Datasets:

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
pandas
webfaq-retrieval / README.md
anonymous202501's picture
Update README.md
6abf63d verified
|
raw
history blame
30.2 kB
metadata
language:
  - ara
  - dan
  - deu
  - eng
  - fas
  - fra
  - hin
  - ind
  - ita
  - jpn
  - kor
  - nld
  - pol
  - por
  - rus
  - spa
  - swe
  - tur
  - vie
  - zho
multilinguality:
  - multilingual
task_categories:
  - text-retrieval
task_ids:
  - document-retrieval
config_names:
  - corpus
tags:
  - text-retrieval
dataset_info:
  - config_name: ara-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 6293965
        num_examples: 132664
      - name: test
        num_bytes: 474351
        num_examples: 10000
  - config_name: ara-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 162827578
        num_examples: 142664
  - config_name: ara-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 35458944
        num_examples: 142664
  - config_name: dan-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 6050436
        num_examples: 127686
      - name: test
        num_bytes: 473958
        num_examples: 10000
  - config_name: dan-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 49171909
        num_examples: 137686
  - config_name: dan-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 10733277
        num_examples: 137686
  - config_name: deu-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 42959189
        num_examples: 881201
      - name: test
        num_bytes: 487440
        num_examples: 10000
  - config_name: deu-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 377457585
        num_examples: 891201
  - config_name: deu-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 72730983
        num_examples: 891201
  - config_name: eng-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 266487037
        num_examples: 5268725
      - name: test
        num_bytes: 505718
        num_examples: 10000
  - config_name: eng-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 1772481467
        num_examples: 5278725
  - config_name: eng-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 394021606
        num_examples: 5278725
  - config_name: fas-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 10417693
        num_examples: 216940
      - name: test
        num_bytes: 480147
        num_examples: 10000
  - config_name: fas-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 240471393
        num_examples: 226940
  - config_name: fas-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 57867968
        num_examples: 226940
  - config_name: fra-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 27197426
        num_examples: 559505
      - name: test
        num_bytes: 486099
        num_examples: 10000
  - config_name: fra-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 256564231
        num_examples: 569505
  - config_name: fra-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 51751140
        num_examples: 569505
  - config_name: hin-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 4211543
        num_examples: 90031
      - name: test
        num_bytes: 467756
        num_examples: 10000
  - config_name: hin-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 87202578
        num_examples: 100031
  - config_name: hin-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 24557386
        num_examples: 100031
  - config_name: ind-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 4762307
        num_examples: 101315
      - name: test
        num_bytes: 469908
        num_examples: 10000
  - config_name: ind-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 32240964
        num_examples: 111315
  - config_name: ind-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 8791501
        num_examples: 111315
  - config_name: ita-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 11928808
        num_examples: 247803
      - name: test
        num_bytes: 481319
        num_examples: 10000
  - config_name: ita-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 96693889
        num_examples: 257803
  - config_name: ita-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 21887337
        num_examples: 257803
  - config_name: jpn-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 14443770
        num_examples: 299157
      - name: test
        num_bytes: 482703
        num_examples: 10000
  - config_name: jpn-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 254914767
        num_examples: 309157
  - config_name: jpn-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 52646303
        num_examples: 309157
  - config_name: kor-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 4307606
        num_examples: 92000
      - name: test
        num_bytes: 468174
        num_examples: 10000
  - config_name: kor-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 65463396
        num_examples: 102000
  - config_name: kor-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 14462715
        num_examples: 102000
  - config_name: nld-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 17456195
        num_examples: 360662
      - name: test
