Datasets:

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
pandas
File size: 33,380 Bytes
b432016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2672e5
4108977
b432016
d2672e5
b432016
 
 
 
 
 
 
 
 
 
 
4108977
 
b432016
 
 
 
 
 
 
d2672e5
 
 
 
 
 
b432016
 
 
 
 
 
 
 
 
 
d2672e5
4108977
b432016
d2672e5
b432016
 
 
 
 
 
 
 
 
 
 
4108977
 
b432016
 
 
 
 
 
 
d2672e5
 
 
 
 
 
b432016
 
 
 
 
 
 
 
 
 
d2672e5
4108977
b432016
d2672e5
b432016
 
 
 
 
 
 
 
 
 
 
4108977
 
b432016
 
 
 
 
 
 
d2672e5
 
 
 
 
 
b432016
 
 
 
 
 
 
 
 
 
d2672e5
4108977
b432016
d2672e5
b432016
 
 
 
 
 
 
 
 
 
 
4108977
 
b432016
 
 
 
 
 
 
d2672e5
 
 
 
 
 
b432016
 
 
 
 
 
 
 
 
 
d2672e5
4108977
b432016
d2672e5
b432016
 
 
 
 
 
 
 
 
 
 
4108977
 
b432016
 
 
 
 
 
 
d2672e5
 
 
 
 
 
b432016
 
 
 
 
 
 
 
 
 
d2672e5
4108977
b432016
d2672e5
b432016
 
 
 
 
 
 
 
 
 
 
4108977
 
b432016
 
 
 
 
 
 
d2672e5
 
 
 
 
 
b432016
 
 
 
 
 
 
 
 
 
d2672e5
4108977
b432016
d2672e5
4108977
b432016
 
 
 
 
 
 
 
 
 
4108977
 
b432016
 
 
 
 
 
 
d2672e5
 
 
 
 
 
b432016
 
 
 
 
 
 
 
 
 
d2672e5
4108977
b432016
d2672e5
4108977
b432016
 
 
 
 
 
 
 
 
 
4108977
 
b432016
 
 
 
 
 
 
d2672e5
 
 
 
 
 
b432016
 
 
 
 
 
 
 
 
 
d2672e5
4108977
b432016
d2672e5
b432016
 
 
 
 
 
 
 
 
 
 
4108977
 
b432016
 
 
 
 
 
 
d2672e5
 
 
 
 
 
b432016
 
 
 
 
 
 
 
 
 
d2672e5
4108977
b432016
d2672e5
b432016
 
 
 
 
 
 
 
 
 
 
4108977
 
b432016
 
 
 
 
 
 
d2672e5
 
 
 
 
 
b432016
 
 
 
 
 
 
 
 
 
d2672e5
4108977
b432016
d2672e5
4108977
b432016
 
 
 
 
 
 
 
 
 
4108977
 
b432016
 
 
 
 
 
 
d2672e5
 
 
 
 
 
b432016
 
 
 
 
 
 
 
 
 
d2672e5
4108977
b432016
d2672e5
b432016
 
 
 
 
 
 
 
 
 
 
4108977
 
b432016
 
 
 
 
 
 
d2672e5
 
 
 
 
 
b432016
 
 
 
 
 
 
 
 
 
d2672e5
4108977
b432016
d2672e5
b432016
 
 
 
 
 
 
 
 
 
 
4108977
 
b432016
 
 
 
 
 
 
d2672e5
 
 
 
 
 
b432016
 
 
 
 
 
 
 
 
 
d2672e5
4108977
b432016
d2672e5
b432016
 
 
 
 
 
 
 
 
 
 
4108977
 
b432016
 
 
 
 
 
 
d2672e5
 
 
 
 
 
b432016
 
 
 
 
 
 
 
 
 
d2672e5
4108977
b432016
d2672e5
b432016
 
 
 
 
 
 
 
 
 
 
4108977
 
b432016
 
 
 
 
 
 
d2672e5
 
 
 
 
 
b432016
 
 
 
 
 
 
 
 
 
d2672e5
4108977
b432016
d2672e5
b432016
 
 
 
 
 
 
 
 
 
 
4108977
 
b432016
 
 
 
 
 
 
d2672e5
 
 
 
 
 
b432016
 
 
 
 
 
 
 
 
 
d2672e5
4108977
b432016
d2672e5
b432016
 
 
 
