|
import base64 |
|
import requests |
|
import time |
|
import logging |
|
from io import BytesIO |
|
from PIL import Image |
|
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type |
|
|
|
from utils import parse_llm_answer |
|
from prompts import ( |
|
INITIAL_PROMPT_TEMPLATE, |
|
REPROMPT_PROMPT_TEMPLATE, |
|
get_answer_format_instruction, |
|
get_example_instruction, |
|
get_specific_instructions_reprompt |
|
) |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
|
|
|
|
|
OPENROUTER_API_ENDPOINT = "https://openrouter.ai/api/v1/chat/completions" |
|
|
|
|
|
RETRYABLE_EXCEPTIONS = ( |
|
requests.exceptions.Timeout, |
|
requests.exceptions.ConnectionError, |
|
requests.exceptions.RequestException |
|
) |
|
|
|
|
|
RETRYABLE_STATUS_CODES = {500, 502, 503, 504} |
|
|
|
|
|
retry_config = dict( |
|
stop=stop_after_attempt(3), |
|
wait=wait_exponential(multiplier=1, min=2, max=10), |
|
retry=(retry_if_exception_type(RETRYABLE_EXCEPTIONS)) |
|
|
|
) |
|
|
|
def encode_image_to_base64(image: Image.Image) -> str: |
|
"""Encodes a PIL Image object to a base64 string.""" |
|
buffered = BytesIO() |
|
|
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
image.save(buffered, format="JPEG") |
|
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8') |
|
return img_str |
|
|
|
def construct_reprompt_prompt(previous_raw_response: str, question_type: str) -> list: |
|
"""Constructs the message list for a re-prompt API call based on question_type.""" |
|
specific_instructions = get_specific_instructions_reprompt(question_type) |
|
|
|
prompt_text = REPROMPT_PROMPT_TEMPLATE.format( |
|
previous_raw_response=previous_raw_response, |
|
question_type=question_type, |
|
specific_instructions=specific_instructions |
|
) |
|
messages = [{"role": "user", "content": prompt_text}] |
|
return messages |
|
|
|
|
|
def construct_initial_prompt(base64_image: str, exam_name: str, exam_year: str, question_type: str) -> list: |
|
"""Constructs the initial message list with image for the OpenRouter API call, tailored by question_type.""" |
|
|
|
answer_format_instruction = get_answer_format_instruction(question_type) |
|
example_instruction = get_example_instruction(question_type) |
|
|
|
prompt_text = INITIAL_PROMPT_TEMPLATE.format( |
|
exam_name=exam_name, |
|
exam_year=exam_year, |
|
question_type=question_type, |
|
answer_format_instruction=answer_format_instruction, |
|
example_instruction=example_instruction |
|
) |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": prompt_text}, |
|
{ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": f"data:image/jpeg;base64,{base64_image}" |
|
} |
|
} |
|
] |
|
} |
|
] |
|
return messages |
|
|
|
@retry(**retry_config) |
|
def get_openrouter_prediction( |
|
model_identifier: str, |
|
api_key: str, |
|
image: Image.Image | None = None, |
|
previous_raw_response: str | None = None, |
|
exam_name: str | None = None, |
|
exam_year: str | None = None, |
|
question_type: str = "MCQ_SINGLE_CORRECT", |
|
max_tokens: int = 100, |
|
request_timeout: int = 60 |
|
) -> tuple[list[int] | str | None, str | None]: |
|
""" |
|
Gets a prediction from an OpenRouter model. Handles initial image prompts and text-only re-prompts. |
|
|
|
Args: |
|
model_identifier (str): The OpenRouter model identifier (e.g., "openai/gpt-4o"). |
|
api_key (str): The OpenRouter API key. |
|
image (Image.Image | None): The question image (for initial prompt). Default None. |
|
previous_raw_response (str | None): The raw response from a previous failed parse attempt (for re-prompt). Default None. |
|
exam_name (str | None): The name of the exam (e.g., "NEET", "JEE"). Required if 'image' is provided for initial prompt. |
|
exam_year (str | None): The year of the exam. Required if 'image' is provided for initial prompt. |
|
question_type (str): Type of question, e.g., "MCQ_SINGLE_CORRECT", "MCQ_MULTIPLE_CORRECT", "INTEGER". |
|
max_tokens (int): Max tokens for the response. |
|
request_timeout (int): Timeout for the API request in seconds. |
|
|
|
Returns: |
|
tuple[list[int] | str | None, str | None]: A tuple containing: |
|
- The parsed answer as a list of integers, the string "SKIP", or None if failed. |
|
- The raw response text from the LLM (or None if API call failed). |
|
|
|
Raises: |
|
ValueError: If arguments are inconsistent (e.g., image provided without exam details for initial prompt). |
|
requests.exceptions.RequestException: If the API call fails after retries. |
|
""" |
|
logging.info(f"Requesting prediction from model: {model_identifier} for question_type: {question_type}") |
|
|
|
if image is not None and previous_raw_response is None: |
|
|
|
if not exam_name or not exam_year: |
|
raise ValueError("'exam_name' and 'exam_year' must be provided when 'image' is specified for an initial prompt.") |
|
logging.debug(f"Constructing initial prompt with image for {exam_name} {exam_year}, type: {question_type}.") |
|
base64_image = encode_image_to_base64(image) |
