File size: 11,852 Bytes
de60742 5891c9a de60742 6bc6a63 5891c9a ea74ed3 5891c9a ea74ed3 6bc6a63 5891c9a de60742 ea74ed3 6bc6a63 ea74ed3 de60742 ea74ed3 de60742 ea74ed3 6bc6a63 de60742 ea74ed3 de60742 ea74ed3 6bc6a63 ea74ed3 de60742 6bc6a63 ea74ed3 6bc6a63 c7f64e6 6bc6a63 de60742 6bc6a63 ea74ed3 6bc6a63 ea74ed3 6bc6a63 de60742 ea74ed3 de60742 6bc6a63 de60742 6bc6a63 de60742 6bc6a63 de60742 6bc6a63 de60742 6bc6a63 de60742 6bc6a63 de60742 6bc6a63 de60742 6bc6a63 de60742 6bc6a63 c7f64e6 6bc6a63 de60742 6bc6a63 c7f64e6 6bc6a63 c7f64e6 2f49b44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import base64
import requests
import time
import logging
from io import BytesIO
from PIL import Image
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
from utils import parse_llm_answer
from prompts import (
INITIAL_PROMPT_TEMPLATE,
REPROMPT_PROMPT_TEMPLATE,
get_answer_format_instruction,
get_example_instruction,
get_specific_instructions_reprompt
)
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# OpenRouter API endpoint
OPENROUTER_API_ENDPOINT = "https://openrouter.ai/api/v1/chat/completions"
# Define exceptions for retry logic
RETRYABLE_EXCEPTIONS = (
requests.exceptions.Timeout,
requests.exceptions.ConnectionError,
requests.exceptions.RequestException # Catch broader request errors for retries
)
# Define status codes that warrant a retry
RETRYABLE_STATUS_CODES = {500, 502, 503, 504}
# Retry decorator configuration
retry_config = dict(
stop=stop_after_attempt(3), # Retry up to 3 times
wait=wait_exponential(multiplier=1, min=2, max=10), # Exponential backoff: 2s, 4s, 8s...
retry=(retry_if_exception_type(RETRYABLE_EXCEPTIONS)) # Retry on specific exceptions
# We will handle status code retries manually within the function for more control
)
def encode_image_to_base64(image: Image.Image) -> str:
"""Encodes a PIL Image object to a base64 string."""
buffered = BytesIO()
# Ensure image is in RGB format for broad compatibility
if image.mode != 'RGB':
image = image.convert('RGB')
image.save(buffered, format="JPEG") # Save as JPEG for potentially smaller size
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
return img_str
def construct_reprompt_prompt(previous_raw_response: str, question_type: str) -> list:
"""Constructs the message list for a re-prompt API call based on question_type."""
specific_instructions = get_specific_instructions_reprompt(question_type)
prompt_text = REPROMPT_PROMPT_TEMPLATE.format(
previous_raw_response=previous_raw_response,
question_type=question_type,
specific_instructions=specific_instructions
)
messages = [{"role": "user", "content": prompt_text}]
return messages
def construct_initial_prompt(base64_image: str, exam_name: str, exam_year: str, question_type: str) -> list:
"""Constructs the initial message list with image for the OpenRouter API call, tailored by question_type."""
answer_format_instruction = get_answer_format_instruction(question_type)
example_instruction = get_example_instruction(question_type)
prompt_text = INITIAL_PROMPT_TEMPLATE.format(
exam_name=exam_name,
exam_year=exam_year,
question_type=question_type,
answer_format_instruction=answer_format_instruction,
example_instruction=example_instruction
)
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt_text},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}
]
return messages
@retry(**retry_config)
def get_openrouter_prediction(
model_identifier: str,
api_key: str,
image: Image.Image | None = None, # Image is now optional
previous_raw_response: str | None = None, # Added for re-prompting
exam_name: str | None = None,
exam_year: str | None = None,
question_type: str = "MCQ_SINGLE_CORRECT", # New parameter with default
max_tokens: int = 100,
request_timeout: int = 60
) -> tuple[list[int] | str | None, str | None]: # Allow predicted_answer to be "SKIP"
"""
Gets a prediction from an OpenRouter model. Handles initial image prompts and text-only re-prompts.
Args:
model_identifier (str): The OpenRouter model identifier (e.g., "openai/gpt-4o").
api_key (str): The OpenRouter API key.
image (Image.Image | None): The question image (for initial prompt). Default None.
previous_raw_response (str | None): The raw response from a previous failed parse attempt (for re-prompt). Default None.
exam_name (str | None): The name of the exam (e.g., "NEET", "JEE"). Required if 'image' is provided for initial prompt.
exam_year (str | None): The year of the exam. Required if 'image' is provided for initial prompt.
question_type (str): Type of question, e.g., "MCQ_SINGLE_CORRECT", "MCQ_MULTIPLE_CORRECT", "INTEGER".
max_tokens (int): Max tokens for the response.
request_timeout (int): Timeout for the API request in seconds.
Returns:
tuple[list[int] | str | None, str | None]: A tuple containing:
- The parsed answer as a list of integers, the string "SKIP", or None if failed.
- The raw response text from the LLM (or None if API call failed).
Raises:
ValueError: If arguments are inconsistent (e.g., image provided without exam details for initial prompt).
requests.exceptions.RequestException: If the API call fails after retries.
