Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
json
Sub-tasks:
document-retrieval
Size:
10M - 100M
ArXiv:
Tags:
text-retrieval
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -41,10 +41,10 @@ dataset_info:
|
|
41 |
dtype: float64
|
42 |
splits:
|
43 |
- name: train
|
44 |
-
num_bytes:
|
45 |
-
num_examples:
|
46 |
- name: test
|
47 |
-
num_bytes:
|
48 |
num_examples: 10000
|
49 |
- config_name: ara-corpus
|
50 |
features:
|
@@ -56,8 +56,8 @@ dataset_info:
|
|
56 |
dtype: string
|
57 |
splits:
|
58 |
- name: corpus
|
59 |
-
num_bytes:
|
60 |
-
num_examples:
|
61 |
- config_name: ara-queries
|
62 |
features:
|
63 |
- name: _id
|
@@ -66,8 +66,8 @@ dataset_info:
|
|
66 |
dtype: string
|
67 |
splits:
|
68 |
- name: queries
|
69 |
-
num_bytes:
|
70 |
-
num_examples:
|
71 |
- config_name: dan-qrels
|
72 |
features:
|
73 |
- name: query-id
|
@@ -78,10 +78,10 @@ dataset_info:
|
|
78 |
dtype: float64
|
79 |
splits:
|
80 |
- name: train
|
81 |
-
num_bytes:
|
82 |
-
num_examples:
|
83 |
- name: test
|
84 |
-
num_bytes:
|
85 |
num_examples: 10000
|
86 |
- config_name: dan-corpus
|
87 |
features:
|
@@ -93,8 +93,8 @@ dataset_info:
|
|
93 |
dtype: string
|
94 |
splits:
|
95 |
- name: corpus
|
96 |
-
num_bytes:
|
97 |
-
num_examples:
|
98 |
- config_name: dan-queries
|
99 |
features:
|
100 |
- name: _id
|
@@ -103,8 +103,8 @@ dataset_info:
|
|
103 |
dtype: string
|
104 |
splits:
|
105 |
- name: queries
|
106 |
-
num_bytes:
|
107 |
-
num_examples:
|
108 |
- config_name: deu-qrels
|
109 |
features:
|
110 |
- name: query-id
|
@@ -115,10 +115,10 @@ dataset_info:
|
|
115 |
dtype: float64
|
116 |
splits:
|
117 |
- name: train
|
118 |
-
num_bytes:
|
119 |
-
num_examples:
|
120 |
- name: test
|
121 |
-
num_bytes:
|
122 |
num_examples: 10000
|
123 |
- config_name: deu-corpus
|
124 |
features:
|
@@ -130,8 +130,8 @@ dataset_info:
|
|
130 |
dtype: string
|
131 |
splits:
|
132 |
- name: corpus
|
133 |
-
num_bytes:
|
134 |
-
num_examples:
|
135 |
- config_name: deu-queries
|
136 |
features:
|
137 |
- name: _id
|
@@ -140,8 +140,8 @@ dataset_info:
|
|
140 |
dtype: string
|
141 |
splits:
|
142 |
- name: queries
|
143 |
-
num_bytes:
|
144 |
-
num_examples:
|
145 |
- config_name: eng-qrels
|
146 |
features:
|
147 |
- name: query-id
|
@@ -152,10 +152,10 @@ dataset_info:
|
|
152 |
dtype: float64
|
153 |
splits:
|
154 |
- name: train
|
155 |
-
num_bytes:
|
156 |
-
num_examples:
|
157 |
- name: test
|
158 |
-
num_bytes:
|
159 |
num_examples: 10000
|
160 |
- config_name: eng-corpus
|
161 |
features:
|
@@ -167,8 +167,8 @@ dataset_info:
|
|
167 |
dtype: string
|
168 |
splits:
|
169 |
- name: corpus
|
170 |
-
num_bytes:
|
171 |
-
num_examples:
|
172 |
- config_name: eng-queries
|
173 |
features:
|
174 |
- name: _id
|
@@ -177,8 +177,8 @@ dataset_info:
|
|
177 |
dtype: string
|
178 |
splits:
|
179 |
- name: queries
|
180 |
-
num_bytes:
|
181 |
-
num_examples:
|
182 |
- config_name: fas-qrels
|
183 |
features:
|
184 |
- name: query-id
|
@@ -189,10 +189,10 @@ dataset_info:
|
|
189 |
dtype: float64
|
190 |
splits:
|
191 |
- name: train
|
192 |
-
num_bytes:
|
193 |
-
num_examples:
|
194 |
- name: test
|
195 |
-
num_bytes:
|
196 |
num_examples: 10000
|
197 |
- config_name: fas-corpus
|
198 |
features:
|
@@ -204,8 +204,8 @@ dataset_info:
|
|
204 |
dtype: string
|
205 |
splits:
|
206 |
- name: corpus
|
207 |
-
num_bytes:
|
208 |
-
num_examples:
|
209 |
- config_name: fas-queries
|
210 |
features:
|
211 |
- name: _id
|
@@ -214,8 +214,8 @@ dataset_info:
|
|
214 |
dtype: string
|
215 |
splits:
|
216 |
- name: queries
|
217 |
-
num_bytes:
|
218 |
-
num_examples:
|
219 |
- config_name: fra-qrels
|
220 |
features:
|
221 |
- name: query-id
|
@@ -226,10 +226,10 @@ dataset_info:
|
|
226 |
dtype: float64
|
227 |
splits:
|
228 |
- name: train
|
229 |
-
num_bytes:
|
230 |
-
num_examples:
|
231 |
- name: test
|
232 |
-
num_bytes:
|
233 |
num_examples: 10000
|
234 |
- config_name: fra-corpus
|
235 |
features:
|
@@ -241,8 +241,8 @@ dataset_info:
|
|
241 |
dtype: string
|
242 |
splits:
|
243 |
- name: corpus
|
244 |
-
num_bytes:
|
245 |
-
num_examples:
|
246 |
- config_name: fra-queries
|
247 |
features:
|
248 |
- name: _id
|
@@ -251,8 +251,8 @@ dataset_info:
|
|
251 |
dtype: string
|
252 |
splits:
|
253 |
- name: queries
|
254 |
-
num_bytes:
|
255 |
-
num_examples:
|
256 |
- config_name: hin-qrels
