text
stringlengths 100
4.15k
| label
int64 0
4
|
---|---|
Kształty ziaren określa się zwykle w obrębie frakcji psefitowej. Dla uzyskania wiarygodnych danych potrzebna jest określona populacja pomiarów. Optymalną ilość daje próba składająca się z 300 ziaren, ale miarodajne wyniki uzyskiwane są już z pomiarów 100 ziaren. Oprócz danych metrycznych, charakterystyka każdego ziarna powinna obejmować identyfikację petrograficzną/mineralogiczną oraz cech strukturalnych. | 2 |
Posługiwanie się przez firmy z branży technologicznej terminem „platforma” na określenie prowadzonej działalności to działanie strategiczne, którego celem jest powiększanie zysków oraz umiejętne lawirowanie pomiędzy ochroną prawną, z której korzystają, a zobowiązaniami, jakie wynikają z prowadzonej przez nich działalności [7]. Określenie „platforma medialna” ma służyć również podkreśleniu ich roli jedynie jako swoistych pośredników treści oraz pozwala postrzegać ich jako „neutralnych”, co zabezpiecza przed odgórnymi regulacjami lub skargami użytkowników. Firmy te nie chcą być odbierane jak tradycyjne organizacje medialne czy agencje informacyjne, które produkują, dystrybuują i dostarczają informacje/treści/usługi, a także nimi zarządzają. Określanie własnej działalności jako „platforma medialna” pozwala również wyeliminować różne napięcia – związane z oferowanymi przez nie usługami – pomiędzy: treściami tworzonymi przez użytkowników a tworzonymi w celach komercyjnych; budowaniem wspólnot a dostarczaniem reklam; ingerencją w dostarczane treści a zachowaniem neutralnej postawy. Właściciel platformy medialnej musi bowiem umiejętnie komunikować się z trzema grupami interesariuszy – użytkownikami, reklamodawcami oraz profesjonalnymi twórcami treści – dawać obietnicę zaspokojenia ich potrzeb (od czego zależy jego biznesowy sukces) oraz usuwać wszelkiego rodzaju napięcia oraz pojawiające się przeszkody. Jest to o tyle trudne, że potrzeby każdej z tych grup są różne. Użytkownicy nastawieni są na możliwość dostępu do darmowych treści oraz własnej ekspresji, natomiast reklamodawcy i profesjonalni twórcy treści – dotarcie do jak największej liczby odbiorców, zwiększenie zasięgu oddziaływania a w ostateczności wzrost sprzedaży usług lub produktów. | 4 |
Całkowanie równań różniczkowych (RR) rzędu pierwszego wiąże się, na ogół, z przedstawieniem ich w postaci równań o zmiennych rozdzielonych. | 3 |
Płaszczyzna opisana równaniem ( 3 ) przecina osie \( Ox,Oy \) oraz \( Oz \) układu współrzędnych \( Oxyz \) w punktach równych odpowiednio \( P_{x}\left( a,0,0\right) \), \( P_{y}\left( 0,b,0\right) \), \( P_{z}\left(0,0,c\right) \). | 3 |
Kolejna grupa łupków to skały składające się w przewadze z amfiboli, tj. łupki aktynolitowe, tremolitowe, antofyllitowe. Podrzędnie występują w nich inne amfibole, talk, epidot, miki i inne minerały. Nazwy łupków pochodzą od nazwy amfibolu, który stanowi składnik dominujący (zob. Minerały protolitów ). Charakteryzuje je struktura nematoblastyczna i jasne zabarwienie w odcieniach białego, szarego, zielono-szarego, za wyjątkiem łupków aktynolitowych, które są ciemnozielone [1]. Są efektem metamorfizmu skał ultrazasadowych [3], powstają przy współudziale procesów hydrotermalnych. | 2 |
Praca wykonywaną przez siłę grawitacji przy przenoszeniu masy \( m \) z nieskończoności do punktu odległego o \( r \) od środka Ziemi wynosi | 1 |
gdzie suma mas \( m_i \) poszczególnych punktów układu jest całkowitą masą \( M \) układu. Postępując w ten sam sposób, możemy wyznaczyć pozostałe współrzędne \( y \), \( z \). W wyniku otrzymujemy trzy równania skalarne (analogiczne do ( 3 ) ), które możemy zastąpić jednym równaniem wektorowym | 1 |
Związki kompleksowe o liczbie koordynacyjnej 2 mają strukturę liniową, a jon centralny jest zwykle jednowartościowy np. \( \ce{Cu^+} \), \( \ce{Ag^+} \), czy \( \ce{Au^+} \). Kompleksy o liczbie koordynacyjnej 3 mają kształt płaski lub kształt piramidy trygonalnej. Liczba koordynacyjna 4 jest często spotykana w przypadku kompleksów metali bloku \( d \), a najczęściej spotykana w przypadku kompleksów metali bloku \( s \) i \( p \). Kompleksy te mogą wykazywać strukturę tetraedryczną lub płaską kwadratową. Kompleksy o liczbie koordynacyjnej 5 mogą przybierać kształt piramidy tetragonalnej lub bipiramidy trygonalnej. Liczba 6 jest najczęściej spotykaną liczbą koordynacyjną metali bloku \( d \). Kompleksy te mają kształt ośmiościanu foremnego (oktaedru). Wyższe liczby koordynacyjne są spotykane w przypadku, gdy atomy centralne mają duże rozmiary np. \( Mo(VI) \) czy \( W(VI) \). | 0 |