        num_bytes: 484023
        num_examples: 10000
  - config_name: nld-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 134247494
        num_examples: 370662
  - config_name: nld-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 27592780
        num_examples: 370662
  - config_name: pol-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 8732582
        num_examples: 182515
      - name: test
        num_bytes: 478433
        num_examples: 10000
  - config_name: pol-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 83829979
        num_examples: 192515
  - config_name: pol-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 17279177
        num_examples: 192515
  - config_name: por-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 9556791
        num_examples: 199353
      - name: test
        num_bytes: 479286
        num_examples: 10000
  - config_name: por-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 80179713
        num_examples: 209353
  - config_name: por-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 17117819
        num_examples: 209353
  - config_name: rus-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 18281224
        num_examples: 377504
      - name: test
        num_bytes: 484252
        num_examples: 10000
  - config_name: rus-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 612916055
        num_examples: 387504
  - config_name: rus-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 117356334
        num_examples: 387504
  - config_name: spa-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 28919818
        num_examples: 594661
      - name: test
        num_bytes: 486351
        num_examples: 10000
  - config_name: spa-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 240959272
        num_examples: 604661
  - config_name: spa-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 54894661
        num_examples: 604661
  - config_name: swe-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 7079817
        num_examples: 148738
      - name: test
        num_bytes: 476125
        num_examples: 10000
  - config_name: swe-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 59133680
        num_examples: 158738
  - config_name: swe-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 12773304
        num_examples: 158738
  - config_name: tur-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 6400585
        num_examples: 134846
      - name: test
        num_bytes: 474649
        num_examples: 10000
  - config_name: tur-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 57145253
        num_examples: 144846
  - config_name: tur-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 11816043
        num_examples: 144846
  - config_name: vie-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 5380433
        num_examples: 113972
      - name: test
        num_bytes: 471975
        num_examples: 10000
  - config_name: vie-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 76390471
        num_examples: 123972
  - config_name: vie-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 16076620
        num_examples: 123972
  - config_name: zho-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 5796592
        num_examples: 122491
      - name: test
        num_bytes: 473247
        num_examples: 10000
  - config_name: zho-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 79790293
        num_examples: 132491
  - config_name: zho-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: queries
        num_bytes: 15738014
        num_examples: 132491
configs:
  - config_name: ara-qrels
    data_files:
      - split: train
        path: ara/train.jsonl
      - split: test
        path: ara/test.jsonl
  - config_name: ara-corpus
    data_files:
      - split: corpus
        path: ara/corpus.jsonl
  - config_name: ara-queries
    data_files:
      - split: queries
        path: ara/queries.jsonl
  - config_name: dan-qrels
    data_files:
      - split: train
        path: dan/train.jsonl
      - split: test
        path: dan/test.jsonl
  - config_name: dan-corpus
    data_files:
      - split: corpus
        path: dan/corpus.jsonl
  - config_name: dan-queries
    data_files:
      - split: queries
        path: dan/queries.jsonl
  - config_name: deu-qrels
    data_files:
      - split: train
        path: deu/train.jsonl
      - split: test
        path: deu/test.jsonl
  - config_name: deu-corpus
    data_files:
      - split: corpus
        path: deu/corpus.jsonl
  - config_name: deu-queries
    data_files:
      - split: queries
        path: deu/queries.jsonl
  - config_name: eng-qrels
    data_files:
      - split: train
        path: eng/train.jsonl
      - split: test
        path: eng/test.jsonl
  - config_name: eng-corpus
    data_files:
      - split: corpus
        path: eng/corpus.jsonl
  - config_name: eng-queries
    data_files:
      - split: queries
        path: eng/queries.jsonl
  - config_name: fas-qrels
    data_files:
      - split: train
        path: fas/train.jsonl
      - split: test
        path: fas/test.jsonl
  - config_name: fas-corpus
    data_files:
      - split: corpus
        path: fas/corpus.jsonl
