Datasets:
language:
- ara
- dan
- deu
- eng
- fas
- fra
- hin
- ind
- ita
- jpn
- kor
- nld
- pol
- por
- rus
- spa
- swe
- tur
- vie
- zho
multilinguality:
- multilingual
task_categories:
- text-retrieval
task_ids:
- document-retrieval
config_names:
- corpus
tags:
- text-retrieval
dataset_info:
- config_name: ara-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 5572666
num_examples: 117911
- name: test
num_bytes: 472753
num_examples: 10000
- config_name: ara-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 136311591
num_examples: 127911
- config_name: ara-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 30402843
num_examples: 127911
- config_name: dan-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 5471013
num_examples: 115828
- name: test
num_bytes: 472339
num_examples: 10000
- config_name: dan-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 43223104
num_examples: 125828
- config_name: dan-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 9792361
num_examples: 125828
- config_name: deu-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 37881032
num_examples: 777560
- name: test
num_bytes: 487188
num_examples: 10000
- config_name: deu-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 319488602
num_examples: 787560
- config_name: deu-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 64439284
num_examples: 787560
- config_name: eng-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 254665724
num_examples: 5036931
- name: test
num_bytes: 505537
num_examples: 10000
- config_name: eng-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 1647704737
num_examples: 5046931
- config_name: eng-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 372512689
num_examples: 5046931
- config_name: fas-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 9667341
num_examples: 201613
- name: test
num_bytes: 479476
num_examples: 10000
- config_name: fas-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 218442091
num_examples: 211613
- config_name: fas-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 53916822
num_examples: 211613
- config_name: fra-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 23301349
num_examples: 479980
- name: test
num_bytes: 485451
num_examples: 10000
- config_name: fra-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 213443967
num_examples: 489980
- config_name: fra-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 44403290
num_examples: 489980
- config_name: hin-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 4067150
num_examples: 86960
- name: test
num_bytes: 451911
num_examples: 9663
- config_name: hin-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 82805164
num_examples: 96623
- config_name: hin-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 23711443
num_examples: 96623
- config_name: ind-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 4065572
num_examples: 86927
- name: test
num_bytes: 451750
num_examples: 9659
- config_name: ind-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 26841405
num_examples: 96586
- config_name: ind-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 7488043
num_examples: 96586
- config_name: ita-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 9562584
num_examples: 199473
- name: test
num_bytes: 479373
num_examples: 10000
- config_name: ita-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 74440906
num_examples: 209473
- config_name: ita-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 16452589
num_examples: 209473
- config_name: jpn-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 13015424
num_examples: 269994
- name: test
num_bytes: 482062
num_examples: 10000
- config_name: jpn-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 216075162
num_examples: 279994
- config_name: jpn-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 45851068
num_examples: 279994
- config_name: kor-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 3326414
num_examples: 71201
- name: test
num_bytes: 369677
num_examples: 7912
- config_name: kor-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 52807208
num_examples: 79113
- config_name: kor-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 11729767
num_examples: 79113
- config_name: nld-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 16378495
num_examples: 338659
- name: test
num_bytes: 483576
num_examples: 10000
- config_name: nld-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 122713729
num_examples: 348659
- config_name: nld-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 25938043
num_examples: 348659
- config_name: pol-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 8092330
num_examples: 169430
- name: test
num_bytes: 477520
num_examples: 10000