AES – spektroskopia elektronów Augera. W spektroskopii Augera wiązka elektronów jest kierowana na badaną próbkę. W wyniku oddziaływania wiązki pierwotnej z materiałem zostają wybite elektrony z wewnętrznych, leżących bliżej jądra, powłok (powłoka K). Powstałe w ten sposób wolne miejsce w powłoce (luka elektronowa) są w bardzo krótkim czasie zajmowane przez elektron z wyższej powłoki. Elektron spadając na niższą powłokę oddaje energię, która jest przekazywana innemu elektronowi z jeszcze wyższej powłoki atomowej. Dzięki tej dodatkowej energii elektron opuszcza atom, co prowadzi do kolejnej jonizacji. Wyemitowany w ostatniej fazie procesu elektron nosi nazwę elektronu Augera. Rys. 3 przedstawia porównanie zjawiska wybicia elektronu Augera oraz wybicia fotoelektronu w metodzie XPS. | 0 |
Jak pokazano w module Energia potencjalna w polu elektrycznym energia potencjalna ładunku w polu elektrycznym zależy od wielkości tego ładunku. Dlatego do opisu pola elektrycznego lepiej posługiwać się energią potencjalną przypadającą na jednostkowy ładunek czyli potencjałem elektrycznym. | 1 |
Ponieważ dla \( \hskip 0.3pc\lambda \leq 0\hskip 0.3pc \) otrzymujemy rozwiązanie zerowe, przyjmujemy \( \hskip 0.3pc\lambda >0\hskip 0.3pc \). Rozwiązując powyższe równania otrzymamy: | 3 |
Kopuły lodowe są niedużymi powłokami lodowymi, które pokrywają szczytowe obszary gór. Nazywane są lodowcami fieldowymi (norweskimi) [1], [3], [4], [6]. Mają formę niewielkich czasz, od których we wszystkich kierunkach odchodzą jęzory lodowcowe. Lodowce te powstają w obszarach o nisko położonej granicy wiecznego śniegu. | 2 |
Podstawowa teoria, która pozwala przewidywać ruch ciał, składa się z trzech równań, które nazywają się zasadami dynamiki Newtona. | 1 |
Politiazole – poli(azotek siarki) \( (SN)_x \) jest syntetyzowany przez polimeryzację diazotku disiarkowego ( \( S_2N_2 \)), który jest syntetyzowany z cyklicznego przemiennego tetrazotku tetrasiarki w obecności srebra jako katalizatora. | 0 |
Poliborany to związki kwasów borowych, takich jak kwas borowy \( H_3BO_3 \), kwas metaborowy \( HBO_2 \) i kwas tetraborowy \( H_2B_4O_7 \). Poliborany wykazują ogromną różnorodność strukturalną w stanie stałym. Struktury anionów boranowych obejmują zarówno proste trygonalne płaskie jony \( BO_3^{3−} \), jak i raczej złożone struktury zawierające łańcuchy i pierścienie trój- i cztero-skoordynowanych atomów boru. | 0 |
Rozpatrzmy teraz ruch ciała pod wpływem stałej siły \( F \) działającej równolegle do kierunku ruchu. Zależność prędkości ciała od czasu obliczamy na podstawie drugiej zasad dynamiki Newtona. Uwzględniając zależność masy od prędkości ( 1 ), otrzymujemy | 1 |
(Na rysunku Rys. 1 nie są zachowane proporcje pomiędzy promieniami orbit, które zmieniają się zgodnie z relacją \( r_{n} = r_{1}n^{2} \).) | 1 |
Równania różniczkowe cząstkowe służą jako modele dla opisu szeregu zjawisk począwszy od fizyki i techniki, poprzez nauki przyrodnicze, ekonomię, medycynę aż do nauk humanistycznych. I tak na przykład są one podstawowym narzędziem do opisu zagadnień mechaniki, elektrotechniki, hydromechaniki, akustyki czy fizyki kwantowej. W niniejszym module podamy przykłady opisu takich zjawisk, mianowicie drgań struny, drgań elektrycznych w przewodniku, przewodnictwa ciepła oraz przepływu cieczy lub gazu. Należy podkreślić, że w literaturze nietrudno znależć wyprowadzenia bardziej precyzyjne. Ponieważ naszym celem jest elementarne wprowadzenie do teorii równań różniczkowych, ograniczymy się do rozważań bardzo uproszczonych. | 3 |
Zauważmy, że każda dystrybucja temperowana jest oczywiście dystrybucją, tzn. \( \hskip 0.3pc S^*( \mathbb R^n ) \subset D^*( \mathbb R^n ).\hskip 0.3pc \) Przestrzeń \( \hskip 0.3pc S^*( \mathbb R^n )\hskip 0.3pc \) jest podprzestrzenią właściwą przestrzeni \( \hskip 0.3pc D^*( \mathbb R^n ),\hskip 0.3pc \) co oznacza, że istnieją dystrybucje które nie są dystrybucjami temperowanymi. Na przykład | 3 |
Widać, że prędkość każdego z tych punktów jest prostopadła do linii łączącej ten punkt z podstawą A i proporcjonalna do odległości tego punktu od A. Takie zachowanie jest charakterystyczne dla ciała wykonującego ruch obrotowy względem nieruchomej osi. Oznacza to, że opisywany walec obraca się wokół punktu A, a co za tym idzie, że możemy toczenie opisywać również wyłącznie jako ruch obrotowy ale względem osi przechodzącej przez punkt A styczności z powierzchnią, po której toczy się ciało. | 1 |
Spływy rumoszowe występują w proksymalnej (bliższej punktu szczytowego) części stożka i niekiedy spływają w dół stożka cieńszymi jęzorami. | 2 |
Występujące w definicji głębi ostrości pojęcie „wystarczająca ostrość” jest umowne, bo przecież nie wiadomo w jakiej skali będziemy oglądać zdjęcie (wydrukowane na papierze, wyświetlone na monitorze). Przyjmowane są różne wartości dopuszczalnej plamki nieostrości obrazu, wraz z postępem technologicznym w fotografii wielkość plamki ulega zmniejszeniu. Jeśli za punkt wyjścia przyjąć kątową ostrość oka ludzkiego wynoszącą 1’ i oglądanie obrazu na monitorze komputera z odległości 50 cm, wówczas średnica plamki nie powinna przekraczać 0,015mm. | 2 |
