id
int64
1
564
tensorflow
stringclasses
52 values
pytorch
stringclasses
81 values
mxnet
stringclasses
66 values
paddle
stringclasses
73 values
301
import tensorflow as tf from d2l import tensorflow as d2l def dropout_layer(X, dropout): assert 0 <= dropout <= 1 if dropout == 1: return tf.zeros_like(X) if dropout == 0: return X mask = tf.random.uniform(shape=tf.shape(X), minval=0, maxval=1) < 1 - dropout return tf.cast(mask, dtype=tf.float32) * X / (1.0 - dropout) X = tf.reshape(tf.range(16, dtype=tf.float32), (2, 8)) num_outputs, num_hiddens1, num_hiddens2 = 10, 256, 256 dropout1, dropout2 = 0.2, 0.5 class Net(tf.keras.Model): def __init__(self, num_outputs, num_hiddens1, num_hiddens2): super().__init__() self.input_layer = tf.keras.layers.Flatten() self.hidden1 = tf.keras.layers.Dense(num_hiddens1, activation='relu') self.hidden2 = tf.keras.layers.Dense(num_hiddens2, activation='relu') self.output_layer = tf.keras.layers.Dense(num_outputs) def call(self, inputs, training=None): x = self.input_layer(inputs) x = self.hidden1(x) if training: x = dropout_layer(x, dropout1) x = self.hidden2(x) if training: x = dropout_layer(x, dropout2) x = self.output_layer(x) return x net = Net(num_outputs, num_hiddens1, num_hiddens2) num_epochs, lr, batch_size = 10, 0.5, 256 loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) trainer = tf.keras.optimizers.SGD(learning_rate=lr) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) net = tf.keras.models.Sequential([ tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation=tf.nn.relu), tf.keras.layers.Dropout(dropout1), tf.keras.layers.Dense(256, activation=tf.nn.relu), tf.keras.layers.Dropout(dropout2), tf.keras.layers.Dense(10), ]) trainer = tf.keras.optimizers.SGD(learning_rate=lr) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
null
null
import warnings warnings.filterwarnings(action='ignore') import random import paddle from paddle import nn warnings.filterwarnings("ignore", category=DeprecationWarning) from d2l import paddle as d2l def dropout_layer(X, dropout): assert 0 <= dropout <= 1 if dropout == 1: return paddle.zeros_like(X) if dropout == 0: return X mask = (paddle.to_tensor(paddle.uniform(X.shape)) > dropout).astype('float32') return mask * X / (1.0 - dropout) X= paddle.arange(16, dtype = paddle.float32).reshape((2, 8)) num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256 dropout1, dropout2 = 0.2, 0.5 class Net(nn.Layer): def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2, is_training = True): super(Net, self).__init__() self.num_inputs = num_inputs self.training = is_training self.lin1 = nn.Linear(num_inputs, num_hiddens1) self.lin2 = nn.Linear(num_hiddens1, num_hiddens2) self.lin3 = nn.Linear(num_hiddens2, num_outputs) self.relu = nn.ReLU() def forward(self, X): H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs)))) if self.training == True: H1 = dropout_layer(H1, dropout1) H2 = self.relu(self.lin2(H1)) if self.training == True: H2 = dropout_layer(H2, dropout2) out = self.lin3(H2) return out net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2) num_epochs, lr, batch_size = 10, 0.5, 256 loss = nn.CrossEntropyLoss(reduction='none') train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) trainer = paddle.optimizer.SGD(learning_rate=lr, parameters=net.parameters()) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Normal(std=0.01)) net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256, weight_attr=weight_attr), nn.ReLU(), nn.Dropout(dropout1), nn.Linear(256, 256, weight_attr=weight_attr), nn.ReLU(), nn.Dropout(dropout2), nn.Linear(256, 10, weight_attr=weight_attr)) trainer = paddle.optimizer.SGD(learning_rate=0.5, parameters=net.parameters()) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
302
trainer = tf.keras.optimizers.SGD(learning_rate=lr) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) %matplotlib inline import tensorflow as tf from d2l import tensorflow as d2l x = tf.Variable(tf.range(-8.0, 8.0, 0.1)) with tf.GradientTape() as t: y = tf.nn.sigmoid(x) d2l.plot(x.numpy(), [y.numpy(), t.gradient(y, x).numpy()], legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5)) M = tf.random.normal((4, 4)) for i in range(100): M = tf.matmul(M, tf.random.normal((4, 4)))
null
null
trainer = paddle.optimizer.SGD(learning_rate=0.5, parameters=net.parameters()) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) %matplotlib inline import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle x = paddle.arange(start=-8.0, end=8.0, step=0.1, dtype='float32') x.stop_gradient = False y = paddle.nn.functional.sigmoid(x) y.backward(paddle.ones_like(x)) d2l.plot(x.detach().numpy(), [y.detach().numpy(), x.grad.numpy()], legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5)) M = paddle.normal(0, 1, shape=(4,4)) for i in range(100): M = paddle.mm(M, paddle.normal(0, 1, shape=(4, 4)))
303
%matplotlib inline import numpy as np import pandas as pd import tensorflow as tf from d2l import tensorflow as d2l n_train = train_data.shape[0] train_features = tf.constant(all_features[:n_train].values, dtype=tf.float32) test_features = tf.constant(all_features[n_train:].values, dtype=tf.float32) train_labels = tf.constant(train_data.SalePrice.values.reshape(-1, 1), dtype=tf.float32) loss = tf.keras.losses.MeanSquaredError() def get_net(): net = tf.keras.models.Sequential() net.add(tf.keras.layers.Dense(1, kernel_regularizer=tf.keras.regularizers.l2(weight_decay))) return net def log_rmse(y_true, y_pred): clipped_preds = tf.clip_by_value(y_pred, 1, float('inf')) return tf.sqrt(tf.reduce_mean(loss(tf.math.log(y_true), tf.math.log(clipped_preds)))) def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size): train_ls, test_ls = [], [] train_iter = d2l.load_array((train_features, train_labels), batch_size) optimizer = tf.keras.optimizers.Adam(learning_rate) net.compile(loss=loss, optimizer=optimizer) for epoch in range(num_epochs): for X, y in train_iter: with tf.GradientTape() as tape: y_hat = net(X) l = loss(y, y_hat) params = net.trainable_variables grads = tape.gradient(l, params) optimizer.apply_gradients(zip(grads, params)) train_ls.append(log_rmse(train_labels, net(train_features))) if test_labels is not None: test_ls.append(log_rmse(test_labels, net(test_features))) return train_ls, test_ls def get_k_fold_data(k, i, X, y): assert k > 1 fold_size = X.shape[0] // k X_train, y_train = None, None for j in range(k): idx = slice(j * fold_size, (j + 1) * fold_size) X_part, y_part = X[idx, :], y[idx] if j == i: X_valid, y_valid = X_part, y_part elif X_train is None: X_train, y_train = X_part, y_part else: X_train = tf.concat([X_train, X_part], 0) y_train = tf.concat([y_train, y_part], 0) return X_train, y_train, X_valid, y_valid def train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size): net = get_net() train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs, lr, weight_decay, batch_size) d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch', ylabel='log rmse', xlim=[1, num_epochs], yscale='log') preds = net(test_features).numpy() test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0]) submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1) submission.to_csv('submission.csv', index=False)
null
null
%matplotlib inline import warnings import numpy as np import pandas as pd warnings.filterwarnings(action='ignore') import paddle from paddle import nn warnings.filterwarnings("ignore", category=DeprecationWarning) from d2l import paddle as d2l n_train = train_data.shape[0] train_features = paddle.to_tensor(all_features[:n_train].values, dtype=paddle.float32) test_features = paddle.to_tensor(all_features[n_train:].values, dtype=paddle.float32) train_labels = paddle.to_tensor( train_data.SalePrice.values.reshape(-1, 1), dtype=paddle.float32) loss = nn.MSELoss() in_features = train_features.shape[1] def get_net(): net = nn.Sequential(nn.Linear(in_features,1)) return net def log_rmse(net, features, labels): clipped_preds = paddle.clip(net(features), 1, float('inf')) rmse = paddle.sqrt(loss(paddle.log(clipped_preds), paddle.log(labels))) return rmse.item() def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size): train_ls, test_ls = [], [] train_iter = d2l.load_array((train_features, train_labels), batch_size) optimizer = paddle.optimizer.Adam(learning_rate=learning_rate*1.0, parameters=net.parameters(), weight_decay=weight_decay*1.0) for epoch in range(num_epochs): for X, y in train_iter: l = loss(net(X), y) l.backward() optimizer.step() optimizer.clear_grad() train_ls.append(log_rmse(net, train_features, train_labels)) if test_labels is not None: test_ls.append(log_rmse(net, test_features, test_labels)) return train_ls, test_ls def get_k_fold_data(k, i, X, y): assert k > 1 fold_size = X.shape[0] // k X_train, y_train = None, None for j in range(k): idx = slice(j * fold_size, (j + 1) * fold_size) X_part, y_part = X[idx, :], y[idx] if j == i: X_valid, y_valid = X_part, y_part elif X_train is None: X_train, y_train = X_part, y_part else: X_train = paddle.concat([X_train, X_part], 0) y_train = paddle.concat([y_train, y_part], 0) return X_train, y_train, X_valid, y_valid def train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size): net = get_net() train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs, lr, weight_decay, batch_size) d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch', ylabel='log rmse', xlim=[1, num_epochs], yscale='log') preds = net(test_features).detach().numpy() test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0]) submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1) submission.to_csv('submission.csv', index=False)
304
import tensorflow as tf net = tf.keras.models.Sequential([ tf.keras.layers.Dense(256, activation=tf.nn.relu), tf.keras.layers.Dense(10)) X = tf.random.uniform((2, 20)) net(X) class MLP(tf.keras.Model): def __init__(self): super().__init__() self.hidden = tf.keras.layers.Dense(units=256, activation=tf.nn.relu) self.out = tf.keras.layers.Dense(units=10) def call(self, X): return self.out(self.hidden((X))) class MySequential(tf.keras.Model): def __init__(self, *args): super().__init__() self.modules = [] for block in args: self.modules.append(block) def call(self, X): for module in self.modules: X = module(X) return X net = MySequential( tf.keras.layers.Dense(units=256, activation=tf.nn.relu), tf.keras.layers.Dense(10)) net(X) class FixedHiddenMLP(tf.keras.Model): def __init__(self): super().__init__() self.flatten = tf.keras.layers.Flatten() self.rand_weight = tf.constant(tf.random.uniform((20, 20))) self.dense = tf.keras.layers.Dense(20, activation=tf.nn.relu) def call(self, inputs): X = self.flatten(inputs) X = tf.nn.relu(tf.matmul(X, self.rand_weight) + 1) X = self.dense(X) while tf.reduce_sum(tf.math.abs(X)) > 1: X /= 2 return tf.reduce_sum(X) class NestMLP(tf.keras.Model): def __init__(self): super().__init__() self.net = tf.keras.Sequential() self.net.add(tf.keras.layers.Dense(64, activation=tf.nn.relu)) self.net.add(tf.keras.layers.Dense(32, activation=tf.nn.relu)) self.dense = tf.keras.layers.Dense(16, activation=tf.nn.relu) def call(self, inputs): return self.dense(self.net(inputs)) chimera = tf.keras.Sequential() chimera.add(NestMLP()) chimera.add(tf.keras.layers.Dense(20)) chimera.add(FixedHiddenMLP()) chimera(X)
null
null
import warnings warnings.filterwarnings(action='ignore') import paddle from paddle import nn from paddle.nn import functional as F net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10)) X = paddle.rand([2, 20]) net(X) class MLP(nn.Layer): def __init__(self): super().__init__() self.hidden = nn.Linear(20, 256) self.out = nn.Linear(256, 10) def forward(self, X): return self.out(F.relu(self.hidden(X))) class MySequential(nn.Layer): def __init__(self, *layers): super(MySequential, self).__init__() if len(layers) > 0 and isinstance(layers[0], tuple): for name, layer in layers: self.add_sublayer(name, layer) else: for idx, layer in enumerate(layers): self.add_sublayer(str(idx), layer) def forward(self, X): for layer in self._sub_layers.values(): X = layer(X) return X net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10)) net(X) class FixedHiddenMLP(nn.Layer): def __init__(self): super().__init__() self.rand_weight = paddle.rand([20, 20]) self.linear = nn.Linear(20, 20) def forward(self, X): X = self.linear(X) X = F.relu(paddle.tensor.mm(X, self.rand_weight) + 1) X = self.linear(X) while X.abs().sum() > 1: X /= 2 return X.sum() class NestMLP(nn.Layer): def __init__(self): super().__init__() self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU()) self.linear = nn.Linear(32, 16) def forward(self, X): return self.linear(self.net(X)) chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP()) chimera(X)
305
import tensorflow as tf net = tf.keras.models.Sequential([ tf.keras.layers.Flatten(), tf.keras.layers.Dense(4, activation=tf.nn.relu), tf.keras.layers.Dense(1), ]) X = tf.random.uniform((2, 4)) net(X) net.get_weights()[1] def block1(name): return tf.keras.Sequential([tf.keras.layers.Flatten(), tf.keras.layers.Dense(4, activation=tf.nn.relu)], name=name) def block2(): net = tf.keras.Sequential() for i in range(4): net.add(block1(name=f'block-{i}')) return net rgnet = tf.keras.Sequential() rgnet.add(block2()) rgnet.add(tf.keras.layers.Dense(1)) rgnet(X) net = tf.keras.models.Sequential([ tf.keras.layers.Flatten(), tf.keras.layers.Dense(4, activation=tf.nn.relu, kernel_initializer=tf.random_normal_initializer(mean=0, stddev=0.01), bias_initializer=tf.zeros_initializer()), tf.keras.layers.Dense(1)]) net(X) net.weights[0], net.weights[1] net = tf.keras.models.Sequential([ tf.keras.layers.Flatten(), tf.keras.layers.Dense(4, activation=tf.nn.relu, kernel_initializer=tf.keras.initializers.Constant(1), bias_initializer=tf.zeros_initializer()), tf.keras.layers.Dense(1), ]) net(X) net.weights[0], net.weights[1] net = tf.keras.models.Sequential([ tf.keras.layers.Flatten(), tf.keras.layers.Dense(4, activation=tf.nn.relu, kernel_initializer=tf.keras.initializers.GlorotUniform()), tf.keras.layers.Dense(1, kernel_initializer=tf.keras.initializers.Constant(1)), ]) net(X) class MyInit(tf.keras.initializers.Initializer): def __call__(self, shape, dtype=None): data=tf.random.uniform(shape, -10, 10, dtype=dtype) factor=(tf.abs(data) >= 5) factor=tf.cast(factor, tf.float32) return data * factor net = tf.keras.models.Sequential([ tf.keras.layers.Flatten(), tf.keras.layers.Dense(4, activation=tf.nn.relu, kernel_initializer=MyInit()), tf.keras.layers.Dense(1)) net(X) net.layers[1].weights[0][:].assign(net.layers[1].weights[0] + 1) net.layers[1].weights[0][0, 0].assign(42) net.layers[1].weights[0] layer = CenteredLayer() layer(tf.constant([1, 2, 3, 4, 5])) net = tf.keras.Sequential([tf.keras.layers.Dense(128), CenteredLayer()])
null
null
import warnings warnings.filterwarnings(action='ignore') import paddle from paddle import nn net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1)) X = paddle.rand([2, 4]) net(X) net.state_dict()['2.bias'] def block1(): return nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 4), nn.ReLU()) def block2(): net = nn.Sequential() for i in range(4): net.add_sublayer(f'block {i}', block1()) return net rgnet = nn.Sequential(block2(), nn.Linear(4, 1)) rgnet(X) def init_normal(m): if type(m) == nn.Linear: paddle.nn.initializer.Normal(mean=0.0, std=0.01) paddle.zeros(m.bias) net.apply(init_normal) net[0].weight[0],net[0].state_dict()['bias'] def init_constant(m): if type(m) == nn.Linear: paddle.nn.initializer.Constant(value = 1) paddle.zeros(m.bias) net.apply(init_constant) net[0].weight[0],net[0].state_dict()['bias'] def xavier(m): if type(m) == nn.Linear: paddle.nn.initializer.XavierUniform(m.weight) def init_42(m): if type(m) == nn.Linear: paddle.nn.initializer.Constant(42) net[0].apply(xavier) net[2].apply(init_42) def my_init(m): if type(m) == nn.Linear: for name, param in m.named_parameters()][0]) paddle.nn.initializer.XavierUniform(m.weight, -10, 10) h = paddle.abs(m.weight) >= 5 h = paddle.to_tensor(h) m = paddle.to_tensor(m.weight) m *= h net.apply(my_init) net[0].weight[:2] net[0].weight.set_value(net[0].weight.numpy() + 1) val = net[0].weight.numpy() val[0, 0] = 42 net[0].weight.set_value(val) net[0].weight[0] layer = CenteredLayer() layer(paddle.to_tensor([1, 2, 3, 4, 5], dtype='float32')) net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
306
import tensorflow as tf class CenteredLayer(tf.keras.Model): def __init__(self): super().__init__() def call(self, inputs): return inputs - tf.reduce_mean(inputs) Y = net(tf.random.uniform((4, 8))) tf.reduce_mean(Y) class MyDense(tf.keras.Model): def __init__(self, units): super().__init__() self.units = units def build(self, X_shape): self.weight = self.add_weight(name='weight', shape=[X_shape[-1], self.units], initializer=tf.random_normal_initializer()) self.bias = self.add_weight( name='bias', shape=[self.units], initializer=tf.zeros_initializer()) def call(self, X): linear = tf.matmul(X, self.weight) + self.bias return tf.nn.relu(linear) dense = MyDense(3) dense(tf.random.uniform((2, 5))) dense.get_weights() dense(tf.random.uniform((2, 5))) net = tf.keras.models.Sequential([MyDense(8), MyDense(1)]) net(tf.random.uniform((2, 64)))
null
null
import warnings warnings.filterwarnings(action='ignore') import paddle import paddle.nn.functional as F from paddle import nn class CenteredLayer(nn.Layer): def __init__(self): super().__init__() def forward(self, X): return X - X.mean() Y = net(paddle.rand([4, 8])) Y.mean() class MyLinear(nn.Layer): def __init__(self, in_units, units): super().__init__() self.weight = paddle.create_parameter(shape=(in_units, units), dtype='float32') self.bias = paddle.create_parameter(shape=(units,), dtype='float32') def forward(self, X): linear = paddle.matmul(X, self.weight) + self.bias return F.relu(linear) linear = MyLinear(5, 3) linear.weight linear(paddle.randn([2, 5])) net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1)) net(paddle.rand([2, 64]))
307
import numpy as np import tensorflow as tf x = tf.range(4) np.save('x-file.npy', x) x2 = np.load('x-file.npy', allow_pickle=True) y = tf.zeros(4) np.save('xy-files.npy', [x, y]) x2, y2 = np.load('xy-files.npy', allow_pickle=True) mydict = {'x': x, 'y': y} np.save('mydict.npy', mydict) mydict2 = np.load('mydict.npy', allow_pickle=True) class MLP(tf.keras.Model): def __init__(self): super().__init__() self.flatten = tf.keras.layers.Flatten() self.hidden = tf.keras.layers.Dense(units=256, activation=tf.nn.relu) self.out = tf.keras.layers.Dense(units=10) def call(self, inputs): x = self.flatten(inputs) x = self.hidden(x) return self.out(x) net = MLP() X = tf.random.uniform((2, 20)) Y = net(X) net.save_weights('mlp.params') clone = MLP() clone.load_weights('mlp.params')
null
null
import warnings warnings.filterwarnings(action='ignore') import paddle from paddle import nn from paddle.nn import functional as F x = paddle.arange(4) paddle.save(x, 'x-file') x2 = paddle.load('x-file') y = paddle.zeros([4]) paddle.save([x,y], 'x-file') x2, y2 = paddle.load('x-file') mydict = {'x': x, 'y': y} paddle.save(mydict, 'mydict') mydict2 = paddle.load('mydict') class MLP(nn.Layer): def __init__(self): super().__init__() self.hidden = nn.Linear(20, 256) self.output = nn.Linear(256, 10) def forward(self, x): return self.output(F.relu(self.hidden(x))) net = MLP() X = paddle.randn(shape=[2, 20]) Y = net(X) paddle.save(net.state_dict(), 'mlp.pdparams') clone = MLP() clone.set_state_dict(paddle.load('mlp.pdparams')) clone.eval()
308
import tensorflow as tf tf.device('/CPU:0'), tf.device('/GPU:0'), tf.device('/GPU:1') len(tf.config.experimental.list_physical_devices('GPU')) def try_gpu(i=0): if len(tf.config.experimental.list_physical_devices('GPU')) >= i + 1: return tf.device(f'/GPU:{i}') return tf.device('/CPU:0') def try_all_gpus(): num_gpus = len(tf.config.experimental.list_physical_devices('GPU')) devices = [tf.device(f'/GPU:{i}') for i in range(num_gpus)] return devices if devices else [tf.device('/CPU:0')] try_gpu(), try_gpu(10), try_all_gpus() x = tf.constant([1, 2, 3]) x.device with try_gpu(): X = tf.ones((2, 3)) with try_gpu(1): Y = tf.random.uniform((2, 3)) with try_gpu(1): Z = X with try_gpu(1): Z2 = Z Z2 is Z strategy = tf.distribute.MirroredStrategy() with strategy.scope(): net = tf.keras.models.Sequential([ tf.keras.layers.Dense(1)]) net.layers[0].weights[0].device, net.layers[0].weights[1].device
null
null
import paddle from paddle import nn paddle.device.set_device("cpu"), paddle.CUDAPlace(0), paddle.CUDAPlace(1) paddle.device.cuda.device_count() if paddle.device.cuda.device_count() >= i + 1: return paddle.CUDAPlace(i) return paddle.CPUPlace() def try_all_gpus(): devices = [paddle.CUDAPlace(i) for i in range(paddle.device.cuda.device_count())] return devices if devices else paddle.CPUPlace() try_gpu(),try_gpu(10),try_all_gpus() x = paddle.to_tensor([1, 2, 3]) x.place X = paddle.to_tensor(paddle.ones(shape=[2, 3]), place=try_gpu()) Y = paddle.to_tensor(paddle.rand([2, 3]), place=try_gpu(1)) Z = X.cuda(1) Z.cuda(1) is Z net = nn.Sequential(nn.Linear(3, 1)) net=net.to(try_gpu()) net[0].weight.place
309
import tensorflow as tf from d2l import tensorflow as d2l def corr2d(X, K): h, w = K.shape Y = tf.Variable(tf.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))) for i in range(Y.shape[0]): for j in range(Y.shape[1]): Y[i, j].assign(tf.reduce_sum( X[i: i + h, j: j + w] * K)) return Y X = tf.constant([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]) K = tf.constant([[0.0, 1.0], [2.0, 3.0]]) corr2d(X, K) class Conv2D(tf.keras.layers.Layer): def __init__(self): super().__init__() def build(self, kernel_size): initializer = tf.random_normal_initializer() self.weight = self.add_weight(name='w', shape=kernel_size, initializer=initializer) self.bias = self.add_weight(name='b', shape=(1, ), initializer=initializer) def call(self, inputs): return corr2d(inputs, self.weight) + self.bias X = tf.Variable(tf.ones((6, 8))) X[:, 2:6].assign(tf.zeros(X[:, 2:6].shape)) K = tf.constant([[1.0, -1.0]]) corr2d(tf.transpose(X), K) conv2d = tf.keras.layers.Conv2D(1, (1, 2), use_bias=False) X = tf.reshape(X, (1, 6, 8, 1)) Y = tf.reshape(Y, (1, 6, 7, 1)) lr = 3e-2 Y_hat = conv2d(X) for i in range(10): with tf.GradientTape(watch_accessed_variables=False) as g: g.watch(conv2d.weights[0]) Y_hat = conv2d(X) l = (abs(Y_hat - Y)) ** 2 update = tf.multiply(lr, g.gradient(l, conv2d.weights[0])) weights = conv2d.get_weights() weights[0] = conv2d.weights[0] - update conv2d.set_weights(weights) tf.reshape(conv2d.get_weights()[0], (1, 2))
null
null
import warningsfrom d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle from paddle import nn def corr2d(X, K): h, w = K.shape Y = paddle.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1)) for i in range(Y.shape[0]): for j in range(Y.shape[1]): Y[i, j] = (X[i:i + h, j:j + w] * K).sum() return Y X = paddle.to_tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]) K = paddle.to_tensor([[0.0, 1.0], [2.0, 3.0]]) corr2d(X, K) class Conv2D(nn.Layer): def __init__(self, kernel_size): super().__init__() self.weight = paddle.ParamAttr(paddle.rand(kernel_size)) self.bias = paddle.ParamAttr(paddle.zeros(1)) def forward(self, x): return corr2d(x, self.weight) + self.bias X = paddle.ones((6, 8)) X[:, 2:6] = 0 K = paddle.to_tensor([[1.0, -1.0]]) corr2d(X.t(), K) conv2d = nn.Conv2D(1, 1, kernel_size=(1, 2)) X = X.reshape((1, 1, 6, 8)) Y = Y.reshape((1, 1, 6, 7)) lr = 3e-2 for i in range(10): Y_hat = conv2d(X) l = (Y_hat - Y) ** 2 conv2d.clear_gradients() l.sum().backward() with paddle.no_grad(): conv2d.weight[:] -= lr * conv2d.weight.grad conv2d.weight.reshape((1, 2))
310
import tensorflow as tf def comp_conv2d(conv2d, X): X = tf.reshape(X, (1, ) + X.shape + (1, )) Y = conv2d(X) return tf.reshape(Y, Y.shape[1:3]) conv2d = tf.keras.layers.Conv2D(1, kernel_size=3, padding='same') X = tf.random.uniform(shape=(8, 8)) comp_conv2d(conv2d, X).shape conv2d = tf.keras.layers.Conv2D(1, kernel_size=(5, 3), padding='same') comp_conv2d(conv2d, X).shape conv2d = tf.keras.layers.Conv2D(1, kernel_size=3, padding='same', strides=2) comp_conv2d(conv2d, X).shape conv2d = tf.keras.layers.Conv2D(1, kernel_size=(3,5), padding='valid', strides=(3, 4)) comp_conv2d(conv2d, X).shape
null
null
import warnings warnings.filterwarnings(action='ignore') import paddle from paddle import nn def comp_conv2d(conv2d, X): X = paddle.reshape(X, [1, 1] + X.shape) Y = conv2d(X) return Y.reshape(Y.shape[2:]) conv2d = nn.Conv2D(in_channels=1, out_channels=1, kernel_size=3, padding=1) X = paddle.rand((8, 8)) comp_conv2d(conv2d, X).shape conv2d = nn.Conv2D(in_channels=1, out_channels=1, kernel_size=(5, 3), padding=(2, 1)) comp_conv2d(conv2d, X).shape conv2d = nn.Conv2D(1, 1, kernel_size=3, padding=1, stride=2) comp_conv2d(conv2d, X).shape conv2d = nn.Conv2D(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4)) comp_conv2d(conv2d, X).shape
311
import tensorflow as tf from d2l import tensorflow as d2l def corr2d_multi_in(X, K): return tf.reduce_sum([d2l.corr2d(x, k) for x, k in zip(X, K)], axis=0) X = tf.constant([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]]) K = tf.constant([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]]) corr2d_multi_in(X, K) def corr2d_multi_in_out(X, K): return tf.stack([corr2d_multi_in(X, k) for k in K], 0) K = tf.stack((K, K + 1, K + 2), 0) K.shape def corr2d_multi_in_out_1x1(X, K): c_i, h, w = X.shape c_o = K.shape[0] X = tf.reshape(X, (c_i, h * w)) K = tf.reshape(K, (c_o, c_i)) Y = tf.matmul(K, X) return tf.reshape(Y, (c_o, h, w)) X = tf.random.normal((3, 3, 3), 0, 1) K = tf.random.normal((2, 3, 1, 1), 0, 1) Y1 = corr2d_multi_in_out_1x1(X, K) Y2 = corr2d_multi_in_out(X, K) assert float(tf.reduce_sum(tf.abs(Y1 - Y2))) < 1e-6
null
null
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle def corr2d_multi_in(X, K): return sum(d2l.corr2d(x, k) for x, k in zip(X, K)) X = paddle.to_tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]]) K = paddle.to_tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]]) corr2d_multi_in(X, K) def corr2d_multi_in_out(X, K): return paddle.stack([corr2d_multi_in(X, k) for k in K], 0) K = paddle.stack((K, K + 1, K + 2), 0) K.shape def corr2d_multi_in_out_1x1(X, K): c_i, h, w = X.shape c_o = K.shape[0] X = X.reshape((c_i, h * w)) K = K.reshape((c_o, c_i)) Y = paddle.matmul(K, X) return Y.reshape((c_o, h, w)) X = paddle.normal(0, 1, (3, 3, 3)) K = paddle.normal(0, 1, (2, 3, 1, 1)) Y1 = corr2d_multi_in_out_1x1(X, K) Y2 = corr2d_multi_in_out(X, K) assert float(paddle.abs(Y1 - Y2).sum()) < 1e-6
312
import tensorflow as tf def pool2d(X, pool_size, mode='max'): p_h, p_w = pool_size Y = tf.Variable(tf.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w +1))) for i in range(Y.shape[0]): for j in range(Y.shape[1]): if mode == 'max': Y[i, j].assign(tf.reduce_max(X[i: i + p_h, j: j + p_w])) elif mode =='avg': Y[i, j].assign(tf.reduce_mean(X[i: i + p_h, j: j + p_w])) return Y X = tf.constant([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]) pool2d(X, (2, 2)) X = tf.reshape(tf.range(16, dtype=tf.float32), (1, 4, 4, 1)) pool2d = tf.keras.layers.MaxPool2D(pool_size=[3, 3]) pool2d(X) paddings = tf.constant([[0, 0], [1,0], [1,0], [0,0]]) X_padded = tf.pad(X, paddings, "CONSTANT") pool2d = tf.keras.layers.MaxPool2D(pool_size=[3, 3], padding='valid', strides=2) pool2d(X_padded) paddings = tf.constant([[0, 0], [0, 0], [1, 1], [0, 0]]) X_padded = tf.pad(X, paddings, "CONSTANT") pool2d = tf.keras.layers.MaxPool2D(pool_size=[2, 3], padding='valid', strides=(2, 3)) pool2d(X_padded) X = tf.concat([X, X + 1], 3) paddings = tf.constant([[0, 0], [1,0], [1,0], [0,0]]) X_padded = tf.pad(X, paddings, "CONSTANT") pool2d = tf.keras.layers.MaxPool2D(pool_size=[3, 3], padding='valid', strides=2) pool2d(X_padded)
null
null
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle from paddle import nn def pool2d(X, pool_size, mode='max'): p_h, p_w = pool_size Y = paddle.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1)) for i in range(Y.shape[0]): for j in range(Y.shape[1]): if mode == 'max': Y[i, j] = X[i: i + p_h, j: j + p_w].max() elif mode == 'avg': Y[i, j] = X[i: i + p_h, j: j + p_w].mean() return Y X = paddle.to_tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]) pool2d(X, (2, 2)) X = paddle.arange(16, dtype="float32").reshape((1, 1, 4, 4)) pool2d = nn.MaxPool2D(3, stride=3) pool2d(X) pool2d = nn.MaxPool2D(3, padding=1, stride=2) pool2d(X) pool2d = nn.MaxPool2D((2, 3), padding=(0, 1), stride=(2, 3)) pool2d(X) X = paddle.concat((X, X + 1), 1) pool2d = paddle.nn.MaxPool2D(3, padding=1, stride=2) pool2d(X)
313