|
257 |
features:
|
258 |
- name: query-id
|
@@ -263,11 +263,11 @@ dataset_info:
|
|
263 |
dtype: float64
|
264 |
splits:
|
265 |
- name: train
|
266 |
-
num_bytes:
|
267 |
-
num_examples:
|
268 |
- name: test
|
269 |
-
num_bytes:
|
270 |
-
num_examples:
|
271 |
- config_name: hin-corpus
|
272 |
features:
|
273 |
- name: _id
|
@@ -278,8 +278,8 @@ dataset_info:
|
|
278 |
dtype: string
|
279 |
splits:
|
280 |
- name: corpus
|
281 |
-
num_bytes:
|
282 |
-
num_examples:
|
283 |
- config_name: hin-queries
|
284 |
features:
|
285 |
- name: _id
|
@@ -288,8 +288,8 @@ dataset_info:
|
|
288 |
dtype: string
|
289 |
splits:
|
290 |
- name: queries
|
291 |
-
num_bytes:
|
292 |
-
num_examples:
|
293 |
- config_name: ind-qrels
|
294 |
features:
|
295 |
- name: query-id
|
@@ -300,11 +300,11 @@ dataset_info:
|
|
300 |
dtype: float64
|
301 |
splits:
|
302 |
- name: train
|
303 |
-
num_bytes:
|
304 |
-
num_examples:
|
305 |
- name: test
|
306 |
-
num_bytes:
|
307 |
-
num_examples:
|
308 |
- config_name: ind-corpus
|
309 |
features:
|
310 |
- name: _id
|
@@ -315,8 +315,8 @@ dataset_info:
|
|
315 |
dtype: string
|
316 |
splits:
|
317 |
- name: corpus
|
318 |
-
num_bytes:
|
319 |
-
num_examples:
|
320 |
- config_name: ind-queries
|
321 |
features:
|
322 |
- name: _id
|
@@ -325,8 +325,8 @@ dataset_info:
|
|
325 |
dtype: string
|
326 |
splits:
|
327 |
- name: queries
|
328 |
-
num_bytes:
|
329 |
-
num_examples:
|
330 |
- config_name: ita-qrels
|
331 |
features:
|
332 |
- name: query-id
|
@@ -337,10 +337,10 @@ dataset_info:
|
|
337 |
dtype: float64
|
338 |
splits:
|
339 |
- name: train
|
340 |
-
num_bytes:
|
341 |
-
num_examples:
|
342 |
- name: test
|
343 |
-
num_bytes:
|
344 |
num_examples: 10000
|
345 |
- config_name: ita-corpus
|
346 |
features:
|
@@ -352,8 +352,8 @@ dataset_info:
|
|
352 |
dtype: string
|
353 |
splits:
|
354 |
- name: corpus
|
355 |
-
num_bytes:
|
356 |
-
num_examples:
|
357 |
- config_name: ita-queries
|
358 |
features:
|
359 |
- name: _id
|
@@ -362,8 +362,8 @@ dataset_info:
|
|
362 |
dtype: string
|
363 |
splits:
|
364 |
- name: queries
|
365 |
-
num_bytes:
|
366 |
-
num_examples:
|
367 |
- config_name: jpn-qrels
|
368 |
features:
|
369 |
- name: query-id
|
@@ -374,10 +374,10 @@ dataset_info:
|
|
374 |
dtype: float64
|
375 |
splits:
|
376 |
- name: train
|
377 |
-
num_bytes:
|
378 |
-
num_examples:
|
379 |
- name: test
|
380 |
-
num_bytes:
|
381 |
num_examples: 10000
|
382 |
- config_name: jpn-corpus
|
383 |
features:
|
@@ -389,8 +389,8 @@ dataset_info:
|
|
389 |
dtype: string
|
390 |
splits:
|
391 |
- name: corpus
|
392 |
-
num_bytes:
|
393 |
-
num_examples:
|
394 |
- config_name: jpn-queries
|
395 |
features:
|
396 |
- name: _id
|
@@ -399,8 +399,8 @@ dataset_info:
|
|
399 |
dtype: string
|
400 |
splits:
|
401 |
- name: queries
|
402 |
-
num_bytes:
|
403 |
-
num_examples:
|
404 |
- config_name: kor-qrels
|
405 |
features:
|
406 |
- name: query-id
|
@@ -411,11 +411,11 @@ dataset_info:
|
|
411 |
dtype: float64
|
412 |
splits:
|
413 |
- name: train
|
414 |
-
num_bytes:
|
415 |
-
num_examples:
|
416 |
- name: test
|
417 |
-
num_bytes:
|
418 |
-
num_examples:
|
419 |
- config_name: kor-corpus
|
420 |
features:
|
421 |
- name: _id
|
@@ -426,8 +426,8 @@ dataset_info:
|
|
426 |
dtype: string
|
427 |
splits:
|
428 |
- name: corpus
|
429 |
-
num_bytes:
|
430 |
-
num_examples:
|
431 |
- config_name: kor-queries
|
432 |
features:
|
433 |
- name: _id
|
@@ -436,8 +436,8 @@ dataset_info:
|
|
436 |
dtype: string
|
437 |
splits:
|
438 |
- name: queries
|
439 |
-
num_bytes:
|
440 |
-
num_examples:
|
441 |
- config_name: nld-qrels
|
442 |
features:
|
443 |
- name: query-id
|
@@ -448,10 +448,10 @@ dataset_info:
|
|
448 |
dtype: float64
|
449 |
splits:
|
450 |
- name: train
|
451 |
-
num_bytes:
|
452 |
-
num_examples:
|
453 |
- name: test
|
454 |
-
num_bytes:
|
455 |
num_examples: 10000
|
456 |
- config_name: nld-corpus
|
457 |
features:
|
@@ -463,8 +463,8 @@ dataset_info:
|
|
463 |
dtype: string
|
464 |
splits:
|
465 |
- name: corpus
|
466 |
-
num_bytes:
|
467 |
-
num_examples:
|
468 |
- config_name: nld-queries
|
469 |
features:
|
470 |
- name: _id
|
@@ -473,8 +473,8 @@ dataset_info:
|
|
473 |
dtype: string
|
474 |
splits:
|
475 |
- name: queries
|
476 |
-
num_bytes:
|
477 |
-
num_examples:
|
478 |
- config_name: pol-qrels
|
479 |
features:
|
480 |
- name: query-id