Cykl geotektoniczny, czyli cykl Wilsona (zob. Mechanizm kolizji) przedstawia procesy, w wyniku których następują przemieszczenia płyt litosfery, powstawanie oceanów, ich zamykanie i formowanie orogenów (zob. Orogeneza i epejrogeneza - definicje podstawowe). | 2 |
Wiązanie donorowo-akceptorowe (koordynacyjne, semipolarne) to odmiana wiązania atomowego, w którym wiążącą parę elektronów dostarcza jeden z atomów. Kiedy mamy do czynienia z takim wiązaniem? Zdarzenie takie może mieć miejsce, kiedy dochodzi do nałożenia obsadzonego już dwoma elektronami orbitalu jednego pierwiastka z nieobsadzonym (pustym) orbitalem drugiego (niemetalu lub metalu grup tzw. „przejściowych”). Powstające na drodze „obsadzenia” wolnego orbitalu przez parę elektronową wiązanie jest wiązaniem słabszym od typowego wiązania kowalencyjnego. Rozpatrzmy opisaną sytuację na przykładach: | 0 |
Trwałość ziarna w środowisku związana jest z jego odpornością na procesy wietrzenia, zarówno chemicznego, jak i fizycznego, w szczególności na zmiany podczas transportu. Uzależniona jest ona od warunków środowiskowych, ale i własnych ziarna, dla których istotne są: | 2 |
Tworzywo stosuje się do produkcji folii ślizgowych, oraz tam gdzie są wymagane właściwości samosmarujące [9], [10], [11]. | 0 |
W zależności od określonego w statucie funduszu sposobu plasowania certyfikatów inwestycyjnych rozróżnia się: | 4 |
Doliny polodowcowe charakteryzuje łukowato wygięta strefa denna, która przechodzi w strome stoki obrzeżające. Obszary, które były przykryte lodem są wygładzone i urzeźbione glifami lodowcowymi. Wyrównany zostaje spadek dolin. Stopień wyrównania zależy od zaawansowania erozji oraz od odporności podłoża. W miejscach mniej podatnych na niszczenie powstają rygle, które są elementami morfologicznie pozytywnymi i stanowią podniesienia w dnach dolin. Kształtowanie dolin polodowcowych zachodzi przy zaawansowanej detersji i detrakcji. | 2 |
W swapach kuponowych jedna strona, chcąc uniknąć ryzyka związanego z wahaniami oprocentowania kredytu, dokonuje zamiany zmiennej stopy procentowej na stałą, co umożliwia jej spokojne planowanie i prowadzenie działalności gospodarczej. | 4 |
Pole wytwarzane przez płytę naładowaną ładunkiem dodatnim jest równe \( E_{+}=\sigma/2\varepsilon_{0} \) i skierowane od płyty. Natomiast pole wytwarzane przez płytę naładowaną ujemnie ma tę samą wartość \( E_{-}=\sigma/2\varepsilon_{0} \) ale skierowane jest do płyty. Zatem w obszarze (I) | 1 |
Wyprowadzimy teraz prawo gazów doskonałych. Cząsteczki gazu będziemy traktować jako \( N \) małych, twardych kulek, każda o masie \( m \) zamkniętych w sześciennym pudełku o objętości \( V \). Kulki są twarde to znaczy będą zderzały się sprężyście ze ściankami naczynia, a to oznacza, że ich energia kinetyczna będzie stała. Na początek rozważmy jedną cząsteczkę, która zderza się ze ścianką naczynia (zob. Rys. 1 ). | 1 |
Prawda ma strukturę fikcji Najsłynniejszym interpretatorem i popularyzatorem myśli Lacana jest słoweński filozof Slavoj Žižek. Teorię francuskiego psychoanalityka stosuje on między innymi do analizy kultury popularnej, przekładając jednocześnie hermetyczny lacanowski język na formę bardziej przystępną. W swoich tekstach Žižek mówi językiem efektownym, w którym filozoficzny dyskurs przeplata się z odniesieniami do filmów czy popularnych książek. Szczególne miejsce w dorobku Žižka pełni analiza kina. W swoich książkach [2] oraz filmach, w których występuje ("Z-Boczona historia kina" (2006) i "Perwersyjny przewodnik po ideologiach" (2012)), filozof tłumaczy zawiłości lacanowskiej psychoanalizy, komentując fragmenty filmów m.in. Lyncha, Hitchcocka, braci Marx czy Tarkowskiego. | 4 |
R - stała gazowa (8,31 \( \frac{J}{mol*K} \)) T - temperatura bezwzględna wyrażona w stopniach Kelvinach n - liczba elektronów wymienionych w procesie elektrodowym F - stała Faradaya 96 500 C \( a_{utl} \)- aktywność formy utlenionej \( a_{red} \) - aktywność formy zredukowanej Jeśli aktywność formy utlenionej jest równa aktywności formy zredukowanej, wówczas potencjał elektrochemiczny metalu jest równy potencjałowi standardowemu \( E=E^{0} \). Jeśli reakcją elektrodową jest reakcją czystego metalu z jego jonami, wówczas równanie Nernsta przyjmuje uproszczona postać ( 3 ). | 0 |
Możemy natomiast określić iloczyn dystrybucji w przypadkach szczególnych. Na przykład, jeśli \( \hskip 0.3pc f,g:\Omega \to\mathbb R\hskip 0.3pc \) są funkcjami lokalnie całkowalnymi i ich iloczyn \( \hskip 0.3pc fg\hskip 0.3pc \) jest też funkcją lokalnie całkowalną, to określa on dystrybucje | 3 |
Ze względu na lokalizację źródła materiału deponowanego w zbiorniku sedymentacyjnym wyróżnia się [1], [2], [3], [4], [5], [6], [7]: | 2 |
