Datasets:
Tasks:
Visual Question Answering
Formats:
parquet
Languages:
Japanese
Size:
1K - 10K
ArXiv:
License:
language: | |
- ja | |
license: cc-by-4.0 | |
size_categories: | |
- 1K<n<10K | |
task_categories: | |
- visual-question-answering | |
dataset_info: | |
features: | |
- name: image_id | |
dtype: int64 | |
- name: url | |
dtype: string | |
- name: width | |
dtype: int64 | |
- name: height | |
dtype: int64 | |
- name: coco_id | |
dtype: float64 | |
- name: flickr_id | |
dtype: float64 | |
- name: qas | |
list: | |
- name: a_objects | |
sequence: 'null' | |
- name: answer | |
dtype: string | |
- name: q_objects | |
sequence: 'null' | |
- name: qa_id | |
dtype: int64 | |
- name: question | |
dtype: string | |
- name: image | |
dtype: image | |
splits: | |
- name: test | |
num_bytes: 73348776.0 | |
num_examples: 500 | |
- name: train | |
num_bytes: 140066760.0 | |
num_examples: 1000 | |
download_size: 495258420 | |
dataset_size: 497983127.0 | |
configs: | |
- config_name: default | |
data_files: | |
- split: test | |
path: data/test-* | |
- split: train | |
path: data/train-* | |
# JA-VG-VQA-500 | |
## Dataset Description | |
**JA-VG-VQA-500** is a 500-sample subset of [Japanese Visual Genome VQA dataset](https://github.com/yahoojapan/ja-vg-vqa). | |
This dataset was used in the evaluation of [EvoVLM-JP-v1-7B](https://huggingface.co/SakanaAI/EvoVLM-JP-v1-7B). | |
Please refer to our [report](https://arxiv.org/abs/2403.13187) and [blog](https://sakana.ai/evolutionary-model-merge/) for more details. | |
We are grateful to the developers for making the dataset available under [Creative Commons Attribution 4.0 License](https://creativecommons.org/licenses/by/4.0/legalcode). | |
- [Visual Genome](https://homes.cs.washington.edu/~ranjay/visualgenome/index.html) | |
- [Japanese Visual Genome VQA dataset](https://github.com/yahoojapan/ja-vg-vqa) | |
## Usage | |
Use the code below to get started with the dataset. | |
```python | |
from datasets import load_dataset | |
dataset = load_dataset("SakanaAI/JA-VG-VQA-500", split="test") | |
``` | |
See [our GitHub repository](https://github.com/SakanaAI/evolutionary-model-merge) to evaluate Japanese VLMs. | |
## Acknowledgement | |
We would like to thank the developers of the source datasets for their contributions and for making their work available. | |
## Citation | |
```bibtex | |
@article{Krishna2016VisualGC, | |
title = {Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations}, | |
author. = {Ranjay Krishna and Yuke Zhu and Oliver Groth and Justin Johnson and Kenji Hata and Joshua Kravitz and Stephanie Chen and Yannis Kalantidis and Li-Jia Li and David A. Shamma and Michael S. Bernstein and Li Fei-Fei}, | |
journal = {International Journal of Computer Vision}, | |
year. = {2017}, | |
volume. = {123}, | |
pages. = {32-73}, | |
URL = {https://doi.org/10.1007/s11263-016-0981-7}, | |
doi = {10.1007/s11263-016-0981-7} | |
} | |
``` | |
```bibtex | |
@InProceedings{C18-1163, | |
author = "Shimizu, Nobuyuki and Rong, Na and Miyazaki, Takashi", | |
title = "Visual Question Answering Dataset for Bilingual Image Understanding: A Study of Cross-Lingual Transfer Using Attention Maps", | |
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics", | |
year = "2018", | |
publisher = "Association for Computational Linguistics", | |
pages = "1918--1928", | |
location = "Santa Fe, New Mexico, USA", | |
url = "http://aclweb.org/anthology/C18-1163" | |
} | |
``` | |