import tensorflow as tf from d2l import tensorflow as d2l def net(): return tf.keras.models.Sequential([ tf.keras.layers.Conv2D(filters=6, kernel_size=5, activation='sigmoid', padding='same'), tf.keras.layers.AvgPool2D(pool_size=2, strides=2), tf.keras.layers.Conv2D(filters=16, kernel_size=5, activation='sigmoid'), tf.keras.layers.AvgPool2D(pool_size=2, strides=2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(120, activation='sigmoid'), tf.keras.layers.Dense(84, activation='sigmoid'), tf.keras.layers.Dense(10)]) X = tf.random.uniform((1, 28, 28, 1)) for layer in net().layers: X = layer(X) print(layer.__class__.__name__, 'output shape: ', X.shape) class TrainCallback(tf.keras.callbacks.Callback): def __init__(self, net, train_iter, test_iter, num_epochs, device_name): self.timer = d2l.Timer() self.animator = d2l.Animator( xlabel='epoch', xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test acc']) self.net = net self.train_iter = train_iter self.test_iter = test_iter self.num_epochs = num_epochs self.device_name = device_name def on_epoch_begin(self, epoch, logs=None): self.timer.start() def on_epoch_end(self, epoch, logs): self.timer.stop() test_acc = self.net.evaluate(self.test_iter, verbose=0, return_dict=True)['accuracy'] metrics = (logs['loss'], logs['accuracy'], test_acc) self.animator.add(epoch + 1, metrics) if epoch == self.num_epochs - 1: batch_size = next(iter(self.train_iter))[0].shape[0] num_examples = batch_size * tf.data.experimental.cardinality(self.train_iter).numpy() def train_ch6(net_fn, train_iter, test_iter, num_epochs, lr, device): device_name = device._device_name strategy = tf.distribute.OneDeviceStrategy(device_name) with strategy.scope(): optimizer = tf.keras.optimizers.SGD(learning_rate=lr) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) net = net_fn() net.compile(optimizer=optimizer, loss=loss, metrics=['accuracy']) callback = TrainCallback(net, train_iter, test_iter, num_epochs, device_name) net.fit(train_iter, epochs=num_epochs, verbose=0, callbacks=[callback]) return net
null
null
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle from paddle import nn, optimizer net = nn.Sequential( nn.Conv2D(1, 6, kernel_size=5, padding=2), nn.Sigmoid(), nn.AvgPool2D(kernel_size=2, stride=2), nn.Conv2D(6, 16, kernel_size=5), nn.Sigmoid(), nn.AvgPool2D(kernel_size=2, stride=2), nn.Flatten(), nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(), nn.Linear(120, 84), nn.Sigmoid(), nn.Linear(84, 10)) X = paddle.rand((1, 1, 28, 28), 'float32') for layer in net: X = layer(X) print(layer.__class__.__name__, 'output shape: ', X.shape) def train_ch6(net, train_iter, test_iter, num_epochs, lr, device): def init_weights(m): if type(m) == nn.Linear or type(m) == nn.Conv2D: nn.initializer.XavierUniform(m.weight) net.apply(init_weights) net.to(device) optimizer = paddle.optimizer.SGD(learning_rate=lr, parameters=net.parameters()) loss = nn.CrossEntropyLoss() animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test acc']) timer, num_batches = d2l.Timer(), len(train_iter) for epoch in range(num_epochs): metric = d2l.Accumulator(3) net.train() for i, (X, y) in enumerate(train_iter): timer.start() optimizer.clear_grad() X, y = paddle.to_tensor(X, place=device), paddle.to_tensor(y, place=device) y_hat = net(X) l = loss(y_hat, y) l.backward() optimizer.step() with paddle.no_grad(): metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0]) timer.stop() train_l = metric[0] / metric[2] train_acc = metric[1] / metric[2] if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1: animator.add(epoch + (i + 1) / num_batches, (train_l, train_acc, None)) test_acc = evaluate_accuracy_gpu(net, test_iter) animator.add(epoch + 1, (None, None, test_acc))
314
import tensorflow as tf from d2l import tensorflow as d2l def net(): return tf.keras.models.Sequential([ tf.keras.layers.Conv2D(filters=96, kernel_size=11, strides=4, activation='relu'), tf.keras.layers.MaxPool2D(pool_size=3, strides=2), tf.keras.layers.Conv2D(filters=256, kernel_size=5, padding='same', activation='relu'), tf.keras.layers.MaxPool2D(pool_size=3, strides=2), tf.keras.layers.Conv2D(filters=384, kernel_size=3, padding='same', activation='relu'), tf.keras.layers.Conv2D(filters=384, kernel_size=3, padding='same', activation='relu'), tf.keras.layers.Conv2D(filters=256, kernel_size=3, padding='same', activation='relu'), tf.keras.layers.MaxPool2D(pool_size=3, strides=2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(4096, activation='relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(4096, activation='relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(10)]) X = tf.random.uniform((1, 224, 224, 1)) for layer in net().layers: X = layer(X) print(layer.__class__.__name__, 'output shape: ', X.shape)
null
null
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle import paddle.nn as nn net = nn.Sequential( nn.Conv2D(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(), nn.MaxPool2D(kernel_size=3, stride=2), nn.Conv2D(96, 256, kernel_size=5, padding=2), nn.ReLU(), nn.MaxPool2D(kernel_size=3, stride=2), nn.Conv2D(256, 384, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2D(384, 384, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2D(384, 256, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2D(kernel_size=3, stride=2), nn.Flatten(), nn.Linear(6400, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 10)) X = paddle.randn(shape=(1, 1, 224, 224)) for layer in net: X=layer(X) print(layer.__class__.__name__,'output shape: ',X.shape)
315
import tensorflow as tf from d2l import tensorflow as d2l def vgg_block(num_convs, num_channels): blk = tf.keras.models.Sequential() for _ in range(num_convs): blk.add(tf.keras.layers.Conv2D(num_channels,kernel_size=3, padding='same',activation='relu')) blk.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2)) return blk def vgg(conv_arch): net = tf.keras.models.Sequential() for (num_convs, num_channels) in conv_arch: net.add(vgg_block(num_convs, num_channels)) net.add(tf.keras.models.Sequential([ tf.keras.layers.Flatten(), tf.keras.layers.Dense(4096, activation='relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(4096, activation='relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(10)])) return net net = vgg(conv_arch) X = tf.random.uniform((1, 224, 224, 1)) for blk in net.layers: X = blk(X) print(blk.__class__.__name__,'output shape: ', X.shape) ratio = 4 small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch] net = lambda: vgg(small_conv_arch)
null
null
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle import paddle.nn as nn def vgg_block(num_convs, in_channels, out_channels): layers = [] for _ in range(num_convs): layers.append(nn.Conv2D(in_channels, out_channels, kernel_size=3, padding=1)) layers.append(nn.ReLU()) in_channels = out_channels layers.append(nn.MaxPool2D(kernel_size=2, stride=2)) return nn.Sequential(*layers) def vgg(conv_arch): conv_blks = [] in_channels = 1 for (num_convs, out_channels) in conv_arch: conv_blks.append(vgg_block(num_convs, in_channels, out_channels)) in_channels = out_channels return nn.Sequential(*conv_blks, nn.Flatten(), nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5), nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5), nn.Linear(4096, 10)) net = vgg(conv_arch) X = paddle.randn(shape=(1, 1, 224, 224)) for blk in net: X = blk(X) print(blk.__class__.__name__,'output shape: ',X.shape) ratio = 4 small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch] net = vgg(small_conv_arch)
316
import tensorflow as tf from d2l import tensorflow as d2l def nin_block(num_channels, kernel_size, strides, padding): return tf.keras.models.Sequential([ tf.keras.layers.Conv2D(num_channels, kernel_size, strides=strides, padding=padding, activation='relu'), tf.keras.layers.Conv2D(num_channels, kernel_size=1, activation='relu'), tf.keras.layers.Conv2D(num_channels, kernel_size=1, activation='relu')]) def net(): return tf.keras.models.Sequential([ nin_block(96, kernel_size=11, strides=4, padding='valid'), tf.keras.layers.MaxPool2D(pool_size=3, strides=2), nin_block(256, kernel_size=5, strides=1, padding='same'), tf.keras.layers.MaxPool2D(pool_size=3, strides=2), nin_block(384, kernel_size=3, strides=1, padding='same'), tf.keras.layers.MaxPool2D(pool_size=3, strides=2), tf.keras.layers.Dropout(0.5), nin_block(10, kernel_size=3, strides=1, padding='same'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Reshape((1, 1, 10)), tf.keras.layers.Flatten(), ]) X = tf.random.uniform((1, 224, 224, 1)) for layer in net().layers: X = layer(X) print(layer.__class__.__name__,'output shape: ', X.shape)
null
null
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle import paddle.nn as nn def nin_block(in_channels, out_channels, kernel_size, strides, padding): return nn.Sequential( nn.Conv2D(in_channels, out_channels, kernel_size, strides, padding), nn.ReLU(), nn.Conv2D(out_channels, out_channels, kernel_size=1), nn.ReLU(), nn.Conv2D(out_channels, out_channels, kernel_size=1), nn.ReLU()) net = nn.Sequential( nin_block(1, 96, kernel_size=11, strides=4, padding=0), nn.MaxPool2D(3, stride=2), nin_block(96, 256, kernel_size=5, strides=1, padding=2), nn.MaxPool2D(3, stride=2), nin_block(256, 384, kernel_size=3, strides=1, padding=1), nn.MaxPool2D(3, stride=2), nn.Dropout(0.5), nin_block(384, 10, kernel_size=3, strides=1, padding=1), nn.AdaptiveAvgPool2D((1, 1)), nn.Flatten()) X = paddle.rand(shape=(1, 1, 224, 224)) for layer in net: X = layer(X) print(layer.__class__.__name__,'output shape: ', X.shape)
317
import tensorflow as tf from d2l import tensorflow as d2l class Inception(tf.keras.Model): def __init__(self, c1, c2, c3, c4): super().__init__() self.p1_1 = tf.keras.layers.Conv2D(c1, 1, activation='relu') self.p2_1 = tf.keras.layers.Conv2D(c2[0], 1, activation='relu') self.p2_2 = tf.keras.layers.Conv2D(c2[1], 3, padding='same', activation='relu') self.p3_1 = tf.keras.layers.Conv2D(c3[0], 1, activation='relu') self.p3_2 = tf.keras.layers.Conv2D(c3[1], 5, padding='same', activation='relu') self.p4_1 = tf.keras.layers.MaxPool2D(3, 1, padding='same') self.p4_2 = tf.keras.layers.Conv2D(c4, 1, activation='relu') def call(self, x): p1 = self.p1_1(x) p2 = self.p2_2(self.p2_1(x)) p3 = self.p3_2(self.p3_1(x)) p4 = self.p4_2(self.p4_1(x)) return tf.keras.layers.Concatenate()([p1, p2, p3, p4]) def b1(): return tf.keras.models.Sequential([ tf.keras.layers.Conv2D(64, 7, strides=2, padding='same', activation='relu'), tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')]) def b2(): return tf.keras.Sequential([ tf.keras.layers.Conv2D(64, 1, activation='relu'), tf.keras.layers.Conv2D(192, 3, padding='same', activation='relu'), tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')]) def b3(): return tf.keras.models.Sequential([ Inception(64, (96, 128), (16, 32), 32), Inception(128, (128, 192), (32, 96), 64), tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')]) def b4(): return tf.keras.Sequential([ Inception(192, (96, 208), (16, 48), 64), Inception(160, (112, 224), (24, 64), 64), Inception(128, (128, 256), (24, 64), 64), Inception(112, (144, 288), (32, 64), 64), Inception(256, (160, 320), (32, 128), 128), tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')]) def b5(): return tf.keras.Sequential([ Inception(256, (160, 320), (32, 128), 128), Inception(384, (192, 384), (48, 128), 128), tf.keras.layers.GlobalAvgPool2D(), tf.keras.layers.Flatten() ]) def net(): return tf.keras.Sequential([b1(), b2(), b3(), b4(), b5(), tf.keras.layers.Dense(10)]) X = tf.random.uniform(shape=(1, 96, 96, 1)) for layer in net().layers: X = layer(X) print(layer.__class__.__name__,'output shape: ', X.shape)
null
null
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle import paddle.nn as nn import paddle.nn.functional as F class Inception(nn.Layer): def __init__(self, in_channels, c1, c2, c3, c4, **kwargs): super(Inception, self).__init__(**kwargs) self.p1_1 = nn.Conv2D(in_channels, c1, kernel_size=1) self.p2_1 = nn.Conv2D(in_channels, c2[0], kernel_size=1) self.p2_2 = nn.Conv2D(c2[0], c2[1], kernel_size=3, padding=1) self.p3_1 = nn.Conv2D(in_channels, c3[0], kernel_size=1) self.p3_2 = nn.Conv2D(c3[0], c3[1], kernel_size=5, padding=2) self.p4_1 = nn.MaxPool2D(kernel_size=3, stride=1, padding=1) self.p4_2 = nn.Conv2D(in_channels, c4, kernel_size=1) def forward(self, x): p1 = F.relu(self.p1_1(x)) p2 = F.relu(self.p2_2(F.relu(self.p2_1(x)))) p3 = F.relu(self.p3_2(F.relu(self.p3_1(x)))) p4 = F.relu(self.p4_2(self.p4_1(x))) return paddle.concat(x=[p1, p2, p3, p4], axis=1) b1 = nn.Sequential(nn.Conv2D(1, 64, kernel_size=7, stride=2, padding=3), nn.ReLU(), nn.MaxPool2D(kernel_size=3, stride=2,padding=1)) b2 = nn.Sequential(nn.Conv2D(64, 64, kernel_size=1), nn.ReLU(), nn.Conv2D(64, 192, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2D(kernel_size=3, stride=2, padding=1)) b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32), Inception(256, 128, (128, 192), (32, 96), 64), nn.MaxPool2D(kernel_size=3, stride=2, padding=1)) b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64), Inception(512, 160, (112, 224), (24, 64), 64), Inception(512, 128, (128, 256), (24, 64), 64), Inception(512, 112, (144, 288), (32, 64), 64), Inception(528, 256, (160, 320), (32, 128), 128), nn.MaxPool2D(kernel_size=3, stride=2, padding=1)) b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128), Inception(832, 384, (192, 384), (48, 128), 128), nn.AdaptiveAvgPool2D((1, 1)), nn.Flatten()) net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10)) X = paddle.rand(shape=(1, 1, 96, 96)) for layer in net: X = layer(X) print(layer.__class__.__name__,'output shape: ', X.shape)
318
import tensorflow as tf from d2l import tensorflow as d2l def batch_norm(X, gamma, beta, moving_mean, moving_var, eps): inv = tf.cast(tf.math.rsqrt(moving_var + eps), X.dtype) inv *= gamma Y = X * inv + (beta - moving_mean * inv) return Y class BatchNorm(tf.keras.layers.Layer): def __init__(self, **kwargs): super(BatchNorm, self).__init__(**kwargs) def build(self, input_shape): weight_shape = [input_shape[-1], ] self.gamma = self.add_weight(name='gamma', shape=weight_shape, initializer=tf.initializers.ones, trainable=True) self.beta = self.add_weight(name='beta', shape=weight_shape, initializer=tf.initializers.zeros, trainable=True) self.moving_mean = self.add_weight(name='moving_mean', shape=weight_shape, initializer=tf.initializers.zeros, trainable=False) self.moving_variance = self.add_weight(name='moving_variance', shape=weight_shape, initializer=tf.initializers.ones, trainable=False) super(BatchNorm, self).build(input_shape) def assign_moving_average(self, variable, value): momentum = 0.9 delta = variable * momentum + value * (1 - momentum) return variable.assign(delta) @tf.function def call(self, inputs, training): if training: axes = list(range(len(inputs.shape) - 1)) batch_mean = tf.reduce_mean(inputs, axes, keepdims=True) batch_variance = tf.reduce_mean(tf.math.squared_difference(inputs, tf.stop_gradient(batch_mean)), axes, keepdims=True) batch_mean = tf.squeeze(batch_mean, axes) batch_variance = tf.squeeze(batch_variance, axes) mean_update = self.assign_moving_average(self.moving_mean, batch_mean) variance_update = self.assign_moving_average(self.moving_variance, batch_variance) self.add_update(mean_update) self.add_update(variance_update) mean, variance = batch_mean, batch_variance else: mean, variance = self.moving_mean, self.moving_variance output = batch_norm(inputs, moving_mean=mean, moving_var=variance, beta=self.beta, gamma=self.gamma, eps=1e-5) return output def net(): return tf.keras.models.Sequential([ tf.keras.layers.Conv2D(filters=6, kernel_size=5, input_shape=(28, 28, 1)), BatchNorm(), tf.keras.layers.Activation('sigmoid'), tf.keras.layers.AvgPool2D(pool_size=2, strides=2), tf.keras.layers.Conv2D(filters=16, kernel_size=5), BatchNorm(), tf.keras.layers.Activation('sigmoid'), tf.keras.layers.AvgPool2D(pool_size=2, strides=2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(120), BatchNorm(), tf.keras.layers.Activation('sigmoid'), tf.keras.layers.Dense(84), BatchNorm(), tf.keras.layers.Activation('sigmoid'), tf.keras.layers.Dense(10)] ) lr, num_epochs, batch_size = 1.0, 10, 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) net = d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu()) tf.reshape(net.layers[1].gamma, (-1,)), tf.reshape(net.layers[1].beta, (-1,)) def net(): return tf.keras.models.Sequential([ tf.keras.layers.Conv2D(filters=6, kernel_size=5, input_shape=(28, 28, 1)), tf.keras.layers.BatchNormalization(), tf.keras.layers.Activation('sigmoid'), tf.keras.layers.AvgPool2D(pool_size=2, strides=2), tf.keras.layers.Conv2D(filters=16, kernel_size=5), tf.keras.layers.BatchNormalization(), tf.keras.layers.Activation('sigmoid'), tf.keras.layers.AvgPool2D(pool_size=2, strides=2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(120), tf.keras.layers.BatchNormalization(), tf.keras.layers.Activation('sigmoid'), tf.keras.layers.Dense(84), tf.keras.layers.BatchNormalization(), tf.keras.layers.Activation('sigmoid'), tf.keras.layers.Dense(10), ])
null
null
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle import paddle.nn as nn def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum, is_training=True): if not is_training: X_hat = (X - moving_mean) / (moving_var + eps) ** 0.5 else: assert len(X.shape) in (2, 4) if len(X.shape) == 2: mean = paddle.mean(X) var = paddle.mean(((X - mean) ** 2)) else: mean = paddle.mean(X, axis=(0, 2, 3), keepdim=True) var = paddle.mean(((X - mean) ** 2), axis=(0, 2, 3), keepdim=True) X_hat = (X - mean) / (var + eps) ** 0.5 moving_mean = momentum * moving_mean + (1.0 - momentum) * mean moving_var = momentum * moving_var + (1.0 - momentum) * var Y = gamma * X_hat + beta return Y, moving_mean, moving_var class BatchNorm(nn.Layer): def __init__(self, num_features, num_dims=4): super(BatchNorm, self).__init__() if num_dims == 2: shape = (1, num_features) else: shape = (1, num_features, 1, 1) self.gamma = self.create_parameter( attr=None, shape=shape, dtype='float32', is_bias=False, default_initializer=nn.initializer.Assign(paddle.ones(shape=shape, dtype='float32'))) self.beta = self.create_parameter( attr=None, shape=shape, dtype='float32', is_bias=False, default_initializer=nn.initializer.Assign(paddle.zeros(shape=shape, dtype='float32'))) self.moving_mean = paddle.zeros(shape=shape, dtype='float32') self.moving_var = paddle.zeros(shape=shape, dtype='float32') def forward(self, X): Y, self.moving_mean, self.moving_var = batch_norm( X, self.gamma, self.beta, self.moving_mean, self.moving_var, eps=1e-5, momentum=0.9, is_training=self.training) return Y net = nn.Sequential( nn.Conv2D(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(), nn.MaxPool2D(kernel_size=2, stride=2), nn.Conv2D(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(), nn.MaxPool2D(kernel_size=2, stride=2), nn.Flatten(), nn.Linear(16 * 4 * 4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(), nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(), nn.Linear(84, 10)) lr, num_epochs, batch_size = 1.0, 10, 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu()) param = net.parameters() print('gamma:', param[2].numpy().reshape(-1)) print('beta:', param[3].numpy().reshape(-1)) net = nn.Sequential( nn.Conv2D(1, 6, kernel_size=5), nn.BatchNorm2D(6, momentum=0.1), nn.Sigmoid(), nn.MaxPool2D(kernel_size=2, stride=2), nn.Conv2D(6, 16, kernel_size=5), nn.BatchNorm2D(16, momentum=0.1), nn.Sigmoid(), nn.MaxPool2D(kernel_size=2, stride=2), nn.Flatten(), nn.Linear(256, 120), nn.BatchNorm1D(120, momentum=0.1), nn.Sigmoid(), nn.Linear(120, 84), nn.BatchNorm1D(84, momentum=0.1), nn.Sigmoid(), nn.Linear(84, 10))
319
import tensorflow as tf from d2l import tensorflow as d2l class Residual(tf.keras.Model): def __init__(self, num_channels, use_1x1conv=False, strides=1): super().__init__() self.conv1 = tf.keras.layers.Conv2D( num_channels, padding='same', kernel_size=3, strides=strides) self.conv2 = tf.keras.layers.Conv2D( num_channels, kernel_size=3, padding='same') self.conv3 = None if use_1x1conv: self.conv3 = tf.keras.layers.Conv2D( num_channels, kernel_size=1, strides=strides) self.bn1 = tf.keras.layers.BatchNormalization() self.bn2 = tf.keras.layers.BatchNormalization() def call(self, X): Y = tf.keras.activations.relu(self.bn1(self.conv1(X))) Y = self.bn2(self.conv2(Y)) if self.conv3 is not None: X = self.conv3(X) Y += X return tf.keras.activations.relu(Y) blk = Residual(3) X = tf.random.uniform((4, 6, 6, 3)) Y = blk(X) Y.shape blk = Residual(6, use_1x1conv=True, strides=2) blk(X).shape b1 = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(64, kernel_size=7, strides=2, padding='same'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Activation('relu'), tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')]) class ResnetBlock(tf.keras.layers.Layer): def __init__(self, num_channels, num_residuals, first_block=False, **kwargs): super(ResnetBlock, self).__init__(**kwargs) self.residual_layers = [] for i in range(num_residuals): if i == 0 and not first_block: self.residual_layers.append(Residual(num_channels, use_1x1conv=True, strides=2)) else: self.residual_layers.append(Residual(num_channels)) def call(self, X): for layer in self.residual_layers.layers: X = layer(X) return X b2 = ResnetBlock(64, 2, first_block=True) b3 = ResnetBlock(128, 2) b4 = ResnetBlock(256, 2) b5 = ResnetBlock(512, 2) def net(): return tf.keras.Sequential([ tf.keras.layers.Conv2D(64, kernel_size=7, strides=2, padding='same'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Activation('relu'), tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same'), ResnetBlock(64, 2, first_block=True), ResnetBlock(128, 2), ResnetBlock(256, 2), ResnetBlock(512, 2), tf.keras.layers.GlobalAvgPool2D(), tf.keras.layers.Dense(units=10)]) X = tf.random.uniform(shape=(1, 224, 224, 1)) for layer in net().layers: X = layer(X) print(layer.__class__.__name__,'output shape: ', X.shape)
null
null
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle import paddle.nn as nn from paddle.nn import functional as F class Residual(nn.Layer): def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1): super(Residual, self).__init__() self.conv1 = nn.Conv2D(input_channels, num_channels, kernel_size=3, padding=1, stride=strides) self.conv2 = nn.Conv2D(num_channels, num_channels, kernel_size=3, padding=1) if use_1x1conv: self.conv3 = nn.Conv2D(input_channels, num_channels, kernel_size=1, stride=strides) else: self.conv3 = None self.bn1 = nn.BatchNorm2D(num_channels) self.bn2 = nn.BatchNorm2D(num_channels) self.relu = nn.ReLU() def forward(self, X): Y = F.relu(self.bn1(self.conv1(X))) Y = self.bn2(self.conv2(Y)) if self.conv3: X = self.conv3(X) Y += X return F.relu(Y) blk = Residual(3, 3) X = paddle.rand([4, 3, 6, 6]) Y = blk(X) Y.shape blk = Residual(3, 6, use_1x1conv=True, strides=2) blk(X).shape b1 = nn.Sequential(nn.Conv2D(1, 64, kernel_size=7, stride=2, padding=3), nn.BatchNorm2D(64), nn.ReLU(), nn.MaxPool2D(kernel_size=3, stride=2, padding=1)) def resnet_block(input_channels, num_channels, num_residuals, first_block=False): blk = [] for i in range(num_residuals): if i == 0 and not first_block: blk.append(Residual(input_channels, num_channels, use_1x1conv=True, strides=2)) else: blk.append(Residual(num_channels, num_channels)) return blk b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True)) b3 = nn.Sequential(*resnet_block(64, 128, 2)) b4 = nn.Sequential(*resnet_block(128, 256, 2)) b5 = nn.Sequential(*resnet_block(256, 512, 2)) net = nn.Sequential(b1, b2, b3, b4, b5, nn.AdaptiveAvgPool2D((1, 1)), nn.Flatten(), nn.Linear(512, 10)) X = paddle.rand(shape=(1, 1, 224, 224)) for layer in net: X = layer(X) print(layer.__class__.__name__,'output shape: ', X.shape)
320
import tensorflow as tf from d2l import tensorflow as d2l class ConvBlock(tf.keras.layers.Layer): def __init__(self, num_channels): super(ConvBlock, self).__init__() self.bn = tf.keras.layers.BatchNormalization() self.relu = tf.keras.layers.ReLU() self.conv = tf.keras.layers.Conv2D(filters=num_channels, kernel_size=(3, 3), padding='same') self.listLayers = [self.bn, self.relu, self.conv] def call(self, x): y = x for layer in self.listLayers.layers: y = layer(y) y = tf.keras.layers.concatenate([x,y], axis=-1) return y class DenseBlock(tf.keras.layers.Layer): def __init__(self, num_convs, num_channels): super(DenseBlock, self).__init__() self.listLayers = [] for _ in range(num_convs): self.listLayers.append(ConvBlock(num_channels)) def call(self, x): for layer in self.listLayers.layers: x = layer(x) return x blk = DenseBlock(2, 10) X = tf.random.uniform((4, 8, 8, 3)) Y = blk(X) Y.shape class TransitionBlock(tf.keras.layers.Layer): def __init__(self, num_channels, **kwargs): super(TransitionBlock, self).__init__(**kwargs) self.batch_norm = tf.keras.layers.BatchNormalization() self.relu = tf.keras.layers.ReLU() self.conv = tf.keras.layers.Conv2D(num_channels, kernel_size=1) self.avg_pool = tf.keras.layers.AvgPool2D(pool_size=2, strides=2) def call(self, x): x = self.batch_norm(x) x = self.relu(x) x = self.conv(x) return self.avg_pool(x) blk = TransitionBlock(10) blk(Y).shape def block_1(): return tf.keras.Sequential([ tf.keras.layers.Conv2D(64, kernel_size=7, strides=2, padding='same'), tf.keras.layers.BatchNormalization(), tf.keras.layers.ReLU(), tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')]) def block_2(): net = block_1() num_channels, growth_rate = 64, 32 num_convs_in_dense_blocks = [4, 4, 4, 4] for i, num_convs in enumerate(num_convs_in_dense_blocks): net.add(DenseBlock(num_convs, growth_rate)) num_channels += num_convs * growth_rate if i != len(num_convs_in_dense_blocks) - 1: num_channels //= 2 net.add(TransitionBlock(num_channels)) return net def net(): net = block_2() net.add(tf.keras.layers.BatchNormalization()) net.add(tf.keras.layers.ReLU()) net.add(tf.keras.layers.GlobalAvgPool2D()) net.add(tf.keras.layers.Flatten()) net.add(tf.keras.layers.Dense(10)) return net
null
null
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle import paddle.nn as nn def conv_block(input_channels, num_channels): return nn.Sequential( nn.BatchNorm2D(input_channels), nn.ReLU(), nn.Conv2D(input_channels, num_channels, kernel_size=3, padding=1)) class DenseBlock(nn.Layer): def __init__(self, num_convs, input_channels, num_channels): super(DenseBlock, self).__init__() layer = [] for i in range(num_convs): layer.append(conv_block(num_channels * i + input_channels, num_channels)) self.net = nn.Sequential(*layer) def forward(self, X): for blk in self.net: Y = blk(X) X = paddle.concat(x=[X, Y], axis=1) return X blk = DenseBlock(2, 3, 10) X = paddle.randn([4, 3, 8, 8]) Y = blk(X) Y.shape def transition_block(input_channels, num_channels): return nn.Sequential( nn.BatchNorm2D(input_channels), nn.ReLU(), nn.Conv2D(input_channels, num_channels, kernel_size=1), nn.AvgPool2D(kernel_size=2, stride=2)) blk = transition_block(23, 10) blk(Y).shape b1 = nn.Sequential( nn.Conv2D(1, 64, kernel_size=7, stride=2, padding=3), nn.BatchNorm2D(64), nn.ReLU(), nn.MaxPool2D(kernel_size=3, stride=2, padding=1)) num_channels, growth_rate = 64, 32 num_convs_in_dense_blocks = [4, 4, 4, 4] blks = [] for i, num_convs in enumerate(num_convs_in_dense_blocks): blks.append(DenseBlock(num_convs, num_channels, growth_rate)) num_channels += num_convs * growth_rate if i != len(num_convs_in_dense_blocks) - 1: blks.append(transition_block(num_channels, num_channels // 2)) num_channels = num_channels // 2 net = nn.Sequential( b1, *blks, nn.BatchNorm2D(num_channels), nn.ReLU(), nn.AdaptiveMaxPool2D((1, 1)), nn.Flatten(), nn.Linear(num_channels, 10))
321
%matplotlib inline import tensorflow as tf from d2l import tensorflow as d2l T = 1000 time = tf.range(1, T + 1, dtype=tf.float32) x = tf.sin(0.01 * time) + tf.random.normal([T], 0, 0.2) d2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3)) tau = 4 features = tf.Variable(tf.zeros((T - tau, tau))) for i in range(tau): features[:, i].assign(x[i: T - tau + i]) labels = tf.reshape(x[tau:], (-1, 1)) batch_size, n_train = 16, 600 train_iter = d2l.load_array((features[:n_train], labels[:n_train]), batch_size, is_train=True) def get_net(): net = tf.keras.Sequential([tf.keras.layers.Dense(10, activation='relu'), tf.keras.layers.Dense(1)]) return net loss = tf.keras.losses.MeanSquaredError() def train(net, train_iter, loss, epochs, lr): trainer = tf.keras.optimizers.Adam() for epoch in range(epochs): for X, y in train_iter: with tf.GradientTape() as g: out = net(X) l = loss(y, out) params = net.trainable_variables grads = g.gradient(l, params) trainer.apply_gradients(zip(grads, params)) net = get_net() train(net, train_iter, loss, 5, 0.01) onestep_preds = net(features) d2l.plot([time, time[tau:]], [x.numpy(), onestep_preds.numpy()], 'time', 'x', legend=['data', '1-step preds'], xlim=[1, 1000], figsize=(6, 3)) multistep_preds = tf.Variable(tf.zeros(T)) multistep_preds[:n_train + tau].assign(x[:n_train + tau]) for i in range(n_train + tau, T): multistep_preds[i].assign(tf.reshape(net(tf.reshape(multistep_preds[i - tau: i], (1, -1))), ())) d2l.plot([time, time[tau:], time[n_train + tau:]], [x.numpy(), onestep_preds.numpy(), multistep_preds[n_train + tau:].numpy()], 'time', 'x', legend=['data', '1-step preds', 'multistep preds'], xlim=[1, 1000], figsize=(6, 3)) max_steps = 64 features = tf.Variable(tf.zeros((T - tau - max_steps + 1, tau + max_steps))) for i in range(tau): features[:, i].assign(x[i: i + T - tau - max_steps + 1].numpy()) for i in range(tau, tau + max_steps): features[:, i].assign(tf.reshape(net((features[:, i - tau: i])), -1)) steps = (1, 4, 16, 64) d2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps], [features[:, tau + i - 1].numpy() for i in steps], 'time', 'x', legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000], figsize=(6, 3))