Siła elektromotoryczna \( \epsilon \) określa energię elektryczną \( \Delta W \) przekazywaną jednostkowemu ładunkowi \( \Delta q \) w źródle SEM | 1 |
Jako przykład pokazany jest na Rys. 1 rozkład potencjału, na płaszczyźnie \( xy \), wokół dipola elektrycznego. Poziomice (linie pogrubione) łączą punkty o jednakowym potencjale (linie ekwipotencjalne). Każda krzywa odpowiada innej stałej wartości potencjału. | 1 |
Większość węglowodorów obecnych na Ziemi występuje w gazie ziemnym i ropie naftowej, gdzie rozkładające się substancje organiczne zapewniają obfitość węgla i wodoru, które w wyniku kondensacji mogą tworzyć pozornie nieograniczenie rozmaite łańcuchy węglowodorowe. Są one zatem podstawą paliw ropopochodnych (uwalniają dużą ilość energii podczas spalania) i smarów, gdzie występują w . Służą one także jako surowce do produkcji tworzyw sztucznych, włókien, rozpuszczalników, gum, materiałów wybuchowych i chemikaliów przemysłowych. Wiele węglowodorów jest obecnych w drzewach i roślinach, na przykład w postaci pigmentów zwanych karotenami, które np. występują w marchwi i zielonych częściach roślin. Wspomnieć należy, iż bakterie żyjące w glebie i bakterie obecne w jelitach termitów, czy przeżuwaczy produkują metan. | 0 |
Łącząc równania ( 6 ) i ( 9 ), możemy obliczyć natężenie światła dla obrazu dyfrakcyjnego otrzymanego dla pojedynczej szczeliny. Widzimy, że natężenie \( I_\theta \) przyjmuje wartości minimalne dla | 1 |
W środowiskach płytkomorskich mamy niekiedy dominację skał węglanowych [2], [6]. Związane to jest z obfitością bentosu i słabego dostarczania materiału klastycznego w rejonach subtropikalnych i tropikalnych. Obecnie, tego typu sedymentacja zachodzi na platformach szelfowych związanych z kontynentem (Floryda, Zatoka Perska) lub na platformach izolowanych (Bahamy). | 2 |
Jeżeli do reakcji użyjemy gorących kwasów, warstwa pasywna zostaje rozpuszczona i reakcja przebiegnie zgodnie z równaniem ( 5 ). Glin ma właściwości amfoteryczne, roztwarza się w mocnych zasadach : | 0 |
Teraz można przejść do zastosowania prawa Gaussa do obliczania natężenia pola \( {\bf E} \) dla różnych naładowanych ciał. | 1 |
Jako przykład prześledźmy jak za pomocą elementarnych fal Huygensa, można przedstawić rozchodzenie się fali płaskiej w próżni. | 1 |
Mierząc natężenie światła rozproszonego dla kilku stężeń roztworu polimeru otrzymuje się wykres w postaci linii prostej, z którego po ekstrapolacji do wartości stężenia równej zero, można wyznaczyć wagowo średnią masę cząsteczkową polimeru, co zobrazowano na rysunku poniżej: | 0 |
Na masę \( m \) działa siła grawitacji \( mg \) i naprężenia nici \( N \). Siłę \( mg \) rozkładamy na składową radialną (normalną) i styczną. Składowa normalna jest równoważona przez naciąg nici \( N \). Natomiast składowa styczna przywraca równowagę układu i sprowadza masę \( m \) do położenia równowagi. | 1 |
Rys. 1 przedstawia schemat elektrody wodorowej. 1 - blacha platynowa 2 - gazowy wodór 3 - roztwór kwasu solnego 4 - zbiornik blokujący dostęp tlenu 5 - naczynie z elektrolitem Elektrody II rodzaju Elektrodą drugiego rodzaju jest układ składający się z metalu pokrytego trudno rozpuszczalną solą tego metalu i zanurzony w roztworze elektrolitu zawierającym aniony soli pokrywającej metal. Przykładem takiej elektrody jest elektroda chlorosrebrowa, w której drut srebrny pokryty jest chlorkiem srebra i zanurzony jest w wodnym roztworze chlorku potasu. Potencjał takiej elektrody zależy od stężenia jonów chlorkowych znajdujących się w roztworze elektrolitu. | 0 |
Niech \( \hskip 0.3pc \Omega\subset \mathbb C\hskip 0.3pc \) będzie ograniczonym obszarem o gładkim brzegu \( \hskip 0.3pc \partial\Omega.\hskip 0.3pc \) Niech \( \hskip 0.3pc w\hskip 0.3pc \) będzie konforemnym odwzorowaniem obszaru \( \hskip 0.3pc \Omega\hskip 0.3pc \) w kulę \( \hskip 0.3pc |z|<1.\hskip 0.3pc \) Dla \( \hskip 0.3pc z_0\in \Omega\hskip 0.3pc \) połóżmy | 3 |
W 1912 roku niemiecki filozof i psycholog Max Wertheimer (1880-1943) opublikował wyniki prowadzonych przez siebie badań nad zjawiskiem percepcji. Ludziom biorącym udział w eksperymencie pokazywał w specjalnych okularach dwa umieszczone obok siebie i migające naprzemienne światełka. Badani postrzegali je jednak jako jeden obiekt, znajdujący się w ruchu. Wertheimer nazwał to efektem lub fenomenem phi (niem. Phi-Phänomen). Jego badania kontynuowali Wolfgang Köhler (1887-1967) i Kurt Kofka (1886-1941). Zainicjowali oni nurt określany mianem Gestalt, czyli psychologią postaci, zwaną również konfiguracjonizmem lub formizmem [1], [2]. Podobne łączenie odrębnych bodźców w określone całości badacze zauważyli także w przestrzeni słyszenia. | 4 |
