Datasets:

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
pandas
webfaq-retrieval / README.md
anonymous202501's picture
Update README.md
30b861b verified
|
raw
history blame
30.2 kB
metadata
language:
  - ara
  - dan
  - deu
  - eng
  - fas
  - fra
  - hin
  - ind
  - ita
  - jpn
  - kor
  - nld
  - pol
  - por
  - rus
  - spa
  - swe
  - tur
  - vie
  - zho
multilinguality:
  - multilingual
task_categories:
  - text-retrieval
task_ids:
  - document-retrieval
config_names:
  - corpus
tags:
  - text-retrieval
dataset_info:
  - config_name: ara-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 5572666
        num_examples: 117911
      - name: test
        num_bytes: 472753
        num_examples: 10000
  - config_name: ara-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 136311591
        num_examples: 127911
  - config_name: ara-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 30402843
        num_examples: 127911
  - config_name: dan-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 5471013
        num_examples: 115828
      - name: test
        num_bytes: 472339
        num_examples: 10000
  - config_name: dan-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 43223104
        num_examples: 125828
  - config_name: dan-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 9792361
        num_examples: 125828
  - config_name: deu-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 37881032
        num_examples: 777560
      - name: test
        num_bytes: 487188
        num_examples: 10000
  - config_name: deu-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 319488602
        num_examples: 787560
  - config_name: deu-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 64439284
        num_examples: 787560
  - config_name: eng-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 254665724
        num_examples: 5036931
      - name: test
        num_bytes: 505537
        num_examples: 10000
  - config_name: eng-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 1647704737
        num_examples: 5046931
  - config_name: eng-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 372512689
        num_examples: 5046931
  - config_name: fas-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 9667341
        num_examples: 201613
      - name: test
        num_bytes: 479476
        num_examples: 10000
  - config_name: fas-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 218442091
        num_examples: 211613
  - config_name: fas-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 53916822
        num_examples: 211613
  - config_name: fra-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 23301349
        num_examples: 479980
      - name: test
        num_bytes: 485451
        num_examples: 10000
  - config_name: fra-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 213443967
        num_examples: 489980
  - config_name: fra-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 44403290
        num_examples: 489980
  - config_name: hin-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 4067150
        num_examples: 86960
      - name: test
        num_bytes: 451911
        num_examples: 9663
  - config_name: hin-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 82805164
        num_examples: 96623
  - config_name: hin-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 23711443
        num_examples: 96623
  - config_name: ind-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 4065572
        num_examples: 86927
      - name: test
        num_bytes: 451750
        num_examples: 9659
  - config_name: ind-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 26841405
        num_examples: 96586
  - config_name: ind-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 7488043
        num_examples: 96586
  - config_name: ita-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 9562584
        num_examples: 199473
      - name: test
        num_bytes: 479373
        num_examples: 10000
  - config_name: ita-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 74440906
        num_examples: 209473
  - config_name: ita-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 16452589
        num_examples: 209473
  - config_name: jpn-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 13015424
        num_examples: 269994
      - name: test
        num_bytes: 482062
        num_examples: 10000
  - config_name: jpn-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 216075162
        num_examples: 279994
  - config_name: jpn-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 45851068
        num_examples: 279994
  - config_name: kor-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 3326414
        num_examples: 71201
      - name: test
        num_bytes: 369677
        num_examples: 7912
  - config_name: kor-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 52807208
        num_examples: 79113
  - config_name: kor-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 11729767
        num_examples: 79113
  - config_name: nld-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 16378495
        num_examples: 338659
      - name: test
