Datasets:
language:
- ara
- dan
- deu
- eng
- fas
- fra
- hin
- ind
- ita
- jpn
- kor
- nld
- pol
- por
- rus
- spa
- swe
- tur
- vie
- zho
multilinguality:
- multilingual
task_categories:
- text-retrieval
task_ids:
- document-retrieval
config_names:
- corpus
tags:
- text-retrieval
dataset_info:
- config_name: ara-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 6293949
num_examples: 132664
- name: test
num_bytes: 474367
num_examples: 10000
- config_name: ara-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 162827578
num_examples: 142664
- config_name: ara-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 32958434
num_examples: 132664
- name: test
num_bytes: 2500510
num_examples: 10000
- config_name: dan-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 6050475
num_examples: 127686
- name: test
num_bytes: 473919
num_examples: 10000
- config_name: dan-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 49171909
num_examples: 137686
- config_name: dan-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 9957312
num_examples: 127686
- name: test
num_bytes: 775965
num_examples: 10000
- config_name: deu-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 42959068
num_examples: 881201
- name: test
num_bytes: 487561
num_examples: 10000
- config_name: deu-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 377457585
num_examples: 891201
- config_name: deu-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 71911852
num_examples: 881201
- name: test
num_bytes: 819131
num_examples: 10000
- config_name: eng-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 266487011
num_examples: 5268725
- name: test
num_bytes: 505744
num_examples: 10000
- config_name: eng-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 1772481467
num_examples: 5278725
- config_name: eng-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 393277327
num_examples: 5268725
- name: test
num_bytes: 744279
num_examples: 10000
- config_name: fas-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 10417722
num_examples: 216940
- name: test
num_bytes: 480118
num_examples: 10000
- config_name: fas-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 240471393
num_examples: 226940
- config_name: fas-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 55308380
num_examples: 216940
- name: test
num_bytes: 2559588
num_examples: 10000
- config_name: fra-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 27197413
num_examples: 559505
- name: test
num_bytes: 486112
num_examples: 10000
- config_name: fra-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 256564231
num_examples: 569505
- config_name: fra-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 50838219
num_examples: 559505
- name: test
num_bytes: 912921
num_examples: 10000
- config_name: hin-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 4211562
num_examples: 90031
- name: test
num_bytes: 467737
num_examples: 10000
- config_name: hin-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 87202578
num_examples: 100031
- config_name: hin-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 22108215
num_examples: 90031
- name: test
num_bytes: 2449171
num_examples: 10000
- config_name: ind-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 4762169
num_examples: 101315
- name: test
num_bytes: 470046
num_examples: 10000
- config_name: ind-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 32240964
num_examples: 111315
- config_name: ind-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 8003845
num_examples: 101315
- name: test
num_bytes: 787656
num_examples: 10000
- config_name: ita-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 11928821
num_examples: 247803
- name: test
num_bytes: 481306
num_examples: 10000
- config_name: ita-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 96693889
num_examples: 257803
- config_name: ita-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 21034519
num_examples: 247803
- name: test
num_bytes: 852818
num_examples: 10000
- config_name: jpn-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 14443765
num_examples: 299157
- name: test
num_bytes: 482708
num_examples: 10000