W trakcie deglacjacji frontalnej (Rys. 3) strefa zaniku lodowca ograniczona jest tylko do wąskiej, obejmującej czoło strefy. Systematyczny zanik lodu i depozycja materiału klastycznego prowadzi do powstania pokrywy osadowej, której miąższość ma podobne wartości. Zdeponowana morena ma powierzchnię falistą, urzeźbioną płytkimi i łagodnymi deniwelacjami. Inny typ morfologii, powstaje podczas deglacjacji arealnej. Charakteryzuje ją występowanie szerokiej strefy zaniku lodowca, która obejmuje strefę czołową i jej zaplecze. W strefie zaniku pokrywa lodowa podlega rozpadowi na bloki lodowe, z których część zostaje przysypana moreną. Wytopienie pogrzebanych bloków‘z pokrywy osadowej następuje po deglacjacji. Jest związane z ruchami grawitacyjnymi, które kompensują ubytek lodu przez przemieszczenie materiału klastycznego w jego miejsce. W efekcie czego na powierzchni moreny, bezpośrednio nad miejscem po wytopionym bloku, powstaje kielichowate zagłębienie. W wielu takich obniżeniach rozwijają się jeziora oczkowe. | 2 |
Jeżeli chcemy poprawić pomiar położenia \( y \) (zmniejszyć \( \Delta y \)), to w wyniku zmniejszenia szerokości szczeliny otrzymujemy szersze widmo dyfrakcyjne (mocniejsze ugięcie). Innymi słowy, zwiększone zostało \( \Delta p_{y} \). | 1 |
Rozwiązanie problemu ( 3 ), ( 4 ) dane jest wzorem Kirchhoffa (zob. twierdzenie 1 w module "Równanie fal kulistych. Metoda uśredniania"). Aby znaleźć rozwiązanie problemu ( 5 ), ( 6 ) rozważmy problem pomocniczy | 3 |
Subakwalny ruch osuwiskowy jest wywoływany przez różne zjawiska. Uważa się, że trzęsienia ziemi są najważniejszym czynnikiem inicjującym większość dużych osuwisk podmorskich, a w obszarach płytkomorskich i jeziornych istotne znaczenie mają również fale sztormowe i huragany. Coraz większą rolę w inicjacji powierzchniowych ruchów masowych przypisuje się hydratom gazu, które znajdują się pod wieloma podwodnymi stokami. Są to zamknięte w lodzie inkluzje gazu ziemnego, które stają się niestabilne przy wzroście temperatury lub ciśnienia. Dysocjacja hydratów i uwolnienie gazu prowadzi do zmniejszenia stabilności zbocza. Przesiąkanie wód gruntowych i podwyższone ciśnienie wody, wpływające na zmniejszenie tarcia w porach może inicjować ruch osuwający. | 2 |
Ponieważ inwestor jest jednocześnie akcjonariuszem (współwłaścicielem spółki), musi być świadom tego, że wszystkie rodzaje ryzyka, jakie zagrażają spółce, są też jego ryzykami. | 4 |
Pojęcie stycznej do wykresu funkcji \( f \) w danym punkcie wykresu \( P(x_0,f(x_0)) \) jest ściśle związane z pochodną funkcji \( f \) w punkcie \( x_0 \). Styczną możemy traktować jako geometryczną interpretację pochodnej funkcji. Pojęcie stycznej w sensie rachunku różniczkowego jest czymś innym niż styczna do figury czyli prosta mająca dokładnie jeden punkt wspólny z figurą, którą poznaje się w szkole średniej. | 3 |
Należy podkreślić, że właściwości chemiczne niobu i tantalu są bardzo podobne, promienie atomowe tych pierwiastków nieznacznie się różnią ( Tabela 1 ). Takie podobieństwo stwarza duże trudności przy rozdzielaniu tych pierwiastków. Niewielki wzrost promienia atomowego tantalu w porównaniu do promienia atomowego niobu jest pewnym odstępstwem od prawa okresowości. Zgodnie z prawem okresowości w grupie ze wzrostem liczby atomowej pierwiastka rośnie promień atomowy. | 0 |
Wszystkie skandowce występują na +3 stopniu utlenienia. Są metalami aktywnymi, szybko matowieją na powietrzu, pokrywając się pasywną warstwą tlenkową. Pod względem właściwości chemicznych przypominają magnez, są łatwopalne. Wióry skandu palą się na powietrzu jaskrawożółtym płomieniem. Skandowce reagują z wodą w wydzieleniem wodoru, jednak z biegiem czasu reakcja ulega zahamowaniu na skutek pasywacji. Metal pokrywa się nierozpuszczalną warstwą wodorotlenku, która blokuje dostęp cząsteczek wody do powierzchni. | 0 |
dla \( \hskip 0.3pc s\in J, \hskip 0.3pc \) \( \hskip 0.3pc P=\big(X(s,0), Y(s,0),Z(s,0)\big)=\big(\gamma_1(s),\gamma_2(s),\gamma_3(s)\big). \hskip 0.3pc \) Warunek ( 18 ) możemy zapisać w postaci | 3 |
Ketozy i aldozy mogą zostać przemienione w związki homologiczne zawierające mniejszą lub większą liczbę atomów w cząsteczce. Degradacja Ruffa pozwala skrócić łańcuch sacharydów o jeden atom węgla (reakcja ( 2 ) ), podczas gdy synteza Kiliani-Fischera wydłuża łańcuch cukru o jeden atom węgla (reakcja ( 3 ) ). | 0 |
Orbitale można traktować jako rozkłady ładunku elektronu wokół jądra. Gdy mówimy, że jądro atomowe jest otoczone chmurą elektronową mamy właśnie na myśli orbitale. | 1 |
Transport materiału w rzece opisuje kilka parametrów: obciążenie, nośność i wydolność. Obciążeniem nazywamy masę materiału przenoszoną przez cały przekrój rzeki w jednostce czasu (\(\frac {m^3}{s}\)). Nośność jest to masa materiału przenoszona przez rzekę przy najwyższych stanach wody. Wydolność oznacza maksymalną wielkość materiału skalnego przenoszonego przez rzekę. | 2 |