 
 
 
 
 
 
 
4108977
 
b432016
 
 
 
 
 
 
d2672e5
 
 
 
 
 
b432016
 
 
 
 
 
 
 
 
 
d2672e5
4108977
b432016
d2672e5
b432016
 
 
 
 
 
 
 
 
 
 
4108977
 
b432016
 
 
 
 
 
 
d2672e5
 
 
 
 
 
b432016
 
 
 
 
 
 
 
 
 
d2672e5
4108977
b432016
d2672e5
b432016
 
 
 
 
 
 
 
 
 
 
4108977
 
b432016
 
 
 
 
 
 
d2672e5
 
 
 
 
 
b432016
 
 
 
 
 
 
 
 
 
d2672e5
4108977
b432016
d2672e5
b432016
 
 
 
 
 
 
 
 
 
 
4108977
 
b432016
 
 
 
 
 
 
d2672e5
 
 
 
 
 
b432016
 
 
 
d2672e5
b432016
d2672e5
b432016
 
 
 
 
 
d2672e5
 
 
 
b432016
 
 
d2672e5
b432016
d2672e5
b432016
 
 
 
 
 
d2672e5
 
 
 
b432016
 
 
d2672e5
b432016
d2672e5
b432016
 
 
 
 
 
d2672e5
 
 
 
b432016
 
 
d2672e5
b432016
d2672e5
b432016
 
 
 
 
 
d2672e5
 
 
 
b432016
 
 
d2672e5
b432016
d2672e5
b432016
 
 
 
 
 
d2672e5
 
 
 
b432016
 
 
d2672e5
b432016
d2672e5
b432016
 
 
 
 
 
d2672e5
 
 
 
b432016
 
 
d2672e5
b432016
d2672e5
b432016
 
 
 
 
 
d2672e5
 
 
 
b432016
 
 
d2672e5
b432016
d2672e5
b432016
 
 
 
 
 
d2672e5
 
 
 
b432016
 
 
d2672e5
b432016
d2672e5
b432016
 
 
 
 
 
d2672e5
 
 
 
b432016
 
 
d2672e5
b432016
d2672e5
b432016
 
 
 
 
 
d2672e5
 
 
 
b432016
 
 
d2672e5
b432016
d2672e5
b432016
 
 
 
 
 
d2672e5
 
 
 
b432016
 
 
d2672e5
b432016
d2672e5
b432016
 
 
 
 
 
d2672e5
 
 
 
b432016
 
 
d2672e5
b432016
d2672e5
b432016
 
 
 
 
 
d2672e5
 
 
 
b432016
 
 
d2672e5
b432016
d2672e5
b432016
 
 
 
 
 
d2672e5
 
 
 
b432016
 
 
d2672e5
b432016
d2672e5
b432016
 
 
 
 
 
d2672e5
 
 
 
b432016
 
 
d2672e5
b432016
d2672e5
b432016
 
 
 
 
 
d2672e5
 
 
 
b432016
 
 
d2672e5
b432016
d2672e5
b432016
 
 
 
 
 
d2672e5
 
 
 
b432016
 
 
d2672e5
b432016
d2672e5
b432016
 
 
 
 
 
d2672e5
 
 
 
b432016
 
 
d2672e5
b432016
d2672e5
b432016
 
 
 
 
 
d2672e5
 
 
 
b432016
 
 
d2672e5
b432016
d2672e5
b432016
 
 
 
 
 
d2672e5
 
 
 
