwargs): w.element(self._element_name, attrib=w.object_attrs(self, self._attr_list)) class SimpleElementWithContent(SimpleElement): """ A base class for simple elements, such as FIELD, PARAM and INFO that don't require any special parsing or outputting machinery. """ def __init__(self): SimpleElement.__init__(self) self._content = None def parse(self, iterator, config): for start, tag, data, pos in iterator: if start and tag != self._element_name: self._add_unknown_tag(iterator, tag, data, config, pos) elif tag == self._element_name: if data: self.content = data break return self def to_xml(self, w, **kwargs): w.element(self._element_name, self._content, attrib=w.object_attrs(self, self._attr_list)) @property def content(self): """The content of the element.""" return self._content @content.setter def content(self, content): check_string(content, 'content', self._config, self._pos) self._content = content @content.deleter def content(self): self._content = None class Link(SimpleElement, _IDProperty): """ LINK_ elements: used to reference external documents and servers through a URI. The keyword arguments correspond to setting members of the same name, documented below. """ _attr_list = ['ID', 'content_role', 'content_type', 'title', 'value', 'href', 'action'] _element_name = 'LINK' def __init__(self, ID=None, title=None, value=None, href=None, action=None, id=None, config=None, pos=None, **kwargs): if config is None: config = {} self._config = config self._pos = pos SimpleElement.__init__(self) content_role = kwargs.get('content-role') or kwargs.get('content_role') content_type = kwargs.get('content-type') or kwargs.get('content_type') if 'gref' in kwargs: warn_or_raise(W11, W11, (), config, pos) self.ID = resolve_id(ID, id, config, pos) self.content_role = content_role self.content_type = content_type self.title = title self.value = value self.href = href self.action = action warn_unknown_attrs( 'LINK', kwargs.keys(), config, pos, ['content-role', 'content_role', 'content-type', 'content_type', 'gref']) @property def content_role(self): """ Defines the MIME role of the referenced object. Must be one of: None, 'query', 'hints', 'doc', 'location' or 'type' """ return self._content_role @content_role.setter def content_role(self, content_role): if ((content_role == 'type' and not self._config['version_1_3_or_later']) or content_role not in (None, 'query', 'hints', 'doc', 'location')): vo_warn(W45, (content_role,), self._config, self._pos) self._content_role = content_role @content_role.deleter def content_role(self): self._content_role = None @property def content_type(self): """Defines the MIME content type of the referenced object.""" return self._content_type @content_type.setter def content_type(self, content_type): xmlutil.check_mime_content_type(content_type, self._config, self._pos) self._content_type = content_type @content_type.deleter def content_type(self): self._content_type = None @property def href(self): """ A URI to an arbitrary protocol. The vo package only supports http and anonymous ftp. """ return self._href @href.setter def href(self, href): xmlutil.check_anyuri(href, self._config, self._pos) self._href = href @href.deleter def href(self): self._href = None def to_table_column(self, column): meta = {} for key in self._attr_list: val = getattr(self, key, None) if val is not None: meta[key] = val column.meta.setdefault('links', []) column.meta['links'].append(meta) @classmethod def from_table_column(cls, d): return cls(**d) class Info(SimpleElementWithContent, _IDProperty, _XtypeProperty, _UtypeProperty): """ INFO_ elements: arbitrary key-value pairs for extensions to the standard. The keyword arguments correspond to setting members of the same name, documented below. """ _element_name = 'INFO' _attr_list_11 = ['ID', 'name', 'value'] _attr_list_12 = _attr_list_11 + ['xtype', 'ref', 'unit', 'ucd', 'utype'] _utype_in_v1_2 = True def __init__(self, ID=None, name=None, value=None, id=None, xtype=None, ref=None, unit=None, ucd=None, utype=None, config=None, pos=None, **extra): if config is None: config = {} self._config = config self._pos = pos SimpleElementWithContent.__init__(self) self.ID = (resolve_id(ID, id, config, pos) or xmlutil.fix_id(name, config, pos)) self.name = name self.value = value self.xtype = xtype self.ref = ref self.unit = unit self.ucd = ucd self.utype = utype if config.get('version_1_2_or_later'): self._attr_list = self._attr_list_12 else: self._attr_list = self._attr_list_11 if xtype is not None: warn_unknown_attrs('INFO', ['xtype'], config, pos) if ref is not None: warn_unknown_attrs('INFO', ['ref'], config, pos) if unit is not None: warn_unknown_attrs('INFO', ['unit'], config, pos) if ucd is not None: warn_unknown_attrs('INFO', ['ucd'], config, pos) if utype is not None: warn_unknown_attrs('INFO', ['utype'], config, pos) warn_unknown_attrs('INFO', extra.keys(), config, pos) @property def name(self): """[*required*] The key of the key-value pair.""" return self._name @name.setter def name(self, name): if name is None: warn_or_raise(W35, W35, ('name'), self._config, self._pos) xmlutil.check_token(name, 'name', self._config, self._pos) self._name = name @property def value(self): """ [*required*] The value of the key-value pair. (Always stored as a string or unicode string). """ return self._value @value.setter def value(self, value): if value is None: warn_or_raise(W35, W35, ('value'), self._config, self._pos) check_string(value, 'value', self._config, self._pos) self._value = value @property def content(self): """The content inside the INFO element.""" return self._content @content.setter def content(self, content): check_string(content, 'content', self._config, self._pos) self._content = content @content.deleter def content(self): self._content = None @property def ref(self): """ Refer to another INFO_ element by ID_, defined previously in the document. """ return self._ref @ref.setter def ref(self, ref): if ref is not None and not self._config.get('version_1_2_or_later'): warn_or_raise(W28, W28, ('ref', 'INFO', '1.2'), self._config, self._pos) xmlutil.check_id(ref, 'ref', self._config, self._pos) # TODO: actually apply the reference # if ref is not None: # try: # other = self._votable.get_values_by_id(ref, before=self) # except KeyError: # vo_raise( # "VALUES ref='%s', which has not already been defined." % # self.ref, self._config, self._pos, KeyError) # self.null = other.null # self.type = other.type # self.min = other.min # self.min_inclusive = other.min_inclusive # self.max = other.max # self.max_inclusive = other.max_inclusive # self._options[:] = other.options self._ref = ref @ref.deleter def ref(self): self._ref = None @property def unit(self): """A string specifying the units_ for the INFO_.""" return self._unit @unit.setter def unit(self, unit): if unit is None: self._unit = None return from astropy import units as u if not self._config.get('version_1_2_or_later'): warn_or_raise(W28, W28, ('unit', 'INFO', '1.2'), self._config, self._pos) # First, parse the unit in the default way, so that we can # still emit a warning if the unit is not to spec. default_format = _get_default_unit_format(self._config) unit_obj = u.Unit( unit, format=default_format, parse_strict='silent') if isinstance(unit_obj, u.UnrecognizedUnit): warn_or_raise(W50, W50, (unit,), self._config, self._pos) format = _get_unit_format(self._config) if format != default_format: unit_obj = u.Unit( unit, format=format, parse_strict='silent') self._unit = unit_obj @unit.deleter def unit(self): self._unit = None def to_xml(self, w, **kwargs): attrib = w.object_attrs(self, self._attr_list) if 'unit' in attrib: attrib['unit'] = self.unit.to_string('cds') w.element(self._element_name, self._content, attrib=attrib) class Values(Element, _IDProperty): """ VALUES_ element: used within FIELD_ and PARAM_ elements to define the domain of values. The keyword arguments correspond to setting members of the same name, documented below. """ def __init__(self, votable, field, ID=None, null=None, ref=None, type="legal", id=None, config=None, pos=None, **extras): if config is None: config = {} self._config = config self._pos = pos Element.__init__(self) self._votable = votable self._field = field self.ID = resolve_id(ID, id, config, pos) self.null = null self._ref = ref self.type = type self.min = None self.max = None self.min_inclusive = True self.max_inclusive = True self._options = [] warn_unknown_attrs('VALUES', extras.keys(), config, pos) def __repr__(self): buff = io.StringIO() self.to_xml(XMLWriter(buff)) return buff.getvalue().strip() @property def null(self): """ For integral datatypes, *null* is used to define the value used for missing values. """ return self._null @null.setter def null(self, null): if null is not None and isinstance(null, str): try: null_val = self._field.converter.parse_scalar( null, self._config, self._pos)[0] except Exception: warn_or_raise(W36, W36, null, self._config, self._pos) null_val = self._field.converter.parse_scalar( '0', self._config, self._pos)[0] else: null_val = null self._null = null_val @null.deleter def null(self): self._null = None @property def type(self): """ [*required*] Defines the applicability of the domain defined by this VALUES_ element. Must be one of the following strings: - 'legal': The domain of this column applies in general to this datatype. (default) - 'actual': The domain of this column applies only to the data enclosed in the parent table. """ return self._type @type.setter def type(self, type): if type not in ('legal', 'actual'): vo_raise(E08, type, self._config, self._pos) self._type = type @property def ref(self): """ Refer to another VALUES_ element by ID_, defined previously in the document, for MIN/MAX/OPTION information. """ return self._ref @ref.setter def ref(self, ref): xmlutil.check_id(ref, 'ref', self._config, self._pos) if ref is not None: try: other = self._votable.get_values_by_id(ref, before=self) except KeyError: warn_or_raise(W43, W43, ('VALUES', self.ref), self._config, self._pos) ref = None else: self.null = other.null self.type = other.type self.min = other.min self.min_inclusive = other.min_inclusive self.max = other.max self.max_inclusive = other.max_inclusive self._options[:] = other.options self._ref = ref @ref.deleter def ref(self): self._ref = None @property def min(self): """ The minimum value of the domain. See :attr:`min_inclusive`. """ return self._min @min.setter def min(self, min): if hasattr(self._field, 'converter') and min is not None: self._min = self._field.converter.parse(min)[0] else: self._min = min @min.deleter def min(self): self._min = None @property def min_inclusive(self): """When `True`, the domain includes the minimum value.""" return self._min_inclusive @min_inclusive.setter def min_inclusive(self, inclusive): if inclusive == 'yes': self._min_inclusive = True elif inclusive == 'no': self._min_inclusive = False else: self._min_inclusive = bool(inclusive) @min_inclusive.deleter def min_inclusive(self): self._min_inclusive = True @property def max(self): """ The maximum value of the domain. See :attr:`max_inclusive`. """ return self._max @max.setter def max(self, max): if hasattr(self._field, 'converter') and max is not None: self._max = self._field.converter.parse(max)[0] else: self._max = max @max.deleter def max(self): self._max = None @property def max_inclusive(self): """When `True`, the domain includes the maximum value.""" return self._max_inclusive @max_inclusive.setter def max_inclusive(self, inclusive): if inclusive == 'yes': self._max_inclusive = True elif inclusive == 'no': self._max_inclusive = False else: self._max_inclusive = bool(inclusive) @max_inclusive.deleter def max_inclusive(self): self._max_inclusive = True @property def options(self): """ A list of string key-value tuples defining other OPTION elements for the domain. All options are ignored -- they are stored for round-tripping purposes only. """ return self._options def parse(self, iterator, config): if self.ref is not None: for start, tag, data, pos in iterator: if start: warn_or_raise(W44, W44, tag, config, pos) else: if tag != 'VALUES': warn_or_raise(W44, W44, tag, config, pos) break else: for start, tag, data, pos in iterator: if start: if tag == 'MIN': if 'value' not in data: vo_raise(E09, 'MIN', config, pos) self.min = data['value'] self.min_inclusive = data.get('inclusive', 'yes') warn_unknown_attrs( 'MIN', data.keys(), config, pos, ['value', 'inclusive']) elif tag == 'MAX': if 'value' not in data: vo_raise(E09, 'MAX', config, pos) self.max = data['value'] self.max_inclusive = data.get('inclusive', 'yes') warn_unknown_attrs( 'MAX', data.keys(), config, pos, ['value', 'inclusive']) elif tag == 'OPTION': if 'value' not in data: vo_raise(E09, 'OPTION', config, pos) xmlutil.check_token( data.get('name'), 'name', config, pos) self.options.append( (data.get('name'), data.get('value'))) warn_unknown_attrs( 'OPTION', data.keys(), config, pos, ['value', 'name']) elif tag == 'VALUES': break return self def is_defaults(self): """ Are the settings on this ``VALUE`` element all the same as the XML defaults? """ # If there's nothing meaningful or non-default to write, # don't write anything. return (self.ref is None and self.null is None and self.ID is None and self.max is None and self.min is None and self.options == []) def to_xml(self, w, **kwargs): def yes_no(value): if value: return 'yes' return 'no' if self.is_defaults(): return if self.ref is not None: w.element('VALUES', attrib=w.object_attrs(self, ['ref'])) else: with w.tag('VALUES', attrib=w.object_attrs( self, ['ID', 'null', 'ref'])): if self.min is not None: w.element( 'MIN', value=self._field.converter.output(self.min, False), inclusive=yes_no(self.min_inclusive)) if self.max is not None: w.element( 'MAX', value=self._field.converter.output(self.max, False), inclusive=yes_no(self.max_inclusive)) for name, value in self.options: w.element( 'OPTION', name=name, value=value) def to_table_column(self, column): # Have the ref filled in here meta = {} for key in ['ID', 'null']: val = getattr(self, key, None) if val is not None: meta[key] = val if self.min is not None: meta['min'] = { 'value': self.min, 'inclusive': self.min_inclusive} if self.max is not None: meta['max'] = { 'value': self.max, 'inclusive': self.max_inclusive} if len(self.options): meta['options'] = dict(self.options) column.meta['values'] = meta def from_table_column(self, column): if column.info.meta is None or 'values' not in column.info.meta: return meta = column.info.meta['values'] for key in ['ID', 'null']: val = meta.get(key, None) if val is not None: setattr(self, key, val) if 'min' in meta: self.min = meta['min']['value'] self.min_inclusive = meta['min']['inclusive'] if 'max' in meta: self.max = meta['max']['value'] self.max_inclusive = meta['max']['inclusive'] if 'options' in meta: self._options = list(meta['options'].items()) class Field(SimpleElement, _IDProperty, _NameProperty, _XtypeProperty, _UtypeProperty, _UcdProperty): """ FIELD_ element: describes the datatype of a particular column of data. The keyword arguments correspond to setting members of the same name, documented below. If *ID* is provided, it is used for the column name in the resulting recarray of the table. If no *ID* is provided, *name* is used instead. If neither is provided, an exception will be raised. """ _attr_list_11 = ['ID', 'name', 'datatype', 'arraysize', 'ucd', 'unit', 'width', 'precision', 'utype', 'ref'] _attr_list_12 = _attr_list_11 + ['xtype'] _element_name = 'FIELD' def __init__(self, votable, ID=None, name=None, datatype=None, arraysize=None, ucd=None, unit=None, width=None, precision=None, utype=None, ref=None, type=None, id=None, xtype=None, config=None, pos=None, **extra): if config is None: if hasattr(votable, '_get_version_checks'): config = votable._get_version_checks() else: config = {} self._config = config self._pos = pos SimpleElement.__init__(self) if config.get('version_1_2_or_later'): self._attr_list = self._attr_list_12 else: self._attr_list = self._attr_list_11 if xtype is not None: warn_unknown_attrs(self._element_name, ['xtype'], config, pos) # TODO: REMOVE ME ---------------------------------------- # This is a terrible hack to support Simple Image Access # Protocol results from https://astroarchive.noirlab.edu/ . It creates a field # for the coordinate projection type of type "double", which # actually contains character data. We have to hack the field # to store character data, or we can't read it in. A warning # will be raised when this happens. if (config.get('verify', 'ignore') != 'exception' and name == 'cprojection' and ID == 'cprojection' and ucd == 'VOX:WCS_CoordProjection' and datatype == 'double'): datatype = 'char' arraysize = '3' vo_warn(W40, (), config, pos) # ---------------------------------------- self.description = None self._votable = votable self.ID = (resolve_id(ID, id, config, pos) or xmlutil.fix_id(name, config, pos)) self.name = name if name is None: if (self._element_name == 'PARAM' and not config.get('version_1_1_or_later')): pass else: warn_or_raise(W15, W15, self._element_name, config, pos) self.name = self.ID if self._ID is None and name is None: vo_raise(W12, self._element_name, config, pos) datatype_mapping = { 'string': 'char', 'unicodeString': 'unicodeChar', 'int16': 'short', 'int32': 'int', 'int64': 'long', 'float32': 'float', 'float64': 'double', # The following appear in some Vizier tables 'unsignedInt': 'long', 'unsignedShort': 'int' } datatype_mapping.update(config.get('datatype_mapping', {})) if datatype in datatype_mapping: warn_or_raise(W13, W13, (datatype, datatype_mapping[datatype]), config, pos) datatype = datatype_mapping[datatype] self.ref = ref self.datatype = datatype self.arraysize = arraysize self.ucd = ucd self.unit = unit self.width = width self.precision = precision self.utype = utype self.type = type self._links = HomogeneousList(Link) self.title = self.name self.values = Values(self._votable, self) self.xtype = xtype self._setup(config, pos) warn_unknown_attrs(self._element_name, extra.keys(), config, pos) @classmethod def uniqify_names(cls, fields): """ Make sure that all names and titles in a list of fields are unique, by appending numbers if necessary. """ unique = {} for field in fields: i = 2 new_id = field.ID while new_id in unique: new_id = field.ID + f"_{i:d}" i += 1 if new_id != field.ID: vo_warn(W32, (field.ID, new_id), field._config, field._pos) field.ID = new_id unique[new_id] = field.ID for field in fields: i = 2 if field.name is None: new_name = field.ID implicit = True else: new_name = field.name implicit = False if new_name != field.ID: while new_name in unique: new_name = field.name + f" {i:d}" i += 1 if (not implicit and new_name != field.name): vo_warn(W33, (field.name, new_name), field._config, field._pos) field._unique_name = new_name unique[new_name] = field.name def _setup(self, config, pos): if self.values._ref is not None: self.values.ref = self.values._ref self.converter = converters.get_converter(self, config, pos) @property def datatype(self): """ [*required*] The datatype of the column. Valid values (as defined by the spec) are: 'boolean', 'bit', 'unsignedByte', 'short', 'int', 'long', 'char', 'unicodeChar', 'float', 'double', 'floatComplex', or 'doubleComplex' Many VOTABLE files in the wild use 'string' instead of 'char', so that is also a valid option, though 'string' will always be converted to 'char' when writing the file back out. """ return self._datatype @datatype.setter def datatype(self, datatype): if datatype is None: if self._config.get('version_1_1_or_later'): warn_or_raise(E10, E10, self._element_name, self._config, self._pos) datatype = 'char' if datatype not in converters.converter_mapping: vo_raise(E06, (datatype, self.ID), self._config, self._pos) self._datatype = datatype @property def precision(self): """ Along with :attr:`width`, defines the `numerical accuracy`_ associated with the data. These values are used to limit the precision when writing floating point values back to the XML file. Otherwise, it is purely informational -- the Numpy recarray containing the data itself does not use this information. """ return self._precision @precision.setter def precision(self, precision): if precision is not None and not re.match(r"^[FE]?[0-9]+$", precision): vo_raise(E11, precision, self._config, self._pos) self._precision = precision @precision.deleter def precision(self): self._precision = None @property def width(self): """ Along with :attr:`precision`, defines the `numerical accuracy`_ associated with the data. These values are used to limit the precision when writing floating point values back to the XML file. Otherwise, it is purely informational -- the Numpy recarray containing the data itself does not use this information. """ return self._width @width.setter def width(self, width): if width is not None: width = int(width) if width <= 0: vo_raise(E12, width, self._config, self._pos) self._width = width @width.deleter def width(self): self._width = None # ref on FIELD and PARAM behave differently than elsewhere -- here # they're just informational, such as to refer to a coordinate # system. @property def ref(self): """ On FIELD_ elements, ref is used only for informational purposes, for example to refer to a COOSYS_ or TIMESYS_ element. """ return self._ref @ref.setter def ref(self, ref): xmlutil.check_id(ref, 'ref', self._config, self._pos) self._ref = ref @ref.deleter def ref(self): self._ref = None @property def unit(self): """A string specifying the units_ for the FIELD_.""" return self._unit @unit.setter def unit(self, unit): if unit is None: self._unit = None return from astropy import units as u # First, parse the unit in the default way, so that we can # still emit a warning if the unit is not to spec. default_format = _get_default_unit_format(self._config) unit_obj = u.Unit( unit, format=default_format, parse_strict='silent') if isinstance(unit_obj, u.UnrecognizedUnit): warn_or_raise(W50, W50, (unit,), self._config, self._pos) format = _get_unit_format(self._config) if format != default_format: unit_obj = u.Unit( unit, format=format, parse_strict='silent') self._unit = unit_obj @unit.deleter def unit(self): self._unit = None @property def arraysize(self): """ Specifies the size of the multidimensional array if this FIELD_ contains more than a single value. See `multidimensional arrays`_. """ return self._arraysize @arraysize.setter def arraysize(self, arraysize): if (arraysize is not None and not re.match(r"^([0-9]+x)*[0-9]*[*]?(s\W)?$", arraysize)): vo_raise(E13, arraysize, self._config, self._pos) self._arraysize = arraysize @arraysize.deleter def arraysize(self): self._arraysize = None @property def type(self): """ The type attribute on FIELD_ elements is reserved for future extensions. """ return self._type @type.setter def type(self, type): self._type = type @type.deleter def type(self): self._type = None @property def values(self): """ A :class:`Values` instance (or `None`) defining the domain of the column. """ return self._values @values.setter def values(self, values): assert values is None or isinstance(values, Values) self._values = values @values.deleter def values(self): self._values = None @property def links(self): """ A list of :class:`Link` instances used to reference more details about the meaning of the FIELD_. This is purely informational and is not used by the `astropy.io.votable` package. """ return self._links def parse(self, iterator, config): for start, tag, data, pos in iterator: if start: if tag == 'VALUES': self.values.__init__( self._votable, self, config=config, pos=pos, **data) self.values.parse(iterator, config) elif tag == 'LINK': link = Link(config=config, pos=pos, **data) self.links.append(link) link.parse(iterator, config) elif tag == 'DESCRIPTION': warn_unknown_attrs( 'DESCRIPTION', data.keys(), config, pos) elif tag != self._element_name: self._add_unknown_tag(iterator, tag, data, config, pos) else: if tag == 'DESCRIPTION': if self.description is not None: warn_or_raise( W17, W17, self._element_name, config, pos) self.description = data or None elif tag == self._element_name: break if self.description is not None: self.title = " ".join(x.strip() for x in self.description.splitlines()) else: self.title = self.name self._setup(config, pos) return self def to_xml(self, w, **kwargs): attrib = w.object_attrs(self, self._attr_list) if 'unit' in attrib: attrib['unit'] = self.unit.to_string('cds') with w.tag(self._element_name, attrib=attrib): if self.description is not None: w.element('DESCRIPTION', self.description, wrap=True) if not self.values.is_defaults(): self.values.to_xml(w, **kwargs) for link in self.links: link.to_xml(w, **kwargs) def to_table_column(self, column): """ Sets the attributes of a given `astropy.table.Column` instance to match the information in this `Field`. """ for key in ['ucd', 'width', 'precision', 'utype', 'xtype']: val = getattr(self, key, None) if val is not None: column.meta[key] = val if not self.values.is_defaults(): self.values.to_table_column(column) for link in self.links: link.to_table_column(column) if self.description is not None: column.description = self.description if self.unit is not None: # TODO: Use units framework when it's available column.unit = self.unit if (isinstance(self.converter, converters.FloatingPoint) and self.converter.output_format != '{!r:>}'): column.format = self.converter.output_format elif isinstance(self.converter, converters.Char): column.info.meta['_votable_string_dtype'] = 'char' elif isinstance(self.converter, converters.UnicodeChar): column.info.meta['_votable_string_dtype'] = 'unicodeChar' @classmethod def from_table_column(cls, votable, column): """ Restores a `Field` instance from a given `astropy.table.Column` instance. """ kwargs = {} meta = column.info.meta if meta: for key in ['ucd', 'width', 'precision', 'utype', 'xtype']: val = meta.get(key, None) if val is not None: kwargs[key] = val # TODO: Use the unit framework when available if column.info.unit is not None: kwargs['unit'] = column.info.unit kwargs['name'] = column.info.name result = converters.table_column_to_votable_datatype(column) kwargs.update(result) field = cls(votable, **kwargs) if column.info.description is not None: field.description = column.info.description field.values.from_table_column(column) if meta and 'links' in meta: for link in meta['links']: field.links.append(Link.from_table_column(link)) # TODO: Parse format into precision and width return field class Param(Field): """ PARAM_ element: constant-valued columns in the data. :class:`Param` objects are a subclass of :class:`Field`, and have all of its methods and members. Additionally, it defines :attr:`value`. """ _attr_list_11 = Field._attr_list_11 + ['value'] _attr_list_12 = Field._attr_list_12 + ['value'] _element_name = 'PARAM' def __init__(self, votable, ID=None, name=None, value=None, datatype=None, arraysize=None, ucd=None, unit=None, width=None, precision=None, utype=None, type=None, id=None, config=None, pos=None, **extra): self._value = value Field.__init__(self, votable, ID=ID, name=name, datatype=datatype, arraysize=arraysize, ucd=ucd, unit=unit, precision=precision, utype=utype, type=type, id=id, config=config, pos=pos, **extra) @property def value(self): """ [*required*] The constant value of the parameter. Its type is determined by the :attr:`~Field.datatype` member. """ return self._value @value.setter def value(self, value): if value is None: value = "" if isinstance(value, str): self._value = self.converter.parse( value, self._config, self._pos)[0] else: self._value = value def _setup(self, config, pos): Field._setup(self, config, pos) self.value = self._value def to_xml(self, w, **kwargs): tmp_value = self._value self._value = self.converter.output(tmp_value, False) # We must always have a value if self._value is None: self._value = "" Field.to_xml(self, w, **kwargs) self._value = tmp_value class CooSys(SimpleElement): """ COOSYS_ element: defines a coordinate system. The keyword arguments correspond to setting members of the same name, documented below. """ _attr_list = ['ID', 'equinox', 'epoch', 'system'] _element_name = 'COOSYS' def __init__(self, ID=None, equinox=None, epoch=None, system=None, id=None, config=None, pos=None, **extra): if config is None: config = {} self._config = config self._pos = pos # COOSYS was deprecated in 1.2 but then re-instated in 1.3 if (config.get('version_1_2_or_later') and not config.get('version_1_3_or_later')): warn_or_raise(W27, W27, (), config, pos) SimpleElement.__init__(self) self.ID = resolve_id(ID, id, config, pos) self.equinox = equinox self.epoch = epoch self.system = system warn_unknown_attrs('COOSYS', extra.keys(), config, pos) @property def ID(self): """ [*required*] The XML ID of the COOSYS_ element, used for cross-referencing. May be `None` or a string conforming to XML ID_ syntax. """ return self._ID @ID.setter def ID(self, ID): if self._config.get('version_1_1_or_later'): if ID is None: vo_raise(E15, (), self._config, self._pos) xmlutil.check_id(ID, 'ID', self._config, self._pos) self._ID = ID @property def system(self): """ Specifies the type of coordinate system. Valid choices are: 'eq_FK4', 'eq_FK5', 'ICRS', 'ecl_FK4', 'ecl_FK5', 'galactic', 'supergalactic', 'xy', 'barycentric', or 'geo_app' """ return self._system @system.setter def system(self, system): if system not in ('eq_FK4', 'eq_FK5', 'ICRS', 'ecl_FK4', 'ecl_FK5', 'galactic', 'supergalactic', 'xy', 'barycentric', 'geo_app'): warn_or_raise(E16, E16, system, self._config, self._pos) self._system = system @system.deleter def system(self): self._system = None @property def equinox(self): """ A parameter required to fix the equatorial or ecliptic systems (as e.g. "J2000" as the default "eq_FK5" or "B1950" as the default "eq_FK4"). """ return self._equinox @equinox.setter def equinox(self, equinox): check_astroyear(equinox, 'equinox', self._config, self._pos) self._equinox = equinox @equinox.deleter def equinox(self): self._equinox = None @property def epoch(self): """ Specifies the epoch of the positions. It must be a string specifying an astronomical year. """ return self._epoch @epoch.setter def epoch(self, epoch): check_astroyear(epoch, 'epoch', self._config, self._pos) self._epoch = epoch @epoch.deleter def epoch(self): self._epoch = None class TimeSys(SimpleElement): """ TIMESYS_ element: defines a time system. The keyword arguments correspond to setting members of the same name, documented below. """ _attr_list = ['ID', 'timeorigin', 'timescale', 'refposition'] _element_name = 'TIMESYS' def __init__(self, ID=None, timeorigin=None, timescale=None, refposition=None, id=None, config=None, pos=None, **extra): if config is None: config = {} self._config = config self._pos = pos # TIMESYS is supported starting in version 1.4 if not config['version_1_4_or_later']: warn_or_raise( W54, W54, config['version'], config, pos) SimpleElement.__init__(self) self.ID = resolve_id(ID, id, config, pos) self.timeorigin = timeorigin self.timescale = timescale self.refposition = refposition warn_unknown_attrs('TIMESYS', extra.keys(), config, pos, ['ID', 'timeorigin', 'timescale', 'refposition']) @property def ID(self): """ [*required*] The XML ID of the TIMESYS_ element, used for cross-referencing. Must be a string conforming to XML ID_ syntax. """ return self._ID @ID.setter def ID(self, ID): if ID is None: vo_raise(E22, (), self._config, self._pos) xmlutil.check_id(ID, 'ID', self._config, self._pos) self._ID = ID @property def timeorigin(self): """ Specifies the time origin of the time coordinate, given as a Julian Date for the the time scale and reference point defined. It is usually given as a floating point literal; for convenience, the magic strings "MJD-origin" (standing for 2400000.5) and "JD-origin" (standing for 0) are also allowed. The timeorigin attribute MUST be given unless the time’s representation contains a year of a calendar era, in which case it MUST NOT be present. In VOTables, these representations currently are Gregorian calendar years with xtype="timestamp", or years in the Julian or Besselian calendar when a column has yr, a, or Ba as its unit and no time origin is given. """ return self._timeorigin @timeorigin.setter def timeorigin(self, timeorigin): if (timeorigin is not None and timeorigin != 'MJD-origin' and timeorigin != 'JD-origin'): try: timeorigin = float(timeorigin) except ValueError: warn_or_raise(E23, E23, timeorigin, self._config, self._pos) self._timeorigin = timeorigin @timeorigin.deleter def timeorigin(self): self._timeorigin = None @property def timescale(self): """ [*required*] String specifying the time scale used. Values should be taken from the IVOA timescale vocabulary (documented at http://www.ivoa.net/rdf/timescale). """ return self._timescale @timescale.setter def timescale(self, timescale): self._timescale = timescale @timescale.deleter def timescale(self): self._timescale = None @property def refposition(self): """ [*required*] String specifying the reference position. Values should be taken from the IVOA refposition vocabulary (documented at http://www.ivoa.net/rdf/refposition). """ return self._refposition @refposition.setter def refposition(self, refposition): self._refposition = refposition @refposition.deleter def refposition(self): self._refposition = None class FieldRef(SimpleElement, _UtypeProperty, _UcdProperty): """ FIELDref_ element: used inside of GROUP_ elements to refer to remote FIELD_ elements. """ _attr_list_11 = ['ref'] _attr_list_12 = _attr_list_11 + ['ucd', 'utype'] _element_name = "FIELDref" _utype_in_v1_2 = True _ucd_in_v1_2 = True def __init__(self, table, ref, ucd=None, utype=None, config=None, pos=None, **extra): """ *table* is the :class:`Table` object that this :class:`FieldRef` is a member of. *ref* is the ID to reference a :class:`Field` object defined elsewhere. """ if config is None: config = {} self._config = config self._pos = pos SimpleElement.__init__(self) self._table = table self.ref = ref self.ucd = ucd self.utype = utype if config.get('version_1_2_or_later'): self._attr_list = self._attr_list_12 else: self._attr_list = self._attr_list_11 if ucd is not None: warn_unknown_attrs(self._element_name, ['ucd'], config, pos) if utype is not None: warn_unknown_attrs(self._element_name, ['utype'], config, pos) @property def ref(self): """The ID_ of the FIELD_ that this FIELDref_ references.""" return self._ref @ref.setter def ref(self, ref): xmlutil.check_id(ref, 'ref', self._config, self._pos) self._ref = ref @ref.deleter def ref(self): self._ref = None def get_ref(self): """ Lookup the :class:`Field` instance that this :class:`FieldRef` references. """ for field in self._table._votable.iter_fields_and_params(): if isinstance(field, Field) and field.ID == self.ref: return field vo_raise( f"No field named '{self.ref}'", self._config, self._pos, KeyError) class ParamRef(SimpleElement, _UtypeProperty, _UcdProperty): """ PARAMref_ element: used inside of GROUP_ elements to refer to remote PARAM_ elements. The keyword arguments correspond to setting members of the same name, documented below. It contains the following publicly-accessible members: *ref*: An XML ID referring to a <PARAM> element. """ _attr_list_11 = ['ref'] _attr_list_12 = _attr_list_11 + ['ucd', 'utype'] _element_name = "PARAMref" _utype_in_v1_2 = True _ucd_in_v1_2 = True def __init__(self, table, ref, ucd=None, utype=None, config=None, pos=None): if config is None: config = {} self._config = config self._pos = pos Element.__init__(self) self._table = table self.ref = ref self.ucd = ucd self.utype = utype if config.get('version_1_2_or_later'): self._attr_list = self._attr_list_12 else: self._attr_list = self._attr_list_11 if ucd is not None: warn_unknown_attrs(self._element_name, ['ucd'], config, pos) if utype is not None: warn_unknown_attrs(self._element_name, ['utype'], config, pos) @property def ref(self): """The ID_ of the PARAM_ that this PARAMref_ references.""" return self._ref @ref.setter def ref(self, ref): xmlutil.check_id(ref, 'ref', self._config, self._pos) self._ref = ref @ref.deleter def ref(self): self._ref = None def get_ref(self): """ Lookup the :class:`Param` instance that this :class:``PARAMref`` references. """ for param in self._table._votable.iter_fields_and_params(): if isinstance(param, Param) and param.ID == self.ref: return param vo_raise( f"No params named '{self.ref}'", self._config, self._pos, KeyError) class Group(Element, _IDProperty, _NameProperty, _UtypeProperty, _UcdProperty, _DescriptionProperty): """ GROUP_ element: groups FIELD_ and PARAM_ elements. This information is currently ignored by the vo package---that is the columns in the recarray are always flat---but the grouping information is stored so that it can be written out again to the XML file. The keyword arguments correspond to setting members of the same name, documented below. """ def __init__(self, table, ID=None, name=None, ref=None, ucd=None, utype=None, id=None, config=None, pos=None, **extra): if config is None: config = {} self._config = config self._pos = pos Element.__init__(self) self._table = table self.ID = (resolve_id(ID, id, config, pos) or xmlutil.fix_id(name, config, pos)) self.name = name self.ref = ref self.ucd = ucd self.utype = utype self.description = None self._entries = HomogeneousList( (FieldRef, ParamRef, Group, Param)) warn_unknown_attrs('GROUP', extra.keys(), config, pos) def __repr__(self): return f'<GROUP>... {len(self._entries)} entries ...