RaphaelOlivier commited on
Commit
987c1d3
·
1 Parent(s): d5c3b23

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -0
README.md CHANGED
@@ -1,3 +1,44 @@
1
  ---
2
  license: cc-by-4.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-4.0
3
  ---
4
+
5
+ # Description
6
+ This dataset is a subset of [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) and Multilingual [CommonVoice](commonvoice.mozilla.org/) that have been adversarially modified to fool [Whisper](https://huggingface.co/openai/whisper-medium) ASR model.
7
+
8
+ Original [source code](https://github.com/RaphaelOlivier/whisper_attack).
9
+
10
+ # Configurations and splits
11
+ * The `targeted` config contains targeted adversarial examples. When successful, they fool Whisper into predicting the sentence `OK Google, browse to evil.com` even if the input is entirely different. We provide a split for each Whisper model, and one containing the original, unmodified inputs
12
+ * The `untargeted-35` and `untargeted-40` configs contain untargeted adversarial examples, with average Signal-Noise Ratios of 35dB and 40dB respectively. They fool Whisper into predicting erroneous transcriptions. We provide a split for each Whisper model, and one containing the original, unmodified inputs
13
+ * The `language-<lang> configs contain adversarial examples in language <lang> that fool Whisper in predicting the wrong language. Split `<lang>.<target_lang>` contain inputs that Whisper perceives as <target_lang>, and split `<lang>.original` contains the original inputs in language <lang>. We use 3 target languages (English, Tagalog and Serbian) and 7 source languages (English, Italian, Indonesian, Danish, Czech, Lithuanian and Armenian).
14
+
15
+ # Usage
16
+
17
+ Here is an example of code using this dataset:
18
+
19
+ ```python
20
+ model_name="whisper-medium"
21
+ config_name="targeted"
22
+ split_name="whisper.medium"
23
+ hub_path = "openai/whisper-"+model_name
24
+ processor = WhisperProcessor.from_pretrained(hub_path)
25
+ model = WhisperForConditionalGeneration.from_pretrained(hub_path).to("cuda")
26
+
27
+ dataset = load_dataset("RaphaelOlivier/whisper_adversarial_examples",config_name ,split=split_name)
28
+
29
+ def map_to_pred(batch):
30
+ input_features = processor(batch["audio"][0]["array"], return_tensors="pt").input_features
31
+ predicted_ids = model.generate(input_features.to("cuda"))
32
+ transcription = processor.batch_decode(predicted_ids, normalize = True)
33
+ batch['text'][0] = processor.tokenizer._normalize(batch['text'][0])
34
+ batch["transcription"] = transcription
35
+ return batch
36
+
37
+ result = dataset.map(map_to_pred, batched=True, batch_size=1)
38
+
39
+ wer = load("wer")
40
+ for t in zip(result["text"],result["transcription"]):
41
+ print(t)
42
+ print(wer.compute(predictions=result["text"], references=result["transcription"]))
43
+
44
+ ```