Wektory na Rys. 1 odpowiadają amplitudom pola elektrycznego. Żeby otrzymać natężenie światła trzeba amplitudy podnieść do kwadratu, więc na podstawie równania ( 5 ) otrzymujemy | 1 |
Wiemy już, że jeżeli wypadkowa sił zewnętrznych działających na układ jest równa zeru, to spełniona jest zasada zachowania pędu. W takim układzie mogą jednak działać siły wewnętrzne, na przykład siły występujące przy zderzeniach między cząsteczkami gazu. I właśnie dlatego możemy skorzystać z zasady zachowania pędu do opisu zderzeń. | 1 |
Niech \( \hskip 0.3pc \Omega\subset \mathbb R^n\hskip 0.3pc \) będzie obszarem ograniczonym o gładkim brzegu \( \hskip 0.3pc \partial \Omega\hskip 0.3pc \) i niech \( \hskip 0.3pc u:\Omega\times (0,+\infty )\to \mathbb R\hskip 0.3pc \) będzie funkcją posiadającą pochodne drugiego rzędu względem zmiennych \( \hskip 0.3pc x_1, \ldots ,x_n.\hskip 0.3pc \) Rozważmy operator | 3 |
Jeżeli wektor natężenia pola \( {\bf E} \), w różnych punktach powierzchni \( S \), ma różną wartość i przecina tę powierzchnię pod różnymi kątami (zob. Rys. 2 ) to wówczas dzielimy powierzchnię na małe elementy \( dS \) i obliczamy iloczyn skalarny wektora powierzchni \( dS \) i lokalnego natężenia pola elektrycznego. | 1 |
Opal i kwarc powszechnie występują w skałach osadowych. Są podstawowymi składnikami skał krzemionkowych, tj. rogowce, opoki, krzemienie i czerty (zob. Skały krzemionkowe). W wyniku nagromadzeń biominerałów krzemionkowych powstają odmiany skał organogenicznych, tj. radiolaryty, spongiolity, diatomity. Minerały krzemionkowe wstępują pospolicie jako komponent spoiw skał okruchowych, np. piaskowców i zlepieńców lub składnik skał drobnoklastycznych, tj. mułowce (zob. Psefity, Psamity, Pelity i aleuryty). | 2 |
Kwity depozytowe mogą być wystawiane również na inne rodzaje papierów wartościowych. Dawniej umożliwiały inwestowanie na rynkach zagranicznych i wykonywania swoich praw z papierów wartościowych, bez konieczności podróżowania do kraju, gdzie znajduje się emitent. Obecnie ta zaleta nie ma już tak wielkiego znaczenia, jednak pozostają inne zalety, jak np. zakup/sprzedaż walorów według zasad i zwyczajów w kraju ojczystym (które inwestorom lepiej znane), wykonywanie czynności w języku ojczystym, brak ryzyka kursowego (gdyż kwity wystawiane w walucie krajowej). | 4 |
Newralgicznym elementem mozaikowania ortoobrazów powstałych na podstawie NMT jest trasowanie linii wzdłuż której następuje połączenie ortoobrazów. Linia mozaikowania musi omijać obiekty wystające nad teren, jak pokazuje Rys. 4. W przeciwnym wypadku zetkną się niepasujące geometrycznie obiekty (budynki, drzewa) i powstają artefakty. Stosowane są różne metody automatycznego trasowania linii mozaikowania [7]. Poprawność przebiegu linii wymaga jednak weryfikacji, jest to jeden z nielicznych etapów opracowania ortofotomapy z NMT, w którym potrzebny jest nadzór obserwatora. | 2 |
Ciekłe kryształy, w których właściwości ciekłokrystaliczne występują w określonym przedziale temperatur noszą nazwę ciekłych kryształów termotropowych. Ogólnie można je podzielić na nematyki, cholesteryki i ciekłe kryształy smektyczne ( Rys. 2 ). Podział ten jest związany z lepkością tych substancji, która znajduje odbicie w strukturze i przestrzennym ułożeniu cząsteczek omawianych ciekłych kryształów. Najmniej lepkie spośród cieklych kryształów termotropowych są nematyki, których lepkość można przyrównać do lepkości mleka. W dalszej kolejności wyróżniamy cholesteryki, a największą lepkość wykazują smektyki. | 0 |
gdzie \( Q_{wewn.} \) jest ładunkiem wewnątrz powierzchni Gaussa. Ponieważ kula jest naładowana równomiernie to | 1 |
Mezoformy tworzą związki o cząsteczkach płaskich wydłużonych i usztywnionych podwójnymi wiązaniami. U wielu substancji stwierdzono występowanie dwu lub kilku faz mezomorficznych w zakresie pomiędzy temperaturą topnienia, a temperaturą przejścia w ciecz izotropową. Schemat ułożenia cząsteczek w fazach mezomorficznych przedstawiono na Rys. 1. Różnią się one stopniem uporządkowania. Cząsteczki mogą być ułożone warstwami o niezupełnie zapełnionych przestrzeniach. Uporządkowanie może polegać jedynie na zorientowaniu długich łańcuchów równolegle do siebie. Kierunek w jakim ustawione są długie cząsteczki nie jest stały, zmienia się stopniowo, tworząc jak gdyby spiralę. Formy te mają duże możliwości zmian struktury pod wpływem słabych bodźców fizycznych, np. temperatury, pola elektrycznego. | 0 |
W polimeryzacji z otwarciem pierścienia można otrzymać polimery, które mają taką samą lub niższą gęstość niż monomery. Tego typu polimeryzacja znalazła zastosowanie np. w stomatologii (wypełnianie zębów), w przemyśle elektrycznym, elektronicznym (np. powłoki polimerowe). | 0 |
Zastosowana w powyższych przykładach metoda wyznaczania funkcji Greena nosi nazwę metody punktów symetrycznych. | 3 |