|
messages = construct_initial_prompt(base64_image, exam_name, exam_year, question_type) |
|
elif image is None and previous_raw_response is not None: |
|
|
|
logging.debug(f"Constructing re-prompt based on previous response for type: {question_type}.") |
|
messages = construct_reprompt_prompt(previous_raw_response, question_type) |
|
else: |
|
|
|
|
|
|
|
raise ValueError("Provide 'image' (with 'exam_name' and 'exam_year') for an initial call, OR 'previous_raw_response' for a re-prompt. Not neither or both.") |
|
|
|
|
|
try: |
|
headers = { |
|
"Authorization": f"Bearer {api_key}", |
|
"Content-Type": "application/json" |
|
} |
|
|
|
data = { |
|
"model": model_identifier, |
|
"messages": messages, |
|
"max_tokens": max_tokens |
|
} |
|
|
|
response = requests.post( |
|
OPENROUTER_API_ENDPOINT, |
|
headers=headers, |
|
json=data, |
|
timeout=request_timeout |
|
) |
|
|
|
if response.status_code in RETRYABLE_STATUS_CODES: |
|
logging.warning(f"Received retryable status code {response.status_code} from {model_identifier} for {question_type}. Retrying might occur.") |
|
response.raise_for_status() |
|
|
|
if not response.ok: |
|
logging.error(f"API Error for model {model_identifier} ({question_type}): Status {response.status_code} - {response.text}") |
|
return None, None |
|
|
|
response_json = response.json() |
|
raw_response_text = response_json.get("choices", [{}])[0].get("message", {}).get("content") |
|
|
|
if not raw_response_text: |
|
logging.warning(f"Empty response content received from model: {model_identifier} for {question_type}") |
|
return None, None |
|
|
|
logging.info(f"Raw response received from {model_identifier} ({question_type}): '{raw_response_text[:100]}...'") |
|
|
|
parsed_answer = parse_llm_answer(raw_response_text, question_type=question_type) |
|
|
|
if parsed_answer is None: |
|
logging.warning(f"Failed to parse answer from model {model_identifier} for {question_type}.") |
|
|
|
return parsed_answer, raw_response_text |
|
|
|
except requests.exceptions.Timeout as e: |
|
logging.error(f"Request timed out for model {model_identifier} ({question_type}): {e}") |
|
raise |
|
except requests.exceptions.RequestException as e: |
|
logging.error(f"Request failed for model {model_identifier} ({question_type}): {e}") |
|
raise |
|
except Exception as e: |
|
logging.error(f"An unexpected error occurred for model {model_identifier} ({question_type}): {e}") |
|
return None, None |
|
|
|
|
|
if __name__ == '__main__': |
|
from src.utils import load_api_key |
|
try: |
|
dummy_image = Image.new('RGB', (60, 30), color = 'black') |
|
api_key = load_api_key() |
|
test_model = "anthropic/claude-3-haiku" |
|
|
|
print(f"\n--- Testing with model: {test_model} ---") |
|
|
|
|
|
print("\nTest Case 1: Initial - MCQ_SINGLE_CORRECT") |
|
parsed_ans_1, raw_resp_1 = get_openrouter_prediction( |
|
model_identifier=test_model, api_key=api_key, image=dummy_image, |
|
exam_name="DUMMY_EXAM", exam_year="2024", question_type="MCQ_SINGLE_CORRECT" |
|
) |
|
print(f"Parsed: {parsed_ans_1}, Raw: {raw_resp_1[:60] if raw_resp_1 else None}...") |
|
|
|
|
|
print("\nTest Case 2: Initial - MCQ_MULTIPLE_CORRECT") |
|
parsed_ans_2, raw_resp_2 = get_openrouter_prediction( |
|
model_identifier=test_model, api_key=api_key, image=dummy_image, |
|
exam_name="DUMMY_EXAM", exam_year="2024", question_type="MCQ_MULTIPLE_CORRECT" |
|
) |
|
print(f"Parsed: {parsed_ans_2}, Raw: {raw_resp_2[:60] if raw_resp_2 else None}...") |
|
|
|
|
|
print("\nTest Case 3: Initial - INTEGER") |
|
parsed_ans_3, raw_resp_3 = get_openrouter_prediction( |
|
model_identifier=test_model, api_key=api_key, image=dummy_image, |
|
exam_name="DUMMY_EXAM", exam_year="2024", question_type="INTEGER" |
|
) |
|
print(f"Parsed: {parsed_ans_3}, Raw: {raw_resp_3[:60] if raw_resp_3 else None}...") |
|
|
|
|
|
|
|
print("\nTest Case 4: Re-prompt - MCQ_SINGLE_CORRECT") |
|
bad_initial_resp_mcq_single = "<answer>1 2</answer> This is some extra text." |
|
reprompt_ans_4, reprompt_raw_4 = get_openrouter_prediction( |
|
model_identifier=test_model, api_key=api_key, |
|
previous_raw_response=bad_initial_resp_mcq_single, question_type="MCQ_SINGLE_CORRECT" |
|
) |
|
print(f"Parsed: {reprompt_ans_4}, Raw: {reprompt_raw_4[:60] if reprompt_raw_4 else None}...") |
|
|
|
|
|
print("\nTest Case 5: Re-prompt - MCQ_MULTIPLE_CORRECT") |
|
bad_initial_resp_mcq_multi = "The answer is <answer>option 1 and 4</answer> because reasons." |
|
reprompt_ans_5, reprompt_raw_5 = get_openrouter_prediction( |
|
model_identifier=test_model, api_key=api_key, |
|
previous_raw_response=bad_initial_resp_mcq_multi, question_type="MCQ_MULTIPLE_CORRECT" |
|
) |
|
print(f"Parsed: {reprompt_ans_5}, Raw: {reprompt_raw_5[:60] if reprompt_raw_5 else None}...") |
|
|
|
except ValueError as e: |
|
print(f"Setup or Argument Error: {e}") |
|
except Exception as e: |
|
print(f"Runtime Error during example execution: {e}") |
|
|