Datasets:
Tasks:
Image Segmentation
Formats:
parquet
Sub-tasks:
instance-segmentation
Languages:
English
Size:
< 1K
License:
from collections.abc import Iterable | |
from pathlib import Path | |
from typing import Any | |
from xml.etree import ElementTree as ET | |
import datasets | |
import numpy as np | |
from datasets import Dataset | |
from datasets.splits import NamedSplit | |
from PIL import Image, ImageDraw | |
from tqdm import tqdm | |
# https://drive.google.com/file/d/1xYyQ31CHFRnvTCTuuHdconlJCMk2SK7Z/view?usp=sharing | |
patient_data = { | |
"TCGA-A7-A13E-01Z-00-DX1": "Breast", | |
"TCGA-A7-A13F-01Z-00-DX1": "Breast", | |
"TCGA-AR-A1AK-01Z-00-DX1": "Breast", | |
"TCGA-AR-A1AS-01Z-00-DX1": "Breast", | |
"TCGA-E2-A1B5-01Z-00-DX1": "Breast", | |
"TCGA-E2-A14V-01Z-00-DX1": "Breast", | |
"TCGA-B0-5711-01Z-00-DX1": "Kidney", | |
"TCGA-HE-7128-01Z-00-DX1": "Kidney", | |
"TCGA-HE-7129-01Z-00-DX1": "Kidney", | |
"TCGA-HE-7130-01Z-00-DX1": "Kidney", | |
"TCGA-B0-5710-01Z-00-DX1": "Kidney", | |
"TCGA-B0-5698-01Z-00-DX1": "Kidney", | |
"TCGA-18-5592-01Z-00-DX1": "Liver", | |
"TCGA-38-6178-01Z-00-DX1": "Liver", | |
"TCGA-49-4488-01Z-00-DX1": "Liver", | |
"TCGA-50-5931-01Z-00-DX1": "Liver", | |
"TCGA-21-5784-01Z-00-DX1": "Liver", | |
"TCGA-21-5786-01Z-00-DX1": "Liver", | |
"TCGA-G9-6336-01Z-00-DX1": "Prostate", | |
"TCGA-G9-6348-01Z-00-DX1": "Prostate", | |
"TCGA-G9-6356-01Z-00-DX1": "Prostate", | |
"TCGA-G9-6363-01Z-00-DX1": "Prostate", | |
"TCGA-CH-5767-01Z-00-DX1": "Prostate", | |
"TCGA-G9-6362-01Z-00-DX1": "Prostate", | |
"TCGA-DK-A2I6-01A-01-TS1": "Bladder", | |
"TCGA-G2-A2EK-01A-02-TSB": "Bladder", | |
"TCGA-AY-A8YK-01A-01-TS1": "Colon", | |
"TCGA-NH-A8F7-01A-01-TS1": "Colon", | |
"TCGA-KB-A93J-01A-01-TS1": "Stomach", | |
"TCGA-RD-A8N9-01A-01-TS1": "Stomach", | |
} | |
def get_masks(path: Path, mask_size: tuple[int, int]) -> list[Image.Image]: | |
masks = [] | |
for region in ET.parse(path).getroot().findall("Annotation/Regions/Region"): | |
polygon = [ | |
(float(vertex.attrib["X"]), float(vertex.attrib["Y"])) | |
for vertex in region.findall("Vertices/Vertex") | |
] | |
if len(polygon) < 2: | |
continue | |
mask = Image.new("1", size=mask_size) | |
canvas = ImageDraw.Draw(mask) | |
canvas.polygon(xy=polygon, outline=True, fill=True) | |
masks.append(mask) | |
return masks | |
def process_train(src: str) -> Iterable[dict[str, Any]]: | |
files = list(Path(src).rglob("*.xml")) | |
for file in tqdm(files): | |
masks = get_masks(file, mask_size=(1000, 1000)) | |
tissue_path = Path(str(file).replace("Annotations", "Tissue Images")) | |
image = np.asarray(Image.open(tissue_path.with_suffix(".tif"))) | |
yield { | |
"patient": file.stem, | |
"image": Image.fromarray(image.astype(np.uint8)), | |
"instances": masks, | |
"tissue": patient_data.get(file.stem, "Unknown"), | |
} | |
def process_test(src: str) -> Iterable[dict[str, Any]]: | |
files = list(Path(src).rglob("*.xml")) | |
for file in tqdm(files): | |
masks = get_masks(file, mask_size=(1000, 1000)) | |
image = np.asarray(Image.open(file.with_suffix(".tif"))) | |
yield { | |
"patient": file.stem, | |
"image": Image.fromarray(image.astype(np.uint8)), | |
"instances": masks, | |
"tissue": patient_data.get(file.stem, "Unknown"), | |
} | |
features = datasets.Features( | |
{ | |
"patient": datasets.Value("string"), | |
"image": datasets.Image(mode="RGB"), | |
"instances": datasets.Sequence(datasets.Image(mode="1")), | |
"tissue": datasets.ClassLabel( | |
names=[ | |
"Unknown", | |
"Breast", | |
"Kidney", | |
"Liver", | |
"Prostate", | |
"Bladder", | |
"Colon", | |
"Stomach", | |
] | |
), | |
} | |
) | |
if __name__ == "__main__": | |
train = Dataset.from_generator( | |
process_train, | |
gen_kwargs={"src": "data/raw/MoNuSeg/MoNuSeg 2018 Training Data/Annotations"}, | |
features=features, | |
split=NamedSplit("train"), | |
keep_in_memory=True, | |
) | |
train.push_to_hub("RationAI/MoNuSeg") | |
test = Dataset.from_generator( | |
process_test, | |
gen_kwargs={"src": "data/raw/MoNuSeg/MoNuSegTestData"}, | |
features=features, | |
split=NamedSplit("test"), | |
keep_in_memory=True, | |
) | |
test.push_to_hub("RationAI/MoNuSeg") | |