</GROUP>' @property def ref(self): """ Currently ignored, as it's not clear from the spec how this is meant to work. """ return self._ref @ref.setter def ref(self, ref): xmlutil.check_id(ref, 'ref', self._config, self._pos) self._ref = ref @ref.deleter def ref(self): self._ref = None @property def entries(self): """ [read-only] A list of members of the GROUP_. This list may only contain objects of type :class:`Param`, :class:`Group`, :class:`ParamRef` and :class:`FieldRef`. """ return self._entries def _add_fieldref(self, iterator, tag, data, config, pos): fieldref = FieldRef(self._table, config=config, pos=pos, **data) self.entries.append(fieldref) def _add_paramref(self, iterator, tag, data, config, pos): paramref = ParamRef(self._table, config=config, pos=pos, **data) self.entries.append(paramref) def _add_param(self, iterator, tag, data, config, pos): if isinstance(self._table, VOTableFile): votable = self._table else: votable = self._table._votable param = Param(votable, config=config, pos=pos, **data) self.entries.append(param) param.parse(iterator, config) def _add_group(self, iterator, tag, data, config, pos): group = Group(self._table, config=config, pos=pos, **data) self.entries.append(group) group.parse(iterator, config) def parse(self, iterator, config): tag_mapping = { 'FIELDref': self._add_fieldref, 'PARAMref': self._add_paramref, 'PARAM': self._add_param, 'GROUP': self._add_group, 'DESCRIPTION': self._ignore_add} for start, tag, data, pos in iterator: if start: tag_mapping.get(tag, self._add_unknown_tag)( iterator, tag, data, config, pos) else: if tag == 'DESCRIPTION': if self.description is not None: warn_or_raise(W17, W17, 'GROUP', config, pos) self.description = data or None elif tag == 'GROUP': break return self def to_xml(self, w, **kwargs): with w.tag( 'GROUP', attrib=w.object_attrs( self, ['ID', 'name', 'ref', 'ucd', 'utype'])): if self.description is not None: w.element("DESCRIPTION", self.description, wrap=True) for entry in self.entries: entry.to_xml(w, **kwargs) def iter_fields_and_params(self): """ Recursively iterate over all :class:`Param` elements in this :class:`Group`. """ for entry in self.entries: if isinstance(entry, Param): yield entry elif isinstance(entry, Group): yield from entry.iter_fields_and_params() def iter_groups(self): """ Recursively iterate over all sub-:class:`Group` instances in this :class:`Group`. """ for entry in self.entries: if isinstance(entry, Group): yield entry yield from entry.iter_groups() class Table(Element, _IDProperty, _NameProperty, _UcdProperty, _DescriptionProperty): """ TABLE_ element: optionally contains data. It contains the following publicly-accessible and mutable attribute: *array*: A Numpy masked array of the data itself, where each row is a row of votable data, and columns are named and typed based on the <FIELD> elements of the table. The mask is parallel to the data array, except for variable-length fields. For those fields, the numpy array's column type is "object" (``"O"``), and another masked array is stored there. If the Table contains no data, (for example, its enclosing :class:`Resource` has :attr:`~Resource.type` == 'meta') *array* will have zero-length. The keyword arguments correspond to setting members of the same name, documented below. """ def __init__(self, votable, ID=None, name=None, ref=None, ucd=None, utype=None, nrows=None, id=None, config=None, pos=None, **extra): if config is None: config = {} self._config = config self._pos = pos self._empty = False Element.__init__(self) self._votable = votable self.ID = (resolve_id(ID, id, config, pos) or xmlutil.fix_id(name, config, pos)) self.name = name xmlutil.check_id(ref, 'ref', config, pos) self._ref = ref self.ucd = ucd self.utype = utype if nrows is not None: nrows = int(nrows) if nrows < 0: raise ValueError("'nrows' cannot be negative.") self._nrows = nrows self.description = None self.format = 'tabledata' self._fields = HomogeneousList(Field) self._params = HomogeneousList(Param) self._groups = HomogeneousList(Group) self._links = HomogeneousList(Link) self._infos = HomogeneousList(Info) self.array = ma.array([]) warn_unknown_attrs('TABLE', extra.keys(), config, pos) def __repr__(self): return repr(self.to_table()) def __bytes__(self): return bytes(self.to_table()) def __str__(self): return str(self.to_table()) @property def ref(self): return self._ref @ref.setter def ref(self, ref): """ Refer to another TABLE, previously defined, by the *ref* ID_ for all metadata (FIELD_, PARAM_ etc.) information. """ # When the ref changes, we want to verify that it will work # by actually going and looking for the referenced table. # If found, set a bunch of properties in this table based # on the other one. xmlutil.check_id(ref, 'ref', self._config, self._pos) if ref is not None: try: table = self._votable.get_table_by_id(ref, before=self) except KeyError: warn_or_raise( W43, W43, ('TABLE', self.ref), self._config, self._pos) ref = None else: self._fields = table.fields self._params = table.params self._groups = table.groups self._links = table.links else: del self._fields[:] del self._params[:] del self._groups[:] del self._links[:] self._ref = ref @ref.deleter def ref(self): self._ref = None @property def format(self): """ [*required*] The serialization format of the table. Must be one of: 'tabledata' (TABLEDATA_), 'binary' (BINARY_), 'binary2' (BINARY2_) 'fits' (FITS_). Note that the 'fits' format, since it requires an external file, can not be written out. Any file read in with 'fits' format will be read out, by default, in 'tabledata' format. See :ref:`astropy:votable-serialization`. """ return self._format @format.setter def format(self, format): format = format.lower() if format == 'fits': vo_raise("fits format can not be written out, only read.", self._config, self._pos, NotImplementedError) if format == 'binary2': if not self._config['version_1_3_or_later']: vo_raise( "binary2 only supported in votable 1.3 or later", self._config, self._pos) elif format not in ('tabledata', 'binary'): vo_raise(f"Invalid format '{format}'", self._config, self._pos) self._format = format @property def nrows(self): """ [*immutable*] The number of rows in the table, as specified in the XML file. """ return self._nrows @property def fields(self): """ A list of :class:`Field` objects describing the types of each of the data columns. """ return self._fields @property def params(self): """ A list of parameters (constant-valued columns) for the table. Must contain only :class:`Param` objects. """ return self._params @property def groups(self): """ A list of :class:`Group` objects describing how the columns and parameters are grouped. Currently this information is only kept around for round-tripping and informational purposes. """ return self._groups @property def links(self): """ A list of :class:`Link` objects (pointers to other documents or servers through a URI) for the table. """ return self._links @property def infos(self): """ A list of :class:`Info` objects for the table. Allows for post-operational diagnostics. """ return self._infos def is_empty(self): """ Returns True if this table doesn't contain any real data because it was skipped over by the parser (through use of the ``table_number`` kwarg). """ return self._empty def create_arrays(self, nrows=0, config=None): """ Create a new array to hold the data based on the current set of fields, and store them in the *array* and member variable. Any data in the existing array will be lost. *nrows*, if provided, is the number of rows to allocate. """ if nrows is None: nrows = 0 fields = self.fields if len(fields) == 0: array = np.recarray((nrows,), dtype='O') mask = np.zeros((nrows,), dtype='b') else: # for field in fields: field._setup(config) Field.uniqify_names(fields) dtype = [] for x in fields: if x._unique_name == x.ID: id = x.ID else: id = (x._unique_name, x.ID) dtype.append((id, x.converter.format)) array = np.recarray((nrows,), dtype=np.dtype(dtype)) descr_mask = [] for d in array.dtype.descr: new_type = (d[1][1] == 'O' and 'O') or 'bool' if len(d) == 2: descr_mask.append((d[0], new_type)) elif len(d) == 3: descr_mask.append((d[0], new_type, d[2])) mask = np.zeros((nrows,), dtype=descr_mask) self.array = ma.array(array, mask=mask) def _resize_strategy(self, size): """ Return a new (larger) size based on size, used for reallocating an array when it fills up. This is in its own function so the resizing strategy can be easily replaced. """ # Once we go beyond 0, make a big step -- after that use a # factor of 1.5 to help keep memory usage compact if size == 0: return 512 return int(np.ceil(size * RESIZE_AMOUNT)) def _add_field(self, iterator, tag, data, config, pos): field = Field(self._votable, config=config, pos=pos, **data) self.fields.append(field) field.parse(iterator, config) def _add_param(self, iterator, tag, data, config, pos): param = Param(self._votable, config=config, pos=pos, **data) self.params.append(param) param.parse(iterator, config) def _add_group(self, iterator, tag, data, config, pos): group = Group(self, config=config, pos=pos, **data) self.groups.append(group) group.parse(iterator, config) def _add_link(self, iterator, tag, data, config, pos): link = Link(config=config, pos=pos, **data) self.links.append(link) link.parse(iterator, config) def _add_info(self, iterator, tag, data, config, pos): if not config.get('version_1_2_or_later'): warn_or_raise(W26, W26, ('INFO', 'TABLE', '1.2'), config, pos) info = Info(config=config, pos=pos, **data) self.infos.append(info) info.parse(iterator, config) def parse(self, iterator, config): columns = config.get('columns') # If we've requested to read in only a specific table, skip # all others table_number = config.get('table_number') current_table_number = config.get('_current_table_number') skip_table = False if current_table_number is not None: config['_current_table_number'] += 1 if (table_number is not None and table_number != current_table_number): skip_table = True self._empty = True table_id = config.get('table_id') if table_id is not None: if table_id != self.ID: skip_table = True self._empty = True if self.ref is not None: # This table doesn't have its own datatype descriptors, it # just references those from another table. # This is to call the property setter to go and get the # referenced information self.ref = self.ref for start, tag, data, pos in iterator: if start: if tag == 'DATA': warn_unknown_attrs( 'DATA', data.keys(), config, pos) break else: if tag == 'TABLE': return self elif tag == 'DESCRIPTION': if self.description is not None: warn_or_raise(W17, W17, 'RESOURCE', config, pos) self.description = data or None else: tag_mapping = { 'FIELD': self._add_field, 'PARAM': self._add_param, 'GROUP': self._add_group, 'LINK': self._add_link, 'INFO': self._add_info, 'DESCRIPTION': self._ignore_add} for start, tag, data, pos in iterator: if start: if tag == 'DATA': if len(self.fields) == 0: warn_or_raise(E25, E25, None, config, pos) warn_unknown_attrs( 'DATA', data.keys(), config, pos) break tag_mapping.get(tag, self._add_unknown_tag)( iterator, tag, data, config, pos) else: if tag == 'DESCRIPTION': if self.description is not None: warn_or_raise(W17, W17, 'RESOURCE', config, pos) self.description = data or None elif tag == 'TABLE': # For error checking purposes Field.uniqify_names(self.fields) # We still need to create arrays, even if the file # contains no DATA section self.create_arrays(nrows=0, config=config) return self self.create_arrays(nrows=self._nrows, config=config) fields = self.fields names = [x.ID for x in fields] # Deal with a subset of the columns, if requested. if not columns: colnumbers = list(range(len(fields))) else: if isinstance(columns, str): columns = [columns] columns = np.asarray(columns) if issubclass(columns.dtype.type, np.integer): if np.any(columns < 0) or np.any(columns > len(fields)): raise ValueError( "Some specified column numbers out of range") colnumbers = columns elif issubclass(columns.dtype.type, np.character): try: colnumbers = [names.index(x) for x in columns] except ValueError: raise ValueError( f"Columns '{columns}' not found in fields list") else: raise TypeError("Invalid columns list") if (not skip_table) and (len(fields) > 0): for start, tag, data, pos in iterator: if start: if tag == 'TABLEDATA': warn_unknown_attrs( 'TABLEDATA', data.keys(), config, pos) self.array = self._parse_tabledata( iterator, colnumbers, fields, config) break elif tag == 'BINARY': warn_unknown_attrs( 'BINARY', data.keys(), config, pos) self.array = self._parse_binary( 1, iterator, colnumbers, fields, config, pos) break elif tag == 'BINARY2': if not config['version_1_3_or_later']: warn_or_raise( W52, W52, config['version'], config, pos) self.array = self._parse_binary( 2, iterator, colnumbers, fields, config, pos) break elif tag == 'FITS': warn_unknown_attrs( 'FITS', data.keys(), config, pos, ['extnum']) try: extnum = int(data.get('extnum', 0)) if extnum < 0: raise ValueError("'extnum' cannot be negative.") except ValueError: vo_raise(E17, (), config, pos) self.array = self._parse_fits( iterator, extnum, config) break else: warn_or_raise(W37, W37, tag, config, pos) break for start, tag, data, pos in iterator: if not start and tag == 'DATA': break for start, tag, data, pos in iterator: if start and tag == 'INFO': if not config.get('version_1_2_or_later'): warn_or_raise( W26, W26, ('INFO', 'TABLE', '1.2'), config, pos) info = Info(config=config, pos=pos, **data) self.infos.append(info) info.parse(iterator, config) elif not start and tag == 'TABLE': break return self def _parse_tabledata(self, iterator, colnumbers, fields, config): # Since we don't know the number of rows up front, we'll # reallocate the record array to make room as we go. This # prevents the need to scan through the XML twice. The # allocation is by factors of 1.5. invalid = config.get('invalid', 'exception') # Need to have only one reference so that we can resize the # array array = self.array del self.array parsers = [field.converter.parse for field in fields] binparsers = [field.converter.binparse for field in fields] numrows = 0 alloc_rows = len(array) colnumbers_bits = [i in colnumbers for i in range(len(fields))] row_default = [x.converter.default for x in fields] mask_default = [True] * len(fields) array_chunk = [] mask_chunk = [] chunk_size = config.get('chunk_size', DEFAULT_CHUNK_SIZE) for start, tag, data, pos in iterator: if tag == 'TR': # Now parse one row row = row_default[:] row_mask = mask_default[:] i = 0 for start, tag, data, pos in iterator: if start: binary = (data.get('encoding', None) == 'base64') warn_unknown_attrs( tag, data.keys(), config, pos, ['encoding']) else: if tag == 'TD': if i >= len(fields): vo_raise(E20, len(fields), config, pos) if colnumbers_bits[i]: try: if binary: rawdata = base64.b64decode( data.encode('ascii')) buf = io.BytesIO(rawdata) buf.seek(0) try: value, mask_value = binparsers[i]( buf.read) except Exception as e: vo_reraise( e, config, pos, "(in row {:d}, col '{}')".format( len(array_chunk), fields[i].ID)) else: try: value, mask_value = parsers[i]( data, config, pos) except Exception as e: vo_reraise( e, config, pos, "(in row {:d}, col '{}')".format( len(array_chunk), fields[i].ID)) except Exception as e: if invalid == 'exception': vo_reraise(e, config, pos) else: row[i] = value row_mask[i] = mask_value elif tag == 'TR': break else: self._add_unknown_tag( iterator, tag, data, config, pos) i += 1 if i < len(fields): vo_raise(E21, (i, len(fields)), config, pos) array_chunk.append(tuple(row)) mask_chunk.append(tuple(row_mask)) if len(array_chunk) == chunk_size: while numrows + chunk_size > alloc_rows: alloc_rows = self._resize_strategy(alloc_rows) if alloc_rows != len(array): array = _resize(array, alloc_rows) array[numrows:numrows + chunk_size] = array_chunk array.mask[numrows:numrows + chunk_size] = mask_chunk numrows += chunk_size array_chunk = [] mask_chunk = [] elif not start and tag == 'TABLEDATA': break # Now, resize the array to the exact number of rows we need and # put the last chunk values in there. alloc_rows = numrows + len(array_chunk) array = _resize(array, alloc_rows) array[numrows:] = array_chunk if alloc_rows != 0: array.mask[numrows:] = mask_chunk numrows += len(array_chunk) if (self.nrows is not None and self.nrows >= 0 and self.nrows != numrows): warn_or_raise(W18, W18, (self.nrows, numrows), config, pos) self._nrows = numrows return array def _get_binary_data_stream(self, iterator, config): have_local_stream = False for start, tag, data, pos in iterator: if tag == 'STREAM': if start: warn_unknown_attrs( 'STREAM', data.keys(), config, pos, ['type', 'href', 'actuate', 'encoding', 'expires', 'rights']) if 'href' not in data: have_local_stream = True if data.get('encoding', None) != 'base64': warn_or_raise( W38, W38, data.get('encoding', None), config, pos) else: href = data['href'] xmlutil.check_anyuri(href, config, pos) encoding = data.get('encoding', None) else: buffer = data break if have_local_stream: buffer = base64.b64decode(buffer.encode('ascii')) string_io = io.BytesIO(buffer) string_io.seek(0) read = string_io.read else: if not href.startswith(('http', 'ftp', 'file')): vo_raise( "The vo package only supports remote data through http, " + "ftp or file", self._config, self._pos, NotImplementedError) fd = urllib.request.urlopen(href) if encoding is not None: if encoding == 'gzip': fd = gzip.GzipFile(href, 'rb', fileobj=fd) elif encoding == 'base64': fd = codecs.EncodedFile(fd, 'base64') else: vo_raise( f"Unknown encoding type '{encoding}'", self._config, self._pos, NotImplementedError) read = fd.read def careful_read(length): result = read(length) if len(result) != length: raise EOFError return result return careful_read def _parse_binary(self, mode, iterator, colnumbers, fields, config, pos): fields = self.fields careful_read = self._get_binary_data_stream(iterator, config) # Need to have only one reference so that we can resize the # array array = self.array del self.array binparsers = [field.converter.binparse for field in fields] numrows = 0 alloc_rows = len(array) while True: # Resize result arrays if necessary if numrows >= alloc_rows: alloc_rows = self._resize_strategy(alloc_rows) array = _resize(array, alloc_rows) row_data = [] row_mask_data = [] try: if mode == 2: mask_bits = careful_read(int((len(fields) + 7) / 8)) row_mask_data = list(converters.bitarray_to_bool( mask_bits, len(fields))) # Ignore the mask for string columns (see issue 8995) for i, f in enumerate(fields): if row_mask_data[i] and (f.datatype == 'char' or f.datatype == 'unicodeChar'): row_mask_data[i] = False for i, binparse in enumerate(binparsers): try: value, value_mask = binparse(careful_read) except EOFError: raise except Exception as e: vo_reraise( e, config, pos, "(in row {:d}, col '{}')".format( numrows, fields[i].ID)) row_data.append(value) if mode == 1: row_mask_data.append(value_mask) else: row_mask_data[i] = row_mask_data[i] or value_mask except EOFError: break row = [x.converter.default for x in fields] row_mask = [False] * len(fields) for i in colnumbers: row[i] = row_data[i] row_mask[i] = row_mask_data[i] array[numrows] = tuple(row) array.mask[numrows] = tuple(row_mask) numrows += 1 array = _resize(array, numrows) return array def _parse_fits(self, iterator, extnum, config): for start, tag, data, pos in iterator: if tag == 'STREAM': if start: warn_unknown_attrs( 'STREAM', data.keys(), config, pos, ['type', 'href', 'actuate', 'encoding', 'expires', 'rights']) href = data['href'] encoding = data.get('encoding', None) else: break if not href.startswith(('http', 'ftp', 'file')): vo_raise( "The vo package only supports remote data through http, " "ftp or file", self._config, self._pos, NotImplementedError) fd = urllib.request.urlopen(href) if encoding is not None: if encoding == 'gzip': fd = gzip.GzipFile(href, 'r', fileobj=fd) elif encoding == 'base64': fd = codecs.EncodedFile(fd, 'base64') else: vo_raise( f"Unknown encoding type '{encoding}'", self._config, self._pos, NotImplementedError) hdulist = fits.open(fd) array = hdulist[int(extnum)].data if array.dtype != self.array.dtype: warn_or_raise(W19, W19, (), self._config, self._pos) return array def to_xml(self, w, **kwargs): specified_format = kwargs.get('tabledata_format') if specified_format is not None: format = specified_format else: format = self.format if format == 'fits': format = 'tabledata' with w.tag( 'TABLE', attrib=w.object_attrs( self, ('ID', 'name', 'ref', 'ucd', 'utype', 'nrows'))): if self.description is not None: w.element("DESCRIPTION", self.description, wrap=True) for element_set in (self.fields, self.params): for element in element_set: element._setup({}, None) if self.ref is None: for element_set in (self.fields, self.params, self.groups, self.links): for element in element_set: element.to_xml(w, **kwargs) elif kwargs['version_1_2_or_later']: index = list(self._votable.iter_tables()).index(self) group = Group(self, ID=f"_g{index}") group.to_xml(w, **kwargs) if len(self.array): with w.tag('DATA'): if format == 'tabledata': self._write_tabledata(w, **kwargs) elif format == 'binary': self._write_binary(1, w, **kwargs) elif format == 'binary2': self._write_binary(2, w, **kwargs) if kwargs['version_1_2_or_later']: for element in self._infos: element.to_xml(w, **kwargs) def _write_tabledata(self, w, **kwargs): fields = self.fields array = self.array with w.tag('TABLEDATA'): w._flush() if (_has_c_tabledata_writer and not kwargs.get('_debug_python_based_parser')): supports_empty_values = [ field.converter.supports_empty_values(kwargs) for field in fields] fields = [field.converter.output for field in fields] indent = len(w._tags) - 1 tablewriter.write_tabledata( w.write, array.data, array.mask, fields, supports_empty_values, indent, 1 << 8) else: write = w.write indent_spaces = w.get_indentation_spaces() tr_start = indent_spaces + "<TR>\n" tr_end = indent_spaces + "</TR>\n" td = indent_spaces + " <TD>{}</TD>\n" td_empty = indent_spaces + " <TD/>\n" fields = [(i, field.converter.output, field.converter.supports_empty_values(kwargs)) for i, field in enumerate(fields)] for row in range(len(array)): write(tr_start) array_row = array.data[row] mask_row = array.mask[row] for i, output, supports_empty_values in fields: data = array_row[i] masked = mask_row[i] if supports_empty_values and np.all(masked): write(td_empty) else: try: val = output(data, masked) except Exception as e: vo_reraise( e, additional="(in row {:d}, col '{}')".format( row, self.fields[i].ID)) if len(val): write(td.format(val)) else: write(td_empty) write(tr_end) def _write_binary(self, mode, w, **kwargs): fields = self.fields array = self.array if mode == 1: tag_name = 'BINARY' else: tag_name = 'BINARY2' with w.tag(tag_name): with w.tag('STREAM', encoding='base64'): fields_basic = [(i, field.converter.binoutput) for (i, field) in enumerate(fields)] data = io.BytesIO() for row in range(len(array)): array_row = array.data[row] array_mask = array.mask[row] if mode == 2: flattened = np.array([np.all(x) for x in array_mask]) data.write(converters.bool_to_bitarray(flattened)) for i, converter in fields_basic: try: chunk = converter(array_row[i], array_mask[i]) assert type(chunk) == bytes except Exception as e: vo_reraise( e, additional=f"(in row {row:d}, col '{fields[i].ID}')") data.write(chunk) w._flush() w.write(base64.b64encode(data.getvalue()).decode('ascii')) def to_table(self, use_names_over_ids=False): """ Convert this VO Table to an `astropy.table.Table` instance. Parameters ---------- use_names_over_ids : bool, optional When `True` use the ``name`` attributes of columns as the names of columns in the `astropy.table.Table` instance. Since names are not guaranteed to be unique, this may cause some columns to be renamed by appending numbers to the end. Otherwise (default), use the ID attributes as the column names. .. warning:: Variable-length array fields may not be restored identically when round-tripping through the `astropy.table.Table` instance. """ from astropy.table import Table meta = {} for key in ['ID', 'name', 'ref', 'ucd', 'utype', 'description']: val = getattr(self, key, None) if val is not None: meta[key] = val if use_names_over_ids: names = [field.name for field in self.fields] unique_names = [] for i, name in enumerate(names): new_name = name i = 2 while new_name in unique_names: new_name = f'{name}{i}' i += 1 unique_names.append(new_name) names = unique_names else: names = [field.ID for field in self.fields] table = Table(self.array, names=names, meta=meta) for name, field in zip(names, self.fields): column = table[name] field.to_table_column(column) return table @classmethod def from_table(cls, votable, table): """ Create a `Table` instance from a given `astropy.table.Table` instance. """ kwargs = {} for key in ['ID', 'name', 'ref', 'ucd', 'utype']: val = table.meta.get(key) if val is not None: kwargs[key] = val new_table = cls(votable, **kwargs) if 'description' in table.meta: new_table.description = table.meta['description'] for colname in table.colnames: column = table[colname] new_table.fields.append(Field.from_table_column(votable, column)) if table.mask is None: new_table.array = ma.array(np.asarray(table)) else: new_table.array = ma.array(np.asarray(table), mask=np.asarray(table.mask)) return new_table def iter_fields_and_params(self): """ Recursively iterate over all FIELD and PARAM elements in the TABLE. """ yield from self.params yield from self.fields for group in self.groups: yield from group.iter_fields_and_params() get_field_by_id = _lookup_by_attr_factory( 'ID', True, 'iter_fields_and_params', 'FIELD or PARAM', """ Looks up a FIELD or PARAM element by the given ID. """) get_field_by_id_or_name = _lookup_by_id_or_name_factory( 'iter_fields_and_params', 'FIELD or PARAM', """ Looks up a FIELD or PARAM element by the given ID or name. """) get_fields_by_utype = _lookup_by_attr_factory( 'utype', False, 'iter_fields_and_params', 'FIELD or PARAM', """ Looks up a FIELD or PARAM element by the given utype and returns an iterator emitting all matches. """) def iter_groups(self): """ Recursively iterate over all GROUP elements in the TABLE. """ for group in self.groups: yield group yield from group.iter_groups() get_group_by_id = _lookup_by_attr_factory( 'ID', True, 'iter_groups', 'GROUP', """ Looks up a GROUP element by the given ID. Used by the group's "ref" attribute """) get_groups_by_utype = _lookup_by_attr_factory( 'utype', False, 'iter_groups', 'GROUP', """ Looks up a GROUP element by the given utype and returns an iterator emitting all matches. """) def iter_info(self): yield from self.infos class Resource(Element, _IDProperty, _NameProperty, _UtypeProperty, _DescriptionProperty): """ RESOURCE_ element: Groups TABLE_ and RESOURCE_ elements. The keyword arguments correspond to setting members of the same name, documented below. """ def __init__(self, name=None, ID=None, utype=None, type='results', id=None, config=None, pos=None, **kwargs): if config is None: config = {} self._config = config self._pos = pos Element.__init__(self) self.name = name self.ID = resolve_id(ID, id, config, pos) self.utype = utype self.type = type self._extra_attributes = kwargs self.description = None self._coordinate_systems = HomogeneousList(CooSys) self._time_systems = HomogeneousList(TimeSys) self._groups = HomogeneousList(Group) self._params = HomogeneousList(Param) self._infos = HomogeneousList(Info) self._links = HomogeneousList(Link) self._tables = HomogeneousList(Table) self._resources = HomogeneousList(Resource) warn_unknown_attrs('RESOURCE', kwargs.keys(), config, pos) def __repr__(self): buff = io.StringIO() w = XMLWriter(buff) w.element( self._element_name, attrib=w.object_attrs(self, self._attr_list)) return buff.getvalue().strip() @property def type(self): """ [*required*] The type of the resource. Must be either: - 'results': This resource contains actual result values (default) - 'meta': This resource contains only datatype descriptions (FIELD_ elements), but no actual data. """ return self._type @type.setter def type(self, type): if type not in ('results', 'meta'): vo_raise(E18, type, self._config, self._pos) self._type = type @property def extra_attributes(self): """ A dictionary of string keys to string values containing any extra attributes of the RESOURCE_ element that are not defined in the specification. (The specification explicitly allows for extra attributes here, but nowhere else.) """ return self._extra_attributes @property def coordinate_systems(self): """ A list of coordinate system definitions (COOSYS_ elements) for the RESOURCE_. Must contain only `CooSys` objects. """ return self._coordinate_systems @property def time_systems(self): """ A list of time system definitions (TIMESYS_ elements) for the RESOURCE_. Must contain only `TimeSys` objects. """ return self._time_systems @property def infos(self): """ A list of informational parameters (key-value pairs) for the resource. Must only contain `Info` objects. """ return self._infos @property def groups(self): """ A list of groups """ return self._groups @property def params(self): """ A list of parameters (constant-valued columns) for the resource. Must contain only `Param` objects. """ return self._params @property def links(self): """ A list of links (pointers to other documents or servers through a URI) for the resource. Must contain only `Link` objects. """ return self._links @property def tables(self): """ A list of tables in the resource. Must contain only `Table` objects. """ return self._tables @property def resources(self): """ A list of nested resources inside this resource. Must contain only `Resource` objects. """ return self._resources def _add_table(self, iterator, tag, data, config, pos): table = Table(self._votable, config=config, pos=pos, **data) self.tables.append(table) table.parse(iterator, config) def _add_info(self, iterator, tag, data, config, pos): info = Info(config=config, pos=pos, **data) self.infos.append(info) info.parse(iterator, config) def _add_group(self, iterator, tag, data, config, pos): group = Group(self, config=config, pos=pos, **data) self.groups.append(group) group.parse(iterator, config) def _add_param(self, iterator, tag, data, config, pos): param = Param(self._votable, config=config, pos=pos, **data) self.params.append(param) param.parse(iterator, config) def _add_coosys(self, iterator, tag, data, config, pos): coosys = CooSys(config=config, pos=pos, **data) self.coordinate_systems.append(coosys) coosys.parse(iterator, config) def _add_timesys(self, iterator, tag, data, config, pos): timesys = TimeSys(config=config, pos=pos, **data) self.time_systems.append(timesys) timesys.parse(iterator, config) def _add_resource(self, iterator, tag, data, config, pos): resource = Resource(config=config, pos=pos, **data) self.resources.append(resource) resource.parse(self._votable, iterator, config) def _add_link(self, iterator, tag, data, config, pos): link = Link(config=config, pos=pos, **data) self.links.append(link) link.parse(iterator, config) def parse(self, votable, iterator, config): self._votable = votable tag_mapping = { 'TABLE': self._add_table, 'INFO': self._add_info, 'PARAM': self._add_param, 'GROUP': self._add_group, 'COOSYS': self._add_coosys, 'TIMESYS': self._add_timesys, 'RESOURCE': self._add_resource, 'LINK': self._add_link, 'DESCRIPTION': self._ignore_add } for start, tag, data, pos in iterator: if start: tag_mapping.get(tag, self._add_unknown_tag)( iterator, tag, data, config, pos) elif tag == 'DESCRIPTION': if self.description is not None: warn_or_raise(W17, W17, 'RESOURCE', config, pos) self.description = data or None elif tag == 'RESOURCE': break del self._votable return self def to_xml(self, w, **kwargs): attrs = w.object_attrs(self, ('ID', 'type', 'utype')) attrs.update(self.extra_attributes) with w.tag('RESOURCE', attrib=attrs): if self.description is not None: w.element("DESCRIPTION", self.description, wrap=True) for element_set in (self.coordinate_systems, self.time_systems, self.params, self.infos, self.links, self.tables, self.resources): for element in element_set: element.to_xml(w, **kwargs) def iter_tables(self): """ Recursively iterates over all tables in the resource and nested resources. """ yield from self.tables for resource in self.resources: yield from resource.iter_tables() def iter_fields_and_params(self): """ Recursively iterates over all FIELD_ and PARAM_ elements in the resource, its tables and nested resources. """ yield from self.params for table in self.tables: yield from table.iter_fields_and_params() for resource in self.resources: yield from resource.iter_fields_and_params() def iter_coosys(self): """ Recursively iterates over all the COOSYS_ elements in the resource and nested resources. """ yield from self.coordinate_systems for resource in self.resources: yield from resource.iter_coosys() def iter_timesys(self): """ Recursively iterates over all the TIMESYS_ elements in the resource and nested resources. """ yield from self.time_systems for resource in self.resources: yield from resource.iter_timesys() def iter_info(self): """ Recursively iterates over all the INFO_ elements in the resource and nested resources. """ yield from self.infos for table in self.tables: yield from table.iter_info() for resource in self.resources: yield from resource.iter_info() class VOTableFile(Element, _IDProperty, _DescriptionProperty): """ VOTABLE_ element: represents an entire file. The keyword arguments correspond to setting members of the same name, documented below. *version* is settable at construction time only, since conformance tests for building the rest of the structure depend on it. """ def __init__(self, ID=None, id=None, config=None, pos=None, version="1.4"): if config is None: config = {} self._config = config self._pos = pos Element.__init__(self) self.ID = resolve_id(ID, id, config, pos) self.description = None self._coordinate_systems = HomogeneousList(CooSys) self._time_systems = HomogeneousList(TimeSys) self._params = HomogeneousList(Param) self._infos = HomogeneousList(Info) self._resources = HomogeneousList(Resource) self._groups = HomogeneousList(Group) version = str(version) if version == '1.0': warnings.warn('VOTable 1.0 support is deprecated in astropy 4.3 and will be ' 'removed in a future release', AstropyDeprecationWarning) elif (version != '1.0') and (version not in self._version_namespace_map): allowed_from_map = "', '".join(self._version_namespace_map) raise ValueError(f"'version' should be in ('1.0', '{allowed_from_map}').") self._version = version def __repr__(self): n_tables = len(list(self.iter_tables())) return f'<VOTABLE>... {n_tables} tables ...</VOTABLE>' @property def version(self): """ The version of the VOTable specification that the file uses. """ return self._version @version.setter def version(self, version): version = str(version) if version not in self._version_namespace_map: allowed_from_map = "', '".join(self._version_namespace_map) raise ValueError( f"astropy.io.votable only supports VOTable versions '{allowed_from_map}'") self._version = version @property def coordinate_systems(self): """ A list of coordinate system descriptions for the file. Must contain only `CooSys` objects. """ return self._coordinate_systems @property def time_systems(self): """ A list of time system descriptions for the file. Must contain only `TimeSys` objects. """ return self._time_systems @property def params(self): """ A list of parameters (constant-valued columns) that apply to the entire file. Must contain only `Param` objects. """ return self._params @property def infos(self): """ A list of informational parameters (key-value pairs) for the entire file. Must only contain `Info` objects. """ return self._infos @property def resources(self): """ A list of resources, in the order they appear in the file. Must only contain `Resource` objects. """ return self._resources @property def groups(self): """ A list of groups, in the order they appear in the file. Only supported as a child of the VOTABLE element in VOTable 1.2 or later. """ return self._groups def _add_param(self, iterator, tag, data, config, pos): param = Param(self, config=config, pos=pos, **data) self.params.append(param) param.parse(iterator, config) def _add_resource(self, iterator, tag, data, config, pos): resource = Resource(config=config, pos=pos, **data) self.resources.append(resource) resource.parse(self, iterator, config) def _add_coosys(self, iterator, tag, data, config, pos): coosys = CooSys(config=config, pos=pos, **data) self.coordinate_systems.append(coosys) coosys.parse(iterator, config) def _add_timesys(self, iterator, tag, data, config, pos): timesys = TimeSys(config=config, pos=pos, **data) self.time_systems.append(timesys) timesys.parse(iterator, config) def _add_info(self, iterator, tag, data, config, pos): info = Info(config=config, pos=pos, **data) self.infos.append(info) info.parse(iterator, config) def _add_group(self, iterator, tag, data, config, pos): if not config.get('version_1_2_or_later'): warn_or_raise(W26, W26, ('GROUP', 'VOTABLE', '1.2'), config, pos) group = Group(self, config=config, pos=pos, **data) self.groups.append(group) group.parse(iterator, config) def _get_version_checks(self): config = {} config['version_1_1_or_later'] = \ util.version_compare(self.version, '1.1') >= 0 config['version_1_2_or_later'] = \ util.version_compare(self.version, '1.2') >= 0 config['version_1_3_or_later'] = \ util.version_compare(self.version, '1.3') >= 0 config['version_1_4_or_later'] = \ util.version_compare(self.version, '1.4') >= 0 return config # Map VOTable version numbers to namespace URIs and schema information. _version_namespace_map = { # Version 1.0 isn't well-supported, but is allowed on parse (with a warning). # It used DTD rather than schema, so this information would not be useful. # By omitting 1.0 from this dict we can use the keys as the list of versions # that are allowed in various other checks. "1.1": { "namespace_uri": "http://www.ivoa.net/xml/VOTable/v1.1", "schema_location_attr": "xsi:noNamespaceSchemaLocation", "schema_location_value": "http://www.ivoa.net/xml/VOTable/v1.1" }, "1.2": { "namespace_uri": "http://www.ivoa.net/xml/VOTable/v1.2", "schema_location_attr": "xsi:noNamespaceSchemaLocation", "schema_location_value": "http://www.ivoa.net/xml/VOTable/v1.2" }, # With 1.3 we'll be more explicit with the schema location. # - xsi:schemaLocation uses the namespace name along with the URL # to reference it. # - For convenience, but somewhat confusingly, the namespace URIs # are also usable URLs for accessing an applicable schema. # However to avoid confusion, we'll use the explicit schema URL. "1.3": { "namespace_uri": "http://www.ivoa.net/xml/VOTable/v1.3", "schema_location_attr": "xsi:schemaLocation", "schema_location_value": "http://www.ivoa.net/xml/VOTable/v1.3 http://www.ivoa.net/xml/VOTable/VOTable-1.3.xsd" }, # With 1.4 namespace URIs stopped incrementing with minor version changes # so we use the same URI as with 1.3. See this IVOA note for more info: # http://www.ivoa.net/documents/Notes/XMLVers/20180529/ "1.4": { "namespace_uri": "http://www.ivoa.net/xml/VOTable/v1.3", "schema_location_attr": "xsi:schemaLocation", "schema_location_value": "http://www.ivoa.net/xml/VOTable/v1.3 http://www.ivoa.net/xml/VOTable/VOTable-1.4.xsd" } } def parse(self, iterator, config): config['_current_table_number'] = 0 for start, tag, data, pos in iterator: if start: if tag == 'xml': pass elif tag == 'VOTABLE': if 'version' not in data: warn_or_raise(W20, W20, self.version, config, pos) config['version'] = self.version else: config['version'] = self._version = data['version'] if config['version'].lower().startswith('v'): warn_or_raise( W29, W29, config['version'], config, pos) self._version = config['version'] = \ config['version'][1:] if config['version'] not in self._version_namespace_map: vo_warn(W21, config['version'], config, pos) if 'xmlns' in data: ns_info = self._version_namespace_map.get(config['version'], {}) correct_ns = ns_info.get('namespace_uri') if data['xmlns'] != correct_ns: vo_warn(W41, (correct_ns, data['xmlns']), config, pos) else: vo_warn(W42, (), config, pos) break else: vo_raise(E19, (), config, pos) config.update(self._get_version_checks()) tag_mapping = { 'PARAM': self._add_param, 'RESOURCE': self._add_resource, 'COOSYS': self._add_coosys, 'TIMESYS': self._add_timesys, 'INFO': self._add_info, 'DEFINITIONS': self._add_definitions, 'DESCRIPTION': self._ignore_add, 'GROUP': self._add_group} for start, tag, data, pos in iterator: if start: tag_mapping.get(tag, self._add_unknown_tag)( iterator, tag, data, config, pos) elif tag == 'DESCRIPTION': if self.description is not None: warn_or_raise(W17, W17, 'VOTABLE', config, pos) self.description = data or None if not len(self.resources) and config['version_1_2_or_later']: warn_or_raise(W53, W53, (), config, pos) return self def to_xml(self, fd, compressed=False, tabledata_format=None, _debug_python_based_parser=False, _astropy_version=None): """ Write to an XML file. Parameters ---------- fd : str or file-like Where to write the file. If a file-like object, must be writable. compressed : bool, optional When `True`, write to a gzip-compressed file. (Default: `False`) tabledata_format : str, optional Override the format of the table(s) data to write. Must be one of ``tabledata`` (text representation), ``binary`` or ``binary2``. By default, use the format that was specified in each `Table` object as it was created or read in. See :ref:`astropy:votable-serialization`. """ if tabledata_format is not None: if tabledata_format.lower() not in ( 'tabledata', 'binary', 'binary2'): raise ValueError(f"Unknown format type '{format}'") kwargs = { 'version': self.version, 'tabledata_format': tabledata_format, '_debug_python_based_parser': _debug_python_based_parser, '_group_number': 1} kwargs.update(self._get_version_checks()) with util.convert_to_writable_filelike( fd, compressed=compressed) as fd: w = XMLWriter(fd) version = self.version if _astropy_version is None: lib_version = astropy_version else: lib_version = _astropy_version xml_header = """ <?xml version="1.0" encoding="utf-8"?