|
@@ -485,10 +485,10 @@ dataset_info:
|
|
485 |
dtype: float64
|
486 |
splits:
|
487 |
- name: train
|
488 |
-
num_bytes:
|
489 |
-
num_examples:
|
490 |
- name: test
|
491 |
-
num_bytes:
|
492 |
num_examples: 10000
|
493 |
- config_name: pol-corpus
|
494 |
features:
|
@@ -500,8 +500,8 @@ dataset_info:
|
|
500 |
dtype: string
|
501 |
splits:
|
502 |
- name: corpus
|
503 |
-
num_bytes:
|
504 |
-
num_examples:
|
505 |
- config_name: pol-queries
|
506 |
features:
|
507 |
- name: _id
|
@@ -510,8 +510,8 @@ dataset_info:
|
|
510 |
dtype: string
|
511 |
splits:
|
512 |
- name: queries
|
513 |
-
num_bytes:
|
514 |
-
num_examples:
|
515 |
- config_name: por-qrels
|
516 |
features:
|
517 |
- name: query-id
|
@@ -522,10 +522,10 @@ dataset_info:
|
|
522 |
dtype: float64
|
523 |
splits:
|
524 |
- name: train
|
525 |
-
num_bytes:
|
526 |
-
num_examples:
|
527 |
- name: test
|
528 |
-
num_bytes:
|
529 |
num_examples: 10000
|
530 |
- config_name: por-corpus
|
531 |
features:
|
@@ -537,8 +537,8 @@ dataset_info:
|
|
537 |
dtype: string
|
538 |
splits:
|
539 |
- name: corpus
|
540 |
-
num_bytes:
|
541 |
-
num_examples:
|
542 |
- config_name: por-queries
|
543 |
features:
|
544 |
- name: _id
|
@@ -547,8 +547,8 @@ dataset_info:
|
|
547 |
dtype: string
|
548 |
splits:
|
549 |
- name: queries
|
550 |
-
num_bytes:
|
551 |
-
num_examples:
|
552 |
- config_name: rus-qrels
|
553 |
features:
|
554 |
- name: query-id
|
@@ -559,10 +559,10 @@ dataset_info:
|
|
559 |
dtype: float64
|
560 |
splits:
|
561 |
- name: train
|
562 |
-
num_bytes:
|
563 |
-
num_examples:
|
564 |
- name: test
|
565 |
-
num_bytes:
|
566 |
num_examples: 10000
|
567 |
- config_name: rus-corpus
|
568 |
features:
|
@@ -574,8 +574,8 @@ dataset_info:
|
|
574 |
dtype: string
|
575 |
splits:
|
576 |
- name: corpus
|
577 |
-
num_bytes:
|
578 |
-
num_examples:
|
579 |
- config_name: rus-queries
|
580 |
features:
|
581 |
- name: _id
|
@@ -584,8 +584,8 @@ dataset_info:
|
|
584 |
dtype: string
|
585 |
splits:
|
586 |
- name: queries
|
587 |
-
num_bytes:
|
588 |
-
num_examples:
|
589 |
- config_name: spa-qrels
|
590 |
features:
|
591 |
- name: query-id
|
@@ -596,10 +596,10 @@ dataset_info:
|
|
596 |
dtype: float64
|
597 |
splits:
|
598 |
- name: train
|
599 |
-
num_bytes:
|
600 |
-
num_examples:
|
601 |
- name: test
|
602 |
-
num_bytes:
|
603 |
num_examples: 10000
|
604 |
- config_name: spa-corpus
|
605 |
features:
|
@@ -611,8 +611,8 @@ dataset_info:
|
|
611 |
dtype: string
|
612 |
splits:
|
613 |
- name: corpus
|
614 |
-
num_bytes:
|
615 |
-
num_examples:
|
616 |
- config_name: spa-queries
|
617 |
features:
|
618 |
- name: _id
|
@@ -621,8 +621,8 @@ dataset_info:
|
|
621 |
dtype: string
|
622 |
splits:
|
623 |
- name: queries
|
624 |
-
num_bytes:
|
625 |
-
num_examples:
|
626 |
- config_name: swe-qrels
|
627 |
features:
|
628 |
- name: query-id
|
@@ -633,10 +633,10 @@ dataset_info:
|
|
633 |
dtype: float64
|
634 |
splits:
|
635 |
- name: train
|
636 |
-
num_bytes:
|
637 |
-
num_examples:
|
638 |
- name: test
|
639 |
-
num_bytes:
|
640 |
num_examples: 10000
|
641 |
- config_name: swe-corpus
|
642 |
features:
|
@@ -648,8 +648,8 @@ dataset_info:
|
|
648 |
dtype: string
|
649 |
splits:
|
650 |
- name: corpus
|
651 |
-
num_bytes:
|
652 |
-
num_examples:
|
653 |
- config_name: swe-queries
|
654 |
features:
|
655 |
- name: _id
|
@@ -658,8 +658,8 @@ dataset_info:
|
|
658 |
dtype: string
|
659 |
splits:
|
660 |
- name: queries
|
661 |
-
num_bytes:
|
662 |
-
num_examples:
|
663 |
- config_name: tur-qrels
|
664 |
features:
|
665 |
- name: query-id
|
@@ -670,10 +670,10 @@ dataset_info:
|
|
670 |
dtype: float64
|
671 |
splits:
|
672 |
- name: train
|
673 |
-
num_bytes:
|
674 |
-
num_examples:
|
675 |
- name: test
|
676 |
-
num_bytes:
|
677 |
num_examples: 10000
|
678 |
- config_name: tur-corpus
|
679 |
features:
|
@@ -685,8 +685,8 @@ dataset_info:
|
|
685 |
dtype: string
|
686 |
splits:
|
687 |
- name: corpus
|
688 |
-
num_bytes:
|
689 |
-
num_examples:
|
690 |
- config_name: tur-queries
|
691 |
features:
|
692 |
- name: _id
|
@@ -695,8 +695,8 @@ dataset_info:
|
|
695 |
dtype: string
|
696 |
splits:
|
697 |
- name: queries
|
698 |
-
num_bytes:
|
699 |
-
num_examples:
|
700 |
- config_name: vie-qrels
|
701 |
features:
|
702 |
- name: query-id
|
@@ -707,10 +707,10 @@ dataset_info:
|
|
707 |
dtype: float64
|
708 |
splits:
|