        num_bytes: 483576
        num_examples: 10000
  - config_name: nld-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 122713729
        num_examples: 348659
  - config_name: nld-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 25938043
        num_examples: 348659
  - config_name: pol-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 8092330
        num_examples: 169430
      - name: test
        num_bytes: 477520
        num_examples: 10000
  - config_name: pol-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 75311194
        num_examples: 179430
  - config_name: pol-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 15744703
        num_examples: 179430
  - config_name: por-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 8395879
        num_examples: 175636
      - name: test
        num_bytes: 478065
        num_examples: 10000
  - config_name: por-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 68385326
        num_examples: 185636
  - config_name: por-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 14959035
        num_examples: 185636
  - config_name: rus-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 16265022
        num_examples: 336342
      - name: test
        num_bytes: 483516
        num_examples: 10000
  - config_name: rus-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 522818422
        num_examples: 346342
  - config_name: rus-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 100208739
        num_examples: 346342
  - config_name: spa-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 26619246
        num_examples: 547706
      - name: test
        num_bytes: 486128
        num_examples: 10000
  - config_name: spa-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 210715406
        num_examples: 557706
  - config_name: spa-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 49406268
        num_examples: 557706
  - config_name: swe-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 6353222
        num_examples: 133876
      - name: test
        num_bytes: 474482
        num_examples: 10000
  - config_name: swe-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 52307117
        num_examples: 143876
  - config_name: swe-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 11711417
        num_examples: 143876
  - config_name: tur-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 4710629
        num_examples: 100259
      - name: test
        num_bytes: 469842
        num_examples: 10000
  - config_name: tur-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 45037131
        num_examples: 110259
  - config_name: tur-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 9463426
        num_examples: 110259
  - config_name: vie-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 4476944
        num_examples: 95470
      - name: test
        num_bytes: 468866
        num_examples: 10000
  - config_name: vie-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 63033970
        num_examples: 105470
  - config_name: vie-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 13161075
        num_examples: 105470
  - config_name: zho-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 5451162
        num_examples: 115421
      - name: test
        num_bytes: 472247
        num_examples: 10000
  - config_name: zho-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 73030146
        num_examples: 125421
  - config_name: zho-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 14796193
        num_examples: 125421
configs:
  - config_name: ara-qrels
    data_files:
      - split: train
        path: ara/train.jsonl
      - split: test
        path: ara/test.jsonl
  - config_name: ara-corpus
    data_files:
      - split: corpus
        path: ara/corpus.jsonl
  - config_name: ara-queries
    data_files:
      - split: queries
        path: ara/queries.jsonl
  - config_name: dan-qrels
    data_files:
      - split: train
        path: dan/train.jsonl
      - split: test
        path: dan/test.jsonl
  - config_name: dan-corpus
    data_files:
      - split: corpus
        path: dan/corpus.jsonl
  - config_name: dan-queries
    data_files:
      - split: queries
        path: dan/queries.jsonl
  - config_name: deu-qrels
    data_files:
      - split: train
        path: deu/train.jsonl
      - split: test
        path: deu/test.jsonl
  - config_name: deu-corpus
    data_files:
      - split: corpus
        path: deu/corpus.jsonl
  - config_name: deu-queries
    data_files:
      - split: queries
        path: deu/queries.jsonl
  - config_name: eng-qrels
    data_files:
      - split: train
        path: eng/train.jsonl
      - split: test
        path: eng/test.jsonl
  - config_name: eng-corpus
    data_files:
      - split: corpus
        path: eng/corpus.jsonl
  - config_name: eng-queries
    data_files:
      - split: queries
        path: eng/queries.jsonl
  - config_name: fas-qrels
    data_files:
      - split: train
        path: fas/train.jsonl
      - split: test
        path: fas/test.jsonl
  - config_name: fas-corpus
    data_files:
      - split: corpus
        path: fas/corpus.jsonl