c9a577a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
---
language:
- ara
- dan
- deu
- eng
- fas
- fra
- hin
- ind
- ita
- jpn
- kor
- nld
- pol
- por
- rus
- spa
- swe
- tur
- vie
- zho
multilinguality:
- multilingual
task_categories:
- text-retrieval
task_ids:
- document-retrieval
config_names:
- corpus
tags:
- text-retrieval
dataset_info:
  - config_name: ara-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 6293949
        num_examples: 132664
      - name: test
        num_bytes: 474367
        num_examples: 10000
  - config_name: ara-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 162827578
        num_examples: 142664
  - config_name: ara-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 32958434
        num_examples: 132664
      - name: test
        num_bytes: 2500510
        num_examples: 10000
  - config_name: dan-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 6050475
        num_examples: 127686
      - name: test
        num_bytes: 473919
        num_examples: 10000
  - config_name: dan-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 49171909
        num_examples: 137686
  - config_name: dan-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 9957312
        num_examples: 127686
      - name: test
        num_bytes: 775965
        num_examples: 10000
  - config_name: deu-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 42959068
        num_examples: 881201
      - name: test
        num_bytes: 487561
        num_examples: 10000
  - config_name: deu-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 377457585
        num_examples: 891201
  - config_name: deu-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 71911852
        num_examples: 881201
      - name: test
        num_bytes: 819131
        num_examples: 10000
  - config_name: eng-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 266487011
        num_examples: 5268725
      - name: test
        num_bytes: 505744
        num_examples: 10000
  - config_name: eng-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 1772481467
        num_examples: 5278725
  - config_name: eng-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 393277327
        num_examples: 5268725
      - name: test
        num_bytes: 744279
        num_examples: 10000
  - config_name: fas-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 10417722
        num_examples: 216940
      - name: test
        num_bytes: 480118
        num_examples: 10000
  - config_name: fas-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 240471393
        num_examples: 226940
  - config_name: fas-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 55308380
        num_examples: 216940
      - name: test
        num_bytes: 2559588
        num_examples: 10000
  - config_name: fra-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 27197413
        num_examples: 559505
      - name: test
        num_bytes: 486112
        num_examples: 10000
  - config_name: fra-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 256564231
        num_examples: 569505
  - config_name: fra-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 50838219
        num_examples: 559505
      - name: test
        num_bytes: 912921
        num_examples: 10000
  - config_name: hin-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 4211562
        num_examples: 90031
      - name: test
        num_bytes: 467737
        num_examples: 10000
  - config_name: hin-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 87202578
        num_examples: 100031
  - config_name: hin-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 22108215
        num_examples: 90031
      - name: test
        num_bytes: 2449171
        num_examples: 10000
  - config_name: ind-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 4762169
        num_examples: 101315
      - name: test
        num_bytes: 470046
        num_examples: 10000
  - config_name: ind-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 32240964
        num_examples: 111315
  - config_name: ind-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 8003845
        num_examples: 101315
      - name: test
        num_bytes: 787656
        num_examples: 10000
  - config_name: ita-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 11928821
        num_examples: 247803
      - name: test
        num_bytes: 481306
        num_examples: 10000
  - config_name: ita-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 96693889
        num_examples: 257803
  - config_name: ita-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 21034519
        num_examples: 247803
      - name: test
        num_bytes: 852818
        num_examples: 10000
  - config_name: jpn-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 14443765
        num_examples: 299157
      - name: test
        num_bytes: 482708
        num_examples: 10000
  - config_name: jpn-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 254914767
        num_examples: 309157
  - config_name: jpn-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 50949827
        num_examples: 299157
      - name: test
        num_bytes: 1696476
        num_examples: 10000
  - config_name: kor-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 4307545
        num_examples: 92000
      - name: test
        num_bytes: 468235
        num_examples: 10000
  - config_name: kor-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 65463396
        num_examples: 102000
  - config_name: kor-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 13051430
        num_examples: 92000
      - name: test
        num_bytes: 1411285
        num_examples: 10000
  - config_name: nld-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 17456124
        num_examples: 360662
      - name: test
        num_bytes: 484094
        num_examples: 10000
  - config_name: nld-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 134247494
        num_examples: 370662
  - config_name: nld-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 26845652
        num_examples: 360662
      - name: test
        num_bytes: 747128
        num_examples: 10000
  - config_name: pol-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 8732406
        num_examples: 182515
      - name: test