709 |
- name: train
|
710 |
-
num_bytes:
|
711 |
-
num_examples:
|
712 |
- name: test
|
713 |
-
num_bytes:
|
714 |
num_examples: 10000
|
715 |
- config_name: vie-corpus
|
716 |
features:
|
@@ -722,8 +722,8 @@ dataset_info:
|
|
722 |
dtype: string
|
723 |
splits:
|
724 |
- name: corpus
|
725 |
-
num_bytes:
|
726 |
-
num_examples:
|
727 |
- config_name: vie-queries
|
728 |
features:
|
729 |
- name: _id
|
@@ -732,8 +732,8 @@ dataset_info:
|
|
732 |
dtype: string
|
733 |
splits:
|
734 |
- name: queries
|
735 |
-
num_bytes:
|
736 |
-
num_examples:
|
737 |
- config_name: zho-qrels
|
738 |
features:
|
739 |
- name: query-id
|
@@ -744,10 +744,10 @@ dataset_info:
|
|
744 |
dtype: float64
|
745 |
splits:
|
746 |
- name: train
|
747 |
-
num_bytes:
|
748 |
-
num_examples:
|
749 |
- name: test
|
750 |
-
num_bytes:
|
751 |
num_examples: 10000
|
752 |
- config_name: zho-corpus
|
753 |
features:
|
@@ -759,8 +759,8 @@ dataset_info:
|
|
759 |
dtype: string
|
760 |
splits:
|
761 |
- name: corpus
|
762 |
-
num_bytes:
|
763 |
-
num_examples:
|
764 |
- config_name: zho-queries
|
765 |
features:
|
766 |
- name: _id
|
@@ -769,8 +769,8 @@ dataset_info:
|
|
769 |
dtype: string
|
770 |
splits:
|
771 |
- name: queries
|
772 |
-
num_bytes:
|
773 |
-
num_examples:
|
774 |
configs:
|
775 |
- config_name: ara-qrels
|
776 |
data_files:
|
@@ -1052,198 +1052,4 @@ configs:
|
|
1052 |
data_files:
|
1053 |
- split: queries
|
1054 |
path: zho/queries.jsonl
|
1055 |
-
---
|
1056 |
-
<h1 align="center">WebFAQ Retrieval Dataset</h1>
|
1057 |
-
<h4 align="center">
|
1058 |
-
<p>
|
1059 |
-
<a href=#overview>Overview</a> |
|
1060 |
-
<a href=#details>Details</a> |
|
1061 |
-
<a href=#structure>Structure</a> |
|
1062 |
-
<a href=#examples>Examples</a> |
|
1063 |
-
<a href=#considerations>Considerations</a> |
|
1064 |
-
<a href=#license>License</a> |
|
1065 |
-
<a href=#citation>Citation</a> |
|
1066 |
-
<a href=#contact>Contact</a> |
|
1067 |
-
<a href=#acknowledgement>Acknowledgement</a>
|
1068 |
-
<p>
|
1069 |
-
</h4>
|
1070 |
-
|
1071 |
-
## Overview
|
1072 |
-
|
1073 |
-
The **WebFAQ Retrieval Dataset** is a carefully **filtered and curated subset** of the broader [WebFAQ Q&A Dataset](https://huggingface.co/datasets/anonymous202501/webfaq).
|
1074 |
-
It is **purpose-built for Information Retrieval (IR)** tasks, such as **training and evaluating** dense or sparse retrieval models in **multiple languages**.
|
1075 |
-
|
1076 |
-
Each of the **20 largest** languages from the WebFAQ corpus has been **thoroughly cleaned** and **refined** to ensure an unblurred notion of relevance between a query (question) and its corresponding document (answer). In particular, we applied:
|
1077 |
-
|
1078 |
-
- **Deduplication** of near-identical questions,
|
1079 |
-
- **Semantic consistency checks** for question-answer alignment,
|
1080 |
-
- **Train/Test splits** for retrieval experiments.
|
1081 |
-
|
1082 |
-
## Details
|
1083 |
-
|
1084 |
-
### Languages
|
1085 |
-
|
1086 |
-
The **WebFAQ Retrieval Dataset** covers **20 high-resource languages** from the original WebFAQ corpus, each comprising tens of thousands to hundreds of thousands of QA pairs after our rigorous filtering steps:
|
1087 |
-
|
1088 |
-
| Language | # QA pairs |
|
1089 |
-
|----------|-----------:|
|
1090 |
-
| ara | 143k |
|
1091 |
-
| dan | 138k |
|
1092 |
-
| deu | 891k |
|
1093 |
-
| eng | 5.28M |
|
1094 |
-
| fas | 227k |
|
1095 |
-
| fra | 570k |
|
1096 |
-
| hin | 96.6k |
|
1097 |
-
| ind | 96.6k |
|
1098 |
-
| ita | 209k |
|
1099 |
-
| jpn | 280k |
|
1100 |
-
| kor | 79.1k |
|
1101 |
-
| nld | 349k |
|
1102 |
-
| pol | 179k |
|
1103 |
-
| por | 186k |
|
1104 |
-
| rus | 346k |
|
1105 |
-
| spa | 558k |
|
1106 |
-
| swe | 144k |
|
1107 |
-
| tur | 110k |
|
1108 |
-
| vie | 105k |
|
1109 |
-
| zho | 125k |
|
1110 |
-
|
1111 |
-
## Structure
|
1112 |
-
|
1113 |
-
Unlike the raw Q&A dataset, **WebFAQ Retrieval** provides explicit **train/test splits** for each of the 20 languages. The general structure for each language is:
|
1114 |
-
|
1115 |
-
- **Corpus**: A set of unique documents (answers) with IDs and text fields.
|
1116 |
-
- **Queries**: A set of question strings, each tied to a document ID for relevance.
|
1117 |
-
- **Qrels**: Relevance labels, mapping each question to its relevant document (corresponding answer).