- config_name: jpn-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 254914767
num_examples: 309157
- config_name: jpn-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 50949827
num_examples: 299157
- name: test
num_bytes: 1696476
num_examples: 10000
- config_name: kor-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 4307545
num_examples: 92000
- name: test
num_bytes: 468235
num_examples: 10000
- config_name: kor-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 65463396
num_examples: 102000
- config_name: kor-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 13051430
num_examples: 92000
- name: test
num_bytes: 1411285
num_examples: 10000
- config_name: nld-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 17456124
num_examples: 360662
- name: test
num_bytes: 484094
num_examples: 10000
- config_name: nld-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 134247494
num_examples: 370662
- config_name: nld-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 26845652
num_examples: 360662
- name: test
num_bytes: 747128
num_examples: 10000
- config_name: pol-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 8732406
num_examples: 182515
- name: test
num_bytes: 478609
num_examples: 10000
- config_name: pol-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 83829979
num_examples: 192515
- config_name: pol-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 16387616
num_examples: 182515
- name: test
num_bytes: 891561
num_examples: 10000
- config_name: por-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 9556659
num_examples: 199353
- name: test
num_bytes: 479418
num_examples: 10000
- config_name: por-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 80179713
num_examples: 209353
- config_name: por-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 16301318
num_examples: 199353
- name: test
num_bytes: 816501
num_examples: 10000
- config_name: rus-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 18281176
num_examples: 377504
- name: test
num_bytes: 484300
num_examples: 10000
- config_name: rus-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 612916055
num_examples: 387504
- config_name: rus-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 114319660
num_examples: 377504
- name: test
num_bytes: 3036674
num_examples: 10000
- config_name: spa-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 28919803
num_examples: 594661
- name: test
num_bytes: 486366
num_examples: 10000
- config_name: spa-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 240959272
num_examples: 604661
- config_name: spa-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 53980948
num_examples: 594661
- name: test
num_bytes: 913713
num_examples: 10000
- config_name: swe-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 7079762
num_examples: 148738
- name: test
num_bytes: 476180
num_examples: 10000
- config_name: swe-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 59133680
num_examples: 158738
- config_name: swe-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 11970053
num_examples: 148738
- name: test
num_bytes: 803251
num_examples: 10000
- config_name: tur-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 6400507
num_examples: 134846
- name: test
num_bytes: 474727
num_examples: 10000
- config_name: tur-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 57145253
num_examples: 144846
- config_name: tur-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 11003660
num_examples: 134846
- name: test
num_bytes: 812383
num_examples: 10000
- config_name: vie-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 5380320
num_examples: 113972
- name: test
num_bytes: 472088
num_examples: 10000
- config_name: vie-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 76390471
num_examples: 123972
- config_name: vie-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 14776653
num_examples: 113972
- name: test
num_bytes: 1299967
num_examples: 10000
- config_name: zho-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 5796595
num_examples: 122491
- name: test
num_bytes: 473244
num_examples: 10000
- config_name: zho-corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: corpus
num_bytes: 79790293
num_examples: 132491