        num_bytes: 478609
        num_examples: 10000
  - config_name: pol-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 83829979
        num_examples: 192515
  - config_name: pol-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 16387616
        num_examples: 182515
      - name: test
        num_bytes: 891561
        num_examples: 10000
  - config_name: por-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 9556659
        num_examples: 199353
      - name: test
        num_bytes: 479418
        num_examples: 10000
  - config_name: por-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 80179713
        num_examples: 209353
  - config_name: por-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 16301318
        num_examples: 199353
      - name: test
        num_bytes: 816501
        num_examples: 10000
  - config_name: rus-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 18281176
        num_examples: 377504
      - name: test
        num_bytes: 484300
        num_examples: 10000
  - config_name: rus-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 612916055
        num_examples: 387504
  - config_name: rus-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 114319660
        num_examples: 377504
      - name: test
        num_bytes: 3036674
        num_examples: 10000
  - config_name: spa-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 28919803
        num_examples: 594661
      - name: test
        num_bytes: 486366
        num_examples: 10000
  - config_name: spa-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 240959272
        num_examples: 604661
  - config_name: spa-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 53980948
        num_examples: 594661
      - name: test
        num_bytes: 913713
        num_examples: 10000
  - config_name: swe-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 7079762
        num_examples: 148738
      - name: test
        num_bytes: 476180
        num_examples: 10000
  - config_name: swe-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 59133680
        num_examples: 158738
  - config_name: swe-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 11970053
        num_examples: 148738
      - name: test
        num_bytes: 803251
        num_examples: 10000
  - config_name: tur-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 6400507
        num_examples: 134846
      - name: test
        num_bytes: 474727
        num_examples: 10000
  - config_name: tur-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 57145253
        num_examples: 144846
  - config_name: tur-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 11003660
        num_examples: 134846
      - name: test
        num_bytes: 812383
        num_examples: 10000
  - config_name: vie-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 5380320
        num_examples: 113972
      - name: test
        num_bytes: 472088
        num_examples: 10000
  - config_name: vie-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 76390471
        num_examples: 123972
  - config_name: vie-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 14776653
        num_examples: 113972
      - name: test
        num_bytes: 1299967
        num_examples: 10000
  - config_name: zho-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: float64
    splits:
      - name: train
        num_bytes: 5796595
        num_examples: 122491
      - name: test
        num_bytes: 473244
        num_examples: 10000
  - config_name: zho-corpus
    features:
      - name: _id
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 79790293
        num_examples: 132491
  - config_name: zho-queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 14554815
        num_examples: 122491
      - name: test
        num_bytes: 1183199
        num_examples: 10000
configs:
  - config_name: ara-qrels
    data_files:
      - split: train
        path: ara/qrels-train.jsonl
      - split: test
        path: ara/qrels-test.jsonl
  - config_name: ara-corpus
    data_files:
      - split: corpus
        path: ara/corpus.jsonl
  - config_name: ara-queries
    data_files:
      - split: train
        path: ara/queries-train.jsonl
      - split: test
        path: ara/queries-test.jsonl
  - config_name: dan-qrels
    data_files:
      - split: train
        path: dan/qrels-train.jsonl
      - split: test
        path: dan/qrels-test.jsonl
  - config_name: dan-corpus
    data_files:
      - split: corpus
        path: dan/corpus.jsonl
  - config_name: dan-queries
    data_files:
      - split: train
        path: dan/queries-train.jsonl
      - split: test
        path: dan/queries-test.jsonl
  - config_name: deu-qrels
    data_files:
      - split: train
        path: deu/qrels-train.jsonl
      - split: test
        path: deu/qrels-test.jsonl
  - config_name: deu-corpus
    data_files:
      - split: corpus
        path: deu/corpus.jsonl
  - config_name: deu-queries
    data_files:
      - split: train
        path: deu/queries-train.jsonl
      - split: test
        path: deu/queries-test.jsonl
  - config_name: eng-qrels
    data_files:
      - split: train
        path: eng/qrels-train.jsonl
      - split: test
        path: eng/qrels-test.jsonl
  - config_name: eng-corpus
    data_files:
      - split: corpus
        path: eng/corpus.jsonl
  - config_name: eng-queries
    data_files:
      - split: train
        path: eng/queries-train.jsonl
      - split: test
        path: eng/queries-test.jsonl
  - config_name: fas-qrels
    data_files:
      - split: train
        path: fas/qrels-train.jsonl
      - split: test
        path: fas/qrels-test.jsonl
  - config_name: fas-corpus
    data_files:
      - split: corpus
        path: fas/corpus.jsonl
  - config_name: fas-queries
    data_files:
      - split: train
        path: fas/queries-train.jsonl
      - split: test
        path: fas/queries-test.jsonl
  - config_name: fra-qrels
    data_files:
      - split: train
        path: fra/qrels-train.jsonl
      - split: test
        path: fra/qrels-test.jsonl
  - config_name: fra-corpus
    data_files:
      - split: corpus
        path: fra/corpus.jsonl
  - config_name: fra-queries
    data_files:
      - split: train
        path: fra/queries-train.jsonl
      - split: test