|
1118 |
-
|
1119 |
-
### Folder Layout (e.g., for eng)
|
1120 |
-
|
1121 |
-
```
|
1122 |
-
eng/
|
1123 |
-
├── corpus.jsonl # all unique documents (answers)
|
1124 |
-
├── queries.jsonl # all queries for train/test
|
1125 |
-
├── train.jsonl # relevance annotations for train
|
1126 |
-
└── test.jsonl # relevance annotations for test
|
1127 |
-
```
|
1128 |
-
|
1129 |
-
## Examples
|
1130 |
-
|
1131 |
-
Below is a small snippet showing how to load English train/test sets with [🤗 Datasets](https://github.com/huggingface/datasets):
|
1132 |
-
|
1133 |
-
```python
|
1134 |
-
import json
|
1135 |
-
from datasets import load_dataset
|
1136 |
-
from tqdm import tqdm
|
1137 |
-
|
1138 |
-
# Load train qrels
|
1139 |
-
train_qrels = load_dataset(
|
1140 |
-
"anonymous202501/webfaq-retrieval",
|
1141 |
-
"eng-qrels",
|
1142 |
-
split="train"
|
1143 |
-
)
|
1144 |
-
|
1145 |
-
# Inspect first qrel
|
1146 |
-
print(json.dumps(train_qrels[0], indent=4))
|
1147 |
-
|
1148 |
-
# Load the corpus (answers)
|
1149 |
-
data_corpus = load_dataset(
|
1150 |
-
"anonymous202501/webfaq-retrieval",
|
1151 |
-
"eng-corpus",
|
1152 |
-
split="corpus"
|
1153 |
-
)
|
1154 |
-
corpus = {
|
1155 |
-
d["_id"]: {"title": d["title"], "text": d["text"]} for d in tqdm(data_corpus)
|
1156 |
-
}
|
1157 |
-
|
1158 |
-
# Inspect first document
|
1159 |
-
print("Document:")
|
1160 |
-
print(json.dumps(corpus[train_qrels[0]["corpus-id"]], indent=4))
|
1161 |
-
|
1162 |
-
# Load all queries
|
1163 |
-
data_queries = load_dataset(
|
1164 |
-
"anonymous202501/webfaq-retrieval",
|
1165 |
-
"eng-queries",
|
1166 |
-
split="queries"
|
1167 |
-
)
|
1168 |
-
queries = {
|
1169 |
-
q["_id"]: q["text"] for q in tqdm(data_queries)
|
1170 |
-
}
|
1171 |
-
|
1172 |
-
# Inspect first query
|
1173 |
-
print("Query:")
|
1174 |
-
print(json.dumps(queries[train_qrels[0]["query-id"]], indent=4))
|
1175 |
-
|
1176 |
-
# Keep only those queries with relevance annotations
|
1177 |
-
query_ids = set([q["query-id"] for q in train_qrels])
|
1178 |
-
queries = {
|
1179 |
-
qid: query for qid, query in queries.items() if qid in query_ids
|
1180 |
-
}
|
1181 |
-
print(f"Number of queries: {len(queries)}")
|
1182 |
-
```
|
1183 |
-
|
1184 |
-
Below is a code snippet showing how to evaluate retrieval performance using the `mteb` library:
|
1185 |
-
|
1186 |
-
> **Note**: WebFAQ is not yet available as multilingual task in the `mteb` library. The code snippet below is a placeholder for when it becomes available.
|
1187 |
-
|
1188 |
-
```python
|
1189 |
-
from mteb import MTEB
|
1190 |
-
from mteb.tasks.Retrieval.multilingual.WebFAQRetrieval import WebFAQRetrieval
|
1191 |
-
|
1192 |
-
# ... Load model ...
|
1193 |
-
|
1194 |
-
# Load the WebFAQ task
|
1195 |
-
task = WebFAQRetrieval()
|
1196 |
-
eval_split = "test"
|
1197 |
-
|
1198 |
-
evaluation = MTEB(tasks=[task])
|
1199 |
-
evaluation.run(
|
1200 |
-
model,
|
1201 |
-
eval_splits=[eval_split],
|
1202 |
-
output_folder="output",
|
1203 |
-
overwrite_results=True
|
1204 |
-
)
|
1205 |
-
```
|
1206 |
-
|
1207 |
-
## Considerations
|
1208 |
-
|
1209 |
-
Please note the following considerations when using the collected QAs:
|
1210 |
-
|
1211 |
-
- *[Q&A Dataset]* **Risk of Duplicate or Near-Duplicate Content**: The raw Q&A dataset is large and includes minor paraphrases.
|
1212 |
-
- *[Retrieval Dataset]* **Sparse Relevance**: As raw FAQ data, each question typically has one “best” (on-page) answer. Additional valid answers may exist on other websites but are not labeled as relevant.
|
1213 |
-
- **Language Detection Limitations**: Some QA pairs mix languages, or contain brand names, which can confuse automatic language classification.
|
1214 |
-
- **No Guarantee of Factual Accuracy**: Answers reflect the content of the source websites. They may include outdated, biased, or incorrect information.
|
1215 |
-
- **Copyright and Privacy**: Please ensure compliance with any applicable laws and the source website’s terms.
|
1216 |
-
|
1217 |
-
## License
|
1218 |
-
|
1219 |
-
The **Collection of WebFAQ Datasets** is shared under [**Creative Commons Attribution 4.0 (CC BY 4.0)**](https://creativecommons.org/licenses/by/4.0/) license.
|
1220 |
-
|
1221 |
-
> **Note**: The dataset is derived from public webpages in Common Crawl snapshots (2022–2024) and intended for **research purposes**. Each FAQ’s text is published by the original website under their terms. Downstream users should verify any usage constraints from the **original websites** as well as [Common Crawl’s Terms of Use](https://commoncrawl.org/terms-of-use/).
|
1222 |
-
|
1223 |
-
## Citation
|
1224 |
-
|
1225 |
-
If you use this dataset in your research, please consider citing the associated paper:
|
1226 |
-
|
1227 |
-
```bibtex
|
1228 |
-
@misc{webfaq2025,
|
1229 |
-
title = {WebFAQ: A Multilingual Collection of Natural Q&A Datasets for Dense Retrieval},
|
1230 |
-
author = {Anonymous Author(s)},
|
1231 |
-
year = {2025},
|
1232 |
-
howpublished = {...},
|
1233 |
-
note = {Under review}
|
1234 |
-
}
|
1235 |
-
```
|
1236 |
-
|
1237 |
-
## Contact
|
1238 |
-
|
1239 |
-
TBD
|
1240 |
-
|
1241 |
-
## Acknowledgement
|
1242 |
-
|
1243 |
-
We thank the Common Crawl and Web Data Commons teams for providing the underlying data, and all contributors who helped shape the WebFAQ project.