  - config_name: fas-queries
    data_files:
      - split: queries
        path: fas/queries.jsonl
  - config_name: fra-qrels
    data_files:
      - split: train
        path: fra/train.jsonl
      - split: test
        path: fra/test.jsonl
  - config_name: fra-corpus
    data_files:
      - split: corpus
        path: fra/corpus.jsonl
  - config_name: fra-queries
    data_files:
      - split: queries
        path: fra/queries.jsonl
  - config_name: hin-qrels
    data_files:
      - split: train
        path: hin/train.jsonl
      - split: test
        path: hin/test.jsonl
  - config_name: hin-corpus
    data_files:
      - split: corpus
        path: hin/corpus.jsonl
  - config_name: hin-queries
    data_files:
      - split: queries
        path: hin/queries.jsonl
  - config_name: ind-qrels
    data_files:
      - split: train
        path: ind/train.jsonl
      - split: test
        path: ind/test.jsonl
  - config_name: ind-corpus
    data_files:
      - split: corpus
        path: ind/corpus.jsonl
  - config_name: ind-queries
    data_files:
      - split: queries
        path: ind/queries.jsonl
  - config_name: ita-qrels
    data_files:
      - split: train
        path: ita/train.jsonl
      - split: test
        path: ita/test.jsonl
  - config_name: ita-corpus
    data_files:
      - split: corpus
        path: ita/corpus.jsonl
  - config_name: ita-queries
    data_files:
      - split: queries
        path: ita/queries.jsonl
  - config_name: jpn-qrels
    data_files:
      - split: train
        path: jpn/train.jsonl
      - split: test
        path: jpn/test.jsonl
  - config_name: jpn-corpus
    data_files:
      - split: corpus
        path: jpn/corpus.jsonl
  - config_name: jpn-queries
    data_files:
      - split: queries
        path: jpn/queries.jsonl
  - config_name: kor-qrels
    data_files:
      - split: train
        path: kor/train.jsonl
      - split: test
        path: kor/test.jsonl
  - config_name: kor-corpus
    data_files:
      - split: corpus
        path: kor/corpus.jsonl
  - config_name: kor-queries
    data_files:
      - split: queries
        path: kor/queries.jsonl
  - config_name: nld-qrels
    data_files:
      - split: train
        path: nld/train.jsonl
      - split: test
        path: nld/test.jsonl
  - config_name: nld-corpus
    data_files:
      - split: corpus
        path: nld/corpus.jsonl
  - config_name: nld-queries
    data_files:
      - split: queries
        path: nld/queries.jsonl
  - config_name: pol-qrels
    data_files:
      - split: train
        path: pol/train.jsonl
      - split: test
        path: pol/test.jsonl
  - config_name: pol-corpus
    data_files:
      - split: corpus
        path: pol/corpus.jsonl
  - config_name: pol-queries
    data_files:
      - split: queries
        path: pol/queries.jsonl
  - config_name: por-qrels
    data_files:
      - split: train
        path: por/train.jsonl
      - split: test
        path: por/test.jsonl
  - config_name: por-corpus
    data_files:
      - split: corpus
        path: por/corpus.jsonl
  - config_name: por-queries
    data_files:
      - split: queries
        path: por/queries.jsonl
  - config_name: rus-qrels
    data_files:
      - split: train
        path: rus/train.jsonl
      - split: test
        path: rus/test.jsonl
  - config_name: rus-corpus
    data_files:
      - split: corpus
        path: rus/corpus.jsonl
  - config_name: rus-queries
    data_files:
      - split: queries
        path: rus/queries.jsonl
  - config_name: spa-qrels
    data_files:
      - split: train
        path: spa/train.jsonl
      - split: test
        path: spa/test.jsonl
  - config_name: spa-corpus
    data_files:
      - split: corpus
        path: spa/corpus.jsonl
  - config_name: spa-queries
    data_files:
      - split: queries
        path: spa/queries.jsonl
  - config_name: swe-qrels
    data_files:
      - split: train
        path: swe/train.jsonl
      - split: test
        path: swe/test.jsonl
  - config_name: swe-corpus
    data_files:
      - split: corpus
        path: swe/corpus.jsonl
  - config_name: swe-queries
    data_files:
      - split: queries
        path: swe/queries.jsonl
  - config_name: tur-qrels
    data_files:
      - split: train
        path: tur/train.jsonl
      - split: test
        path: tur/test.jsonl
  - config_name: tur-corpus
    data_files:
      - split: corpus
        path: tur/corpus.jsonl
  - config_name: tur-queries
    data_files:
      - split: queries
        path: tur/queries.jsonl
  - config_name: vie-qrels
    data_files:
      - split: train
        path: vie/train.jsonl
      - split: test
        path: vie/test.jsonl
  - config_name: vie-corpus
    data_files:
      - split: corpus
        path: vie/corpus.jsonl
  - config_name: vie-queries
    data_files:
      - split: queries
        path: vie/queries.jsonl
  - config_name: zho-qrels
    data_files:
      - split: train
        path: zho/train.jsonl
      - split: test
        path: zho/test.jsonl
  - config_name: zho-corpus
    data_files:
      - split: corpus
        path: zho/corpus.jsonl
  - config_name: zho-queries
    data_files:
      - split: queries
        path: zho/queries.jsonl