null
null
%matplotlib inline import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle from paddle import nn T = 1000 time = paddle.arange(1, T + 1, dtype=paddle.float32) x = paddle.sin(0.01 * time) + paddle.normal(0, 0.2, (T,)) d2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3)) tau = 4 features = paddle.zeros((T - tau, tau)) for i in range(tau): features[:, i] = x[i: T - tau + i] labels = x[tau:].reshape((-1, 1)) batch_size, n_train = 16, 600 train_iter = d2l.load_array((features[:n_train], labels[:n_train]), batch_size, is_train=True) def init_weights(m): if type(m) == nn.Linear: nn.initializer.XavierUniform(m.weight) def get_net(): net = nn.Sequential(nn.Linear(4, 10), nn.ReLU(), nn.Linear(10, 1)) net.apply(init_weights) return net loss = nn.MSELoss(reduction='none') def train(net, train_iter, loss, epochs, lr): trainer = paddle.optimizer.Adam(learning_rate=lr, parameters=net.parameters()) for epoch in range(epochs): for i,(X, y) in enumerate (train_iter()): trainer.clear_grad() l = loss(net(X), y) l.sum().backward() trainer.step() net = get_net() train(net, train_iter, loss, 5, 0.01) onestep_preds = net(features) d2l.plot([time, time[tau:]], [x.detach().numpy(), onestep_preds.detach().numpy()], 'time', 'x', legend=['data', '1-step preds'], xlim=[1, 1000], figsize=(6, 3)) multistep_preds = paddle.zeros([T]) multistep_preds[: n_train + tau] = x[: n_train + tau] for i in range(n_train + tau, T): multistep_preds[i] = net(multistep_preds[i - tau:i].reshape((1, -1))) d2l.plot([time, time[tau:], time[n_train + tau:]], [x.detach().numpy(), onestep_preds.detach().numpy(), multistep_preds[n_train + tau:].detach().numpy()], 'time', 'x', legend=['data', '1-step preds', 'multistep preds'], xlim=[1, 1000], figsize=(6, 3)) max_steps = 64 features = paddle.zeros((T - tau - max_steps + 1, tau + max_steps)) for i in range(tau): features[:, i] = x[i: i + T - tau - max_steps + 1] for i in range(tau, tau + max_steps): features[:, i] = net(features[:, i - tau:i]).reshape([-1]) steps = (1, 4, 16, 64) d2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps], [features[:, tau + i - 1].detach().numpy() for i in steps], 'time', 'x', legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000], figsize=(6, 3))
322
import collections import re from d2l import tensorflow as d2l def tokenize(lines, token='word'): if token == 'word': return [line.split() for line in lines] elif token == 'char': return [list(line) for line in lines] else: print('Error: Unknown word element type:' + token) tokens = tokenize(lines) for i in range(11): print(tokens[i]) def load_corpus_time_machine(max_tokens=-1): lines = read_time_machine() tokens = tokenize(lines, 'char') vocab = Vocab(tokens) corpus = [vocab[token] for line in tokens for token in line] if max_tokens > 0: corpus = corpus[:max_tokens] return corpus, vocab corpus, vocab = load_corpus_time_machine() len(corpus), len(vocab)
null
null
import collections import re from d2l import paddle as d2l def tokenize(lines, token='word'): if token == 'word': return [line.split() for line in lines] elif token == 'char': return [list(line) for line in lines] else: print('Error: Unknown word element type:' + token) tokens = tokenize(lines) for i in range(11): print(tokens[i]) def load_corpus_time_machine(max_tokens=-1): lines = read_time_machine() tokens = tokenize(lines, 'char') vocab = Vocab(tokens) corpus = [vocab[token] for line in tokens for token in line] if max_tokens > 0: corpus = corpus[:max_tokens] return corpus, vocab corpus, vocab = load_corpus_time_machine() len(corpus), len(vocab)
323
import random import tensorflow as tf from d2l import tensorflow as d2l tokens = d2l.tokenize(d2l.read_time_machine()) corpus = [token for line in tokens for token in line] vocab = d2l.Vocab(corpus) vocab.token_freqs[:10] def seq_data_iter_random(corpus, batch_size, num_steps): corpus = corpus[random.randint(0, num_steps - 1):] num_subseqs = (len(corpus) - 1) // num_steps initial_indices = list(range(0, num_subseqs * num_steps, num_steps)) random.shuffle(initial_indices) def data(pos): return corpus[pos: pos + num_steps] num_batches = num_subseqs // batch_size for i in range(0, batch_size * num_batches, batch_size): initial_indices_per_batch = initial_indices[i: i + batch_size] X = [data(j) for j in initial_indices_per_batch] Y = [data(j + 1) for j in initial_indices_per_batch] yield tf.constant(X), tf.constant(Y) def seq_data_iter_sequential(corpus, batch_size, num_steps): offset = random.randint(0, num_steps) num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size Xs = tf.constant(corpus[offset: offset + num_tokens]) Ys = tf.constant(corpus[offset + 1: offset + 1 + num_tokens]) Xs = tf.reshape(Xs, (batch_size, -1)) Ys = tf.reshape(Ys, (batch_size, -1)) num_batches = Xs.shape[1] // num_steps for i in range(0, num_batches * num_steps, num_steps): X = Xs[:, i: i + num_steps] Y = Ys[:, i: i + num_steps] yield X, Y
null
null
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import random import paddle tokens = d2l.tokenize(d2l.read_time_machine()) corpus = [token for line in tokens for token in line] vocab = d2l.Vocab(corpus) vocab.token_freqs[:10] def seq_data_iter_random(corpus, batch_size, num_steps): corpus = corpus[random.randint(0, num_steps - 1):] num_subseqs = (len(corpus) - 1) // num_steps initial_indices = list(range(0, num_subseqs * num_steps, num_steps)) random.shuffle(initial_indices) def data(pos): return corpus[pos: pos + num_steps] num_batches = num_subseqs // batch_size for i in range(0, batch_size * num_batches, batch_size): initial_indices_per_batch = initial_indices[i: i + batch_size] X = [data(j) for j in initial_indices_per_batch] Y = [data(j + 1) for j in initial_indices_per_batch] yield paddle.to_tensor(X), paddle.to_tensor(Y) def seq_data_iter_sequential(corpus, batch_size, num_steps): offset = random.randint(0, num_steps) num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size Xs = paddle.to_tensor(corpus[offset: offset + num_tokens]) Ys = paddle.to_tensor(corpus[offset + 1: offset + 1 + num_tokens]) Xs, Ys = Xs.reshape((batch_size, -1)), Ys.reshape((batch_size, -1)) num_batches = Xs.shape[1] // num_steps for i in range(0, num_steps * num_batches, num_steps): X = Xs[:, i: i + num_steps] Y = Ys[:, i: i + num_steps] yield X, Y
324
import tensorflow as tf from d2l import tensorflow as d2l X, W_xh = tf.random.normal((3, 1), 0, 1), tf.random.normal((1, 4), 0, 1) H, W_hh = tf.random.normal((3, 4), 0, 1), tf.random.normal((4, 4), 0, 1) tf.matmul(X, W_xh) + tf.matmul(H, W_hh) tf.matmul(tf.concat((X, H), 1), tf.concat((W_xh, W_hh), 0))
null
null
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle X, W_xh = paddle.normal(0, 1, (3, 1)), paddle.normal(0, 1, (1, 4)) H, W_hh = paddle.normal(0, 1, (3, 4)), paddle.normal(0, 1, (4, 4)) paddle.matmul(X, W_xh) + paddle.matmul(H, W_hh) paddle.matmul(paddle.concat((X, H), 1), paddle.concat((W_xh, W_hh), 0))
325
%matplotlib inline import math import tensorflow as tf from d2l import tensorflow as d2l batch_size, num_steps = 32, 35 train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) train_random_iter, vocab_random_iter = d2l.load_data_time_machine(batch_size, num_steps, use_random_iter=True) tf.one_hot(tf.constant([0, 2]), len(vocab)) X = tf.reshape(tf.range(10), (2, 5)) tf.one_hot(tf.transpose(X), 28).shape def get_params(vocab_size, num_hiddens): num_inputs = num_outputs = vocab_size def normal(shape): return tf.random.normal(shape=shape,stddev=0.01,mean=0,dtype=tf.float32) W_xh = tf.Variable(normal((num_inputs, num_hiddens)), dtype=tf.float32) W_hh = tf.Variable(normal((num_hiddens, num_hiddens)), dtype=tf.float32) b_h = tf.Variable(tf.zeros(num_hiddens), dtype=tf.float32) W_hq = tf.Variable(normal((num_hiddens, num_outputs)), dtype=tf.float32) b_q = tf.Variable(tf.zeros(num_outputs), dtype=tf.float32) params = [W_xh, W_hh, b_h, W_hq, b_q] return params def init_rnn_state(batch_size, num_hiddens): return (tf.zeros((batch_size, num_hiddens)), ) def rnn(inputs, state, params): W_xh, W_hh, b_h, W_hq, b_q = params H, = state outputs = [] for X in inputs: X = tf.reshape(X,[-1,W_xh.shape[0]]) H = tf.tanh(tf.matmul(X, W_xh) + tf.matmul(H, W_hh) + b_h) Y = tf.matmul(H, W_hq) + b_q outputs.append(Y) return tf.concat(outputs, axis=0), (H,) class RNNModelScratch: def __init__(self, vocab_size, num_hiddens, init_state, forward_fn, get_params): self.vocab_size, self.num_hiddens = vocab_size, num_hiddens self.init_state, self.forward_fn = init_state, forward_fn self.trainable_variables = get_params(vocab_size, num_hiddens) def __call__(self, X, state): X = tf.one_hot(tf.transpose(X), self.vocab_size) X = tf.cast(X, tf.float32) return self.forward_fn(X, state, self.trainable_variables) def begin_state(self, batch_size, *args, **kwargs): return self.init_state(batch_size, self.num_hiddens) device_name = d2l.try_gpu()._device_name strategy = tf.distribute.OneDeviceStrategy(device_name) num_hiddens = 512 with strategy.scope(): net = RNNModelScratch(len(vocab), num_hiddens, init_rnn_state, rnn, get_params) state = net.begin_state(X.shape[0]) Y, new_state = net(X, state) Y.shape, len(new_state), new_state[0].shape def predict_ch8(prefix, num_preds, net, vocab): state = net.begin_state(batch_size=1, dtype=tf.float32) outputs = [vocab[prefix[0]]] get_input = lambda: tf.reshape(tf.constant([outputs[-1]]), (1, 1)).numpy() for y in prefix[1:]: _, state = net(get_input(), state) outputs.append(vocab[y]) for _ in range(num_preds): y, state = net(get_input(), state) outputs.append(int(y.numpy().argmax(axis=1).reshape(1))) return ''.join([vocab.idx_to_token[i] for i in outputs]) predict_ch8('time traveller ', 10, net, vocab) def grad_clipping(grads, theta): theta = tf.constant(theta, dtype=tf.float32) new_grad = [] for grad in grads: if isinstance(grad, tf.IndexedSlices): new_grad.append(tf.convert_to_tensor(grad)) else: new_grad.append(grad) norm = tf.math.sqrt(sum((tf.reduce_sum(grad ** 2)).numpy() for grad in new_grad)) norm = tf.cast(norm, tf.float32) if tf.greater(norm, theta): for i, grad in enumerate(new_grad): new_grad[i] = grad * theta / norm else: new_grad = new_grad return new_grad def train_epoch_ch8(net, train_iter, loss, updater, use_random_iter): state, timer = None, d2l.Timer() metric = d2l.Accumulator(2) for X, Y in train_iter: if state is None or use_random_iter: state = net.begin_state(batch_size=X.shape[0], dtype=tf.float32) with tf.GradientTape(persistent=True) as g: y_hat, state = net(X, state) y = tf.reshape(tf.transpose(Y), (-1)) l = loss(y, y_hat) params = net.trainable_variables grads = g.gradient(l, params) grads = grad_clipping(grads, 1) updater.apply_gradients(zip(grads, params)) metric.add(l * d2l.size(y), d2l.size(y)) return math.exp(metric[0] / metric[1]), metric[1] / timer.stop() def train_ch8(net, train_iter, vocab, lr, num_epochs, strategy, use_random_iter=False): with strategy.scope(): loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) updater = tf.keras.optimizers.SGD(lr) animator = d2l.Animator(xlabel='epoch', ylabel='perplexity', legend=['train'], xlim=[10, num_epochs]) predict = lambda prefix: predict_ch8(prefix, 50, net, vocab) for epoch in range(num_epochs): ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, use_random_iter) if (epoch + 1) % 10 == 0: animator.add(epoch + 1, [ppl]) device = d2l.try_gpu()._device_name num_epochs, lr = 500, 1 train_ch8(net, train_iter, vocab, lr, num_epochs, strategy) with strategy.scope(): net = RNNModelScratch(len(vocab), num_hiddens, init_rnn_state, rnn, get_params) train_ch8(net, train_iter, vocab_random_iter, lr, num_epochs, strategy, use_random_iter=True)
null
null
%matplotlib inline import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import math import paddle from paddle import nn from paddle.nn import functional as F batch_size, num_steps = 32, 35 train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) F.one_hot(paddle.to_tensor([0, 2]), len(vocab)) X = paddle.arange(10).reshape((2, 5)) F.one_hot(X.T, 28).shape def get_params(vocab_size, num_hiddens): num_inputs = num_outputs = vocab_size def normal(shape): return paddle.randn(shape=shape)* 0.01 W_xh = normal([num_inputs, num_hiddens]) W_hh = normal([num_hiddens, num_hiddens]) b_h = paddle.zeros(shape=[num_hiddens]) W_hq = normal([num_hiddens, num_outputs]) b_q = paddle.zeros(shape=[num_outputs]) params = [W_xh, W_hh, b_h, W_hq, b_q] for param in params: param.stop_gradient=False return params def init_rnn_state(batch_size, num_hiddens): return (paddle.zeros(shape=[batch_size, num_hiddens]), ) def rnn(inputs, state, params): W_xh, W_hh, b_h, W_hq, b_q = params H, = state outputs = [] for X in inputs: H = paddle.tanh(paddle.mm(X, W_xh) + paddle.mm(H, W_hh) + b_h) Y = paddle.mm(H, W_hq) + b_q outputs.append(Y) return paddle.concat(x=outputs, axis=0), (H,) class RNNModelScratch: def __init__(self, vocab_size, num_hiddens, get_params, init_state, forward_fn): self.vocab_size, self.num_hiddens = vocab_size, num_hiddens self.params = get_params(vocab_size, num_hiddens) self.init_state, self.forward_fn = init_state, forward_fn def __call__(self, X, state): X = F.one_hot(X.T, self.vocab_size) return self.forward_fn(X, state, self.params) def begin_state(self, batch_size): return self.init_state(batch_size, self.num_hiddens) num_hiddens = 512 net = RNNModelScratch(len(vocab), num_hiddens, get_params, init_rnn_state, rnn) state = net.begin_state(X.shape[0]) Y, new_state = net(X, state) Y.shape, len(new_state), new_state[0].shape def predict_ch8(prefix, num_preds, net, vocab, device): state = net.begin_state(batch_size=1) outputs = [vocab[prefix[0]]] get_input = lambda: paddle.to_tensor(outputs[-1], place=device).reshape((1, 1)) for y in prefix[1:]: _, state = net(get_input(), state) outputs.append(vocab[y]) for _ in range(num_preds): y, state = net(get_input(), state) outputs.append(int(paddle.reshape(paddle.argmax(y,axis=1),shape=[1]))) return ''.join([vocab.idx_to_token[i] for i in outputs]) predict_ch8('time traveller ', 10, net, vocab, d2l.try_gpu()) def grad_clipping(net, theta): if isinstance(net, nn.Layer): params = [p for p in net.parameters() if not p.stop_gradient] else: params = net.params norm = paddle.sqrt(sum(paddle.sum((p.grad ** 2)) for p in params)) if norm > theta: with paddle.no_grad(): for param in params: param.grad.set_value(param.grad * theta / norm) def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter): state, timer = None, d2l.Timer() metric = d2l.Accumulator(2) for X, Y in train_iter: if state is None or use_random_iter: state = net.begin_state(batch_size=X.shape[0]) else: if isinstance(net, nn.Layer) and not isinstance(state, tuple): state.stop_gradient=True else: for s in state: s.stop_gradient=True y = paddle.reshape(Y.T,shape=[-1]) X = paddle.to_tensor(X, place=device) y = paddle.to_tensor(y, place=device) y_hat, state = net(X, state) l = loss(y_hat, y).mean() if isinstance(updater, paddle.optimizer.Optimizer): updater.clear_grad() l.backward() grad_clipping(net, 1) updater.step() else: l.backward() grad_clipping(net, 1) updater(batch_size=1) metric.add(l * y.numel(), y.numel()) return math.exp(metric[0] / metric[1]), metric[1] / timer.stop() def train_ch8(net, train_iter, vocab, lr, num_epochs, device, use_random_iter=False): loss = nn.CrossEntropyLoss() animator = d2l.Animator(xlabel='epoch', ylabel='perplexity', legend=['train'], xlim=[10, num_epochs]) if isinstance(net, nn.Layer): updater = paddle.optimizer.SGD(learning_rate=lr, parameters=net.parameters()) else: updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size) predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device) for epoch in range(num_epochs): ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter) if (epoch + 1) % 10 == 0: animator.add(epoch + 1, [ppl]) num_epochs, lr = 500, 1 train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu()) net = RNNModelScratch(len(vocab), num_hiddens, get_params, init_rnn_state, rnn) train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(), use_random_iter=True)
326
import tensorflow as tf from d2l import tensorflow as d2l batch_size, num_steps = 32, 35 train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) num_hiddens = 256 rnn_cell = tf.keras.layers.SimpleRNNCell(num_hiddens, kernel_initializer='glorot_uniform') rnn_layer = tf.keras.layers.RNN(rnn_cell, time_major=True, return_sequences=True, return_state=True) state = rnn_cell.get_initial_state(batch_size=batch_size, dtype=tf.float32) state.shape X = tf.random.uniform((num_steps, batch_size, len(vocab))) Y, state_new = rnn_layer(X, state) Y.shape, len(state_new), state_new[0].shape class RNNModel(tf.keras.layers.Layer): def __init__(self, rnn_layer, vocab_size, **kwargs): super(RNNModel, self).__init__(**kwargs) self.rnn = rnn_layer self.vocab_size = vocab_size self.dense = tf.keras.layers.Dense(vocab_size) def call(self, inputs, state): X = tf.one_hot(tf.transpose(inputs), self.vocab_size) Y, *state = self.rnn(X, state) output = self.dense(tf.reshape(Y, (-1, Y.shape[-1]))) return output, state def begin_state(self, *args, **kwargs): return self.rnn.cell.get_initial_state(*args, **kwargs) device_name = d2l.try_gpu()._device_name strategy = tf.distribute.OneDeviceStrategy(device_name) with strategy.scope(): net = RNNModel(rnn_layer, vocab_size=len(vocab)) d2l.predict_ch8('time traveller', 10, net, vocab) num_epochs, lr = 500, 1 d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, strategy)
null
null
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle from paddle import nn from paddle.nn import functional as F batch_size, num_steps = 32, 35 train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) num_hiddens = 256 rnn_layer = nn.SimpleRNN(len(vocab), num_hiddens, time_major=True) state = paddle.zeros(shape=[1, batch_size, num_hiddens]) state.shape X = paddle.rand(shape=[num_steps, batch_size, len(vocab)]) Y, state_new = rnn_layer(X, state) Y.shape, state_new.shape def __init__(self, rnn_layer, vocab_size, **kwargs): super(RNNModel, self).__init__(**kwargs) self.rnn = rnn_layer self.vocab_size = vocab_size self.num_hiddens = self.rnn.hidden_size if self.rnn.num_directions==1: self.num_directions = 1 self.linear = nn.Linear(self.num_hiddens, self.vocab_size) else: self.num_directions = 2 self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size) def forward(self, inputs, state): X = F.one_hot(inputs.T, self.vocab_size) Y, state = self.rnn(X, state) output = self.linear(Y.reshape((-1, Y.shape[-1]))) return output, state def begin_state(self, batch_size=1): if not isinstance(self.rnn, nn.LSTM): return paddle.zeros(shape=[self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens]) else: return (paddle.zeros(shape=[self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens]), paddle.zeros(shape=[self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens])) device = d2l.try_gpu() net = RNNModel(rnn_layer, vocab_size=len(vocab)) d2l.predict_ch8('time traveller', 10, net, vocab, device) num_epochs, lr = 500, 1.0 d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device)
327
import tensorflow as tf from d2l import tensorflow as d2l batch_size, num_steps = 32, 35 train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) def get_params(vocab_size, num_hiddens): num_inputs = num_outputs = vocab_size def normal(shape): return tf.random.normal(shape=shape,stddev=0.01,mean=0,dtype=tf.float32) def three(): return (tf.Variable(normal((num_inputs, num_hiddens)), dtype=tf.float32), tf.Variable(normal((num_hiddens, num_hiddens)), dtype=tf.float32), tf.Variable(tf.zeros(num_hiddens), dtype=tf.float32)) W_xz, W_hz, b_z = three() W_xr, W_hr, b_r = three() W_xh, W_hh, b_h = three() W_hq = tf.Variable(normal((num_hiddens, num_outputs)), dtype=tf.float32) b_q = tf.Variable(tf.zeros(num_outputs), dtype=tf.float32) params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q] return params def init_gru_state(batch_size, num_hiddens): return (tf.zeros((batch_size, num_hiddens)), ) def gru(inputs, state, params): W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params H, = state outputs = [] for X in inputs: X = tf.reshape(X,[-1,W_xh.shape[0]]) Z = tf.sigmoid(tf.matmul(X, W_xz) + tf.matmul(H, W_hz) + b_z) R = tf.sigmoid(tf.matmul(X, W_xr) + tf.matmul(H, W_hr) + b_r) H_tilda = tf.tanh(tf.matmul(X, W_xh) + tf.matmul(R * H, W_hh) + b_h) H = Z * H + (1 - Z) * H_tilda Y = tf.matmul(H, W_hq) + b_q outputs.append(Y) return tf.concat(outputs, axis=0), (H,) vocab_size, num_hiddens, device_name = len(vocab), 256, d2l.try_gpu()._device_name strategy = tf.distribute.OneDeviceStrategy(device_name) num_epochs, lr = 500, 1 with strategy.scope(): model = d2l.RNNModelScratch(len(vocab), num_hiddens, init_gru_state, gru, get_params) d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, strategy) gru_cell = tf.keras.layers.GRUCell(num_hiddens, kernel_initializer='glorot_uniform') gru_layer = tf.keras.layers.RNN(gru_cell, time_major=True, return_sequences=True, return_state=True) device_name = d2l.try_gpu()._device_name strategy = tf.distribute.OneDeviceStrategy(device_name) with strategy.scope(): model = d2l.RNNModel(gru_layer, vocab_size=len(vocab)) d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, strategy)
null
null
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle import paddle.nn.functional as F from paddle import nn batch_size, num_steps = 32, 35 train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) def get_params(vocab_size, num_hiddens): num_inputs = num_outputs = vocab_size def normal(shape): return paddle.randn(shape=shape)*0.01 def three(): return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), paddle.zeros([num_hiddens])) W_xz, W_hz, b_z = three() W_xr, W_hr, b_r = three() W_xh, W_hh, b_h = three() W_hq = normal((num_hiddens, num_outputs)) b_q = paddle.zeros([num_outputs]) params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q] for param in params: param.stop_gradient = False return params def init_gru_state(batch_size, num_hiddens): return (paddle.zeros([batch_size, num_hiddens]), ) def gru(inputs, state, params): W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params H,*_ = state outputs = [] for X in inputs: Z = F.sigmoid((X @ W_xz) + (H @ W_hz) + b_z) R = F.sigmoid((X @ W_xr) + (H @ W_hr) + b_r) H_tilda = paddle.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h) H = Z * H + (1 - Z) * H_tilda Y = H @ W_hq + b_q outputs.append(Y) return paddle.concat(outputs, axis=0), (H,*_) vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu() num_epochs, lr = 500, 1.0 model = d2l.RNNModelScratch(len(vocab), num_hiddens, get_params, init_gru_state, gru) d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device) num_inputs = vocab_size gru_layer = nn.GRU(num_inputs, num_hiddens, time_major=True) model = d2l.RNNModel(gru_layer, len(vocab)) d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
328
import tensorflow as tf from d2l import tensorflow as d2l batch_size, num_steps = 32, 35 train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) def get_lstm_params(vocab_size, num_hiddens): num_inputs = num_outputs = vocab_size def normal(shape): return tf.Variable(tf.random.normal(shape=shape, stddev=0.01, mean=0, dtype=tf.float32)) def three(): return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), tf.Variable(tf.zeros(num_hiddens), dtype=tf.float32)) W_xi, W_hi, b_i = three() W_xf, W_hf, b_f = three() W_xo, W_ho, b_o = three() W_xc, W_hc, b_c = three() W_hq = normal((num_hiddens, num_outputs)) b_q = tf.Variable(tf.zeros(num_outputs), dtype=tf.float32) params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q] return params def init_lstm_state(batch_size, num_hiddens): return (tf.zeros(shape=(batch_size, num_hiddens)), tf.zeros(shape=(batch_size, num_hiddens))) def lstm(inputs, state, params): W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q = params (H, C) = state outputs = [] for X in inputs: X=tf.reshape(X,[-1,W_xi.shape[0]]) I = tf.sigmoid(tf.matmul(X, W_xi) + tf.matmul(H, W_hi) + b_i) F = tf.sigmoid(tf.matmul(X, W_xf) + tf.matmul(H, W_hf) + b_f) O = tf.sigmoid(tf.matmul(X, W_xo) + tf.matmul(H, W_ho) + b_o) C_tilda = tf.tanh(tf.matmul(X, W_xc) + tf.matmul(H, W_hc) + b_c) C = F * C + I * C_tilda H = O * tf.tanh(C) Y = tf.matmul(H, W_hq) + b_q outputs.append(Y) return tf.concat(outputs, axis=0), (H,C) vocab_size, num_hiddens, device_name = len(vocab), 256, d2l.try_gpu()._device_name num_epochs, lr = 500, 1 strategy = tf.distribute.OneDeviceStrategy(device_name) with strategy.scope(): model = d2l.RNNModelScratch(len(vocab), num_hiddens, init_lstm_state, lstm, get_lstm_params) d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, strategy) lstm_cell = tf.keras.layers.LSTMCell(num_hiddens, kernel_initializer='glorot_uniform') lstm_layer = tf.keras.layers.RNN(lstm_cell, time_major=True, return_sequences=True, return_state=True) device_name = d2l.try_gpu()._device_name strategy = tf.distribute.OneDeviceStrategy(device_name) with strategy.scope(): model = d2l.RNNModel(lstm_layer, vocab_size=len(vocab)) d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, strategy)
null
null
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle import paddle.nn.functional as Function from paddle import nn batch_size, num_steps = 32, 35 train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) def get_lstm_params(vocab_size, num_hiddens): num_inputs = num_outputs = vocab_size def normal(shape): return paddle.randn(shape=shape)*0.01 def three(): return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), paddle.zeros([num_hiddens])) W_xi, W_hi, b_i = three() W_xf, W_hf, b_f = three() W_xo, W_ho, b_o = three() W_xc, W_hc, b_c = three() W_hq = normal((num_hiddens, num_outputs)) b_q = paddle.zeros([num_outputs]) params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q] for param in params: param.stop_gradient = False return params def init_lstm_state(batch_size, num_hiddens): return (paddle.zeros([batch_size, num_hiddens]), paddle.zeros([batch_size, num_hiddens])) def lstm(inputs, state, params): [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q] = params (H, C) = state outputs = [] for X in inputs: I = Function.sigmoid((X @ W_xi) + (H @ W_hi) + b_i) F = Function.sigmoid((X @ W_xf) + (H @ W_hf) + b_f) O = Function.sigmoid((X @ W_xo) + (H @ W_ho) + b_o) C_tilda = paddle.tanh((X @ W_xc) + (H @ W_hc) + b_c) C = F * C + I * C_tilda H = O * paddle.tanh(C) Y = (H @ W_hq) + b_q outputs.append(Y) return paddle.concat(outputs, axis=0), (H, C) vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu() num_epochs, lr = 500, 1.0 model = d2l.RNNModelScratch(len(vocab), num_hiddens, get_lstm_params, init_lstm_state, lstm) d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device) num_inputs = vocab_size lstm_layer = nn.LSTM(num_inputs, num_hiddens, time_major=True) model = d2l.RNNModel(lstm_layer, len(vocab)) d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
329
import os import tensorflow as tf from d2l import tensorflow as d2l def build_array_nmt(lines, vocab, num_steps): lines = [vocab[l] for l in lines] lines = [l + [vocab['<eos>']] for l in lines] array = tf.constant([truncate_pad(l, num_steps, vocab['<pad>']) for l in lines]) valid_len = tf.reduce_sum( tf.cast(array != vocab['<pad>'], tf.int32), 1) return array, valid_len train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8) for X, X_valid_len, Y, Y_valid_len in train_iter: print('X:', tf.cast(X, tf.int32)) print('Valid length of X:', X_valid_len) print('Y:', tf.cast(Y, tf.int32)) print('Valid length of Y:', Y_valid_len) break
null
null
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import os import paddle def build_array_nmt(lines, vocab, num_steps): lines = [vocab[l] for l in lines] lines = [l + [vocab['<eos>']] for l in lines] array = paddle.to_tensor([truncate_pad(l, num_steps, vocab['<pad>']) for l in lines]) valid_len = (array != vocab['<pad>']).astype(paddle.int32).sum(1) return array, valid_len train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8) for X, X_valid_len, Y, Y_valid_len in train_iter: print('X:', X.astype(paddle.int32)) print('Valid length of X:', X_valid_len) print('Y:', Y..astype(paddle.int32)) print('Valid length of Y:', Y_valid_len) break
330
null
null
x = np.arange(12) x.size X = x.reshape(3, 4) np.zeros((2, 3, 4)) np.ones((2, 3, 4)) np.random.normal(0, 1, size=(3, 4)) np.array([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]) x = np.array([1, 2, 4, 8]) y = np.array([2, 2, 2, 2]) x + y, x - y, x * y, x / y, x ** y np.exp(x) X = np.arange(12).reshape(3, 4) Y = np.array([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]) np.concatenate([X, Y], axis=0), np.concatenate([X, Y], axis=1) a = np.arange(3).reshape(3, 1) b = np.arange(2).reshape(1, 2) Z = np.zeros_like(Y) Z[:] = X + Y A = X.asnumpy() B = np.array(A) a = np.array([3.5]) print(a, a.item(), float(a), int(a))