        path: fra/queries-test.jsonl
  - config_name: hin-qrels
    data_files:
      - split: train
        path: hin/qrels-train.jsonl
      - split: test
        path: hin/qrels-test.jsonl
  - config_name: hin-corpus
    data_files:
      - split: corpus
        path: hin/corpus.jsonl
  - config_name: hin-queries
    data_files:
      - split: train
        path: hin/queries-train.jsonl
      - split: test
        path: hin/queries-test.jsonl
  - config_name: ind-qrels
    data_files:
      - split: train
        path: ind/qrels-train.jsonl
      - split: test
        path: ind/qrels-test.jsonl
  - config_name: ind-corpus
    data_files:
      - split: corpus
        path: ind/corpus.jsonl
  - config_name: ind-queries
    data_files:
      - split: train
        path: ind/queries-train.jsonl
      - split: test
        path: ind/queries-test.jsonl
  - config_name: ita-qrels
    data_files:
      - split: train
        path: ita/qrels-train.jsonl
      - split: test
        path: ita/qrels-test.jsonl
  - config_name: ita-corpus
    data_files:
      - split: corpus
        path: ita/corpus.jsonl
  - config_name: ita-queries
    data_files:
      - split: train
        path: ita/queries-train.jsonl
      - split: test
        path: ita/queries-test.jsonl
  - config_name: jpn-qrels
    data_files:
      - split: train
        path: jpn/qrels-train.jsonl
      - split: test
        path: jpn/qrels-test.jsonl
  - config_name: jpn-corpus
    data_files:
      - split: corpus
        path: jpn/corpus.jsonl
  - config_name: jpn-queries
    data_files:
      - split: train
        path: jpn/queries-train.jsonl
      - split: test
        path: jpn/queries-test.jsonl
  - config_name: kor-qrels
    data_files:
      - split: train
        path: kor/qrels-train.jsonl
      - split: test
        path: kor/qrels-test.jsonl
  - config_name: kor-corpus
    data_files:
      - split: corpus
        path: kor/corpus.jsonl
  - config_name: kor-queries
    data_files:
      - split: train
        path: kor/queries-train.jsonl
      - split: test
        path: kor/queries-test.jsonl
  - config_name: nld-qrels
    data_files:
      - split: train
        path: nld/qrels-train.jsonl
      - split: test
        path: nld/qrels-test.jsonl
  - config_name: nld-corpus
    data_files:
      - split: corpus
        path: nld/corpus.jsonl
  - config_name: nld-queries
    data_files:
      - split: train
        path: nld/queries-train.jsonl
      - split: test
        path: nld/queries-test.jsonl
  - config_name: pol-qrels
    data_files:
      - split: train
        path: pol/qrels-train.jsonl
      - split: test
        path: pol/qrels-test.jsonl
  - config_name: pol-corpus
    data_files:
      - split: corpus
        path: pol/corpus.jsonl
  - config_name: pol-queries
    data_files:
      - split: train
        path: pol/queries-train.jsonl
      - split: test
        path: pol/queries-test.jsonl
  - config_name: por-qrels
    data_files:
      - split: train
        path: por/qrels-train.jsonl
      - split: test
        path: por/qrels-test.jsonl
  - config_name: por-corpus
    data_files:
      - split: corpus
        path: por/corpus.jsonl
  - config_name: por-queries
    data_files:
      - split: train
        path: por/queries-train.jsonl
      - split: test
        path: por/queries-test.jsonl
  - config_name: rus-qrels
    data_files:
      - split: train
        path: rus/qrels-train.jsonl
      - split: test
        path: rus/qrels-test.jsonl
  - config_name: rus-corpus
    data_files:
      - split: corpus
        path: rus/corpus.jsonl
  - config_name: rus-queries
    data_files:
      - split: train
        path: rus/queries-train.jsonl
      - split: test
        path: rus/queries-test.jsonl
  - config_name: spa-qrels
    data_files:
      - split: train
        path: spa/qrels-train.jsonl
      - split: test
        path: spa/qrels-test.jsonl
  - config_name: spa-corpus
    data_files:
      - split: corpus
        path: spa/corpus.jsonl
  - config_name: spa-queries
    data_files:
      - split: train
        path: spa/queries-train.jsonl
      - split: test
        path: spa/queries-test.jsonl
  - config_name: swe-qrels
    data_files:
      - split: train
        path: swe/qrels-train.jsonl
      - split: test
        path: swe/qrels-test.jsonl
  - config_name: swe-corpus
    data_files:
      - split: corpus
        path: swe/corpus.jsonl
  - config_name: swe-queries
    data_files:
      - split: train
        path: swe/queries-train.jsonl
      - split: test
        path: swe/queries-test.jsonl
  - config_name: tur-qrels
    data_files:
      - split: train
        path: tur/qrels-train.jsonl
      - split: test
        path: tur/qrels-test.jsonl
  - config_name: tur-corpus
    data_files:
      - split: corpus
        path: tur/corpus.jsonl
  - config_name: tur-queries
    data_files:
      - split: train
        path: tur/queries-train.jsonl
      - split: test
        path: tur/queries-test.jsonl
  - config_name: vie-qrels
    data_files:
      - split: train
        path: vie/qrels-train.jsonl
      - split: test
        path: vie/qrels-test.jsonl
  - config_name: vie-corpus
    data_files:
      - split: corpus
        path: vie/corpus.jsonl
  - config_name: vie-queries
    data_files:
      - split: train
        path: vie/queries-train.jsonl
      - split: test
        path: vie/queries-test.jsonl
  - config_name: zho-qrels
    data_files:
      - split: train
        path: zho/qrels-train.jsonl
      - split: test
        path: zho/qrels-test.jsonl
  - config_name: zho-corpus
    data_files:
      - split: corpus
        path: zho/corpus.jsonl
  - config_name: zho-queries
    data_files:
      - split: train
        path: zho/queries-train.jsonl
      - split: test
        path: zho/queries-test.jsonl
---
<h1 align="center">WebFAQ Retrieval Dataset</h1>
<h4 align="center">
   <p>
       <a href=#overview>Overview</a> |
       <a href=#details>Details</a>  |
       <a href=#structure>Structure</a>  |
       <a href=#examples>Examples</a> |
       <a href=#considerations>Considerations</a> |
       <a href=#license>License</a> |
       <a href=#citation>Citation</a> |
       <a href=#contact>Contact</a> |
       <a href=#acknowledgement>Acknowledgement</a>
   <p>
</h4>

