dataset_info:
features:
- name: audio
dtype: audio
- name: Surah
dtype: string
- name: Aya
dtype: string
- name: duration_ms
dtype: int64
- name: create_date
dtype: string
- name: golden
dtype: bool
- name: final_label
dtype: string
- name: reciter_id
dtype: string
- name: reciter_country
dtype: string
- name: reciter_gender
dtype: string
- name: reciter_age
dtype: string
- name: reciter_qiraah
dtype: string
- name: judgments_num
dtype: int64
- name: annotation_metadata
dtype: string
splits:
- name: train
num_bytes: 1290351809.656
num_examples: 6828
download_size: 1258070687
dataset_size: 1290351809.656
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
task_categories:
- automatic-speech-recognition
- audio-classification
language:
- ar
tags:
- Crowdsourcing
- Quranic recitation
- Non-Arabic Speakers
pretty_name: >-
Quranic Audio Dataset - Crowdsourced and Labeled Recitation from Non-Arabic
Speakers
Dataset Card for Quranic Audio Dataset : Crowdsourced and Labeled Recitation from Non-Arabic Speakers
Dataset Summary
We explore the possibility of crowdsourcing a carefully annotated Quranic dataset, on top of which AI models can be built to simplify the learning process. In particular, we use the volunteer-based crowdsourcing genre and implement a crowdsourcing API to gather audio assets. We developed a crowdsourcing platform called Quran Voice for annotating the gathered audio assets. As a result, we have collected around 7000 Quranic recitations from a pool of 1287 participants across more than 11 non-Arabic countries, and we have annotated 1166 recitations from the dataset in six categories. We have achieved a crowd accuracy of 0.77, an inter-rater agreement of 0.63 between the annotators, and 0.89 between the labels assigned by the algorithm and the expert judgments.
How to use
The dataset can be downloaded using the load_dataset
function from datasets
library.
!pip install datasets
from datasets import load_dataset
quranic_dataset = load_dataset("RetaSy/quranic_audio_dataset")
print(quranic_dataset)
Dataset Structure
Data Instances
{
'audio': {
'path': '0058a4f7-6a3a-4665-b43b-d6f67fd14dbf.wav',
'array': array([0.00000000e+00, 0.00000000e+00, 3.05175781e-05, ...,9.15527344e-05, 0.00000000e+00, 1.83105469e-04]),
'sampling_rate': 16000
},
'Surah': 'Al-Faatihah',
'Aya': 'ุฃูุนููุฐู ุจูุงูููููู ู
ููู ุงูุดููููุทูุงูู ุงูุฑููุฌูููู
ู',
'duration_ms': 3520,
'create_date': '2023-03-15T19:57:35.027430+03:00',
'golden': False,
'final_label': 'in_correct',
'reciter_id': 'ef1ada15-e225-4155-a81c-fc461d940a6d',
'reciter_country': 'AT',
'reciter_gender': 'female',
'reciter_age': 'Unknown',
'reciter_qiraah': 'hafs',
'judgments_num': 3,
'annotation_metadata': '{
"label_1": "in_correct",
"annotator1_id": "1",
"annotator1_SCT": "257",
"annotator1_MCC": "0.87",
"annotator1_ACC": "0.92",
"annotator1_F1": "0.91",
"label_2": "correct",
"annotator2_id": "10",
"annotator2_SCT": "21",
"annotator2_MCC": "0.52",
"annotator2_ACC": "0.57",
"annotator2_F1": "0.55",
"label_3": "in_correct",
"annotator3_id": "19",
"annotator3_SCT": "12",
"annotator3_MCC": "0.75",
"annotator3_ACC": "0.83",
"annotator3_F1": "0.78"
}'
}
Data Fields
Citation Information
@inproceedings{quran_audio_dataset:2024,
author = {Salameh, R., Mdfaa, M. A., Askarbekuly, N., & Mazzara, M.},
title = {Quranic Audio Dataset: Crowdsourced and Labeled Recitation from Non-Arabic Speakers},
year = 2024,
eprint = {2405.02675},
eprinttype = {arxiv},
eprintclass = {cs.SD},
url = {https://arxiv.org/abs/2405.02675},
language = {english}
}