|
1244 |
-
|
1245 |
-
### Thank you
|
1246 |
-
|
1247 |
-
We hope the **Collection of WebFAQ Datasets** serves as a valuable resource for your research. Please consider citing it in any publications or projects that use it. If you encounter issues or want to contribute improvements, feel free to get in touch with us on HuggingFace or GitHub.
|
1248 |
-
|
1249 |
-
Happy researching!
|
|
|
41 |
dtype: float64
|
42 |
splits:
|
43 |
- name: train
|
44 |
+
num_bytes: 6293965
|
45 |
+
num_examples: 132664
|
46 |
- name: test
|
47 |
+
num_bytes: 474351
|
48 |
num_examples: 10000
|
49 |
- config_name: ara-corpus
|
50 |
features:
|
|
|
56 |
dtype: string
|
57 |
splits:
|
58 |
- name: corpus
|
59 |
+
num_bytes: 162827578
|
60 |
+
num_examples: 142664
|
61 |
- config_name: ara-queries
|
62 |
features:
|
63 |
- name: _id
|
|
|
66 |
dtype: string
|
67 |
splits:
|
68 |
- name: queries
|
69 |
+
num_bytes: 35458944
|
70 |
+
num_examples: 142664
|
71 |
- config_name: dan-qrels
|
72 |
features:
|
73 |
- name: query-id
|
|
|
78 |
dtype: float64
|
79 |
splits:
|
80 |
- name: train
|
81 |
+
num_bytes: 6050436
|
82 |
+
num_examples: 127686
|
83 |
- name: test
|
84 |
+
num_bytes: 473958
|
85 |
num_examples: 10000
|
86 |
- config_name: dan-corpus
|
87 |
features:
|
|
|
93 |
dtype: string
|
94 |
splits:
|
95 |
- name: corpus
|
96 |
+
num_bytes: 49171909
|
97 |
+
num_examples: 137686
|
98 |
- config_name: dan-queries
|
99 |
features:
|
100 |
- name: _id
|
|
|
103 |
dtype: string
|
104 |
splits:
|
105 |
- name: queries
|
106 |
+
num_bytes: 10733277
|
107 |
+
num_examples: 137686
|
108 |
- config_name: deu-qrels
|
109 |
features:
|
110 |
- name: query-id
|
|
|
115 |
dtype: float64
|
116 |
splits:
|
117 |
- name: train
|
118 |
+
num_bytes: 42959189
|
119 |
+
num_examples: 881201
|
120 |
- name: test
|
121 |
+
num_bytes: 487440
|
122 |
num_examples: 10000
|
123 |
- config_name: deu-corpus
|
124 |
features:
|
|
|
130 |
dtype: string
|
131 |
splits:
|
132 |
- name: corpus
|
133 |
+
num_bytes: 377457585
|
134 |
+
num_examples: 891201
|
135 |
- config_name: deu-queries
|
136 |
features:
|
137 |
- name: _id
|
|
|
140 |
dtype: string
|
141 |
splits:
|
142 |
- name: queries
|
143 |
+
num_bytes: 72730983
|
144 |
+
num_examples: 891201
|
145 |
- config_name: eng-qrels
|
146 |
features:
|
147 |
- name: query-id
|
|
|
152 |
dtype: float64
|
153 |
splits:
|
154 |
- name: train
|
155 |
+
num_bytes: 266487037
|
156 |
+
num_examples: 5268725
|
157 |
- name: test
|
158 |
+
num_bytes: 505718
|
159 |
num_examples: 10000
|
160 |
- config_name: eng-corpus
|
161 |
features:
|
|
|
167 |
dtype: string
|
168 |
splits:
|
169 |
- name: corpus
|
170 |
+
num_bytes: 1772481467
|
171 |
+
num_examples: 5278725
|
172 |
- config_name: eng-queries
|
173 |
features:
|
174 |
- name: _id
|
|
|
177 |
dtype: string
|
178 |
splits:
|
179 |
- name: queries
|
180 |
+
num_bytes: 394021606
|
181 |
+
num_examples: 5278725
|
182 |
- config_name: fas-qrels
|
183 |
features:
|
184 |
- name: query-id
|
|
|
189 |
dtype: float64
|
190 |
splits:
|
191 |
- name: train
|
192 |
+
num_bytes: 10417693
|
193 |
+
num_examples: 216940
|
194 |
- name: test
|
195 |
+
num_bytes: 480147
|
196 |
num_examples: 10000
|
197 |
- config_name: fas-corpus
|
198 |
features:
|
|
|
204 |
dtype: string
|
205 |
splits:
|
206 |
- name: corpus
|
207 |
+
num_bytes: 240471393
|
208 |
+
num_examples: 226940
|
209 |
- config_name: fas-queries
|
210 |
features:
|
211 |
- name: _id
|
|
|
214 |
dtype: string
|
215 |
splits:
|
216 |
- name: queries
|
217 |
+
num_bytes: 57867968
|
218 |
+
num_examples: 226940
|
219 |
- config_name: fra-qrels
|
220 |
features:
|
221 |
- name: query-id
|
|
|
226 |
dtype: float64
|
227 |
splits:
|
228 |
- name: train
|
229 |
+
num_bytes: 27197426
|
230 |
+
num_examples: 559505
|
231 |
- name: test
|
232 |
+
num_bytes: 486099
|
233 |
num_examples: 10000
|
234 |
- config_name: fra-corpus
|
235 |
features:
|
|
|
241 |
dtype: string
|
242 |
splits:
|
243 |
- name: corpus
|
244 |
+
num_bytes: 256564231
|
245 |
+
num_examples: 569505
|
246 |
- config_name: fra-queries
|
247 |
features:
|
248 |
- name: _id
|
|
|
251 |
dtype: string
|
252 |
splits:
|
253 |
- name: queries
|
254 |
+
num_bytes: 51751140
|
255 |
+
num_examples: 569505
|
256 |
- config_name: hin-qrels
|
257 |
features:
|
258 |
- name: query-id
|
|
|
263 |
dtype: float64
|
264 |
splits:
|
265 |
- name: train
|
266 |
+
num_bytes: 4211543
|
267 |
+
num_examples: 90031
|
268 |
- name: test
|
269 |
+
num_bytes: 467756
|
270 |
+
num_examples: 10000
|
271 |
- config_name: hin-corpus
|
272 |
features:
|
273 |
- name: _id