## Overview

The **WebFAQ Retrieval Dataset** is a carefully **filtered and curated subset** of the broader [WebFAQ Q&A Dataset](https://huggingface.co/datasets/anonymous202501/webfaq).  
It is **purpose-built for Information Retrieval (IR)** tasks, such as **training and evaluating** dense or sparse retrieval models in **multiple languages**.

Each of the **20 largest** languages from the WebFAQ corpus has been **thoroughly cleaned** and **refined** to ensure an unblurred notion of relevance between a query (question) and its corresponding document (answer). In particular, we applied:

- **Deduplication** of near-identical questions,  
- **Semantic consistency checks** for question-answer alignment,  
- **Train/Test splits** for retrieval experiments.

## Details

### Languages

The **WebFAQ Retrieval Dataset** covers **20 high-resource languages** from the original WebFAQ corpus, each comprising tens of thousands to hundreds of thousands of QA pairs after our rigorous filtering steps:

| Language | # QA pairs |
|----------|-----------:|
| ara      | 143k       |
| dan      | 138k       |
| deu      | 891k       |
| eng      | 5.28M      |
| fas      | 227k       |
| fra      | 570k       |
| hin      | 96.6k      |
| ind      | 96.6k      |
| ita      | 209k       |
| jpn      | 280k       |
| kor      | 79.1k      |
| nld      | 349k       |
| pol      | 179k       |
| por      | 186k       |
| rus      | 346k       |
| spa      | 558k       |
| swe      | 144k       |
| tur      | 110k       |
| vie      | 105k       |
| zho      | 125k       |

## Structure

Unlike the raw Q&A dataset, **WebFAQ Retrieval** provides explicit **train/test splits** for each of the 20 languages. The general structure for each language is:

- **Corpus**: A set of unique documents (answers) with IDs and text fields.  
- **Queries**: A set of question strings, each tied to a document ID for relevance.  
- **Qrels**: Relevance labels, mapping each question to its relevant document (corresponding answer).