x = paddle.arange(12) x.numel() X = paddle.reshape(x, (3, 4)) paddle.zeros((2, 3, 4)) paddle.ones((2, 3, 4)) paddle.randn((3, 4),'float32') paddle.to_tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]) x = paddle.to_tensor([1.0, 2, 4, 8]) y = paddle.to_tensor([2, 2, 2, 2]) x + y, x - y, x * y, x / y, x**y paddle.exp(x) X = paddle.arange(12, dtype='float32').reshape((3, 4)) Y = paddle.to_tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]) paddle.concat((X, Y), axis=0), paddle.concat((X, Y), axis=1) a = paddle.reshape(paddle.arange(3), (3, 1)) b = paddle.reshape(paddle.arange(2), (1, 2)) Z = paddle.zeros_like(Y) Z = X + Y A = X.numpy() B = paddle.to_tensor(A) type(A), type(B) a = paddle.to_tensor([3.5]) a, a.item(), float(a), int(a)
331
null
null
from mxnet import np X, y = np.array(inputs.values), np.array(outputs.values)
import warnings warnings.filterwarnings(action='ignore') import paddle X, y = paddle.to_tensor(inputs.values), paddle.to_tensor(outputs.values)
332
null
null
from mxnet import np, npx npx.set_np() x = np.array(3.0) y = np.array(2.0) print(x + y, x * y, x / y, x**y) x = np.arange(4) A = np.arange(20).reshape(5, 4) A.T B = np.array([[1, 2, 3], [2, 0, 4], [3, 4, 5]]) B == B.T X = np.arange(24).reshape(2, 3, 4) A = np.arange(20).reshape(5, 4) B = A.copy() print(A, A + B) a = 2 X = np.arange(24).reshape(2, 3, 4) print(a + X, (a * X).shape) x = np.arange(4) print(x, x.sum()) a = A.sum() A.mean() A.sum() / A.size A.mean(axis=0) A.sum(axis=0) / A.shape[0] sum_A = A.sum(axis=1, keepdims=True) y = np.ones(4) print(np.dot(x, y)) np.sum(x * y) A.shape, x.shape, np.dot(A, x) B = np.ones(shape=(4, 3)) np.dot(A, B) u = np.array([3, -4]) np.linalg.norm(u) np.abs(u).sum() np.linalg.norm(np.ones((4, 9)))
import warnings warnings.filterwarnings(action='ignore') import paddle x = paddle.to_tensor([3.0]) y = paddle.to_tensor([2.0]) x + y, x * y, x / y, x**y x = paddle.arange(4) A = paddle.reshape(paddle.arange(20), (5, 4)) paddle.transpose(A, perm=[1, 0]) B = paddle.to_tensor([[1, 2, 3], [2, 0, 4], [3, 4, 5]]) B == paddle.transpose(B, perm=[1, 0]) X = paddle.reshape(paddle.arange(24), (2, 3, 4)) A = paddle.reshape(paddle.arange(20, dtype=paddle.float32), (5, 4)) B = A.clone() A, A + B a = 2 X = paddle.reshape(paddle.arange(24), (2, 3, 4)) a + X, (a * X).shape x = paddle.arange(4, dtype=paddle.float32) print(x, x.sum()) A.shape, A.sum() A.mean(), A.sum() / A.numel() A.mean(axis=0), A.sum(axis=0) / A.shape[0] sum_A = paddle.sum(A, axis=1, keepdim=True) y = paddle.ones(shape=[4], dtype='float32') x, y, paddle.dot(x, y) paddle.sum(x * y) A.shape, x.shape, paddle.mv(A, x) B = paddle.ones(shape=[4, 3], dtype='float32') paddle.mm(A, B) u = paddle.to_tensor([3.0, -4.0]) paddle.norm(u) paddle.abs(u).sum() paddle.norm(paddle.ones(shape=[4, 9], dtype='float32'))
333
null
null
%matplotlib inline from matplotlib_inline import backend_inline from mxnet import np, npx from d2l import mxnet as d2l npx.set_np() def f(x): return 3 * x ** 2 - 4 * x def numerical_lim(f, x, h): return (f(x + h) - f(x)) / h h = 0.1 for i in range(5): print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}') h *= 0.1
%matplotlib inline import numpy as np from matplotlib_inline import backend_inline from d2l import paddle as d2l def f(x): return 3 * x ** 2 - 4 * x def numerical_lim(f, x, h): return (f(x + h) - f(x)) / h h = 0.1 for i in range(5): print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}') h *= 0.1
334
null
null
from mxnet import autograd, np, npx npx.set_np() x = np.arange(4.0) x.attach_grad() x.grad with autograd.record(): y = 2 * np.dot(x, x) with autograd.record(): y = x.sum() y.backward() x.grad with autograd.record(): y = x * x y.backward() x.grad with autograd.record(): y = x * x u = y.detach() z = u * x z.backward() x.grad == u y.backward() x.grad == 2 * x def f(a): b = a * 2 while np.linalg.norm(b) < 1000: b = b * 2 if b.sum() > 0: c = b else: c = 100 * b return c a = np.random.normal() a.attach_grad() with autograd.record(): d = f(a) d.backward()
import warnings warnings.filterwarnings(action='ignore') import paddle x = paddle.arange(4, dtype='float32') x = paddle.to_tensor(x, stop_gradient=False) y = 2 * paddle.dot(x, x) x.clear_gradient() y = paddle.sum(x) y.backward() x.grad x.clear_gradient() y = x * x paddle.sum(y).backward() x.grad x.clear_gradient() y = x * x u = y.detach() z = u * x paddle.sum(z).backward() x.grad == u x.clear_gradient() paddle.sum(y).backward() x.grad == 2 * x def f(a): b = a * 2 while paddle.norm(b) < 1000: b = b * 2 if paddle.sum(b) > 0: c = b else: c = 100 * b return c a = paddle.to_tensor(paddle.randn(shape=[1]), stop_gradient=False) d = f(a) d.backward()
335
null
null
%matplotlib inline import random from mxnet import np, npx from d2l import mxnet as d2l npx.set_np() fair_probs = [1.0 / 6] * 6 np.random.multinomial(1, fair_probs) np.random.multinomial(10, fair_probs) counts = np.random.multinomial(1000, fair_probs).astype(np.float32)
%matplotlib inline import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import random import numpy as np import paddle fair_probs = [1.0 / 6] * 6 paddle.distribution.Multinomial(1, paddle.to_tensor(fair_probs)).sample() counts = paddle.distribution.Multinomial(1000, paddle.to_tensor(fair_probs)).sample() counts / 1000 counts = paddle.distribution.Multinomial(1000, paddle.to_tensor(fair_probs)).sample() counts / 1000
336
null
null
counts = np.random.multinomial(10, fair_probs, size=500) cum_counts = counts.astype(np.float32).cumsum(axis=0) estimates = cum_counts / cum_counts.sum(axis=1, keepdims=True) d2l.set_figsize((6, 4.5)) for i in range(6): d2l.plt.plot(estimates[:, i].asnumpy(), label=("P(die=" + str(i + 1) + ")")) d2l.plt.axhline(y=0.167, color='black', linestyle='dashed') d2l.plt.gca().set_xlabel('Groups of experiments') d2l.plt.gca().set_ylabel('Estimated probability') d2l.plt.legend(); from mxnet import np a = dir(np.random) help(np.ones) np.ones(4)
counts = paddle.distribution.Multinomial(10, paddle.to_tensor(fair_probs)).sample((500,1)) cum_counts = counts.cumsum(axis=0) cum_counts = cum_counts.squeeze(axis=1) estimates = cum_counts / cum_counts.sum(axis=1, keepdim=True) d2l.set_figsize((6, 4.5)) for i in range(6): d2l.plt.plot(estimates[:, i], label=("P(die=" + str(i + 1) + ")")) d2l.plt.axhline(y=0.167, color='black', linestyle='dashed') d2l.plt.gca().set_xlabel('Groups of experiments') d2l.plt.gca().set_ylabel('Estimated probability') d2l.plt.legend() import warnings warnings.filterwarnings(action='ignore') import paddle help(paddle.ones) paddle.ones([4], dtype='float32')
337
null
null
%matplotlib inline import math import time from mxnet import np from d2l import mxnet as d2l n = 10000 a = np.ones(n) b = np.ones(n) c = np.zeros(n) timer = Timer() for i in range(n): c[i] = a[i] + b[i] x = np.arange(-7, 7, 0.01) params = [(0, 1), (0, 2), (3, 1)] d2l.plot(x.asnumpy(), [normal(x, mu, sigma).asnumpy() for mu, sigma in params], xlabel='x', ylabel='p(x)', figsize=(4.5, 2.5), legend=[f'mean {mu}, std {sigma}' for mu, sigma in params])
%matplotlib inline import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import math import time import numpy as np import paddle n = 10000 a = paddle.ones([n]) b = paddle.ones([n]) c = paddle.zeros([n]) timer = Timer() for i in range(n): c[i] = a[i] + b[i] x = np.arange(-7, 7, 0.01) params = [(0, 1), (0, 2), (3, 1)] d2l.plot(x, [normal(x, mu, sigma) for mu, sigma in params], xlabel='x', ylabel='p(x)', figsize=(4.5, 2.5), legend=[f'mean {mu}, std {sigma}' for mu, sigma in params])
338
null
null
%matplotlib inline import random from mxnet import autograd, np, npx from d2l import mxnet as d2l npx.set_np() def synthetic_data(w, b, num_examples): X = np.random.normal(0, 1, (num_examples, len(w))) y = np.dot(X, w) + b y += np.random.normal(0, 0.01, y.shape) return X, y.reshape((-1, 1)) true_w = np.array([2, -3.4]) true_b = 4.2 features, labels = synthetic_data(true_w, true_b, 1000) d2l.set_figsize() d2l.plt.scatter(features[:, (1)].asnumpy(), labels.asnumpy(), 1); def data_iter(batch_size, features, labels): num_examples = len(features) indices = list(range(num_examples)) random.shuffle(indices) for i in range(0, num_examples, batch_size): batch_indices = np.array(indices[i: min(i + batch_size, num_examples)]) yield features[batch_indices], labels[batch_indices] batch_size = 10 for X, y in data_iter(batch_size, features, labels): print(X, ' ', y) break w = np.random.normal(0, 0.01, (2, 1)) b = np.zeros(1) w.attach_grad() b.attach_grad() def linreg(X, w, b): return np.dot(X, w) + b def sgd(params, lr, batch_size): for param in params: param[:] = param - lr * param.grad / batch_size lr = 0.03 num_epochs = 3 net = linreg loss = squared_loss for epoch in range(num_epochs): for X, y in data_iter(batch_size, features, labels): with autograd.record(): l = loss(net(X, w, b), y) l.backward() sgd([w, b], lr, batch_size) train_l = loss(net(features, w, b), labels)
%matplotlib inline import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import random import paddle def synthetic_data(w, b, num_examples): X = paddle.normal(0, 1, (num_examples, len(w))) y = paddle.matmul(X, w) + b y += paddle.normal(0, 0.01, y.shape) return X, y.reshape((-1, 1)) true_w = paddle.to_tensor([2, -3.4]) true_b = 4.2 features, labels = synthetic_data(true_w, true_b, 1000) d2l.set_figsize() d2l.plt.scatter(features[:, 1].detach().numpy(), labels.detach().numpy(), 1); def data_iter(batch_size, features, labels): num_examples = len(features) indices = list(range(num_examples)) random.shuffle(indices) for i in range(0, num_examples, batch_size): batch_indices = paddle.to_tensor(indices[i: min(i + batch_size, num_examples)]) yield features[batch_indices], labels[batch_indices] batch_size = 10 for X, y in data_iter(batch_size, features, labels): break w = paddle.normal(0, 0.01, shape=(2,1)) b = paddle.zeros(shape=[1]) w.stop_gradient = False b.stop_gradient = False def linreg(X, w, b): return paddle.matmul(X, w) + b with paddle.no_grad(): for i, param in enumerate(params): param -= lr * params[i].grad / batch_size params[i].set_value(param) params[i].clear_gradient() lr = 0.03 num_epochs = 3 net = linreg loss = squared_loss for epoch in range(num_epochs): for X, y in data_iter(batch_size, features, labels): l = loss(net(X, w, b), y) l.sum().backward() sgd([w, b], lr, batch_size) with paddle.no_grad(): train_l = loss(net(features, w, b), labels)
339
null
null
from mxnet import autograd, gluon, np, npx from d2l import mxnet as d2l npx.set_np() true_w = np.array([2, -3.4]) true_b = 4.2 features, labels = d2l.synthetic_data(true_w, true_b, 1000) def load_array(data_arrays, batch_size, is_train=True): dataset = gluon.data.ArrayDataset(*data_arrays) return gluon.data.DataLoader(dataset, batch_size, shuffle=is_train) batch_size = 10 data_iter = load_array((features, labels), batch_size) from mxnet.gluon import nn net = nn.Sequential() net.add(nn.Dense(1)) from mxnet import init net.initialize(init.Normal(sigma=0.01)) loss = gluon.loss.L2Loss() from mxnet import gluon trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.03}) w = net[0].weight.data() b = net[0].bias.data()
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import numpy as np import paddle true_w = paddle.to_tensor([2, -3.4]) true_b = 4.2 features, labels = d2l.synthetic_data(true_w, true_b, 1000) def load_array(data_arrays, batch_size, is_train=True): dataset = paddle.io.TensorDataset(data_arrays) return paddle.io.DataLoader(dataset, batch_size=batch_size, shuffle=is_train, return_list=True) batch_size = 10 data_iter = load_array((features, labels), batch_size) from paddle import nn net = nn.Sequential(nn.Linear(2, 1)) weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Normal(0, 0.01)) bias_attr = paddle.ParamAttr(initializer=None) net = nn.Sequential(nn.Linear(2, 1, weight_attr=weight_attr, bias_attr=bias_attr)) loss = nn.MSELoss() trainer = paddle.optimizer.SGD(learning_rate=0.03, parameters=net.parameters()) w = net[0].weight b = net[0].bias
340
null
null
%matplotlib inline import sys from mxnet import gluon from d2l import mxnet as d2l d2l.use_svg_display() mnist_train = gluon.data.vision.FashionMNIST(train=True) mnist_test = gluon.data.vision.FashionMNIST(train=False) def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): figsize = (num_cols * scale, num_rows * scale) _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize) axes = axes.flatten() for i, (ax, img) in enumerate(zip(axes, imgs)): ax.imshow(img.asnumpy()) ax.axes.get_xaxis().set_visible(False) ax.axes.get_yaxis().set_visible(False) if titles: ax.set_title(titles[i]) return axes X, y = mnist_train[:18] show_images(X.squeeze(axis=-1), 2, 9, titles=get_fashion_mnist_labels(y)); batch_size = 256 return 0 if sys.platform.startswith('win') else 4 transformer = gluon.data.vision.transforms.ToTensor() train_iter = gluon.data.DataLoader(mnist_train.transform_first(transformer), batch_size, shuffle=True, num_workers=get_dataloader_workers()) def load_data_fashion_mnist(batch_size, resize=None): dataset = gluon.data.vision trans = [dataset.transforms.ToTensor()] if resize: trans.insert(0, dataset.transforms.Resize(resize)) trans = dataset.transforms.Compose(trans) mnist_train = dataset.FashionMNIST(train=True).transform_first(trans) mnist_test = dataset.FashionMNIST(train=False).transform_first(trans) return (gluon.data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()), gluon.data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=get_dataloader_workers()))
%matplotlib inline import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import sys import paddle from paddle.vision import transforms d2l.use_svg_display() trans = transforms.ToTensor() mnist_train = paddle.vision.datasets.FashionMNIST(mode="train", transform=trans) mnist_test = paddle.vision.datasets.FashionMNIST(mode="test", transform=trans) def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): figsize = (num_cols * scale, num_rows * scale) _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize) axes = axes.flatten() for i, (ax, img) in enumerate(zip(axes, imgs)): if paddle.is_tensor(img): ax.imshow(img.numpy()) else: ax.imshow(img) ax.axes.get_xaxis().set_visible(False) ax.axes.get_yaxis().set_visible(False) if titles: ax.set_title(titles[i]) return axes X, y = next(iter(paddle.io.DataLoader(mnist_train, batch_size=18))) show_images(X.reshape([18, 28, 28]), 2, 9, titles=get_fashion_mnist_labels(y)); batch_size = 256 return 4 train_iter = paddle.io.DataLoader(dataset=mnist_train, batch_size=batch_size, shuffle=True, return_list=True, num_workers=get_dataloader_workers()) trans = [transforms.ToTensor()] if resize: trans.insert(0, transforms.Resize(resize)) trans = transforms.Compose(trans) mnist_train = paddle.vision.datasets.FashionMNIST(mode="train", transform=trans) mnist_test = paddle.vision.datasets.FashionMNIST(mode="test", transform=trans) return (paddle.io.DataLoader(dataset=mnist_train, batch_size=batch_size, shuffle=True, return_list=True, num_workers=get_dataloader_workers()), paddle.io.DataLoader(dataset=mnist_test, batch_size=batch_size, return_list=True, shuffle=True, num_workers=get_dataloader_workers()))
341
null
null
from IPython import display from mxnet import autograd, gluon, np, npx from d2l import mxnet as d2l npx.set_np() batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) num_inputs = 784 num_outputs = 10 W = np.random.normal(0, 0.01, (num_inputs, num_outputs)) b = np.zeros(num_outputs) W.attach_grad() b.attach_grad() X = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) X.sum(0, keepdims=True), X.sum(1, keepdims=True) def softmax(X): X_exp = np.exp(X) partition = X_exp.sum(1, keepdims=True) return X_exp / partition X = np.random.normal(0, 1, (2, 5)) X_prob = softmax(X) X_prob, X_prob.sum(1) def net(X): return softmax(np.dot(X.reshape((-1, W.shape[0])), W) + b) y = np.array([0, 2]) y_hat = np.array([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]]) y_hat[[0, 1], y] def cross_entropy(y_hat, y): return - np.log(y_hat[range(len(y_hat)), y]) cross_entropy(y_hat, y) def accuracy(y_hat, y): if len(y_hat.shape) > 1 and y_hat.shape[1] > 1: y_hat = y_hat.argmax(axis=1) cmp = y_hat.astype(y.dtype) == y return float(cmp.astype(y.dtype).sum()) def evaluate_accuracy(net, data_iter): metric = Accumulator(2) for X, y in data_iter: metric.add(accuracy(net(X), y), d2l.size(y)) return metric[0] / metric[1] def train_epoch_ch3(net, train_iter, loss, updater): metric = Accumulator(3) if isinstance(updater, gluon.Trainer): updater = updater.step for X, y in train_iter: with autograd.record(): y_hat = net(X) l = loss(y_hat, y) l.backward() updater(X.shape[0]) metric.add(float(l.sum()), accuracy(y_hat, y), y.size) return metric[0] / metric[2], metric[1] / metric[2]
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle from IPython import display batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) num_inputs = 784 num_outputs = 10 W = paddle.normal(0, 0.01, shape=(num_inputs, num_outputs)) b = paddle.zeros(shape=(num_outputs,)) W.stop_gradient=False b.stop_gradient=False X = paddle.to_tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) X.sum(0, keepdim=True), X.sum(1, keepdim=True) def softmax(X): X_exp = paddle.exp(X) partition = X_exp.sum(1, keepdim=True) return X_exp / partition X = paddle.normal(0, 1, (2, 5)) X_prob = softmax(X) X_prob, X_prob.sum(1) def net(X): return softmax(paddle.matmul(X.reshape((-1, W.shape[0])), W) + b) y = paddle.to_tensor([0, 2]) y_hat = paddle.to_tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]]) y_hat[[0, 1], y] def cross_entropy(y_hat, y): return - paddle.log(y_hat[[i for i in range(len(y_hat))], y.squeeze()]) cross_entropy(y_hat, y) def accuracy(y_hat, y): if len(y_hat.shape) > 1 and y_hat.shape[1] > 1: if len(y_hat.shape) > 1 and y_hat.shape[1] > 1: y_hat = y_hat.argmax(axis=1) if len(y_hat.shape) < len(y.shape): cmp = y_hat.astype(y.dtype) == y.squeeze() else: cmp = y_hat.astype(y.dtype) == y return float(cmp.astype(y.dtype).sum()) def evaluate_accuracy(net, data_iter): if isinstance(net, paddle.nn.Layer): net.eval() metric = Accumulator(2) with paddle.no_grad(): for X, y in data_iter: metric.add(accuracy(net(X), y), y.numel()) return metric[0] / metric[1] def train_epoch_ch3(net, train_iter, loss, updater): if isinstance(net, paddle.nn.Layer): net.train() metric = Accumulator(3) for X, y in train_iter: y_hat = net(X) l = loss(y_hat, y) if isinstance(updater, paddle.optimizer.Optimizer): updater.clear_grad() l.mean().backward() updater.step() else: l.sum().backward() updater(X.shape[0]) metric.add(float(l.sum()), accuracy(y_hat, y), y.numel()) return metric[0] / metric[2], metric[1] / metric[2]
342
null
null
from mxnet import gluon, init, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) net = nn.Sequential() net.add(nn.Dense(10)) net.initialize(init.Normal(sigma=0.01)) loss = gluon.loss.SoftmaxCrossEntropyLoss() trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1})
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle from paddle import nn batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10)) def init_weights(m): if type(m) == nn.Linear: nn.initializer.Normal(m.weight, std=0.01) net.apply(init_weights); loss = nn.CrossEntropyLoss(reduction='none') trainer = paddle.optimizer.SGD(learning_rate=0.1, parameters=net.parameters())
343
null
null
%matplotlib inline from mxnet import autograd, np, npx from d2l import mxnet as d2l npx.set_np() x = np.arange(-8.0, 8.0, 0.1) x.attach_grad() with autograd.record(): y = npx.relu(x) d2l.plot(x, y, 'x', 'relu(x)', figsize=(5, 2.5)) y.backward() d2l.plot(x, x.grad, 'x', 'grad of relu', figsize=(5, 2.5)) with autograd.record(): y = npx.sigmoid(x) d2l.plot(x, y, 'x', 'sigmoid(x)', figsize=(5, 2.5)) y.backward() d2l.plot(x, x.grad, 'x', 'grad of sigmoid', figsize=(5, 2.5)) with autograd.record(): y = np.tanh(x) d2l.plot(x, y, 'x', 'tanh(x)', figsize=(5, 2.5)) y.backward() d2l.plot(x, x.grad, 'x', 'grad of tanh', figsize=(5, 2.5))
%matplotlib inline import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle x = paddle.arange(-8.0, 8.0, 0.1, dtype='float32') x.stop_gradient = False y = paddle.nn.functional.relu(x) d2l.plot(x.detach().numpy(), y.detach().numpy(), 'x', 'relu(x)', figsize=(5, 2.5)) y.backward(paddle.ones_like(x), retain_graph=True) d2l.plot(x.detach().numpy(), x.grad.numpy(), 'x', 'grad of relu', figsize=(5, 2.5)) y = paddle.nn.functional.sigmoid(x) d2l.plot(x.detach().numpy(), y.detach().numpy(), 'x', 'sigmoid(x)', figsize=(5, 2.5)) x.clear_gradient() y.backward(paddle.ones_like(x), retain_graph=True) d2l.plot(x.detach().numpy(), x.grad.numpy(), 'x', 'grad of sigmoid', figsize=(5, 2.5)) y = paddle.tanh(x) d2l.plot(x.detach().numpy(), y.detach().numpy(), 'x', 'tanh(x)', figsize=(5, 2.5)) x.clear_gradient() y.backward(paddle.ones_like(x), retain_graph=True) d2l.plot(x.detach().numpy(), x.grad.numpy(), 'x', 'grad of tanh', figsize=(5, 2.5))
344
null
null
from mxnet import gluon, np, npx from d2l import mxnet as d2l npx.set_np() batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) num_inputs, num_outputs, num_hiddens = 784, 10, 256 W1 = np.random.normal(scale=0.01, size=(num_inputs, num_hiddens)) b1 = np.zeros(num_hiddens) W2 = np.random.normal(scale=0.01, size=(num_hiddens, num_outputs)) b2 = np.zeros(num_outputs) params = [W1, b1, W2, b2] for param in params: param.attach_grad() def relu(X): return np.maximum(X, 0) def net(X): X = X.reshape((-1, num_inputs)) H = relu(np.dot(X, W1) + b1) return np.dot(H, W2) + b2 loss = gluon.loss.SoftmaxCrossEntropyLoss() num_epochs, lr = 10, 0.1 d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, lambda batch_size: d2l.sgd(params, lr, batch_size))
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle from paddle import nn batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) num_inputs, num_outputs, num_hiddens = 784, 10, 256 W1 = paddle.randn([num_inputs, num_hiddens]) * 0.01 W1.stop_gradient = False b1 = paddle.zeros([num_hiddens]) b1.stop_gradient = False W2 = paddle.randn([num_hiddens, num_outputs]) * 0.01 W2.stop_gradient = False b2 = paddle.zeros([num_outputs]) b2.stop_gradient = False params = [W1, b1, W2, b2] def relu(X): a = paddle.zeros_like(X) return paddle.maximum(X, a) def net(X): X = X.reshape((-1, num_inputs)) H = relu(X@W1 + b1) return (H@W2 + b2) loss = nn.CrossEntropyLoss(reduction='none') num_epochs, lr = 10, 0.1 updater = paddle.optimizer.SGD(learning_rate=lr, parameters=params) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)
345
null
null
from mxnet import gluon, init, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() net = nn.Sequential() net.add(nn.Dense(256, activation='relu'), nn.Dense(10)) net.initialize(init.Normal(sigma=0.01)) batch_size, lr, num_epochs = 256, 0.1, 10 loss = gluon.loss.SoftmaxCrossEntropyLoss() trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr}) train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle from paddle import nn net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 10)) for layer in net: if type(layer) == nn.Linear: weight_attr = paddle.framework.ParamAttr(initializer=paddle.nn.initializer.Normal(mean=0.0, std=0.01)) layer.weight_attr = weight_attr batch_size, lr, num_epochs = 256, 0.1, 10 loss = nn.CrossEntropyLoss(reduction='none') trainer = paddle.optimizer.SGD(parameters=net.parameters(), learning_rate=lr) train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
346
null
null
import math from mxnet import gluon, np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() features[:2], poly_features[:2, :], labels[:2] def evaluate_loss(net, data_iter, loss): metric = d2l.Accumulator(2) for X, y in data_iter: l = loss(net(X), y) metric.add(l.sum(), d2l.size(l)) return metric[0] / metric[1] def train(train_features, test_features, train_labels, test_labels, num_epochs=400): loss = gluon.loss.L2Loss() net = nn.Sequential() net.add(nn.Dense(1, use_bias=False)) net.initialize() batch_size = min(10, train_labels.shape[0]) train_iter = d2l.load_array((train_features, train_labels), batch_size) test_iter = d2l.load_array((test_features, test_labels), batch_size, is_train=False) trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.01}) animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test']) for epoch in range(num_epochs): d2l.train_epoch_ch3(net, train_iter, loss, trainer) if epoch == 0 or (epoch + 1) % 20 == 0: animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss))) train(poly_features[:n_train, :2], poly_features[n_train:, :2], labels[:n_train], labels[n_train:]) train(poly_features[:n_train, :], poly_features[n_train:, :], labels[:n_train], labels[n_train:], num_epochs=1500)
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import math import numpy as np import paddle from paddle import nn true_w, features, poly_features, labels = [paddle.to_tensor(x, dtype= paddle.float32) for x in [true_w, features, poly_features, labels]] features[:2], poly_features[:2, :], labels[:2] def evaluate_loss(net, data_iter, loss): metric = d2l.Accumulator(2) for X, y in data_iter: out = net(X) y = y.reshape(out.shape) l = loss(out, y) metric.add(l.sum(), l.numel()) return metric[0] / metric[1] def train(train_features, test_features, train_labels, test_labels, num_epochs=400): loss = nn.MSELoss() input_shape = train_features.shape[-1] net = nn.Sequential(nn.Linear(input_shape, 1, bias_attr=False)) batch_size = min(10, train_labels.shape[0]) train_iter = d2l.load_array(((train_features, train_labels.reshape([-1,1]))), batch_size) test_iter = d2l.load_array((test_features, test_labels.reshape([-1,1])), batch_size, is_train=False) trainer = paddle.optimizer.SGD(parameters=net.parameters(), learning_rate=0.01) animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test']) for epoch in range(num_epochs): d2l.train_epoch_ch3(net, train_iter, loss, trainer) if epoch == 0 or (epoch + 1) % 20 == 0: animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss))) train(poly_features[:n_train, :2], poly_features[n_train:, :2], labels[:n_train], labels[n_train:]) train(poly_features[:n_train, :], poly_features[n_train:, :], labels[:n_train], labels[n_train:], num_epochs=1500)
347
null
null
%matplotlib inline from mxnet import autograd, gluon, init, np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5 true_w, true_b = np.ones((num_inputs, 1)) * 0.01, 0.05 train_data = d2l.synthetic_data(true_w, true_b, n_train) train_iter = d2l.load_array(train_data, batch_size) test_data = d2l.synthetic_data(true_w, true_b, n_test) test_iter = d2l.load_array(test_data, batch_size, is_train=False) def init_params(): w = np.random.normal(scale=1, size=(num_inputs, 1)) b = np.zeros(1) w.attach_grad() b.attach_grad() return [w, b] def l2_penalty(w): return (w**2).sum() / 2 def train(lambd): w, b = init_params() net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss num_epochs, lr = 100, 0.003 animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test']) for epoch in range(num_epochs): for X, y in train_iter: with autograd.record(): l = loss(net(X), y) + lambd * l2_penalty(w) l.backward() d2l.sgd([w, b], lr, batch_size) if (epoch + 1) % 5 == 0: animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss))) def train_concise(wd): net = nn.Sequential() net.add(nn.Dense(1)) net.initialize(init.Normal(sigma=1)) loss = gluon.loss.L2Loss() num_epochs, lr = 100, 0.003 trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr, 'wd': wd}) net.collect_params('.*bias').setattr('wd_mult', 0) animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test']) for epoch in range(num_epochs): for X, y in train_iter: with autograd.record(): l = loss(net(X), y) l.backward() trainer.step(batch_size) if (epoch + 1) % 5 == 0: animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))
%matplotlib inline import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle from paddle import nn n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5 true_w, true_b = paddle.ones((num_inputs, 1)) * 0.01, 0.05 train_data = d2l.synthetic_data(true_w, true_b, n_train) train_iter = d2l.load_array(train_data, batch_size) test_data = d2l.synthetic_data(true_w, true_b, n_test) test_iter = d2l.load_array(test_data, batch_size, is_train=False) def init_params(): w = paddle.normal(0, 1, shape=(num_inputs, 1)) w.stop_gradient = False b = paddle.zeros(shape=[1]) b.stop_gradient = False return [w, b] def l2_penalty(w): return paddle.sum(w.pow(2)) / 2 def train(lambd): w, b = init_params() net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss num_epochs, lr = 100, 0.003 animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test']) for epoch in range(num_epochs): for X, y in train_iter(): l = loss(net(X), y) + lambd * l2_penalty(w) l.sum().backward() d2l.sgd([w, b], lr, batch_size) if (epoch + 1) % 5 == 0: animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss))) def train_concise(wd): weight_attr = paddle.framework.ParamAttr(initializer=paddle.nn.initializer.Normal(mean=0.0, std=1.0)) bias_attr = paddle.framework.ParamAttr(initializer=paddle.nn.initializer.Normal(mean=0.0, std=1.0)) net = nn.Sequential(nn.Linear(num_inputs, 1, weight_attr=weight_attr, bias_attr=bias_attr)) loss = nn.MSELoss() num_epochs, lr = 100, 0.003 trainer = paddle.optimizer.SGD(parameters=net[0].parameters(), learning_rate=lr, weight_decay=wd*1.0) animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test']) for epoch in range(num_epochs): for X, y in train_iter: l = loss(net(X), y) l.backward() trainer.step() trainer.clear_grad() if (epoch + 1) % 5 == 0: animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))