Pierwsze emitują certyfikaty publiczne, czyli dopuszczone do obrotu na rynku publicznym. Natomiast drugie – certyfikaty niepubliczne. | 4 |
tego układu. Funkcje \( \psi^1,....\psi^{n-1} \) nazywane są charakterystykami. Żeby przekonać się, że charakterystyki są niezależne, wystarczy sprawdzić, czy rząd macierzy Jacobiego | 3 |
Kryształy cząsteczkowe (molekularne) składają się ze stabilnych cząsteczek, oddziaływujących ze sobą słabymi siłami wiążącymi, tzw. siłami van der Waalsa, takimi jakie występują pomiędzy cząsteczkami w fazie gazowej. | 1 |
co oznacza, że wektor \( \hskip 0.3pc \big(a(P_0),\,b(P_0),\,c(P_0)\big) \hskip 0.3pc \) jest prostopadły do wektora \( \hskip 0.3pc \vec n(x_0,y_0), \hskip 0.3pc \) a zatem jest styczny do wykresu rozwiązania \( \hskip 0.3pc u \hskip 0.3pc \) w punkcie \( \hskip 0.3pc P_0. \hskip 0.3pc \) Rozważmy układ równań | 3 |
Potrzebujemy jeszcze znaleźć wartość \( E_{0} \). Obliczenia te choć proste wykraczają poza ramy tego wykładu. Wystarczy więc zapamiętać, że \( E_{0} = kT \), toznaczy jest równa średniej energii układu cząstek w temperaturze \( T \). Ostatecznie więc | 1 |
Do wcięcia z wielu zdjęć przystępuje się z założeniem, że przyczyną braku idealnego przecięcia promieni w przestrzeni 3D są błędy pomierzonych na zdjęciach współrzędnych. Za optymalne wcięcie uznaje się takie, przy którym poprawki losowe do pomierzonych współrzędnych spełniają warunek minimum sumy kwadratów [1, 4]. Algorytm wcięcia bazuje na równaniach kolinearności zestawionych dla wszystkich punktów homologicznych będących obrazami punktu \(P\) o nieznanych współrzędnych \(X,Y,Z\) (Rys. 3). | 2 |
W strefie saturacji, która występuje poniżej swobodnego zwierciadła wód podziemnych, woda wypełnia wszystkie pustki i szczeliny w skałach. W strefie tej znajdują się wody [1] (zob. Woda w skałach): | 2 |
Efektem rozwoju ryftu jest również trójzłącze Afar [6], w którym spotykają się 3 płyty tektoniczne: afrykańska (nubijska), arabska i somalijska. Od trójzłącza odchodzą 3 ramiona: Morze Czerwone, wielki ryft afrykański i Zatoka Adeńska ( Rys. 3 ). | 2 |
Równanie stanu gazu doskonałego \( {{pV}={nRT}} \) (zob. moduł Temperatura, równanie stanu gazu doskonałego ) dobrze opisuje gazy rzeczywiste ale przy małych gęstościach. Przy większych gęstościach nie można pominąć faktu, że cząstki zajmują część objętości dostępnej dla gazu oraz że działają na siebie siłami przyciągania lub odpychania w zależności od odległości między nimi. Van der Waals zmodyfikował równanie stanu gazu doskonałego, tak aby uwzględnić te czynniki. | 1 |
Podstawiając ( 6 ) do równania ( 1 ), mnożąc przez \( -u_z \) i przenosząc wszystkie wyrazy na lewą stronę, otrzymamy liniowe jednorodne równanie względem funkcji \( u \): | 3 |
Ruchy pionowe (zob. Ruchy epejrogeniczne i ich przyczyny ) powodują zmiany stosunku powierzchni morza do kontynentu, co skutkuje zmianami w położeniu linii brzegowej [1], [2], [3], [4], [5], [6]. Wkraczanie morza na ląd nazywa się transgresją morską, używa się również terminu onlap; wycofywanie się morza nazywa się regresją morską, używa się również terminu offlap [7]. | 2 |
Odmiany pierwiastków, które można opisać taką samą liczbą protonów, różną zaś liczbą neutronów w jądrze nazywa się izotopami. Rozpatrzmy ten wątek na przykładzie atomów żelaza \( \ce{_{26}^{56}Fe} \) i \( \ce{_{26}^{58}Fe} \). Kolejno, w skład pierwszego atomu żelaza wchodzi 26 protonów, 26 elektronów i 30 neutronów (A – Z = 56 – 26 = 30), natomiast drugi atom żelaza zawiera w swojej strukturze 26 protonów, 26 elektronów oraz 32 neutrony (A – Z = 58 – 26 = 32), tzn. że atomy te różnią się liczbą neutronów – są względem siebie izotopami. | 0 |
Dotyczy to dowolnej funkcji okresowej więc można na przykład skonstruować za pomocą fal sinusoidalnych (które są wszędzie zakrzywione) przebieg piłokształtny, który jest złożony z odcinków prostych. | 1 |
Jednym z kluczowych odkryć psychologii postaci było określenie relacji figury i tła w percepcji. Ten wątek potwierdzili również inni uczeni, na przykład duński psycholog Edgar Rubin (1886-1951), który zajmował się złudzeniami wzrokowymi. Wskazał on, że w zależności od tego, na którym z elementów obecnych w polu widzenia się koncentrujemy, możemy dostrzegać odmienne kształty i inaczej rozumieć rzeczywistość. Ilustracją tego stała się słynna figura wazonu, która jednocześnie obrazuje dwie profilowo zwrócone do siebie twarze ( Rys. 1 ). | 4 |