- config_name: pol-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 75311194
num_examples: 179430
- config_name: pol-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 15744703
num_examples: 179430
- config_name: por-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 8395879
num_examples: 175636
- name: test
num_bytes: 478065
num_examples: 10000
- config_name: por-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 68385326
num_examples: 185636
- config_name: por-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 14959035
num_examples: 185636
- config_name: rus-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 16265022
num_examples: 336342
- name: test
num_bytes: 483516
num_examples: 10000
- config_name: rus-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 522818422
num_examples: 346342
- config_name: rus-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 100208739
num_examples: 346342
- config_name: spa-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 26619246
num_examples: 547706
- name: test
num_bytes: 486128
num_examples: 10000
- config_name: spa-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 210715406
num_examples: 557706
- config_name: spa-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 49406268
num_examples: 557706
- config_name: swe-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 6353222
num_examples: 133876
- name: test
num_bytes: 474482
num_examples: 10000
- config_name: swe-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 52307117
num_examples: 143876
- config_name: swe-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 11711417
num_examples: 143876
- config_name: tur-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 4710629
num_examples: 100259
- name: test
num_bytes: 469842
num_examples: 10000
- config_name: tur-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 45037131
num_examples: 110259
- config_name: tur-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 9463426
num_examples: 110259
- config_name: vie-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 4476944
num_examples: 95470
- name: test
num_bytes: 468866
num_examples: 10000
- config_name: vie-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 63033970
num_examples: 105470
- config_name: vie-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 13161075
num_examples: 105470
- config_name: zho-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 5451162
num_examples: 115421
- name: test
num_bytes: 472247
num_examples: 10000
- config_name: zho-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 73030146
num_examples: 125421
- config_name: zho-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: queries
num_bytes: 14796193
num_examples: 125421
configs:
- config_name: ara-qrels
data_files:
- split: train
path: ara/train.jsonl
- split: test
path: ara/test.jsonl
- config_name: ara-corpus
data_files:
- split: corpus
path: ara/corpus.jsonl
- config_name: ara-queries
data_files:
- split: queries
path: ara/queries.jsonl
- config_name: dan-qrels
data_files:
- split: train
path: dan/train.jsonl
- split: test
path: dan/test.jsonl
- config_name: dan-corpus
data_files:
- split: corpus
path: dan/corpus.jsonl
- config_name: dan-queries
data_files:
- split: queries
path: dan/queries.jsonl
- config_name: deu-qrels
data_files:
- split: train
path: deu/train.jsonl
- split: test
path: deu/test.jsonl
- config_name: deu-corpus
data_files:
- split: corpus
path: deu/corpus.jsonl
- config_name: deu-queries
data_files:
- split: queries
path: deu/queries.jsonl
- config_name: eng-qrels
data_files:
- split: train
path: eng/train.jsonl
- split: test
path: eng/test.jsonl
- config_name: eng-corpus
data_files:
- split: corpus
path: eng/corpus.jsonl
- config_name: eng-queries
data_files:
- split: queries
path: eng/queries.jsonl
- config_name: fas-qrels
data_files:
- split: train
path: fas/train.jsonl
- split: test
path: fas/test.jsonl
- config_name: fas-corpus
data_files:
- split: corpus
path: fas/corpus.jsonl
- config_name: fas-queries
data_files:
- split: queries
path: fas/queries.jsonl
- config_name: fra-qrels
data_files:
- split: train
path: fra/train.jsonl
- split: test
path: fra/test.jsonl
- config_name: fra-corpus
data_files:
- split: corpus
path: fra/corpus.jsonl
- config_name: fra-queries
data_files:
- split: queries
path: fra/queries.jsonl
- config_name: hin-qrels
data_files:
- split: train
path: hin/train.jsonl
- split: test
path: hin/test.jsonl
- config_name: hin-corpus
data_files:
- split: corpus
path: hin/corpus.jsonl
- config_name: hin-queries
data_files:
- split: queries
path: hin/queries.jsonl
- config_name: ind-qrels
data_files:
- split: train
path: ind/train.jsonl
- split: test
path: ind/test.jsonl
- config_name: ind-corpus
data_files:
- split: corpus
path: ind/corpus.jsonl
- config_name: ind-queries