- config_name: zho-queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 14554815
num_examples: 122491
- name: test
num_bytes: 1183199
num_examples: 10000
configs:
- config_name: ara-qrels
data_files:
- split: train
path: ara/qrels-train.jsonl
- split: test
path: ara/qrels-test.jsonl
- config_name: ara-corpus
data_files:
- split: corpus
path: ara/corpus.jsonl
- config_name: ara-queries
data_files:
- split: train
path: ara/queries-train.jsonl
- split: test
path: ara/queries-test.jsonl
- config_name: dan-qrels
data_files:
- split: train
path: dan/qrels-train.jsonl
- split: test
path: dan/qrels-test.jsonl
- config_name: dan-corpus
data_files:
- split: corpus
path: dan/corpus.jsonl
- config_name: dan-queries
data_files:
- split: train
path: dan/queries-train.jsonl
- split: test
path: dan/queries-test.jsonl
- config_name: deu-qrels
data_files:
- split: train
path: deu/qrels-train.jsonl
- split: test
path: deu/qrels-test.jsonl
- config_name: deu-corpus
data_files:
- split: corpus
path: deu/corpus.jsonl
- config_name: deu-queries
data_files:
- split: train
path: deu/queries-train.jsonl
- split: test
path: deu/queries-test.jsonl
- config_name: eng-qrels
data_files:
- split: train
path: eng/qrels-train.jsonl
- split: test
path: eng/qrels-test.jsonl
- config_name: eng-corpus
data_files:
- split: corpus
path: eng/corpus.jsonl
- config_name: eng-queries
data_files:
- split: train
path: eng/queries-train.jsonl
- split: test
path: eng/queries-test.jsonl
- config_name: fas-qrels
data_files:
- split: train
path: fas/qrels-train.jsonl
- split: test
path: fas/qrels-test.jsonl
- config_name: fas-corpus
data_files:
- split: corpus
path: fas/corpus.jsonl
- config_name: fas-queries
data_files:
- split: train
path: fas/queries-train.jsonl
- split: test
path: fas/queries-test.jsonl
- config_name: fra-qrels
data_files:
- split: train
path: fra/qrels-train.jsonl
- split: test
path: fra/qrels-test.jsonl
- config_name: fra-corpus
data_files:
- split: corpus
path: fra/corpus.jsonl
- config_name: fra-queries
data_files:
- split: train
path: fra/queries-train.jsonl
- split: test
path: fra/queries-test.jsonl
- config_name: hin-qrels
data_files:
- split: train
path: hin/qrels-train.jsonl
- split: test
path: hin/qrels-test.jsonl
- config_name: hin-corpus
data_files:
- split: corpus
path: hin/corpus.jsonl
- config_name: hin-queries
data_files:
- split: train
path: hin/queries-train.jsonl
- split: test
path: hin/queries-test.jsonl
- config_name: ind-qrels
data_files:
- split: train
path: ind/qrels-train.jsonl
- split: test
path: ind/qrels-test.jsonl
- config_name: ind-corpus
data_files:
- split: corpus
path: ind/corpus.jsonl
- config_name: ind-queries
data_files:
- split: train
path: ind/queries-train.jsonl
- split: test
path: ind/queries-test.jsonl
- config_name: ita-qrels
data_files:
- split: train
path: ita/qrels-train.jsonl
- split: test
path: ita/qrels-test.jsonl
- config_name: ita-corpus
data_files:
- split: corpus
path: ita/corpus.jsonl
- config_name: ita-queries
data_files:
- split: train
path: ita/queries-train.jsonl
- split: test
path: ita/queries-test.jsonl
- config_name: jpn-qrels
data_files:
- split: train
path: jpn/qrels-train.jsonl
- split: test
path: jpn/qrels-test.jsonl
- config_name: jpn-corpus
data_files:
- split: corpus
path: jpn/corpus.jsonl
- config_name: jpn-queries
data_files:
- split: train
path: jpn/queries-train.jsonl
- split: test
path: jpn/queries-test.jsonl
- config_name: kor-qrels
data_files:
- split: train
path: kor/qrels-train.jsonl
- split: test
path: kor/qrels-test.jsonl
- config_name: kor-corpus
data_files:
- split: corpus
path: kor/corpus.jsonl
- config_name: kor-queries
data_files:
- split: train
path: kor/queries-train.jsonl
- split: test
path: kor/queries-test.jsonl
- config_name: nld-qrels
data_files:
- split: train
path: nld/qrels-train.jsonl
- split: test
path: nld/qrels-test.jsonl
- config_name: nld-corpus
data_files:
- split: corpus
path: nld/corpus.jsonl
- config_name: nld-queries
data_files:
- split: train
path: nld/queries-train.jsonl
- split: test
path: nld/queries-test.jsonl
- config_name: pol-qrels
data_files:
- split: train
path: pol/qrels-train.jsonl
- split: test
path: pol/qrels-test.jsonl