Rys. 1 przedstawia wykres funkcji \( f \) z zaznaczonym na osi odciętych punktem \( x_0 \), w którym funkcja nie ma wartości, ale w lewostronnym sąsiedztwie którego jest określona. Na osi rzędnych zaznaczono liczbę \( g \). Chcemy pokazać, że liczba \( g \) jest granicą lewostronną funkcji \( f \) w punkcie \( x_0 \). W tym celu bierzemy dowolne \( \epsilon > 0 \) i wyznaczamy przedział \( (g-\epsilon,g+\epsilon) \), który przedłużamy do pasa wzdłuż osi odciętych. Wyznaczamy punkty przecięcia prostych \( y=g-\epsilon \) i \( y=g+\epsilon \) z wykresem funkcji \( f \), które rzutujemy prostopadle na oś odciętych. Przez \( \delta \) oznaczymy odległość punktu \( x_0 \) od tego ze zrzutowanych punktów, który leży na lewo od punktu \( x_0 \). Pokazujemy, że dla dowolnego argumentu \( x \) należącego do przedziału \( (x_0-\delta,x_0) \) wartość funkcji \( f \) dla tego argumentu \( f(x) \) wpada do przedziału \( (g-\epsilon,g+\epsilon) \), co spełnia warunki definicji Cauchy’ego granicy lewostronnej funkcji w punkcie. | 3 |
Wielkość \( r \) nazywamy ramieniem siły. Z równania ( 1 ) wynika, że tylko składowa siły prostopadła do ramienia \( {F_{\bot}=F\text{sin}\theta } \) wpływa na moment siły. | 1 |
Cechą niektórych minerałów jest przeźroczystość(transparentność, przezierność), czyli przepuszczanie promieni światła przez kryształ [2]. Zwykle, w minerałach allochromatycznych lub w minerałach achromatycznych, których kryształy posiadają defekty strukturalne lub inkluzje, przepuszczalność ulega ograniczaniu. Dla celów opisowych stosowane są następujące stopnie transparentności: przeźroczysty, półprzezroczysty, przeświecający i nieprzeźroczysty. | 2 |
Kultury umiarkowanie pro-transakcyjne, ceremonialne, umiarkowanie monochroniczne, ekspresyjne: Francja, Belgia, Hiszpania, Węgry, Włochy Kultury umiarkowanie protransakcyjne, ceremonialne, umiarkowanie monochroniczne, powściągliwe: Litwa, Łotwa, Estonia | 4 |
Z reguły stosuje się połączenie metody bezpośredniej i pośredniej, rozwijające się w kierunku osiągnięcia wysokiej automatyzacji, czego przykładem jest Metoda SfM. | 2 |
Fotogrametria, dzięki automatycznemu generowaniu gęstej chmury punktów (zob. Metoda SfM) jest podstawową, obok skanowania laserowego, metodą dostarczania danych dla potrzeb modelowania 3D oraz 4D (czas jako czwarty wymiar). Chmura punktów jest zbiorem niezorganizowanym, któremu stosunkowo łatwo można nadać formę siatki mesh [32, 28]. Taki model 3D ma charakter poglądowy, nadaje się głównie do wizualizacji i pomiarów po interpretacji treści (analogia do ortofotomapy jako poglądowego modelu 2D). W przypadku modeli semantycznych, w których wydziela się obiekty i opisuje atrybutami [33], dane źródłowe 3D wymagają dość złożonego przetworzenia (identyfikacja obiektów, poprawa topologii, wprowadzenie atrybutów opisowych). | 2 |
Woda jest zasadą, ponieważ przyjmuje proton od kwasu (kwasu octowego). Sprzężonym kwasem będzie wzbogacona o proton cząsteczka wody, czyli kation hydroniowy. Reszta kwasowa \( CH_3COO^- \) jest sprzężoną zasadą. Ujęcie Brönsteda i Lowry'ego pozwala na lepsze zaobserwowanie właściwości słabych zasad i słabych kwasów. Cechą charakterystyczną wszystkich kwasów Brønsteda-Lowry'ego jest to, że posiadają tzw. kwaśne (ruchliwe) atomy wodoru. Natomiast wspólną cechą zasad w tej teorii jest posiadanie wolnej pary elektronowej, która może być przyłączona do pozbawionego elektronów jonu \( H^+ \). | 0 |
Jeżeli ramka jest wykonana z przewodnika o oporze \( R \), to w obwodzie płynie prąd indukcji (zob. Rys. 2 ) o natężeniu | 1 |
Rozwiązanie problemu niejednorodnego uzyskujemy metodą uzmienniania stałej. Polega ona na zamianie stałej \( C \) w powyższeym wzorze przez pewną nieznaną funkcję \( C(t) \). Rozwiązanie poszukujemy w postaci \( x(t)=C(t)\,e^{-F(t)} \), \( F(t)=\int{p(t)\,d\,t} \). Po podstawieniu do równania wyjściowego otrzymamy: | 3 |
Na poniższym filmie przedstawiono przykład wystąpienia rezonansu w układzie wahadeł. UWAGA: Na filmie we wzorze na okres drgań wahadła jest błąd w ułamku pod pierwiastkiem. Poprawny zapis to: l - długość wahadła powinno być w liczniku, g - przyśpieszenie ziemskie w mianowniku. | 1 |
Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności \( L \) (cewki) i pojemności \( C \) (kondensatora) pokazany na Rys. 1. Przyjmijmy, że opór elektryczny (omowy) obwodu jest równy zeru ( \( R = 0 \)). Załóżmy też, że w chwili początkowej na kondensatorze \( C \) jest nagromadzony ładunek \( Q_{0} \), a prąd w obwodzie nie płynie ( Rys. 1a). W takiej sytuacji energia zawarta w kondensatorze | 1 |
Obniżanie temperatury prowadzi do przemian odwrotnych. Ciało stałe może powstawać w wyniku albo krzepnięcia cieczy, albo zestalenia pary (resublimacji). | 0 |
W miarę wzrostu temperatury obserwujemy szybki wzrost przewodności półprzewodników związany z termicznym wzbudzeniami elektronów walencyjnych, które stają się elektronami przewodnictwa. | 1 |
Źródło: Diggit magazine, Professor José van Dijck on today's 'platform society', 09.02.2019 (dostęp 21.09.2020). Dostępne w YouTube: https://youtu.be/g2rVuDQeAeg | 4 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.