data_files:
- split: queries
path: ind/queries.jsonl
- config_name: ita-qrels
data_files:
- split: train
path: ita/train.jsonl
- split: test
path: ita/test.jsonl
- config_name: ita-corpus
data_files:
- split: corpus
path: ita/corpus.jsonl
- config_name: ita-queries
data_files:
- split: queries
path: ita/queries.jsonl
- config_name: jpn-qrels
data_files:
- split: train
path: jpn/train.jsonl
- split: test
path: jpn/test.jsonl
- config_name: jpn-corpus
data_files:
- split: corpus
path: jpn/corpus.jsonl
- config_name: jpn-queries
data_files:
- split: queries
path: jpn/queries.jsonl
- config_name: kor-qrels
data_files:
- split: train
path: kor/train.jsonl
- split: test
path: kor/test.jsonl
- config_name: kor-corpus
data_files:
- split: corpus
path: kor/corpus.jsonl
- config_name: kor-queries
data_files:
- split: queries
path: kor/queries.jsonl
- config_name: nld-qrels
data_files:
- split: train
path: nld/train.jsonl
- split: test
path: nld/test.jsonl
- config_name: nld-corpus
data_files:
- split: corpus
path: nld/corpus.jsonl
- config_name: nld-queries
data_files:
- split: queries
path: nld/queries.jsonl
- config_name: pol-qrels
data_files:
- split: train
path: pol/train.jsonl
- split: test
path: pol/test.jsonl
- config_name: pol-corpus
data_files:
- split: corpus
path: pol/corpus.jsonl
- config_name: pol-queries
data_files:
- split: queries
path: pol/queries.jsonl
- config_name: por-qrels
data_files:
- split: train
path: por/train.jsonl
- split: test
path: por/test.jsonl
- config_name: por-corpus
data_files:
- split: corpus
path: por/corpus.jsonl
- config_name: por-queries
data_files:
- split: queries
path: por/queries.jsonl
- config_name: rus-qrels
data_files:
- split: train
path: rus/train.jsonl
- split: test
path: rus/test.jsonl
- config_name: rus-corpus
data_files:
- split: corpus
path: rus/corpus.jsonl
- config_name: rus-queries
data_files:
- split: queries
path: rus/queries.jsonl
- config_name: spa-qrels
data_files:
- split: train
path: spa/train.jsonl
- split: test
path: spa/test.jsonl
- config_name: spa-corpus
data_files:
- split: corpus
path: spa/corpus.jsonl
- config_name: spa-queries
data_files:
- split: queries
path: spa/queries.jsonl
- config_name: swe-qrels
data_files:
- split: train
path: swe/train.jsonl
- split: test
path: swe/test.jsonl
- config_name: swe-corpus
data_files:
- split: corpus
path: swe/corpus.jsonl
- config_name: swe-queries
data_files:
- split: queries
path: swe/queries.jsonl
- config_name: tur-qrels
data_files:
- split: train
path: tur/train.jsonl
- split: test
path: tur/test.jsonl
- config_name: tur-corpus
data_files:
- split: corpus
path: tur/corpus.jsonl
- config_name: tur-queries
data_files:
- split: queries
path: tur/queries.jsonl
- config_name: vie-qrels
data_files:
- split: train
path: vie/train.jsonl
- split: test
path: vie/test.jsonl
- config_name: vie-corpus
data_files:
- split: corpus
path: vie/corpus.jsonl
- config_name: vie-queries
data_files:
- split: queries
path: vie/queries.jsonl
- config_name: zho-qrels
data_files:
- split: train
path: zho/train.jsonl
- split: test
path: zho/test.jsonl
- config_name: zho-corpus
data_files:
- split: corpus
path: zho/corpus.jsonl
- config_name: zho-queries
data_files:
- split: queries
path: zho/queries.jsonl
WebFAQ Retrieval Dataset
Overview | Details | Structure | Examples | Considerations | License | Citation | Contact | Acknowledgement
Overview
The WebFAQ Retrieval Dataset is a carefully filtered and curated subset of the broader WebFAQ Q&A Dataset.
It is purpose-built for Information Retrieval (IR) tasks, such as training and evaluating dense or sparse retrieval models in multiple languages.
Each of the 20 largest languages from the WebFAQ corpus has been thoroughly cleaned and refined to ensure an unblurred notion of relevance between a query (question) and its corresponding document (answer). In particular, we applied:
- Deduplication of near-identical questions,
- Semantic consistency checks for question-answer alignment,
- Train/Test splits for retrieval experiments.
Details
Languages
The WebFAQ Retrieval Dataset covers 20 high-resource languages from the original WebFAQ corpus, each comprising tens of thousands to hundreds of thousands of QA pairs after our rigorous filtering steps:
Language | # QA pairs |
---|---|
ara | 143k |
dan | 138k |
deu | 891k |
eng | 5.28M |
fas | 227k |
fra | 570k |
hin | 96.6k |
ind | 96.6k |
ita | 209k |
jpn | 280k |
kor | 79.1k |
nld | 349k |
pol | 179k |
por | 186k |
rus | 346k |
spa | 558k |
swe | 144k |
tur | 110k |
vie | 105k |
zho | 125k |
Structure
Unlike the raw Q&A dataset, WebFAQ Retrieval provides explicit train/test splits for each of the 20 languages. The general structure for each language is:
- Corpus: A set of unique documents (answers) with IDs and text fields.
