File size: 3,552 Bytes
ab75731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b9fdc6
 
 
 
 
 
ab75731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aa6c60
ab75731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18df22e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
---
license: cc-by-sa-4.0
task_categories:
- text-classification
- text2text-generation
language:
- hi
- en
- mr
- pa
- ne
- sd
- as
- gu
- ta
- te
- ur
- or
tags:
- multilingual
- language-identification
- text-classification
- indian
pretty_name: Language Identification Dataset
size_categories:
- 100K<n<1M
---
# Dataset Card for Language Identification Dataset

### Dataset Description

- **Repository:** processvenue/language_identification
- **Total Samples:** 135784
- **Number of Languages:** 18
- **Splits:**
  - Train: 95048 samples
  - Validation: 20367 samples
  - Test: 20369 samples

### Sample Notebook: 
https://www.kaggle.com/code/rishabhbhartiya/indian-language-classification-smote-resampled

### Kaggle Dataset link:
https://www.kaggle.com/datasets/processvenue/indian-language-identification

### Dataset Summary

A comprehensive dataset for Indian language identification and text classification. The dataset contains text samples across 18 major Indian languages, making it suitable for developing language identification systems and multilingual NLP applications.

### Languages and Distribution

```
Language Distribution:
1. Punjabi      15075
2. Odia         14258
3. Konkani      14098
4. Hindi        13469
5. Sanskrit     11788
6. Bengali      10036
7. English       9819
8. Sindhi        8838
9. Nepali        8694
10. Marathi       6625
11. Gujarati      3788
12. Telugu        3563
13. Malayalam     3423
14. Tamil         3195
15. Kannada       2651
16. Kashmiri      2282
17. Urdu          2272
18. Assamese      1910
```


### Data Fields

- `Headline`: The input text sample
- `Language`: The language label (one of the 18 languages listed above)

### Usage Example

```python
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("Process-Venue/Language-Identification-v2")

# Access splits
train_data = dataset['train']
validation_data = dataset['validation']
test_data = dataset['test']

# Example usage
print(f"Sample text: {train_data[0]['Headline']}")
print(f"Language: {train_data[0]['Language']}")
```

### Applications

1. **Language Identification Systems**
   - Automatic language detection
   - Text routing in multilingual systems
   - Content filtering by language

2. **Machine Translation**
   - Language-pair identification
   - Translation system selection

3. **Content Analysis**
   - Multilingual content categorization
   - Language-specific content analysis

### Citation

If you use this dataset in your research, please cite:

```
@dataset{language_identification_2025,
  author = {ProcessVenue Team},
  website = {https://processvenue.com},
  title = {Multilingual Headlines Language Identification Dataset},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/datasets/processvenue/language-identification},
  version = {1.1}
}
```
###reference
  ```
    1. @misc{disisbig_news_datasets,
  author = {Gaurav},
  title = {Indian Language News Datasets},
  year = {2019},
  publisher = {Kaggle},
  url = {https://www.kaggle.com/datasets/disisbig/}
  }
```
```
    2. @misc{bhattarai_nepali_financial_news,
  author = {Anuj Bhattarai},
  title = {The Nepali Financial News Dataset},
  year = {2024},
  publisher = {Kaggle},
  url = {https://www.kaggle.com/datasets/anujbhatrai/the-nepali-financial-news-dataset}
    }
```
```
    3. @misc{sourav_inshorts_hindi,
  author = {Shivam Sourav},
  title = {Inshorts-Hindi},
  year = {2023},
  publisher = {Kaggle},
  url = {https://www.kaggle.com/datasets/shivamsourav2002/inshorts-hindi}
    }
```