- config_name: pol-corpus
data_files:
- split: corpus
path: pol/corpus.jsonl
- config_name: pol-queries
data_files:
- split: train
path: pol/queries-train.jsonl
- split: test
path: pol/queries-test.jsonl
- config_name: por-qrels
data_files:
- split: train
path: por/qrels-train.jsonl
- split: test
path: por/qrels-test.jsonl
- config_name: por-corpus
data_files:
- split: corpus
path: por/corpus.jsonl
- config_name: por-queries
data_files:
- split: train
path: por/queries-train.jsonl
- split: test
path: por/queries-test.jsonl
- config_name: rus-qrels
data_files:
- split: train
path: rus/qrels-train.jsonl
- split: test
path: rus/qrels-test.jsonl
- config_name: rus-corpus
data_files:
- split: corpus
path: rus/corpus.jsonl
- config_name: rus-queries
data_files:
- split: train
path: rus/queries-train.jsonl
- split: test
path: rus/queries-test.jsonl
- config_name: spa-qrels
data_files:
- split: train
path: spa/qrels-train.jsonl
- split: test
path: spa/qrels-test.jsonl
- config_name: spa-corpus
data_files:
- split: corpus
path: spa/corpus.jsonl
- config_name: spa-queries
data_files:
- split: train
path: spa/queries-train.jsonl
- split: test
path: spa/queries-test.jsonl
- config_name: swe-qrels
data_files:
- split: train
path: swe/qrels-train.jsonl
- split: test
path: swe/qrels-test.jsonl
- config_name: swe-corpus
data_files:
- split: corpus
path: swe/corpus.jsonl
- config_name: swe-queries
data_files:
- split: train
path: swe/queries-train.jsonl
- split: test
path: swe/queries-test.jsonl
- config_name: tur-qrels
data_files:
- split: train
path: tur/qrels-train.jsonl
- split: test
path: tur/qrels-test.jsonl
- config_name: tur-corpus
data_files:
- split: corpus
path: tur/corpus.jsonl
- config_name: tur-queries
data_files:
- split: train
path: tur/queries-train.jsonl
- split: test
path: tur/queries-test.jsonl
- config_name: vie-qrels
data_files:
- split: train
path: vie/qrels-train.jsonl
- split: test
path: vie/qrels-test.jsonl
- config_name: vie-corpus
data_files:
- split: corpus
path: vie/corpus.jsonl
- config_name: vie-queries
data_files:
- split: train
path: vie/queries-train.jsonl
- split: test
path: vie/queries-test.jsonl
- config_name: zho-qrels
data_files:
- split: train
path: zho/qrels-train.jsonl
- split: test
path: zho/qrels-test.jsonl
- config_name: zho-corpus
data_files:
- split: corpus
path: zho/corpus.jsonl
- config_name: zho-queries
data_files:
- split: train
path: zho/queries-train.jsonl
- split: test
path: zho/queries-test.jsonl
WebFAQ Retrieval Dataset
Overview | Details | Structure | Examples | Considerations | License | Citation | Contact | Acknowledgement
Overview
The WebFAQ Retrieval Dataset is a carefully filtered and curated subset of the broader WebFAQ Q&A Dataset.
It is purpose-built for Information Retrieval (IR) tasks, such as training and evaluating dense or sparse retrieval models in multiple languages.
Each of the 20 largest languages from the WebFAQ corpus has been thoroughly cleaned and refined to ensure an unblurred notion of relevance between a query (question) and its corresponding document (answer). In particular, we applied:
- Deduplication of near-identical questions,
- Semantic consistency checks for question-answer alignment,
- Train/Test splits for retrieval experiments.
Details
Languages
The WebFAQ Retrieval Dataset covers 20 high-resource languages from the original WebFAQ corpus, each comprising tens of thousands to hundreds of thousands of QA pairs after our rigorous filtering steps:
Language | # QA pairs |
---|---|
ara | 143k |
dan | 138k |
deu | 891k |
eng | 5.28M |
fas | 227k |
fra | 570k |
hin | 96.6k |
ind | 96.6k |
ita | 209k |
jpn | 280k |
kor | 79.1k |
nld | 349k |
pol | 179k |
por | 186k |
rus | 346k |
spa | 558k |
swe | 144k |
tur | 110k |
vie | 105k |
zho | 125k |
Structure
Unlike the raw Q&A dataset, WebFAQ Retrieval provides explicit train/test splits for each of the 20 languages. The general structure for each language is:
- Corpus: A set of unique documents (answers) with IDs and text fields.
- Queries: A set of question strings, each tied to a document ID for relevance.
- Qrels: Relevance labels, mapping each question to its relevant document (corresponding answer).