- Queries: A set of question strings, each tied to a document ID for relevance.
- Qrels: Relevance labels, mapping each question to its relevant document (corresponding answer).
Folder Layout (e.g., for eng)
eng/
├── corpus.jsonl # all unique documents (answers)
├── queries.jsonl # all queries for train/test
├── train.jsonl # relevance annotations for train
└── test.jsonl # relevance annotations for test
Examples
Below is a small snippet showing how to load English train/test sets with 🤗 Datasets:
import json
from datasets import load_dataset
from tqdm import tqdm
# Load train qrels
train_qrels = load_dataset(
"anonymous202501/webfaq-retrieval",
"eng-qrels",
split="train"
)
# Inspect first qrel
print(json.dumps(train_qrels[0], indent=4))
# Load the corpus (answers)
data_corpus = load_dataset(
"anonymous202501/webfaq-retrieval",
"eng-corpus",
split="corpus"
)
corpus = {
d["_id"]: {"title": d["title"], "text": d["text"]} for d in tqdm(data_corpus)
}
# Inspect first document
print("Document:")
print(json.dumps(corpus[train_qrels[0]["corpus-id"]], indent=4))
# Load all queries
data_queries = load_dataset(
"anonymous202501/webfaq-retrieval",
"eng-queries",
split="queries"
)
queries = {
q["_id"]: q["text"] for q in tqdm(data_queries)
}
# Inspect first query
print("Query:")
print(json.dumps(queries[train_qrels[0]["query-id"]], indent=4))
# Keep only those queries with relevance annotations
query_ids = set([q["query-id"] for q in train_qrels])
queries = {
qid: query for qid, query in queries.items() if qid in query_ids
}
print(f"Number of queries: {len(queries)}")
Below is a code snippet showing how to evaluate retrieval performance using the mteb
library:
Note: WebFAQ is not yet available as multilingual task in the
mteb
library. The code snippet below is a placeholder for when it becomes available.
from mteb import MTEB
from mteb.tasks.Retrieval.multilingual.WebFAQRetrieval import WebFAQRetrieval
# ... Load model ...
# Load the WebFAQ task
task = WebFAQRetrieval()
eval_split = "test"
evaluation = MTEB(tasks=[task])
evaluation.run(
model,
eval_splits=[eval_split],
output_folder="output",
overwrite_results=True
)
Considerations
Please note the following considerations when using the collected QAs:
- [Q&A Dataset] Risk of Duplicate or Near-Duplicate Content: The raw Q&A dataset is large and includes minor paraphrases.
- [Retrieval Dataset] Sparse Relevance: As raw FAQ data, each question typically has one “best” (on-page) answer. Additional valid answers may exist on other websites but are not labeled as relevant.
- Language Detection Limitations: Some QA pairs mix languages, or contain brand names, which can confuse automatic language classification.
- No Guarantee of Factual Accuracy: Answers reflect the content of the source websites. They may include outdated, biased, or incorrect information.
- Copyright and Privacy: Please ensure compliance with any applicable laws and the source website’s terms.
License
The Collection of WebFAQ Datasets is shared under Creative Commons Attribution 4.0 (CC BY 4.0) license.
Note: The dataset is derived from public webpages in Common Crawl snapshots (2022–2024) and intended for research purposes. Each FAQ’s text is published by the original website under their terms. Downstream users should verify any usage constraints from the original websites as well as Common Crawl’s Terms of Use.
Citation
If you use this dataset in your research, please consider citing the associated paper:
@misc{webfaq2025,
title = {WebFAQ: A Multilingual Collection of Natural Q&A Datasets for Dense Retrieval},
author = {Anonymous Author(s)},
year = {2025},
howpublished = {...},
note = {Under review}
}
Contact
TBD
Acknowledgement
We thank the Common Crawl and Web Data Commons teams for providing the underlying data, and all contributors who helped shape the WebFAQ project.
Thank you
We hope the Collection of WebFAQ Datasets serves as a valuable resource for your research. Please consider citing it in any publications or projects that use it. If you encounter issues or want to contribute improvements, feel free to get in touch with us on HuggingFace or GitHub.
Happy researching!