348
null
null
from mxnet import autograd, gluon, init, np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() def dropout_layer(X, dropout): assert 0 <= dropout <= 1 if dropout == 1: return np.zeros_like(X) if dropout == 0: return X mask = np.random.uniform(0, 1, X.shape) > dropout return mask.astype(np.float32) * X / (1.0 - dropout) X = np.arange(16).reshape(2, 8) num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256 W1 = np.random.normal(scale=0.01, size=(num_inputs, num_hiddens1)) b1 = np.zeros(num_hiddens1) W2 = np.random.normal(scale=0.01, size=(num_hiddens1, num_hiddens2)) b2 = np.zeros(num_hiddens2) W3 = np.random.normal(scale=0.01, size=(num_hiddens2, num_outputs)) b3 = np.zeros(num_outputs) params = [W1, b1, W2, b2, W3, b3] for param in params: param.attach_grad() dropout1, dropout2 = 0.2, 0.5 def net(X): X = X.reshape(-1, num_inputs) H1 = npx.relu(np.dot(X, W1) + b1) if autograd.is_training(): H1 = dropout_layer(H1, dropout1) H2 = npx.relu(np.dot(H1, W2) + b2) if autograd.is_training(): H2 = dropout_layer(H2, dropout2) return np.dot(H2, W3) + b3 num_epochs, lr, batch_size = 10, 0.5, 256 loss = gluon.loss.SoftmaxCrossEntropyLoss() train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, lambda batch_size: d2l.sgd(params, lr, batch_size)) net = nn.Sequential() net.add(nn.Dense(256, activation="relu"), nn.Dropout(dropout1), nn.Dense(256, activation="relu"), nn.Dropout(dropout2), nn.Dense(10)) net.initialize(init.Normal(sigma=0.01)) trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr}) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
import warnings warnings.filterwarnings(action='ignore') import random import paddle from paddle import nn warnings.filterwarnings("ignore", category=DeprecationWarning) from d2l import paddle as d2l def dropout_layer(X, dropout): assert 0 <= dropout <= 1 if dropout == 1: return paddle.zeros_like(X) if dropout == 0: return X mask = (paddle.to_tensor(paddle.uniform(X.shape)) > dropout).astype('float32') return mask * X / (1.0 - dropout) X= paddle.arange(16, dtype = paddle.float32).reshape((2, 8)) num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256 dropout1, dropout2 = 0.2, 0.5 class Net(nn.Layer): def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2, is_training = True): super(Net, self).__init__() self.num_inputs = num_inputs self.training = is_training self.lin1 = nn.Linear(num_inputs, num_hiddens1) self.lin2 = nn.Linear(num_hiddens1, num_hiddens2) self.lin3 = nn.Linear(num_hiddens2, num_outputs) self.relu = nn.ReLU() def forward(self, X): H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs)))) if self.training == True: H1 = dropout_layer(H1, dropout1) H2 = self.relu(self.lin2(H1)) if self.training == True: H2 = dropout_layer(H2, dropout2) out = self.lin3(H2) return out net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2) num_epochs, lr, batch_size = 10, 0.5, 256 loss = nn.CrossEntropyLoss(reduction='none') train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) trainer = paddle.optimizer.SGD(learning_rate=lr, parameters=net.parameters()) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Normal(std=0.01)) net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256, weight_attr=weight_attr), nn.ReLU(), nn.Dropout(dropout1), nn.Linear(256, 256, weight_attr=weight_attr), nn.ReLU(), nn.Dropout(dropout2), nn.Linear(256, 10, weight_attr=weight_attr)) trainer = paddle.optimizer.SGD(learning_rate=0.5, parameters=net.parameters()) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
349
null
null
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr}) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) %matplotlib inline from mxnet import autograd, np, npx from d2l import mxnet as d2l npx.set_np() x = np.arange(-8.0, 8.0, 0.1) x.attach_grad() with autograd.record(): y = npx.sigmoid(x) y.backward() d2l.plot(x, [y, x.grad], legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5)) M = np.random.normal(size=(4, 4)) for i in range(100): M = np.dot(M, np.random.normal(size=(4, 4)))
trainer = paddle.optimizer.SGD(learning_rate=0.5, parameters=net.parameters()) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) %matplotlib inline import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle x = paddle.arange(start=-8.0, end=8.0, step=0.1, dtype='float32') x.stop_gradient = False y = paddle.nn.functional.sigmoid(x) y.backward(paddle.ones_like(x)) d2l.plot(x.detach().numpy(), [y.detach().numpy(), x.grad.numpy()], legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5)) M = paddle.normal(0, 1, shape=(4,4)) for i in range(100): M = paddle.mm(M, paddle.normal(0, 1, shape=(4, 4)))
350
null
null
%matplotlib inline import pandas as pd from mxnet import autograd, gluon, init, np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() n_train = train_data.shape[0] train_features = np.array(all_features[:n_train].values, dtype=np.float32) test_features = np.array(all_features[n_train:].values, dtype=np.float32) train_labels = np.array(train_data.SalePrice.values.reshape(-1, 1), dtype=np.float32) loss = gluon.loss.L2Loss() def get_net(): net = nn.Sequential() net.add(nn.Dense(1)) net.initialize() return net def log_rmse(net, features, labels): clipped_preds = np.clip(net(features), 1, float('inf')) return np.sqrt(2 * loss(np.log(clipped_preds), np.log(labels)).mean()) def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size): train_ls, test_ls = [], [] train_iter = d2l.load_array((train_features, train_labels), batch_size) trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': learning_rate, 'wd': weight_decay}) for epoch in range(num_epochs): for X, y in train_iter: with autograd.record(): l = loss(net(X), y) l.backward() trainer.step(batch_size) train_ls.append(log_rmse(net, train_features, train_labels)) if test_labels is not None: test_ls.append(log_rmse(net, test_features, test_labels)) return train_ls, test_ls def get_k_fold_data(k, i, X, y): assert k > 1 fold_size = X.shape[0] // k X_train, y_train = None, None for j in range(k): idx = slice(j * fold_size, (j + 1) * fold_size) X_part, y_part = X[idx, :], y[idx] if j == i: X_valid, y_valid = X_part, y_part elif X_train is None: X_train, y_train = X_part, y_part else: X_train = np.concatenate([X_train, X_part], 0) y_train = np.concatenate([y_train, y_part], 0) return X_train, y_train, X_valid, y_valid def train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size): net = get_net() train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs, lr, weight_decay, batch_size) d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch', ylabel='log rmse', xlim=[1, num_epochs], yscale='log') preds = net(test_features).asnumpy() test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0]) submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1) submission.to_csv('submission.csv', index=False)
%matplotlib inline import warnings import numpy as np import pandas as pd warnings.filterwarnings(action='ignore') import paddle from paddle import nn warnings.filterwarnings("ignore", category=DeprecationWarning) from d2l import paddle as d2l n_train = train_data.shape[0] train_features = paddle.to_tensor(all_features[:n_train].values, dtype=paddle.float32) test_features = paddle.to_tensor(all_features[n_train:].values, dtype=paddle.float32) train_labels = paddle.to_tensor( train_data.SalePrice.values.reshape(-1, 1), dtype=paddle.float32) loss = nn.MSELoss() in_features = train_features.shape[1] def get_net(): net = nn.Sequential(nn.Linear(in_features,1)) return net def log_rmse(net, features, labels): clipped_preds = paddle.clip(net(features), 1, float('inf')) rmse = paddle.sqrt(loss(paddle.log(clipped_preds), paddle.log(labels))) return rmse.item() def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size): train_ls, test_ls = [], [] train_iter = d2l.load_array((train_features, train_labels), batch_size) optimizer = paddle.optimizer.Adam(learning_rate=learning_rate*1.0, parameters=net.parameters(), weight_decay=weight_decay*1.0) for epoch in range(num_epochs): for X, y in train_iter: l = loss(net(X), y) l.backward() optimizer.step() optimizer.clear_grad() train_ls.append(log_rmse(net, train_features, train_labels)) if test_labels is not None: test_ls.append(log_rmse(net, test_features, test_labels)) return train_ls, test_ls def get_k_fold_data(k, i, X, y): assert k > 1 fold_size = X.shape[0] // k X_train, y_train = None, None for j in range(k): idx = slice(j * fold_size, (j + 1) * fold_size) X_part, y_part = X[idx, :], y[idx] if j == i: X_valid, y_valid = X_part, y_part elif X_train is None: X_train, y_train = X_part, y_part else: X_train = paddle.concat([X_train, X_part], 0) y_train = paddle.concat([y_train, y_part], 0) return X_train, y_train, X_valid, y_valid def train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size): net = get_net() train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs, lr, weight_decay, batch_size) d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch', ylabel='log rmse', xlim=[1, num_epochs], yscale='log') preds = net(test_features).detach().numpy() test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0]) submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1) submission.to_csv('submission.csv', index=False)
351
null
null
from mxnet import np, npx from mxnet.gluon import nn npx.set_np() net = nn.Sequential() net.add(nn.Dense(256, activation='relu')) net.add(nn.Dense(10)) net.initialize() X = np.random.uniform(size=(2, 20)) net(X) class MLP(nn.Block): def __init__(self, **kwargs): super().__init__(**kwargs) self.hidden = nn.Dense(256, activation='relu') self.out = nn.Dense(10) def forward(self, X): return self.out(self.hidden(X)) net = MLP() net.initialize() net(X) class MySequential(nn.Block): def add(self, block): self._children[block.name] = block def forward(self, X): for block in self._children.values(): X = block(X) return X net = MySequential() net.add(nn.Dense(256, activation='relu')) net.add(nn.Dense(10)) net.initialize() net(X) class FixedHiddenMLP(nn.Block): def __init__(self, **kwargs): super().__init__(**kwargs) self.rand_weight = self.params.get_constant('rand_weight', np.random.uniform(size=(20, 20))) self.dense = nn.Dense(20, activation='relu') def forward(self, X): X = self.dense(X) X = npx.relu(np.dot(X, self.rand_weight.data()) + 1) X = self.dense(X) while np.abs(X).sum() > 1: X /= 2 return X.sum() net = FixedHiddenMLP() net.initialize() net(X) class NestMLP(nn.Block): def __init__(self, **kwargs): super().__init__(**kwargs) self.net = nn.Sequential() self.net.add(nn.Dense(64, activation='relu'), nn.Dense(32, activation='relu')) self.dense = nn.Dense(16, activation='relu') def forward(self, X): return self.dense(self.net(X)) chimera = nn.Sequential() chimera.add(NestMLP(), nn.Dense(20), FixedHiddenMLP()) chimera.initialize() chimera(X)
import warnings warnings.filterwarnings(action='ignore') import paddle from paddle import nn from paddle.nn import functional as F net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10)) X = paddle.rand([2, 20]) net(X) class MLP(nn.Layer): def __init__(self): super().__init__() self.hidden = nn.Linear(20, 256) self.out = nn.Linear(256, 10) def forward(self, X): return self.out(F.relu(self.hidden(X))) net = MLP() net(X) class MySequential(nn.Layer): def __init__(self, *layers): super(MySequential, self).__init__() if len(layers) > 0 and isinstance(layers[0], tuple): for name, layer in layers: self.add_sublayer(name, layer) else: for idx, layer in enumerate(layers): self.add_sublayer(str(idx), layer) def forward(self, X): for layer in self._sub_layers.values(): X = layer(X) return X net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10)) net(X) class FixedHiddenMLP(nn.Layer): def __init__(self): super().__init__() self.rand_weight = paddle.rand([20, 20]) self.linear = nn.Linear(20, 20) def forward(self, X): X = self.linear(X) X = F.relu(paddle.tensor.mm(X, self.rand_weight) + 1) X = self.linear(X) while X.abs().sum() > 1: X /= 2 return X.sum() net = FixedHiddenMLP() net(X) class NestMLP(nn.Layer): def __init__(self): super().__init__() self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU()) self.linear = nn.Linear(32, 16) def forward(self, X): return self.linear(self.net(X)) chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP()) chimera(X)
352
null
null
from mxnet import init, np, npx from mxnet.gluon import nn npx.set_np() net = nn.Sequential() net.add(nn.Dense(8, activation='relu')) net.add(nn.Dense(1)) net.initialize() X = np.random.uniform(size=(2, 4)) net(X) net.collect_params()['dense1_bias'].data() def block1(): net = nn.Sequential() net.add(nn.Dense(32, activation='relu')) net.add(nn.Dense(16, activation='relu')) return net def block2(): net = nn.Sequential() for _ in range(4): net.add(block1()) return net rgnet = nn.Sequential() rgnet.add(block2()) rgnet.add(nn.Dense(10)) rgnet.initialize() rgnet(X) net.initialize(init=init.Normal(sigma=0.01), force_reinit=True) net[0].weight.data()[0] net.initialize(init=init.Constant(1), force_reinit=True) net[0].weight.data()[0] net[0].weight.initialize(init=init.Xavier(), force_reinit=True) net[1].initialize(init=init.Constant(42), force_reinit=True) class MyInit(init.Initializer): def _init_weight(self, name, data): data[:] = np.random.uniform(-10, 10, data.shape) data *= np.abs(data) >= 5 net.initialize(MyInit(), force_reinit=True) net[0].weight.data()[:2] net[0].weight.data()[:] += 1 net[0].weight.data()[0, 0] = 42 net[0].weight.data()[0] layer = CenteredLayer() layer(np.array([1, 2, 3, 4, 5])) net = nn.Sequential() net.add(nn.Dense(128), CenteredLayer()) net.initialize()
import warnings warnings.filterwarnings(action='ignore') import paddle from paddle import nn net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1)) X = paddle.rand([2, 4]) net(X) net.state_dict()['2.bias'] def block1(): return nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 4), nn.ReLU()) def block2(): net = nn.Sequential() for i in range(4): net.add_sublayer(f'block {i}', block1()) return net rgnet = nn.Sequential(block2(), nn.Linear(4, 1)) rgnet(X) def init_normal(m): if type(m) == nn.Linear: paddle.nn.initializer.Normal(mean=0.0, std=0.01) paddle.zeros(m.bias) net.apply(init_normal) net[0].weight[0],net[0].state_dict()['bias'] def init_constant(m): if type(m) == nn.Linear: paddle.nn.initializer.Constant(value = 1) paddle.zeros(m.bias) net.apply(init_constant) net[0].weight[0],net[0].state_dict()['bias'] def xavier(m): if type(m) == nn.Linear: paddle.nn.initializer.XavierUniform(m.weight) def init_42(m): if type(m) == nn.Linear: paddle.nn.initializer.Constant(42) net[0].apply(xavier) net[2].apply(init_42) def my_init(m): if type(m) == nn.Linear: for name, param in m.named_parameters()][0]) paddle.nn.initializer.XavierUniform(m.weight, -10, 10) h = paddle.abs(m.weight) >= 5 h = paddle.to_tensor(h) m = paddle.to_tensor(m.weight) m *= h net.apply(my_init) net[0].weight[:2] net[0].weight.set_value(net[0].weight.numpy() + 1) val = net[0].weight.numpy() val[0, 0] = 42 net[0].weight.set_value(val) net[0].weight[0] layer = CenteredLayer() layer(paddle.to_tensor([1, 2, 3, 4, 5], dtype='float32')) net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
353
null
null
from mxnet import np, npx from mxnet.gluon import nn npx.set_np() class CenteredLayer(nn.Block): def __init__(self, **kwargs): super().__init__(**kwargs) def forward(self, X): return X - X.mean() Y = net(np.random.uniform(size=(4, 8))) Y.mean() class MyDense(nn.Block): def __init__(self, units, in_units, **kwargs): super().__init__(**kwargs) self.weight = self.params.get('weight', shape=(in_units, units)) self.bias = self.params.get('bias', shape=(units,)) def forward(self, x): linear = np.dot(x, self.weight.data(ctx=x.ctx)) + self.bias.data( ctx=x.ctx) return npx.relu(linear) dense = MyDense(units=3, in_units=5) dense.params dense.initialize() dense(np.random.uniform(size=(2, 5))) net = nn.Sequential() net.add(MyDense(8, in_units=64), MyDense(1, in_units=8)) net.initialize() net(np.random.uniform(size=(2, 64)))
import warnings warnings.filterwarnings(action='ignore') import paddle import paddle.nn.functional as F from paddle import nn class CenteredLayer(nn.Layer): def __init__(self): super().__init__() def forward(self, X): return X - X.mean() Y = net(paddle.rand([4, 8])) Y.mean() class MyLinear(nn.Layer): def __init__(self, in_units, units): super().__init__() self.weight = paddle.create_parameter(shape=(in_units, units), dtype='float32') self.bias = paddle.create_parameter(shape=(units,), dtype='float32') def forward(self, X): linear = paddle.matmul(X, self.weight) + self.bias return F.relu(linear) linear = MyLinear(5, 3) linear.weight linear(paddle.randn([2, 5])) net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1)) net(paddle.rand([2, 64]))
354
null
null
from mxnet import np, npx from mxnet.gluon import nn npx.set_np() x = np.arange(4) npx.save('x-file', x) x2 = npx.load('x-file') y = np.zeros(4) npx.save('x-files', [x, y]) x2, y2 = npx.load('x-files') mydict = {'x': x, 'y': y} npx.save('mydict', mydict) mydict2 = npx.load('mydict') class MLP(nn.Block): def __init__(self, **kwargs): super(MLP, self).__init__(**kwargs) self.hidden = nn.Dense(256, activation='relu') self.output = nn.Dense(10) def forward(self, x): return self.output(self.hidden(x)) net = MLP() net.initialize() X = np.random.uniform(size=(2, 20)) Y = net(X) net.save_parameters('mlp.params') clone = MLP() clone.load_parameters('mlp.params')
import warnings warnings.filterwarnings(action='ignore') import paddle from paddle import nn from paddle.nn import functional as F x = paddle.arange(4) paddle.save(x, 'x-file') x2 = paddle.load('x-file') y = paddle.zeros([4]) paddle.save([x,y], 'x-file') x2, y2 = paddle.load('x-file') mydict = {'x': x, 'y': y} paddle.save(mydict, 'mydict') mydict2 = paddle.load('mydict') class MLP(nn.Layer): def __init__(self): super().__init__() self.hidden = nn.Linear(20, 256) self.output = nn.Linear(256, 10) def forward(self, x): return self.output(F.relu(self.hidden(x))) net = MLP() X = paddle.randn(shape=[2, 20]) Y = net(X) paddle.save(net.state_dict(), 'mlp.pdparams') clone = MLP() clone.set_state_dict(paddle.load('mlp.pdparams')) clone.eval()
355
null
null
from mxnet import np, npx from mxnet.gluon import nn npx.set_np() npx.cpu(), npx.gpu(), npx.gpu(1) npx.num_gpus() def try_gpu(i=0): return npx.gpu(i) if npx.num_gpus() >= i + 1 else npx.cpu() def try_all_gpus(): devices = [npx.gpu(i) for i in range(npx.num_gpus())] return devices if devices else [npx.cpu()] try_gpu(), try_gpu(10), try_all_gpus() x = np.array([1, 2, 3]) x.ctx X = np.ones((2, 3), ctx=try_gpu()) Y = np.random.uniform(size=(2, 3), ctx=try_gpu(1)) Z = X.copyto(try_gpu(1)) Z.as_in_ctx(try_gpu(1)) is Z net = nn.Sequential() net.add(nn.Dense(1)) net.initialize(ctx=try_gpu()) net[0].weight.data().ctx
import paddle from paddle import nn paddle.device.set_device("cpu"), paddle.CUDAPlace(0), paddle.CUDAPlace(1) paddle.device.cuda.device_count() if paddle.device.cuda.device_count() >= i + 1: return paddle.CUDAPlace(i) return paddle.CPUPlace() def try_all_gpus(): devices = [paddle.CUDAPlace(i) for i in range(paddle.device.cuda.device_count())] return devices if devices else paddle.CPUPlace() try_gpu(),try_gpu(10),try_all_gpus() x = paddle.to_tensor([1, 2, 3]) x.place X = paddle.to_tensor(paddle.ones(shape=[2, 3]), place=try_gpu()) Y = paddle.to_tensor(paddle.rand([2, 3]), place=try_gpu(1)) Z = X.cuda(1) Z.cuda(1) is Z net = nn.Sequential(nn.Linear(3, 1)) net=net.to(try_gpu()) net[0].weight.place
356
null
null
from mxnet import autograd, np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() def corr2d(X, K): h, w = K.shape Y = np.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1)) for i in range(Y.shape[0]): for j in range(Y.shape[1]): Y[i, j] = (X[i:i + h, j:j + w] * K).sum() return Y X = np.array([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]) K = np.array([[0.0, 1.0], [2.0, 3.0]]) corr2d(X, K) class Conv2D(nn.Block): def __init__(self, kernel_size, **kwargs): super().__init__(**kwargs) self.weight = self.params.get('weight', shape=kernel_size) self.bias = self.params.get('bias', shape=(1,)) def forward(self, x): return corr2d(x, self.weight.data()) + self.bias.data() X = np.ones((6, 8)) X[:, 2:6] = 0 K = np.array([[1.0, -1.0]]) corr2d(d2l.transpose(X), K) conv2d = nn.Conv2D(1, kernel_size=(1, 2), use_bias=False) conv2d.initialize() X = X.reshape(1, 1, 6, 8) Y = Y.reshape(1, 1, 6, 7) lr = 3e-2 for i in range(10): with autograd.record(): Y_hat = conv2d(X) l = (Y_hat - Y) ** 2 l.backward() conv2d.weight.data()[:] -= lr * conv2d.weight.grad() conv2d.weight.data().reshape((1, 2))
import warningsfrom d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle from paddle import nn def corr2d(X, K): h, w = K.shape Y = paddle.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1)) for i in range(Y.shape[0]): for j in range(Y.shape[1]): Y[i, j] = (X[i:i + h, j:j + w] * K).sum() return Y X = paddle.to_tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]) K = paddle.to_tensor([[0.0, 1.0], [2.0, 3.0]]) corr2d(X, K) class Conv2D(nn.Layer): def __init__(self, kernel_size): super().__init__() self.weight = paddle.ParamAttr(paddle.rand(kernel_size)) self.bias = paddle.ParamAttr(paddle.zeros(1)) def forward(self, x): return corr2d(x, self.weight) + self.bias X = paddle.ones((6, 8)) X[:, 2:6] = 0 K = paddle.to_tensor([[1.0, -1.0]]) corr2d(X.t(), K) conv2d = nn.Conv2D(1, 1, kernel_size=(1, 2)) X = X.reshape((1, 1, 6, 8)) Y = Y.reshape((1, 1, 6, 7)) lr = 3e-2 for i in range(10): Y_hat = conv2d(X) l = (Y_hat - Y) ** 2 conv2d.clear_gradients() l.sum().backward() with paddle.no_grad(): conv2d.weight[:] -= lr * conv2d.weight.grad conv2d.weight.reshape((1, 2))
357
null
null
from mxnet import np, npx from mxnet.gluon import nn npx.set_np() def comp_conv2d(conv2d, X): conv2d.initialize() X = X.reshape((1, 1) + X.shape) Y = conv2d(X) return Y.reshape(Y.shape[2:]) conv2d = nn.Conv2D(1, kernel_size=3, padding=1) X = np.random.uniform(size=(8, 8)) comp_conv2d(conv2d, X).shape conv2d = nn.Conv2D(1, kernel_size=(5, 3), padding=(2, 1)) comp_conv2d(conv2d, X).shape conv2d = nn.Conv2D(1, kernel_size=3, padding=1, strides=2) comp_conv2d(conv2d, X).shape conv2d = nn.Conv2D(1, kernel_size=(3, 5), padding=(0, 1), strides=(3, 4)) comp_conv2d(conv2d, X).shape
import warnings warnings.filterwarnings(action='ignore') import paddle from paddle import nn def comp_conv2d(conv2d, X): X = paddle.reshape(X, [1, 1] + X.shape) Y = conv2d(X) return Y.reshape(Y.shape[2:]) conv2d = nn.Conv2D(in_channels=1, out_channels=1, kernel_size=3, padding=1) X = paddle.rand((8, 8)) comp_conv2d(conv2d, X).shape conv2d = nn.Conv2D(in_channels=1, out_channels=1, kernel_size=(5, 3), padding=(2, 1)) comp_conv2d(conv2d, X).shape conv2d = nn.Conv2D(1, 1, kernel_size=3, padding=1, stride=2) comp_conv2d(conv2d, X).shape conv2d = nn.Conv2D(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4)) comp_conv2d(conv2d, X).shape
358
null
null
from mxnet import np, npx from d2l import mxnet as d2l npx.set_np() def corr2d_multi_in(X, K): return sum(d2l.corr2d(x, k) for x, k in zip(X, K)) X = np.array([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]]) K = np.array([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]]) corr2d_multi_in(X, K) def corr2d_multi_in_out(X, K): return np.stack([corr2d_multi_in(X, k) for k in K], 0) K = np.stack((K, K + 1, K + 2), 0) K.shape def corr2d_multi_in_out_1x1(X, K): c_i, h, w = X.shape c_o = K.shape[0] X = X.reshape((c_i, h * w)) K = K.reshape((c_o, c_i)) Y = np.dot(K, X) return Y.reshape((c_o, h, w)) X = np.random.normal(0, 1, (3, 3, 3)) K = np.random.normal(0, 1, (2, 3, 1, 1)) Y1 = corr2d_multi_in_out_1x1(X, K) Y2 = corr2d_multi_in_out(X, K) assert float(np.abs(Y1 - Y2).sum()) < 1e-6
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle def corr2d_multi_in(X, K): return sum(d2l.corr2d(x, k) for x, k in zip(X, K)) X = paddle.to_tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]]) K = paddle.to_tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]]) corr2d_multi_in(X, K) def corr2d_multi_in_out(X, K): return paddle.stack([corr2d_multi_in(X, k) for k in K], 0) K = paddle.stack((K, K + 1, K + 2), 0) K.shape def corr2d_multi_in_out_1x1(X, K): c_i, h, w = X.shape c_o = K.shape[0] X = X.reshape((c_i, h * w)) K = K.reshape((c_o, c_i)) Y = paddle.matmul(K, X) return Y.reshape((c_o, h, w)) X = paddle.normal(0, 1, (3, 3, 3)) K = paddle.normal(0, 1, (2, 3, 1, 1)) Y1 = corr2d_multi_in_out_1x1(X, K) Y2 = corr2d_multi_in_out(X, K) assert float(paddle.abs(Y1 - Y2).sum()) < 1e-6
359
null
null
from mxnet import np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() def pool2d(X, pool_size, mode='max'): p_h, p_w = pool_size Y = np.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1)) for i in range(Y.shape[0]): for j in range(Y.shape[1]): if mode == 'max': Y[i, j] = X[i: i + p_h, j: j + p_w].max() elif mode == 'avg': Y[i, j] = X[i: i + p_h, j: j + p_w].mean() return Y X = np.array([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]) pool2d(X, (2, 2)) X = np.arange(16, dtype=np.float32).reshape((1, 1, 4, 4)) pool2d = nn.MaxPool2D(3) pool2d(X) pool2d = nn.MaxPool2D(3, padding=1, strides=2) pool2d(X) pool2d = nn.MaxPool2D((2, 3), padding=(0, 1), strides=(2, 3)) pool2d(X) X = np.concatenate((X, X + 1), 1) pool2d = nn.MaxPool2D(3, padding=1, strides=2) pool2d(X)
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle from paddle import nn def pool2d(X, pool_size, mode='max'): p_h, p_w = pool_size Y = paddle.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1)) for i in range(Y.shape[0]): for j in range(Y.shape[1]): if mode == 'max': Y[i, j] = X[i: i + p_h, j: j + p_w].max() elif mode == 'avg': Y[i, j] = X[i: i + p_h, j: j + p_w].mean() return Y X = paddle.to_tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]) pool2d(X, (2, 2)) X = paddle.arange(16, dtype="float32").reshape((1, 1, 4, 4)) pool2d = nn.MaxPool2D(3, stride=3) pool2d(X) pool2d = nn.MaxPool2D(3, padding=1, stride=2) pool2d(X) pool2d = nn.MaxPool2D((2, 3), padding=(0, 1), stride=(2, 3)) pool2d(X) X = paddle.concat((X, X + 1), 1) pool2d = paddle.nn.MaxPool2D(3, padding=1, stride=2) pool2d(X)
360
null
null
from mxnet import autograd, gluon, init, np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() net = nn.Sequential() net.add(nn.Conv2D(channels=6, kernel_size=5, padding=2, activation='sigmoid'), nn.AvgPool2D(pool_size=2, strides=2), nn.Conv2D(channels=16, kernel_size=5, activation='sigmoid'), nn.AvgPool2D(pool_size=2, strides=2), nn.Dense(120, activation='sigmoid'), nn.Dense(84, activation='sigmoid'), nn.Dense(10)) X = np.random.uniform(size=(1, 1, 28, 28)) net.initialize() for layer in net: X = layer(X) print(layer.name, 'output shape: ', X.shape) def train_ch6(net, train_iter, test_iter, num_epochs, lr, device): net.initialize(force_reinit=True, ctx=device, init=init.Xavier()) loss = gluon.loss.SoftmaxCrossEntropyLoss() trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr}) animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test acc']) timer, num_batches = d2l.Timer(), len(train_iter) for epoch in range(num_epochs): metric = d2l.Accumulator(3) for i, (X, y) in enumerate(train_iter): timer.start() X, y = X.as_in_ctx(device), y.as_in_ctx(device) with autograd.record(): y_hat = net(X) l = loss(y_hat, y) l.backward() trainer.step(X.shape[0]) metric.add(l.sum(), d2l.accuracy(y_hat, y), X.shape[0]) timer.stop() train_l = metric[0] / metric[2] train_acc = metric[1] / metric[2] if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1: animator.add(epoch + (i + 1) / num_batches, (train_l, train_acc, None)) test_acc = evaluate_accuracy_gpu(net, test_iter) animator.add(epoch + 1, (None, None, test_acc))
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle from paddle import nn, optimizer net = nn.Sequential( nn.Conv2D(1, 6, kernel_size=5, padding=2), nn.Sigmoid(), nn.AvgPool2D(kernel_size=2, stride=2), nn.Conv2D(6, 16, kernel_size=5), nn.Sigmoid(), nn.AvgPool2D(kernel_size=2, stride=2), nn.Flatten(), nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(), nn.Linear(120, 84), nn.Sigmoid(), nn.Linear(84, 10)) X = paddle.rand((1, 1, 28, 28), 'float32') for layer in net: X = layer(X) print(layer.__class__.__name__, 'output shape: ', X.shape) def train_ch6(net, train_iter, test_iter, num_epochs, lr, device): def init_weights(m): if type(m) == nn.Linear or type(m) == nn.Conv2D: nn.initializer.XavierUniform(m.weight) net.apply(init_weights) net.to(device) optimizer = paddle.optimizer.SGD(learning_rate=lr, parameters=net.parameters()) loss = nn.CrossEntropyLoss() animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test acc']) timer, num_batches = d2l.Timer(), len(train_iter) for epoch in range(num_epochs): metric = d2l.Accumulator(3) net.train() for i, (X, y) in enumerate(train_iter): timer.start() optimizer.clear_grad() X, y = paddle.to_tensor(X, place=device), paddle.to_tensor(y, place=device) y_hat = net(X) l = loss(y_hat, y) l.backward() optimizer.step() with paddle.no_grad(): metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0]) timer.stop() train_l = metric[0] / metric[2] train_acc = metric[1] / metric[2] if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1: animator.add(epoch + (i + 1) / num_batches, (train_l, train_acc, None)) test_acc = evaluate_accuracy_gpu(net, test_iter) animator.add(epoch + 1, (None, None, test_acc))