|
|
|
278 |
dtype: string
|
279 |
splits:
|
280 |
- name: corpus
|
281 |
+
num_bytes: 87202578
|
282 |
+
num_examples: 100031
|
283 |
- config_name: hin-queries
|
284 |
features:
|
285 |
- name: _id
|
|
|
288 |
dtype: string
|
289 |
splits:
|
290 |
- name: queries
|
291 |
+
num_bytes: 24557386
|
292 |
+
num_examples: 100031
|
293 |
- config_name: ind-qrels
|
294 |
features:
|
295 |
- name: query-id
|
|
|
300 |
dtype: float64
|
301 |
splits:
|
302 |
- name: train
|
303 |
+
num_bytes: 4762307
|
304 |
+
num_examples: 101315
|
305 |
- name: test
|
306 |
+
num_bytes: 469908
|
307 |
+
num_examples: 10000
|
308 |
- config_name: ind-corpus
|
309 |
features:
|
310 |
- name: _id
|
|
|
315 |
dtype: string
|
316 |
splits:
|
317 |
- name: corpus
|
318 |
+
num_bytes: 32240964
|
319 |
+
num_examples: 111315
|
320 |
- config_name: ind-queries
|
321 |
features:
|
322 |
- name: _id
|
|
|
325 |
dtype: string
|
326 |
splits:
|
327 |
- name: queries
|
328 |
+
num_bytes: 8791501
|
329 |
+
num_examples: 111315
|
330 |
- config_name: ita-qrels
|
331 |
features:
|
332 |
- name: query-id
|
|
|
337 |
dtype: float64
|
338 |
splits:
|
339 |
- name: train
|
340 |
+
num_bytes: 11928808
|
341 |
+
num_examples: 247803
|
342 |
- name: test
|
343 |
+
num_bytes: 481319
|
344 |
num_examples: 10000
|
345 |
- config_name: ita-corpus
|
346 |
features:
|
|
|
352 |
dtype: string
|
353 |
splits:
|
354 |
- name: corpus
|
355 |
+
num_bytes: 96693889
|
356 |
+
num_examples: 257803
|
357 |
- config_name: ita-queries
|
358 |
features:
|
359 |
- name: _id
|
|
|
362 |
dtype: string
|
363 |
splits:
|
364 |
- name: queries
|
365 |
+
num_bytes: 21887337
|
366 |
+
num_examples: 257803
|
367 |
- config_name: jpn-qrels
|
368 |
features:
|
369 |
- name: query-id
|
|
|
374 |
dtype: float64
|
375 |
splits:
|
376 |
- name: train
|
377 |
+
num_bytes: 14443770
|
378 |
+
num_examples: 299157
|
379 |
- name: test
|
380 |
+
num_bytes: 482703
|
381 |
num_examples: 10000
|
382 |
- config_name: jpn-corpus
|
383 |
features:
|
|
|
389 |
dtype: string
|
390 |
splits:
|
391 |
- name: corpus
|
392 |
+
num_bytes: 254914767
|
393 |
+
num_examples: 309157
|
394 |
- config_name: jpn-queries
|
395 |
features:
|
396 |
- name: _id
|
|
|
399 |
dtype: string
|
400 |
splits:
|
401 |
- name: queries
|
402 |
+
num_bytes: 52646303
|
403 |
+
num_examples: 309157
|
404 |
- config_name: kor-qrels
|
405 |
features:
|
406 |
- name: query-id
|
|
|
411 |
dtype: float64
|
412 |
splits:
|
413 |
- name: train
|
414 |
+
num_bytes: 4307606
|
415 |
+
num_examples: 92000
|
416 |
- name: test
|
417 |
+
num_bytes: 468174
|
418 |
+
num_examples: 10000
|
419 |
- config_name: kor-corpus
|
420 |
features:
|
421 |
- name: _id
|
|
|
426 |
dtype: string
|
427 |
splits:
|
428 |
- name: corpus
|
429 |
+
num_bytes: 65463396
|
430 |
+
num_examples: 102000
|
431 |
- config_name: kor-queries
|
432 |
features:
|
433 |
- name: _id
|
|
|
436 |
dtype: string
|
437 |
splits:
|
438 |
- name: queries
|
439 |
+
num_bytes: 14462715
|
440 |
+
num_examples: 102000
|
441 |
- config_name: nld-qrels
|
442 |
features:
|
443 |
- name: query-id
|
|
|
448 |
dtype: float64
|
449 |
splits:
|
450 |
- name: train
|
451 |
+
num_bytes: 17456195
|
452 |
+
num_examples: 360662
|
453 |
- name: test
|
454 |
+
num_bytes: 484023
|
455 |
num_examples: 10000
|
456 |
- config_name: nld-corpus
|
457 |
features:
|
|
|
463 |
dtype: string
|
464 |
splits:
|
465 |
- name: corpus
|
466 |
+
num_bytes: 134247494
|
467 |
+
num_examples: 370662
|
468 |
- config_name: nld-queries
|
469 |
features:
|
470 |
- name: _id
|
|
|
473 |
dtype: string
|
474 |
splits:
|
475 |
- name: queries
|
476 |
+
num_bytes: 27592780
|
477 |
+
num_examples: 370662
|
478 |
- config_name: pol-qrels
|
479 |
features:
|
480 |
- name: query-id
|
|
|
485 |
dtype: float64
|
486 |
splits:
|
487 |
- name: train
|
488 |
+
num_bytes: 8732582
|
489 |
+
num_examples: 182515
|
490 |
- name: test
|
491 |
+
num_bytes: 478433
|
492 |
num_examples: 10000
|
493 |
- config_name: pol-corpus
|
494 |
features:
|
|
|
500 |
dtype: string
|
501 |
splits:
|
502 |
- name: corpus
|
503 |
+
num_bytes: 83829979
|
504 |
+
num_examples: 192515
|
505 |
- config_name: pol-queries
|
506 |
features:
|
507 |
- name: _id
|
|
|
510 |
dtype: string
|
511 |
splits:
|
512 |
- name: queries
|
513 |
+
num_bytes: 17279177
|
514 |
+
num_examples: 192515
|
515 |
- config_name: por-qrels
|
516 |
features:
|
517 |
- name: query-id
|
|
|
522 |
dtype: float64
|
523 |
splits:
|
524 |
- name: train
|
525 |
+
num_bytes: 9556791
|
526 |
+
num_examples: 199353
|
527 |
- name: test
|
528 |
+
num_bytes: 479286