WebFAQ Retrieval Dataset

Overview | Details | Structure | Examples | Considerations | License | Citation | Contact | Acknowledgement

Overview

The WebFAQ Retrieval Dataset is a carefully filtered and curated subset of the broader WebFAQ Q&A Dataset.
It is purpose-built for Information Retrieval (IR) tasks, such as training and evaluating dense or sparse retrieval models in multiple languages.

Each of the 20 largest languages from the WebFAQ corpus has been thoroughly cleaned and refined to ensure an unblurred notion of relevance between a query (question) and its corresponding document (answer). In particular, we applied:

  • Deduplication of near-identical questions,
  • Semantic consistency checks for question-answer alignment,
  • Train/Test splits for retrieval experiments.

Details

Languages

The WebFAQ Retrieval Dataset covers 20 high-resource languages from the original WebFAQ corpus, each comprising tens of thousands to hundreds of thousands of QA pairs after our rigorous filtering steps:

Language # QA pairs
ara 143k
dan 138k
deu 891k
eng 5.28M
fas 227k
fra 570k
hin 96.6k
ind 96.6k
ita 209k
jpn 280k
kor 79.1k
nld 349k
pol 179k
por 186k
rus 346k
spa 558k
swe 144k
tur 110k
vie 105k
zho 125k

Structure

Unlike the raw Q&A dataset, WebFAQ Retrieval provides explicit train/test splits for each of the 20 languages. The general structure for each language is:

  • Corpus: A set of unique documents (answers) with IDs and text fields.
  • Queries: A set of question strings, each tied to a document ID for relevance.
  • Qrels: Relevance labels, mapping each question to its relevant document (corresponding answer).

Folder Layout (e.g., for eng)

eng/
  ├── corpus.jsonl        # all unique documents (answers)
  ├── queries.jsonl       # all queries for train/test
  ├── train.jsonl         # relevance annotations for train
  └── test.jsonl          # relevance annotations for test

Examples

Below is a small snippet showing how to load English train/test sets with 🤗 Datasets:

import json
from datasets import load_dataset
from tqdm import tqdm

# Load train qrels
train_qrels = load_dataset(
    "anonymous202501/webfaq-retrieval",
    "eng-qrels",
    split="train"
)

# Inspect first qrel
print(json.dumps(train_qrels[0], indent=4))

# Load the corpus (answers)
data_corpus = load_dataset(
    "anonymous202501/webfaq-retrieval",
    "eng-corpus",
    split="corpus"
)
corpus = {
    d["_id"]: {"title": d["title"], "text": d["text"]} for d in tqdm(data_corpus)
}

# Inspect first document
print("Document:")
print(json.dumps(corpus[train_qrels[0]["corpus-id"]], indent=4))

# Load all queries
data_queries = load_dataset(
    "anonymous202501/webfaq-retrieval",
    "eng-queries",
    split="queries"
)
queries = {
    q["_id"]: q["text"] for q in tqdm(data_queries)
}

# Inspect first query
print("Query:")
print(json.dumps(queries[train_qrels[0]["query-id"]], indent=4))

# Keep only those queries with relevance annotations
query_ids = set([q["query-id"] for q in train_qrels])
queries = {
    qid: query for qid, query in queries.items() if qid in query_ids
}
print(f"Number of queries: {len(queries)}")

Below is a code snippet showing how to evaluate retrieval performance using the mteb library:

Note: WebFAQ is not yet available as multilingual task in the mteb library. The code snippet below is a placeholder for when it becomes available.

from mteb import MTEB
from mteb.tasks.Retrieval.multilingual.WebFAQRetrieval import WebFAQRetrieval

# ... Load model ...

# Load the WebFAQ task
task = WebFAQRetrieval()
eval_split = "test"

evaluation = MTEB(tasks=[task])
evaluation.run(
    model,
    eval_splits=[eval_split],
    output_folder="output",
    overwrite_results=True
)

Considerations

Please note the following considerations when using the collected QAs:

  • [Q&A Dataset] Risk of Duplicate or Near-Duplicate Content: The raw Q&A dataset is large and includes minor paraphrases.
  • [Retrieval Dataset] Sparse Relevance: As raw FAQ data, each question typically has one “best” (on-page) answer. Additional valid answers may exist on other websites but are not labeled as relevant.
  • Language Detection Limitations: Some QA pairs mix languages, or contain brand names, which can confuse automatic language classification.
  • No Guarantee of Factual Accuracy: Answers reflect the content of the source websites. They may include outdated, biased, or incorrect information.
  • Copyright and Privacy: Please ensure compliance with any applicable laws and the source website’s terms.

License

The Collection of WebFAQ Datasets is shared under Creative Commons Attribution 4.0 (CC BY 4.0) license.

Note: The dataset is derived from public webpages in Common Crawl snapshots (2022–2024) and intended for research purposes. Each FAQ’s text is published by the original website under their terms. Downstream users should verify any usage constraints from the original websites as well as Common Crawl’s Terms of Use.

Citation

If you use this dataset in your research, please consider citing the associated paper:

@misc{webfaq2025,
  title     = {WebFAQ: A Multilingual Collection of Natural Q&A Datasets for Dense Retrieval},
  author    = {Anonymous Author(s)},
  year      = {2025},
  howpublished = {...},
  note      = {Under review}
}

Contact

TBD

Acknowledgement

We thank the Common Crawl and Web Data Commons teams for providing the underlying data, and all contributors who helped shape the WebFAQ project.

Thank you

We hope the Collection of WebFAQ Datasets serves as a valuable resource for your research. Please consider citing it in any publications or projects that use it. If you encounter issues or want to contribute improvements, feel free to get in touch with us on HuggingFace or GitHub.

Happy researching!