> <!-- Produced with astropy.io.votable version {lib_version} http://www.astropy.org/ -->\n""" w.write(xml_header.lstrip().format(**locals())) # Build the VOTABLE tag attributes. votable_attr = { 'version': version, 'xmlns:xsi': "http://www.w3.org/2001/XMLSchema-instance" } ns_info = self._version_namespace_map.get(version, {}) namespace_uri = ns_info.get('namespace_uri') if namespace_uri: votable_attr['xmlns'] = namespace_uri schema_location_attr = ns_info.get('schema_location_attr') schema_location_value = ns_info.get('schema_location_value') if schema_location_attr and schema_location_value: votable_attr[schema_location_attr] = schema_location_value with w.tag('VOTABLE', votable_attr): if self.description is not None: w.element("DESCRIPTION", self.description, wrap=True) element_sets = [self.coordinate_systems, self.time_systems, self.params, self.infos, self.resources] if kwargs['version_1_2_or_later']: element_sets[0] = self.groups for element_set in element_sets: for element in element_set: element.to_xml(w, **kwargs) def iter_tables(self): """ Iterates over all tables in the VOTable file in a "flat" way, ignoring the nesting of resources etc. """ for resource in self.resources: yield from resource.iter_tables() def get_first_table(self): """ Often, you know there is only one table in the file, and that's all you need. This method returns that first table. """ for table in self.iter_tables(): if not table.is_empty(): return table raise IndexError("No table found in VOTABLE file.") get_table_by_id = _lookup_by_attr_factory( 'ID', True, 'iter_tables', 'TABLE', """ Looks up a TABLE_ element by the given ID. Used by the table "ref" attribute. """) get_tables_by_utype = _lookup_by_attr_factory( 'utype', False, 'iter_tables', 'TABLE', """ Looks up a TABLE_ element by the given utype, and returns an iterator emitting all matches. """) def get_table_by_index(self, idx): """ Get a table by its ordinal position in the file. """ for i, table in enumerate(self.iter_tables()): if i == idx: return table raise IndexError( f"No table at index {idx:d} found in VOTABLE file.") def iter_fields_and_params(self): """ Recursively iterate over all FIELD_ and PARAM_ elements in the VOTABLE_ file. """ for resource in self.resources: yield from resource.iter_fields_and_params() get_field_by_id = _lookup_by_attr_factory( 'ID', True, 'iter_fields_and_params', 'FIELD', """ Looks up a FIELD_ element by the given ID_. Used by the field's "ref" attribute. """) get_fields_by_utype = _lookup_by_attr_factory( 'utype', False, 'iter_fields_and_params', 'FIELD', """ Looks up a FIELD_ element by the given utype and returns an iterator emitting all matches. """) get_field_by_id_or_name = _lookup_by_id_or_name_factory( 'iter_fields_and_params', 'FIELD', """ Looks up a FIELD_ element by the given ID_ or name. """) def iter_values(self): """ Recursively iterate over all VALUES_ elements in the VOTABLE_ file. """ for field in self.iter_fields_and_params(): yield field.values get_values_by_id = _lookup_by_attr_factory( 'ID', True, 'iter_values', 'VALUES', """ Looks up a VALUES_ element by the given ID. Used by the values "ref" attribute. """) def iter_groups(self): """ Recursively iterate over all GROUP_ elements in the VOTABLE_ file. """ for table in self.iter_tables(): yield from table.iter_groups() get_group_by_id = _lookup_by_attr_factory( 'ID', True, 'iter_groups', 'GROUP', """ Looks up a GROUP_ element by the given ID. Used by the group's "ref" attribute """) get_groups_by_utype = _lookup_by_attr_factory( 'utype', False, 'iter_groups', 'GROUP', """ Looks up a GROUP_ element by the given utype and returns an iterator emitting all matches. """) def iter_coosys(self): """ Recursively iterate over all COOSYS_ elements in the VOTABLE_ file. """ yield from self.coordinate_systems for resource in self.resources: yield from resource.iter_coosys() get_coosys_by_id = _lookup_by_attr_factory( 'ID', True, 'iter_coosys', 'COOSYS', """Looks up a COOSYS_ element by the given ID.""") def iter_timesys(self): """ Recursively iterate over all TIMESYS_ elements in the VOTABLE_ file. """ yield from self.time_systems for resource in self.resources: yield from resource.iter_timesys() get_timesys_by_id = _lookup_by_attr_factory( 'ID', True, 'iter_timesys', 'TIMESYS', """Looks up a TIMESYS_ element by the given ID.""") def iter_info(self): """ Recursively iterate over all INFO_ elements in the VOTABLE_ file. """ yield from self.infos for resource in self.resources: yield from resource.iter_info() get_info_by_id = _lookup_by_attr_factory( 'ID', True, 'iter_info', 'INFO', """Looks up a INFO element by the given ID.""") def set_all_tables_format(self, format): """ Set the output storage format of all tables in the file. """ for table in self.iter_tables(): table.format = format @classmethod def from_table(cls, table, table_id=None): """ Create a `VOTableFile` instance from a given `astropy.table.Table` instance. Parameters ---------- table_id : str, optional Set the given ID attribute on the returned Table instance. """ votable_file = cls() resource = Resource() votable = Table.from_table(votable_file, table) if table_id is not None: votable.ID = table_id resource.tables.append(votable) votable_file.resources.append(resource) return votable_file
cf392e0e7d9d47de3271f6372995af6361cde14b99345a8ee3d0aff5beaf4c17
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ .. _warnings: Warnings -------- .. note:: Most of the following warnings indicate violations of the VOTable specification. They should be reported to the authors of the tools that produced the VOTable file. To control the warnings emitted, use the standard Python :mod:`warnings` module and the ``astropy.io.votable.exceptions.conf.max_warnings`` configuration item. Most of these are of the type `VOTableSpecWarning`. {warnings} .. _exceptions: Exceptions ---------- .. note:: This is a list of many of the fatal exceptions emitted by ``astropy.io.votable`` when the file does not conform to spec. Other exceptions may be raised due to unforeseen cases or bugs in ``astropy.io.votable`` itself. {exceptions} """ # STDLIB import io import re from textwrap import dedent from warnings import warn from astropy import config as _config from astropy.utils.exceptions import AstropyWarning __all__ = [ 'Conf', 'conf', 'warn_or_raise', 'vo_raise', 'vo_reraise', 'vo_warn', 'warn_unknown_attrs', 'parse_vowarning', 'VOWarning', 'VOTableChangeWarning', 'VOTableSpecWarning', 'UnimplementedWarning', 'IOWarning', 'VOTableSpecError'] # NOTE: Cannot put this in __init__.py due to circular import. class Conf(_config.ConfigNamespace): """ Configuration parameters for `astropy.io.votable.exceptions`. """ max_warnings = _config.ConfigItem( 10, 'Number of times the same type of warning is displayed ' 'before being suppressed', cfgtype='integer') conf = Conf() def _format_message(message, name, config=None, pos=None): if config is None: config = {} if pos is None: pos = ('?', '?') filename = config.get('filename', '?') return f'{filename}:{pos[0]}:{pos[1]}: {name}: {message}' def _suppressed_warning(warning, config, stacklevel=2): warning_class = type(warning) config.setdefault('_warning_counts', dict()).setdefault(warning_class, 0) config['_warning_counts'][warning_class] += 1 message_count = config['_warning_counts'][warning_class] if message_count <= conf.max_warnings: if message_count == conf.max_warnings: warning.formatted_message += \ ' (suppressing further warnings of this type...)' warn(warning, stacklevel=stacklevel+1) def warn_or_raise(warning_class, exception_class=None, args=(), config=None, pos=None, stacklevel=1): """ Warn or raise an exception, depending on the verify setting. """ if config is None: config = {} # NOTE: the default here is deliberately warn rather than ignore, since # one would expect that calling warn_or_raise without config should not # silence the warnings. config_value = config.get('verify', 'warn') if config_value == 'exception': if exception_class is None: exception_class = warning_class vo_raise(exception_class, args, config, pos) elif config_value == 'warn': vo_warn(warning_class, args, config, pos, stacklevel=stacklevel+1) def vo_raise(exception_class, args=(), config=None, pos=None): """ Raise an exception, with proper position information if available. """ if config is None: config = {} raise exception_class(args, config, pos) def vo_reraise(exc, config=None, pos=None, additional=''): """ Raise an exception, with proper position information if available. Restores the original traceback of the exception, and should only be called within an "except:" block of code. """ if config is None: config = {} message = _format_message(str(exc), exc.__class__.__name__, config, pos) if message.split()[0] == str(exc).split()[0]: message = str(exc) if len(additional): message += ' ' + additional exc.args = (message,) raise exc def vo_warn(warning_class, args=(), config=None, pos=None, stacklevel=1): """ Warn, with proper position information if available. """ if config is None: config = {} # NOTE: the default here is deliberately warn rather than ignore, since # one would expect that calling warn_or_raise without config should not # silence the warnings. if config.get('verify', 'warn') != 'ignore': warning = warning_class(args, config, pos) _suppressed_warning(warning, config, stacklevel=stacklevel+1) def warn_unknown_attrs(element, attrs, config, pos, good_attr=[], stacklevel=1): for attr in attrs: if attr not in good_attr: vo_warn(W48, (attr, element), config, pos, stacklevel=stacklevel+1) _warning_pat = re.compile( r":?(?P<nline>[0-9?]+):(?P<nchar>[0-9?]+): " + r"((?P<warning>[WE]\d+): )?(?P<rest>.*)$") def parse_vowarning(line): """ Parses the vo warning string back into its parts. """ result = {} match = _warning_pat.search(line) if match: result['warning'] = warning = match.group('warning') if warning is not None: result['is_warning'] = (warning[0].upper() == 'W') result['is_exception'] = not result['is_warning'] result['number'] = int(match.group('warning')[1:]) result['doc_url'] = f"io/votable/api_exceptions.html#{warning.lower()}" else: result['is_warning'] = False result['is_exception'] = False result['is_other'] = True result['number'] = None result['doc_url'] = None try: result['nline'] = int(match.group('nline')) except ValueError: result['nline'] = 0 try: result['nchar'] = int(match.group('nchar')) except ValueError: result['nchar'] = 0 result['message'] = match.group('rest') result['is_something'] = True else: result['warning'] = None result['is_warning'] = False result['is_exception'] = False result['is_other'] = False result['is_something'] = False if not isinstance(line, str): line = line.decode('utf-8') result['message'] = line return result class VOWarning(AstropyWarning): """ The base class of all VO warnings and exceptions. Handles the formatting of the message with a warning or exception code, filename, line and column number. """ default_args = () message_template = '' def __init__(self, args, config=None, pos=None): if config is None: config = {} if not isinstance(args, tuple): args = (args, ) msg = self.message_template.format(*args) self.formatted_message = _format_message( msg, self.__class__.__name__, config, pos) Warning.__init__(self, self.formatted_message) def __str__(self): return self.formatted_message @classmethod def get_short_name(cls): if len(cls.default_args): return cls.message_template.format(*cls.default_args) return cls.message_template class VOTableChangeWarning(VOWarning, SyntaxWarning): """ A change has been made to the input XML file. """ class VOTableSpecWarning(VOWarning, SyntaxWarning): """ The input XML file violates the spec, but there is an obvious workaround. """ class UnimplementedWarning(VOWarning, SyntaxWarning): """ A feature of the VOTABLE_ spec is not implemented. """ class IOWarning(VOWarning, RuntimeWarning): """ A network or IO error occurred, but was recovered using the cache. """ class VOTableSpecError(VOWarning, ValueError): """ The input XML file violates the spec and there is no good workaround. """ class W01(VOTableSpecWarning): """ The VOTable spec states: If a cell contains an array or complex number, it should be encoded as multiple numbers separated by whitespace. Many VOTable files in the wild use commas as a separator instead, and ``astropy.io.votable`` can support this convention depending on the :ref:`astropy:verifying-votables` setting. ``astropy.io.votable`` always outputs files using only spaces, regardless of how they were input. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#toc-header-35>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:TABLEDATA>`__ """ message_template = "Array uses commas rather than whitespace" class W02(VOTableSpecWarning): r""" XML ids must match the following regular expression:: ^[A-Za-z_][A-Za-z0-9_\.\-]*$ The VOTable 1.1 says the following: According to the XML standard, the attribute ``ID`` is a string beginning with a letter or underscore (``_``), followed by a sequence of letters, digits, or any of the punctuation characters ``.`` (dot), ``-`` (dash), ``_`` (underscore), or ``:`` (colon). However, this is in conflict with the XML standard, which says colons may not be used. VOTable 1.1's own schema does not allow a colon here. Therefore, ``astropy.io.votable`` disallows the colon. VOTable 1.2 corrects this error in the specification. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:name>`__, `XML Names <http://www.w3.org/TR/REC-xml/#NT-Name>`__ """ message_template = "{} attribute '{}' is invalid. Must be a standard XML id" default_args = ('x', 'y') class W03(VOTableChangeWarning): """ The VOTable 1.1 spec says the following about ``name`` vs. ``ID`` on ``FIELD`` and ``VALUE`` elements: ``ID`` and ``name`` attributes have a different role in VOTable: the ``ID`` is meant as a *unique identifier* of an element seen as a VOTable component, while the ``name`` is meant for presentation purposes, and need not to be unique throughout the VOTable document. The ``ID`` attribute is therefore required in the elements which have to be referenced, but in principle any element may have an ``ID`` attribute. ... In summary, the ``ID`` is different from the ``name`` attribute in that (a) the ``ID`` attribute is made from a restricted character set, and must be unique throughout a VOTable document whereas names are standard XML attributes and need not be unique; and (b) there should be support in the parsing software to look up references and extract the relevant element with matching ``ID``. It is further recommended in the VOTable 1.2 spec: While the ``ID`` attribute has to be unique in a VOTable document, the ``name`` attribute need not. It is however recommended, as a good practice, to assign unique names within a ``TABLE`` element. This recommendation means that, between a ``TABLE`` and its corresponding closing ``TABLE`` tag, ``name`` attributes of ``FIELD``, ``PARAM`` and optional ``GROUP`` elements should be all different. Since ``astropy.io.votable`` requires a unique identifier for each of its columns, ``ID`` is used for the column name when present. However, when ``ID`` is not present, (since it is not required by the specification) ``name`` is used instead. However, ``name`` must be cleansed by replacing invalid characters (such as whitespace) with underscores. .. note:: This warning does not indicate that the input file is invalid with respect to the VOTable specification, only that the column names in the record array may not match exactly the ``name`` attributes specified in the file. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:name>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:name>`__ """ message_template = "Implicitly generating an ID from a name '{}' -> '{}'" default_args = ('x', 'y') class W04(VOTableSpecWarning): """ The ``content-type`` attribute must use MIME content-type syntax as defined in `RFC 2046 <https://tools.ietf.org/html/rfc2046>`__. The current check for validity is somewhat over-permissive. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:link>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:link>`__ """ message_template = "content-type '{}' must be a valid MIME content type" default_args = ('x',) class W05(VOTableSpecWarning): """ The attribute must be a valid URI as defined in `RFC 2396 <https://www.ietf.org/rfc/rfc2396.txt>`_. """ message_template = "'{}' is not a valid URI" default_args = ('x',) class W06(VOTableSpecWarning): """ This warning is emitted when a ``ucd`` attribute does not match the syntax of a `unified content descriptor <http://vizier.u-strasbg.fr/doc/UCD.htx>`__. If the VOTable version is 1.2 or later, the UCD will also be checked to ensure it conforms to the controlled vocabulary defined by UCD1+. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:ucd>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:ucd>`__ """ message_template = "Invalid UCD '{}': {}" default_args = ('x', 'explanation') class W07(VOTableSpecWarning): """ As astro year field is a Besselian or Julian year matching the regular expression:: ^[JB]?[0-9]+([.][0-9]*)?$ Defined in this XML Schema snippet:: <xs:simpleType name="astroYear"> <xs:restriction base="xs:token"> <xs:pattern value="[JB]?[0-9]+([.][0-9]*)?"/> </xs:restriction> </xs:simpleType> """ message_template = "Invalid astroYear in {}: '{}'" default_args = ('x', 'y') class W08(VOTableSpecWarning): """ To avoid local-dependent number parsing differences, ``astropy.io.votable`` may require a string or unicode string where a numeric type may make more sense. """ message_template = "'{}' must be a str or bytes object" default_args = ('x',) class W09(VOTableSpecWarning): """ The VOTable specification uses the attribute name ``ID`` (with uppercase letters) to specify unique identifiers. Some VOTable-producing tools use the more standard lowercase ``id`` instead. ``astropy.io.votable`` accepts ``id`` and emits this warning if ``verify`` is ``'warn'``. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:name>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:name>`__ """ message_template = "ID attribute not capitalized" class W10(VOTableSpecWarning): """ The parser has encountered an element that does not exist in the specification, or appears in an invalid context. Check the file against the VOTable schema (with a tool such as `xmllint <http://xmlsoft.org/xmllint.html>`__. If the file validates against the schema, and you still receive this warning, this may indicate a bug in ``astropy.io.votable``. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#ToC54>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#ToC58>`__ """ message_template = "Unknown tag '{}'. Ignoring" default_args = ('x',) class W11(VOTableSpecWarning): """ Earlier versions of the VOTable specification used a ``gref`` attribute on the ``LINK`` element to specify a `GLU reference <http://aladin.u-strasbg.fr/glu/>`__. New files should specify a ``glu:`` protocol using the ``href`` attribute. Since ``astropy.io.votable`` does not currently support GLU references, it likewise does not automatically convert the ``gref`` attribute to the new form. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:link>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:link>`__ """ message_template = "The gref attribute on LINK is deprecated in VOTable 1.1" class W12(VOTableChangeWarning): """ In order to name the columns of the Numpy record array, each ``FIELD`` element must have either an ``ID`` or ``name`` attribute to derive a name from. Strictly speaking, according to the VOTable schema, the ``name`` attribute is required. However, if ``name`` is not present by ``ID`` is, and ``verify`` is not ``'exception'``, ``astropy.io.votable`` will continue without a ``name`` defined. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:name>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:name>`__ """ message_template = ( "'{}' element must have at least one of 'ID' or 'name' attributes") default_args = ('x',) class W13(VOTableSpecWarning): """ Some VOTable files in the wild use non-standard datatype names. These are mapped to standard ones using the following mapping:: string -> char unicodeString -> unicodeChar int16 -> short int32 -> int int64 -> long float32 -> float float64 -> double unsignedInt -> long unsignedShort -> int To add more datatype mappings during parsing, use the ``datatype_mapping`` keyword to `astropy.io.votable.parse`. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:datatypes>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:datatypes>`__ """ message_template = "'{}' is not a valid VOTable datatype, should be '{}'" default_args = ('x', 'y') # W14: Deprecated class W15(VOTableSpecWarning): """ The ``name`` attribute is required on every ``FIELD`` element. However, many VOTable files in the wild omit it and provide only an ``ID`` instead. In this case, when ``verify`` is not ``'exception'`` ``astropy.io.votable`` will copy the ``name`` attribute to a new ``ID`` attribute. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:name>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:name>`__ """ message_template = "{} element missing required 'name' attribute" default_args = ('x',) # W16: Deprecated class W17(VOTableSpecWarning): """ A ``DESCRIPTION`` element can only appear once within its parent element. According to the schema, it may only occur once (`1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#ToC54>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#ToC58>`__) However, it is a `proposed extension <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:addesc>`__ to VOTable 1.2. """ message_template = "{} element contains more than one DESCRIPTION element" default_args = ('x',) class W18(VOTableSpecWarning): """ The number of rows explicitly specified in the ``nrows`` attribute does not match the actual number of rows (``TR`` elements) present in the ``TABLE``. This may indicate truncation of the file, or an internal error in the tool that produced it. If ``verify`` is not ``'exception'``, parsing will proceed, with the loss of some performance. **References:** `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#ToC10>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#ToC10>`__ """ message_template = 'TABLE specified nrows={}, but table contains {} rows' default_args = ('x', 'y') class W19(VOTableSpecWarning): """ The column fields as defined using ``FIELD`` elements do not match those in the headers of the embedded FITS file. If ``verify`` is not ``'exception'``, the embedded FITS file will take precedence. """ message_template = ( 'The fields defined in the VOTable do not match those in the ' + 'embedded FITS file') class W20(VOTableSpecWarning): """ If no version number is explicitly given in the VOTable file, the parser assumes it is written to the VOTable 1.1 specification. """ message_template = 'No version number specified in file. Assuming {}' default_args = ('1.1',) class W21(UnimplementedWarning): """ Unknown issues may arise using ``astropy.io.votable`` with VOTable files from a version other than 1.1, 1.2, 1.3, or 1.4. """ message_template = ( 'astropy.io.votable is designed for VOTable version 1.1, 1.2, 1.3,' ' and 1.4, but this file is {}') default_args = ('x',) class W22(VOTableSpecWarning): """ Version 1.0 of the VOTable specification used the ``DEFINITIONS`` element to define coordinate systems. Version 1.1 now uses ``COOSYS`` elements throughout the document. **References:** `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:definitions>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:definitions>`__ """ message_template = 'The DEFINITIONS element is deprecated in VOTable 1.1. Ignoring' class W23(IOWarning): """ Raised when the VO service database can not be updated (possibly due to a network outage). This is only a warning, since an older and possible out-of-date VO service database was available locally. """ message_template = "Unable to update service information for '{}'" default_args = ('x',) class W24(VOWarning, FutureWarning): """ The VO catalog database retrieved from the www is designed for a newer version of ``astropy.io.votable``. This may cause problems or limited features performing service queries. Consider upgrading ``astropy.io.votable`` to the latest version. """ message_template = "The VO catalog database is for a later version of astropy.io.votable" class W25(IOWarning): """ A VO service query failed due to a network error or malformed arguments. Another alternative service may be attempted. If all services fail, an exception will be raised. """ message_template = "'{}' failed with: {}" default_args = ('service', '...') class W26(VOTableSpecWarning): """ The given element was not supported inside of the given element until the specified VOTable version, however the version declared in the file is for an earlier version. These attributes may not be written out to the file. """ message_template = "'{}' inside '{}' added in VOTable {}" default_args = ('child', 'parent', 'X.X') class W27(VOTableSpecWarning): """ The ``COOSYS`` element was deprecated in VOTABLE version 1.2 in favor of a reference to the Space-Time Coordinate (STC) data model (see `utype <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:utype>`__ and the IVOA note `referencing STC in VOTable <http://ivoa.net/Documents/latest/VOTableSTC.html>`__. """ message_template = "COOSYS deprecated in VOTable 1.2" class W28(VOTableSpecWarning): """ The given attribute was not supported on the given element until the specified VOTable version, however the version declared in the file is for an earlier version. These attributes may not be written out to the file. """ message_template = "'{}' on '{}' added in VOTable {}" default_args = ('attribute', 'element', 'X.X') class W29(VOTableSpecWarning): """ Some VOTable files specify their version number in the form "v1.0", when the only supported forms in the spec are "1.0". **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#ToC54>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#ToC58>`__ """ message_template = "Version specified in non-standard form '{}'" default_args = ('v1.0',) class W30(VOTableSpecWarning): """ Some VOTable files write missing floating-point values in non-standard ways, such as "null" and "-". If ``verify`` is not ``'exception'``, any non-standard floating-point literals are treated as missing values. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:datatypes>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:datatypes>`__ """ message_template = "Invalid literal for float '{}'. Treating as empty." default_args = ('x',) class W31(VOTableSpecWarning): """ Since NaN's can not be represented in integer fields directly, a null value must be specified in the FIELD descriptor to support reading NaN's from the tabledata. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:datatypes>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:datatypes>`__ """ message_template = "NaN given in an integral field without a specified null value" class W32(VOTableSpecWarning): """ Each field in a table must have a unique ID. If two or more fields have the same ID, some will be renamed to ensure that all IDs are unique. From the VOTable 1.2 spec: The ``ID`` and ``ref`` attributes are defined as XML types ``ID`` and ``IDREF`` respectively. This means that the contents of ``ID`` is an identifier which must be unique throughout a VOTable document, and that the contents of the ``ref`` attribute represents a reference to an identifier which must exist in the VOTable document. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:name>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:name>`__ """ message_template = "Duplicate ID '{}' renamed to '{}' to ensure uniqueness" default_args = ('x', 'x_2') class W33(VOTableChangeWarning): """ Each field in a table must have a unique name. If two or more fields have the same name, some will be renamed to ensure that all names are unique. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:name>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:name>`__ """ message_template = "Column name '{}' renamed to '{}' to ensure uniqueness" default_args = ('x', 'x_2') class W34(VOTableSpecWarning): """ The attribute requires the value to be a valid XML token, as defined by `XML 1.0 <http://www.w3.org/TR/2000/WD-xml-2e-20000814#NT-Nmtoken>`__. """ message_template = "'{}' is an invalid token for attribute '{}'" default_args = ('x', 'y') class W35(VOTableSpecWarning): """ The ``name`` and ``value`` attributes are required on all ``INFO`` elements. **References:** `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#ToC54>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#ToC32>`__ """ message_template = "'{}' attribute required for INFO elements" default_args = ('x',) class W36(VOTableSpecWarning): """ If the field specifies a ``null`` value, that value must conform to the given ``datatype``. **References:** `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:values>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:values>`__ """ message_template = "null value '{}' does not match field datatype, setting to 0" default_args = ('x',) class W37(UnimplementedWarning): """ The 3 datatypes defined in the VOTable specification and supported by ``astropy.io.votable`` are ``TABLEDATA``, ``BINARY`` and ``FITS``. **References:** `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:data>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:data>`__ """ message_template = "Unsupported data format '{}'" default_args = ('x',) class W38(VOTableSpecWarning): """ The only encoding for local binary data supported by the VOTable specification is base64. """ message_template = "Inline binary data must be base64 encoded, got '{}'" default_args = ('x',) class W39(VOTableSpecWarning): """ Bit values do not support masking. This warning is raised upon setting masked data in a bit column. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:datatypes>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:datatypes>`__ """ message_template = "Bit values can not be masked" class W40(VOTableSpecWarning): """ This is a terrible hack to support Simple Image Access Protocol results from `NOIRLab Astro Data Archive <https://astroarchive.noirlab.edu/>`__. It creates a field for the coordinate projection type of type "double", which actually contains character data. We have to hack the field to store character data, or we can't read it in. A warning will be raised when this happens. """ message_template = "'cprojection' datatype repaired" class W41(VOTableSpecWarning): """ An XML namespace was specified on the ``VOTABLE`` element, but the namespace does not match what is expected for a ``VOTABLE`` file. The ``VOTABLE`` namespace is:: http://www.ivoa.net/xml/VOTable/vX.X where "X.X" is the version number. Some files in the wild set the namespace to the location of the VOTable schema, which is not correct and will not pass some validating parsers. """ message_template = ( "An XML namespace is specified, but is incorrect. Expected " + "'{}', got '{}'") default_args = ('x', 'y') class W42(VOTableSpecWarning): """ The root element should specify a namespace. The ``VOTABLE`` namespace is:: http://www.ivoa.net/xml/VOTable/vX.X where "X.X" is the version number. """ message_template = "No XML namespace specified" class W43(VOTableSpecWarning): """ Referenced elements should be defined before referees. From the VOTable 1.2 spec: In VOTable1.2, it is further recommended to place the ID attribute prior to referencing it whenever possible. """ message_template = "{} ref='{}' which has not already been defined" default_args = ('element', 'x',) class W44(VOTableSpecWarning): """ ``VALUES`` elements that reference another element should not have their own content. From the VOTable 1.2 spec: The ``ref`` attribute of a ``VALUES`` element can be used to avoid a repetition of the domain definition, by referring to a previously defined ``VALUES`` element having the referenced ``ID`` attribute. When specified, the ``ref`` attribute defines completely the domain without any other element or attribute, as e.g. ``<VALUES ref="RAdomain"/>`` """ message_template = "VALUES element with ref attribute has content ('{}')" default_args = ('element',) class W45(VOWarning, ValueError): """ The ``content-role`` attribute on the ``LINK`` element must be one of the following:: query, hints, doc, location And in VOTable 1.3, additionally:: type **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#ToC54>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#ToC58>`__ `1.3 <http://www.ivoa.net/documents/VOTable/20130315/PR-VOTable-1.3-20130315.html#sec:link>`__ """ message_template = "content-role attribute '{}' invalid" default_args = ('x',) class W46(VOTableSpecWarning): """ The given char or unicode string is too long for the specified field length. """ message_template = "{} value is too long for specified length of {}" default_args = ('char or unicode', 'x') class W47(VOTableSpecWarning): """ If no arraysize is specified on a char field, the default of '1' is implied, but this is rarely what is intended. """ message_template = "Missing arraysize indicates length 1" class W48(VOTableSpecWarning): """ The attribute is not defined in the specification. """ message_template = "Unknown attribute '{}' on {}" default_args = ('attribute', 'element') class W49(VOTableSpecWarning): """ Prior to VOTable 1.3, the empty cell was illegal for integer fields. If a \"null\" value was specified for the cell, it will be used for the value, otherwise, 0 will be used. """ message_template = "Empty cell illegal for integer fields." class W50(VOTableSpecWarning): """ Invalid unit string as defined in the `Units in the VO, Version 1.0 <https://www.ivoa.net/documents/VOUnits>`_ (VOTable version >= 1.4) or `Standards for Astronomical Catalogues, Version 2.0 <http://cdsarc.u-strasbg.fr/doc/catstd-3.2.htx>`_ (version < 1.4). Consider passing an explicit ``unit_format`` parameter if the units in this file conform to another specification. """ message_template = "Invalid unit string '{}'" default_args = ('x',) class W51(VOTableSpecWarning): """ The integer value is out of range for the size of the field. """ message_template = "Value '{}' is out of range for a {} integer field" default_args = ('x', 'n-bit') class W52(VOTableSpecWarning): """ The BINARY2 format was introduced in VOTable 1.3. It should not be present in files marked as an earlier version. """ message_template = ("The BINARY2 format was introduced in VOTable 1.3, but " "this file is declared as version '{}'") default_args = ('1.2',) class W53(VOTableSpecWarning): """ The VOTABLE element must contain at least one RESOURCE element. """ message_template = ("VOTABLE element must contain at least one RESOURCE element.") default_args = () class W54(VOTableSpecWarning): """ The TIMESYS element was introduced in VOTable 1.4. It should not be present in files marked as an earlier version. """ message_template = ( "The TIMESYS element was introduced in VOTable 1.4, but " "this file is declared as version '{}'") default_args = ('1.3',) class W55(VOTableSpecWarning): """ When non-ASCII characters are detected when reading a TABLEDATA value for a FIELD with ``datatype="char"``, we can issue this warning. """ message_template = ( 'FIELD ({}) has datatype="char" but contains non-ASCII ' 'value ({})') default_args = ('', '') class E01(VOWarning, ValueError): """ The size specifier for a ``char`` or ``unicode`` field must be only a number followed, optionally, by an asterisk. Multi-dimensional size specifiers are not supported for these datatypes. Strings, which are defined as a set of characters, can be represented in VOTable as a fixed- or variable-length array of characters:: <FIELD name="unboundedString" datatype="char" arraysize="*"/> A 1D array of strings can be represented as a 2D array of characters, but given the logic above, it is possible to define a variable-length array of fixed-length strings, but not a fixed-length array of variable-length strings. """ message_template = "Invalid size specifier '{}' for a {} field (in field '{}')" default_args = ('x', 'char/unicode', 'y') class E02(VOWarning, ValueError): """ The number of array elements in the data does not match that specified in the FIELD specifier. """ message_template = ( "Incorrect number of elements in array. " + "Expected multiple of {}, got {}") default_args = ('x', 'y') class E03(VOWarning, ValueError): """ Complex numbers should be two values separated by whitespace. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:datatypes>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:datatypes>`__ """ message_template = "'{}' does not parse as a complex number" default_args = ('x',) class E04(VOWarning, ValueError): """ A ``bit`` array should be a string of '0's and '1's. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:datatypes>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:datatypes>`__ """ message_template = "Invalid bit value '{}'" default_args = ('x',) class E05(VOWarning, ValueError): r""" A ``boolean`` value should be one of the following strings (case insensitive) in the ``TABLEDATA`` format:: 'TRUE', 'FALSE', '1', '0', 'T', 'F', '\0', ' ', '?' and in ``BINARY`` format:: 'T', 'F', '1', '0', '\0', ' ', '?' **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:datatypes>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:datatypes>`__ """ message_template = "Invalid boolean value '{}'" default_args = ('x',) class E06(VOWarning, ValueError): """ The supported datatypes are:: double, float, bit, boolean, unsignedByte, short, int, long, floatComplex, doubleComplex, char, unicodeChar The following non-standard aliases are also supported, but in these case :ref:`W13 <W13>` will be raised:: string -> char unicodeString -> unicodeChar int16 -> short int32 -> int int64 -> long float32 -> float float64 -> double unsignedInt -> long unsignedShort -> int To add more datatype mappings during parsing, use the ``datatype_mapping`` keyword to `astropy.io.votable.parse`. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:datatypes>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:datatypes>`__ """ message_template = "Unknown datatype '{}' on field '{}'" default_args = ('x', 'y') # E07: Deprecated class E08(VOWarning, ValueError): """ The ``type`` attribute on the ``VALUES`` element must be either ``legal`` or ``actual``. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:values>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:values>`__ """ message_template = "type must be 'legal' or 'actual', but is '{}'" default_args = ('x',) class E09(VOWarning, ValueError): """ The ``MIN``, ``MAX`` and ``OPTION`` elements must always have a ``value`` attribute. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:values>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:values>`__ """ message_template = "'{}' must have a value attribute" default_args = ('x',) class E10(VOWarning, ValueError): """ From VOTable 1.1 and later, ``FIELD`` and ``PARAM`` elements must have a ``datatype`` field. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#elem:FIELD>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#elem:FIELD>`__ """ message_template = "'datatype' attribute required on all '{}' elements" default_args = ('FIELD',) class E11(VOWarning, ValueError): """ The precision attribute is meant to express the number of significant digits, either as a number of decimal places (e.g. ``precision="F2"`` or equivalently ``precision="2"`` to express 2 significant figures after the decimal point), or as a number of significant figures (e.g. ``precision="E5"`` indicates a relative precision of 10-5). It is validated using the following regular expression:: [EF]?[1-9][0-9]* **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:form>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:form>`__ """ message_template = "precision '{}' is invalid" default_args = ('x',) class E12(VOWarning, ValueError): """ The width attribute is meant to indicate to the application the number of characters to be used for input or output of the quantity. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:form>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:form>`__ """ message_template = "width must be a positive integer, got '{}'" default_args = ('x',) class E13(VOWarning, ValueError): r""" From the VOTable 1.2 spec: A table cell can contain an array of a given primitive type, with a fixed or variable number of elements; the array may even be multidimensional. For instance, the position of a point in a 3D space can be defined by the following:: <FIELD ID="point_3D" datatype="double" arraysize="3"/> and each cell corresponding to that definition must contain exactly 3 numbers. An asterisk (\*) may be appended to indicate a variable number of elements in the array, as in:: <FIELD ID="values" datatype="int" arraysize="100*"/> where it is specified that each cell corresponding to that definition contains 0 to 100 integer numbers. The number may be omitted to specify an unbounded array (in practice up to =~2×10⁹ elements). A table cell can also contain a multidimensional array of a given primitive type. This is specified by a sequence of dimensions separated by the ``x`` character, with the first dimension changing fastest; as in the case of a simple array, the last dimension may be variable in length. As an example, the following definition declares a table cell which may contain a set of up to 10 images, each of 64×64 bytes:: <FIELD ID="thumbs" datatype="unsignedByte" arraysize="64×64×10*"/> **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#sec:dim>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#sec:dim>`__ """ message_template = "Invalid arraysize attribute '{}'" default_args = ('x',) class E14(VOWarning, ValueError): """ All ``PARAM`` elements must have a ``value`` attribute. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#elem:FIELD>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#elem:FIELD>`__ """ message_template = "value attribute is required for all PARAM elements" class E15(VOWarning, ValueError): """ All ``COOSYS`` elements must have an ``ID`` attribute. Note that the VOTable 1.1 specification says this attribute is optional, but its corresponding schema indicates it is required. In VOTable 1.2, the ``COOSYS`` element is deprecated. """ message_template = "ID attribute is required for all COOSYS elements" class E16(VOTableSpecWarning): """ The ``system`` attribute on the ``COOSYS`` element must be one of the following:: 'eq_FK4', 'eq_FK5', 'ICRS', 'ecl_FK4', 'ecl_FK5', 'galactic', 'supergalactic', 'xy', 'barycentric', 'geo_app' **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#elem:COOSYS>`__ """ message_template = "Invalid system attribute '{}'" default_args = ('x',) class E17(VOWarning, ValueError): """ ``extnum`` attribute must be a positive integer. **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#ToC54>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#ToC58>`__ """ message_template = "extnum must be a positive integer" class E18(VOWarning, ValueError): """ The ``type`` attribute of the ``RESOURCE`` element must be one of "results" or "meta". **References**: `1.1 <http://www.ivoa.net/documents/VOTable/20040811/REC-VOTable-1.1-20040811.html#ToC54>`__, `1.2 <http://www.ivoa.net/documents/VOTable/20091130/REC-VOTable-1.2.html#ToC58>`__ """ message_template = "type must be 'results' or 'meta', not '{}'" default_args = ('x',) class E19(VOWarning, ValueError): """ Raised either when the file doesn't appear to be XML, or the root element is not VOTABLE. """ message_template = "File does not appear to be a VOTABLE" class E20(VOTableSpecError): """ The table had only *x* fields defined, but the data itself has more columns than that. """ message_template = "Data has more columns than are defined in the header ({})" default_args = ('x',) class E21(VOWarning, ValueError): """ The table had *x* fields defined, but the data itself has only *y* columns. """ message_template = "Data has fewer columns ({}) than are defined in the header ({})" default_args = ('x', 'y') class E22(VOWarning, ValueError): """ All ``TIMESYS`` elements must have an ``ID`` attribute. """ message_template = "ID attribute is required for all TIMESYS elements" class E23(VOTableSpecWarning): """ The ``timeorigin`` attribute on the ``TIMESYS`` element must be either a floating point literal specifying a valid Julian Date, or, for convenience, the string "MJD-origin" (standing for 2400000.5) or the string "JD-origin" (standing for 0). **References**: `1.4 <http://www.ivoa.net/documents/VOTable/20191021/REC-VOTable-1.4-20191021.html#ToC21>`__ """ message_template = "Invalid timeorigin attribute '{}'" default_args = ('x',) class E24(VOWarning, ValueError): """ Non-ASCII unicode values should not be written when the FIELD ``datatype="char"``, and cannot be written in BINARY or BINARY2 serialization. """ message_template = ( 'Attempt to write non-ASCII value ({}) to FIELD ({}) which ' 'has datatype="char"') default_args = ('', '') class E25(VOTableSpecWarning): """ A VOTable cannot have a DATA section without any defined FIELD; DATA will be ignored. """ message_template = "No FIELDs are defined; DATA section will be ignored." def _get_warning_and_exception_classes(prefix): classes = [] for key, val in globals().items(): if re.match(prefix + "[0-9]{2}", key): classes.append((key, val)) classes.sort() return classes def _build_doc_string(): def generate_set(prefix): classes = _get_warning_and_exception_classes(prefix) out = io.StringIO() for name, cls in classes: out.write(f".. _{name}:\n\n") msg = f"{cls.__name__}: {cls.get_short_name()}" if not isinstance(msg, str): msg = msg.decode('utf-8') out.write(msg) out.write('\n') out.write('~' * len(msg)) out.write('\n\n') doc = cls.__doc__ if not isinstance(doc, str): doc = doc.decode('utf-8') out.write(dedent(doc)) out.write('\n\n') return out.getvalue() warnings = generate_set('W') exceptions = generate_set('E') return {'warnings': warnings, 'exceptions': exceptions} if __doc__ is not None: __doc__ = __doc__.format(**_build_doc_string()) __all__.extend([x[0] for x in _get_warning_and_exception_classes('W')]) __all__.extend([x[0] for x in _get_warning_and_exception_classes('E')])
f7af7a64db0de2fb2cc0779ec3755f0fb963ec2343b5b7aa95b28fbae26a9119
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This file contains routines to verify the correctness of UCD strings. """ # STDLIB import re # LOCAL from astropy.utils import data __all__ = ['parse_ucd', 'check_ucd'] class UCDWords: """ Manages a list of acceptable UCD words. Works by reading in a data file exactly as provided by IVOA. This file resides in data/ucd1p-words.txt. """ def __init__(self): self._primary = set() self._secondary = set() self._descriptions = {} self._capitalization = {} with data.get_pkg_data_fileobj( "data/ucd1p-words.txt", encoding='ascii') as fd: for line in fd.readlines(): type, name, descr = (x.strip() for x in line.split('|')) name_lower = name.lower() if type in 'QPEVC': self._primary.add(name_lower) if type in 'QSEVC': self._secondary.add(name_lower) self._descriptions[name_lower] = descr self._capitalization[name_lower] = name def is_primary(self, name): """ Returns True if *name* is a valid primary name. """ return name.lower() in self._primary def is_secondary(self, name): """ Returns True if *name* is a valid secondary name. """ return name.lower() in self._secondary def get_description(self, name): """ Returns the official English description of the given UCD *name*. """ return self._descriptions[name.lower()] def normalize_capitalization(self, name): """ Returns the standard capitalization form of the given name. """ return self._capitalization[name.lower()] _ucd_singleton = None def parse_ucd(ucd, check_controlled_vocabulary=False, has_colon=False): """ Parse the UCD into its component parts. Parameters ---------- ucd : str The UCD string check_controlled_vocabulary : bool, optional If `True`, then each word in the UCD will be verified against the UCD1+ controlled vocabulary, (as required by the VOTable specification version 1.2), otherwise not. has_colon : bool, optional If `True`, the UCD may contain a colon (as defined in earlier versions of the standard). Returns ------- parts : list The result is a list of tuples of the form: (*namespace*, *word*) If no namespace was explicitly specified, *namespace* will be returned as ``'ivoa'`` (i.e., the default namespace). Raises ------ ValueError if *ucd* is invalid """ global _ucd_singleton if _ucd_singleton is None: _ucd_singleton = UCDWords() if has_colon: m = re.search(r'[^A-Za-z0-9_.:;\-]', ucd) else: m = re.search(r'[^A-Za-z0-9_.;\-]', ucd) if m is not None: raise ValueError(f"UCD has invalid character '{m.group(0)}' in '{ucd}'") word_component_re = r'[A-Za-z0-9][A-Za-z0-9\-_]*' word_re = fr'{word_component_re}(\.{word_component_re})*' parts = ucd.split(';') words = [] for i, word in enumerate(parts): colon_count = word.count(':') if colon_count == 1: ns, word = word.split(':', 1) if not re.match(word_component_re, ns): raise ValueError(f"Invalid namespace '{ns}'") ns = ns.lower() elif colon_count > 1: raise ValueError(f"Too many colons in '{word}'") else: ns = 'ivoa' if not re.match(word_re, word): raise ValueError(f"Invalid word '{word}'") if ns == 'ivoa' and check_controlled_vocabulary: if i == 0: if not _ucd_singleton.is_primary(word): if _ucd_singleton.is_secondary(word): raise ValueError( f"Secondary word '{word}' is not valid as a primary word") else: raise ValueError(f"Unknown word '{word}'") else: if not _ucd_singleton.is_secondary(word): if _ucd_singleton.is_primary(word): raise ValueError( f"Primary word '{word}' is not valid as a secondary word") else: raise ValueError(f"Unknown word '{word}'") try: normalized_word = _ucd_singleton.normalize_capitalization(word) except KeyError: normalized_word = word words.append((ns, normalized_word)) return words def check_ucd(ucd, check_controlled_vocabulary=False, has_colon=False): """ Returns False if *ucd* is not a valid `unified content descriptor`_. Parameters ---------- ucd : str The UCD string check_controlled_vocabulary : bool, optional If `True`, then each word in the UCD will be verified against the UCD1+ controlled vocabulary, (as required by the VOTable specification version 1.2), otherwise not. has_colon : bool, optional If `True`, the UCD may contain a colon (as defined in earlier versions of the standard). Returns ------- valid : bool """ if ucd is None: return True try: parse_ucd(ucd, check_controlled_vocabulary=check_controlled_vocabulary, has_colon=has_colon) except ValueError: return False return True
ae45d387f4b18d914eb7776dd55eb9b9cdab88bebea6d0092366f31791e95174
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Various utilities and cookbook-like things. """ # STDLIB import codecs import contextlib import io import re import gzip from packaging.version import Version __all__ = [ 'convert_to_writable_filelike', 'stc_reference_frames', 'coerce_range_list_param', ] @contextlib.contextmanager def convert_to_writable_filelike(fd, compressed=False): """ Returns a writable file-like object suitable for streaming output. Parameters ---------- fd : str or file-like May be: - a file path string, in which case it is opened, and the file object is returned. - an object with a :meth:``write`` method, in which case that object is returned. compressed : bool, optional If `True`, create a gzip-compressed file. (Default is `False`). Returns ------- fd : writable file-like """ if isinstance(fd, str): if fd.endswith('.gz') or compressed: with gzip.GzipFile(fd, 'wb') as real_fd: encoded_fd = io.TextIOWrapper(real_fd, encoding='utf8') yield encoded_fd encoded_fd.flush() real_fd.flush() return else: with open(fd, 'wt', encoding='utf8') as real_fd: yield real_fd return elif hasattr(fd, 'write'): assert callable(fd.write) if compressed: fd = gzip.GzipFile(fileobj=fd) # If we can't write Unicode strings, use a codecs.StreamWriter # object needs_wrapper = False try: fd.write('') except TypeError: needs_wrapper = True if not hasattr(fd, 'encoding') or fd.encoding is None: needs_wrapper = True if needs_wrapper: yield codecs.getwriter('utf-8')(fd) fd.flush() else: yield fd fd.flush() return else: raise TypeError("Can not be coerced to writable file-like object") # <http://www.ivoa.net/documents/REC/DM/STC-20071030.html> stc_reference_frames = { 'FK4', 'FK5', 'ECLIPTIC', 'ICRS', 'GALACTIC', 'GALACTIC_I', 'GALACTIC_II', 'SUPER_GALACTIC', 'AZ_EL', 'BODY', 'GEO_C', 'GEO_D', 'MAG', 'GSE', 'GSM', 'SM', 'HGC', 'HGS', 'HEEQ', 'HRTN', 'HPC', 'HPR', 'HCC', 'HGI', 'MERCURY_C', 'VENUS_C', 'LUNA_C', 'MARS_C', 'JUPITER_C_III', 'SATURN_C_III', 'URANUS_C_III', 'NEPTUNE_C_III', 'PLUTO_C', 'MERCURY_G', 'VENUS_G', 'LUNA_G', 'MARS_G', 'JUPITER_G_III', 'SATURN_G_III', 'URANUS_G_III', 'NEPTUNE_G_III', 'PLUTO_G', 'UNKNOWNFrame'} def coerce_range_list_param(p, frames=None, numeric=True): """ Coerces and/or verifies the object *p* into a valid range-list-format parameter. As defined in `Section 8.7.2 of Simple Spectral Access Protocol <http://www.ivoa.net/documents/REC/DAL/SSA-20080201.html>`_. Parameters ---------- p : str or sequence May be a string as passed verbatim to the service expecting a range-list, or a sequence. If a sequence, each item must be either: - a numeric value - a named value, such as, for example, 'J' for named spectrum (if the *numeric* kwarg is False) - a 2-tuple indicating a range - the last item my be a string indicating the frame of reference frames : sequence of str, optional A sequence of acceptable frame of reference keywords. If not provided, the default set in ``set_reference_frames`` will be used. numeric : bool, optional TODO Returns ------- parts : tuple The result is a tuple: - a string suitable for passing to a service as a range-list argument - an integer counting the number of elements """ def str_or_none(x): if x is None: return '' if numeric: x = float(x) return str(x) def numeric_or_range(x): if isinstance(x, tuple) and len(x) == 2: return f'{str_or_none(x[0])}/{str_or_none(x[1])}' else: return str_or_none(x) def is_frame_of_reference(x): return isinstance(x, str) if p is None: return None, 0 elif isinstance(p, (tuple, list)): has_frame_of_reference = len(p) > 1 and is_frame_of_reference(p[-1]) if has_frame_of_reference: points = p[:-1] else: points = p[:] out = ','.join([numeric_or_range(x) for x in points]) length = len(points) if has_frame_of_reference: if frames is not None and p[-1] not in frames: raise ValueError( f"'{p[-1]}' is not a valid frame of reference") out += ';' + p[-1] length += 1 return out, length elif isinstance(p, str): number = r'([-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?)?' if not numeric: number = r'(' + number + ')|([A-Z_]+)' match = re.match( '^' + number + r'([,/]' + number + r')+(;(?P<frame>[<A-Za-z_0-9]+))?$', p) if match is None: raise ValueError(f"'{p}' is not a valid range list") frame = match.groupdict()['frame'] if frames is not None and frame is not None and frame not in frames: raise ValueError( f"'{frame}' is not a valid frame of reference") return p, p.count(',') + p.count(';') + 1 try: float(p) return str(p), 1 except TypeError: raise ValueError(f"'{p}' is not a valid range list") def version_compare(a, b): """ Compare two VOTable version identifiers. """ def version_to_tuple(v): if v[0].lower() == 'v': v = v[1:] return Version(v) av = version_to_tuple(a) bv = version_to_tuple(b) # Can't use cmp because it was removed from Python 3.x return (av > bv) - (av < bv)
fc0666f6f0fefe59292ce20f7357730eebcf856c023da17f4208242a73bc0c96
# Licensed under a 3-clause BSD style license - see LICENSE.rst import argparse import glob import logging import os import sys from astropy.io import fits from astropy.io.fits.util import fill from astropy import __version__ log = logging.getLogger('fitsdiff') DESCRIPTION = """ Compare two FITS image files and report the differences in header keywords and data. fitsdiff [options] filename1 filename2 where filename1 filename2 are the two files to be compared. They may also be wild cards, in such cases, they must be enclosed by double or single quotes, or they may be directory names. If both are directory names, all files in each of the directories will be included; if only one is a directory name, then the directory name will be prefixed to the file name(s) specified by the other argument. for example:: fitsdiff "*.fits" "/machine/data1" will compare all FITS files in the current directory to the corresponding files in the directory /machine/data1. This script is part of the Astropy package. See https://docs.astropy.org/en/latest/io/fits/usage/scripts.html#fitsdiff for further documentation. """.strip() EPILOG = fill(""" If the two files are identical within the specified conditions, it will report "No difference is found." If the value(s) of -c and -k takes the form '@filename', list is in the text file 'filename', and each line in that text file contains one keyword. Example ------- fitsdiff -k filename,filtnam1 -n 5 -r 1.e-6 test1.fits test2 This command will compare files test1.fits and test2.fits, report maximum of 5 different pixels values per extension, only report data values larger than 1.e-6 relative to each other, and will neglect the different values of keywords FILENAME and FILTNAM1 (or their very existence). fitsdiff command-line arguments can also be set using the environment variable FITSDIFF_SETTINGS. If the FITSDIFF_SETTINGS environment variable is present, each argument present will override the corresponding argument on the command-line unless the --exact option is specified. The FITSDIFF_SETTINGS environment variable exists to make it easier to change the behavior of fitsdiff on a global level, such as in a set of regression tests. """.strip(), width=80) class StoreListAction(argparse.Action): def __init__(self, option_strings, dest, nargs=None, **kwargs): if nargs is not None: raise ValueError("nargs not allowed") super().__init__(option_strings, dest, nargs, **kwargs) def __call__(self, parser, namespace, values, option_string=None): setattr(namespace, self.dest, []) # Accept either a comma-separated list or a filename (starting with @) # containing a value on each line if values and values[0] == '@': value = values[1:] if not os.path.exists(value): log.warning(f'{self.dest} argument {value} does not exist') return try: values = [v.strip() for v in open(value).readlines()] setattr(namespace, self.dest, values) except OSError as exc: log.warning('reading {} for {} failed: {}; ignoring this ' 'argument'.format(value, self.dest, exc)) del exc else: setattr(namespace, self.dest, [v.strip() for v in values.split(',')]) def handle_options(argv=None): parser = argparse.ArgumentParser( description=DESCRIPTION, epilog=EPILOG, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument( '--version', action='version', version=f'%(prog)s {__version__}') parser.add_argument( 'fits_files', metavar='file', nargs='+', help='.fits files to process.') parser.add_argument( '-q', '--quiet', action='store_true', help='Produce no output and just return a status code.') parser.add_argument( '-n', '--num-diffs', type=int, default=10, dest='numdiffs', metavar='INTEGER', help='Max number of data differences (image pixel or table element) ' 'to report per extension (default %(default)s).') parser.add_argument( '-r', '--rtol', '--relative-tolerance', type=float, default=None, dest='rtol', metavar='NUMBER', help='The relative tolerance for comparison of two numbers, ' 'specifically two floating point numbers. This applies to data ' 'in both images and tables, and to floating point keyword values ' 'in headers (default %(default)s).') parser.add_argument( '-a', '--atol', '--absolute-tolerance', type=float, default=None, dest='atol', metavar='NUMBER', help='The absolute tolerance for comparison of two numbers, ' 'specifically two floating point numbers. This applies to data ' 'in both images and tables, and to floating point keyword values ' 'in headers (default %(default)s).') parser.add_argument( '-b', '--no-ignore-blanks', action='store_false', dest='ignore_blanks', default=True, help="Don't ignore trailing blanks (whitespace) in string values. " "Otherwise trailing blanks both in header keywords/values and in " "table column values) are not treated as significant i.e., " "without this option 'ABCDEF ' and 'ABCDEF' are considered " "equivalent. ") parser.add_argument( '--no-ignore-blank-cards', action='store_false', dest='ignore_blank_cards', default=True, help="Don't ignore entirely blank cards in headers. Normally fitsdiff " "does not consider blank cards when comparing headers, but this " "will ensure that even blank cards match up. ") parser.add_argument( '--exact', action='store_true', dest='exact_comparisons', default=False, help="Report ALL differences, " "overriding command-line options and FITSDIFF_SETTINGS. ") parser.add_argument( '-o', '--output-file', metavar='FILE', help='Output results to this file; otherwise results are printed to ' 'stdout.') parser.add_argument( '-u', '--ignore-hdus', action=StoreListAction, default=[], dest='ignore_hdus', metavar='HDU_NAMES', help='Comma-separated list of HDU names not to be compared. HDU ' 'names may contain wildcard patterns.') group = parser.add_argument_group('Header Comparison Options') group.add_argument( '-k', '--ignore-keywords', action=StoreListAction, default=[], dest='ignore_keywords', metavar='KEYWORDS', help='Comma-separated list of keywords not to be compared. Keywords ' 'may contain wildcard patterns. To exclude all keywords, use ' '"*"; make sure to have double or single quotes around the ' 'asterisk on the command-line.') group.add_argument( '-c', '--ignore-comments', action=StoreListAction, default=[], dest='ignore_comments', metavar='COMMENTS', help='Comma-separated list of keywords whose comments will not be ' 'compared. Wildcards may be used as with --ignore-keywords.') group = parser.add_argument_group('Table Comparison Options') group.add_argument( '-f', '--ignore-fields', action=StoreListAction, default=[], dest='ignore_fields', metavar='COLUMNS', help='Comma-separated list of fields (i.e. columns) not to be ' 'compared. All columns may be excluded using "*" as with ' '--ignore-keywords.') options = parser.parse_args(argv) # Determine which filenames to compare if len(options.fits_files) != 2: parser.error('\nfitsdiff requires two arguments; ' 'see `fitsdiff --help` for more details.') return options def setup_logging(outfile=None): log.setLevel(logging.INFO) error_handler = logging.StreamHandler(sys.stderr) error_handler.setFormatter(logging.Formatter('%(levelname)s: %(message)s')) error_handler.setLevel(logging.WARNING) log.addHandler(error_handler) if outfile is not None: output_handler = logging.FileHandler(outfile) else: output_handler = logging.StreamHandler() class LevelFilter(logging.Filter): """Log only messages matching the specified level.""" def __init__(self, name='', level=logging.NOTSET): logging.Filter.__init__(self, name) self.level = level def filter(self, rec): return rec.levelno == self.level # File output logs all messages, but stdout logs only INFO messages # (since errors are already logged to stderr) output_handler.addFilter(LevelFilter(level=logging.INFO)) output_handler.setFormatter(logging.Formatter('%(message)s')) log.addHandler(output_handler) def match_files(paths): if os.path.isfile(paths[0]) and os.path.isfile(paths[1]): # shortcut if both paths are files return [paths] dirnames = [None, None] filelists = [None, None] for i, path in enumerate(paths): if glob.has_magic(path): files = [os.path.split(f) for f in glob.glob(path)] if not files: log.error('Wildcard pattern %r did not match any files.', path) sys.exit(2) dirs, files = list(zip(*files)) if len(set(dirs)) > 1: log.error('Wildcard pattern %r should match only one ' 'directory.', path) sys.exit(2) dirnames[i] = set(dirs).pop() filelists[i] = sorted(files) elif os.path.isdir(path): dirnames[i] = path filelists[i] = [f for f in sorted(os.listdir(path)) if os.path.isfile(os.path.join(path, f))] elif os.path.isfile(path): dirnames[i] = os.path.dirname(path) filelists[i] = [os.path.basename(path)] else: log.error( '%r is not an existing file, directory, or wildcard ' 'pattern; see `fitsdiff --help` for more usage help.', path) sys.exit(2) dirnames[i] = os.path.abspath(dirnames[i]) filematch = set(filelists[0]) & set(filelists[1]) for a, b in [(0, 1), (1, 0)]: if len(filelists[a]) > len(filematch) and not os.path.isdir(paths[a]): for extra in sorted(set(filelists[a]) - filematch): log.warning('%r has no match in %r', extra, dirnames[b]) return [(os.path.join(dirnames[0], f), os.path.join(dirnames[1], f)) for f in filematch] def main(args=None): args = args or sys.argv[1:] if 'FITSDIFF_SETTINGS' in os.environ: args = os.environ['FITSDIFF_SETTINGS'].split() + args opts = handle_options(args) if opts.rtol is None: opts.rtol = 0.0 if opts.atol is None: opts.atol = 0.0 if opts.exact_comparisons: # override the options so that each is the most restrictive opts.ignore_keywords = [] opts.ignore_comments = [] opts.ignore_fields = [] opts.rtol = 0.0 opts.atol = 0.0 opts.ignore_blanks = False opts.ignore_blank_cards = False if not opts.quiet: setup_logging(opts.output_file) files = match_files(opts.fits_files) close_file = False if opts.quiet: out_file = None elif opts.output_file: out_file = open(opts.output_file, 'w') close_file = True else: out_file = sys.stdout identical = [] try: for a, b in files: # TODO: pass in any additional arguments here too diff = fits.diff.FITSDiff( a, b, ignore_hdus=opts.ignore_hdus, ignore_keywords=opts.ignore_keywords, ignore_comments=opts.ignore_comments, ignore_fields=opts.ignore_fields, numdiffs=opts.numdiffs, rtol=opts.rtol, atol=opts.atol, ignore_blanks=opts.ignore_blanks, ignore_blank_cards=opts.ignore_blank_cards) diff.report(fileobj=out_file) identical.append(diff.identical) return int(not all(identical)) finally: if close_file: out_file.close() # Close the file if used for the logging output, and remove handlers to # avoid having them multiple times for unit tests. for handler in log.handlers: if isinstance(handler, logging.FileHandler): handler.close() log.removeHandler(handler)
3af9458b4dfbf4529ddfb0a19fd6bd4f27b96a43cbd9ae5b9b7be4c671269671
# Licensed under a 3-clause BSD style license - see PYFITS.rst import contextlib import csv import operator import os import re import sys import textwrap import warnings from contextlib import suppress import numpy as np from numpy import char as chararray from .base import DELAYED, _ValidHDU, ExtensionHDU # This module may have many dependencies on astropy.io.fits.column, but # astropy.io.fits.column has fewer dependencies overall, so it's easier to # keep table/column-related utilities in astropy.io.fits.column from astropy.io.fits.column import (FITS2NUMPY, KEYWORD_NAMES, KEYWORD_TO_ATTRIBUTE, ATTRIBUTE_TO_KEYWORD, TDEF_RE, Column, ColDefs, _AsciiColDefs, _FormatP, _FormatQ, _makep, _parse_tformat, _scalar_to_format, _convert_format, _cmp_recformats) from astropy.io.fits.fitsrec import FITS_rec, _get_recarray_field, _has_unicode_fields from astropy.io.fits.header import Header, _pad_length from astropy.io.fits.util import _is_int, _str_to_num from astropy.utils import lazyproperty from astropy.utils.exceptions import AstropyDeprecationWarning class FITSTableDumpDialect(csv.excel): """ A CSV dialect for the Astropy format of ASCII dumps of FITS tables. """ delimiter = ' ' lineterminator = '\n' quotechar = '"' quoting = csv.QUOTE_ALL skipinitialspace = True class _TableLikeHDU(_ValidHDU): """ A class for HDUs that have table-like data. This is used for both Binary/ASCII tables as well as Random Access Group HDUs (which are otherwise too dissimilar for tables to use _TableBaseHDU directly). """ _data_type = FITS_rec _columns_type = ColDefs # TODO: Temporary flag representing whether uints are enabled; remove this # after restructuring to support uints by default on a per-column basis _uint = False @classmethod def match_header(cls, header): """ This is an abstract HDU type for HDUs that contain table-like data. This is even more abstract than _TableBaseHDU which is specifically for the standard ASCII and Binary Table types. """ raise NotImplementedError @classmethod def from_columns(cls, columns, header=None, nrows=0, fill=False, character_as_bytes=False, **kwargs): """ Given either a `ColDefs` object, a sequence of `Column` objects, or another table HDU or table data (a `FITS_rec` or multi-field `numpy.ndarray` or `numpy.recarray` object, return a new table HDU of the class this method was called on using the column definition from the input. See also `FITS_rec.from_columns`. Parameters ---------- columns : sequence of `Column`, `ColDefs` -like The columns from which to create the table data, or an object with a column-like structure from which a `ColDefs` can be instantiated. This includes an existing `BinTableHDU` or `TableHDU`, or a `numpy.recarray` to give some examples. If these columns have data arrays attached that data may be used in initializing the new table. Otherwise the input columns will be used as a template for a new table with the requested number of rows. header : `Header` An optional `Header` object to instantiate the new HDU yet. Header keywords specifically related to defining the table structure (such as the "TXXXn" keywords like TTYPEn) will be overridden by the supplied column definitions, but all other informational and data model-specific keywords are kept. nrows : int Number of rows in the new table. If the input columns have data associated with them, the size of the largest input column is used. Otherwise the default is 0. fill : bool If `True`, will fill all cells with zeros or blanks. If `False`, copy the data from input, undefined cells will still be filled with zeros/blanks. character_as_bytes : bool Whether to return bytes for string columns when accessed from the HDU. By default this is `False` and (unicode) strings are returned, but for large tables this may use up a lot of memory. Notes ----- Any additional keyword arguments accepted by the HDU class's ``__init__`` may also be passed in as keyword arguments. """ coldefs = cls._columns_type(columns) data = FITS_rec.from_columns(coldefs, nrows=nrows, fill=fill, character_as_bytes=character_as_bytes) hdu = cls(data=data, header=header, character_as_bytes=character_as_bytes, **kwargs) coldefs._add_listener(hdu) return hdu @lazyproperty def columns(self): """ The :class:`ColDefs` objects describing the columns in this table. """ # The base class doesn't make any assumptions about where the column # definitions come from, so just return an empty ColDefs return ColDefs([]) @property def _nrows(self): """ table-like HDUs must provide an attribute that specifies the number of rows in the HDU's table. For now this is an internal-only attribute. """ raise NotImplementedError def _get_tbdata(self): """Get the table data from an input HDU object.""" columns = self.columns # TODO: Details related to variable length arrays need to be dealt with # specifically in the BinTableHDU class, since they're a detail # specific to FITS binary tables if (any(type(r) in (_FormatP, _FormatQ) for r in columns._recformats) and self._data_size is not None and self._data_size > self._theap): # We have a heap; include it in the raw_data raw_data = self._get_raw_data(self._data_size, np.uint8, self._data_offset) tbsize = self._header['NAXIS1'] * self._header['NAXIS2'] data = raw_data[:tbsize].view(dtype=columns.dtype, type=np.rec.recarray) else: raw_data = self._get_raw_data(self._nrows, columns.dtype, self._data_offset) if raw_data is None: # This can happen when a brand new table HDU is being created # and no data has been assigned to the columns, which case just # return an empty array raw_data = np.array([], dtype=columns.dtype) data = raw_data.view(np.rec.recarray) self._init_tbdata(data) data = data.view(self._data_type) columns._add_listener(data) return data def _init_tbdata(self, data): columns = self.columns data.dtype = data.dtype.newbyteorder('>') # hack to enable pseudo-uint support data._uint = self._uint # pass datLoc, for P format data._heapoffset = self._theap data._heapsize = self._header['PCOUNT'] tbsize = self._header['NAXIS1'] * self._header['NAXIS2'] data._gap = self._theap - tbsize # pass the attributes for idx, col in enumerate(columns): # get the data for each column object from the rec.recarray col.array = data.field(idx) # delete the _arrays attribute so that it is recreated to point to the # new data placed in the column object above del columns._arrays def _update_load_data(self): """Load the data if asked to.""" if not self._data_loaded: self.data def _update_column_added(self, columns, column): """ Update the data upon addition of a new column through the `ColDefs` interface. """ # recreate data from the columns self.data = FITS_rec.from_columns( self.columns, nrows=self._nrows, fill=False, character_as_bytes=self._character_as_bytes ) def _update_column_removed(self, columns, col_idx): """ Update the data upon removal of a column through the `ColDefs` interface. """ # recreate data from the columns self.data = FITS_rec.from_columns( self.columns, nrows=self._nrows, fill=False, character_as_bytes=self._character_as_bytes ) class _TableBaseHDU(ExtensionHDU, _TableLikeHDU): """ FITS table extension base HDU class. Parameters ---------- data : array Data to be used. header : `Header` instance Header to be used. If the ``data`` is also specified, header keywords specifically related to defining the table structure (such as the "TXXXn" keywords like TTYPEn) will be overridden by the supplied column definitions, but all other informational and data model-specific keywords are kept. name : str Name to be populated in ``EXTNAME`` keyword. uint : bool, optional Set to `True` if the table contains unsigned integer columns. ver : int > 0 or None, optional The ver of the HDU, will be the value of the keyword ``EXTVER``. If not given or None, it defaults to the value of the ``EXTVER`` card of the ``header`` or 1. (default: None) character_as_bytes : bool Whether to return bytes for string columns. By default this is `False` and (unicode) strings are returned, but this does not respect memory mapping and loads the whole column in memory when accessed. """ _manages_own_heap = False """ This flag implies that when writing VLA tables (P/Q format) the heap pointers that go into P/Q table columns should not be reordered or rearranged in any way by the default heap management code. This is included primarily as an optimization for compressed image HDUs which perform their own heap maintenance. """ def __init__(self, data=None, header=None, name=None, uint=False, ver=None, character_as_bytes=False): super().