processvenue commited on
Commit
ab75731
·
verified ·
1 Parent(s): 18df22e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +148 -141
README.md CHANGED
@@ -1,142 +1,149 @@
1
- # Dataset Card for Language Identification Dataset
2
-
3
- ### Dataset Description
4
-
5
- - **Repository:** processvenue/language_identification
6
- - **Total Samples:** 135784
7
- - **Number of Languages:** 18
8
- - **Splits:**
9
- - Train: 104849 samples (70%)
10
- - Validation: 15467 samples (15%)
11
- - Test: 15468 samples (15%)
12
-
13
- ### Dataset Summary
14
-
15
- A comprehensive dataset for Indian language identification and text classification. The dataset contains text samples across 18 major Indian languages, making it suitable for developing language identification systems and multilingual NLP applications.
16
-
17
- ### Languages and Distribution
18
-
19
- ```
20
- Language Distribution:
21
- 1. Punjabi 15075
22
- 2. Odia 14258
23
- 3. Konkani 14098
24
- 4. Hindi 13469
25
- 5. Sanskrit 11788
26
- 6. Bengali 10036
27
- 7. English 9819
28
- 8. Sindhi 8838
29
- 9. Nepali 8694
30
- 10. Marathi 6625
31
- 11. Gujarati 3788
32
- 12. Telugu 3563
33
- 13. Malayalam 3423
34
- 14. Tamil 3195
35
- 15. Kannada 2651
36
- 16. Kashmiri 2282
37
- 17. Urdu 2272
38
- 18. Assamese 1910
39
- ```
40
-
41
- ### Language Details
42
-
43
- 1. **Hindi (hi)**: Major language of India, written in Devanagari script
44
- 2. **Urdu (ur)**: Written in Perso-Arabic script
45
- 3. **Bengali (bn)**: Official language of Bangladesh and several Indian states
46
- 4. **Gujarati (gu)**: Official language of Gujarat
47
- 5. **Kannada (kn)**: Official language of Karnataka
48
- 6. **Malayalam (ml)**: Official language of Kerala
49
- 7. **Marathi (mr)**: Official language of Maharashtra
50
- 8. **Odia (or)**: Official language of Odisha
51
- 9. **Punjabi (pa)**: Official language of Punjab
52
- 10. **Tamil (ta)**: Official language of Tamil Nadu and Singapore
53
- 11. **Telugu (te)**: Official language of Telangana and Andhra Pradesh
54
- 12. **Sanskrit (sa)**: Ancient language of India, written in Devanagari script
55
- 13. **Konkani (kok)**: Official language of Goa
56
- 14. **Sindhi (sd)**: Official language of Sindh province in Pakistan
57
- 15. **Nepali (ne)**: Official language of Nepal
58
- 16. **Assamese (as)**: Official language of Assam
59
- 17. **Kashmiri (ks)**: Official language of Jammu and Kashmir
60
- 18. **English (en)**: Official language of India
61
-
62
- ### Data Fields
63
-
64
- - `Headline`: The input text sample
65
- - `Language`: The language label (one of the 18 languages listed above)
66
-
67
- ### Usage Example
68
-
69
- ```python
70
- from datasets import load_dataset
71
-
72
- # Load the dataset
73
- dataset = load_dataset("processvenue/language_identification")
74
-
75
- # Access splits
76
- train_data = dataset['train']
77
- validation_data = dataset['validation']
78
- test_data = dataset['test']
79
-
80
- # Example usage
81
- print(f"Sample text: {train_data[0]['Headline']}")
82
- print(f"Language: {train_data[0]['Language']}")
83
- ```
84
-
85
- ### Applications
86
-
87
- 1. **Language Identification Systems**
88
- - Automatic language detection
89
- - Text routing in multilingual systems
90
- - Content filtering by language
91
-
92
- 2. **Machine Translation**
93
- - Language-pair identification
94
- - Translation system selection
95
-
96
- 3. **Content Analysis**
97
- - Multilingual content categorization
98
- - Language-specific content analysis
99
-
100
- ### Citation
101
-
102
- If you use this dataset in your research, please cite:
103
-
104
- ```
105
- @dataset{language_identification_2025,
106
- author = {ProcessVenue Team},
107
- website = {https://processvenue.com},
108
- title = {Multilingual Headlines Language Identification Dataset},
109
- year = {2025},
110
- publisher = {Hugging Face},
111
- url = {https://huggingface.co/datasets/processvenue/language-identification},
112
- version = {1.1}
113
- }
114
- ```
115
- ###reference
116
- ```
117
- 1. @misc{disisbig_news_datasets,
118
- author = {Gaurav},
119
- title = {Indian Language News Datasets},
120
- year = {2019},
121
- publisher = {Kaggle},
122
- url = {https://www.kaggle.com/datasets/disisbig/}
123
- }
124
- ```
125
- ```
126
- 2. @misc{bhattarai_nepali_financial_news,
127
- author = {Anuj Bhattarai},
128
- title = {The Nepali Financial News Dataset},