361
null
null
from mxnet import np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() net = nn.Sequential() net.add( nn.Conv2D(96, kernel_size=11, strides=4, activation='relu'), nn.MaxPool2D(pool_size=3, strides=2), nn.Conv2D(256, kernel_size=5, padding=2, activation='relu'), nn.MaxPool2D(pool_size=3, strides=2), nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'), nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'), nn.Conv2D(256, kernel_size=3, padding=1, activation='relu'), nn.MaxPool2D(pool_size=3, strides=2), nn.Dense(4096, activation='relu'), nn.Dropout(0.5), nn.Dense(4096, activation='relu'), nn.Dropout(0.5), nn.Dense(10)) X = np.random.uniform(size=(1, 1, 224, 224)) net.initialize() for layer in net: X = layer(X) print(layer.name, 'output shape: ', X.shape)
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle import paddle.nn as nn net = nn.Sequential( nn.Conv2D(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(), nn.MaxPool2D(kernel_size=3, stride=2), nn.Conv2D(96, 256, kernel_size=5, padding=2), nn.ReLU(), nn.MaxPool2D(kernel_size=3, stride=2), nn.Conv2D(256, 384, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2D(384, 384, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2D(384, 256, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2D(kernel_size=3, stride=2), nn.Flatten(), nn.Linear(6400, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 10)) X = paddle.randn(shape=(1, 1, 224, 224)) for layer in net: X=layer(X) print(layer.__class__.__name__,'output shape: ',X.shape)
362
null
null
from mxnet import np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() def vgg_block(num_convs, num_channels): blk = nn.Sequential() for _ in range(num_convs): blk.add(nn.Conv2D(num_channels, kernel_size=3, padding=1, activation='relu')) blk.add(nn.MaxPool2D(pool_size=2, strides=2)) return blk def vgg(conv_arch): net = nn.Sequential() for (num_convs, num_channels) in conv_arch: net.add(vgg_block(num_convs, num_channels)) net.add(nn.Dense(4096, activation='relu'), nn.Dropout(0.5), nn.Dense(4096, activation='relu'), nn.Dropout(0.5), nn.Dense(10)) return net net = vgg(conv_arch) net.initialize() X = np.random.uniform(size=(1, 1, 224, 224)) for blk in net: X = blk(X) print(blk.name, 'output shape: ', X.shape)
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle import paddle.nn as nn def vgg_block(num_convs, in_channels, out_channels): layers = [] for _ in range(num_convs): layers.append(nn.Conv2D(in_channels, out_channels, kernel_size=3, padding=1)) layers.append(nn.ReLU()) in_channels = out_channels layers.append(nn.MaxPool2D(kernel_size=2, stride=2)) return nn.Sequential(*layers) def vgg(conv_arch): conv_blks = [] in_channels = 1 for (num_convs, out_channels) in conv_arch: conv_blks.append(vgg_block(num_convs, in_channels, out_channels)) in_channels = out_channels return nn.Sequential(*conv_blks, nn.Flatten(), nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5), nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5), nn.Linear(4096, 10)) net = vgg(conv_arch) X = paddle.randn(shape=(1, 1, 224, 224)) for blk in net: X = blk(X) print(blk.__class__.__name__,'output shape: ',X.shape)
363
null
null
from mxnet import np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() def nin_block(num_channels, kernel_size, strides, padding): blk = nn.Sequential() blk.add(nn.Conv2D(num_channels, kernel_size, strides, padding, activation='relu'), nn.Conv2D(num_channels, kernel_size=1, activation='relu'), nn.Conv2D(num_channels, kernel_size=1, activation='relu')) return blk net = nn.Sequential() net.add(nin_block(96, kernel_size=11, strides=4, padding=0), nn.MaxPool2D(pool_size=3, strides=2), nin_block(256, kernel_size=5, strides=1, padding=2), nn.MaxPool2D(pool_size=3, strides=2), nin_block(384, kernel_size=3, strides=1, padding=1), nn.MaxPool2D(pool_size=3, strides=2), nn.Dropout(0.5), nin_block(10, kernel_size=3, strides=1, padding=1), nn.GlobalAvgPool2D(), nn.Flatten()) X = np.random.uniform(size=(1, 1, 224, 224)) net.initialize() for layer in net: X = layer(X) print(layer.name, 'output shape: ', X.shape)
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle import paddle.nn as nn def nin_block(in_channels, out_channels, kernel_size, strides, padding): return nn.Sequential( nn.Conv2D(in_channels, out_channels, kernel_size, strides, padding), nn.ReLU(), nn.Conv2D(out_channels, out_channels, kernel_size=1), nn.ReLU(), nn.Conv2D(out_channels, out_channels, kernel_size=1), nn.ReLU()) net = nn.Sequential( nin_block(1, 96, kernel_size=11, strides=4, padding=0), nn.MaxPool2D(3, stride=2), nin_block(96, 256, kernel_size=5, strides=1, padding=2), nn.MaxPool2D(3, stride=2), nin_block(256, 384, kernel_size=3, strides=1, padding=1), nn.MaxPool2D(3, stride=2), nn.Dropout(0.5), nin_block(384, 10, kernel_size=3, strides=1, padding=1), nn.AdaptiveAvgPool2D((1, 1)), nn.Flatten()) X = paddle.rand(shape=(1, 1, 224, 224)) for layer in net: X = layer(X) print(layer.__class__.__name__,'output shape: ', X.shape)
364
null
null
from mxnet import np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() class Inception(nn.Block): def __init__(self, c1, c2, c3, c4, **kwargs): super(Inception, self).__init__(**kwargs) self.p1_1 = nn.Conv2D(c1, kernel_size=1, activation='relu') self.p2_1 = nn.Conv2D(c2[0], kernel_size=1, activation='relu') self.p2_2 = nn.Conv2D(c2[1], kernel_size=3, padding=1, activation='relu') self.p3_1 = nn.Conv2D(c3[0], kernel_size=1, activation='relu') self.p3_2 = nn.Conv2D(c3[1], kernel_size=5, padding=2, activation='relu') self.p4_1 = nn.MaxPool2D(pool_size=3, strides=1, padding=1) self.p4_2 = nn.Conv2D(c4, kernel_size=1, activation='relu') def forward(self, x): p1 = self.p1_1(x) p2 = self.p2_2(self.p2_1(x)) p3 = self.p3_2(self.p3_1(x)) p4 = self.p4_2(self.p4_1(x)) return np.concatenate((p1, p2, p3, p4), axis=1) b1 = nn.Sequential() b1.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3, activation='relu'), nn.MaxPool2D(pool_size=3, strides=2, padding=1)) b2 = nn.Sequential() b2.add(nn.Conv2D(64, kernel_size=1, activation='relu'), nn.Conv2D(192, kernel_size=3, padding=1, activation='relu'), nn.MaxPool2D(pool_size=3, strides=2, padding=1)) b3 = nn.Sequential() b3.add(Inception(64, (96, 128), (16, 32), 32), Inception(128, (128, 192), (32, 96), 64), nn.MaxPool2D(pool_size=3, strides=2, padding=1)) b4 = nn.Sequential() b4.add(Inception(192, (96, 208), (16, 48), 64), Inception(160, (112, 224), (24, 64), 64), Inception(128, (128, 256), (24, 64), 64), Inception(112, (144, 288), (32, 64), 64), Inception(256, (160, 320), (32, 128), 128), nn.MaxPool2D(pool_size=3, strides=2, padding=1)) b5 = nn.Sequential() b5.add(Inception(256, (160, 320), (32, 128), 128), Inception(384, (192, 384), (48, 128), 128), nn.GlobalAvgPool2D()) net = nn.Sequential() net.add(b1, b2, b3, b4, b5, nn.Dense(10)) X = np.random.uniform(size=(1, 1, 96, 96)) net.initialize() for layer in net: X = layer(X) print(layer.__class__.__name__,'output shape: ', X.shape)
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle import paddle.nn as nn import paddle.nn.functional as F class Inception(nn.Layer): def __init__(self, in_channels, c1, c2, c3, c4, **kwargs): super(Inception, self).__init__(**kwargs) self.p1_1 = nn.Conv2D(in_channels, c1, kernel_size=1) self.p2_1 = nn.Conv2D(in_channels, c2[0], kernel_size=1) self.p2_2 = nn.Conv2D(c2[0], c2[1], kernel_size=3, padding=1) self.p3_1 = nn.Conv2D(in_channels, c3[0], kernel_size=1) self.p3_2 = nn.Conv2D(c3[0], c3[1], kernel_size=5, padding=2) self.p4_1 = nn.MaxPool2D(kernel_size=3, stride=1, padding=1) self.p4_2 = nn.Conv2D(in_channels, c4, kernel_size=1) def forward(self, x): p1 = F.relu(self.p1_1(x)) p2 = F.relu(self.p2_2(F.relu(self.p2_1(x)))) p3 = F.relu(self.p3_2(F.relu(self.p3_1(x)))) p4 = F.relu(self.p4_2(self.p4_1(x))) return paddle.concat(x=[p1, p2, p3, p4], axis=1) b1 = nn.Sequential(nn.Conv2D(1, 64, kernel_size=7, stride=2, padding=3), nn.ReLU(), nn.MaxPool2D(kernel_size=3, stride=2,padding=1)) b2 = nn.Sequential(nn.Conv2D(64, 64, kernel_size=1), nn.ReLU(), nn.Conv2D(64, 192, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2D(kernel_size=3, stride=2, padding=1)) b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32), Inception(256, 128, (128, 192), (32, 96), 64), nn.MaxPool2D(kernel_size=3, stride=2, padding=1)) b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64), Inception(512, 160, (112, 224), (24, 64), 64), Inception(512, 128, (128, 256), (24, 64), 64), Inception(512, 112, (144, 288), (32, 64), 64), Inception(528, 256, (160, 320), (32, 128), 128), nn.MaxPool2D(kernel_size=3, stride=2, padding=1)) b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128), Inception(832, 384, (192, 384), (48, 128), 128), nn.AdaptiveAvgPool2D((1, 1)), nn.Flatten()) net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10)) X = paddle.rand(shape=(1, 1, 96, 96)) for layer in net: X = layer(X) print(layer.__class__.__name__,'output shape: ', X.shape)
365
null
null
from mxnet import autograd, init, np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum): if not autograd.is_training(): X_hat = (X - moving_mean) / np.sqrt(moving_var + eps) else: assert len(X.shape) in (2, 4) if len(X.shape) == 2: mean = X.mean(axis=0) var = ((X - mean) ** 2).mean(axis=0) else: mean = X.mean(axis=(0, 2, 3), keepdims=True) var = ((X - mean) ** 2).mean(axis=(0, 2, 3), keepdims=True) X_hat = (X - mean) / np.sqrt(var + eps) moving_mean = momentum * moving_mean + (1.0 - momentum) * mean moving_var = momentum * moving_var + (1.0 - momentum) * var Y = gamma * X_hat + beta return Y, moving_mean, moving_var class BatchNorm(nn.Block): def __init__(self, num_features, num_dims, **kwargs): super().__init__(**kwargs) if num_dims == 2: shape = (1, num_features) else: shape = (1, num_features, 1, 1) self.gamma = self.params.get('gamma', shape=shape, init=init.One()) self.beta = self.params.get('beta', shape=shape, init=init.Zero()) self.moving_mean = np.zeros(shape) self.moving_var = np.ones(shape) def forward(self, X): if self.moving_mean.ctx != X.ctx: self.moving_mean = self.moving_mean.copyto(X.ctx) self.moving_var = self.moving_var.copyto(X.ctx) Y, self.moving_mean, self.moving_var = batch_norm( X, self.gamma.data(), self.beta.data(), self.moving_mean, self.moving_var, eps=1e-12, momentum=0.9) return Y net = nn.Sequential() net.add(nn.Conv2D(6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Activation('sigmoid'), nn.AvgPool2D(pool_size=2, strides=2), nn.Conv2D(16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Activation('sigmoid'), nn.AvgPool2D(pool_size=2, strides=2), nn.Dense(120), BatchNorm(120, num_dims=2), nn.Activation('sigmoid'), nn.Dense(84), BatchNorm(84, num_dims=2), nn.Activation('sigmoid'), nn.Dense(10)) net[1].gamma.data().reshape(-1,), net[1].beta.data().reshape(-1,) net = nn.Sequential() net.add(nn.Conv2D(6, kernel_size=5), nn.BatchNorm(), nn.Activation('sigmoid'), nn.AvgPool2D(pool_size=2, strides=2), nn.Conv2D(16, kernel_size=5), nn.BatchNorm(), nn.Activation('sigmoid'), nn.AvgPool2D(pool_size=2, strides=2), nn.Dense(120), nn.BatchNorm(), nn.Activation('sigmoid'), nn.Dense(84), nn.BatchNorm(), nn.Activation('sigmoid'), nn.Dense(10))
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle import paddle.nn as nn def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum, is_training=True): if not is_training: X_hat = (X - moving_mean) / (moving_var + eps) ** 0.5 else: assert len(X.shape) in (2, 4) if len(X.shape) == 2: mean = paddle.mean(X) var = paddle.mean(((X - mean) ** 2)) else: mean = paddle.mean(X, axis=(0, 2, 3), keepdim=True) var = paddle.mean(((X - mean) ** 2), axis=(0, 2, 3), keepdim=True) X_hat = (X - mean) / (var + eps) ** 0.5 moving_mean = momentum * moving_mean + (1.0 - momentum) * mean moving_var = momentum * moving_var + (1.0 - momentum) * var Y = gamma * X_hat + beta return Y, moving_mean, moving_var class BatchNorm(nn.Layer): def __init__(self, num_features, num_dims=4): super(BatchNorm, self).__init__() if num_dims == 2: shape = (1, num_features) else: shape = (1, num_features, 1, 1) self.gamma = self.create_parameter( attr=None, shape=shape, dtype='float32', is_bias=False, default_initializer=nn.initializer.Assign(paddle.ones(shape=shape, dtype='float32'))) self.beta = self.create_parameter( attr=None, shape=shape, dtype='float32', is_bias=False, default_initializer=nn.initializer.Assign(paddle.zeros(shape=shape, dtype='float32'))) self.moving_mean = paddle.zeros(shape=shape, dtype='float32') self.moving_var = paddle.zeros(shape=shape, dtype='float32') def forward(self, X): Y, self.moving_mean, self.moving_var = batch_norm( X, self.gamma, self.beta, self.moving_mean, self.moving_var, eps=1e-5, momentum=0.9, is_training=self.training) return Y net = nn.Sequential( nn.Conv2D(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(), nn.MaxPool2D(kernel_size=2, stride=2), nn.Conv2D(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(), nn.MaxPool2D(kernel_size=2, stride=2), nn.Flatten(), nn.Linear(16 * 4 * 4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(), nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(), nn.Linear(84, 10)) param = net.parameters() print('gamma:', param[2].numpy().reshape(-1)) print('beta:', param[3].numpy().reshape(-1)) net = nn.Sequential( nn.Conv2D(1, 6, kernel_size=5), nn.BatchNorm2D(6, momentum=0.1), nn.Sigmoid(), nn.MaxPool2D(kernel_size=2, stride=2), nn.Conv2D(6, 16, kernel_size=5), nn.BatchNorm2D(16, momentum=0.1), nn.Sigmoid(), nn.MaxPool2D(kernel_size=2, stride=2), nn.Flatten(), nn.Linear(256, 120), nn.BatchNorm1D(120, momentum=0.1), nn.Sigmoid(), nn.Linear(120, 84), nn.BatchNorm1D(84, momentum=0.1), nn.Sigmoid(), nn.Linear(84, 10))
366
null
null
from mxnet import np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() class Residual(nn.Block): def __init__(self, num_channels, use_1x1conv=False, strides=1, **kwargs): super().__init__(**kwargs) self.conv1 = nn.Conv2D(num_channels, kernel_size=3, padding=1, strides=strides) self.conv2 = nn.Conv2D(num_channels, kernel_size=3, padding=1) if use_1x1conv: self.conv3 = nn.Conv2D(num_channels, kernel_size=1, strides=strides) else: self.conv3 = None self.bn1 = nn.BatchNorm() self.bn2 = nn.BatchNorm() def forward(self, X): Y = npx.relu(self.bn1(self.conv1(X))) Y = self.bn2(self.conv2(Y)) if self.conv3: X = self.conv3(X) return npx.relu(Y + X) blk = Residual(3) blk.initialize() X = np.random.uniform(size=(4, 3, 6, 6)) blk(X).shape blk = Residual(6, use_1x1conv=True, strides=2) blk.initialize() blk(X).shape net = nn.Sequential() net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3), nn.BatchNorm(), nn.Activation('relu'), nn.MaxPool2D(pool_size=3, strides=2, padding=1)) def resnet_block(num_channels, num_residuals, first_block=False): blk = nn.Sequential() for i in range(num_residuals): if i == 0 and not first_block: blk.add(Residual(num_channels, use_1x1conv=True, strides=2)) else: blk.add(Residual(num_channels)) return blk net.add(resnet_block(64, 2, first_block=True), resnet_block(128, 2), resnet_block(256, 2), resnet_block(512, 2)) net.add(nn.GlobalAvgPool2D(), nn.Dense(10)) X = np.random.uniform(size=(1, 1, 224, 224)) net.initialize() for layer in net: X = layer(X) print(layer.__class__.__name__,'output shape: ', X.shape)
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle import paddle.nn as nn from paddle.nn import functional as F class Residual(nn.Layer): def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1): super(Residual, self).__init__() self.conv1 = nn.Conv2D(input_channels, num_channels, kernel_size=3, padding=1, stride=strides) self.conv2 = nn.Conv2D(num_channels, num_channels, kernel_size=3, padding=1) if use_1x1conv: self.conv3 = nn.Conv2D(input_channels, num_channels, kernel_size=1, stride=strides) else: self.conv3 = None self.bn1 = nn.BatchNorm2D(num_channels) self.bn2 = nn.BatchNorm2D(num_channels) self.relu = nn.ReLU() def forward(self, X): Y = F.relu(self.bn1(self.conv1(X))) Y = self.bn2(self.conv2(Y)) if self.conv3: X = self.conv3(X) Y += X return F.relu(Y) blk = Residual(3, 3) X = paddle.rand([4, 3, 6, 6]) Y = blk(X) Y.shape blk = Residual(3, 6, use_1x1conv=True, strides=2) blk(X).shape b1 = nn.Sequential(nn.Conv2D(1, 64, kernel_size=7, stride=2, padding=3), nn.BatchNorm2D(64), nn.ReLU(), nn.MaxPool2D(kernel_size=3, stride=2, padding=1)) def resnet_block(input_channels, num_channels, num_residuals, first_block=False): blk = [] for i in range(num_residuals): if i == 0 and not first_block: blk.append(Residual(input_channels, num_channels, use_1x1conv=True, strides=2)) else: blk.append(Residual(num_channels, num_channels)) return blk b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True)) b3 = nn.Sequential(*resnet_block(64, 128, 2)) b4 = nn.Sequential(*resnet_block(128, 256, 2)) b5 = nn.Sequential(*resnet_block(256, 512, 2)) net = nn.Sequential(b1, b2, b3, b4, b5, nn.AdaptiveAvgPool2D((1, 1)), nn.Flatten(), nn.Linear(512, 10)) X = paddle.rand(shape=(1, 1, 224, 224)) for layer in net: X = layer(X) print(layer.__class__.__name__,'output shape: ', X.shape)
367
null
null
from mxnet import np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() def conv_block(num_channels): blk = nn.Sequential() blk.add(nn.BatchNorm(), nn.Activation('relu'), nn.Conv2D(num_channels, kernel_size=3, padding=1)) return blk class DenseBlock(nn.Block): def __init__(self, num_convs, num_channels, **kwargs): super().__init__(**kwargs) self.net = nn.Sequential() for _ in range(num_convs): self.net.add(conv_block(num_channels)) def forward(self, X): for blk in self.net: Y = blk(X) X = np.concatenate((X, Y), axis=1) return X blk = DenseBlock(2, 10) blk.initialize() X = np.random.uniform(size=(4, 3, 8, 8)) Y = blk(X) Y.shape def transition_block(num_channels): blk = nn.Sequential() blk.add(nn.BatchNorm(), nn.Activation('relu'), nn.Conv2D(num_channels, kernel_size=1), nn.AvgPool2D(pool_size=2, strides=2)) return blk blk = transition_block(10) blk.initialize() blk(Y).shape net = nn.Sequential() net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3), nn.BatchNorm(), nn.Activation('relu'), nn.MaxPool2D(pool_size=3, strides=2, padding=1)) num_channels, growth_rate = 64, 32 num_convs_in_dense_blocks = [4, 4, 4, 4] for i, num_convs in enumerate(num_convs_in_dense_blocks): net.add(DenseBlock(num_convs, growth_rate)) num_channels += num_convs * growth_rate if i != len(num_convs_in_dense_blocks) - 1: num_channels //= 2 net.add(transition_block(num_channels)) net.add(nn.BatchNorm(), nn.Activation('relu'), nn.GlobalAvgPool2D(), nn.Dense(10))
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle import paddle.nn as nn def conv_block(input_channels, num_channels): return nn.Sequential( nn.BatchNorm2D(input_channels), nn.ReLU(), nn.Conv2D(input_channels, num_channels, kernel_size=3, padding=1)) class DenseBlock(nn.Layer): def __init__(self, num_convs, input_channels, num_channels): super(DenseBlock, self).__init__() layer = [] for i in range(num_convs): layer.append(conv_block(num_channels * i + input_channels, num_channels)) self.net = nn.Sequential(*layer) def forward(self, X): for blk in self.net: Y = blk(X) X = paddle.concat(x=[X, Y], axis=1) return X blk = DenseBlock(2, 3, 10) X = paddle.randn([4, 3, 8, 8]) Y = blk(X) Y.shape def transition_block(input_channels, num_channels): return nn.Sequential( nn.BatchNorm2D(input_channels), nn.ReLU(), nn.Conv2D(input_channels, num_channels, kernel_size=1), nn.AvgPool2D(kernel_size=2, stride=2)) blk = transition_block(23, 10) blk(Y).shape b1 = nn.Sequential( nn.Conv2D(1, 64, kernel_size=7, stride=2, padding=3), nn.BatchNorm2D(64), nn.ReLU(), nn.MaxPool2D(kernel_size=3, stride=2, padding=1)) num_channels, growth_rate = 64, 32 num_convs_in_dense_blocks = [4, 4, 4, 4] blks = [] for i, num_convs in enumerate(num_convs_in_dense_blocks): blks.append(DenseBlock(num_convs, num_channels, growth_rate)) num_channels += num_convs * growth_rate if i != len(num_convs_in_dense_blocks) - 1: blks.append(transition_block(num_channels, num_channels // 2)) num_channels = num_channels // 2 net = nn.Sequential( b1, *blks, nn.BatchNorm2D(num_channels), nn.ReLU(), nn.AdaptiveMaxPool2D((1, 1)), nn.Flatten(), nn.Linear(num_channels, 10))
368
null
null
%matplotlib inline from mxnet import autograd, gluon, init, np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() T = 1000 time = np.arange(1, T + 1, dtype=np.float32) x = np.sin(0.01 * time) + np.random.normal(0, 0.2, (T,)) d2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3)) tau = 4 features = np.zeros((T - tau, tau)) for i in range(tau): features[:, i] = x[i: T - tau + i] labels = x[tau:].reshape((-1, 1)) batch_size, n_train = 16, 600 train_iter = d2l.load_array((features[:n_train], labels[:n_train]), batch_size, is_train=True) def get_net(): net = nn.Sequential() net.add(nn.Dense(10, activation='relu'), nn.Dense(1)) net.initialize(init.Xavier()) return net loss = gluon.loss.L2Loss() def train(net, train_iter, loss, epochs, lr): trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': lr}) for epoch in range(epochs): for X, y in train_iter: with autograd.record(): l = loss(net(X), y) l.backward() trainer.step(batch_size) net = get_net() train(net, train_iter, loss, 5, 0.01) onestep_preds = net(features) d2l.plot([time, time[tau:]], [x.asnumpy(), onestep_preds.asnumpy()], 'time', 'x', legend=['data', '1-step preds'], xlim=[1, 1000], figsize=(6, 3)) multistep_preds = np.zeros(T) multistep_preds[: n_train + tau] = x[: n_train + tau] for i in range(n_train + tau, T): multistep_preds[i] = net(multistep_preds[i - tau:i].reshape((1, -1))) d2l.plot([time, time[tau:], time[n_train + tau:]], [x.asnumpy(), onestep_preds.asnumpy(), multistep_preds[n_train + tau:].asnumpy()], 'time', 'x', legend=['data', '1-step preds', 'multistep preds'], xlim=[1, 1000], figsize=(6, 3)) max_steps = 64 features = np.zeros((T - tau - max_steps + 1, tau + max_steps)) for i in range(tau): features[:, i] = x[i: i + T - tau - max_steps + 1] for i in range(tau, tau + max_steps): features[:, i] = net(features[:, i - tau:i]).reshape(-1) steps = (1, 4, 16, 64) d2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps], [features[:, tau + i - 1].asnumpy() for i in steps], 'time', 'x', legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000], figsize=(6, 3))
%matplotlib inline import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle from paddle import nn T = 1000 time = paddle.arange(1, T + 1, dtype=paddle.float32) x = paddle.sin(0.01 * time) + paddle.normal(0, 0.2, (T,)) d2l.plot(time, [x], 'time', 'x', xlim=[1, 1000], figsize=(6, 3)) tau = 4 features = paddle.zeros((T - tau, tau)) for i in range(tau): features[:, i] = x[i: T - tau + i] labels = x[tau:].reshape((-1, 1)) batch_size, n_train = 16, 600 train_iter = d2l.load_array((features[:n_train], labels[:n_train]), batch_size, is_train=True) def init_weights(m): if type(m) == nn.Linear: nn.initializer.XavierUniform(m.weight) def get_net(): net = nn.Sequential(nn.Linear(4, 10), nn.ReLU(), nn.Linear(10, 1)) net.apply(init_weights) return net loss = nn.MSELoss(reduction='none') def train(net, train_iter, loss, epochs, lr): trainer = paddle.optimizer.Adam(learning_rate=lr, parameters=net.parameters()) for epoch in range(epochs): for i,(X, y) in enumerate (train_iter()): trainer.clear_grad() l = loss(net(X), y) l.sum().backward() trainer.step() net = get_net() train(net, train_iter, loss, 5, 0.01) onestep_preds = net(features) d2l.plot([time, time[tau:]], [x.detach().numpy(), onestep_preds.detach().numpy()], 'time', 'x', legend=['data', '1-step preds'], xlim=[1, 1000], figsize=(6, 3)) multistep_preds = paddle.zeros([T]) multistep_preds[: n_train + tau] = x[: n_train + tau] for i in range(n_train + tau, T): multistep_preds[i] = net(multistep_preds[i - tau:i].reshape((1, -1))) d2l.plot([time, time[tau:], time[n_train + tau:]], [x.detach().numpy(), onestep_preds.detach().numpy(), multistep_preds[n_train + tau:].detach().numpy()], 'time', 'x', legend=['data', '1-step preds', 'multistep preds'], xlim=[1, 1000], figsize=(6, 3)) max_steps = 64 features = paddle.zeros((T - tau - max_steps + 1, tau + max_steps)) for i in range(tau): features[:, i] = x[i: i + T - tau - max_steps + 1] for i in range(tau, tau + max_steps): features[:, i] = net(features[:, i - tau:i]).reshape([-1]) steps = (1, 4, 16, 64) d2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps], [features[:, tau + i - 1].detach().numpy() for i in steps], 'time', 'x', legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000], figsize=(6, 3))
369
null
null
import collections import re from d2l import mxnet as d2l
import collections import re from d2l import paddle as d2l
370
null
null
import random from mxnet import np, npx from d2l import mxnet as d2l npx.set_np() tokens = d2l.tokenize(d2l.read_time_machine()) corpus = [token for line in tokens for token in line] vocab = d2l.Vocab(corpus) vocab.token_freqs[:10] def seq_data_iter_random(corpus, batch_size, num_steps): corpus = corpus[random.randint(0, num_steps - 1):] num_subseqs = (len(corpus) - 1) // num_steps initial_indices = list(range(0, num_subseqs * num_steps, num_steps)) random.shuffle(initial_indices) def data(pos): return corpus[pos: pos + num_steps] num_batches = num_subseqs // batch_size for i in range(0, batch_size * num_batches, batch_size): initial_indices_per_batch = initial_indices[i: i + batch_size] X = [data(j) for j in initial_indices_per_batch] Y = [data(j + 1) for j in initial_indices_per_batch] yield np.array(X), np.array(Y) def seq_data_iter_sequential(corpus, batch_size, num_steps): offset = random.randint(0, num_steps) num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size Xs = np.array(corpus[offset: offset + num_tokens]) Ys = np.array(corpus[offset + 1: offset + 1 + num_tokens]) Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1) num_batches = Xs.shape[1] // num_steps for i in range(0, num_steps * num_batches, num_steps): X = Xs[:, i: i + num_steps] Y = Ys[:, i: i + num_steps] yield X, Y
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import random import paddle tokens = d2l.tokenize(d2l.read_time_machine()) corpus = [token for line in tokens for token in line] vocab = d2l.Vocab(corpus) vocab.token_freqs[:10] def seq_data_iter_random(corpus, batch_size, num_steps): corpus = corpus[random.randint(0, num_steps - 1):] num_subseqs = (len(corpus) - 1) // num_steps initial_indices = list(range(0, num_subseqs * num_steps, num_steps)) random.shuffle(initial_indices) def data(pos): return corpus[pos: pos + num_steps] num_batches = num_subseqs // batch_size for i in range(0, batch_size * num_batches, batch_size): initial_indices_per_batch = initial_indices[i: i + batch_size] X = [data(j) for j in initial_indices_per_batch] Y = [data(j + 1) for j in initial_indices_per_batch] yield paddle.to_tensor(X), paddle.to_tensor(Y) def seq_data_iter_sequential(corpus, batch_size, num_steps): offset = random.randint(0, num_steps) num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size Xs = paddle.to_tensor(corpus[offset: offset + num_tokens]) Ys = paddle.to_tensor(corpus[offset + 1: offset + 1 + num_tokens]) Xs, Ys = Xs.reshape((batch_size, -1)), Ys.reshape((batch_size, -1)) num_batches = Xs.shape[1] // num_steps for i in range(0, num_steps * num_batches, num_steps): X = Xs[:, i: i + num_steps] Y = Ys[:, i: i + num_steps] yield X, Y
371
null
null
from mxnet import np, npx from d2l import mxnet as d2l npx.set_np() X, W_xh = np.random.normal(0, 1, (3, 1)), np.random.normal(0, 1, (1, 4)) H, W_hh = np.random.normal(0, 1, (3, 4)), np.random.normal(0, 1, (4, 4)) np.dot(X, W_xh) + np.dot(H, W_hh) np.dot(np.concatenate((X, H), 1), np.concatenate((W_xh, W_hh), 0))
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle X, W_xh = paddle.normal(0, 1, (3, 1)), paddle.normal(0, 1, (1, 4)) H, W_hh = paddle.normal(0, 1, (3, 4)), paddle.normal(0, 1, (4, 4)) paddle.matmul(X, W_xh) + paddle.matmul(H, W_hh) paddle.matmul(paddle.concat((X, H), 1), paddle.concat((W_xh, W_hh), 0))
372
null
null