### Folder Layout (e.g., for eng)

```
eng/
  ├── corpus.jsonl        # all unique documents (answers)
  ├── queries.jsonl       # all queries for train/test
  ├── train.jsonl         # relevance annotations for train
  └── test.jsonl          # relevance annotations for test
```

## Examples

Below is a small snippet showing how to load English train/test sets with [🤗 Datasets](https://github.com/huggingface/datasets):

```python
import json
from datasets import load_dataset
from tqdm import tqdm

# Load train qrels
train_qrels = load_dataset(
    "anonymous202501/webfaq-retrieval",
    "eng-qrels",
    split="train"
)

# Inspect first qrel
print(json.dumps(train_qrels[0], indent=4))

# Load the corpus (answers)
data_corpus = load_dataset(
    "anonymous202501/webfaq-retrieval",
    "eng-corpus",
    split="corpus"
)
corpus = {
    d["_id"]: {"title": d["title"], "text": d["text"]} for d in tqdm(data_corpus)
}

# Inspect first document
print("Document:")
print(json.dumps(corpus[train_qrels[0]["corpus-id"]], indent=4))

# Load all queries
data_queries = load_dataset(
    "anonymous202501/webfaq-retrieval",
    "eng-queries",
    split="queries"
)
queries = {
    q["_id"]: q["text"] for q in tqdm(data_queries)
}

# Inspect first query
print("Query:")
print(json.dumps(queries[train_qrels[0]["query-id"]], indent=4))

# Keep only those queries with relevance annotations
query_ids = set([q["query-id"] for q in train_qrels])
queries = {
    qid: query for qid, query in queries.items() if qid in query_ids
}
print(f"Number of queries: {len(queries)}")
```

Below is a code snippet showing how to evaluate retrieval performance using the `mteb` library:

> **Note**: WebFAQ is not yet available as multilingual task in the `mteb` library. The code snippet below is a placeholder for when it becomes available.

```python
from mteb import MTEB
from mteb.tasks.Retrieval.multilingual.WebFAQRetrieval import WebFAQRetrieval

# ... Load model ...

# Load the WebFAQ task
task = WebFAQRetrieval()
eval_split = "test"

evaluation = MTEB(tasks=[task])
evaluation.run(
    model,
    eval_splits=[eval_split],
    output_folder="output",
    overwrite_results=True
)
```

## Considerations

Please note the following considerations when using the collected QAs:

- *[Q&A Dataset]* **Risk of Duplicate or Near-Duplicate Content**: The raw Q&A dataset is large and includes minor paraphrases.  
- *[Retrieval Dataset]* **Sparse Relevance**: As raw FAQ data, each question typically has one “best” (on-page) answer. Additional valid answers may exist on other websites but are not labeled as relevant.  
- **Language Detection Limitations**: Some QA pairs mix languages, or contain brand names, which can confuse automatic language classification.  
- **No Guarantee of Factual Accuracy**: Answers reflect the content of the source websites. They may include outdated, biased, or incorrect information.  
- **Copyright and Privacy**: Please ensure compliance with any applicable laws and the source website’s terms.

## License

The **Collection of WebFAQ Datasets** is shared under [**Creative Commons Attribution 4.0 (CC BY 4.0)**](https://creativecommons.org/licenses/by/4.0/) license.

> **Note**: The dataset is derived from public webpages in Common Crawl snapshots (2022–2024) and intended for **research purposes**. Each FAQ’s text is published by the original website under their terms. Downstream users should verify any usage constraints from the **original websites** as well as [Common Crawl’s Terms of Use](https://commoncrawl.org/terms-of-use/).

## Citation

If you use this dataset in your research, please consider citing the associated paper:

```bibtex
@misc{dinzinger2025webfaq,
    title={WebFAQ: A Multilingual Collection of Natural Q&amp;A Datasets for Dense Retrieval},
    author={Michael Dinzinger and Laura Caspari and Kanishka Ghosh Dastidar and Jelena Mitrović and Michael Granitzer},
    year={2025},
    eprint={2502.20936},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

## Contact

For inquiries and feedback, please feel free to contact us via E-Mail ([[email protected]](mailto:[email protected])) or start a discussion on HuggingFace or GitHub.

## Acknowledgement

We thank the Common Crawl and Web Data Commons teams for providing the underlying data, and all contributors who helped shape the WebFAQ project.

### Thank you

We hope the **Collection of WebFAQ Datasets** serves as a valuable resource for your research. Please consider citing it in any publications or projects that use it. If you encounter issues or want to contribute improvements, feel free to get in touch with us on HuggingFace or GitHub.

Happy researching!