"""
logging.info(f"Requesting prediction from model: {model_identifier} for question_type: {question_type}")
if image is not None and previous_raw_response is None:
# Initial prompt with image
if not exam_name or not exam_year: # exam_name and exam_year are crucial for initial prompt context
raise ValueError("'exam_name' and 'exam_year' must be provided when 'image' is specified for an initial prompt.")
logging.debug(f"Constructing initial prompt with image for {exam_name} {exam_year}, type: {question_type}.")
base64_image = encode_image_to_base64(image)
messages = construct_initial_prompt(base64_image, exam_name, exam_year, question_type)
elif image is None and previous_raw_response is not None:
# Re-prompt based on previous response
logging.debug(f"Constructing re-prompt based on previous response for type: {question_type}.")
messages = construct_reprompt_prompt(previous_raw_response, question_type)
else:
# This condition means either both image and previous_raw_response are None, or both are provided.
# The latter (both provided) is ambiguous for which prompt to use.
# The former (both None) means no input to act on.
raise ValueError("Provide 'image' (with 'exam_name' and 'exam_year') for an initial call, OR 'previous_raw_response' for a re-prompt. Not neither or both.")
try:
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
data = {
"model": model_identifier,
"messages": messages,
"max_tokens": max_tokens
}
response = requests.post(
OPENROUTER_API_ENDPOINT,
headers=headers,
json=data,
timeout=request_timeout
)
if response.status_code in RETRYABLE_STATUS_CODES:
logging.warning(f"Received retryable status code {response.status_code} from {model_identifier} for {question_type}. Retrying might occur.")
response.raise_for_status()
if not response.ok:
logging.error(f"API Error for model {model_identifier} ({question_type}): Status {response.status_code} - {response.text}")
return None, None
response_json = response.json()
raw_response_text = response_json.get("choices", [{}])[0].get("message", {}).get("content")
if not raw_response_text:
logging.warning(f"Empty response content received from model: {model_identifier} for {question_type}")
return None, None
logging.info(f"Raw response received from {model_identifier} ({question_type}): '{raw_response_text[:100]}...'")
# Pass question_type to parse_llm_answer
parsed_answer = parse_llm_answer(raw_response_text, question_type=question_type)
if parsed_answer is None:
logging.warning(f"Failed to parse answer from model {model_identifier} for {question_type}.")
return parsed_answer, raw_response_text
except requests.exceptions.Timeout as e:
logging.error(f"Request timed out for model {model_identifier} ({question_type}): {e}")
raise
except requests.exceptions.RequestException as e:
logging.error(f"Request failed for model {model_identifier} ({question_type}): {e}")
raise
except Exception as e:
logging.error(f"An unexpected error occurred for model {model_identifier} ({question_type}): {e}")
return None, None
# Example Usage (requires a valid API key in .env and Pillow/requests/tenacity installed)
if __name__ == '__main__':
from src.utils import load_api_key
try:
dummy_image = Image.new('RGB', (60, 30), color = 'black')
api_key = load_api_key()
test_model = "anthropic/claude-3-haiku"
print(f"\n--- Testing with model: {test_model} ---")
# Test Case 1: Initial call - MCQ_SINGLE_CORRECT
print("\nTest Case 1: Initial - MCQ_SINGLE_CORRECT")
parsed_ans_1, raw_resp_1 = get_openrouter_prediction(
model_identifier=test_model, api_key=api_key, image=dummy_image,
exam_name="DUMMY_EXAM", exam_year="2024", question_type="MCQ_SINGLE_CORRECT"
)
print(f"Parsed: {parsed_ans_1}, Raw: {raw_resp_1[:60] if raw_resp_1 else None}...")
# Test Case 2: Initial call - MCQ_MULTIPLE_CORRECT
print("\nTest Case 2: Initial - MCQ_MULTIPLE_CORRECT")
parsed_ans_2, raw_resp_2 = get_openrouter_prediction(
model_identifier=test_model, api_key=api_key, image=dummy_image,
exam_name="DUMMY_EXAM", exam_year="2024", question_type="MCQ_MULTIPLE_CORRECT"
)
print(f"Parsed: {parsed_ans_2}, Raw: {raw_resp_2[:60] if raw_resp_2 else None}...")
# Test Case 3: Initial call - INTEGER
print("\nTest Case 3: Initial - INTEGER")
parsed_ans_3, raw_resp_3 = get_openrouter_prediction(
model_identifier=test_model, api_key=api_key, image=dummy_image,
exam_name="DUMMY_EXAM", exam_year="2024", question_type="INTEGER"
)
print(f"Parsed: {parsed_ans_3}, Raw: {raw_resp_3[:60] if raw_resp_3 else None}...")
# Test Case 4: Re-prompt - MCQ_SINGLE_CORRECT (simulating bad initial response)
print("\nTest Case 4: Re-prompt - MCQ_SINGLE_CORRECT")
bad_initial_resp_mcq_single = "<answer>1 2</answer> This is some extra text."
reprompt_ans_4, reprompt_raw_4 = get_openrouter_prediction(
model_identifier=test_model, api_key=api_key,
previous_raw_response=bad_initial_resp_mcq_single, question_type="MCQ_SINGLE_CORRECT"
)
print(f"Parsed: {reprompt_ans_4}, Raw: {reprompt_raw_4[:60] if reprompt_raw_4 else None}...")
# Test Case 5: Re-prompt - MCQ_MULTIPLE_CORRECT (simulating bad initial response)
print("\nTest Case 5: Re-prompt - MCQ_MULTIPLE_CORRECT")
bad_initial_resp_mcq_multi = "The answer is <answer>option 1 and 4</answer> because reasons."
reprompt_ans_5, reprompt_raw_5 = get_openrouter_prediction(
model_identifier=test_model, api_key=api_key,
previous_raw_response=bad_initial_resp_mcq_multi, question_type="MCQ_MULTIPLE_CORRECT"
)
print(f"Parsed: {reprompt_ans_5}, Raw: {reprompt_raw_5[:60] if reprompt_raw_5 else None}...")
except ValueError as e:
print(f"Setup or Argument Error: {e}")
except Exception as e:
print(f"Runtime Error during example execution: {e}")
|