%matplotlib inline import math from mxnet import autograd, gluon, np, npx from d2l import mxnet as d2l npx.set_np() batch_size, num_steps = 32, 35 train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) npx.one_hot(np.array([0, 2]), len(vocab)) X = np.arange(10).reshape((2, 5)) npx.one_hot(X.T, 28).shape def get_params(vocab_size, num_hiddens, device): num_inputs = num_outputs = vocab_size def normal(shape): return np.random.normal(scale=0.01, size=shape, ctx=device) W_xh = normal((num_inputs, num_hiddens)) W_hh = normal((num_hiddens, num_hiddens)) b_h = np.zeros(num_hiddens, ctx=device) W_hq = normal((num_hiddens, num_outputs)) b_q = np.zeros(num_outputs, ctx=device) params = [W_xh, W_hh, b_h, W_hq, b_q] for param in params: param.attach_grad() return params def init_rnn_state(batch_size, num_hiddens, device): return (np.zeros((batch_size, num_hiddens), ctx=device), ) def rnn(inputs, state, params): W_xh, W_hh, b_h, W_hq, b_q = params H, = state outputs = [] for X in inputs: H = np.tanh(np.dot(X, W_xh) + np.dot(H, W_hh) + b_h) Y = np.dot(H, W_hq) + b_q outputs.append(Y) return np.concatenate(outputs, axis=0), (H,) class RNNModelScratch: def __init__(self, vocab_size, num_hiddens, device, get_params, init_state, forward_fn): self.vocab_size, self.num_hiddens = vocab_size, num_hiddens self.params = get_params(vocab_size, num_hiddens, device) self.init_state, self.forward_fn = init_state, forward_fn def __call__(self, X, state): X = npx.one_hot(X.T, self.vocab_size) return self.forward_fn(X, state, self.params) def begin_state(self, batch_size, ctx): return self.init_state(batch_size, self.num_hiddens, ctx) num_hiddens = 512 net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn) state = net.begin_state(X.shape[0], d2l.try_gpu()) Y, new_state = net(X.as_in_context(d2l.try_gpu()), state) Y.shape, len(new_state), new_state[0].shape def predict_ch8(prefix, num_preds, net, vocab, device): state = net.begin_state(batch_size=1, ctx=device) outputs = [vocab[prefix[0]]] get_input = lambda: np.array([outputs[-1]], ctx=device).reshape((1, 1)) for y in prefix[1:]: _, state = net(get_input(), state) outputs.append(vocab[y]) for _ in range(num_preds): y, state = net(get_input(), state) outputs.append(int(y.argmax(axis=1).reshape(1))) return ''.join([vocab.idx_to_token[i] for i in outputs]) def grad_clipping(net, theta): if isinstance(net, gluon.Block): params = [p.data() for p in net.collect_params().values()] else: params = net.params norm = math.sqrt(sum((p.grad ** 2).sum() for p in params)) if norm > theta: for param in params: param.grad[:] *= theta / norm def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter): state, timer = None, d2l.Timer() metric = d2l.Accumulator(2) for X, Y in train_iter: if state is None or use_random_iter: state = net.begin_state(batch_size=X.shape[0], ctx=device) else: for s in state: s.detach() y = Y.T.reshape(-1) X, y = X.as_in_ctx(device), y.as_in_ctx(device) with autograd.record(): y_hat, state = net(X, state) l = loss(y_hat, y).mean() l.backward() grad_clipping(net, 1) updater(batch_size=1) metric.add(l * d2l.size(y), d2l.size(y)) return math.exp(metric[0] / metric[1]), metric[1] / timer.stop() def train_ch8(net, train_iter, vocab, lr, num_epochs, device, use_random_iter=False): loss = gluon.loss.SoftmaxCrossEntropyLoss() animator = d2l.Animator(xlabel='epoch', ylabel='perplexity', legend=['train'], xlim=[10, num_epochs]) if isinstance(net, gluon.Block): net.initialize(ctx=device, force_reinit=True, init=init.Normal(0.01)) trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr}) updater = lambda batch_size: trainer.step(batch_size) else: updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size) predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device) for epoch in range(num_epochs): ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter) if (epoch + 1) % 10 == 0: animator.add(epoch + 1, [ppl]) net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn) train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(), use_random_iter=True)
%matplotlib inline import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import math import paddle from paddle import nn from paddle.nn import functional as F batch_size, num_steps = 32, 35 train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) F.one_hot(paddle.to_tensor([0, 2]), len(vocab)) X = paddle.arange(10).reshape((2, 5)) F.one_hot(X.T, 28).shape def get_params(vocab_size, num_hiddens): num_inputs = num_outputs = vocab_size def normal(shape): return paddle.randn(shape=shape)* 0.01 W_xh = normal([num_inputs, num_hiddens]) W_hh = normal([num_hiddens, num_hiddens]) b_h = paddle.zeros(shape=[num_hiddens]) W_hq = normal([num_hiddens, num_outputs]) b_q = paddle.zeros(shape=[num_outputs]) params = [W_xh, W_hh, b_h, W_hq, b_q] for param in params: param.stop_gradient=False return params def init_rnn_state(batch_size, num_hiddens): return (paddle.zeros(shape=[batch_size, num_hiddens]), ) def rnn(inputs, state, params): W_xh, W_hh, b_h, W_hq, b_q = params H, = state outputs = [] for X in inputs: H = paddle.tanh(paddle.mm(X, W_xh) + paddle.mm(H, W_hh) + b_h) Y = paddle.mm(H, W_hq) + b_q outputs.append(Y) return paddle.concat(x=outputs, axis=0), (H,) class RNNModelScratch: def __init__(self, vocab_size, num_hiddens, get_params, init_state, forward_fn): self.vocab_size, self.num_hiddens = vocab_size, num_hiddens self.params = get_params(vocab_size, num_hiddens) self.init_state, self.forward_fn = init_state, forward_fn def __call__(self, X, state): X = F.one_hot(X.T, self.vocab_size) return self.forward_fn(X, state, self.params) def begin_state(self, batch_size): return self.init_state(batch_size, self.num_hiddens) num_hiddens = 512 net = RNNModelScratch(len(vocab), num_hiddens, get_params, init_rnn_state, rnn) state = net.begin_state(X.shape[0]) Y, new_state = net(X, state) Y.shape, len(new_state), new_state[0].shape def predict_ch8(prefix, num_preds, net, vocab, device): state = net.begin_state(batch_size=1) outputs = [vocab[prefix[0]]] get_input = lambda: paddle.to_tensor(outputs[-1], place=device).reshape((1, 1)) for y in prefix[1:]: _, state = net(get_input(), state) outputs.append(vocab[y]) for _ in range(num_preds): y, state = net(get_input(), state) outputs.append(int(paddle.reshape(paddle.argmax(y,axis=1),shape=[1]))) return ''.join([vocab.idx_to_token[i] for i in outputs]) def grad_clipping(net, theta): if isinstance(net, nn.Layer): params = [p for p in net.parameters() if not p.stop_gradient] else: params = net.params norm = paddle.sqrt(sum(paddle.sum((p.grad ** 2)) for p in params)) if norm > theta: with paddle.no_grad(): for param in params: param.grad.set_value(param.grad * theta / norm) def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter): state, timer = None, d2l.Timer() metric = d2l.Accumulator(2) for X, Y in train_iter: if state is None or use_random_iter: state = net.begin_state(batch_size=X.shape[0]) else: if isinstance(net, nn.Layer) and not isinstance(state, tuple): state.stop_gradient=True else: for s in state: s.stop_gradient=True y = paddle.reshape(Y.T,shape=[-1]) X = paddle.to_tensor(X, place=device) y = paddle.to_tensor(y, place=device) y_hat, state = net(X, state) l = loss(y_hat, y).mean() if isinstance(updater, paddle.optimizer.Optimizer): updater.clear_grad() l.backward() grad_clipping(net, 1) updater.step() else: l.backward() grad_clipping(net, 1) updater(batch_size=1) metric.add(l * y.numel(), y.numel()) return math.exp(metric[0] / metric[1]), metric[1] / timer.stop() def train_ch8(net, train_iter, vocab, lr, num_epochs, device, use_random_iter=False): loss = nn.CrossEntropyLoss() animator = d2l.Animator(xlabel='epoch', ylabel='perplexity', legend=['train'], xlim=[10, num_epochs]) if isinstance(net, nn.Layer): updater = paddle.optimizer.SGD(learning_rate=lr, parameters=net.parameters()) else: updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size) predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device) for epoch in range(num_epochs): ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter) if (epoch + 1) % 10 == 0: animator.add(epoch + 1, [ppl]) net = RNNModelScratch(len(vocab), num_hiddens, get_params, init_rnn_state, rnn) train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(), use_random_iter=True)
373
null
null
from mxnet import np, npx from mxnet.gluon import nn, rnn from d2l import mxnet as d2l npx.set_np() batch_size, num_steps = 32, 35 train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) num_hiddens = 256 rnn_layer = rnn.RNN(num_hiddens) rnn_layer.initialize() state = rnn_layer.begin_state(batch_size=batch_size) len(state), state[0].shape X = np.random.uniform(size=(num_steps, batch_size, len(vocab))) Y, state_new = rnn_layer(X, state) Y.shape, len(state_new), state_new[0].shape class RNNModel(nn.Block): def __init__(self, rnn_layer, vocab_size, **kwargs): super(RNNModel, self).__init__(**kwargs) self.rnn = rnn_layer self.vocab_size = vocab_size self.dense = nn.Dense(vocab_size) def forward(self, inputs, state): X = npx.one_hot(inputs.T, self.vocab_size) Y, state = self.rnn(X, state) output = self.dense(Y.reshape(-1, Y.shape[-1])) return output, state def begin_state(self, *args, **kwargs): return self.rnn.begin_state(*args, **kwargs) device = d2l.try_gpu() net = RNNModel(rnn_layer, len(vocab)) net.initialize(force_reinit=True, ctx=device) d2l.predict_ch8('time traveller', 10, net, vocab, device) num_epochs, lr = 500, 1 d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device)
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle from paddle import nn from paddle.nn import functional as F batch_size, num_steps = 32, 35 train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) num_hiddens = 256 rnn_layer = nn.SimpleRNN(len(vocab), num_hiddens, time_major=True) state = paddle.zeros(shape=[1, batch_size, num_hiddens]) state.shape X = paddle.rand(shape=[num_steps, batch_size, len(vocab)]) Y, state_new = rnn_layer(X, state) Y.shape, state_new.shape def __init__(self, rnn_layer, vocab_size, **kwargs): super(RNNModel, self).__init__(**kwargs) self.rnn = rnn_layer self.vocab_size = vocab_size self.num_hiddens = self.rnn.hidden_size if self.rnn.num_directions==1: self.num_directions = 1 self.linear = nn.Linear(self.num_hiddens, self.vocab_size) else: self.num_directions = 2 self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size) def forward(self, inputs, state): X = F.one_hot(inputs.T, self.vocab_size) Y, state = self.rnn(X, state) output = self.linear(Y.reshape((-1, Y.shape[-1]))) return output, state def begin_state(self, batch_size=1): if not isinstance(self.rnn, nn.LSTM): return paddle.zeros(shape=[self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens]) else: return (paddle.zeros(shape=[self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens]), paddle.zeros(shape=[self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens])) device = d2l.try_gpu() net = RNNModel(rnn_layer, vocab_size=len(vocab)) d2l.predict_ch8('time traveller', 10, net, vocab, device) num_epochs, lr = 500, 1.0 d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device)
374
null
null
from mxnet import np, npx from mxnet.gluon import rnn from d2l import mxnet as d2l npx.set_np() batch_size, num_steps = 32, 35 train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) def get_params(vocab_size, num_hiddens, device): num_inputs = num_outputs = vocab_size def normal(shape): return np.random.normal(scale=0.01, size=shape, ctx=device) def three(): return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), np.zeros(num_hiddens, ctx=device)) W_xz, W_hz, b_z = three() W_xr, W_hr, b_r = three() W_xh, W_hh, b_h = three() W_hq = normal((num_hiddens, num_outputs)) b_q = np.zeros(num_outputs, ctx=device) params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q] for param in params: param.attach_grad() return params def init_gru_state(batch_size, num_hiddens, device): return (np.zeros(shape=(batch_size, num_hiddens), ctx=device), ) def gru(inputs, state, params): W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params H, = state outputs = [] for X in inputs: Z = npx.sigmoid(np.dot(X, W_xz) + np.dot(H, W_hz) + b_z) R = npx.sigmoid(np.dot(X, W_xr) + np.dot(H, W_hr) + b_r) H_tilda = np.tanh(np.dot(X, W_xh) + np.dot(R * H, W_hh) + b_h) H = Z * H + (1 - Z) * H_tilda Y = np.dot(H, W_hq) + b_q outputs.append(Y) return np.concatenate(outputs, axis=0), (H,) vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu() num_epochs, lr = 500, 1 model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params, init_gru_state, gru) d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device) gru_layer = rnn.GRU(num_hiddens) model = d2l.RNNModel(gru_layer, len(vocab)) d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle import paddle.nn.functional as F from paddle import nn batch_size, num_steps = 32, 35 train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) def get_params(vocab_size, num_hiddens): num_inputs = num_outputs = vocab_size def normal(shape): return paddle.randn(shape=shape)*0.01 def three(): return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), paddle.zeros([num_hiddens])) W_xz, W_hz, b_z = three() W_xr, W_hr, b_r = three() W_xh, W_hh, b_h = three() W_hq = normal((num_hiddens, num_outputs)) b_q = paddle.zeros([num_outputs]) params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q] for param in params: param.stop_gradient = False return params def init_gru_state(batch_size, num_hiddens): return (paddle.zeros([batch_size, num_hiddens]), ) def gru(inputs, state, params): W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params H,*_ = state outputs = [] for X in inputs: Z = F.sigmoid((X @ W_xz) + (H @ W_hz) + b_z) R = F.sigmoid((X @ W_xr) + (H @ W_hr) + b_r) H_tilda = paddle.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h) H = Z * H + (1 - Z) * H_tilda Y = H @ W_hq + b_q outputs.append(Y) return paddle.concat(outputs, axis=0), (H,*_) vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu() num_epochs, lr = 500, 1.0 model = d2l.RNNModelScratch(len(vocab), num_hiddens, get_params, init_gru_state, gru) d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device) num_inputs = vocab_size gru_layer = nn.GRU(num_inputs, num_hiddens, time_major=True) model = d2l.RNNModel(gru_layer, len(vocab)) d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
375
null
null
from mxnet import np, npx from mxnet.gluon import rnn from d2l import mxnet as d2l npx.set_np() batch_size, num_steps = 32, 35 train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) def get_lstm_params(vocab_size, num_hiddens, device): num_inputs = num_outputs = vocab_size def normal(shape): return np.random.normal(scale=0.01, size=shape, ctx=device) def three(): return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), np.zeros(num_hiddens, ctx=device)) W_xi, W_hi, b_i = three() W_xf, W_hf, b_f = three() W_xo, W_ho, b_o = three() W_xc, W_hc, b_c = three() W_hq = normal((num_hiddens, num_outputs)) b_q = np.zeros(num_outputs, ctx=device) params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q] for param in params: param.attach_grad() return params def init_lstm_state(batch_size, num_hiddens, device): return (np.zeros((batch_size, num_hiddens), ctx=device), np.zeros((batch_size, num_hiddens), ctx=device)) def lstm(inputs, state, params): [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q] = params (H, C) = state outputs = [] for X in inputs: I = npx.sigmoid(np.dot(X, W_xi) + np.dot(H, W_hi) + b_i) F = npx.sigmoid(np.dot(X, W_xf) + np.dot(H, W_hf) + b_f) O = npx.sigmoid(np.dot(X, W_xo) + np.dot(H, W_ho) + b_o) C_tilda = np.tanh(np.dot(X, W_xc) + np.dot(H, W_hc) + b_c) C = F * C + I * C_tilda H = O * np.tanh(C) Y = np.dot(H, W_hq) + b_q outputs.append(Y) return np.concatenate(outputs, axis=0), (H, C) vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu() num_epochs, lr = 500, 1 model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_lstm_params, init_lstm_state, lstm) d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device) lstm_layer = rnn.LSTM(num_hiddens) model = d2l.RNNModel(lstm_layer, len(vocab)) d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle import paddle.nn.functional as Function from paddle import nn batch_size, num_steps = 32, 35 train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) def get_lstm_params(vocab_size, num_hiddens): num_inputs = num_outputs = vocab_size def normal(shape): return paddle.randn(shape=shape)*0.01 def three(): return (normal((num_inputs, num_hiddens)), normal((num_hiddens, num_hiddens)), paddle.zeros([num_hiddens])) W_xi, W_hi, b_i = three() W_xf, W_hf, b_f = three() W_xo, W_ho, b_o = three() W_xc, W_hc, b_c = three() W_hq = normal((num_hiddens, num_outputs)) b_q = paddle.zeros([num_outputs]) params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q] for param in params: param.stop_gradient = False return params def init_lstm_state(batch_size, num_hiddens): return (paddle.zeros([batch_size, num_hiddens]), paddle.zeros([batch_size, num_hiddens])) def lstm(inputs, state, params): [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q] = params (H, C) = state outputs = [] for X in inputs: I = Function.sigmoid((X @ W_xi) + (H @ W_hi) + b_i) F = Function.sigmoid((X @ W_xf) + (H @ W_hf) + b_f) O = Function.sigmoid((X @ W_xo) + (H @ W_ho) + b_o) C_tilda = paddle.tanh((X @ W_xc) + (H @ W_hc) + b_c) C = F * C + I * C_tilda H = O * paddle.tanh(C) Y = (H @ W_hq) + b_q outputs.append(Y) return paddle.concat(outputs, axis=0), (H, C) vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu() num_epochs, lr = 500, 1.0 model = d2l.RNNModelScratch(len(vocab), num_hiddens, get_lstm_params, init_lstm_state, lstm) d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device) num_inputs = vocab_size lstm_layer = nn.LSTM(num_inputs, num_hiddens, time_major=True) model = d2l.RNNModel(lstm_layer, len(vocab)) d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
376
null
null
import os from mxnet import np, npx from d2l import mxnet as d2l npx.set_np() def build_array_nmt(lines, vocab, num_steps): lines = [vocab[l] for l in lines] lines = [l + [vocab['<eos>']] for l in lines] array = np.array([truncate_pad(l, num_steps, vocab['<pad>']) for l in lines]) valid_len = (array != vocab['<pad>']).astype(np.int32).sum(1) return array, valid_len train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8) for X, X_valid_len, Y, Y_valid_len in train_iter: print('X:', X.astype(np.int32)) print('Valid length of X:', X_valid_len) print('Y:', Y.astype(np.int32)) print('Valid length of Y:', Y_valid_len) break
import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import os import paddle def build_array_nmt(lines, vocab, num_steps): lines = [vocab[l] for l in lines] lines = [l + [vocab['<eos>']] for l in lines] array = paddle.to_tensor([truncate_pad(l, num_steps, vocab['<pad>']) for l in lines]) valid_len = (array != vocab['<pad>']).astype(paddle.int32).sum(1) return array, valid_len train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8) for X, X_valid_len, Y, Y_valid_len in train_iter: print('X:', X.astype(paddle.int32)) print('Valid length of X:', X_valid_len) print('Y:', Y..astype(paddle.int32)) print('Valid length of Y:', Y_valid_len) break
377
null
x = torch.arange(12) x.numel() torch.zeros((2, 3, 4)) torch.ones((2, 3, 4)) torch.randn(3, 4) torch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]) x = torch.tensor([1.0, 2, 4, 8]) y = torch.tensor([2, 2, 2, 2]) x + y, x - y, x * y, x / y, x ** y torch.exp(x) X = torch.arange(12, dtype=torch.float32).reshape((3,4)) Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]) torch.cat((X, Y), dim=0), torch.cat((X, Y), dim=1) a = torch.arange(3).reshape((3, 1)) b = torch.arange(2).reshape((1, 2)) Z = torch.zeros_like(Y) Z[:] = X + Y A = X.numpy() B = torch.tensor(A) a = torch.tensor([3.5]) print(a, a.item(), float(a), int(a))
x = np.arange(12) x.size np.zeros((2, 3, 4)) np.ones((2, 3, 4)) np.random.normal(0, 1, size=(3, 4)) np.array([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]) x = np.array([1, 2, 4, 8]) y = np.array([2, 2, 2, 2]) x + y, x - y, x * y, x / y, x ** y np.exp(x) X = np.arange(12).reshape(3, 4) Y = np.array([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]) np.concatenate([X, Y], axis=0), np.concatenate([X, Y], axis=1) a = np.arange(3).reshape(3, 1) b = np.arange(2).reshape(1, 2) Z = np.zeros_like(Y) Z[:] = X + Y A = X.asnumpy() B = np.array(A) a = np.array([3.5]) print(a, a.item(), float(a), int(a))
null
378
null
import torch X, y = torch.tensor(inputs.values), torch.tensor(outputs.values)
from mxnet import np X, y = np.array(inputs.values), np.array(outputs.values)
null
379
null
import torch x = torch.tensor(3.0) y = torch.tensor(2.0) print(x + y, x * y, x / y, x**y) x = torch.arange(4) A = torch.arange(20).reshape(5, 4) B = torch.tensor([[1, 2, 3], [2, 0, 4], [3, 4, 5]]) X = torch.arange(24).reshape(2, 3, 4) A = torch.arange(20, dtype=torch.float32).reshape(5, 4) B = A.clone() print(A, A + B) a = 2 X = torch.arange(24).reshape(2, 3, 4) print(a + X, (a * X).shape) x = torch.arange(4, dtype=torch.float32) print(x, x.sum()) A.mean() A.sum() / A.numel() y = torch.ones(4, dtype = torch.float32) print(torch.dot(x, y)) torch.sum(x * y) A.shape, x.shape, torch.mv(A, x) B = torch.ones(4, 3) torch.mm(A, B) u = torch.tensor([3.0, -4.0]) torch.norm(u) torch.abs(u).sum() torch.norm(torch.ones((4, 9)))
from mxnet import np, npx npx.set_np() x = np.array(3.0) y = np.array(2.0) print(x + y, x * y, x / y, x**y) x = np.arange(4) A = np.arange(20).reshape(5, 4) B = np.array([[1, 2, 3], [2, 0, 4], [3, 4, 5]]) X = np.arange(24).reshape(2, 3, 4) A = np.arange(20).reshape(5, 4) B = A.copy() print(A, A + B) a = 2 X = np.arange(24).reshape(2, 3, 4) print(a + X, (a * X).shape) x = np.arange(4) print(x, x.sum()) A.mean() A.sum() / A.size y = np.ones(4) print(np.dot(x, y)) np.sum(x * y) A.shape, x.shape, np.dot(A, x) B = np.ones(shape=(4, 3)) np.dot(A, B) u = np.array([3, -4]) np.linalg.norm(u) np.abs(u).sum() np.linalg.norm(np.ones((4, 9)))
null
380
null
%matplotlib inline import numpy as np from matplotlib_inline import backend_inline from d2l import torch as d2l def f(x): return 3 * x ** 2 - 4 * x
%matplotlib inline from matplotlib_inline import backend_inline from mxnet import np, npx from d2l import mxnet as d2l npx.set_np() def f(x): return 3 * x ** 2 - 4 * x
null
381
null
import torch x = torch.arange(4.0) x.requires_grad_(True) x.grad y = 2 * torch.dot(x, x) x.grad.zero_() y = x.sum() y.backward() x.grad x.grad.zero_() y = x * x y.sum().backward() x.grad x.grad.zero_() y = x * x u = y.detach() z = u * x z.sum().backward() x.grad == u x.grad.zero_() y.sum().backward() x.grad == 2 * x def f(a): b = a * 2 while b.norm() < 1000: b = b * 2 if b.sum() > 0: c = b else: c = 100 * b return c a = torch.randn(size=(), requires_grad=True) d = f(a) d.backward()
from mxnet import autograd, np, npx npx.set_np() x = np.arange(4.0) x.attach_grad() x.grad with autograd.record(): y = 2 * np.dot(x, x) with autograd.record(): y = x.sum() y.backward() x.grad with autograd.record(): y = x * x y.backward() x.grad with autograd.record(): y = x * x u = y.detach() z = u * x z.backward() x.grad == u y.backward() x.grad == 2 * x def f(a): b = a * 2 while np.linalg.norm(b) < 1000: b = b * 2 if b.sum() > 0: c = b else: c = 100 * b return c a = np.random.normal() a.attach_grad() with autograd.record(): d = f(a) d.backward()
null
382
null
%matplotlib inline import torch from torch.distributions import multinomial from d2l import torch as d2l fair_probs = torch.ones([6]) / 6 multinomial.Multinomial(1, fair_probs).sample() multinomial.Multinomial(10, fair_probs).sample() counts = multinomial.Multinomial(1000, fair_probs).sample()
%matplotlib inline import random from mxnet import np, npx from d2l import mxnet as d2l npx.set_np() fair_probs = [1.0 / 6] * 6 np.random.multinomial(1, fair_probs) np.random.multinomial(10, fair_probs) counts = np.random.multinomial(1000, fair_probs).astype(np.float32)
null
383
null
counts = multinomial.Multinomial(10, fair_probs).sample((500,)) cum_counts = counts.cumsum(dim=0) estimates = cum_counts / cum_counts.sum(dim=1, keepdims=True) d2l.set_figsize((6, 4.5)) for i in range(6): d2l.plt.plot(estimates[:, i].numpy(), label=("P(die=" + str(i + 1) + ")")) d2l.plt.axhline(y=0.167, color='black', linestyle='dashed') d2l.plt.gca().set_xlabel('Groups of experiments') d2l.plt.gca().set_ylabel('Estimated probability') d2l.plt.legend(); import torch a = dir(torch.distributions) help(torch.ones) torch.ones(4)
counts = np.random.multinomial(10, fair_probs, size=500) cum_counts = counts.astype(np.float32).cumsum(axis=0) estimates = cum_counts / cum_counts.sum(axis=1, keepdims=True) d2l.set_figsize((6, 4.5)) for i in range(6): d2l.plt.plot(estimates[:, i].asnumpy(), label=("P(die=" + str(i + 1) + ")")) d2l.plt.axhline(y=0.167, color='black', linestyle='dashed') d2l.plt.gca().set_xlabel('Groups of experiments') d2l.plt.gca().set_ylabel('Estimated probability') d2l.plt.legend(); from mxnet import np a = dir(np.random) help(np.ones) np.ones(4)
null
384
null
%matplotlib inline import math import time import numpy as np import torch from d2l import torch as d2l n = 10000 a = torch.ones(n) b = torch.ones(n) c = torch.zeros(n) timer = Timer() for i in range(n): c[i] = a[i] + b[i] x = np.arange(-7, 7, 0.01) params = [(0, 1), (0, 2), (3, 1)] d2l.plot(x, [normal(x, mu, sigma) for mu, sigma in params], xlabel='x', ylabel='p(x)', figsize=(4.5, 2.5), legend=[f'mean {mu}, std {sigma}' for mu, sigma in params])
%matplotlib inline import math import time from mxnet import np from d2l import mxnet as d2l n = 10000 a = np.ones(n) b = np.ones(n) c = np.zeros(n) timer = Timer() for i in range(n): c[i] = a[i] + b[i] x = np.arange(-7, 7, 0.01) params = [(0, 1), (0, 2), (3, 1)] d2l.plot(x.asnumpy(), [normal(x, mu, sigma).asnumpy() for mu, sigma in params], xlabel='x', ylabel='p(x)', figsize=(4.5, 2.5), legend=[f'mean {mu}, std {sigma}' for mu, sigma in params])
null
385
null
%matplotlib inline import random import torch from d2l import torch as d2l def synthetic_data(w, b, num_examples): X = torch.normal(0, 1, (num_examples, len(w))) y = torch.matmul(X, w) + b y += torch.normal(0, 0.01, y.shape) return X, y.reshape((-1, 1)) true_w = torch.tensor([2, -3.4]) true_b = 4.2 features, labels = synthetic_data(true_w, true_b, 1000) d2l.set_figsize() d2l.plt.scatter(features[:, (1)].detach().numpy(), labels.detach().numpy(), 1); def data_iter(batch_size, features, labels): num_examples = len(features) indices = list(range(num_examples)) random.shuffle(indices) for i in range(0, num_examples, batch_size): batch_indices = torch.tensor(indices[i: min(i + batch_size, num_examples)]) yield features[batch_indices], labels[batch_indices] w = torch.normal(0, 0.01, size=(2,1), requires_grad=True) b = torch.zeros(1, requires_grad=True) def linreg(X, w, b): return torch.matmul(X, w) + b def sgd(params, lr, batch_size): with torch.no_grad(): for param in params: param -= lr * param.grad / batch_size param.grad.zero_() lr = 0.03 num_epochs = 3 net = linreg loss = squared_loss for epoch in range(num_epochs): for X, y in data_iter(batch_size, features, labels): l = loss(net(X, w, b), y) l.sum().backward() sgd([w, b], lr, batch_size) with torch.no_grad(): train_l = loss(net(features, w, b), labels)
%matplotlib inline import random from mxnet import autograd, np, npx from d2l import mxnet as d2l npx.set_np() def synthetic_data(w, b, num_examples): X = np.random.normal(0, 1, (num_examples, len(w))) y = np.dot(X, w) + b y += np.random.normal(0, 0.01, y.shape) return X, y.reshape((-1, 1)) true_w = np.array([2, -3.4]) true_b = 4.2 features, labels = synthetic_data(true_w, true_b, 1000) d2l.set_figsize() d2l.plt.scatter(features[:, (1)].asnumpy(), labels.asnumpy(), 1); def data_iter(batch_size, features, labels): num_examples = len(features) indices = list(range(num_examples)) random.shuffle(indices) for i in range(0, num_examples, batch_size): batch_indices = np.array(indices[i: min(i + batch_size, num_examples)]) yield features[batch_indices], labels[batch_indices] w = np.random.normal(0, 0.01, (2, 1)) b = np.zeros(1) w.attach_grad() b.attach_grad() def linreg(X, w, b): return np.dot(X, w) + b def sgd(params, lr, batch_size): for param in params: param[:] = param - lr * param.grad / batch_size lr = 0.03 num_epochs = 3 net = linreg loss = squared_loss for epoch in range(num_epochs): for X, y in data_iter(batch_size, features, labels): with autograd.record(): l = loss(net(X, w, b), y) l.backward() sgd([w, b], lr, batch_size) train_l = loss(net(features, w, b), labels)
null
386
null
import numpy as np import torch from torch.utils import data from d2l import torch as d2l true_w = torch.tensor([2, -3.4]) true_b = 4.2 features, labels = d2l.synthetic_data(true_w, true_b, 1000) def load_array(data_arrays, batch_size, is_train=True): dataset = data.TensorDataset(*data_arrays) return data.DataLoader(dataset, batch_size, shuffle=is_train) batch_size = 10 data_iter = load_array((features, labels), batch_size) from torch import nn net = nn.Sequential(nn.Linear(2, 1)) net[0].weight.data.normal_(0, 0.01) net[0].bias.data.fill_(0) loss = nn.MSELoss() trainer = torch.optim.SGD(net.parameters(), lr=0.03) w = net[0].weight.data b = net[0].bias.data
from mxnet import autograd, gluon, np, npx from d2l import mxnet as d2l npx.set_np() true_w = np.array([2, -3.4]) true_b = 4.2 features, labels = d2l.synthetic_data(true_w, true_b, 1000) def load_array(data_arrays, batch_size, is_train=True): dataset = gluon.data.ArrayDataset(*data_arrays) return gluon.data.DataLoader(dataset, batch_size, shuffle=is_train) batch_size = 10 data_iter = load_array((features, labels), batch_size) from mxnet.gluon import nn net = nn.Sequential() net.add(nn.Dense(1)) from mxnet import init net.initialize(init.Normal(sigma=0.01)) loss = gluon.loss.L2Loss() from mxnet import gluon trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.03}) w = net[0].weight.data() b = net[0].bias.data()