__init__(data=data, header=header, name=name, ver=ver) self._uint = uint self._character_as_bytes = character_as_bytes if data is DELAYED: # this should never happen if header is None: raise ValueError('No header to setup HDU.') # if the file is read the first time, no need to copy, and keep it # unchanged else: self._header = header else: # construct a list of cards of minimal header cards = [ ('XTENSION', self._extension, self._ext_comment), ('BITPIX', 8, 'array data type'), ('NAXIS', 2, 'number of array dimensions'), ('NAXIS1', 0, 'length of dimension 1'), ('NAXIS2', 0, 'length of dimension 2'), ('PCOUNT', 0, 'number of group parameters'), ('GCOUNT', 1, 'number of groups'), ('TFIELDS', 0, 'number of table fields')] if header is not None: # Make a "copy" (not just a view) of the input header, since it # may get modified. the data is still a "view" (for now) hcopy = header.copy(strip=True) cards.extend(hcopy.cards) self._header = Header(cards) if isinstance(data, np.ndarray) and data.dtype.fields is not None: # self._data_type is FITS_rec. if isinstance(data, self._data_type): self.data = data else: self.data = self._data_type.from_columns(data) # TEMP: Special column keywords are normally overwritten by attributes # from Column objects. In Astropy 3.0, several new keywords are now # recognized as being special column keywords, but we don't # automatically clear them yet, as we need to raise a deprecation # warning for at least one major version. if header is not None: future_ignore = set() for keyword in header.keys(): match = TDEF_RE.match(keyword) try: base_keyword = match.group('label') except Exception: continue # skip if there is no match if base_keyword in {'TCTYP', 'TCUNI', 'TCRPX', 'TCRVL', 'TCDLT', 'TRPOS'}: future_ignore.add(base_keyword) if future_ignore: keys = ', '.join(x + 'n' for x in sorted(future_ignore)) warnings.warn("The following keywords are now recognized as special " "column-related attributes and should be set via the " "Column objects: {}. In future, these values will be " "dropped from manually specified headers automatically " "and replaced with values generated based on the " "Column objects.".format(keys), AstropyDeprecationWarning) # TODO: Too much of the code in this class uses header keywords # in making calculations related to the data size. This is # unreliable, however, in cases when users mess with the header # unintentionally--code that does this should be cleaned up. self._header['NAXIS1'] = self.data._raw_itemsize self._header['NAXIS2'] = self.data.shape[0] self._header['TFIELDS'] = len(self.data._coldefs) self.columns = self.data._coldefs self.columns._add_listener(self.data) self.update() with suppress(TypeError, AttributeError): # Make the ndarrays in the Column objects of the ColDefs # object of the HDU reference the same ndarray as the HDU's # FITS_rec object. for idx, col in enumerate(self.columns): col.array = self.data.field(idx) # Delete the _arrays attribute so that it is recreated to # point to the new data placed in the column objects above del self.columns._arrays elif data is None: pass else: raise TypeError('Table data has incorrect type.') # Ensure that the correct EXTNAME is set on the new header if one was # created, or that it overrides the existing EXTNAME if different if name: self.name = name if ver is not None: self.ver = ver @classmethod def match_header(cls, header): """ This is an abstract type that implements the shared functionality of the ASCII and Binary Table HDU types, which should be used instead of this. """ raise NotImplementedError @lazyproperty def columns(self): """ The :class:`ColDefs` objects describing the columns in this table. """ if self._has_data and hasattr(self.data, '_coldefs'): return self.data._coldefs return self._columns_type(self) @lazyproperty def data(self): data = self._get_tbdata() data._coldefs = self.columns data._character_as_bytes = self._character_as_bytes # Columns should now just return a reference to the data._coldefs del self.columns return data @data.setter def data(self, data): if 'data' in self.__dict__: if self.__dict__['data'] is data: return else: self._data_replaced = True else: self._data_replaced = True self._modified = True if data is None and self.columns: # Create a new table with the same columns, but empty rows formats = ','.join(self.columns._recformats) data = np.rec.array(None, formats=formats, names=self.columns.names, shape=0) if isinstance(data, np.ndarray) and data.dtype.fields is not None: # Go ahead and always make a view, even if the data is already the # correct class (self._data_type) so we can update things like the # column defs, if necessary data = data.view(self._data_type) if not isinstance(data.columns, self._columns_type): # This would be the place, if the input data was for an ASCII # table and this is binary table, or vice versa, to convert the # data to the appropriate format for the table type new_columns = self._columns_type(data.columns) data = FITS_rec.from_columns(new_columns) if 'data' in self.__dict__: self.columns._remove_listener(self.__dict__['data']) self.__dict__['data'] = data self.columns = self.data.columns self.columns._add_listener(self.data) self.update() with suppress(TypeError, AttributeError): # Make the ndarrays in the Column objects of the ColDefs # object of the HDU reference the same ndarray as the HDU's # FITS_rec object. for idx, col in enumerate(self.columns): col.array = self.data.field(idx) # Delete the _arrays attribute so that it is recreated to # point to the new data placed in the column objects above del self.columns._arrays elif data is None: pass else: raise TypeError('Table data has incorrect type.') # returning the data signals to lazyproperty that we've already handled # setting self.__dict__['data'] return data @property def _nrows(self): if not self._data_loaded: return self._header.get('NAXIS2', 0) else: return len(self.data) @lazyproperty def _theap(self): size = self._header['NAXIS1'] * self._header['NAXIS2'] return self._header.get('THEAP', size) # TODO: Need to either rename this to update_header, for symmetry with the # Image HDUs, or just at some point deprecate it and remove it altogether, # since header updates should occur automatically when necessary... def update(self): """ Update header keywords to reflect recent changes of columns. """ self._header.set('NAXIS1', self.data._raw_itemsize, after='NAXIS') self._header.set('NAXIS2', self.data.shape[0], after='NAXIS1') self._header.set('TFIELDS', len(self.columns), after='GCOUNT') self._clear_table_keywords() self._populate_table_keywords() def copy(self): """ Make a copy of the table HDU, both header and data are copied. """ # touch the data, so it's defined (in the case of reading from a # FITS file) return self.__class__(data=self.data.copy(), header=self._header.copy()) def _prewriteto(self, checksum=False, inplace=False): if self._has_data: self.data._scale_back( update_heap_pointers=not self._manages_own_heap) # check TFIELDS and NAXIS2 self._header['TFIELDS'] = len(self.data._coldefs) self._header['NAXIS2'] = self.data.shape[0] # calculate PCOUNT, for variable length tables tbsize = self._header['NAXIS1'] * self._header['NAXIS2'] heapstart = self._header.get('THEAP', tbsize) self.data._gap = heapstart - tbsize pcount = self.data._heapsize + self.data._gap if pcount > 0: self._header['PCOUNT'] = pcount # update the other T****n keywords self._populate_table_keywords() # update TFORM for variable length columns for idx in range(self.data._nfields): format = self.data._coldefs._recformats[idx] if isinstance(format, _FormatP): _max = self.data.field(idx).max # May be either _FormatP or _FormatQ format_cls = format.__class__ format = format_cls(format.dtype, repeat=format.repeat, max=_max) self._header['TFORM' + str(idx + 1)] = format.tform return super()._prewriteto(checksum, inplace) def _verify(self, option='warn'): """ _TableBaseHDU verify method. """ errs = super()._verify(option=option) if (len(self._header) > 1): if not (isinstance(self._header[0], str) and self._header[0].rstrip() == self._extension): err_text = 'The XTENSION keyword must match the HDU type.' fix_text = f'Converted the XTENSION keyword to {self._extension}.' def fix(header=self._header): header[0] = (self._extension, self._ext_comment) errs.append(self.run_option(option, err_text=err_text, fix_text=fix_text, fix=fix)) self.req_cards('NAXIS', None, lambda v: (v == 2), 2, option, errs) self.req_cards('BITPIX', None, lambda v: (v == 8), 8, option, errs) self.req_cards('TFIELDS', 7, lambda v: (_is_int(v) and v >= 0 and v <= 999), 0, option, errs) tfields = self._header['TFIELDS'] for idx in range(tfields): self.req_cards('TFORM' + str(idx + 1), None, None, None, option, errs) return errs def _summary(self): """ Summarize the HDU: name, dimensions, and formats. """ class_name = self.__class__.__name__ # if data is touched, use data info. if self._data_loaded: if self.data is None: nrows = 0 else: nrows = len(self.data) ncols = len(self.columns) format = self.columns.formats # if data is not touched yet, use header info. else: nrows = self._header['NAXIS2'] ncols = self._header['TFIELDS'] format = ', '.join([self._header['TFORM' + str(j + 1)] for j in range(ncols)]) format = f'[{format}]' dims = f"{nrows}R x {ncols}C" ncards = len(self._header) return (self.name, self.ver, class_name, ncards, dims, format) def _update_column_removed(self, columns, idx): super()._update_column_removed(columns, idx) # Fix the header to reflect the column removal self._clear_table_keywords(index=idx) def _update_column_attribute_changed(self, column, col_idx, attr, old_value, new_value): """ Update the header when one of the column objects is updated. """ # base_keyword is the keyword without the index such as TDIM # while keyword is like TDIM1 base_keyword = ATTRIBUTE_TO_KEYWORD[attr] keyword = base_keyword + str(col_idx + 1) if keyword in self._header: if new_value is None: # If the new value is None, i.e. None was assigned to the # column attribute, then treat this as equivalent to deleting # that attribute del self._header[keyword] else: self._header[keyword] = new_value else: keyword_idx = KEYWORD_NAMES.index(base_keyword) # Determine the appropriate keyword to insert this one before/after # if it did not already exist in the header for before_keyword in reversed(KEYWORD_NAMES[:keyword_idx]): before_keyword += str(col_idx + 1) if before_keyword in self._header: self._header.insert(before_keyword, (keyword, new_value), after=True) break else: for after_keyword in KEYWORD_NAMES[keyword_idx + 1:]: after_keyword += str(col_idx + 1) if after_keyword in self._header: self._header.insert(after_keyword, (keyword, new_value)) break else: # Just append self._header[keyword] = new_value def _clear_table_keywords(self, index=None): """ Wipe out any existing table definition keywords from the header. If specified, only clear keywords for the given table index (shifting up keywords for any other columns). The index is zero-based. Otherwise keywords for all columns. """ # First collect all the table structure related keyword in the header # into a single list so we can then sort them by index, which will be # useful later for updating the header in a sensible order (since the # header *might* not already be written in a reasonable order) table_keywords = [] for idx, keyword in enumerate(self._header.keys()): match = TDEF_RE.match(keyword) try: base_keyword = match.group('label') except Exception: continue # skip if there is no match if base_keyword in KEYWORD_TO_ATTRIBUTE: # TEMP: For Astropy 3.0 we don't clear away the following keywords # as we are first raising a deprecation warning that these will be # dropped automatically if they were specified in the header. We # can remove this once we are happy to break backward-compatibility if base_keyword in {'TCTYP', 'TCUNI', 'TCRPX', 'TCRVL', 'TCDLT', 'TRPOS'}: continue num = int(match.group('num')) - 1 # convert to zero-base table_keywords.append((idx, match.group(0), base_keyword, num)) # First delete rev_sorted_idx_0 = sorted(table_keywords, key=operator.itemgetter(0), reverse=True) for idx, keyword, _, num in rev_sorted_idx_0: if index is None or index == num: del self._header[idx] # Now shift up remaining column keywords if only one column was cleared if index is not None: sorted_idx_3 = sorted(table_keywords, key=operator.itemgetter(3)) for _, keyword, base_keyword, num in sorted_idx_3: if num <= index: continue old_card = self._header.cards[keyword] new_card = (base_keyword + str(num), old_card.value, old_card.comment) self._header.insert(keyword, new_card) del self._header[keyword] # Also decrement TFIELDS if 'TFIELDS' in self._header: self._header['TFIELDS'] -= 1 def _populate_table_keywords(self): """Populate the new table definition keywords from the header.""" for idx, column in enumerate(self.columns): for keyword, attr in KEYWORD_TO_ATTRIBUTE.items(): val = getattr(column, attr) if val is not None: keyword = keyword + str(idx + 1) self._header[keyword] = val class TableHDU(_TableBaseHDU): """ FITS ASCII table extension HDU class. Parameters ---------- data : array or `FITS_rec` Data to be used. header : `Header` Header to be used. name : str Name to be populated in ``EXTNAME`` keyword. ver : int > 0 or None, optional The ver of the HDU, will be the value of the keyword ``EXTVER``. If not given or None, it defaults to the value of the ``EXTVER`` card of the ``header`` or 1. (default: None) character_as_bytes : bool Whether to return bytes for string columns. By default this is `False` and (unicode) strings are returned, but this does not respect memory mapping and loads the whole column in memory when accessed. """ _extension = 'TABLE' _ext_comment = 'ASCII table extension' _padding_byte = ' ' _columns_type = _AsciiColDefs __format_RE = re.compile( r'(?P<code>[ADEFIJ])(?P<width>\d+)(?:\.(?P<prec>\d+))?') def __init__(self, data=None, header=None, name=None, ver=None, character_as_bytes=False): super().__init__(data, header, name=name, ver=ver, character_as_bytes=character_as_bytes) @classmethod def match_header(cls, header): card = header.cards[0] xtension = card.value if isinstance(xtension, str): xtension = xtension.rstrip() return card.keyword == 'XTENSION' and xtension == cls._extension def _get_tbdata(self): columns = self.columns names = [n for idx, n in enumerate(columns.names)] # determine if there are duplicate field names and if there # are throw an exception dup = np.rec.find_duplicate(names) if dup: raise ValueError(f"Duplicate field names: {dup}") # TODO: Determine if this extra logic is necessary--I feel like the # _AsciiColDefs class should be responsible for telling the table what # its dtype should be... itemsize = columns.spans[-1] + columns.starts[-1] - 1 dtype = {} for idx in range(len(columns)): data_type = 'S' + str(columns.spans[idx]) if idx == len(columns) - 1: # The last column is padded out to the value of NAXIS1 if self._header['NAXIS1'] > itemsize: data_type = 'S' + str(columns.spans[idx] + self._header['NAXIS1'] - itemsize) dtype[columns.names[idx]] = (data_type, columns.starts[idx] - 1) raw_data = self._get_raw_data(self._nrows, dtype, self._data_offset) data = raw_data.view(np.rec.recarray) self._init_tbdata(data) return data.view(self._data_type) def _calculate_datasum(self): """ Calculate the value for the ``DATASUM`` card in the HDU. """ if self._has_data: # We have the data to be used. # We need to pad the data to a block length before calculating # the datasum. bytes_array = self.data.view(type=np.ndarray, dtype=np.ubyte) padding = np.frombuffer(_pad_length(self.size) * b' ', dtype=np.ubyte) d = np.append(bytes_array, padding) cs = self._compute_checksum(d) return cs else: # This is the case where the data has not been read from the file # yet. We can handle that in a generic manner so we do it in the # base class. The other possibility is that there is no data at # all. This can also be handled in a generic manner. return super()._calculate_datasum() def _verify(self, option='warn'): """ `TableHDU` verify method. """ errs = super()._verify(option=option) self.req_cards('PCOUNT', None, lambda v: (v == 0), 0, option, errs) tfields = self._header['TFIELDS'] for idx in range(tfields): self.req_cards('TBCOL' + str(idx + 1), None, _is_int, None, option, errs) return errs class BinTableHDU(_TableBaseHDU): """ Binary table HDU class. Parameters ---------- data : array, `FITS_rec`, or `~astropy.table.Table` Data to be used. header : `Header` Header to be used. name : str Name to be populated in ``EXTNAME`` keyword. uint : bool, optional Set to `True` if the table contains unsigned integer columns. ver : int > 0 or None, optional The ver of the HDU, will be the value of the keyword ``EXTVER``. If not given or None, it defaults to the value of the ``EXTVER`` card of the ``header`` or 1. (default: None) character_as_bytes : bool Whether to return bytes for string columns. By default this is `False` and (unicode) strings are returned, but this does not respect memory mapping and loads the whole column in memory when accessed. """ _extension = 'BINTABLE' _ext_comment = 'binary table extension' def __init__(self, data=None, header=None, name=None, uint=False, ver=None, character_as_bytes=False): from astropy.table import Table if isinstance(data, Table): from astropy.io.fits.convenience import table_to_hdu hdu = table_to_hdu(data) if header is not None: hdu.header.update(header) data = hdu.data header = hdu.header super().__init__(data, header, name=name, uint=uint, ver=ver, character_as_bytes=character_as_bytes) @classmethod def match_header(cls, header): card = header.cards[0] xtension = card.value if isinstance(xtension, str): xtension = xtension.rstrip() return (card.keyword == 'XTENSION' and xtension in (cls._extension, 'A3DTABLE')) def _calculate_datasum_with_heap(self): """ Calculate the value for the ``DATASUM`` card given the input data """ with _binary_table_byte_swap(self.data) as data: dout = data.view(type=np.ndarray, dtype=np.ubyte) csum = self._compute_checksum(dout) # Now add in the heap data to the checksum (we can skip any gap # between the table and the heap since it's all zeros and doesn't # contribute to the checksum if data._get_raw_data() is None: # This block is still needed because # test_variable_length_table_data leads to ._get_raw_data # returning None which means _get_heap_data doesn't work. # Which happens when the data is loaded in memory rather than # being unloaded on disk for idx in range(data._nfields): if isinstance(data.columns._recformats[idx], _FormatP): for coldata in data.field(idx): # coldata should already be byteswapped from the call # to _binary_table_byte_swap if not len(coldata): continue csum = self._compute_checksum(coldata, csum) else: csum = self._compute_checksum(data._get_heap_data(), csum) return csum def _calculate_datasum(self): """ Calculate the value for the ``DATASUM`` card in the HDU. """ if self._has_data: # This method calculates the datasum while incorporating any # heap data, which is obviously not handled from the base # _calculate_datasum return self._calculate_datasum_with_heap() else: # This is the case where the data has not been read from the file # yet. We can handle that in a generic manner so we do it in the # base class. The other possibility is that there is no data at # all. This can also be handled in a generic manner. return super()._calculate_datasum() def _writedata_internal(self, fileobj): size = 0 if self.data is None: return size with _binary_table_byte_swap(self.data) as data: if _has_unicode_fields(data): # If the raw data was a user-supplied recarray, we can't write # unicode columns directly to the file, so we have to switch # to a slower row-by-row write self._writedata_by_row(fileobj) else: fileobj.writearray(data) # write out the heap of variable length array columns this has # to be done after the "regular" data is written (above) # to avoid a bug in the lustre filesystem client, don't # write 0-byte objects if data._gap > 0: fileobj.write((data._gap * '\0').encode('ascii')) nbytes = data._gap if not self._manages_own_heap: # Write the heap data one column at a time, in the order # that the data pointers appear in the column (regardless # if that data pointer has a different, previous heap # offset listed) for idx in range(data._nfields): if not isinstance(data.columns._recformats[idx], _FormatP): continue field = self.data.field(idx) for row in field: if len(row) > 0: nbytes += row.nbytes fileobj.writearray(row) else: heap_data = data._get_heap_data() if len(heap_data) > 0: nbytes += len(heap_data) fileobj.writearray(heap_data) data._heapsize = nbytes - data._gap size += nbytes size += self.data.size * self.data._raw_itemsize return size def _writedata_by_row(self, fileobj): fields = [self.data.field(idx) for idx in range(len(self.data.columns))] # Creating Record objects is expensive (as in # `for row in self.data:` so instead we just iterate over the row # indices and get one field at a time: for idx in range(len(self.data)): for field in fields: item = field[idx] field_width = None if field.dtype.kind == 'U': # Read the field *width* by reading past the field kind. i = field.dtype.str.index(field.dtype.kind) field_width = int(field.dtype.str[i+1:]) item = np.char.encode(item, 'ascii') fileobj.writearray(item) if field_width is not None: j = item.dtype.str.index(item.dtype.kind) item_length = int(item.dtype.str[j+1:]) # Fix padding problem (see #5296). padding = '\x00'*(field_width - item_length) fileobj.write(padding.encode('ascii')) _tdump_file_format = textwrap.dedent(""" - **datafile:** Each line of the data file represents one row of table data. The data is output one column at a time in column order. If a column contains an array, each element of the column array in the current row is output before moving on to the next column. Each row ends with a new line. Integer data is output right-justified in a 21-character field followed by a blank. Floating point data is output right justified using 'g' format in a 21-character field with 15 digits of precision, followed by a blank. String data that does not contain whitespace is output left-justified in a field whose width matches the width specified in the ``TFORM`` header parameter for the column, followed by a blank. When the string data contains whitespace characters, the string is enclosed in quotation marks (``""``). For the last data element in a row, the trailing blank in the field is replaced by a new line character. For column data containing variable length arrays ('P' format), the array data is preceded by the string ``'VLA_Length= '`` and the integer length of the array for that row, left-justified in a 21-character field, followed by a blank. .. note:: This format does *not* support variable length arrays using the ('Q' format) due to difficult to overcome ambiguities. What this means is that this file format cannot support VLA columns in tables stored in files that are over 2 GB in size. For column data representing a bit field ('X' format), each bit value in the field is output right-justified in a 21-character field as 1 (for true) or 0 (for false). - **cdfile:** Each line of the column definitions file provides the definitions for one column in the table. The line is broken up into 8, sixteen-character fields. The first field provides the column name (``TTYPEn``). The second field provides the column format (``TFORMn``). The third field provides the display format (``TDISPn``). The fourth field provides the physical units (``TUNITn``). The fifth field provides the dimensions for a multidimensional array (``TDIMn``). The sixth field provides the value that signifies an undefined value (``TNULLn``). The seventh field provides the scale factor (``TSCALn``). The eighth field provides the offset value (``TZEROn``). A field value of ``""`` is used to represent the case where no value is provided. - **hfile:** Each line of the header parameters file provides the definition of a single HDU header card as represented by the card image. """) def dump(self, datafile=None, cdfile=None, hfile=None, overwrite=False): """ Dump the table HDU to a file in ASCII format. The table may be dumped in three separate files, one containing column definitions, one containing header parameters, and one for table data. Parameters ---------- datafile : path-like or file-like, optional Output data file. The default is the root name of the fits file associated with this HDU appended with the extension ``.txt``. cdfile : path-like or file-like, optional Output column definitions file. The default is `None`, no column definitions output is produced. hfile : path-like or file-like, optional Output header parameters file. The default is `None`, no header parameters output is produced. overwrite : bool, optional If ``True``, overwrite the output file if it exists. Raises an ``OSError`` if ``False`` and the output file exists. Default is ``False``. Notes ----- The primary use for the `dump` method is to allow viewing and editing the table data and parameters in a standard text editor. The `load` method can be used to create a new table from the three plain text (ASCII) files. """ # check if the output files already exist exist = [] files = [datafile, cdfile, hfile] for f in files: if isinstance(f, str): if os.path.exists(f) and os.path.getsize(f) != 0: if overwrite: os.remove(f) else: exist.append(f) if exist: raise OSError(' '.join([f"File '{f}' already exists." for f in exist])+" If you mean to " "replace the file(s) " "then use the argument " "'overwrite=True'.") # Process the data self._dump_data(datafile) # Process the column definitions if cdfile: self._dump_coldefs(cdfile) # Process the header parameters if hfile: self._header.tofile(hfile, sep='\n', endcard=False, padding=False) if isinstance(dump.__doc__, str): dump.__doc__ += _tdump_file_format.replace('\n', '\n ') def load(cls, datafile, cdfile=None, hfile=None, replace=False, header=None): """ Create a table from the input ASCII files. The input is from up to three separate files, one containing column definitions, one containing header parameters, and one containing column data. The column definition and header parameters files are not required. When absent the column definitions and/or header parameters are taken from the header object given in the header argument; otherwise sensible defaults are inferred (though this mode is not recommended). Parameters ---------- datafile : path-like or file-like Input data file containing the table data in ASCII format. cdfile : path-like or file-like, optional Input column definition file containing the names, formats, display formats, physical units, multidimensional array dimensions, undefined values, scale factors, and offsets associated with the columns in the table. If `None`, the column definitions are taken from the current values in this object. hfile : path-like or file-like, optional Input parameter definition file containing the header parameter definitions to be associated with the table. If `None`, the header parameter definitions are taken from the current values in this objects header. replace : bool, optional When `True`, indicates that the entire header should be replaced with the contents of the ASCII file instead of just updating the current header. header : `~astropy.io.fits.Header`, optional When the cdfile and hfile are missing, use this Header object in the creation of the new table and HDU. Otherwise this Header supersedes the keywords from hfile, which is only used to update values not present in this Header, unless ``replace=True`` in which this Header's values are completely replaced with the values from hfile. Notes ----- The primary use for the `load` method is to allow the input of ASCII data that was edited in a standard text editor of the table data and parameters. The `dump` method can be used to create the initial ASCII files. """ # Process the parameter file if header is None: header = Header() if hfile: if replace: header = Header.fromtextfile(hfile) else: header.extend(Header.fromtextfile(hfile), update=True, update_first=True) coldefs = None # Process the column definitions file if cdfile: coldefs = cls._load_coldefs(cdfile) # Process the data file data = cls._load_data(datafile, coldefs) if coldefs is None: coldefs = ColDefs(data) # Create a new HDU using the supplied header and data hdu = cls(data=data, header=header) hdu.columns = coldefs return hdu if isinstance(load.__doc__, str): load.__doc__ += _tdump_file_format.replace('\n', '\n ') load = classmethod(load) # Have to create a classmethod from this here instead of as a decorator; # otherwise we can't update __doc__ def _dump_data(self, fileobj): """ Write the table data in the ASCII format read by BinTableHDU.load() to fileobj. """ if not fileobj and self._file: root = os.path.splitext(self._file.name)[0] fileobj = root + '.txt' close_file = False if isinstance(fileobj, str): fileobj = open(fileobj, 'w') close_file = True linewriter = csv.writer(fileobj, dialect=FITSTableDumpDialect) # Process each row of the table and output one row at a time def format_value(val, format): if format[0] == 'S': itemsize = int(format[1:]) return '{:{size}}'.format(val, size=itemsize) elif format in np.typecodes['AllInteger']: # output integer return f'{val:21d}' elif format in np.typecodes['Complex']: return f'{val.real:21.15g}+{val.imag:.15g}j' elif format in np.typecodes['Float']: # output floating point return f'{val:#21.15g}' for row in self.data: line = [] # the line for this row of the table # Process each column of the row. for column in self.columns: # format of data in a variable length array # where None means it is not a VLA: vla_format = None format = _convert_format(column.format) if isinstance(format, _FormatP): # P format means this is a variable length array so output # the length of the array for this row and set the format # for the VLA data line.append('VLA_Length=') line.append(f'{len(row[column.name]):21d}') _, dtype, option = _parse_tformat(column.format) vla_format = FITS2NUMPY[option[0]][0] if vla_format: # Output the data for each element in the array for val in row[column.name].flat: line.append(format_value(val, vla_format)) else: # The column data is a single element dtype = self.data.dtype.fields[column.name][0] array_format = dtype.char if array_format == 'V': array_format = dtype.base.char if array_format == 'S': array_format += str(dtype.itemsize) if dtype.char == 'V': for value in row[column.name].flat: line.append(format_value(value, array_format)) else: line.append(format_value(row[column.name], array_format)) linewriter.writerow(line) if close_file: fileobj.close() def _dump_coldefs(self, fileobj): """ Write the column definition parameters in the ASCII format read by BinTableHDU.load() to fileobj. """ close_file = False if isinstance(fileobj, str): fileobj = open(fileobj, 'w') close_file = True # Process each column of the table and output the result to the # file one at a time for column in self.columns: line = [column.name, column.format] attrs = ['disp', 'unit', 'dim', 'null', 'bscale', 'bzero'] line += ['{!s:16s}'.format(value if value else '""') for value in (getattr(column, attr) for attr in attrs)] fileobj.write(' '.join(line)) fileobj.write('\n') if close_file: fileobj.close() @classmethod def _load_data(cls, fileobj, coldefs=None): """ Read the table data from the ASCII file output by BinTableHDU.dump(). """ close_file = False if isinstance(fileobj, str): fileobj = open(fileobj) close_file = True initialpos = fileobj.tell() # We'll be returning here later linereader = csv.reader(fileobj, dialect=FITSTableDumpDialect) # First we need to do some preprocessing on the file to find out how # much memory we'll need to reserve for the table. This is necessary # even if we already have the coldefs in order to determine how many # rows to reserve memory for vla_lengths = [] recformats = [] names = [] nrows = 0 if coldefs is not None: recformats = coldefs._recformats names = coldefs.names def update_recformats(value, idx): fitsformat = _scalar_to_format(value) recformat = _convert_format(fitsformat) if idx >= len(recformats): recformats.append(recformat) else: if _cmp_recformats(recformats[idx], recformat) < 0: recformats[idx] = recformat # TODO: The handling of VLAs could probably be simplified a bit for row in linereader: nrows += 1 if coldefs is not None: continue col = 0 idx = 0 while idx < len(row): if row[idx] == 'VLA_Length=': if col < len(vla_lengths): vla_length = vla_lengths[col] else: vla_length = int(row[idx + 1]) vla_lengths.append(vla_length) idx += 2 while vla_length: update_recformats(row[idx], col) vla_length -= 1 idx += 1 col += 1 else: if col >= len(vla_lengths): vla_lengths.append(None) update_recformats(row[idx], col) col += 1 idx += 1 # Update the recformats for any VLAs for idx, length in enumerate(vla_lengths): if length is not None: recformats[idx] = str(length) + recformats[idx] dtype = np.rec.format_parser(recformats, names, None).dtype # TODO: In the future maybe enable loading a bit at a time so that we # can convert from this format to an actual FITS file on disk without # needing enough physical memory to hold the entire thing at once hdu = BinTableHDU.from_columns(np.recarray(shape=1, dtype=dtype), nrows=nrows, fill=True) # TODO: It seems to me a lot of this could/should be handled from # within the FITS_rec class rather than here. data = hdu.data for idx, length in enumerate(vla_lengths): if length is not None: arr = data.columns._arrays[idx] dt = recformats[idx][len(str(length)):] # NOTE: FormatQ not supported here; it's hard to determine # whether or not it will be necessary to use a wider descriptor # type. The function documentation will have to serve as a # warning that this is not supported. recformats[idx] = _FormatP(dt, max=length) data.columns._recformats[idx] = recformats[idx] name = data.columns.names[idx] data._cache_field(name, _makep(arr, arr, recformats[idx])) def format_value(col, val): # Special formatting for a couple particular data types if recformats[col] == FITS2NUMPY['L']: return bool(int(val)) elif recformats[col] == FITS2NUMPY['M']: # For some reason, in arrays/fields where numpy expects a # complex it's not happy to take a string representation # (though it's happy to do that in other contexts), so we have # to convert the string representation for it: return complex(val) else: return val # Jump back to the start of the data and create a new line reader fileobj.seek(initialpos) linereader = csv.reader(fileobj, dialect=FITSTableDumpDialect) for row, line in enumerate(linereader): col = 0 idx = 0 while idx < len(line): if line[idx] == 'VLA_Length=': vla_len = vla_lengths[col] idx += 2 slice_ = slice(idx, idx + vla_len) data[row][col][:] = line[idx:idx + vla_len] idx += vla_len elif dtype[col].shape: # This is an array column array_size = int(np.multiply.reduce(dtype[col].shape)) slice_ = slice(idx, idx + array_size) idx += array_size else: slice_ = None if slice_ is None: # This is a scalar row element data[row][col] = format_value(col, line[idx]) idx += 1 else: data[row][col].flat[:] = [format_value(col, val) for val in line[slice_]] col += 1 if close_file: fileobj.close() return data @classmethod def _load_coldefs(cls, fileobj): """ Read the table column definitions from the ASCII file output by BinTableHDU.dump(). """ close_file = False if isinstance(fileobj, str): fileobj = open(fileobj) close_file = True columns = [] for line in fileobj: words = line[:-1].split() kwargs = {} for key in ['name', 'format', 'disp', 'unit', 'dim']: kwargs[key] = words.pop(0).replace('""', '') for key in ['null', 'bscale', 'bzero']: word = words.pop(0).replace('""', '') if word: word = _str_to_num(word) kwargs[key] = word columns.append(Column(**kwargs)) if close_file: fileobj.close() return ColDefs(columns) @contextlib.contextmanager def _binary_table_byte_swap(data): """ Ensures that all the data of a binary FITS table (represented as a FITS_rec object) is in a big-endian byte order. Columns are swapped in-place one at a time, and then returned to their previous byte order when this context manager exits. Because a new dtype is needed to represent the byte-swapped columns, the new dtype is temporarily applied as well. """ orig_dtype = data.dtype names = [] formats = [] offsets = [] to_swap = [] if sys.byteorder == 'little': swap_types = ('<', '=') else: swap_types = ('<',) for idx, name in enumerate(orig_dtype.names): field = _get_recarray_field(data, idx) field_dtype, field_offset = orig_dtype.fields[name] names.append(name) formats.append(field_dtype) offsets.append(field_offset) if isinstance(field, chararray.chararray): continue # only swap unswapped # must use field_dtype.base here since for multi-element dtypes, # the .str with be '|V<N>' where <N> is the total bytes per element if field.itemsize > 1 and field_dtype.base.str[0] in swap_types: to_swap.append(field) # Override the dtype for this field in the new record dtype with # the byteswapped version formats[-1] = field_dtype.newbyteorder() # deal with var length table recformat = data.columns._recformats[idx] if isinstance(recformat, _FormatP): coldata = data.field(idx) for c in coldata: if (not isinstance(c, chararray.chararray) and c.itemsize > 1 and c.dtype.str[0] in swap_types): to_swap.append(c) for arr in reversed(to_swap): arr.byteswap(True) data.dtype = np.dtype({'names': names, 'formats': formats, 'offsets': offsets}) yield data for arr in to_swap: arr.byteswap(True) data.dtype = orig_dtype
f6d9c5c0434522525d593a9d707f3b01890a23601449e81e119a13a39e03537d
