Commit
·
d5c3b23
1
Parent(s):
cca3d28
Upload whisper_adversarial_examples.py
Browse files- whisper_adversarial_examples.py +242 -0
whisper_adversarial_examples.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""Librispeech automatic speech recognition dataset."""
|
18 |
+
|
19 |
+
|
20 |
+
import os
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
from datasets.tasks import AutomaticSpeechRecognition
|
24 |
+
|
25 |
+
|
26 |
+
_CITATION = """\
|
27 |
+
@inproceedings{panayotov2015librispeech,
|
28 |
+
title={Librispeech: an ASR corpus based on public domain audio books},
|
29 |
+
author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
|
30 |
+
booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
|
31 |
+
pages={5206--5210},
|
32 |
+
year={2015},
|
33 |
+
organization={IEEE}
|
34 |
+
}
|
35 |
+
"""
|
36 |
+
|
37 |
+
_DESCRIPTION = """\
|
38 |
+
Adversarial examples fooling whisper models
|
39 |
+
"""
|
40 |
+
|
41 |
+
|
42 |
+
_DL_URLS = {
|
43 |
+
"targeted": {
|
44 |
+
"all": "https://data.mendeley.com/api/datasets/96dh52hz9r/draft/files/75f06ad3-4f86-4f4b-b748-ea0e94f23379?a=ee30841f-1832-41ec-bdac-bf3e5b67073c"
|
45 |
+
},
|
46 |
+
"untargeted-35": {
|
47 |
+
"all": "https://data.mendeley.com/api/datasets/96dh52hz9r/draft/files/fc7810ca-6dd9-42ae-ba22-575e785957ed?a=ee30841f-1832-41ec-bdac-bf3e5b67073c"
|
48 |
+
},
|
49 |
+
"untargeted-40": {
|
50 |
+
"all": "https://data.mendeley.com/api/datasets/96dh52hz9r/draft/files/6e3bdf4a-6a5a-4ae6-b565-1646395d1090?a=ee30841f-1832-41ec-bdac-bf3e5b67073c"
|
51 |
+
},
|
52 |
+
"language-armenian": {
|
53 |
+
"all": "https://data.mendeley.com/api/datasets/96dh52hz9r/draft/files/89eab218-77f2-4f4a-9e30-9ed7b07369fb?a=ee30841f-1832-41ec-bdac-bf3e5b67073c"
|
54 |
+
},
|
55 |
+
"language-lithuanian": {
|
56 |
+
"all": "https://data.mendeley.com/api/datasets/96dh52hz9r/draft/files/60f5f101-cde5-40cf-ab63-af484e7ceb36?a=ee30841f-1832-41ec-bdac-bf3e5b67073c"
|
57 |
+
},
|
58 |
+
"language-czech": {
|
59 |
+
"all": "https://data.mendeley.com/api/datasets/96dh52hz9r/draft/files/5986b1cd-08ac-4e08-beb3-151396dd2e28?a=ee30841f-1832-41ec-bdac-bf3e5b67073c"
|
60 |
+
},
|
61 |
+
"language-danish": {
|
62 |
+
"all": "https://data.mendeley.com/api/datasets/96dh52hz9r/draft/files/f6a88d17-81d7-4491-a760-f937bfb43bd6?a=ee30841f-1832-41ec-bdac-bf3e5b67073c"
|
63 |
+
},
|
64 |
+
"language-indonesian": {
|
65 |
+
"all": "https://data.mendeley.com/api/datasets/96dh52hz9r/draft/files/d508566f-6cb9-4a75-a317-6f1b86f1273f?a=ee30841f-1832-41ec-bdac-bf3e5b67073c"
|
66 |
+
},
|
67 |
+
"language-italian": {
|
68 |
+
"all": "https://data.mendeley.com/api/datasets/96dh52hz9r/draft/files/e9052368-1dc4-4c85-b00c-a168868442ce?a=ee30841f-1832-41ec-bdac-bf3e5b67073c"
|
69 |
+
},
|
70 |
+
"language-english": {
|
71 |
+
"all": "https://data.mendeley.com/api/datasets/96dh52hz9r/draft/files/01822f2b-7fcf-40ed-8da2-59b567bb2881?a=ee30841f-1832-41ec-bdac-bf3e5b67073c"
|
72 |
+
},
|
73 |
+
}
|
74 |
+
|
75 |
+
|
76 |
+
class LibrispeechASRConfig(datasets.BuilderConfig):
|
77 |
+
"""BuilderConfig for LibriSpeechASR."""