  - config_name: fas-queries
    data_files:
      - split: queries
        path: fas/queries.jsonl
  - config_name: fra-qrels
    data_files:
      - split: train
        path: fra/train.jsonl
      - split: test
        path: fra/test.jsonl
  - config_name: fra-corpus
    data_files:
      - split: corpus
        path: fra/corpus.jsonl
  - config_name: fra-queries
    data_files:
      - split: queries
        path: fra/queries.jsonl
  - config_name: hin-qrels
    data_files:
      - split: train
        path: hin/train.jsonl
      - split: test
        path: hin/test.jsonl
  - config_name: hin-corpus
    data_files:
      - split: corpus
        path: hin/corpus.jsonl
  - config_name: hin-queries
    data_files:
      - split: queries
        path: hin/queries.jsonl
  - config_name: ind-qrels
    data_files:
      - split: train
        path: ind/train.jsonl
      - split: test
        path: ind/test.jsonl
  - config_name: ind-corpus
    data_files:
      - split: corpus
        path: ind/corpus.jsonl
  - config_name: ind-queries
    data_files:
      - split: queries
        path: ind/queries.jsonl
  - config_name: ita-qrels
    data_files:
      - split: train
        path: ita/train.jsonl
      - split: test
        path: ita/test.jsonl
  - config_name: ita-corpus
    data_files:
      - split: corpus
        path: ita/corpus.jsonl
  - config_name: ita-queries
    data_files:
      - split: queries
        path: ita/queries.jsonl
  - config_name: jpn-qrels
    data_files:
      - split: train
        path: jpn/train.jsonl
      - split: test
        path: jpn/test.jsonl
  - config_name: jpn-corpus
    data_files:
      - split: corpus
        path: jpn/corpus.jsonl
  - config_name: jpn-queries
    data_files:
      - split: queries
        path: jpn/queries.jsonl
  - config_name: kor-qrels
    data_files:
      - split: train
        path: kor/train.jsonl
      - split: test
        path: kor/test.jsonl
  - config_name: kor-corpus
    data_files:
      - split: corpus
        path: kor/corpus.jsonl
  - config_name: kor-queries
    data_files:
      - split: queries
        path: kor/queries.jsonl
  - config_name: nld-qrels
    data_files:
      - split: train
        path: nld/train.jsonl
      - split: test
        path: nld/test.jsonl
  - config_name: nld-corpus
    data_files:
      - split: corpus
        path: nld/corpus.jsonl
  - config_name: nld-queries
    data_files:
      - split: queries
        path: nld/queries.jsonl
  - config_name: pol-qrels
    data_files:
      - split: train
        path: pol/train.jsonl
      - split: test
        path: pol/test.jsonl
  - config_name: pol-corpus
    data_files:
      - split: corpus
        path: pol/corpus.jsonl
  - config_name: pol-queries
    data_files:
      - split: queries
        path: pol/queries.jsonl
  - config_name: por-qrels
    data_files:
      - split: train
        path: por/train.jsonl
      - split: test
        path: por/test.jsonl
  - config_name: por-corpus
    data_files:
      - split: corpus
        path: por/corpus.jsonl
  - config_name: por-queries
    data_files:
      - split: queries
        path: por/queries.jsonl
  - config_name: rus-qrels
    data_files:
      - split: train
        path: rus/train.jsonl
      - split: test
        path: rus/test.jsonl
  - config_name: rus-corpus
    data_files:
      - split: corpus
        path: rus/corpus.jsonl
  - config_name: rus-queries
    data_files:
      - split: queries
        path: rus/queries.jsonl
  - config_name: spa-qrels
    data_files:
      - split: train
        path: spa/train.jsonl
      - split: test
        path: spa/test.jsonl
  - config_name: spa-corpus
    data_files:
      - split: corpus
        path: spa/corpus.jsonl
  - config_name: spa-queries
    data_files:
      - split: queries
        path: spa/queries.jsonl
  - config_name: swe-qrels
    data_files:
      - split: train
        path: swe/train.jsonl
      - split: test
        path: swe/test.jsonl
  - config_name: swe-corpus
    data_files:
      - split: corpus
        path: swe/corpus.jsonl
  - config_name: swe-queries
    data_files:
      - split: queries
        path: swe/queries.jsonl
  - config_name: tur-qrels
    data_files:
      - split: train
        path: tur/train.jsonl
      - split: test
        path: tur/test.jsonl
  - config_name: tur-corpus
    data_files:
      - split: corpus
        path: tur/corpus.jsonl
  - config_name: tur-queries
    data_files:
      - split: queries
        path: tur/queries.jsonl
  - config_name: vie-qrels
    data_files:
      - split: train
        path: vie/train.jsonl
      - split: test
        path: vie/test.jsonl
  - config_name: vie-corpus
    data_files:
      - split: corpus
        path: vie/corpus.jsonl
  - config_name: vie-queries
    data_files:
      - split: queries
        path: vie/queries.jsonl
  - config_name: zho-qrels
    data_files:
      - split: train
        path: zho/train.jsonl
      - split: test
        path: zho/test.jsonl
  - config_name: zho-corpus
    data_files:
      - split: corpus
        path: zho/corpus.jsonl
  - config_name: zho-queries
    data_files:
      - split: queries
        path: zho/queries.jsonl

