File size: 4,295 Bytes
4812ea4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from collections.abc import Iterable
from pathlib import Path
from typing import Any
from xml.etree import ElementTree as ET

import datasets
import numpy as np
from datasets import Dataset
from datasets.splits import NamedSplit
from PIL import Image, ImageDraw
from tqdm import tqdm


# https://drive.google.com/file/d/1xYyQ31CHFRnvTCTuuHdconlJCMk2SK7Z/view?usp=sharing
patient_data = {
    "TCGA-A7-A13E-01Z-00-DX1": "Breast",
    "TCGA-A7-A13F-01Z-00-DX1": "Breast",
    "TCGA-AR-A1AK-01Z-00-DX1": "Breast",
    "TCGA-AR-A1AS-01Z-00-DX1": "Breast",
    "TCGA-E2-A1B5-01Z-00-DX1": "Breast",
    "TCGA-E2-A14V-01Z-00-DX1": "Breast",
    "TCGA-B0-5711-01Z-00-DX1": "Kidney",
    "TCGA-HE-7128-01Z-00-DX1": "Kidney",
    "TCGA-HE-7129-01Z-00-DX1": "Kidney",
    "TCGA-HE-7130-01Z-00-DX1": "Kidney",
    "TCGA-B0-5710-01Z-00-DX1": "Kidney",
    "TCGA-B0-5698-01Z-00-DX1": "Kidney",
    "TCGA-18-5592-01Z-00-DX1": "Liver",
    "TCGA-38-6178-01Z-00-DX1": "Liver",
    "TCGA-49-4488-01Z-00-DX1": "Liver",
    "TCGA-50-5931-01Z-00-DX1": "Liver",
    "TCGA-21-5784-01Z-00-DX1": "Liver",
    "TCGA-21-5786-01Z-00-DX1": "Liver",
    "TCGA-G9-6336-01Z-00-DX1": "Prostate",
    "TCGA-G9-6348-01Z-00-DX1": "Prostate",
    "TCGA-G9-6356-01Z-00-DX1": "Prostate",
    "TCGA-G9-6363-01Z-00-DX1": "Prostate",
    "TCGA-CH-5767-01Z-00-DX1": "Prostate",
    "TCGA-G9-6362-01Z-00-DX1": "Prostate",
    "TCGA-DK-A2I6-01A-01-TS1": "Bladder",
    "TCGA-G2-A2EK-01A-02-TSB": "Bladder",
    "TCGA-AY-A8YK-01A-01-TS1": "Colon",
    "TCGA-NH-A8F7-01A-01-TS1": "Colon",
    "TCGA-KB-A93J-01A-01-TS1": "Stomach",
    "TCGA-RD-A8N9-01A-01-TS1": "Stomach",
}


def get_masks(path: Path, mask_size: tuple[int, int]) -> list[Image.Image]:
    masks = []

    for region in ET.parse(path).getroot().findall("Annotation/Regions/Region"):
        polygon = [
            (float(vertex.attrib["X"]), float(vertex.attrib["Y"]))
            for vertex in region.findall("Vertices/Vertex")
        ]

        if len(polygon) < 2:
            continue

        mask = Image.new("1", size=mask_size)
        canvas = ImageDraw.Draw(mask)
        canvas.polygon(xy=polygon, outline=True, fill=True)
        masks.append(mask)

    return masks


def process_train(src: str) -> Iterable[dict[str, Any]]:
    files = list(Path(src).rglob("*.xml"))

    for file in tqdm(files):
        masks = get_masks(file, mask_size=(1000, 1000))
        tissue_path = Path(str(file).replace("Annotations", "Tissue Images"))
        image = np.asarray(Image.open(tissue_path.with_suffix(".tif")))

        yield {
            "patient": file.stem,
            "image": Image.fromarray(image.astype(np.uint8)),
            "instances": masks,
            "tissue": patient_data.get(file.stem, "Unknown"),
        }


def process_test(src: str) -> Iterable[dict[str, Any]]:
    files = list(Path(src).rglob("*.xml"))

    for file in tqdm(files):
        masks = get_masks(file, mask_size=(1000, 1000))
        image = np.asarray(Image.open(file.with_suffix(".tif")))

        yield {
            "patient": file.stem,
            "image": Image.fromarray(image.astype(np.uint8)),
            "instances": masks,
            "tissue": patient_data.get(file.stem, "Unknown"),
        }


features = datasets.Features(
    {
        "patient": datasets.Value("string"),
        "image": datasets.Image(mode="RGB"),
        "instances": datasets.Sequence(datasets.Image(mode="1")),
        "tissue": datasets.ClassLabel(
            names=[
                "Unknown",
                "Breast",
                "Kidney",
                "Liver",
                "Prostate",
                "Bladder",
                "Colon",
                "Stomach",
            ]
        ),
    }
)


if __name__ == "__main__":
    train = Dataset.from_generator(
        process_train,
        gen_kwargs={"src": "data/raw/MoNuSeg/MoNuSeg 2018 Training Data/Annotations"},
        features=features,
        split=NamedSplit("train"),
        keep_in_memory=True,
    )
    train.push_to_hub("RationAI/MoNuSeg")

    test = Dataset.from_generator(
        process_test,
        gen_kwargs={"src": "data/raw/MoNuSeg/MoNuSegTestData"},
        features=features,
        split=NamedSplit("test"),
        keep_in_memory=True,
    )
    test.push_to_hub("RationAI/MoNuSeg")