|
78 |
+
|
79 |
+
def __init__(self, **kwargs):
|
80 |
+
"""
|
81 |
+
Args:
|
82 |
+
data_dir: `string`, the path to the folder containing the files in the
|
83 |
+
downloaded .tar
|
84 |
+
citation: `string`, citation for the data set
|
85 |
+
url: `string`, url for information about the data set
|
86 |
+
**kwargs: keyword arguments forwarded to super.
|
87 |
+
"""
|
88 |
+
super(LibrispeechASRConfig, self).__init__(version=datasets.Version("0.1.0", ""), **kwargs)
|
89 |
+
|
90 |
+
|
91 |
+
class LibrispeechASR(datasets.GeneratorBasedBuilder):
|
92 |
+
"""Librispeech dataset."""
|
93 |
+
|
94 |
+
DEFAULT_WRITER_BATCH_SIZE = 256
|
95 |
+
DEFAULT_CONFIG_NAME = "all"
|
96 |
+
BUILDER_CONFIGS = [
|
97 |
+
LibrispeechASRConfig(name="targeted", description="Targeted adversarial examples, with target 'OK Google, browse to evil.com'"),
|
98 |
+
LibrispeechASRConfig(name="untargeted-35", description="Untargeted adversarial examples of radius approximately 35dB"),
|
99 |
+
LibrispeechASRConfig(name="untargeted-40", description="Untargeted adversarial examples of radius approximately 40dB"),
|
100 |
+
LibrispeechASRConfig(name="language-armenian", description="Adversarial examples generated by fooling the whisper language detection module. The true language is Armenian"),
|
101 |
+
LibrispeechASRConfig(name="language-lithuanian", description="Adversarial examples generated by fooling the whisper language detection module. The true language is Lithuanian"),
|
102 |
+
LibrispeechASRConfig(name="language-czech", description="Adversarial examples generated by fooling the whisper language detection module. The true language is Czech"),
|
103 |
+
LibrispeechASRConfig(name="language-danish", description="Adversarial examples generated by fooling the whisper language detection module. The true language is Danish"),
|
104 |
+
LibrispeechASRConfig(name="language-indonesian", description="Adversarial examples generated by fooling the whisper language detection module. The true language is Indonesian"),
|
105 |
+
LibrispeechASRConfig(name="language-italian", description="Adversarial examples generated by fooling the whisper language detection module. The true language is Italian"),
|
106 |
+
LibrispeechASRConfig(name="language-english", description="Adversarial examples generated by fooling the whisper language detection module. The true language is English")
|
107 |
+
]
|
108 |
+
|
109 |
+
def _info(self):
|
110 |
+
return datasets.DatasetInfo(
|
111 |
+
description=_DESCRIPTION,
|
112 |
+
features=datasets.Features(
|
113 |
+
{
|
114 |
+
"file": datasets.Value("string"),
|
115 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
116 |
+
"text": datasets.Value("string"),
|
117 |
+
"id": datasets.Value("string"),
|
118 |
+
}
|
119 |
+
),
|
120 |
+
supervised_keys=("file", "text"),
|
121 |
+
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
|
122 |
+
)
|
123 |
+
|
124 |
+
def _split_generators(self, dl_manager):
|
125 |
+
archive_path = dl_manager.download(_DL_URLS[self.config.name])
|
126 |
+
# (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
|
127 |
+
local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
|
128 |
+
models = [
|
129 |
+
'whisper-tiny',
|
130 |
+
'whisper-tiny.en',
|
131 |
+
'whisper-base',
|
132 |
+
'whisper-base.en',
|
133 |
+
'whisper-small',
|
134 |
+
'whisper-small.en',
|
135 |
+
'whisper-medium',
|
136 |
+
'whisper-medium.en',
|
137 |
+
'whisper-large',
|
138 |
+
]
|
139 |
+
seeds = {
|
140 |
+
"targeted":2000,
|
141 |
+
"untargeted-35": 235,
|
142 |
+
"untargeted-40":240,
|
143 |
+
"language-armenian":1030,
|
144 |
+
"language-lithuanian":1030,
|
145 |
+
"language-czech":1030,
|
146 |
+