Folder Layout (e.g., for eng)
eng/
├── corpus.jsonl # all unique documents (answers)
├── queries.jsonl # all queries for train/test
├── train.jsonl # relevance annotations for train
└── test.jsonl # relevance annotations for test
Examples
Below is a small snippet showing how to load English train/test sets with 🤗 Datasets:
import json
from datasets import load_dataset
from tqdm import tqdm
# Load train qrels
train_qrels = load_dataset(
"anonymous202501/webfaq-retrieval",
"eng-qrels",
split="train"
)
# Inspect first qrel
print(json.dumps(train_qrels[0], indent=4))
# Load the corpus (answers)
data_corpus = load_dataset(
"anonymous202501/webfaq-retrieval",
"eng-corpus",
split="corpus"
)
corpus = {
d["_id"]: {"title": d["title"], "text": d["text"]} for d in tqdm(data_corpus)
}
# Inspect first document
print("Document:")
print(json.dumps(corpus[train_qrels[0]["corpus-id"]], indent=4))
# Load all queries
data_queries = load_dataset(
"anonymous202501/webfaq-retrieval",
"eng-queries",
split="queries"
)
queries = {
q["_id"]: q["text"] for q in tqdm(data_queries)
}
# Inspect first query
print("Query:")
print(json.dumps(queries[train_qrels[0]["query-id"]], indent=4))
# Keep only those queries with relevance annotations
query_ids = set([q["query-id"] for q in train_qrels])
queries = {
qid: query for qid, query in queries.items() if qid in query_ids
}
print(f"Number of queries: {len(queries)}")
Below is a code snippet showing how to evaluate retrieval performance using the mteb
library:
Note: WebFAQ is not yet available as multilingual task in the
mteb
library. The code snippet below is a placeholder for when it becomes available.
from mteb import MTEB
from mteb.tasks.Retrieval.multilingual.WebFAQRetrieval import WebFAQRetrieval
# ... Load model ...
# Load the WebFAQ task
task = WebFAQRetrieval()
eval_split = "test"
evaluation = MTEB(tasks=[task])
evaluation.run(
model,
eval_splits=[eval_split],
output_folder="output",
overwrite_results=True
)
Considerations
Please note the following considerations when using the collected QAs:
- [Q&A Dataset] Risk of Duplicate or Near-Duplicate Content: The raw Q&A dataset is large and includes minor paraphrases.
- [Retrieval Dataset] Sparse Relevance: As raw FAQ data, each question typically has one “best” (on-page) answer. Additional valid answers may exist on other websites but are not labeled as relevant.
- Language Detection Limitations: Some QA pairs mix languages, or contain brand names, which can confuse automatic language classification.
- No Guarantee of Factual Accuracy: Answers reflect the content of the source websites. They may include outdated, biased, or incorrect information.
- Copyright and Privacy: Please ensure compliance with any applicable laws and the source website’s terms.
License
The Collection of WebFAQ Datasets is shared under Creative Commons Attribution 4.0 (CC BY 4.0) license.
Note: The dataset is derived from public webpages in Common Crawl snapshots (2022–2024) and intended for research purposes. Each FAQ’s text is published by the original website under their terms. Downstream users should verify any usage constraints from the original websites as well as Common Crawl’s Terms of Use.
Citation
If you use this dataset in your research, please consider citing the associated paper:
@misc{dinzinger2025webfaq,
title={WebFAQ: A Multilingual Collection of Natural Q&A Datasets for Dense Retrieval},
author={Michael Dinzinger and Laura Caspari and Kanishka Ghosh Dastidar and Jelena Mitrović and Michael Granitzer},
year={2025},
eprint={2502.20936},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Contact
For inquiries and feedback, please feel free to contact us via E-Mail ([email protected]) or start a discussion on HuggingFace or GitHub.
Acknowledgement
We thank the Common Crawl and Web Data Commons teams for providing the underlying data, and all contributors who helped shape the WebFAQ project.
Thank you
We hope the Collection of WebFAQ Datasets serves as a valuable resource for your research. Please consider citing it in any publications or projects that use it. If you encounter issues or want to contribute improvements, feel free to get in touch with us on HuggingFace or GitHub.
Happy researching!