129
- year = {2024},
130
- publisher = {Kaggle},
131
- url = {https://www.kaggle.com/datasets/anujbhatrai/the-nepali-financial-news-dataset}
132
- }
133
- ```
134
- ```
135
- 3. @misc{sourav_inshorts_hindi,
136
- author = {Shivam Sourav},
137
- title = {Inshorts-Hindi},
138
- year = {2023},
139
- publisher = {Kaggle},
140
- url = {https://www.kaggle.com/datasets/shivamsourav2002/inshorts-hindi}
141
- }
 
 
 
 
 
 
 
142
  ```
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ task_categories:
4
+ - text-classification
5
+ - text2text-generation
6
+ language:
7
+ - hi
8
+ - en
9
+ - mr
10
+ - pa
11
+ - ne
12
+ - sd
13
+ - as
14
+ - gu
15
+ - ta
16
+ - te
17
+ - ur
18
+ - or
19
+ tags:
20
+ - multilingual
21
+ - language-identification
22
+ - text-classification
23
+ - indian
24
+ pretty_name: Language Identification Dataset
25
+ size_categories:
26
+ - 100K<n<1M
27
+ ---
28
+ # Dataset Card for Language Identification Dataset
29
+
30
+ ### Dataset Description
31
+
32
+ - **Repository:** processvenue/language_identification
33
+ - **Total Samples:** 135784
34
+ - **Number of Languages:** 18
35
+ - **Splits:**
36
+ - Train: 95048 samples
37
+ - Validation: 20367 samples
38
+ - Test: 20369 samples
39
+
40
+ ### Dataset Summary
41
+
42
+ A comprehensive dataset for Indian language identification and text classification. The dataset contains text samples across 18 major Indian languages, making it suitable for developing language identification systems and multilingual NLP applications.
43
+
44
+ ### Languages and Distribution
45
+
46
+ ```
47
+ Language Distribution:
48
+ 1. Punjabi 15075
49
+ 2. Odia 14258
50
+ 3. Konkani 14098
51
+ 4. Hindi 13469
52
+ 5. Sanskrit 11788
53
+ 6. Bengali 10036
54
+ 7. English 9819
55
+ 8. Sindhi 8838
56
+ 9. Nepali 8694
57
+ 10. Marathi 6625
58
+ 11. Gujarati 3788
59
+ 12. Telugu 3563
60
+ 13. Malayalam 3423
61
+ 14. Tamil 3195
62
+ 15. Kannada 2651
63
+ 16. Kashmiri 2282
64
+ 17. Urdu 2272
65
+ 18. Assamese 1910
66
+ ```
67
+
68
+
69
+ ### Data Fields
70
+
71
+ - `Headline`: The input text sample
72
+ - `Language`: The language label (one of the 18 languages listed above)
73
+
74
+ ### Usage Example
75
+
76
+ ```python
77
+ from datasets import load_dataset
78
+
79
+ # Load the dataset
80
+ dataset = load_dataset("processvenue/language_identification")
81
+
82
+ # Access splits
83
+ train_data = dataset['train']
84
+ validation_data = dataset['validation']
85
+ test_data = dataset['test']
86
+
87
+ # Example usage
88
+ print(f"Sample text: {train_data[0]['Headline']}")
89
+ print(f"Language: {train_data[0]['Language']}")
90
+ ```
91
+
92
+ ### Applications
93
+
94
+ 1. **Language Identification Systems**
95
+ - Automatic language detection
96
+ - Text routing in multilingual systems
97
+ - Content filtering by language
98
+
99
+ 2. **Machine Translation**
100
+ - Language-pair identification
101
+ - Translation system selection
102
+
103
+ 3. **Content Analysis**
104
+ - Multilingual content categorization
105
+ - Language-specific content analysis
106
+
107
+ ### Citation
108
+
109
+ If you use this dataset in your research, please cite:
110
+
111
+ ```
112
+ @dataset{language_identification_2025,
113
+ author = {ProcessVenue Team},
114
+ website = {https://processvenue.com},
115
+ title = {Multilingual Headlines Language Identification Dataset},
116
+ year = {2025},
117
+ publisher = {Hugging Face},
118
+ url = {https://huggingface.co/datasets/processvenue/language-identification},
119
+ version = {1.1}
120
+ }
121
+ ```
122
+ ###reference
123
+ ```
124
+ 1. @misc{disisbig_news_datasets,
125
+ author = {Gaurav},
126
+ title = {Indian Language News Datasets},
127
+ year = {2019},
128
+ publisher = {Kaggle},
129
+ url = {https://www.kaggle.com/datasets/disisbig/}
130
+ }
131
+ ```
132
+ ```
133
+ 2. @misc{bhattarai_nepali_financial_news,
134
+ author = {Anuj Bhattarai},
135
+ title = {The Nepali Financial News Dataset},
136
+ year = {2024},
137
+ publisher = {Kaggle},
138
+ url = {https://www.kaggle.com/datasets/anujbhatrai/the-nepali-financial-news-dataset}
139
+ }
140
+ ```
141
+ ```
142
+ 3. @misc{sourav_inshorts_hindi,
143
+ author = {Shivam Sourav},
144
+ title = {Inshorts-Hindi},
145
+ year = {2023},
146
+ publisher = {Kaggle},
147
+ url = {https://www.kaggle.com/datasets/shivamsourav2002/inshorts-hindi}
148
+ }
149
  ```