|
529 |
num_examples: 10000
|
530 |
- config_name: por-corpus
|
531 |
features:
|
|
|
537 |
dtype: string
|
538 |
splits:
|
539 |
- name: corpus
|
540 |
+
num_bytes: 80179713
|
541 |
+
num_examples: 209353
|
542 |
- config_name: por-queries
|
543 |
features:
|
544 |
- name: _id
|
|
|
547 |
dtype: string
|
548 |
splits:
|
549 |
- name: queries
|
550 |
+
num_bytes: 17117819
|
551 |
+
num_examples: 209353
|
552 |
- config_name: rus-qrels
|
553 |
features:
|
554 |
- name: query-id
|
|
|
559 |
dtype: float64
|
560 |
splits:
|
561 |
- name: train
|
562 |
+
num_bytes: 18281224
|
563 |
+
num_examples: 377504
|
564 |
- name: test
|
565 |
+
num_bytes: 484252
|
566 |
num_examples: 10000
|
567 |
- config_name: rus-corpus
|
568 |
features:
|
|
|
574 |
dtype: string
|
575 |
splits:
|
576 |
- name: corpus
|
577 |
+
num_bytes: 612916055
|
578 |
+
num_examples: 387504
|
579 |
- config_name: rus-queries
|
580 |
features:
|
581 |
- name: _id
|
|
|
584 |
dtype: string
|
585 |
splits:
|
586 |
- name: queries
|
587 |
+
num_bytes: 117356334
|
588 |
+
num_examples: 387504
|
589 |
- config_name: spa-qrels
|
590 |
features:
|
591 |
- name: query-id
|
|
|
596 |
dtype: float64
|
597 |
splits:
|
598 |
- name: train
|
599 |
+
num_bytes: 28919818
|
600 |
+
num_examples: 594661
|
601 |
- name: test
|
602 |
+
num_bytes: 486351
|
603 |
num_examples: 10000
|
604 |
- config_name: spa-corpus
|
605 |
features:
|
|
|
611 |
dtype: string
|
612 |
splits:
|
613 |
- name: corpus
|
614 |
+
num_bytes: 240959272
|
615 |
+
num_examples: 604661
|
616 |
- config_name: spa-queries
|
617 |
features:
|
618 |
- name: _id
|
|
|
621 |
dtype: string
|
622 |
splits:
|
623 |
- name: queries
|
624 |
+
num_bytes: 54894661
|
625 |
+
num_examples: 604661
|
626 |
- config_name: swe-qrels
|
627 |
features:
|
628 |
- name: query-id
|
|
|
633 |
dtype: float64
|
634 |
splits:
|
635 |
- name: train
|
636 |
+
num_bytes: 7079817
|
637 |
+
num_examples: 148738
|
638 |
- name: test
|
639 |
+
num_bytes: 476125
|
640 |
num_examples: 10000
|
641 |
- config_name: swe-corpus
|
642 |
features:
|
|
|
648 |
dtype: string
|
649 |
splits:
|
650 |
- name: corpus
|
651 |
+
num_bytes: 59133680
|
652 |
+
num_examples: 158738
|
653 |
- config_name: swe-queries
|
654 |
features:
|
655 |
- name: _id
|
|
|
658 |
dtype: string
|
659 |
splits:
|
660 |
- name: queries
|
661 |
+
num_bytes: 12773304
|
662 |
+
num_examples: 158738
|
663 |
- config_name: tur-qrels
|
664 |
features:
|
665 |
- name: query-id
|
|
|
670 |
dtype: float64
|
671 |
splits:
|
672 |
- name: train
|
673 |
+
num_bytes: 6400585
|
674 |
+
num_examples: 134846
|
675 |
- name: test
|
676 |
+
num_bytes: 474649
|
677 |
num_examples: 10000
|
678 |
- config_name: tur-corpus
|
679 |
features:
|
|
|
685 |
dtype: string
|
686 |
splits:
|
687 |
- name: corpus
|
688 |
+
num_bytes: 57145253
|
689 |
+
num_examples: 144846
|
690 |
- config_name: tur-queries
|
691 |
features:
|
692 |
- name: _id
|
|
|
695 |
dtype: string
|
696 |
splits:
|
697 |
- name: queries
|
698 |
+
num_bytes: 11816043
|
699 |
+
num_examples: 144846
|
700 |
- config_name: vie-qrels
|
701 |
features:
|
702 |
- name: query-id
|
|
|
707 |
dtype: float64
|
708 |
splits:
|
709 |
- name: train
|
710 |
+
num_bytes: 5380433
|
711 |
+
num_examples: 113972
|
712 |
- name: test
|
713 |
+
num_bytes: 471975
|
714 |
num_examples: 10000
|
715 |
- config_name: vie-corpus
|
716 |
features:
|
|
|
722 |
dtype: string
|
723 |
splits:
|
724 |
- name: corpus
|
725 |
+
num_bytes: 76390471
|
726 |
+
num_examples: 123972
|
727 |
- config_name: vie-queries
|
728 |
features:
|
729 |
- name: _id
|
|
|
732 |
dtype: string
|
733 |
splits:
|
734 |
- name: queries
|
735 |
+
num_bytes: 16076620
|
736 |
+
num_examples: 123972
|
737 |
- config_name: zho-qrels
|
738 |
features:
|
739 |
- name: query-id
|
|
|
744 |
dtype: float64
|
745 |
splits:
|
746 |
- name: train
|
747 |
+
num_bytes: 5796592
|
748 |
+
num_examples: 122491
|
749 |
- name: test
|
750 |
+
num_bytes: 473247
|
751 |
num_examples: 10000
|
752 |
- config_name: zho-corpus
|
753 |
features:
|
|
|
759 |
dtype: string
|
760 |
splits:
|
761 |
- name: corpus
|
762 |
+
num_bytes: 79790293
|
763 |
+
num_examples: 132491
|
764 |
- config_name: zho-queries
|
765 |
features:
|
766 |
- name: _id
|
|
|
769 |
dtype: string
|
770 |
splits:
|
771 |
- name: queries
|
772 |
+
num_bytes: 15738014
|
773 |
+
num_examples: 132491
|
774 |
configs:
|
775 |
- config_name: ara-qrels
|
776 |
data_files:
|
|
|
1052 |
data_files:
|
1053 |
- split: queries
|
1054 |
path: zho/queries.jsonl
|
1055 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|