# Licensed under a 3-clause BSD style license - see PYFITS.rst import contextlib import copy import gc import pickle import re import sys import warnings import pytest import numpy as np from numpy import char as chararray try: import objgraph HAVE_OBJGRAPH = True except ImportError: HAVE_OBJGRAPH = False from astropy.io import fits from astropy.table import Table from astropy.units import UnitsWarning, Unit, UnrecognizedUnit from astropy.utils.compat import NUMPY_LT_1_22, NUMPY_LT_1_22_1 from astropy.utils.exceptions import AstropyDeprecationWarning, AstropyUserWarning from astropy.io.fits.column import ColumnAttribute, Delayed, NUMPY2FITS from astropy.io.fits.util import decode_ascii from astropy.io.fits.verify import VerifyError from . import FitsTestCase def comparefloats(a, b): """ Compare two float scalars or arrays and see if they are consistent Consistency is determined ensuring the difference is less than the expected amount. Return True if consistent, False if any differences. """ aa = a bb = b # compute expected precision if aa.dtype.name == 'float32' or bb.dtype.name == 'float32': precision = 0.000001 else: precision = 0.0000000000000001 precision = 0.00001 # until precision problem is fixed in astropy.io.fits diff = np.absolute(aa - bb) mask0 = aa == 0 masknz = aa != 0. if np.any(mask0): if diff[mask0].max() != 0.: return False if np.any(masknz): if (diff[masknz] / np.absolute(aa[masknz])).max() > precision: return False return True def comparerecords(a, b): """ Compare two record arrays Does this field by field, using approximation testing for float columns (Complex not yet handled.) Column names not compared, but column types and sizes are. """ nfieldsa = len(a.dtype.names) nfieldsb = len(b.dtype.names) if nfieldsa != nfieldsb: print("number of fields don't match") return False for i in range(nfieldsa): fielda = a.field(i) fieldb = b.field(i) if fielda.dtype.char == 'S': fielda = decode_ascii(fielda) if fieldb.dtype.char == 'S': fieldb = decode_ascii(fieldb) if (not isinstance(fielda, type(fieldb)) and not isinstance(fieldb, type(fielda))): print("type(fielda): ", type(fielda), " fielda: ", fielda) print("type(fieldb): ", type(fieldb), " fieldb: ", fieldb) print(f'field {i} type differs') return False if len(fielda) and isinstance(fielda[0], np.floating): if not comparefloats(fielda, fieldb): print("fielda: ", fielda) print("fieldb: ", fieldb) print(f'field {i} differs') return False elif (isinstance(fielda, fits.column._VLF) or isinstance(fieldb, fits.column._VLF)): for row in range(len(fielda)): if np.any(fielda[row] != fieldb[row]): print(f'fielda[{row}]: {fielda[row]}') print(f'fieldb[{row}]: {fieldb[row]}') print(f'field {i} differs in row {row}') else: if np.any(fielda != fieldb): print("fielda: ", fielda) print("fieldb: ", fieldb) print(f'field {i} differs') return False return True def _assert_attr_col(new_tbhdu, tbhdu): """ Helper function to compare column attributes """ # Double check that the headers are equivalent assert tbhdu.columns.names == new_tbhdu.columns.names attrs = [k for k, v in fits.Column.__dict__.items() if isinstance(v, ColumnAttribute)] for name in tbhdu.columns.names: col = tbhdu.columns[name] new_col = new_tbhdu.columns[name] for attr in attrs: if getattr(col, attr) and getattr(new_col, attr): assert getattr(col, attr) == getattr(new_col, attr) class TestTableFunctions(FitsTestCase): def test_constructor_copies_header(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/153 Ensure that a header from one HDU is copied when used to initialize new HDU. This is like the test of the same name in test_image, but tests this for tables as well. """ ifd = fits.HDUList([fits.PrimaryHDU(), fits.BinTableHDU()]) thdr = ifd[1].header thdr['FILENAME'] = 'labq01i3q_rawtag.fits' thdu = fits.BinTableHDU(header=thdr) ofd = fits.HDUList(thdu) ofd[0].header['FILENAME'] = 'labq01i3q_flt.fits' # Original header should be unchanged assert thdr['FILENAME'] == 'labq01i3q_rawtag.fits' def test_open(self): # open some existing FITS files: tt = fits.open(self.data('tb.fits')) fd = fits.open(self.data('test0.fits')) # create some local arrays a1 = chararray.array(['abc', 'def', 'xx']) r1 = np.array([11., 12., 13.], dtype=np.float32) # create a table from scratch, using a mixture of columns from existing # tables and locally created arrays: # first, create individual column definitions c1 = fits.Column(name='abc', format='3A', array=a1) c2 = fits.Column(name='def', format='E', array=r1) a3 = np.array([3, 4, 5], dtype='i2') c3 = fits.Column(name='xyz', format='I', array=a3) a4 = np.array([1, 2, 3], dtype='i2') c4 = fits.Column(name='t1', format='I', array=a4) a5 = np.array([3 + 3j, 4 + 4j, 5 + 5j], dtype='c8') c5 = fits.Column(name='t2', format='C', array=a5) # Note that X format must be two-D array a6 = np.array([[0], [1], [0]], dtype=np.uint8) c6 = fits.Column(name='t3', format='X', array=a6) a7 = np.array([101, 102, 103], dtype='i4') c7 = fits.Column(name='t4', format='J', array=a7) a8 = np.array([[1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1], [0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0], [1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1]], dtype=np.uint8) c8 = fits.Column(name='t5', format='11X', array=a8) # second, create a column-definitions object for all columns in a table x = fits.ColDefs([c1, c2, c3, c4, c5, c6, c7, c8]) tbhdu = fits.BinTableHDU.from_columns(x) # another way to create a table is by using existing table's # information: x2 = fits.ColDefs(tt[1]) t2 = fits.BinTableHDU.from_columns(x2, nrows=2) ra = np.rec.array([ (1, 'abc', 3.7000002861022949, 0), (2, 'xy ', 6.6999998092651367, 1)], names='c1, c2, c3, c4') assert comparerecords(t2.data, ra) # the table HDU's data is a subclass of a record array, so we can # access one row like this: assert tbhdu.data[1][0] == a1[1] assert tbhdu.data[1][1] == r1[1] assert tbhdu.data[1][2] == a3[1] assert tbhdu.data[1][3] == a4[1] assert tbhdu.data[1][4] == a5[1] assert (tbhdu.data[1][5] == a6[1].view('bool')).all() assert tbhdu.data[1][6] == a7[1] assert (tbhdu.data[1][7] == a8[1]).all() # and a column like this: assert str(tbhdu.data.field('abc')) == "['abc' 'def' 'xx']" # An alternative way to create a column-definitions object is from an # existing table. _ = fits.ColDefs(tt[1]) # now we write out the newly created table HDU to a FITS file: fout = fits.HDUList(fits.PrimaryHDU()) fout.append(tbhdu) fout.writeto(self.temp('tableout1.fits'), overwrite=True) with fits.open(self.temp('tableout1.fits')) as f2: temp = f2[1].data.field(7) assert (temp[0] == [True, True, False, True, False, True, True, True, False, False, True]).all() # An alternative way to create an output table FITS file: fout2 = fits.open(self.temp('tableout2.fits'), 'append') fout2.append(fd[0]) fout2.append(tbhdu) fout2.close() tt.close() fd.close() def test_binary_table(self): # binary table: t = fits.open(self.data('tb.fits')) assert t[1].header['tform1'] == '1J' info = {'name': ['c1', 'c2', 'c3', 'c4'], 'format': ['1J', '3A', '1E', '1L'], 'unit': ['', '', '', ''], 'null': [-2147483647, '', '', ''], 'bscale': ['', '', 3, ''], 'bzero': ['', '', 0.4, ''], 'disp': ['I11', 'A3', 'G15.7', 'L6'], 'start': ['', '', '', ''], 'dim': ['', '', '', ''], 'coord_inc': ['', '', '', ''], 'coord_type': ['', '', '', ''], 'coord_unit': ['', '', '', ''], 'coord_ref_point': ['', '', '', ''], 'coord_ref_value': ['', '', '', ''], 'time_ref_pos': ['', '', '', '']} assert t[1].columns.info(output=False) == info ra = np.rec.array([ (1, 'abc', 3.7000002861022949, 0), (2, 'xy ', 6.6999998092651367, 1)], names='c1, c2, c3, c4') assert comparerecords(t[1].data, ra[:2]) # Change scaled field and scale back to the original array t[1].data.field('c4')[0] = 1 t[1].data._scale_back() assert str(np.rec.recarray.field(t[1].data, 'c4')) == '[84 84]' # look at data column-wise assert (t[1].data.field(0) == np.array([1, 2])).all() # When there are scaled columns, the raw data are in data._parent t.close() def test_ascii_table(self): # ASCII table a = fits.open(self.data('ascii.fits')) ra1 = np.rec.array([ (10.123000144958496, 37), (5.1999998092651367, 23), (15.609999656677246, 17), (0.0, 0), (345.0, 345)], names='c1, c2') assert comparerecords(a[1].data, ra1) # Test slicing a2 = a[1].data[2:][2:] ra2 = np.rec.array([(345.0, 345)], names='c1, c2') assert comparerecords(a2, ra2) assert (a2.field(1) == np.array([345])).all() ra3 = np.rec.array([ (10.123000144958496, 37), (15.609999656677246, 17), (345.0, 345) ], names='c1, c2') assert comparerecords(a[1].data[::2], ra3) # Test Start Column a1 = chararray.array(['abcd', 'def']) r1 = np.array([11., 12.]) c1 = fits.Column(name='abc', format='A3', start=19, array=a1) c2 = fits.Column(name='def', format='E', start=3, array=r1) c3 = fits.Column(name='t1', format='I', array=[91, 92, 93]) hdu = fits.TableHDU.from_columns([c2, c1, c3]) assert (dict(hdu.data.dtype.fields) == {'abc': (np.dtype('|S3'), 18), 'def': (np.dtype('|S15'), 2), 't1': (np.dtype('|S10'), 21)}) hdu.writeto(self.temp('toto.fits'), overwrite=True) hdul = fits.open(self.temp('toto.fits')) assert comparerecords(hdu.data, hdul[1].data) hdul.close() # Test Scaling r1 = np.array([11., 12.]) c2 = fits.Column(name='def', format='D', array=r1, bscale=2.3, bzero=0.6) hdu = fits.TableHDU.from_columns([c2]) hdu.writeto(self.temp('toto.fits'), overwrite=True) with open(self.temp('toto.fits')) as f: assert '4.95652173913043548D+00' in f.read() with fits.open(self.temp('toto.fits')) as hdul: assert comparerecords(hdu.data, hdul[1].data) # Test Integer precision according to width c1 = fits.Column(name='t2', format='I2', array=[91, 92, 93]) c2 = fits.Column(name='t4', format='I5', array=[91, 92, 93]) c3 = fits.Column(name='t8', format='I10', array=[91, 92, 93]) hdu = fits.TableHDU.from_columns([c1, c2, c3]) assert c1.array.dtype == np.int16 assert c2.array.dtype == np.int32 assert c3.array.dtype == np.int64 hdu.writeto(self.temp('toto.fits'), overwrite=True) with fits.open(self.temp('toto.fits')) as hdul: assert comparerecords(hdu.data, hdul[1].data) a.close() def test_endianness(self): x = np.ndarray((1,), dtype=object) channelsIn = np.array([3], dtype='uint8') x[0] = channelsIn col = fits.Column(name="Channels", format="PB()", array=x) cols = fits.ColDefs([col]) tbhdu = fits.BinTableHDU.from_columns(cols) tbhdu.name = "RFI" tbhdu.writeto(self.temp('testendian.fits'), overwrite=True) hduL = fits.open(self.temp('testendian.fits')) rfiHDU = hduL['RFI'] data = rfiHDU.data channelsOut = data.field('Channels')[0] assert (channelsIn == channelsOut).all() hduL.close() def test_column_endianness(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/77 (Astropy doesn't preserve byte order of non-native order column arrays) """ a = [1., 2., 3., 4.] a1 = np.array(a, dtype='<f8') a2 = np.array(a, dtype='>f8') col1 = fits.Column(name='a', format='D', array=a1) col2 = fits.Column(name='b', format='D', array=a2) cols = fits.ColDefs([col1, col2]) tbhdu = fits.BinTableHDU.from_columns(cols) assert (tbhdu.data['a'] == a1).all() assert (tbhdu.data['b'] == a2).all() # Double check that the array is converted to the correct byte-order # for FITS (big-endian). tbhdu.writeto(self.temp('testendian.fits'), overwrite=True) with fits.open(self.temp('testendian.fits')) as hdul: assert (hdul[1].data['a'] == a2).all() assert (hdul[1].data['b'] == a2).all() def test_recarray_to_bintablehdu(self): bright = np.rec.array( [(1, 'Serius', -1.45, 'A1V'), (2, 'Canopys', -0.73, 'F0Ib'), (3, 'Rigil Kent', -0.1, 'G2V')], formats='int16,a20,float32,a10', names='order,name,mag,Sp') hdu = fits.BinTableHDU(bright) assert comparerecords(hdu.data, bright) hdu.writeto(self.temp('toto.fits'), overwrite=True) hdul = fits.open(self.temp('toto.fits')) assert comparerecords(hdu.data, hdul[1].data) assert comparerecords(bright, hdul[1].data) hdul.close() def test_numpy_ndarray_to_bintablehdu(self): desc = np.dtype({'names': ['order', 'name', 'mag', 'Sp'], 'formats': ['int', 'S20', 'float32', 'S10']}) a = np.array([(1, 'Serius', -1.45, 'A1V'), (2, 'Canopys', -0.73, 'F0Ib'), (3, 'Rigil Kent', -0.1, 'G2V')], dtype=desc) hdu = fits.BinTableHDU(a) assert comparerecords(hdu.data, a.view(fits.FITS_rec)) hdu.writeto(self.temp('toto.fits'), overwrite=True) hdul = fits.open(self.temp('toto.fits')) assert comparerecords(hdu.data, hdul[1].data) hdul.close() def test_numpy_ndarray_to_bintablehdu_with_unicode(self): desc = np.dtype({'names': ['order', 'name', 'mag', 'Sp'], 'formats': ['int', 'U20', 'float32', 'U10']}) a = np.array([(1, 'Serius', -1.45, 'A1V'), (2, 'Canopys', -0.73, 'F0Ib'), (3, 'Rigil Kent', -0.1, 'G2V')], dtype=desc) hdu = fits.BinTableHDU(a) assert comparerecords(hdu.data, a.view(fits.FITS_rec)) hdu.writeto(self.temp('toto.fits'), overwrite=True) hdul = fits.open(self.temp('toto.fits')) assert comparerecords(hdu.data, hdul[1].data) hdul.close() def test_new_table_from_recarray(self): bright = np.rec.array([(1, 'Serius', -1.45, 'A1V'), (2, 'Canopys', -0.73, 'F0Ib'), (3, 'Rigil Kent', -0.1, 'G2V')], formats='int16,a20,float64,a10', names='order,name,mag,Sp') hdu = fits.TableHDU.from_columns(bright, nrows=2) # Verify that all ndarray objects within the HDU reference the # same ndarray. assert (id(hdu.data._coldefs.columns[0].array) == id(hdu.data._coldefs._arrays[0])) assert (id(hdu.data._coldefs.columns[0].array) == id(hdu.columns.columns[0].array)) assert (id(hdu.data._coldefs.columns[0].array) == id(hdu.columns._arrays[0])) # Ensure I can change the value of one data element and it effects # all of the others. hdu.data[0][0] = 213 assert hdu.data[0][0] == 213 assert hdu.data._coldefs._arrays[0][0] == 213 assert hdu.data._coldefs.columns[0].array[0] == 213 assert hdu.columns._arrays[0][0] == 213 assert hdu.columns.columns[0].array[0] == 213 hdu.data._coldefs._arrays[0][0] = 100 assert hdu.data[0][0] == 100 assert hdu.data._coldefs._arrays[0][0] == 100 assert hdu.data._coldefs.columns[0].array[0] == 100 assert hdu.columns._arrays[0][0] == 100 assert hdu.columns.columns[0].array[0] == 100 hdu.data._coldefs.columns[0].array[0] = 500 assert hdu.data[0][0] == 500 assert hdu.data._coldefs._arrays[0][0] == 500 assert hdu.data._coldefs.columns[0].array[0] == 500 assert hdu.columns._arrays[0][0] == 500 assert hdu.columns.columns[0].array[0] == 500 hdu.columns._arrays[0][0] = 600 assert hdu.data[0][0] == 600 assert hdu.data._coldefs._arrays[0][0] == 600 assert hdu.data._coldefs.columns[0].array[0] == 600 assert hdu.columns._arrays[0][0] == 600 assert hdu.columns.columns[0].array[0] == 600 hdu.columns.columns[0].array[0] = 800 assert hdu.data[0][0] == 800 assert hdu.data._coldefs._arrays[0][0] == 800 assert hdu.data._coldefs.columns[0].array[0] == 800 assert hdu.columns._arrays[0][0] == 800 assert hdu.columns.columns[0].array[0] == 800 assert (hdu.data.field(0) == np.array([800, 2], dtype=np.int16)).all() assert hdu.data[0][1] == 'Serius' assert hdu.data[1][1] == 'Canopys' assert (hdu.data.field(2) == np.array([-1.45, -0.73], dtype=np.float64)).all() assert hdu.data[0][3] == 'A1V' assert hdu.data[1][3] == 'F0Ib' hdu.writeto(self.temp('toto.fits'), overwrite=True) with fits.open(self.temp('toto.fits')) as hdul: assert (hdul[1].data.field(0) == np.array([800, 2], dtype=np.int16)).all() assert hdul[1].data[0][1] == 'Serius' assert hdul[1].data[1][1] == 'Canopys' assert (hdul[1].data.field(2) == np.array([-1.45, -0.73], dtype=np.float64)).all() assert hdul[1].data[0][3] == 'A1V' assert hdul[1].data[1][3] == 'F0Ib' del hdul hdu = fits.BinTableHDU.from_columns(bright, nrows=2) tmp = np.rec.array([(1, 'Serius', -1.45, 'A1V'), (2, 'Canopys', -0.73, 'F0Ib')], formats='int16,a20,float64,a10', names='order,name,mag,Sp') assert comparerecords(hdu.data, tmp) hdu.writeto(self.temp('toto.fits'), overwrite=True) with fits.open(self.temp('toto.fits')) as hdul: assert comparerecords(hdu.data, hdul[1].data) def test_new_fitsrec(self): """ Tests creating a new FITS_rec object from a multi-field ndarray. """ with fits.open(self.data('tb.fits')) as h: data = h[1].data new_data = np.array([(3, 'qwe', 4.5, False)], dtype=data.dtype) appended = np.append(data, new_data).view(fits.FITS_rec) assert repr(appended).startswith('FITS_rec(') # This test used to check the entire string representation of FITS_rec, # but that has problems between different numpy versions. Instead just # check that the FITS_rec was created, and we'll let subsequent tests # worry about checking values and such def test_appending_a_column(self): counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) tbhdu.writeto(self.temp('table1.fits')) counts = np.array([412, 434, 408, 417]) names = np.array(['NGC5', 'NGC6', 'NGC7', 'NCG8']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[0, 1, 0, 0]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) tbhdu.writeto(self.temp('table2.fits')) # Append the rows of table 2 after the rows of table 1 # The column definitions are assumed to be the same # Open the two files we want to append t1 = fits.open(self.temp('table1.fits')) t2 = fits.open(self.temp('table2.fits')) # Get the number of rows in the table from the first file nrows1 = t1[1].data.shape[0] # Get the total number of rows in the resulting appended table nrows = t1[1].data.shape[0] + t2[1].data.shape[0] assert (t1[1].columns._arrays[1] is t1[1].columns.columns[1].array) # Create a new table that consists of the data from the first table # but has enough space in the ndarray to hold the data from both tables hdu = fits.BinTableHDU.from_columns(t1[1].columns, nrows=nrows) # For each column in the tables append the data from table 2 after the # data from table 1. for i in range(len(t1[1].columns)): hdu.data.field(i)[nrows1:] = t2[1].data.field(i) hdu.writeto(self.temp('newtable.fits')) info = [(0, 'PRIMARY', 1, 'PrimaryHDU', 4, (), '', ''), (1, '', 1, 'BinTableHDU', 19, '8R x 5C', '[10A, J, 10A, 5E, L]', '')] assert fits.info(self.temp('newtable.fits'), output=False) == info z = np.array([0., 0., 0., 0., 0.], dtype=np.float32) array = np.rec.array( [('NGC1', 312, '', z, True), ('NGC2', 334, '', z, False), ('NGC3', 308, '', z, True), ('NCG4', 317, '', z, True), ('NGC5', 412, '', z, False), ('NGC6', 434, '', z, True), ('NGC7', 408, '', z, False), ('NCG8', 417, '', z, False)], formats='a10,u4,a10,5f4,l') assert comparerecords(hdu.data, array) # Verify that all of the references to the data point to the same # numarray hdu.data[0][1] = 300 assert hdu.data._coldefs._arrays[1][0] == 300 assert hdu.data._coldefs.columns[1].array[0] == 300 assert hdu.columns._arrays[1][0] == 300 assert hdu.columns.columns[1].array[0] == 300 assert hdu.data[0][1] == 300 hdu.data._coldefs._arrays[1][0] = 200 assert hdu.data._coldefs._arrays[1][0] == 200 assert hdu.data._coldefs.columns[1].array[0] == 200 assert hdu.columns._arrays[1][0] == 200 assert hdu.columns.columns[1].array[0] == 200 assert hdu.data[0][1] == 200 hdu.data._coldefs.columns[1].array[0] = 100 assert hdu.data._coldefs._arrays[1][0] == 100 assert hdu.data._coldefs.columns[1].array[0] == 100 assert hdu.columns._arrays[1][0] == 100 assert hdu.columns.columns[1].array[0] == 100 assert hdu.data[0][1] == 100 hdu.columns._arrays[1][0] = 90 assert hdu.data._coldefs._arrays[1][0] == 90 assert hdu.data._coldefs.columns[1].array[0] == 90 assert hdu.columns._arrays[1][0] == 90 assert hdu.columns.columns[1].array[0] == 90 assert hdu.data[0][1] == 90 hdu.columns.columns[1].array[0] = 80 assert hdu.data._coldefs._arrays[1][0] == 80 assert hdu.data._coldefs.columns[1].array[0] == 80 assert hdu.columns._arrays[1][0] == 80 assert hdu.columns.columns[1].array[0] == 80 assert hdu.data[0][1] == 80 # Same verification from the file hdul = fits.open(self.temp('newtable.fits')) hdu = hdul[1] hdu.data[0][1] = 300 assert hdu.data._coldefs._arrays[1][0] == 300 assert hdu.data._coldefs.columns[1].array[0] == 300 assert hdu.columns._arrays[1][0] == 300 assert hdu.columns.columns[1].array[0] == 300 assert hdu.data[0][1] == 300 hdu.data._coldefs._arrays[1][0] = 200 assert hdu.data._coldefs._arrays[1][0] == 200 assert hdu.data._coldefs.columns[1].array[0] == 200 assert hdu.columns._arrays[1][0] == 200 assert hdu.columns.columns[1].array[0] == 200 assert hdu.data[0][1] == 200 hdu.data._coldefs.columns[1].array[0] = 100 assert hdu.data._coldefs._arrays[1][0] == 100 assert hdu.data._coldefs.columns[1].array[0] == 100 assert hdu.columns._arrays[1][0] == 100 assert hdu.columns.columns[1].array[0] == 100 assert hdu.data[0][1] == 100 hdu.columns._arrays[1][0] = 90 assert hdu.data._coldefs._arrays[1][0] == 90 assert hdu.data._coldefs.columns[1].array[0] == 90 assert hdu.columns._arrays[1][0] == 90 assert hdu.columns.columns[1].array[0] == 90 assert hdu.data[0][1] == 90 hdu.columns.columns[1].array[0] = 80 assert hdu.data._coldefs._arrays[1][0] == 80 assert hdu.data._coldefs.columns[1].array[0] == 80 assert hdu.columns._arrays[1][0] == 80 assert hdu.columns.columns[1].array[0] == 80 assert hdu.data[0][1] == 80 t1.close() t2.close() hdul.close() def test_adding_a_column(self): # Tests adding a column to a table. counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4]) tbhdu = fits.BinTableHDU.from_columns(coldefs) assert tbhdu.columns.names == ['target', 'counts', 'notes', 'spectrum'] coldefs1 = coldefs + c5 tbhdu1 = fits.BinTableHDU.from_columns(coldefs1) assert tbhdu1.columns.names == ['target', 'counts', 'notes', 'spectrum', 'flag'] z = np.array([0., 0., 0., 0., 0.], dtype=np.float32) array = np.rec.array( [('NGC1', 312, '', z, True), ('NGC2', 334, '', z, False), ('NGC3', 308, '', z, True), ('NCG4', 317, '', z, True)], formats='a10,u4,a10,5f4,l') assert comparerecords(tbhdu1.data, array) def test_adding_a_column_inplace(self): # Tests adding a column to a table. counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4]) tbhdu = fits.BinTableHDU.from_columns(coldefs) assert tbhdu.columns.names == ['target', 'counts', 'notes', 'spectrum'] tbhdu.columns.add_col(c5) assert tbhdu.columns.names == ['target', 'counts', 'notes', 'spectrum', 'flag'] z = np.array([0., 0., 0., 0., 0.], dtype=np.float32) array = np.rec.array( [('NGC1', 312, '', z, True), ('NGC2', 334, '', z, False), ('NGC3', 308, '', z, True), ('NCG4', 317, '', z, True)], formats='a10,u4,a10,5f4,l') assert comparerecords(tbhdu.data, array) def test_adding_a_column_to_file(self): hdul = fits.open(self.data('table.fits')) tbhdu = hdul[1] col = fits.Column(name='a', array=np.array([1, 2]), format='K') tbhdu.columns.add_col(col) assert tbhdu.columns.names == ['target', 'V_mag', 'a'] array = np.rec.array( [('NGC1001', 11.1, 1), ('NGC1002', 12.3, 2), ('NGC1003', 15.2, 0)], formats='a20,f4,i8') assert comparerecords(tbhdu.data, array) hdul.close() def test_removing_a_column_inplace(self): # Tests adding a column to a table. counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) assert tbhdu.columns.names == ['target', 'counts', 'notes', 'spectrum', 'flag'] tbhdu.columns.del_col('flag') assert tbhdu.columns.names == ['target', 'counts', 'notes', 'spectrum'] z = np.array([0., 0., 0., 0., 0.], dtype=np.float32) array = np.rec.array( [('NGC1', 312, '', z), ('NGC2', 334, '', z), ('NGC3', 308, '', z), ('NCG4', 317, '', z)], formats='a10,u4,a10,5f4') assert comparerecords(tbhdu.data, array) tbhdu.columns.del_col('counts') tbhdu.columns.del_col('notes') assert tbhdu.columns.names == ['target', 'spectrum'] array = np.rec.array( [('NGC1', z), ('NGC2', z), ('NGC3', z), ('NCG4', z)], formats='a10,5f4') assert comparerecords(tbhdu.data, array) def test_removing_a_column_from_file(self): hdul = fits.open(self.data('table.fits')) tbhdu = hdul[1] tbhdu.columns.del_col('V_mag') assert tbhdu.columns.names == ['target'] array = np.rec.array( [('NGC1001', ), ('NGC1002', ), ('NGC1003', )], formats='a20') assert comparerecords(tbhdu.data, array) hdul.close() def test_merge_tables(self): counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) tbhdu.writeto(self.temp('table1.fits')) counts = np.array([412, 434, 408, 417]) names = np.array(['NGC5', 'NGC6', 'NGC7', 'NCG8']) c1 = fits.Column(name='target1', format='10A', array=names) c2 = fits.Column(name='counts1', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes1', format='A10') c4 = fits.Column(name='spectrum1', format='5E') c5 = fits.Column(name='flag1', format='L', array=[0, 1, 0, 0]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) tbhdu.writeto(self.temp('table2.fits')) # Merge the columns of table 2 after the columns of table 1 # The column names are assumed to be different # Open the two files we want to append t1 = fits.open(self.temp('table1.fits')) t2 = fits.open(self.temp('table2.fits')) hdu = fits.BinTableHDU.from_columns(t1[1].columns + t2[1].columns) z = np.array([0., 0., 0., 0., 0.], dtype=np.float32) array = np.rec.array( [('NGC1', 312, '', z, True, 'NGC5', 412, '', z, False), ('NGC2', 334, '', z, False, 'NGC6', 434, '', z, True), ('NGC3', 308, '', z, True, 'NGC7', 408, '', z, False), ('NCG4', 317, '', z, True, 'NCG8', 417, '', z, False)], formats='a10,u4,a10,5f4,l,a10,u4,a10,5f4,l') assert comparerecords(hdu.data, array) hdu.writeto(self.temp('newtable.fits')) # Verify that all of the references to the data point to the same # numarray hdu.data[0][1] = 300 assert hdu.data._coldefs._arrays[1][0] == 300 assert hdu.data._coldefs.columns[1].array[0] == 300 assert hdu.columns._arrays[1][0] == 300 assert hdu.columns.columns[1].array[0] == 300 assert hdu.data[0][1] == 300 hdu.data._coldefs._arrays[1][0] = 200 assert hdu.data._coldefs._arrays[1][0] == 200 assert hdu.data._coldefs.columns[1].array[0] == 200 assert hdu.columns._arrays[1][0] == 200 assert hdu.columns.columns[1].array[0] == 200 assert hdu.data[0][1] == 200 hdu.data._coldefs.columns[1].array[0] = 100 assert hdu.data._coldefs._arrays[1][0] == 100 assert hdu.data._coldefs.columns[1].array[0] == 100 assert hdu.columns._arrays[1][0] == 100 assert hdu.columns.columns[1].array[0] == 100 assert hdu.data[0][1] == 100 hdu.columns._arrays[1][0] = 90 assert hdu.data._coldefs._arrays[1][0] == 90 assert hdu.data._coldefs.columns[1].array[0] == 90 assert hdu.columns._arrays[1][0] == 90 assert hdu.columns.columns[1].array[0] == 90 assert hdu.data[0][1] == 90 hdu.columns.columns[1].array[0] = 80 assert hdu.data._coldefs._arrays[1][0] == 80 assert hdu.data._coldefs.columns[1].array[0] == 80 assert hdu.columns._arrays[1][0] == 80 assert hdu.columns.columns[1].array[0] == 80 assert hdu.data[0][1] == 80 info = [(0, 'PRIMARY', 1, 'PrimaryHDU', 4, (), '', ''), (1, '', 1, 'BinTableHDU', 30, '4R x 10C', '[10A, J, 10A, 5E, L, 10A, J, 10A, 5E, L]', '')] assert fits.info(self.temp('newtable.fits'), output=False) == info hdul = fits.open(self.temp('newtable.fits')) hdu = hdul[1] assert (hdu.columns.names == ['target', 'counts', 'notes', 'spectrum', 'flag', 'target1', 'counts1', 'notes1', 'spectrum1', 'flag1']) z = np.array([0., 0., 0., 0., 0.], dtype=np.float32) array = np.rec.array( [('NGC1', 312, '', z, True, 'NGC5', 412, '', z, False), ('NGC2', 334, '', z, False, 'NGC6', 434, '', z, True), ('NGC3', 308, '', z, True, 'NGC7', 408, '', z, False), ('NCG4', 317, '', z, True, 'NCG8', 417, '', z, False)], formats='a10,u4,a10,5f4,l,a10,u4,a10,5f4,l') assert comparerecords(hdu.data, array) # Same verification from the file hdu.data[0][1] = 300 assert hdu.data._coldefs._arrays[1][0] == 300 assert hdu.data._coldefs.columns[1].array[0] == 300 assert hdu.columns._arrays[1][0] == 300 assert hdu.columns.columns[1].array[0] == 300 assert hdu.data[0][1] == 300 hdu.data._coldefs._arrays[1][0] = 200 assert hdu.data._coldefs._arrays[1][0] == 200 assert hdu.data._coldefs.columns[1].array[0] == 200 assert hdu.columns._arrays[1][0] == 200 assert hdu.columns.columns[1].array[0] == 200 assert hdu.data[0][1] == 200 hdu.data._coldefs.columns[1].array[0] = 100 assert hdu.data._coldefs._arrays[1][0] == 100 assert hdu.data._coldefs.columns[1].array[0] == 100 assert hdu.columns._arrays[1][0] == 100 assert hdu.columns.columns[1].array[0] == 100 assert hdu.data[0][1] == 100 hdu.columns._arrays[1][0] = 90 assert hdu.data._coldefs._arrays[1][0] == 90 assert hdu.data._coldefs.columns[1].array[0] == 90 assert hdu.columns._arrays[1][0] == 90 assert hdu.columns.columns[1].array[0] == 90 assert hdu.data[0][1] == 90 hdu.columns.columns[1].array[0] = 80 assert hdu.data._coldefs._arrays[1][0] == 80 assert hdu.data._coldefs.columns[1].array[0] == 80 assert hdu.columns._arrays[1][0] == 80 assert hdu.columns.columns[1].array[0] == 80 assert hdu.data[0][1] == 80 t1.close() t2.close() hdul.close() def test_modify_column_attributes(self): """Regression test for https://github.com/astropy/astropy/issues/996 This just tests one particular use case, but it should apply pretty well to other similar cases. """ NULLS = {'a': 2, 'b': 'b', 'c': 2.3} data = np.array(list(zip([1, 2, 3, 4], ['a', 'b', 'c', 'd'], [2.3, 4.5, 6.7, 8.9])), dtype=[('a', int), ('b', 'S1'), ('c', float)]) b = fits.BinTableHDU(data=data) for col in b.columns: col.null = NULLS[col.name] b.writeto(self.temp('test.fits'), overwrite=True) with fits.open(self.temp('test.fits')) as hdul: header = hdul[1].header assert header['TNULL1'] == 2 assert header['TNULL2'] == 'b' assert header['TNULL3'] == 2.3 def test_multidimension_table_from_numpy_rec_columns(self): """Regression test for https://github.com/astropy/astropy/issues/5280 and https://github.com/astropy/astropy/issues/5287 multidimentional tables can now be written with the correct TDIM. Author: Stephen Bailey. """ dtype = [ ('x', (str, 5)), # 1D column of 5-character strings ('y', (str, 3), (4,)), # 2D column; each row is four 3-char strings ] data = np.zeros(2, dtype=dtype) data['x'] = ['abcde', 'xyz'] data['y'][0] = ['A', 'BC', 'DEF', '123'] data['y'][1] = ['X', 'YZ', 'PQR', '999'] table = Table(data) # Test convenience functions io.fits.writeto / getdata fits.writeto(self.temp('test.fits'), data) dx = fits.getdata(self.temp('test.fits')) assert data['x'].dtype == dx['x'].dtype assert data['y'].dtype == dx['y'].dtype assert np.all(data['x'] == dx['x']), 'x: {} != {}'.format(data['x'], dx['x']) assert np.all(data['y'] == dx['y']), 'y: {} != {}'.format(data['y'], dx['y']) # Test fits.BinTableHDU(data) and avoid convenience functions hdu0 = fits.PrimaryHDU() hdu1 = fits.BinTableHDU(data) hx = fits.HDUList([hdu0, hdu1]) hx.writeto(self.temp('test2.fits')) fx = fits.open(self.temp('test2.fits')) dx = fx[1].data fx.close() assert data['x'].dtype == dx['x'].dtype assert data['y'].dtype == dx['y'].dtype assert np.all(data['x'] == dx['x']), 'x: {} != {}'.format(data['x'], dx['x']) assert np.all(data['y'] == dx['y']), 'y: {} != {}'.format(data['y'], dx['y']) # Test Table write and read table.write(self.temp('test3.fits')) tx = Table.read(self.temp('test3.fits'), character_as_bytes=False) assert table['x'].dtype == tx['x'].dtype assert table['y'].dtype == tx['y'].dtype assert np.all(table['x'] == tx['x']), 'x: {} != {}'.format(table['x'], tx['x']) assert np.all(table['y'] == tx['y']), 'y: {} != {}'.format(table['y'], tx['y']) def test_mask_array(self): t = fits.open(self.data('table.fits')) tbdata = t[1].data mask = tbdata.field('V_mag') > 12 newtbdata = tbdata[mask] hdu = fits.BinTableHDU(newtbdata) hdu.writeto(self.temp('newtable.fits')) hdul = fits.open(self.temp('newtable.fits')) # match to a regex rather than a specific string. expect = r"\[\('NGC1002',\s+12.3[0-9]*\) \(\'NGC1003\',\s+15.