"language-danish":1030,
|
147 |
+
"language-indonesian":1030,
|
148 |
+
"language-italian":1030,
|
149 |
+
"language-english":1030
|
150 |
+
}
|
151 |
+
folders = {
|
152 |
+
"targeted":"cw",
|
153 |
+
"untargeted-35": "pgd-35",
|
154 |
+
"untargeted-40":"pgd-40",
|
155 |
+
"language-armenian":"hy-AM",
|
156 |
+
"language-lithuanian":"lt",
|
157 |
+
"language-czech":"cs",
|
158 |
+
"language-danish":"da",
|
159 |
+
"language-indonesian":"id",
|
160 |
+
"language-italian":"it",
|
161 |
+
"language-english":"en"
|
162 |
+
}
|
163 |
+
targets = [("english","en"), ("tagalog","tl"), ("serbian","sr")]
|
164 |
+
|
165 |
+
if "language-" in self.config.name:
|
166 |
+
lang = self.config.name.split("language-")[-1]
|
167 |
+
splits = [
|
168 |
+
datasets.SplitGenerator(
|
169 |
+
name=lang+"."+target[0],
|
170 |
+
gen_kwargs={
|
171 |
+
"local_extracted_archive": local_extracted_archive.get("all"),
|
172 |
+
"files": dl_manager.iter_files(local_extracted_archive.get("all")),
|
173 |
+
"path_audio": os.path.join(folders[self.config.name]+"-"+target[1],"whisper-medium",str(seeds[self.config.name]),"save")
|
174 |
+
},
|
175 |
+
) for target in targets
|
176 |
+
] + [
|
177 |
+
datasets.SplitGenerator(
|
178 |
+
name="original",
|
179 |
+
gen_kwargs={
|
180 |
+
"local_extracted_archive": local_extracted_archive.get("all"),
|
181 |
+
"files": dl_manager.iter_files(local_extracted_archive.get("all")),
|
182 |
+
"path_audio": folders[self.config.name]+"-original"
|
183 |
+
},
|
184 |
+
)
|
185 |
+
]
|
186 |
+
else:
|
187 |
+
splits = [
|
188 |
+
datasets.SplitGenerator(
|
189 |
+
name=model.replace("-","."),
|
190 |
+
gen_kwargs={
|
191 |
+
"local_extracted_archive": local_extracted_archive.get("all"),
|
192 |
+
"files": dl_manager.iter_files(local_extracted_archive.get("all")),
|
193 |
+
"path_audio": os.path.join(folders[self.config.name],model,str(seeds[self.config.name]),"save")
|
194 |
+
},
|
195 |
+
) for model in models
|
196 |
+
] + [
|
197 |
+
datasets.SplitGenerator(
|
198 |
+
name="original",
|
199 |
+
gen_kwargs={
|
200 |
+
"local_extracted_archive": local_extracted_archive.get("all"),
|
201 |
+
"files": dl_manager.iter_files(local_extracted_archive.get("all")),
|
202 |
+
"path_audio": os.path.join(folders[self.config.name],"original")
|
203 |
+
},
|
204 |
+
)
|
205 |
+
]
|
206 |
+
|
207 |
+
return splits
|
208 |
+
|
209 |
+
def _generate_examples(self, files, local_extracted_archive,path_audio):
|
210 |
+
"""Generate examples from a LibriSpeech archive_path."""
|
211 |
+
key = 0
|
212 |
+
audio_data = {}
|
213 |
+
transcripts = []
|
214 |
+
for path in files:
|
215 |
+
if path.endswith(".csv"):
|
216 |
+
with open(path,'r') as f:
|
217 |
+
for line in f:
|
218 |
+
if line:
|
219 |
+
line = (line.decode("utf-8") if isinstance(line,bytes) else line)
|
220 |
+
line=line.strip().split(",")
|
221 |
+
id_ = line[0]
|
222 |
+
transcript=line[-1]
|
223 |
+
transcript = transcript[:-1] if transcript[-1]=='\n' else transcript
|
224 |
+
suffix = "_nat.wav" if "original" in path_audio else "_adv.wav"
|
225 |
+
audio_file = id_+suffix
|
226 |
+
audio_file = os.path.join(local_extracted_archive,path_audio, audio_file)
|
227 |
+
if os.path.exists(audio_file):
|
228 |
+
with open(audio_file,"rb") as f:
|
229 |
+
audio_data[id_] = f.read()
|
230 |
+
transcripts.append(
|
231 |
+
{
|
232 |
+
"id": id_,
|
233 |
+
"file": audio_file,
|
234 |
+
"text": transcript,
|
235 |
+
}
|
236 |
+
)
|
237 |
+
for transcript in transcripts:
|
238 |
+
audio = {"path": transcript["file"], "bytes": audio_data[transcript["id"]]}
|
239 |
+
yield key, {"audio": audio, **transcript}
|
240 |
+
key += 1
|
241 |
+
audio_data = {}
|
242 |
+
transcripts = []
|