WebFAQ Retrieval Dataset

Overview | Details | Structure | Examples | Considerations | License | Citation | Contact | Acknowledgement

Overview

The WebFAQ Retrieval Dataset is a carefully filtered and curated subset of the broader WebFAQ Q&A Dataset.
It is purpose-built for Information Retrieval (IR) tasks, such as training and evaluating dense or sparse retrieval models in multiple languages.

Each of the 20 largest languages from the WebFAQ corpus has been thoroughly cleaned and refined to ensure an unblurred notion of relevance between a query (question) and its corresponding document (answer). In particular, we applied:

  • Deduplication of near-identical questions,
  • Semantic consistency checks for question-answer alignment,
  • Train/Test splits for retrieval experiments.

Details

Languages

The WebFAQ Retrieval Dataset covers 20 high-resource languages from the original WebFAQ corpus, each comprising tens of thousands to hundreds of thousands of QA pairs after our rigorous filtering steps:

Language # QA pairs
ara 143k
dan 138k
deu 891k
eng 5.28M
fas 227k
fra 570k
hin 96.6k
ind 96.6k
ita 209k
jpn 280k
kor 79.1k
nld 349k
pol 179k
por 186k
rus 346k
spa 558k
swe 144k
tur 110k
vie 105k
zho 125k

Structure

Unlike the raw Q&A dataset, WebFAQ Retrieval provides explicit train/test splits for each of the 20 languages. The general structure for each language is:

  • Corpus: A set of unique documents (answers) with IDs and text fields.
  • Queries: A set of question strings, each tied to a document ID for relevance.
  • Qrels: Relevance labels, mapping each question to its relevant document (corresponding answer).

Folder Layout (e.g., for eng)

eng/
  ├── corpus.jsonl        # all unique documents (answers)
  ├── queries.jsonl       # all queries for train/test
  ├── train.jsonl         # relevance annotations for train
  └── test.jsonl          # relevance annotations for test

Examples

Below is a small snippet showing how to load English train/test sets with 🤗 Datasets:

import json
from datasets import load_dataset
from tqdm import tqdm

# Load train qrels
train_qrels = load_dataset(
    "anonymous202501/webfaq-retrieval",
    "eng-qrels",
    split="train"
)

# Inspect first qrel
print(json.dumps(train_qrels[0], indent=4))

# Load the corpus (answers)
data_corpus = load_dataset(
    "anonymous202501/webfaq-retrieval",
    "eng-corpus",
    split="corpus"
)
corpus = {
    d["_id"]: {"title": d["title"], "text": d["text"]} for d in tqdm(data_corpus)
}

# Inspect first document
print("Document:")
print(json.dumps(corpus[train_qrels[0]["corpus-id"]], indent=4))

# Load all queries
data_queries = load_dataset(
    "anonymous202501/webfaq-retrieval",
    "eng-queries",
    split="queries"
)
queries = {
    q["_id"]: q["text"] for q in tqdm(data_queries)
}

# Inspect first query
print("Query:")
print(json.dumps(queries[train_qrels[0]["query-id"]], indent=4))

# Keep only those queries with relevance annotations
query_ids = set([q["query-id"] for q in train_qrels])
queries = {
    qid: query for qid, query in queries.items() if qid in query_ids
}
print(f"Number of queries: {len(queries)}")

Below is a code snippet showing how to evaluate retrieval performance using the mteb library:

Note: WebFAQ is not yet available as multilingual task in the mteb library. The code snippet below is a placeholder for when it becomes available.

from mteb import MTEB
from mteb.tasks.Retrieval.multilingual.WebFAQRetrieval import WebFAQRetrieval

# ... Load model ...

# Load the WebFAQ task
task = WebFAQRetrieval()
eval_split = "test"

evaluation = MTEB(tasks=[task])
evaluation.run(
    model,
    eval_splits=[eval_split],
    output_folder="output",
    overwrite_results=True
)

Considerations

Please note the following considerations when using the collected QAs:

  • [Q&A Dataset] Risk of Duplicate or Near-Duplicate Content: The raw Q&A dataset is large and includes minor paraphrases.
  • [Retrieval Dataset] Sparse Relevance: As raw FAQ data, each question typically has one “best” (on-page) answer. Additional valid answers may exist on other websites but are not labeled as relevant.
  • Language Detection Limitations: Some QA pairs mix languages, or contain brand names, which can confuse automatic language classification.
  • No Guarantee of Factual Accuracy: Answers reflect the content of the source websites. They may include outdated, biased, or incorrect information.
  • Copyright and Privacy: Please ensure compliance with any applicable laws and the source website’s terms.

License

The Collection of WebFAQ Datasets is shared under Creative Commons Attribution 4.0 (CC BY 4.0) license.

Note: The dataset is derived from public webpages in Common Crawl snapshots (2022–2024) and intended for research purposes. Each FAQ’s text is published by the original website under their terms. Downstream users should verify any usage constraints from the original websites as well as Common Crawl’s Terms of Use.

Citation

If you use this dataset in your research, please consider citing the associated paper:

@misc{webfaq2025,
  title     = {WebFAQ: A Multilingual Collection of Natural Q&A Datasets for Dense Retrieval},
  author    = {Anonymous Author(s)},
  year      = {2025},
  howpublished = {...},
  note      = {Under review}
}

Contact

TBD

Acknowledgement

We thank the Common Crawl and Web Data Commons teams for providing the underlying data, and all contributors who helped shape the WebFAQ project.

Thank you

We hope the Collection of WebFAQ Datasets serves as a valuable resource for your research. Please consider citing it in any publications or projects that use it. If you encounter issues or want to contribute improvements, feel free to get in touch with us on HuggingFace or GitHub.

Happy researching!