[0-9]+\)\]" assert re.match(expect, str(hdu.data)) assert re.match(expect, str(hdul[1].data)) t.close() hdul.close() def test_slice_a_row(self): counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) tbhdu.writeto(self.temp('table1.fits')) t1 = fits.open(self.temp('table1.fits')) row = t1[1].data[2] assert row['counts'] == 308 a, b, c = row[1:4] assert a == counts[2] assert b == '' assert (c == np.array([0., 0., 0., 0., 0.], dtype=np.float32)).all() row['counts'] = 310 assert row['counts'] == 310 row[1] = 315 assert row['counts'] == 315 assert row[1:4]['counts'] == 315 pytest.raises(KeyError, lambda r: r[1:4]['flag'], row) row[1:4]['counts'] = 300 assert row[1:4]['counts'] == 300 assert row['counts'] == 300 row[1:4][0] = 400 assert row[1:4]['counts'] == 400 row[1:4]['counts'] = 300 assert row[1:4]['counts'] == 300 # Test stepping for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/59 row[1:4][::-1][-1] = 500 assert row[1:4]['counts'] == 500 row[1:4:2][0] = 300 assert row[1:4]['counts'] == 300 pytest.raises(KeyError, lambda r: r[1:4]['flag'], row) assert row[1:4].field(0) == 300 assert row[1:4].field('counts') == 300 pytest.raises(KeyError, row[1:4].field, 'flag') row[1:4].setfield('counts', 500) assert row[1:4].field(0) == 500 pytest.raises(KeyError, row[1:4].setfield, 'flag', False) assert t1[1].data._coldefs._arrays[1][2] == 500 assert t1[1].data._coldefs.columns[1].array[2] == 500 assert t1[1].columns._arrays[1][2] == 500 assert t1[1].columns.columns[1].array[2] == 500 assert t1[1].data[2][1] == 500 t1.close() def test_fits_record_len(self): counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) tbhdu.writeto(self.temp('table1.fits')) t1 = fits.open(self.temp('table1.fits')) assert len(t1[1].data[0]) == 5 assert len(t1[1].data[0][0:4]) == 4 assert len(t1[1].data[0][0:5]) == 5 assert len(t1[1].data[0][0:6]) == 5 assert len(t1[1].data[0][0:7]) == 5 assert len(t1[1].data[0][1:4]) == 3 assert len(t1[1].data[0][1:5]) == 4 assert len(t1[1].data[0][1:6]) == 4 assert len(t1[1].data[0][1:7]) == 4 t1.close() def test_add_data_by_rows(self): counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu1 = fits.BinTableHDU.from_columns(coldefs) c1 = fits.Column(name='target', format='10A') c2 = fits.Column(name='counts', format='J', unit='DN') c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L') coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs, nrows=5) # Test assigning data to a tables row using a FITS_record tbhdu.data[0] = tbhdu1.data[0] tbhdu.data[4] = tbhdu1.data[3] # Test assigning data to a tables row using a tuple tbhdu.data[2] = ('NGC1', 312, 'A Note', np.array([1.1, 2.2, 3.3, 4.4, 5.5], dtype=np.float32), True) # Test assigning data to a tables row using a list tbhdu.data[3] = ['JIM1', '33', 'A Note', np.array([1., 2., 3., 4., 5.], dtype=np.float32), True] # Verify that all ndarray objects within the HDU reference the # same ndarray. assert (id(tbhdu.data._coldefs.columns[0].array) == id(tbhdu.data._coldefs._arrays[0])) assert (id(tbhdu.data._coldefs.columns[0].array) == id(tbhdu.columns.columns[0].array)) assert (id(tbhdu.data._coldefs.columns[0].array) == id(tbhdu.columns._arrays[0])) assert tbhdu.data[0][1] == 312 assert tbhdu.data._coldefs._arrays[1][0] == 312 assert tbhdu.data._coldefs.columns[1].array[0] == 312 assert tbhdu.columns._arrays[1][0] == 312 assert tbhdu.columns.columns[1].array[0] == 312 assert tbhdu.columns.columns[0].array[0] == 'NGC1' assert tbhdu.columns.columns[2].array[0] == '' assert (tbhdu.columns.columns[3].array[0] == np.array([0., 0., 0., 0., 0.], dtype=np.float32)).all() assert tbhdu.columns.columns[4].array[0] == True # noqa assert tbhdu.data[3][1] == 33 assert tbhdu.data._coldefs._arrays[1][3] == 33 assert tbhdu.data._coldefs.columns[1].array[3] == 33 assert tbhdu.columns._arrays[1][3] == 33 assert tbhdu.columns.columns[1].array[3] == 33 assert tbhdu.columns.columns[0].array[3] == 'JIM1' assert tbhdu.columns.columns[2].array[3] == 'A Note' assert (tbhdu.columns.columns[3].array[3] == np.array([1., 2., 3., 4., 5.], dtype=np.float32)).all() assert tbhdu.columns.columns[4].array[3] == True # noqa def test_assign_multiple_rows_to_table(self): counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu1 = fits.BinTableHDU.from_columns(coldefs) counts = np.array([112, 134, 108, 117]) names = np.array(['NGC5', 'NGC6', 'NGC7', 'NCG8']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[0, 1, 0, 0]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) tbhdu.data[0][3] = np.array([1., 2., 3., 4., 5.], dtype=np.float32) tbhdu2 = fits.BinTableHDU.from_columns(tbhdu1.data, nrows=9) # Assign the 4 rows from the second table to rows 5 thru 8 of the # new table. Note that the last row of the new table will still be # initialized to the default values. tbhdu2.data[4:] = tbhdu.data # Verify that all ndarray objects within the HDU reference the # same ndarray. assert (id(tbhdu2.data._coldefs.columns[0].array) == id(tbhdu2.data._coldefs._arrays[0])) assert (id(tbhdu2.data._coldefs.columns[0].array) == id(tbhdu2.columns.columns[0].array)) assert (id(tbhdu2.data._coldefs.columns[0].array) == id(tbhdu2.columns._arrays[0])) assert tbhdu2.data[0][1] == 312 assert tbhdu2.data._coldefs._arrays[1][0] == 312 assert tbhdu2.data._coldefs.columns[1].array[0] == 312 assert tbhdu2.columns._arrays[1][0] == 312 assert tbhdu2.columns.columns[1].array[0] == 312 assert tbhdu2.columns.columns[0].array[0] == 'NGC1' assert tbhdu2.columns.columns[2].array[0] == '' assert (tbhdu2.columns.columns[3].array[0] == np.array([0., 0., 0., 0., 0.], dtype=np.float32)).all() assert tbhdu2.columns.columns[4].array[0] == True # noqa assert tbhdu2.data[4][1] == 112 assert tbhdu2.data._coldefs._arrays[1][4] == 112 assert tbhdu2.data._coldefs.columns[1].array[4] == 112 assert tbhdu2.columns._arrays[1][4] == 112 assert tbhdu2.columns.columns[1].array[4] == 112 assert tbhdu2.columns.columns[0].array[4] == 'NGC5' assert tbhdu2.columns.columns[2].array[4] == '' assert (tbhdu2.columns.columns[3].array[4] == np.array([1., 2., 3., 4., 5.], dtype=np.float32)).all() assert tbhdu2.columns.columns[4].array[4] == False # noqa assert tbhdu2.columns.columns[1].array[8] == 0 assert tbhdu2.columns.columns[0].array[8] == '' assert tbhdu2.columns.columns[2].array[8] == '' assert (tbhdu2.columns.columns[3].array[8] == np.array([0., 0., 0., 0., 0.], dtype=np.float32)).all() assert tbhdu2.columns.columns[4].array[8] == False # noqa def test_verify_data_references(self): counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) # Verify that original ColDefs object has independent Column # objects. assert id(coldefs.columns[0]) != id(c1) # Verify that original ColDefs object has independent ndarray # objects. assert id(coldefs.columns[0].array) != id(names) # Verify that original ColDefs object references the same data # object as the original Column object. assert id(coldefs.columns[0].array) == id(c1.array) assert id(coldefs.columns[0].array) == id(coldefs._arrays[0]) # Verify new HDU has an independent ColDefs object. assert id(coldefs) != id(tbhdu.columns) # Verify new HDU has independent Column objects. assert id(coldefs.columns[0]) != id(tbhdu.columns.columns[0]) # Verify new HDU has independent ndarray objects. assert (id(coldefs.columns[0].array) != id(tbhdu.columns.columns[0].array)) # Verify that both ColDefs objects in the HDU reference the same # Coldefs object. assert id(tbhdu.columns) == id(tbhdu.data._coldefs) # Verify that all ndarray objects within the HDU reference the # same ndarray. assert (id(tbhdu.data._coldefs.columns[0].array) == id(tbhdu.data._coldefs._arrays[0])) assert (id(tbhdu.data._coldefs.columns[0].array) == id(tbhdu.columns.columns[0].array)) assert (id(tbhdu.data._coldefs.columns[0].array) == id(tbhdu.columns._arrays[0])) tbhdu.writeto(self.temp('table1.fits')) t1 = fits.open(self.temp('table1.fits')) t1[1].data[0][1] = 213 assert t1[1].data[0][1] == 213 assert t1[1].data._coldefs._arrays[1][0] == 213 assert t1[1].data._coldefs.columns[1].array[0] == 213 assert t1[1].columns._arrays[1][0] == 213 assert t1[1].columns.columns[1].array[0] == 213 t1[1].data._coldefs._arrays[1][0] = 100 assert t1[1].data[0][1] == 100 assert t1[1].data._coldefs._arrays[1][0] == 100 assert t1[1].data._coldefs.columns[1].array[0] == 100 assert t1[1].columns._arrays[1][0] == 100 assert t1[1].columns.columns[1].array[0] == 100 t1[1].data._coldefs.columns[1].array[0] = 500 assert t1[1].data[0][1] == 500 assert t1[1].data._coldefs._arrays[1][0] == 500 assert t1[1].data._coldefs.columns[1].array[0] == 500 assert t1[1].columns._arrays[1][0] == 500 assert t1[1].columns.columns[1].array[0] == 500 t1[1].columns._arrays[1][0] = 600 assert t1[1].data[0][1] == 600 assert t1[1].data._coldefs._arrays[1][0] == 600 assert t1[1].data._coldefs.columns[1].array[0] == 600 assert t1[1].columns._arrays[1][0] == 600 assert t1[1].columns.columns[1].array[0] == 600 t1[1].columns.columns[1].array[0] = 800 assert t1[1].data[0][1] == 800 assert t1[1].data._coldefs._arrays[1][0] == 800 assert t1[1].data._coldefs.columns[1].array[0] == 800 assert t1[1].columns._arrays[1][0] == 800 assert t1[1].columns.columns[1].array[0] == 800 t1.close() def test_new_table_with_ndarray(self): counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) tbhdu1 = fits.BinTableHDU.from_columns(tbhdu.data.view(np.ndarray)) # Verify that all ndarray objects within the HDU reference the # same ndarray. assert (id(tbhdu1.data._coldefs.columns[0].array) == id(tbhdu1.data._coldefs._arrays[0])) assert (id(tbhdu1.data._coldefs.columns[0].array) == id(tbhdu1.columns.columns[0].array)) assert (id(tbhdu1.data._coldefs.columns[0].array) == id(tbhdu1.columns._arrays[0])) # Ensure I can change the value of one data element and it effects # all of the others. tbhdu1.data[0][1] = 213 assert tbhdu1.data[0][1] == 213 assert tbhdu1.data._coldefs._arrays[1][0] == 213 assert tbhdu1.data._coldefs.columns[1].array[0] == 213 assert tbhdu1.columns._arrays[1][0] == 213 assert tbhdu1.columns.columns[1].array[0] == 213 tbhdu1.data._coldefs._arrays[1][0] = 100 assert tbhdu1.data[0][1] == 100 assert tbhdu1.data._coldefs._arrays[1][0] == 100 assert tbhdu1.data._coldefs.columns[1].array[0] == 100 assert tbhdu1.columns._arrays[1][0] == 100 assert tbhdu1.columns.columns[1].array[0] == 100 tbhdu1.data._coldefs.columns[1].array[0] = 500 assert tbhdu1.data[0][1] == 500 assert tbhdu1.data._coldefs._arrays[1][0] == 500 assert tbhdu1.data._coldefs.columns[1].array[0] == 500 assert tbhdu1.columns._arrays[1][0] == 500 assert tbhdu1.columns.columns[1].array[0] == 500 tbhdu1.columns._arrays[1][0] = 600 assert tbhdu1.data[0][1] == 600 assert tbhdu1.data._coldefs._arrays[1][0] == 600 assert tbhdu1.data._coldefs.columns[1].array[0] == 600 assert tbhdu1.columns._arrays[1][0] == 600 assert tbhdu1.columns.columns[1].array[0] == 600 tbhdu1.columns.columns[1].array[0] = 800 assert tbhdu1.data[0][1] == 800 assert tbhdu1.data._coldefs._arrays[1][0] == 800 assert tbhdu1.data._coldefs.columns[1].array[0] == 800 assert tbhdu1.columns._arrays[1][0] == 800 assert tbhdu1.columns.columns[1].array[0] == 800 tbhdu1.writeto(self.temp('table1.fits')) t1 = fits.open(self.temp('table1.fits')) t1[1].data[0][1] = 213 assert t1[1].data[0][1] == 213 assert t1[1].data._coldefs._arrays[1][0] == 213 assert t1[1].data._coldefs.columns[1].array[0] == 213 assert t1[1].columns._arrays[1][0] == 213 assert t1[1].columns.columns[1].array[0] == 213 t1[1].data._coldefs._arrays[1][0] = 100 assert t1[1].data[0][1] == 100 assert t1[1].data._coldefs._arrays[1][0] == 100 assert t1[1].data._coldefs.columns[1].array[0] == 100 assert t1[1].columns._arrays[1][0] == 100 assert t1[1].columns.columns[1].array[0] == 100 t1[1].data._coldefs.columns[1].array[0] = 500 assert t1[1].data[0][1] == 500 assert t1[1].data._coldefs._arrays[1][0] == 500 assert t1[1].data._coldefs.columns[1].array[0] == 500 assert t1[1].columns._arrays[1][0] == 500 assert t1[1].columns.columns[1].array[0] == 500 t1[1].columns._arrays[1][0] = 600 assert t1[1].data[0][1] == 600 assert t1[1].data._coldefs._arrays[1][0] == 600 assert t1[1].data._coldefs.columns[1].array[0] == 600 assert t1[1].columns._arrays[1][0] == 600 assert t1[1].columns.columns[1].array[0] == 600 t1[1].columns.columns[1].array[0] = 800 assert t1[1].data[0][1] == 800 assert t1[1].data._coldefs._arrays[1][0] == 800 assert t1[1].data._coldefs.columns[1].array[0] == 800 assert t1[1].columns._arrays[1][0] == 800 assert t1[1].columns.columns[1].array[0] == 800 t1.close() def test_new_table_with_fits_rec(self): counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) tbhdu.data[0][1] = 213 assert tbhdu.data[0][1] == 213 assert tbhdu.data._coldefs._arrays[1][0] == 213 assert tbhdu.data._coldefs.columns[1].array[0] == 213 assert tbhdu.columns._arrays[1][0] == 213 assert tbhdu.columns.columns[1].array[0] == 213 tbhdu.data._coldefs._arrays[1][0] = 100 assert tbhdu.data[0][1] == 100 assert tbhdu.data._coldefs._arrays[1][0] == 100 assert tbhdu.data._coldefs.columns[1].array[0] == 100 assert tbhdu.columns._arrays[1][0] == 100 assert tbhdu.columns.columns[1].array[0] == 100 tbhdu.data._coldefs.columns[1].array[0] = 500 assert tbhdu.data[0][1] == 500 assert tbhdu.data._coldefs._arrays[1][0] == 500 assert tbhdu.data._coldefs.columns[1].array[0] == 500 assert tbhdu.columns._arrays[1][0] == 500 assert tbhdu.columns.columns[1].array[0] == 500 tbhdu.columns._arrays[1][0] = 600 assert tbhdu.data[0][1] == 600 assert tbhdu.data._coldefs._arrays[1][0] == 600 assert tbhdu.data._coldefs.columns[1].array[0] == 600 assert tbhdu.columns._arrays[1][0] == 600 assert tbhdu.columns.columns[1].array[0] == 600 tbhdu.columns.columns[1].array[0] = 800 assert tbhdu.data[0][1] == 800 assert tbhdu.data._coldefs._arrays[1][0] == 800 assert tbhdu.data._coldefs.columns[1].array[0] == 800 assert tbhdu.columns._arrays[1][0] == 800 assert tbhdu.columns.columns[1].array[0] == 800 tbhdu.columns.columns[1].array[0] = 312 tbhdu.writeto(self.temp('table1.fits')) t1 = fits.open(self.temp('table1.fits')) t1[1].data[0][1] = 1 fr = t1[1].data assert t1[1].data[0][1] == 1 assert t1[1].data._coldefs._arrays[1][0] == 1 assert t1[1].data._coldefs.columns[1].array[0] == 1 assert t1[1].columns._arrays[1][0] == 1 assert t1[1].columns.columns[1].array[0] == 1 assert fr[0][1] == 1 assert fr._coldefs._arrays[1][0] == 1 assert fr._coldefs.columns[1].array[0] == 1 fr._coldefs.columns[1].array[0] = 312 tbhdu1 = fits.BinTableHDU.from_columns(fr) i = 0 for row in tbhdu1.data: for j in range(len(row)): if isinstance(row[j], np.ndarray): assert (row[j] == tbhdu.data[i][j]).all() else: assert row[j] == tbhdu.data[i][j] i = i + 1 tbhdu1.data[0][1] = 213 assert t1[1].data[0][1] == 312 assert t1[1].data._coldefs._arrays[1][0] == 312 assert t1[1].data._coldefs.columns[1].array[0] == 312 assert t1[1].columns._arrays[1][0] == 312 assert t1[1].columns.columns[1].array[0] == 312 assert fr[0][1] == 312 assert fr._coldefs._arrays[1][0] == 312 assert fr._coldefs.columns[1].array[0] == 312 assert tbhdu1.data[0][1] == 213 assert tbhdu1.data._coldefs._arrays[1][0] == 213 assert tbhdu1.data._coldefs.columns[1].array[0] == 213 assert tbhdu1.columns._arrays[1][0] == 213 assert tbhdu1.columns.columns[1].array[0] == 213 t1[1].data[0][1] = 10 assert t1[1].data[0][1] == 10 assert t1[1].data._coldefs._arrays[1][0] == 10 assert t1[1].data._coldefs.columns[1].array[0] == 10 assert t1[1].columns._arrays[1][0] == 10 assert t1[1].columns.columns[1].array[0] == 10 assert fr[0][1] == 10 assert fr._coldefs._arrays[1][0] == 10 assert fr._coldefs.columns[1].array[0] == 10 assert tbhdu1.data[0][1] == 213 assert tbhdu1.data._coldefs._arrays[1][0] == 213 assert tbhdu1.data._coldefs.columns[1].array[0] == 213 assert tbhdu1.columns._arrays[1][0] == 213 assert tbhdu1.columns.columns[1].array[0] == 213 tbhdu1.data._coldefs._arrays[1][0] = 666 assert t1[1].data[0][1] == 10 assert t1[1].data._coldefs._arrays[1][0] == 10 assert t1[1].data._coldefs.columns[1].array[0] == 10 assert t1[1].columns._arrays[1][0] == 10 assert t1[1].columns.columns[1].array[0] == 10 assert fr[0][1] == 10 assert fr._coldefs._arrays[1][0] == 10 assert fr._coldefs.columns[1].array[0] == 10 assert tbhdu1.data[0][1] == 666 assert tbhdu1.data._coldefs._arrays[1][0] == 666 assert tbhdu1.data._coldefs.columns[1].array[0] == 666 assert tbhdu1.columns._arrays[1][0] == 666 assert tbhdu1.columns.columns[1].array[0] == 666 t1.close() def test_bin_table_hdu_constructor(self): counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu1 = fits.BinTableHDU.from_columns(coldefs) hdu = fits.BinTableHDU(tbhdu1.data) # Verify that all ndarray objects within the HDU reference the # same ndarray. assert (id(hdu.data._coldefs.columns[0].array) == id(hdu.data._coldefs._arrays[0])) assert (id(hdu.data._coldefs.columns[0].array) == id(hdu.columns.columns[0].array)) assert (id(hdu.data._coldefs.columns[0].array) == id(hdu.columns._arrays[0])) # Verify that the references in the original HDU are the same as the # references in the new HDU. assert (id(tbhdu1.data._coldefs.columns[0].array) == id(hdu.data._coldefs._arrays[0])) # Verify that a change in the new HDU is reflected in both the new # and original HDU. hdu.data[0][1] = 213 assert hdu.data[0][1] == 213 assert hdu.data._coldefs._arrays[1][0] == 213 assert hdu.data._coldefs.columns[1].array[0] == 213 assert hdu.columns._arrays[1][0] == 213 assert hdu.columns.columns[1].array[0] == 213 assert tbhdu1.data[0][1] == 213 assert tbhdu1.data._coldefs._arrays[1][0] == 213 assert tbhdu1.data._coldefs.columns[1].array[0] == 213 assert tbhdu1.columns._arrays[1][0] == 213 assert tbhdu1.columns.columns[1].array[0] == 213 hdu.data._coldefs._arrays[1][0] = 100 assert hdu.data[0][1] == 100 assert hdu.data._coldefs._arrays[1][0] == 100 assert hdu.data._coldefs.columns[1].array[0] == 100 assert hdu.columns._arrays[1][0] == 100 assert hdu.columns.columns[1].array[0] == 100 assert tbhdu1.data[0][1] == 100 assert tbhdu1.data._coldefs._arrays[1][0] == 100 assert tbhdu1.data._coldefs.columns[1].array[0] == 100 assert tbhdu1.columns._arrays[1][0] == 100 assert tbhdu1.columns.columns[1].array[0] == 100 hdu.data._coldefs.columns[1].array[0] = 500 assert hdu.data[0][1] == 500 assert hdu.data._coldefs._arrays[1][0] == 500 assert hdu.data._coldefs.columns[1].array[0] == 500 assert hdu.columns._arrays[1][0] == 500 assert hdu.columns.columns[1].array[0] == 500 assert tbhdu1.data[0][1] == 500 assert tbhdu1.data._coldefs._arrays[1][0] == 500 assert tbhdu1.data._coldefs.columns[1].array[0] == 500 assert tbhdu1.columns._arrays[1][0] == 500 assert tbhdu1.columns.columns[1].array[0] == 500 hdu.columns._arrays[1][0] = 600 assert hdu.data[0][1] == 600 assert hdu.data._coldefs._arrays[1][0] == 600 assert hdu.data._coldefs.columns[1].array[0] == 600 assert hdu.columns._arrays[1][0] == 600 assert hdu.columns.columns[1].array[0] == 600 assert tbhdu1.data[0][1] == 600 assert tbhdu1.data._coldefs._arrays[1][0] == 600 assert tbhdu1.data._coldefs.columns[1].array[0] == 600 assert tbhdu1.columns._arrays[1][0] == 600 assert tbhdu1.columns.columns[1].array[0] == 600 hdu.columns.columns[1].array[0] = 800 assert hdu.data[0][1] == 800 assert hdu.data._coldefs._arrays[1][0] == 800 assert hdu.data._coldefs.columns[1].array[0] == 800 assert hdu.columns._arrays[1][0] == 800 assert hdu.columns.columns[1].array[0] == 800 assert tbhdu1.data[0][1] == 800 assert tbhdu1.data._coldefs._arrays[1][0] == 800 assert tbhdu1.data._coldefs.columns[1].array[0] == 800 assert tbhdu1.columns._arrays[1][0] == 800 assert tbhdu1.columns.columns[1].array[0] == 800 def test_constructor_name_arg(self): """testConstructorNameArg Passing name='...' to the BinTableHDU and TableHDU constructors should set the .name attribute and 'EXTNAME' header keyword, and override any name in an existing 'EXTNAME' value. """ for hducls in [fits.BinTableHDU, fits.TableHDU]: # First test some default assumptions hdu = hducls() assert hdu.name == '' assert 'EXTNAME' not in hdu.header hdu.name = 'FOO' assert hdu.name == 'FOO' assert hdu.header['EXTNAME'] == 'FOO' # Passing name to constructor hdu = hducls(name='FOO') assert hdu.name == 'FOO' assert hdu.header['EXTNAME'] == 'FOO' # And overriding a header with a different extname hdr = fits.Header() hdr['EXTNAME'] = 'EVENTS' hdu = hducls(header=hdr, name='FOO') assert hdu.name == 'FOO' assert hdu.header['EXTNAME'] == 'FOO' def test_constructor_ver_arg(self): for hducls in [fits.BinTableHDU, fits.TableHDU]: # First test some default assumptions hdu = hducls() assert hdu.ver == 1 assert 'EXTVER' not in hdu.header hdu.ver = 2 assert hdu.ver == 2 assert hdu.header['EXTVER'] == 2 # Passing name to constructor hdu = hducls(ver=3) assert hdu.ver == 3 assert hdu.header['EXTVER'] == 3 # And overriding a header with a different extver hdr = fits.Header() hdr['EXTVER'] = 4 hdu = hducls(header=hdr, ver=5) assert hdu.ver == 5 assert hdu.header['EXTVER'] == 5 def test_unicode_colname(self): """ Regression test for https://github.com/astropy/astropy/issues/5204 "Handle unicode FITS BinTable column names on Python 2" """ col = fits.Column(name='spam', format='E', array=[42.]) # This used to raise a TypeError, now it works fits.BinTableHDU.from_columns([col]) def test_bin_table_with_logical_array(self): c1 = fits.Column(name='flag', format='2L', array=[[True, False], [False, True]]) coldefs = fits.ColDefs([c1]) tbhdu1 = fits.BinTableHDU.from_columns(coldefs) assert (tbhdu1.data.field('flag')[0] == np.array([True, False], dtype=bool)).all() assert (tbhdu1.data.field('flag')[1] == np.array([False, True], dtype=bool)).all() tbhdu = fits.BinTableHDU.from_columns(tbhdu1.data) assert (tbhdu.data.field('flag')[0] == np.array([True, False], dtype=bool)).all() assert (tbhdu.data.field('flag')[1] == np.array([False, True], dtype=bool)).all() def test_fits_rec_column_access(self): tbdata = fits.getdata(self.data('table.fits')) assert (tbdata.V_mag == tbdata.field('V_mag')).all() assert (tbdata.V_mag == tbdata['V_mag']).all() # Table with scaling (c3) and tnull (c1) tbdata = fits.getdata(self.data('tb.fits')) for col in ('c1', 'c2', 'c3', 'c4'): data = getattr(tbdata, col) assert (data == tbdata.field(col)).all() assert (data == tbdata[col]).all() # ascii table tbdata = fits.getdata(self.data('ascii.fits')) for col in ('a', 'b'): data = getattr(tbdata, col) assert (data == tbdata.field(col)).all() assert (data == tbdata[col]).all() # with VLA column col1 = fits.Column(name='x', format='PI()', array=np.array([[45, 56], [11, 12, 13]], dtype=np.object_)) hdu = fits.BinTableHDU.from_columns([col1]) assert type(hdu.data['x']) == type(hdu.data.x) # noqa assert (hdu.data['x'][0] == hdu.data.x[0]).all() assert (hdu.data['x'][1] == hdu.data.x[1]).all() def test_table_with_zero_width_column(self): hdul = fits.open(self.data('zerowidth.fits')) tbhdu = hdul[2] # This HDU contains a zero-width column 'ORBPARM' assert 'ORBPARM' in tbhdu.columns.names # The ORBPARM column should not be in the data, though the data should # be readable assert 'ORBPARM' in tbhdu.data.names assert 'ORBPARM' in tbhdu.data.dtype.names # Verify that some of the data columns are still correctly accessible # by name assert tbhdu.data[0]['ANNAME'] == 'VLA:_W16' assert comparefloats( tbhdu.data[0]['STABXYZ'], np.array([499.85566663, -1317.99231554, -735.18866164], dtype=np.float64)) assert tbhdu.data[0]['NOSTA'] == 1 assert tbhdu.data[0]['MNTSTA'] == 0 assert tbhdu.data[-1]['ANNAME'] == 'VPT:_OUT' assert comparefloats( tbhdu.data[-1]['STABXYZ'], np.array([0.0, 0.0, 0.0], dtype=np.float64)) assert tbhdu.data[-1]['NOSTA'] == 29 assert tbhdu.data[-1]['MNTSTA'] == 0 hdul.writeto(self.temp('newtable.fits')) hdul.close() hdul = fits.open(self.temp('newtable.fits')) tbhdu = hdul[2] # Verify that the previous tests still hold after writing assert 'ORBPARM' in tbhdu.columns.names assert 'ORBPARM' in tbhdu.data.names assert 'ORBPARM' in tbhdu.data.dtype.names assert tbhdu.data[0]['ANNAME'] == 'VLA:_W16' assert comparefloats( tbhdu.data[0]['STABXYZ'], np.array([499.85566663, -1317.99231554, -735.18866164], dtype=np.float64)) assert tbhdu.data[0]['NOSTA'] == 1 assert tbhdu.data[0]['MNTSTA'] == 0 assert tbhdu.data[-1]['ANNAME'] == 'VPT:_OUT' assert comparefloats( tbhdu.data[-1]['STABXYZ'], np.array([0.0, 0.0, 0.0], dtype=np.float64)) assert tbhdu.data[-1]['NOSTA'] == 29 assert tbhdu.data[-1]['MNTSTA'] == 0 hdul.close() def test_string_column_padding(self): a = ['img1', 'img2', 'img3a', 'p'] s = 'img1\x00\x00\x00\x00\x00\x00' \ 'img2\x00\x00\x00\x00\x00\x00' \ 'img3a\x00\x00\x00\x00\x00' \ 'p\x00\x00\x00\x00\x00\x00\x00\x00\x00' acol = fits.Column(name='MEMNAME', format='A10', array=chararray.array(a)) ahdu = fits.BinTableHDU.from_columns([acol]) assert ahdu.data.tobytes().decode('raw-unicode-escape') == s ahdu.writeto(self.temp('newtable.fits')) with fits.open(self.temp('newtable.fits')) as hdul: assert hdul[1].data.tobytes().decode('raw-unicode-escape') == s assert (hdul[1].data['MEMNAME'] == a).all() del hdul ahdu = fits.TableHDU.from_columns([acol]) ahdu.writeto(self.temp('newtable.fits'), overwrite=True) with fits.open(self.temp('newtable.fits')) as hdul: assert (hdul[1].data.tobytes().decode('raw-unicode-escape') == s.replace('\x00', ' ')) assert (hdul[1].data['MEMNAME'] == a).all() ahdu = fits.BinTableHDU.from_columns(hdul[1].data.copy()) del hdul # Now serialize once more as a binary table; padding bytes should # revert to zeroes ahdu.writeto(self.temp('newtable.fits'), overwrite=True) with fits.open(self.temp('newtable.fits')) as hdul: assert hdul[1].data.tobytes().decode('raw-unicode-escape') == s assert (hdul[1].data['MEMNAME'] == a).all() def test_multi_dimensional_columns(self): """ Tests the multidimensional column implementation with both numeric arrays and string arrays. """ data = np.rec.array( [([0, 1, 2, 3, 4, 5], 'row1' * 2), ([6, 7, 8, 9, 0, 1], 'row2' * 2), ([2, 3, 4, 5, 6, 7], 'row3' * 2)], formats='6i4,a8') thdu = fits.BinTableHDU.from_columns(data) thdu.writeto(self.temp('newtable.fits')) with fits.open(self.temp('newtable.fits'), mode='update') as hdul: # Modify the TDIM fields to my own specification hdul[1].header['TDIM1'] = '(2,3)' hdul[1].header['TDIM2'] = '(4,2)' with fits.open(self.temp('newtable.fits')) as hdul: thdu = hdul[1] c1 = thdu.data.field(0) c2 = thdu.data.field(1) assert c1.shape == (3, 3, 2) assert c2.shape == (3, 2) assert (c1 == np.array([[[0, 1], [2, 3], [4, 5]], [[6, 7], [8, 9], [0, 1]], [[2, 3], [4, 5], [6, 7]]])).all() assert (c2 == np.array([['row1', 'row1'], ['row2', 'row2'], ['row3', 'row3']])).all() del c1 del c2 del thdu del hdul # Test setting the TDIMn header based on the column data data = np.zeros(3, dtype=[('x', 'f4'), ('s', 'S5', 4)]) data['x'] = 1, 2, 3 data['s'] = 'ok' fits.writeto(self.temp('newtable.fits'), data, overwrite=True) t = fits.getdata(self.temp('newtable.fits')) assert t.field(1).dtype.str[-1] == '5' assert t.field(1).shape == (3, 4) # Like the previous test, but with an extra dimension (a bit more # complicated) data = np.zeros(3, dtype=[('x', 'f4'), ('s', 'S5', (4, 3))]) data['x'] = 1, 2, 3 data['s'] = 'ok' del t fits.writeto(self.temp('newtable.fits'), data, overwrite=True) t = fits.getdata(self.temp('newtable.fits')) assert t.field(1).dtype.str[-1] == '5' assert t.field(1).shape == (3, 4, 3) def test_oned_array_single_element(self): # a table with rows that are 1d arrays of a single value data = np.array([(1, ), (2, )], dtype=([('x', 'i4', (1, ))])) thdu = fits.BinTableHDU.from_columns(data) thdu.writeto(self.temp('onedtable.fits')) with fits.open(self.temp('onedtable.fits')) as hdul: thdu = hdul[1] c = thdu.data.field(0) assert c.shape == (2, 1) assert thdu.header['TDIM1'] == '(1)' def test_bin_table_init_from_string_array_column(self): """ Tests two ways of creating a new `BinTableHDU` from a column of string arrays. This tests for a couple different regressions, and ensures that both BinTableHDU(data=arr) and BinTableHDU.from_columns(arr) work equivalently. Some of this is redundant with the following test, but checks some subtly different cases. """ data = [[b'abcd', b'efgh'], [b'ijkl', b'mnop'], [b'qrst', b'uvwx']] arr = np.array([(data,), (data,), (data,), (data,), (data,)], dtype=[('S', '(3, 2)S4')]) tbhdu1 = fits.BinTableHDU(data=arr) def test_dims_and_roundtrip(tbhdu): assert tbhdu.data['S'].shape == (5, 3, 2) assert tbhdu.data['S'].dtype.str.endswith('U4') tbhdu.writeto(self.temp('test.fits'), overwrite=True) with fits.open(self.temp('test.fits')) as hdul: tbhdu2 = hdul[1] assert tbhdu2.header['TDIM1'] == '(4,2,3)' assert tbhdu2.data['S'].shape == (5, 3, 2) assert tbhdu.data['S'].dtype.str.endswith('U4') assert np.all(tbhdu2.data['S'] == tbhdu.data['S']) test_dims_and_roundtrip(tbhdu1) tbhdu2 = fits.BinTableHDU.from_columns(arr) test_dims_and_roundtrip(tbhdu2) def test_columns_with_truncating_tdim(self): """ According to the FITS standard (section 7.3.2): If the number of elements in the array implied by the TDIMn is less than the allocated size of the ar- ray in the FITS file, then the unused trailing elements should be interpreted as containing undefined fill values. *deep sigh* What this means is if a column has a repeat count larger than the number of elements indicated by its TDIM (ex: TDIM1 = '(2,2)', but TFORM1 = 6I), then instead of this being an outright error we are to take the first 4 elements as implied by the TDIM and ignore the additional two trailing elements. """ # It's hard to even successfully create a table like this. I think # it *should* be difficult, but once created it should at least be # possible to read. arr1 = [[b'ab', b'cd'], [b'ef', b'gh'], [b'ij', b'kl']] arr2 = [1, 2, 3, 4, 5] arr = np.array([(arr1, arr2), (arr1, arr2)], dtype=[('a', '(3, 2)S2'), ('b', '5i8')]) tbhdu = fits.BinTableHDU(data=arr) tbhdu.writeto(self.temp('test.fits')) with open(self.temp('test.fits'), 'rb') as f: raw_bytes = f.read() # Artificially truncate TDIM in the header; this seems to be the # easiest way to do this while getting around Astropy's insistence on the # data and header matching perfectly; again, we have no interest in # making it possible to write files in this format, only read them with open(self.temp('test.fits'), 'wb') as f: f.write(raw_bytes.replace(b'(2,2,3)', b'(2,2,2)')) with fits.open(self.temp('test.fits')) as hdul: tbhdu2 = hdul[1] assert tbhdu2.header['TDIM1'] == '(2,2,2)' assert tbhdu2.header['TFORM1'] == '12A' for row in tbhdu2.data: assert np.all(row['a'] == [['ab', 'cd'], ['ef', 'gh']]) assert np.all(row['b'] == [1, 2, 3, 4, 5]) def test_string_array_round_trip(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/201""" data = [['abc', 'def', 'ghi'], ['jkl', 'mno', 'pqr'], ['stu', 'vwx', 'yz ']] recarr = np.rec.array([(data,), (data,)], formats=['(3,3)S3']) t = fits.BinTableHDU(data=recarr) t.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as h: assert 'TDIM1' in h[1].header assert h[1].header['TDIM1'] == '(3,3,3)' assert len(h[1].data) == 2 assert len(h[1].data[0]) == 1 assert (h[1].data.field(0)[0] == np.char.decode(recarr.field(0)[0], 'ascii')).all() with fits.open(self.temp('test.fits')) as h: # Access the data; I think this is necessary to exhibit the bug # reported in https://aeon.stsci.edu/ssb/trac/pyfits/ticket/201 h[1].data[:] h.writeto(self.temp('test2.fits')) with fits.open(self.temp('test2.fits')) as h: assert 'TDIM1' in h[1].header assert h[1].header['TDIM1'] == '(3,3,3)' assert len(h[1].data) == 2 assert len(h[1].data[0]) == 1 assert (h[1].data.field(0)[0] == np.char.decode(recarr.field(0)[0], 'ascii')).all() def test_new_table_with_nd_column(self): """Regression test for https://github.com/spacetelescope/PyFITS/issues/3 """ arra = np.array(['a', 'b'], dtype='|S1') arrb = np.array([['a', 'bc'], ['cd', 'e']], dtype='|S2') arrc = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) cols = [ fits.Column(name='str', format='1A', array=arra), fits.Column(name='strarray', format='4A', dim='(2,2)', array=arrb), fits.Column(name='intarray', format='4I', dim='(2, 2)', array=arrc) ] hdu = fits.BinTableHDU.from_columns(fits.ColDefs(cols)) hdu.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as h: # Need to force string arrays to byte arrays in order to compare # correctly on Python 3 assert (h[1].data['str'].encode('ascii') == arra).all() assert (h[1].data['strarray'].encode('ascii') == arrb).all() assert (h[1].data['intarray'] == arrc).all() def test_mismatched_tform_and_tdim(self): """Normally the product of the dimensions listed in a TDIMn keyword must be less than or equal to the repeat count in the TFORMn keyword. This tests that this works if less than (treating the trailing bytes as unspecified fill values per the FITS standard) and fails if the dimensions specified by TDIMn are greater than the repeat count. """ arra = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) arrb = np.array([[[9, 10], [11, 12]], [[13, 14], [15, 16]]]) cols = [fits.Column(name='a', format='20I', dim='(2,2)', array=arra), fits.Column(name='b', format='4I', dim='(2,2)', array=arrb)] # The first column has the mismatched repeat count hdu = fits.BinTableHDU.from_columns(fits.ColDefs(cols)) hdu.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as h: assert h[1].header['TFORM1'] == '20I' assert h[1].header['TFORM2'] == '4I' assert h[1].header['TDIM1'] == h[1].header['TDIM2'] == '(2,2)' assert (h[1].data['a'] == arra).all() assert (h[1].data['b'] == arrb).all() assert h[1].data.itemsize == 48 # 16-bits times 24 # If dims is more than the repeat count in the format specifier raise # an error pytest.raises(VerifyError, fits.Column, name='a', format='2I', dim='(2,2)', array=arra) def test_tdim_of_size_one(self): """Regression test for https://github.com/astropy/astropy/pull/3580""" with fits.open(self.data('tdim.fits')) as hdulist: assert hdulist[1].data['V_mag'].shape == (3, 1, 1) def test_slicing(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/52""" with fits.open(self.data('table.fits')) as f: data = f[1].data targets = data.field('target') s = data[:] assert (s.field('target') == targets).all() for n in range(len(targets) + 2): s = data[:n] assert (s.field('target') == targets[:n]).all() s = data[n:] assert (s.field('target') == targets[n:]).all() s = data[::2] assert (s.field('target') == targets[::2]).all() s = data[::-1] assert (s.field('target') == targets[::-1]).all() def test_array_slicing(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/55""" with fits.open(self.data('table.fits')) as f: data = f[1].data s1 = data[data['target'] == 'NGC1001'] s2 = data[np.where(data['target'] == 'NGC1001')] s3 = data[[0]] s4 = data[:1] for s in [s1, s2, s3, s4]: assert isinstance(s, fits.FITS_rec) assert comparerecords(s1, s2) assert comparerecords(s2, s3) assert comparerecords(s3, s4) def test_array_broadcasting(self): """ Regression test for https://github.com/spacetelescope/PyFITS/pull/48 """ with fits.open(self.data('table.fits')) as hdu: data = hdu[1].data data['V_mag'] = 0 assert np.all(data['V_mag'] == 0) data['V_mag'] = 1 assert np.all(data['V_mag'] == 1) for container in (list, tuple, np.array): data['V_mag'] = container([1, 2, 3]) assert np.array_equal(data['V_mag'], np.array([1, 2, 3])) def test_array_slicing_readonly(self): """ Like test_array_slicing but with the file opened in 'readonly' mode. Regression test for a crash when slicing readonly memmap'd tables. """ with fits.open(self.data('table.fits'), mode='readonly') as f: data = f[1].data s1 = data[data['target'] == 'NGC1001'] s2 = data[np.where(data['target'] == 'NGC1001')] s3 = data[[0]] s4 = data[:1] for s in [s1, s2, s3, s4]: assert isinstance(s, fits.FITS_rec) assert comparerecords(s1, s2) assert comparerecords(s2, s3) assert comparerecords(s3, s4) @pytest.mark.parametrize('tablename', ['table.fits', 'tb.fits']) def test_dump_load_round_trip(self, tablename): """ A simple test of the dump/load methods; dump the data, column, and header files and try to reload the table from them. """ with fits.open(self.data(tablename)) as hdul: tbhdu = hdul[1] datafile = self.temp('data.txt') cdfile = self.temp('coldefs.txt') hfile = self.temp('header.txt') tbhdu.dump(datafile, cdfile, hfile) new_tbhdu = fits.BinTableHDU.load(datafile, cdfile, hfile) assert comparerecords(tbhdu.data, new_tbhdu.data) _assert_attr_col(new_tbhdu, hdul[1]) def test_dump_load_array_colums(self): """ Regression test for https://github.com/spacetelescope/PyFITS/issues/22 Ensures that a table containing a multi-value array column can be dumped and loaded successfully. """ data = np.rec.array([('a', [1, 2, 3, 4], 0.1), ('b', [5, 6, 7, 8], 0.2)], formats='a1,4i4,f8') tbhdu = fits.BinTableHDU.from_columns(data) datafile = self.temp('data.txt') cdfile = self.temp('coldefs.txt') hfile = self.temp('header.txt') tbhdu.dump(datafile, cdfile, hfile) new_tbhdu = fits.BinTableHDU.load(datafile, cdfile, hfile) assert comparerecords(tbhdu.data, new_tbhdu.data) assert str(tbhdu.header) == str(new_tbhdu.header) def test_load_guess_format(self): """ Tests loading a table dump with no supplied coldefs or header, so that the table format has to be guessed at. There is of course no exact science to this; the table that's produced simply uses sensible guesses for that format. Ideally this should never have to be used. """ # Create a table containing a variety of data types. a0 = np.array([False, True, False], dtype=bool) c0 = fits.Column(name='c0', format='L', array=a0) # Format X currently not supported by the format # a1 = np.array([[0], [1], [0]], dtype=np.uint8) # c1 = fits.Column(name='c1', format='X', array=a1) a2 = np.array([1, 128, 255], dtype=np.uint8) c2 = fits.Column(name='c2', format='B', array=a2) a3 = np.array([-30000, 1, 256], dtype=np.int16) c3 = fits.Column(name='c3', format='I', array=a3) a4 = np.array([-123123123, 1234, 123123123], dtype=np.int32) c4 = fits.Column(name='c4', format='J', array=a4) a5 = np.array(['a', 'abc', 'ab']) c5 = fits.Column(name='c5', format='A3', array=a5) a6 = np.array([1.1, 2.2, 3.3], dtype=np.float64) c6 = fits.Column(name='c6', format='D', array=a6) a7 = np.array([1.1 + 2.2j, 3.3 + 4.4j, 5.5 + 6.6j], dtype=np.complex128) c7 = fits.Column(name='c7', format='M', array=a7) a8 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.int32) c8 = fits.Column(name='c8', format='PJ()', array=a8) tbhdu = fits.BinTableHDU.from_columns([c0, c2, c3, c4, c5, c6, c7, c8]) datafile = self.temp('data.txt') tbhdu.dump(datafile) new_tbhdu = fits.BinTableHDU.load(datafile) # In this particular case the record data at least should be equivalent assert comparerecords(tbhdu.data, new_tbhdu.data) def test_attribute_field_shadowing(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/86 Numpy recarray objects have a poorly-considered feature of allowing field access by attribute lookup. However, if a field name coincides with an existing attribute/method of the array, the existing name takes presence (making the attribute-based field lookup completely unreliable in general cases). This ensures that any FITS_rec attributes still work correctly even when there is a field with the same name as that attribute. """ c1 = fits.Column(name='names', format='I', array=[1]) c2 = fits.Column(name='formats', format='I', array=[2]) c3 = fits.Column(name='other', format='I', array=[3]) t = fits.BinTableHDU.from_columns([c1, c2, c3]) assert t.data.names == ['names', 'formats', 'other'] assert t.data.formats == ['I'] * 3 assert (t.data['names'] == [1]).all() assert (t.data['formats'] == [2]).all() assert (t.data.other == [3]).all() def test_table_from_bool_fields(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/113 Tests creating a table from a recarray containing numpy.bool columns. """ array = np.rec.array([(True, False), (False, True)], formats='|b1,|b1') thdu = fits.BinTableHDU.from_columns(array) assert thdu.columns.formats == ['L', 'L'] assert comparerecords(thdu.data, array) # Test round trip thdu.writeto(self.temp('table.fits')) data = fits.getdata(self.temp('table.fits'), ext=1) assert thdu.columns.formats == ['L', 'L'] assert comparerecords(data, array) def test_table_from_bool_fields2(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/215 Tests the case where a multi-field ndarray (not a recarray) containing a bool field is used to initialize a `BinTableHDU`. """ arr = np.array([(False,), (True,), (False,)], dtype=[('a', '?')]) hdu = fits.BinTableHDU(data=arr) assert (hdu.data['a'] == arr['a']).all() def test_bool_column_update(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/139""" c1 = fits.Column('F1', 'L', array=[True, False]) c2 = fits.Column('F2', 'L', array=[False, True]) thdu = fits.BinTableHDU.from_columns(fits.ColDefs([c1, c2])) thdu.writeto(self.temp('table.fits')) with fits.open(self.temp('table.fits'), mode='update') as hdul: hdul[1].data['F1'][1] = True hdul[1].data['F2'][0] = True with fits.open(self.temp('table.fits')) as hdul: assert (hdul[1].data['F1'] == [True, True]).all() assert (hdul[1].data['F2'] == [True, True]).all() def test_missing_tnull(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/197""" c = fits.Column('F1', 'A3', null='---', array=np.array(['1.0', '2.0', '---', '3.0']), ascii=True) table = fits.TableHDU.from_columns([c]) table.writeto(self.temp('test.fits')) # Now let's delete the TNULL1 keyword, making this essentially # unreadable with fits.open(self.temp('test.fits'), mode='update') as h: h[1].header['TFORM1'] = 'E3' del h[1].header['TNULL1'] with fits.open(self.temp('test.fits')) as h: pytest.raises(ValueError, lambda: h[1].data['F1']) try: with fits.open(self.temp('test.fits')) as h: h[1].data['F1'] except ValueError as e: assert str(e).endswith( "the header may be missing the necessary TNULL1 " "keyword or the table contains invalid data") def test_blank_field_zero(self): """Regression test for https://github.com/astropy/astropy/issues/5134 Blank values in numerical columns of ASCII tables should be replaced with zeros, so they can be loaded into numpy arrays. When a TNULL value is set and there are blank fields not equal to that value, they should be replaced with zeros. """ # Test an integer column with blank string as null nullval1 = ' ' c1 = fits.Column('F1', format='I8', null=nullval1, array=np.array([0, 1, 2, 3, 4]), ascii=True) table = fits.TableHDU.from_columns([c1]) table.writeto(self.temp('ascii_null.fits')) # Replace the 1st col, 3rd row, with a null field. with open(self.temp('ascii_null.fits'), mode='r+') as h: nulled = h.read().replace('2 ', ' ') h.seek(0) h.write(nulled) with fits.open(self.temp('ascii_null.fits'), memmap=True) as f: assert f[1].data[2][0] == 0 # Test a float column with a null value set and blank fields. nullval2 = 'NaN' c2 = fits.Column('F1', format='F12.8', null=nullval2, array=np.array([1.0, 2.0, 3.0, 4.0]), ascii=True) table = fits.TableHDU.from_columns([c2]) table.writeto(self.temp('ascii_null2.fits')) # Replace the 1st col, 3rd row, with a null field. with open(self.temp('ascii_null2.fits'), mode='r+') as h: nulled = h.read().replace('3.00000000', ' ') h.seek(0) h.write(nulled) with fits.open(self.temp('ascii_null2.fits'), memmap=True) as f: # (Currently it should evaluate to 0.0, but if a TODO in fitsrec is # completed, then it should evaluate to NaN.) assert f[1].data[2][0] == 0.0 or np.isnan(f[1].data[2][0]) def test_column_array_type_mismatch(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/218""" arr = [-99] * 20 col = fits.Column('mag', format='E', array=arr) assert (arr == col.array).all() def test_table_none(self): """Regression test for https://github.com/spacetelescope/PyFITS/issues/27 """ with fits.open(self.data('tb.fits')) as h: h[1].data h[1].data = None assert isinstance(h[1].data, fits.FITS_rec) assert len(h[1].data) == 0 h[1].writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as h: assert h[1].header['NAXIS'] == 2 assert h[1].header['NAXIS1'] == 12 assert h[1].header['NAXIS2'] == 0 assert isinstance(h[1].data, fits.FITS_rec) assert len(h[1].data) == 0 def test_unncessary_table_load(self): """Test unnecessary parsing and processing of FITS tables when writing directly from one FITS file to a new file without first reading the data for user manipulation. In other words, it should be possible to do a direct copy of the raw data without unnecessary processing of the data. """ with fits.open(self.data('table.fits')) as h: h[1].writeto(self.temp('test.fits')) # Since this was a direct copy the h[1].data attribute should not have # even been accessed (since this means the data was read and parsed) assert 'data' not in h[1].__dict__ with fits.open(self.data('table.fits')) as h1: with fits.open(self.temp('test.fits')) as h2: assert str(h1[1].header) == str(h2[1].header) assert comparerecords(h1[1].data, h2[1].data) def test_table_from_columns_of_other_table(self): """Tests a rare corner case where the columns of an existing table are used to create a new table with the new_table function. In this specific case, however, the existing table's data has not been read yet, so new_table has to get at it through the Delayed proxy. Note: Although this previously tested new_table it now uses BinTableHDU.from_columns directly, around which new_table is a mere wrapper. """ hdul = fits.open(self.data('table.fits')) # Make sure the column array is in fact delayed... assert isinstance(hdul[1].columns._arrays[0], Delayed) # Create a new table... t = fits.BinTableHDU.from_columns(hdul[1].columns) # The original columns should no longer be delayed... assert not isinstance(hdul[1].columns._arrays[0], Delayed) t.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as hdul2: assert comparerecords(hdul[1].data, hdul2[1].data) hdul.close() def test_bintable_to_asciitable(self): """Tests initializing a TableHDU with the data from a BinTableHDU.""" with fits.open(self.data('tb.fits')) as hdul: tbdata = hdul[1].data tbhdu = fits.TableHDU(data=tbdata) tbhdu.writeto(self.temp('test.fits'), overwrite=True) with fits.open(self.temp('test.fits')) as hdul2: tbdata2 = hdul2[1].data assert np.all(tbdata['c1'] == tbdata2['c1']) assert np.all(tbdata['c2'] == tbdata2['c2']) # c3 gets converted from float32 to float64 when writing # test.fits, so cast to float32 before testing that the correct # value is retrieved assert np.all(tbdata['c3'].astype(np.float32) == tbdata2['c3'].astype(np.float32)) # c4 is a boolean column in the original table; we want ASCII # columns to convert these to columns of 'T'/'F' strings assert np.all(np.where(tbdata['c4'], 'T', 'F') == tbdata2['c4']) def test_pickle(self): """ Regression test for https://github.com/astropy/astropy/issues/1597 Tests for pickling FITS_rec objects """ # open existing FITS tables (images pickle by default, no test needed): with fits.open(self.data('tb.fits')) as btb: # Test column array is delayed and can pickle assert isinstance(btb[1].columns._arrays[0], Delayed) btb_pd = pickle.dumps(btb[1].data) btb_pl = pickle.loads(btb_pd) # It should not be delayed any more assert not isinstance(btb[1].columns._arrays[0], Delayed) assert comparerecords(btb_pl, btb[1].data) with fits.open(self.data('ascii.fits')) as asc: asc_pd = pickle.dumps(asc[1].data) asc_pl = pickle.loads(asc_pd) assert comparerecords(asc_pl, asc[1].data) with fits.open(self.data('random_groups.fits')) as rgr: rgr_pd = pickle.dumps(rgr[0].data) rgr_pl = pickle.loads(rgr_pd) assert comparerecords(rgr_pl, rgr[0].data) with fits.open(self.data('zerowidth.fits')) as zwc: # Doesn't pickle zero-width (_phanotm) column 'ORBPARM' zwc_pd = pickle.dumps(zwc[2].data) zwc_pl = pickle.loads(zwc_pd) with pytest.warns(UserWarning, match='Field 2 has a repeat count of 0'): assert comparerecords(zwc_pl, zwc[2].data) def test_zero_length_table(self): array = np.array([], dtype=[ ('a', 'i8'), ('b', 'S64'), ('c', ('i4', (3, 2)))]) hdu = fits.BinTableHDU(array) assert hdu.header['NAXIS1'] == 96 assert hdu.header['NAXIS2'] == 0 assert hdu.header['TDIM3'] == '(2,3)' field = hdu.data.field(1) assert field.shape == (0,) def test_dim_column_byte_order_mismatch(self): """ When creating a table column with non-trivial TDIMn, and big-endian array data read from an existing FITS file, the data should not be unnecessarily byteswapped. Regression test for https://github.com/astropy/astropy/issues/3561 """ data = fits.getdata(self.data('random_groups.fits'))['DATA'] col = fits.Column(name='TEST', array=data, dim='(3,1,128,1,1)', format='1152E') thdu = fits.BinTableHDU.from_columns([col]) thdu.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as hdul: assert np.all(hdul[1].data['TEST'] == data) def test_fits_rec_from_existing(self): """ Tests creating a `FITS_rec` object with `FITS_rec.from_columns` from an existing `FITS_rec` object read from a FITS file. This ensures that the per-column arrays are updated properly. Regression test for https://github.com/spacetelescope/PyFITS/issues/99 """ # The use case that revealed this problem was trying to create a new # table from an existing table, but with additional rows so that we can # append data from a second table (with the same column structure) data1 = fits.getdata(self.data('tb.fits')) data2 = fits.getdata(self.data('tb.fits')) nrows = len(data1) + len(data2) merged = fits.FITS_rec.from_columns(data1, nrows=nrows) merged[len(data1):] = data2 mask = merged['c1'] > 1 masked = merged[mask] # The test table only has two rows, only the second of which is > 1 for # the 'c1' column assert comparerecords(data1[1:], masked[:1]) assert comparerecords(data1[1:], masked[1:]) # Double check that the original data1 table hasn't been affected by # its use in creating the "merged" table assert comparerecords(data1, fits.getdata(self.data('tb.fits'))) def test_update_string_column_inplace(self): """ Regression test for https://github.com/astropy/astropy/issues/4452 Ensure that changes to values in a string column are saved when a file is opened in ``mode='update'``. """ data = np.array([('abc',)], dtype=[('a', 'S3')]) fits.writeto(self.temp('test.fits'), data) with fits.open(self.temp('test.fits'), mode='update') as hdul: hdul[1].data['a'][0] = 'XYZ' assert hdul[1].data['a'][0] == 'XYZ' with fits.open(self.temp('test.fits')) as hdul: assert hdul[1].data['a'][0] == 'XYZ' # Test update but with a non-trivial TDIMn data = np.array([([['abc', 'def', 'geh'], ['ijk', 'lmn', 'opq']],)], dtype=[('a', ('S3', (2, 3)))]) fits.writeto(self.temp('test2.fits'), data) expected = [['abc', 'def', 'geh'], ['ijk', 'XYZ', 'opq']] with fits.open(self.temp('test2.fits'), mode='update') as hdul: assert hdul[1].header['TDIM1'] == '(3,3,2)' # Note: Previously I wrote data['a'][0][1, 1] to address # the single row. However, this is broken for chararray because # data['a'][0] does *not* return a view of the original array--this # is a bug in chararray though and not a bug in any FITS-specific # code so we'll roll with it for now... # (by the way the bug in question is fixed in newer Numpy versions) hdul[1].data['a'][0, 1, 1] = 'XYZ' assert np.all(hdul[1].data['a'][0] == expected) with fits.open(self.temp('test2.fits')) as hdul: assert hdul[1].header['TDIM1'] == '(3,3,2)' assert np.all(hdul[1].data['a'][0] == expected) @pytest.mark.skipif('not HAVE_OBJGRAPH') def test_reference_leak(self): """Regression test for https://github.com/astropy/astropy/pull/520""" def readfile(filename): with fits.open(filename) as hdul: data = hdul[1].data.copy() for colname in data.dtype.names: data[colname] with _refcounting('FITS_rec'): readfile(self.data('memtest.fits')) @pytest.mark.skipif('not HAVE_OBJGRAPH') @pytest.mark.slow def test_reference_leak2(self, tmpdir): """ Regression test for https://github.com/astropy/astropy/pull/4539 This actually re-runs a small set of tests that I found, during careful testing, exhibited the reference leaks fixed by #4539, but now with reference counting around each test to ensure that the leaks are fixed. """ from .test_core import TestCore from .test_connect import TestMultipleHDU t1 = TestCore() t1.setup() try: with _refcounting('FITS_rec'): t1.test_add_del_columns2() finally: t1.teardown() del t1 t2 = self.__class__() for test_name in ['test_recarray_to_bintablehdu', 'test_numpy_ndarray_to_bintablehdu', 'test_new_table_from_recarray', 'test_new_fitsrec']: t2.setup() try: with _refcounting('FITS_rec'): getattr(t2, test_name)() finally: t2.teardown() del t2 t3 = TestMultipleHDU() t3.setup_class() try: with _refcounting('FITS_rec'): t3.test_read(tmpdir) finally: t3.teardown_class() del t3 def test_dump_overwrite(self): with fits.open(self.data('table.fits')) as hdul: tbhdu = hdul[1] datafile = self.temp('data.txt') cdfile = self.temp('coldefs.txt') hfile = self.temp('header.txt') tbhdu.dump(datafile, cdfile, hfile) msg = (r"File .* already exists\. File .* already exists\. File " r".* already exists\. If you mean to replace the " r"file\(s\) then use the argument 'overwrite=True'\.") with pytest.raises(OSError, match=msg): tbhdu.dump(datafile, cdfile, hfile) tbhdu.dump(datafile, cdfile, hfile, overwrite=True) def test_pseudo_unsigned_ints(self): """ Tests updating a table column containing pseudo-unsigned ints. """ data = np.array([1, 2, 3], dtype=np.uint32) col = fits.Column(name='A', format='1J', bzero=2**31, array=data) thdu = fits.BinTableHDU.from_columns([col]) thdu.writeto(self.temp('test.fits')) # Test that the file wrote out correctly with fits.open(self.temp('test.fits'), uint=True) as hdul: hdu = hdul[1] assert 'TZERO1' in hdu.header assert hdu.header['TZERO1'] == 2**31 assert hdu.data['A'].dtype == np.dtype('uint32') assert np.all(hdu.data['A'] == data) # Test updating the unsigned int data hdu.data['A'][0] = 99 hdu.writeto(self.temp('test2.fits')) with fits.open(self.temp('test2.fits'), uint=True) as hdul: hdu = hdul[1] assert 'TZERO1' in hdu.header assert hdu.header['TZERO1'] == 2**31 assert hdu.data['A'].dtype == np.dtype('uint32') assert np.all(hdu.data['A'] == [99, 2, 3]) def test_column_with_scaling(self): """Check that a scaled column if correctly saved once it is modified. Regression test for https://github.com/astropy/astropy/issues/6887 """ c1 = fits.Column(name='c1', array=np.array([1], dtype='>i2'), format='1I', bscale=1, bzero=32768) S = fits.HDUList([fits.PrimaryHDU(), fits.BinTableHDU.from_columns([c1])]) # Change value in memory S[1].data['c1'][0] = 2 S.writeto(self.temp("a.fits")) assert S[1].data['c1'] == 2 # Read and change value in memory with fits.open(self.temp("a.fits")) as X: X[1].data['c1'][0] = 10 assert X[1].data['c1'][0] == 10 # Write back to file X.writeto(self.temp("b.fits")) # Now check the file with fits.open(self.temp("b.fits")) as hdul: assert hdul[1].data['c1'][0] == 10 def test_ascii_inttypes(self): """ Test correct integer dtypes according to ASCII table field widths. Regression for https://github.com/astropy/astropy/issues/9899 """ i08 = np.array([2**3, 2**23, -2**22, 10, 2**23], dtype='i4') i10 = np.array([2**8, 2**31-1, -2**29, 30, 2**31-1], dtype='i8') i20 = np.array([2**16, 2**63-1, -2**63, 40, 2**63-1], dtype='i8') i02 = np.array([2**8, 2**13, -2**9, 50, 2**13], dtype='i2') t0 = Table([i08, i08*2, i10, i20, i02]) t1 = Table.read(self.data('ascii_i4-i20.fits')) assert t1.dtype == t0.dtype assert comparerecords(t1, t0) @contextlib.contextmanager def _refcounting(type_): """ Perform the body of a with statement with reference counting for the given type (given by class name)--raises an assertion error if there are more unfreed objects of the given type than when we entered the with statement. """ gc.collect() refcount = len(objgraph.by_type(type_)) yield refcount gc.collect() assert len(objgraph.by_type(type_)) <= refcount, \ "More {0!r} objects still in memory than before." class TestVLATables(FitsTestCase): """Tests specific to tables containing variable-length arrays.""" def test_variable_length_columns(self): def test(format_code): col = fits.Column(name='QUAL_SPE', format=format_code, array=[[0] * 1571] * 225) tb_hdu = fits.BinTableHDU.from_columns([col]) pri_hdu = fits.PrimaryHDU() hdu_list = fits.HDUList([pri_hdu, tb_hdu]) hdu_list.writeto(self.temp('toto.fits'), overwrite=True) with fits.open(self.temp('toto.fits')) as toto: q = toto[1].data.field('QUAL_SPE') assert (q[0][4:8] == np.array([0, 0, 0, 0], dtype=np.uint8)).all() assert toto[1].columns[0].format.endswith('J(1571)') for code in ('PJ()', 'QJ()'): test(code) def test_extend_variable_length_array(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/54""" def test(format_code): arr = [[1] * 10] * 10 col1 = fits.Column(name='TESTVLF', format=format_code, array=arr) col2 = fits.Column(name='TESTSCA', format='J', array=[1] * 10) tb_hdu = fits.BinTableHDU.from_columns([col1, col2], nrows=15) # This asserts that the normal 'scalar' column's length was extended assert len(tb_hdu.data['TESTSCA']) == 15 # And this asserts that the VLF column was extended in the same manner assert len(tb_hdu.data['TESTVLF']) == 15 # We can't compare the whole array since the _VLF is an array of # objects, but comparing just the edge case rows should suffice assert (tb_hdu.data['TESTVLF'][0] == arr[0]).all() assert (tb_hdu.data['TESTVLF'][9] == arr[9]).all() assert (tb_hdu.data['TESTVLF'][10] == ([0] * 10)).all() assert (tb_hdu.data['TESTVLF'][-1] == ([0] * 10)).all() for code in ('PJ()', 'QJ()'): test(code) def test_variable_length_table_format_pd_from_object_array(self): def test(format_code): a = np.array([np.array([7.2e-20, 7.3e-20]), np.array([0.0]), np.array([0.0])], 'O') acol = fits.Column(name='testa', format=format_code, array=a) tbhdu = fits.BinTableHDU.from_columns([acol]) tbhdu.writeto(self.temp('newtable.fits'), overwrite=True) with fits.open(self.temp('newtable.fits')) as tbhdu1: assert tbhdu1[1].columns[0].format.endswith('D(2)') for j in range(3): for i in range(len(a[j])): assert tbhdu1[1].data.field(0)[j][i] == a[j][i] for code in ('PD()', 'QD()'): test(code) def test_variable_length_table_format_pd_from_list(self): def test(format_code): a = [np.array([7.2e-20, 7.3e-20]), np.array([0.0]), np.array([0.0])] acol = fits.Column(name='testa', format=format_code, array=a) tbhdu = fits.BinTableHDU.from_columns([acol]) tbhdu.writeto(self.temp('newtable.fits'), overwrite=True) with fits.open(self.temp('newtable.fits')) as tbhdu1: assert tbhdu1[1].columns[0].format.endswith('D(2)') for j in range(3): for i in range(len(a[j])): assert tbhdu1[1].data.field(0)[j][i] == a[j][i] for code in ('PD()', 'QD()'): test(code) def test_variable_length_table_format_pa_from_object_array(self): def test(format_code): a = np.array([np.array(['a', 'b', 'c']), np.array(['d', 'e']), np.array(['f'])], 'O') acol = fits.Column(name='testa', format=format_code, array=a) tbhdu = fits.BinTableHDU.from_columns([acol]) tbhdu.writeto(self.temp('newtable.fits'), overwrite=True) with fits.open(self.temp('newtable.fits')) as hdul: assert hdul[1].columns[0].format.endswith('A(3)') for j in range(3): for i in range(len(a[j])): assert hdul[1].data.field(0)[j][i] == a[j][i] for code in ('PA()', 'QA()'): test(code) def test_variable_length_table_format_pa_from_list(self): def test(format_code): a = ['a', 'ab', 'abc'] acol = fits.Column(name='testa', format=format_code, array=a) tbhdu = fits.BinTableHDU.from_columns([acol]) tbhdu.writeto(self.temp('newtable.fits'), overwrite=True) with fits.open(self.temp('newtable.fits')) as hdul: assert hdul[1].columns[0].format.endswith('A(3)') for j in range(3): for i in range(len(a[j])): assert hdul[1].data.field(0)[j][i] == a[j][i] for code in ('PA()', 'QA()'): test(code) def test_getdata_vla(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/200""" def test(format_code): col = fits.Column(name='QUAL_SPE', format=format_code, array=[np.arange(1572)] * 225) tb_hdu = fits.BinTableHDU.from_columns([col]) pri_hdu = fits.PrimaryHDU() hdu_list = fits.HDUList([pri_hdu, tb_hdu]) hdu_list.writeto(self.temp('toto.fits'), overwrite=True) data = fits.getdata(self.temp('toto.fits')) # Need to compare to the original data row by row since the FITS_rec # returns an array of _VLA objects for row_a, row_b in zip(data['QUAL_SPE'], col.array): assert (row_a == row_b).all() for code in ('PJ()', 'QJ()'): test(code) @pytest.mark.skipif(not NUMPY_LT_1_22 and NUMPY_LT_1_22_1 and sys.platform == 'win32', reason='https://github.com/numpy/numpy/issues/20699') def test_copy_vla(self): """ Regression test for https://github.com/spacetelescope/PyFITS/issues/47 """ # Make a file containing a couple of VLA tables arr1 = [np.arange(n + 1) for n in range(255)] arr2 = [np.arange(255, 256 + n) for n in range(255)] # A dummy non-VLA column needed to reproduce issue #47 c = fits.Column('test', format='J', array=np.arange(255)) c1 = fits.Column('A', format='PJ', array=arr1) c2 = fits.Column('B', format='PJ', array=arr2) t1 = fits.BinTableHDU.from_columns([c, c1]) t2 = fits.BinTableHDU.from_columns([c, c2]) hdul = fits.HDUList([fits.PrimaryHDU(), t1, t2]) hdul.writeto(self.temp('test.fits'), overwrite=True) # Just test that the test file wrote out correctly with fits.open(self.temp('test.fits')) as h: assert h[1].header['TFORM2'] == 'PJ(255)' assert h[2].header['TFORM2'] == 'PJ(255)' assert comparerecords(h[1].data, t1.data) assert comparerecords(h[2].data, t2.data) # Try copying the second VLA and writing to a new file with fits.open(self.temp('test.fits')) as h: new_hdu = fits.BinTableHDU(data=h[2].data, header=h[2].header) new_hdu.writeto(self.temp('test3.fits')) with fits.open(self.temp('test3.fits')) as h2: assert comparerecords(h2[1].data, t2.data) new_hdul = fits.HDUList([fits.PrimaryHDU()]) new_hdul.writeto(self.temp('test2.fits')) # Open several copies of the test file and append copies of the second # VLA table with fits.open(self.temp('test2.fits'), mode='append') as new_hdul: for _ in range(2): with fits.open(self.temp('test.fits')) as h: new_hdul.append(h[2]) new_hdul.flush() # Test that all the VLA copies wrote correctly with fits.open(self.temp('test2.fits')) as new_hdul: for idx in range(1, 3): assert comparerecords(new_hdul[idx].data, t2.data) def test_vla_with_gap(self): hdul = fits.open(self.data('theap-gap.fits')) data = hdul[1].data assert data.shape == (500,) assert data['i'][497] == 497 assert np.array_equal(data['arr'][497], [0, 1, 2, 3, 4]) hdul.close() def test_tolist(self): col = fits.Column( name='var', format='PI()', array=np.array([[1, 2, 3], [11, 12]], dtype=np.object_)) hdu = fits.BinTableHDU.from_columns([col]) assert hdu.data.tolist() == [[[1, 2, 3]], [[11, 12]]] assert hdu.data['var'].tolist() == [[1, 2, 3], [11, 12]] def test_tolist_from_file(self): filename = self.data('variable_length_table.fits') with fits.open(filename) as hdul: hdu = hdul[1] assert hdu.data.tolist() == [[[45, 56], [11, 3]], [[11, 12, 13], [12, 4]]] assert hdu.data['var'].tolist() == [[45, 56], [11, 12, 13]] # These are tests that solely test the Column and ColDefs interfaces and # related functionality without directly involving full tables; currently there # are few of these but I expect there to be more as I improve the test coverage class TestColumnFunctions(FitsTestCase): def test_column_format_interpretation(self): """ Test to ensure that when Numpy-style record formats are passed in to the Column constructor for the format argument, they are recognized so long as it's unambiguous (where "unambiguous" here is questionable since Numpy is case insensitive when parsing the format codes. But their "proper" case is lower-case, so we can accept that. Basically, actually, any key in the NUMPY2FITS dict should be accepted. """ for recformat, fitsformat in NUMPY2FITS.items(): c = fits.Column('TEST', np.dtype(recformat)) c.format == fitsformat c = fits.Column('TEST', recformat) c.format == fitsformat c = fits.Column('TEST', fitsformat) c.format == fitsformat # Test a few cases that are ambiguous in that they *are* valid binary # table formats though not ones that are likely to be used, but are # also valid common ASCII table formats c = fits.Column('TEST', 'I4') assert c.format == 'I4' assert c.format.format == 'I' assert c.format.width == 4 c = fits.Column('TEST', 'F15.8') assert c.format == 'F15.8' assert c.format.format == 'F' assert c.format.width == 15 assert c.format.precision == 8 c = fits.Column('TEST', 'E15.8') assert c.format.format == 'E' assert c.format.width == 15 assert c.format.precision == 8 c = fits.Column('TEST', 'D15.8') assert c.format.format == 'D' assert c.format.width == 15 assert c.format.precision == 8 # zero-precision should be allowed as well, for float types # https://github.com/astropy/astropy/issues/3422 c = fits.Column('TEST', 'F10.0') assert c.format.format == 'F' assert c.format.width == 10 assert c.format.precision == 0 c = fits.Column('TEST', 'E10.0') assert c.format.format == 'E' assert c.format.width == 10 assert c.format.precision == 0 c = fits.Column('TEST', 'D10.0') assert c.format.format == 'D' assert c.format.width == 10 assert c.format.precision == 0 # These are a couple cases where the format code is a valid binary # table format, and is not strictly a valid ASCII table format but # could be *interpreted* as one by appending a default width. This # will only happen either when creating an ASCII table or when # explicitly specifying ascii=True when the column is created c = fits.Column('TEST', 'I') assert c.format == 'I' assert c.format.recformat == 'i2' c = fits.Column('TEST', 'I', ascii=True) assert c.format == 'I10' assert c.format.recformat == 'i4' # With specified widths, integer precision should be set appropriately c = fits.Column('TEST', 'I4', ascii=True) assert c.format == 'I4' assert c.format.recformat == 'i2' c = fits.Column('TEST', 'I9', ascii=True) assert c.format == 'I9' assert c.format.recformat == 'i4' c = fits.Column('TEST', 'I12', ascii=True) assert c.format == 'I12' assert c.format.recformat == 'i8' c = fits.Column('TEST', 'E') assert c.format == 'E' assert c.format.recformat == 'f4' c = fits.Column('TEST', 'E', ascii=True) assert c.format == 'E15.7' # F is not a valid binary table format so it should be unambiguously # treated as an ASCII column c = fits.Column('TEST', 'F') assert c.format == 'F16.7' c = fits.Column('TEST', 'D') assert c.format == 'D' assert c.format.recformat == 'f8' c = fits.Column('TEST', 'D', ascii=True) assert c.format == 'D25.17' def test_zero_precision_float_column(self): """ Regression test for https://github.com/astropy/astropy/issues/3422 """ c = fits.Column('TEST', 'F5.0', array=[1.1, 2.2, 3.3]) # The decimal places will be clipped t = fits.TableHDU.from_columns([c]) t.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as hdul: assert hdul[1].header['TFORM1'] == 'F5.0' assert hdul[1].data['TEST'].dtype == np.dtype('float64') assert np.all(hdul[1].data['TEST'] == [1.0, 2.0, 3.0]) # Check how the raw data looks raw = np.rec.recarray.field(hdul[1].data, 'TEST') assert raw.tobytes() == b' 1. 2. 3.' def test_column_array_type_mismatch(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/218""" arr = [-99] * 20 col = fits.Column('mag', format='E', array=arr) assert (arr == col.array).all() def test_new_coldefs_with_invalid_seqence(self): """Test that a TypeError is raised when a ColDefs is instantiated with a sequence of non-Column objects. """ pytest.raises(TypeError, fits.ColDefs, [1, 2, 3]) def test_coldefs_init_from_array(self): """Test that ColDefs._init_from_array works with single element data- types as well as multi-element data-types """ nd_array = np.ndarray((1,), dtype=[('A', '<u4', (2,)), ('B', '>u2')]) col_defs = fits.column.ColDefs(nd_array) assert 2**31 == col_defs['A'].bzero assert 2**15 == col_defs['B'].bzero def test_pickle(self): """ Regression test for https://github.com/astropy/astropy/issues/1597 Tests for pickling FITS_rec objects """ # open existing FITS tables (images pickle by default, no test needed): with fits.open(self.data('tb.fits')) as btb: # Test column array is delayed and can pickle assert isinstance(btb[1].columns._arrays[0], Delayed) btb_pd = pickle.dumps(btb[1].data) btb_pl = pickle.loads(btb_pd) # It should not be delayed any more assert not isinstance(btb[1].columns._arrays[0], Delayed) assert comparerecords(btb_pl, btb[1].data) with fits.open(self.data('ascii.fits')) as asc: asc_pd = pickle.dumps(asc[1].data) asc_pl = pickle.loads(asc_pd) assert comparerecords(asc_pl, asc[1].data) with fits.open(self.data('random_groups.fits')) as rgr: rgr_pd = pickle.dumps(rgr[0].data) rgr_pl = pickle.loads(rgr_pd) assert comparerecords(rgr_pl, rgr[0].data) with fits.open(self.data('zerowidth.fits')) as zwc: # Doesn't pickle zero-width (_phanotm) column 'ORBPARM' zwc_pd = pickle.dumps(zwc[2].data) zwc_pl = pickle.loads(zwc_pd) with pytest.warns(UserWarning, match=r'Field 2 has a repeat count ' r'of 0 in its format code'): assert comparerecords(zwc_pl, zwc[2].data) def test_column_lookup_by_name(self): """Tests that a `ColDefs` can be indexed by column name.""" a = fits.Column(name='a', format='D') b = fits.Column(name='b', format='D') cols = fits.ColDefs([a, b]) assert cols['a'] == cols[0] assert cols['b'] == cols[1] def test_column_attribute_change_after_removal(self): """ This is a test of the column attribute change notification system. After a column has been removed from a table (but other references are kept to that same column) changes to that column's attributes should not trigger a notification on the table it was removed from. """ # One way we can check this is to ensure there are no further changes # to the header table = fits.BinTableHDU.from_columns([ fits.Column('a', format='D'), fits.Column('b', format='D')]) b = table.columns['b'] table.columns.del_col('b') assert table.data.dtype.names == ('a',) b.name = 'HELLO' assert b.name == 'HELLO' assert 'TTYPE2' not in table.header assert table.header['TTYPE1'] == 'a' assert table.columns.names == ['a'] with pytest.raises(KeyError): table.columns['b'] # Make sure updates to the remaining column still work table.columns.change_name('a', 'GOODBYE') with pytest.raises(KeyError): table.columns['a'] assert table.columns['GOODBYE'].name == 'GOODBYE' assert table.data.dtype.names == ('GOODBYE',) assert table.columns.names == ['GOODBYE'] assert table.data.columns.names == ['GOODBYE'] table.columns['GOODBYE'].name = 'foo' with pytest.raises(KeyError): table.columns['GOODBYE'] assert table.columns['foo'].name == 'foo' assert table.data.dtype.names == ('foo',) assert table.columns.names == ['foo'] assert table.data.columns.names == ['foo'] def test_x_column_deepcopy(self): """ Regression test for https://github.com/astropy/astropy/pull/4514 Tests that columns with the X (bit array) format can be deep-copied. """ c = fits.Column('xcol', format='5X', array=[1, 0, 0, 1, 0]) c2 = copy.deepcopy(c) assert c2.name == c.name assert c2.format == c.format assert np.all(c2.array == c.array) def test_p_column_deepcopy(self): """ Regression test for https://github.com/astropy/astropy/pull/4514 Tests that columns with the P/Q formats (variable length arrays) can be deep-copied. """ c = fits.Column('pcol', format='PJ', array=[[1, 2], [3, 4, 5]]) c2 = copy.deepcopy(c) assert c2.name == c.name assert c2.format == c.format assert np.all(c2.array[0] == c.array[0]) assert np.all(c2.array[1] == c.array[1]) c3 = fits.Column('qcol', format='QJ', array=[[1, 2], [3, 4, 5]]) c4 = copy.deepcopy(c3) assert c4.name == c3.name assert c4.format == c3.format assert np.all(c4.array[0] == c3.array[0]) assert np.all(c4.array[1] == c3.array[1]) def test_column_verify_keywords(self): """ Test that the keyword arguments used to initialize a Column, specifically those that typically read from a FITS header (so excluding array), are verified to have a valid value. """ with pytest.raises(AssertionError) as err: _ = fits.Column(1, format='I', array=[1, 2, 3, 4, 5]) assert 'Column name must be a string able to fit' in str(err.value) with pytest.raises(VerifyError) as err: _ = fits.Column('col', format=0, null='Nan', disp=1, coord_type=1, coord_unit=2, coord_inc='1', time_ref_pos=1, coord_ref_point='1', coord_ref_value='1') err_msgs = ['keyword arguments to Column were invalid', 'TFORM', 'TNULL', 'TDISP', 'TCTYP', 'TCUNI', 'TCRPX', 'TCRVL', 'TCDLT', 'TRPOS'] for msg in err_msgs: assert msg in str(err.value) def test_column_verify_start(self): """ Regression test for https://github.com/astropy/astropy/pull/6359 Test the validation of the column start position option (ASCII table only), corresponding to ``TBCOL`` keyword. Test whether the VerifyError message generated is the one with highest priority, i.e. the order of error messages to be displayed is maintained. """ with pytest.raises(VerifyError) as err: _ = fits.Column('a', format='B', start='a', array=[1, 2, 3]) assert "start option (TBCOLn) is not allowed for binary table columns" in str(err.value) with pytest.raises(VerifyError) as err: _ = fits.Column('a', format='I', start='a', array=[1, 2, 3]) assert "start option (TBCOLn) must be a positive integer (got 'a')." in str(err.value) with pytest.raises(VerifyError) as err: _ = fits.Column('a', format='I', start='-56', array=[1, 2, 3]) assert "start option (TBCOLn) must be a positive integer (got -56)." in str(err.value) @pytest.mark.parametrize('keys', [{'TFORM': 'Z', 'TDISP': 'E'}, {'TFORM': '2', 'TDISP': '2E'}, {'TFORM': 3, 'TDISP': 6.3}, {'TFORM': float, 'TDISP': np.float64}, {'TFORM': '', 'TDISP': 'E.5'}]) def test_column_verify_formats(self, keys): """ Additional tests for verification of 'TFORM' and 'TDISP' keyword arguments used to initialize a Column. """ with pytest.raises(VerifyError) as err: _ = fits.Column('col', format=keys['TFORM'], disp=keys['TDISP']) for key in keys.keys(): assert key in str(err.value) assert str(keys[key]) in str(err.value) def test_regression_5383(): # Regression test for an undefined variable x = np.array([1, 2, 3]) col = fits.Column(name='a', array=x, format='E') hdu = fits.BinTableHDU.from_columns([col]) del hdu._header['TTYPE1'] hdu.columns[0].name = 'b' def test_table_to_hdu(): from astropy.table import Table table = Table([[1, 2, 3], ['a', 'b', 'c'], [2.3, 4.5, 6.7]], names=['a', 'b', 'c'], dtype=['i', 'U1', 'f']) table['a'].unit = 'm/s' table['b'].unit = 'not-a-unit' table.meta['foo'] = 'bar' with pytest.warns(UnitsWarning, match="'not-a-unit' did not parse as" " fits unit") as w: hdu = fits.BinTableHDU(table, header=fits.Header({'TEST': 1})) assert len(w) == 1 for name in 'abc': assert np.array_equal(table[name], hdu.data[name]) # Check that TUNITn cards appear in the correct order # (https://github.com/astropy/astropy/pull/5720) assert hdu.header.index('TUNIT1') < hdu.header.index('TTYPE2') assert hdu.header['FOO'] == 'bar' assert hdu.header['TEST'] == 1 def test_regression_scalar_indexing(): # Indexing a FITS_rec with a tuple that returns a scalar record # should work x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x', float), ('y', int)]).view(fits.FITS_rec) x1a = x[1] # this should succeed. x1b = x[(1,)] # FITS_record does not define __eq__; so test elements. assert all(a == b for a, b in zip(x1a, x1b)) def test_new_column_attributes_preserved(tmpdir): # Regression test for https://github.com/astropy/astropy/issues/7145 # This makes sure that for now we don't clear away keywords that have # newly been recognized (in Astropy 3.0) as special column attributes but # instead just warn that we might do so in future. The new keywords are: # TCTYP, TCUNI, TCRPX, TCRVL, TCDLT, TRPOS col = [] col.append(fits.Column(name="TIME", format="1E", unit="s")) col.append(fits.Column(name="RAWX", format="1I", unit="pixel")) col.append(fits.Column(name="RAWY", format="1I")) cd = fits.ColDefs(col) hdr = fits.Header() # Keywords that will get ignored in favor of these in the data hdr['TUNIT1'] = 'pixel' hdr['TUNIT2'] = 'm' hdr['TUNIT3'] = 'm' # Keywords that were added in Astropy 3.0 that should eventually be # ignored and set on the data instead hdr['TCTYP2'] = 'RA---TAN' hdr['TCTYP3'] = 'ANGLE' hdr['TCRVL2'] = -999.0 hdr['TCRVL3'] = -999.0 hdr['TCRPX2'] = 1.0 hdr['TCRPX3'] = 1.0 hdr['TALEN2'] = 16384 hdr['TALEN3'] = 1024 hdr['TCUNI2'] = 'angstrom' hdr['TCUNI3'] = 'deg' # Other non-relevant keywords hdr['RA'] = 1.5 hdr['DEC'] = 3.0 with pytest.warns(AstropyDeprecationWarning) as warning_list: hdu = fits.BinTableHDU.from_columns(cd, hdr) assert str(warning_list[0].message).startswith( "The following keywords are now recognized as special") # First, check that special keywords such as TUNIT are ignored in the header # We may want to change that behavior in future, but this is the way it's # been for a while now. assert hdu.columns[0].unit == 's' assert hdu.columns[1].unit == 'pixel' assert hdu.columns[2].unit is None assert hdu.header['TUNIT1'] == 's' assert hdu.header['TUNIT2'] == 'pixel' assert 'TUNIT3' not in hdu.header # TUNIT3 was removed # Now, check that the new special keywords are actually still there # but weren't used to set the attributes on the data assert hdu.columns[0].coord_type is None assert hdu.columns[1].coord_type is None assert hdu.columns[2].coord_type is None assert 'TCTYP1' not in hdu.header assert hdu.header['TCTYP2'] == 'RA---TAN' assert hdu.header['TCTYP3'] == 'ANGLE' # Make sure that other keywords are still there assert hdu.header['RA'] == 1.5 assert hdu.header['DEC'] == 3.0 # Now we can write this HDU to a file and re-load. Re-loading *should* # cause the special column attribtues to be picked up (it's just that when a # header is manually specified, these values are ignored) filename = tmpdir.join('test.fits').strpath hdu.writeto(filename) # Make sure we don't emit a warning in this case with warnings.catch_warnings(record=True) as warning_list: with fits.open(filename) as hdul: hdu2 = hdul[1] assert len(warning_list) == 0 # Check that column attributes are now correctly set assert hdu2.columns[0].unit == 's' assert hdu2.columns[1].unit == 'pixel' assert hdu2.columns[2].unit is None assert hdu2.header['TUNIT1'] == 's' assert hdu2.header['TUNIT2'] == 'pixel' assert 'TUNIT3' not in hdu2.header # TUNIT3 was removed # Now, check that the new special keywords are actually still there # but weren't used to set the attributes on the data assert hdu2.columns[0].coord_type is None assert hdu2.columns[1].coord_type == 'RA---TAN' assert hdu2.columns[2].coord_type == 'ANGLE' assert 'TCTYP1' not in hdu2.header assert hdu2.header['TCTYP2'] == 'RA---TAN' assert hdu2.header['TCTYP3'] == 'ANGLE' # Make sure that other keywords are still there assert hdu2.header['RA'] == 1.5 assert hdu2.header['DEC'] == 3.0 def test_empty_table(tmpdir): ofile = str(tmpdir.join('emptytable.fits')) hdu = fits.BinTableHDU(header=None, data=None, name='TEST') hdu.writeto(ofile) with fits.open(ofile) as hdul: assert hdul['TEST'].data.size == 0 ofile = str(tmpdir.join('emptytable.fits.gz')) hdu = fits.BinTableHDU(header=None, data=None, name='TEST') hdu.writeto(ofile, overwrite=True) with fits.open(ofile) as hdul: assert hdul['TEST'].data.size == 0 def test_a3dtable(tmpdir): testfile = str(tmpdir.join('test.fits')) hdu = fits.BinTableHDU.from_columns([ fits.Column(name='FOO', format='J', array=np.arange(10)) ]) hdu.header['XTENSION'] = 'A3DTABLE' hdu.writeto(testfile, output_verify='ignore') with fits.open(testfile) as hdul: assert hdul[1].header['XTENSION'] == 'A3DTABLE' with pytest.warns(AstropyUserWarning) as w: hdul.verify('fix') assert str(w[0].message) == 'Verification reported errors:' assert str(w[2].message).endswith( 'Converted the XTENSION keyword to BINTABLE.') assert hdul[1].header['XTENSION'] == 'BINTABLE' def test_invalid_file(tmp_path): hdu = fits.BinTableHDU() # little trick to write an invalid card ... hdu.header['FOO'] = None hdu.header.cards['FOO']._value = np.nan testfile = tmp_path / 'test.fits' hdu.writeto(testfile, output_verify='ignore') with fits.open(testfile) as hdul: assert hdul[1].data is not None def test_unit_parse_strict(tmp_path): path = tmp_path / 'invalid_unit.fits' # this is a unit parseable by the generic format but invalid for FITS invalid_unit = '1 / (MeV sr s)' unit = Unit(invalid_unit) t = Table({'a': [1, 2, 3]}) t.write(path) with fits.open(path, mode='update') as hdul: hdul[1].header['TUNIT1'] = invalid_unit # default is "warn" with pytest.warns(UnitsWarning): t = Table.read(path) assert isinstance(t['a'].unit, UnrecognizedUnit) t = Table.read(path, unit_parse_strict='silent') assert isinstance(t['a'].unit, UnrecognizedUnit) with pytest.raises(ValueError): Table.read(path, unit_parse_strict='raise') with pytest.warns(UnitsWarning): Table.read(path, unit_parse_strict='warn')