null
387
null
%matplotlib inline import torch import torchvision from torch.utils import data from torchvision import transforms from d2l import torch as d2l d2l.use_svg_display() trans = transforms.ToTensor() mnist_train = torchvision.datasets.FashionMNIST( root="../data", train=True, transform=trans, download=True) mnist_test = torchvision.datasets.FashionMNIST( root="../data", train=False, transform=trans, download=True) def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): figsize = (num_cols * scale, num_rows * scale) _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize) axes = axes.flatten() for i, (ax, img) in enumerate(zip(axes, imgs)): if torch.is_tensor(img): ax.imshow(img.numpy()) else: ax.imshow(img) ax.axes.get_xaxis().set_visible(False) ax.axes.get_yaxis().set_visible(False) if titles: ax.set_title(titles[i]) return axes X, y = next(iter(data.DataLoader(mnist_train, batch_size=18))) show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y)); batch_size = 256 return 4 train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()) def load_data_fashion_mnist(batch_size, resize=None): trans = [transforms.ToTensor()] if resize: trans.insert(0, transforms.Resize(resize)) trans = transforms.Compose(trans) mnist_train = torchvision.datasets.FashionMNIST(root="../data", train=True, transform=trans, download=True) mnist_test = torchvision.datasets.FashionMNIST(root="../data", train=False, transform=trans, download=True) return (data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()), data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=get_dataloader_workers()))
%matplotlib inline import sys from mxnet import gluon from d2l import mxnet as d2l d2l.use_svg_display() mnist_train = gluon.data.vision.FashionMNIST(train=True) mnist_test = gluon.data.vision.FashionMNIST(train=False) def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): figsize = (num_cols * scale, num_rows * scale) _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize) axes = axes.flatten() for i, (ax, img) in enumerate(zip(axes, imgs)): ax.imshow(img.asnumpy()) ax.axes.get_xaxis().set_visible(False) ax.axes.get_yaxis().set_visible(False) if titles: ax.set_title(titles[i]) return axes X, y = mnist_train[:18] show_images(X.squeeze(axis=-1), 2, 9, titles=get_fashion_mnist_labels(y)); batch_size = 256 return 0 if sys.platform.startswith('win') else 4 transformer = gluon.data.vision.transforms.ToTensor() train_iter = gluon.data.DataLoader(mnist_train.transform_first(transformer), batch_size, shuffle=True, num_workers=get_dataloader_workers()) def load_data_fashion_mnist(batch_size, resize=None): dataset = gluon.data.vision trans = [dataset.transforms.ToTensor()] if resize: trans.insert(0, dataset.transforms.Resize(resize)) trans = dataset.transforms.Compose(trans) mnist_train = dataset.FashionMNIST(train=True).transform_first(trans) mnist_test = dataset.FashionMNIST(train=False).transform_first(trans) return (gluon.data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()), gluon.data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=get_dataloader_workers()))
null
388
null
import torch from IPython import display from d2l import torch as d2l batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) num_inputs = 784 num_outputs = 10 W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True) b = torch.zeros(num_outputs, requires_grad=True) X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) X.sum(0, keepdim=True), X.sum(1, keepdim=True) def softmax(X): X_exp = torch.exp(X) partition = X_exp.sum(1, keepdim=True) return X_exp / partition X = torch.normal(0, 1, (2, 5)) X_prob = softmax(X) X_prob, X_prob.sum(1) def net(X): return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b) y = torch.tensor([0, 2]) y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]]) y_hat[[0, 1], y] def cross_entropy(y_hat, y): return - torch.log(y_hat[range(len(y_hat)), y]) cross_entropy(y_hat, y) def accuracy(y_hat, y): if len(y_hat.shape) > 1 and y_hat.shape[1] > 1: y_hat = y_hat.argmax(axis=1) cmp = y_hat.type(y.dtype) == y return float(cmp.type(y.dtype).sum()) def evaluate_accuracy(net, data_iter): if isinstance(net, torch.nn.Module): net.eval() metric = Accumulator(2) with torch.no_grad(): for X, y in data_iter: metric.add(accuracy(net(X), y), y.numel()) return metric[0] / metric[1] def train_epoch_ch3(net, train_iter, loss, updater): if isinstance(net, torch.nn.Module): net.train() metric = Accumulator(3) for X, y in train_iter: y_hat = net(X) l = loss(y_hat, y) if isinstance(updater, torch.optim.Optimizer): updater.zero_grad() l.mean().backward() updater.step() else: l.sum().backward() updater(X.shape[0]) metric.add(float(l.sum()), accuracy(y_hat, y), y.numel()) return metric[0] / metric[2], metric[1] / metric[2]
from IPython import display from mxnet import autograd, gluon, np, npx from d2l import mxnet as d2l npx.set_np() batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) num_inputs = 784 num_outputs = 10 W = np.random.normal(0, 0.01, (num_inputs, num_outputs)) b = np.zeros(num_outputs) W.attach_grad() b.attach_grad() X = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) X.sum(0, keepdims=True), X.sum(1, keepdims=True) def softmax(X): X_exp = np.exp(X) partition = X_exp.sum(1, keepdims=True) return X_exp / partition X = np.random.normal(0, 1, (2, 5)) X_prob = softmax(X) X_prob, X_prob.sum(1) def net(X): return softmax(np.dot(X.reshape((-1, W.shape[0])), W) + b) y = np.array([0, 2]) y_hat = np.array([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]]) y_hat[[0, 1], y] def cross_entropy(y_hat, y): return - np.log(y_hat[range(len(y_hat)), y]) cross_entropy(y_hat, y) def accuracy(y_hat, y): if len(y_hat.shape) > 1 and y_hat.shape[1] > 1: y_hat = y_hat.argmax(axis=1) cmp = y_hat.astype(y.dtype) == y return float(cmp.astype(y.dtype).sum()) def evaluate_accuracy(net, data_iter): metric = Accumulator(2) for X, y in data_iter: metric.add(accuracy(net(X), y), d2l.size(y)) return metric[0] / metric[1] def train_epoch_ch3(net, train_iter, loss, updater): metric = Accumulator(3) if isinstance(updater, gluon.Trainer): updater = updater.step for X, y in train_iter: with autograd.record(): y_hat = net(X) l = loss(y_hat, y) l.backward() updater(X.shape[0]) metric.add(float(l.sum()), accuracy(y_hat, y), y.size) return metric[0] / metric[2], metric[1] / metric[2]
null
389
null
import torch from torch import nn from d2l import torch as d2l batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10)) def init_weights(m): if type(m) == nn.Linear: nn.init.normal_(m.weight, std=0.01) net.apply(init_weights); loss = nn.CrossEntropyLoss(reduction='none') trainer = torch.optim.SGD(net.parameters(), lr=0.1)
from mxnet import gluon, init, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) net = nn.Sequential() net.add(nn.Dense(10)) net.initialize(init.Normal(sigma=0.01)) loss = gluon.loss.SoftmaxCrossEntropyLoss() trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1})
null
390
null
%matplotlib inline import torch from d2l import torch as d2l x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True) y = torch.relu(x) d2l.plot(x.detach(), y.detach(), 'x', 'relu(x)', figsize=(5, 2.5)) y.backward(torch.ones_like(x), retain_graph=True) d2l.plot(x.detach(), x.grad, 'x', 'grad of relu', figsize=(5, 2.5)) y = torch.sigmoid(x) d2l.plot(x.detach(), y.detach(), 'x', 'sigmoid(x)', figsize=(5, 2.5)) x.grad.data.zero_() y.backward(torch.ones_like(x),retain_graph=True) d2l.plot(x.detach(), x.grad, 'x', 'grad of sigmoid', figsize=(5, 2.5)) y = torch.tanh(x) d2l.plot(x.detach(), y.detach(), 'x', 'tanh(x)', figsize=(5, 2.5)) x.grad.data.zero_() y.backward(torch.ones_like(x),retain_graph=True) d2l.plot(x.detach(), x.grad, 'x', 'grad of tanh', figsize=(5, 2.5))
%matplotlib inline from mxnet import autograd, np, npx from d2l import mxnet as d2l npx.set_np() x = np.arange(-8.0, 8.0, 0.1) x.attach_grad() with autograd.record(): y = npx.relu(x) d2l.plot(x, y, 'x', 'relu(x)', figsize=(5, 2.5)) y.backward() d2l.plot(x, x.grad, 'x', 'grad of relu', figsize=(5, 2.5)) with autograd.record(): y = npx.sigmoid(x) d2l.plot(x, y, 'x', 'sigmoid(x)', figsize=(5, 2.5)) y.backward() d2l.plot(x, x.grad, 'x', 'grad of sigmoid', figsize=(5, 2.5)) with autograd.record(): y = np.tanh(x) d2l.plot(x, y, 'x', 'tanh(x)', figsize=(5, 2.5)) y.backward() d2l.plot(x, x.grad, 'x', 'grad of tanh', figsize=(5, 2.5))
null
391
null
import torch from torch import nn from d2l import torch as d2l batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) num_inputs, num_outputs, num_hiddens = 784, 10, 256 W1 = nn.Parameter(torch.randn( num_inputs, num_hiddens, requires_grad=True) * 0.01) b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True)) W2 = nn.Parameter(torch.randn( num_hiddens, num_outputs, requires_grad=True) * 0.01) b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True)) params = [W1, b1, W2, b2] def relu(X): a = torch.zeros_like(X) return torch.max(X, a) def net(X): X = X.reshape((-1, num_inputs)) H = relu(X@W1 + b1) return (H@W2 + b2) loss = nn.CrossEntropyLoss(reduction='none') num_epochs, lr = 10, 0.1 updater = torch.optim.SGD(params, lr=lr) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)
from mxnet import gluon, np, npx from d2l import mxnet as d2l npx.set_np() batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) num_inputs, num_outputs, num_hiddens = 784, 10, 256 W1 = np.random.normal(scale=0.01, size=(num_inputs, num_hiddens)) b1 = np.zeros(num_hiddens) W2 = np.random.normal(scale=0.01, size=(num_hiddens, num_outputs)) b2 = np.zeros(num_outputs) params = [W1, b1, W2, b2] for param in params: param.attach_grad() def relu(X): return np.maximum(X, 0) def net(X): X = X.reshape((-1, num_inputs)) H = relu(np.dot(X, W1) + b1) return np.dot(H, W2) + b2 loss = gluon.loss.SoftmaxCrossEntropyLoss() num_epochs, lr = 10, 0.1 d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, lambda batch_size: d2l.sgd(params, lr, batch_size))
null
392
null
import torch from torch import nn from d2l import torch as d2l net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 10)) def init_weights(m): if type(m) == nn.Linear: nn.init.normal_(m.weight, std=0.01) net.apply(init_weights); batch_size, lr, num_epochs = 256, 0.1, 10 loss = nn.CrossEntropyLoss(reduction='none') trainer = torch.optim.SGD(net.parameters(), lr=lr) train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
from mxnet import gluon, init, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() net = nn.Sequential() net.add(nn.Dense(256, activation='relu'), nn.Dense(10)) net.initialize(init.Normal(sigma=0.01)) batch_size, lr, num_epochs = 256, 0.1, 10 loss = gluon.loss.SoftmaxCrossEntropyLoss() trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr}) train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
null
393
null
import math import numpy as np import torch from torch import nn from d2l import torch as d2l true_w, features, poly_features, labels = [torch.tensor(x, dtype=torch.float32) for x in [true_w, features, poly_features, labels]] features[:2], poly_features[:2, :], labels[:2] def evaluate_loss(net, data_iter, loss): metric = d2l.Accumulator(2) for X, y in data_iter: out = net(X) y = y.reshape(out.shape) l = loss(out, y) metric.add(l.sum(), l.numel()) return metric[0] / metric[1] def train(train_features, test_features, train_labels, test_labels, num_epochs=400): loss = nn.MSELoss(reduction='none') input_shape = train_features.shape[-1] net = nn.Sequential(nn.Linear(input_shape, 1, bias=False)) batch_size = min(10, train_labels.shape[0]) train_iter = d2l.load_array((train_features, train_labels.reshape(-1,1)), batch_size) test_iter = d2l.load_array((test_features, test_labels.reshape(-1,1)), batch_size, is_train=False) trainer = torch.optim.SGD(net.parameters(), lr=0.01) animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test']) for epoch in range(num_epochs): d2l.train_epoch_ch3(net, train_iter, loss, trainer) if epoch == 0 or (epoch + 1) % 20 == 0: animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss)))
import math from mxnet import gluon, np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() features[:2], poly_features[:2, :], labels[:2] def evaluate_loss(net, data_iter, loss): metric = d2l.Accumulator(2) for X, y in data_iter: l = loss(net(X), y) metric.add(l.sum(), d2l.size(l)) return metric[0] / metric[1] def train(train_features, test_features, train_labels, test_labels, num_epochs=400): loss = gluon.loss.L2Loss() net = nn.Sequential() net.add(nn.Dense(1, use_bias=False)) net.initialize() batch_size = min(10, train_labels.shape[0]) train_iter = d2l.load_array((train_features, train_labels), batch_size) test_iter = d2l.load_array((test_features, test_labels), batch_size, is_train=False) trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.01}) animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log', xlim=[1, num_epochs], ylim=[1e-3, 1e2], legend=['train', 'test']) for epoch in range(num_epochs): d2l.train_epoch_ch3(net, train_iter, loss, trainer) if epoch == 0 or (epoch + 1) % 20 == 0: animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss), evaluate_loss(net, test_iter, loss)))
null
394
null
%matplotlib inline import torch from torch import nn from d2l import torch as d2l n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5 true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05 train_data = d2l.synthetic_data(true_w, true_b, n_train) train_iter = d2l.load_array(train_data, batch_size) test_data = d2l.synthetic_data(true_w, true_b, n_test) test_iter = d2l.load_array(test_data, batch_size, is_train=False) def init_params(): w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True) b = torch.zeros(1, requires_grad=True) return [w, b] def l2_penalty(w): return torch.sum(w.pow(2)) / 2 def train(lambd): w, b = init_params() net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss num_epochs, lr = 100, 0.003 animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test']) for epoch in range(num_epochs): for X, y in train_iter: l = loss(net(X), y) + lambd * l2_penalty(w) l.sum().backward() d2l.sgd([w, b], lr, batch_size) if (epoch + 1) % 5 == 0: animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss))) def train_concise(wd): net = nn.Sequential(nn.Linear(num_inputs, 1)) for param in net.parameters(): param.data.normal_() loss = nn.MSELoss(reduction='none') num_epochs, lr = 100, 0.003 trainer = torch.optim.SGD([{"params":net[0].weight,'weight_decay': wd}, {"params":net[0].bias}], lr=lr) animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test']) for epoch in range(num_epochs): for X, y in train_iter: trainer.zero_grad() l = loss(net(X), y) l.mean().backward() trainer.step() if (epoch + 1) % 5 == 0: animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))
%matplotlib inline from mxnet import autograd, gluon, init, np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5 true_w, true_b = np.ones((num_inputs, 1)) * 0.01, 0.05 train_data = d2l.synthetic_data(true_w, true_b, n_train) train_iter = d2l.load_array(train_data, batch_size) test_data = d2l.synthetic_data(true_w, true_b, n_test) test_iter = d2l.load_array(test_data, batch_size, is_train=False) def init_params(): w = np.random.normal(scale=1, size=(num_inputs, 1)) b = np.zeros(1) w.attach_grad() b.attach_grad() return [w, b] def l2_penalty(w): return (w**2).sum() / 2 def train(lambd): w, b = init_params() net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss num_epochs, lr = 100, 0.003 animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test']) for epoch in range(num_epochs): for X, y in train_iter: with autograd.record(): l = loss(net(X), y) + lambd * l2_penalty(w) l.backward() d2l.sgd([w, b], lr, batch_size) if (epoch + 1) % 5 == 0: animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss))) def train_concise(wd): net = nn.Sequential() net.add(nn.Dense(1)) net.initialize(init.Normal(sigma=1)) loss = gluon.loss.L2Loss() num_epochs, lr = 100, 0.003 trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr, 'wd': wd}) net.collect_params('.*bias').setattr('wd_mult', 0) animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log', xlim=[5, num_epochs], legend=['train', 'test']) for epoch in range(num_epochs): for X, y in train_iter: with autograd.record(): l = loss(net(X), y) l.backward() trainer.step(batch_size) if (epoch + 1) % 5 == 0: animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss), d2l.evaluate_loss(net, test_iter, loss)))
null
395
null
import torch from torch import nn from d2l import torch as d2l def dropout_layer(X, dropout): assert 0 <= dropout <= 1 if dropout == 1: return torch.zeros_like(X) if dropout == 0: return X mask = (torch.rand(X.shape) > dropout).float() return mask * X / (1.0 - dropout) X= torch.arange(16, dtype = torch.float32).reshape((2, 8)) num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256 dropout1, dropout2 = 0.2, 0.5 class Net(nn.Module): def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2, is_training = True): super(Net, self).__init__() self.num_inputs = num_inputs self.training = is_training self.lin1 = nn.Linear(num_inputs, num_hiddens1) self.lin2 = nn.Linear(num_hiddens1, num_hiddens2) self.lin3 = nn.Linear(num_hiddens2, num_outputs) self.relu = nn.ReLU() def forward(self, X): H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs)))) if self.training == True: H1 = dropout_layer(H1, dropout1) H2 = self.relu(self.lin2(H1)) if self.training == True: H2 = dropout_layer(H2, dropout2) out = self.lin3(H2) return out net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2) num_epochs, lr, batch_size = 10, 0.5, 256 loss = nn.CrossEntropyLoss(reduction='none') train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) trainer = torch.optim.SGD(net.parameters(), lr=lr) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Dropout(dropout1), nn.Linear(256, 256), nn.ReLU(), nn.Dropout(dropout2), nn.Linear(256, 10)) def init_weights(m): if type(m) == nn.Linear: nn.init.normal_(m.weight, std=0.01) net.apply(init_weights); trainer = torch.optim.SGD(net.parameters(), lr=lr) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
from mxnet import autograd, gluon, init, np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() def dropout_layer(X, dropout): assert 0 <= dropout <= 1 if dropout == 1: return np.zeros_like(X) if dropout == 0: return X mask = np.random.uniform(0, 1, X.shape) > dropout return mask.astype(np.float32) * X / (1.0 - dropout) X = np.arange(16).reshape(2, 8) num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256 W1 = np.random.normal(scale=0.01, size=(num_inputs, num_hiddens1)) b1 = np.zeros(num_hiddens1) W2 = np.random.normal(scale=0.01, size=(num_hiddens1, num_hiddens2)) b2 = np.zeros(num_hiddens2) W3 = np.random.normal(scale=0.01, size=(num_hiddens2, num_outputs)) b3 = np.zeros(num_outputs) params = [W1, b1, W2, b2, W3, b3] for param in params: param.attach_grad() dropout1, dropout2 = 0.2, 0.5 def net(X): X = X.reshape(-1, num_inputs) H1 = npx.relu(np.dot(X, W1) + b1) if autograd.is_training(): H1 = dropout_layer(H1, dropout1) H2 = npx.relu(np.dot(H1, W2) + b2) if autograd.is_training(): H2 = dropout_layer(H2, dropout2) return np.dot(H2, W3) + b3 num_epochs, lr, batch_size = 10, 0.5, 256 loss = gluon.loss.SoftmaxCrossEntropyLoss() train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, lambda batch_size: d2l.sgd(params, lr, batch_size)) net = nn.Sequential() net.add(nn.Dense(256, activation="relu"), nn.Dropout(dropout1), nn.Dense(256, activation="relu"), nn.Dropout(dropout2), nn.Dense(10)) net.initialize(init.Normal(sigma=0.01)) trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr}) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
null
396
null
trainer = torch.optim.SGD(net.parameters(), lr=lr) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) %matplotlib inline import torch from d2l import torch as d2l x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True) y = torch.sigmoid(x) y.backward(torch.ones_like(x)) d2l.plot(x.detach().numpy(), [y.detach().numpy(), x.grad.numpy()], legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5)) M = torch.normal(0, 1, size=(4,4)) for i in range(100): M = torch.mm(M,torch.normal(0, 1, size=(4, 4)))
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr}) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) %matplotlib inline from mxnet import autograd, np, npx from d2l import mxnet as d2l npx.set_np() x = np.arange(-8.0, 8.0, 0.1) x.attach_grad() with autograd.record(): y = npx.sigmoid(x) y.backward() d2l.plot(x, [y, x.grad], legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5)) M = np.random.normal(size=(4, 4)) for i in range(100): M = np.dot(M, np.random.normal(size=(4, 4)))
null
397
null
%matplotlib inline import numpy as np import pandas as pd import torch from torch import nn from d2l import torch as d2l n_train = train_data.shape[0] train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32) test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32) train_labels = torch.tensor(train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32) loss = nn.MSELoss() in_features = train_features.shape[1] def get_net(): net = nn.Sequential(nn.Linear(in_features,1)) return net def log_rmse(net, features, labels): clipped_preds = torch.clamp(net(features), 1, float('inf')) rmse = torch.sqrt(loss(torch.log(clipped_preds), torch.log(labels))) return rmse.item() def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size): train_ls, test_ls = [], [] train_iter = d2l.load_array((train_features, train_labels), batch_size) optimizer = torch.optim.Adam(net.parameters(), lr = learning_rate, weight_decay = weight_decay) for epoch in range(num_epochs): for X, y in train_iter: optimizer.zero_grad() l = loss(net(X), y) l.backward() optimizer.step() train_ls.append(log_rmse(net, train_features, train_labels)) if test_labels is not None: test_ls.append(log_rmse(net, test_features, test_labels)) return train_ls, test_ls def get_k_fold_data(k, i, X, y): assert k > 1 fold_size = X.shape[0] // k X_train, y_train = None, None for j in range(k): idx = slice(j * fold_size, (j + 1) * fold_size) X_part, y_part = X[idx, :], y[idx] if j == i: X_valid, y_valid = X_part, y_part elif X_train is None: X_train, y_train = X_part, y_part else: X_train = torch.cat([X_train, X_part], 0) y_train = torch.cat([y_train, y_part], 0) return X_train, y_train, X_valid, y_valid def train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size): net = get_net() train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs, lr, weight_decay, batch_size) d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch', ylabel='log rmse', xlim=[1, num_epochs], yscale='log') preds = net(test_features).detach().numpy() test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0]) submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1) submission.to_csv('submission.csv', index=False)
%matplotlib inline import pandas as pd from mxnet import autograd, gluon, init, np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() n_train = train_data.shape[0] train_features = np.array(all_features[:n_train].values, dtype=np.float32) test_features = np.array(all_features[n_train:].values, dtype=np.float32) train_labels = np.array(train_data.SalePrice.values.reshape(-1, 1), dtype=np.float32) loss = gluon.loss.L2Loss() def get_net(): net = nn.Sequential() net.add(nn.Dense(1)) net.initialize() return net def log_rmse(net, features, labels): clipped_preds = np.clip(net(features), 1, float('inf')) return np.sqrt(2 * loss(np.log(clipped_preds), np.log(labels)).mean()) def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size): train_ls, test_ls = [], [] train_iter = d2l.load_array((train_features, train_labels), batch_size) trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': learning_rate, 'wd': weight_decay}) for epoch in range(num_epochs): for X, y in train_iter: with autograd.record(): l = loss(net(X), y) l.backward() trainer.step(batch_size) train_ls.append(log_rmse(net, train_features, train_labels)) if test_labels is not None: test_ls.append(log_rmse(net, test_features, test_labels)) return train_ls, test_ls def get_k_fold_data(k, i, X, y): assert k > 1 fold_size = X.shape[0] // k X_train, y_train = None, None for j in range(k): idx = slice(j * fold_size, (j + 1) * fold_size) X_part, y_part = X[idx, :], y[idx] if j == i: X_valid, y_valid = X_part, y_part elif X_train is None: X_train, y_train = X_part, y_part else: X_train = np.concatenate([X_train, X_part], 0) y_train = np.concatenate([y_train, y_part], 0) return X_train, y_train, X_valid, y_valid def train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size): net = get_net() train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs, lr, weight_decay, batch_size) d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch', ylabel='log rmse', xlim=[1, num_epochs], yscale='log') preds = net(test_features).asnumpy() test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0]) submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1) submission.to_csv('submission.csv', index=False)
null
398
null
import torch from torch import nn from torch.nn import functional as F net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10)) X = torch.rand(2, 20) net(X) class MLP(nn.Module): def __init__(self): super().__init__() self.hidden = nn.Linear(20, 256) self.out = nn.Linear(256, 10) def forward(self, X): return self.out(F.relu(self.hidden(X))) net = MLP() net(X) class MySequential(nn.Module): def __init__(self, *args): super().__init__() for idx, module in enumerate(args): self._modules[str(idx)] = module def forward(self, X): for block in self._modules.values(): X = block(X) return X net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10)) net(X) class FixedHiddenMLP(nn.Module): def __init__(self): super().__init__() self.rand_weight = torch.rand((20, 20), requires_grad=False) self.linear = nn.Linear(20, 20) def forward(self, X): X = self.linear(X) X = F.relu(torch.mm(X, self.rand_weight) + 1) X = self.linear(X) while X.abs().sum() > 1: X /= 2 return X.sum() net = FixedHiddenMLP() net(X) class NestMLP(nn.Module): def __init__(self): super().__init__() self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU()) self.linear = nn.Linear(32, 16) def forward(self, X): return self.linear(self.net(X)) chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP()) chimera(X)
from mxnet import np, npx from mxnet.gluon import nn npx.set_np() net = nn.Sequential() net.add(nn.Dense(256, activation='relu')) net.add(nn.Dense(10)) net.initialize() X = np.random.uniform(size=(2, 20)) net(X) class MLP(nn.Block): def __init__(self, **kwargs): super().__init__(**kwargs) self.hidden = nn.Dense(256, activation='relu') self.out = nn.Dense(10) def forward(self, X): return self.out(self.hidden(X)) net = MLP() net.initialize() net(X) class MySequential(nn.Block): def add(self, block): self._children[block.name] = block def forward(self, X): for block in self._children.values(): X = block(X) return X net = MySequential() net.add(nn.Dense(256, activation='relu')) net.add(nn.Dense(10)) net.initialize() net(X) class FixedHiddenMLP(nn.Block): def __init__(self, **kwargs): super().__init__(**kwargs) self.rand_weight = self.params.get_constant('rand_weight', np.random.uniform(size=(20, 20))) self.dense = nn.Dense(20, activation='relu') def forward(self, X): X = self.dense(X) X = npx.relu(np.dot(X, self.rand_weight.data()) + 1) X = self.dense(X) while np.abs(X).sum() > 1: X /= 2 return X.sum() net = FixedHiddenMLP() net.initialize() net(X) class NestMLP(nn.Block): def __init__(self, **kwargs): super().__init__(**kwargs) self.net = nn.Sequential() self.net.add(nn.Dense(64, activation='relu'), nn.Dense(32, activation='relu')) self.dense = nn.Dense(16, activation='relu') def forward(self, X): return self.dense(self.net(X)) chimera = nn.Sequential() chimera.add(NestMLP(), nn.Dense(20), FixedHiddenMLP()) chimera.initialize() chimera(X)
null
399
null
import torch from torch import nn net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1)) X = torch.rand(size=(2, 4)) net(X) net.state_dict()['2.bias'].data def block1(): return nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 4), nn.ReLU()) def block2(): net = nn.Sequential() for i in range(4): net.add_module(f'block {i}', block1()) return net rgnet = nn.Sequential(block2(), nn.Linear(4, 1)) rgnet(X) def init_normal(m): if type(m) == nn.Linear: nn.init.normal_(m.weight, mean=0, std=0.01) nn.init.zeros_(m.bias) net.apply(init_normal) net[0].weight.data[0], net[0].bias.data[0] def init_constant(m): if type(m) == nn.Linear: nn.init.constant_(m.weight, 1) nn.init.zeros_(m.bias) net.apply(init_constant) net[0].weight.data[0], net[0].bias.data[0] def init_xavier(m): if type(m) == nn.Linear: nn.init.xavier_uniform_(m.weight) def init_42(m): if type(m) == nn.Linear: nn.init.constant_(m.weight, 42) net[0].apply(init_xavier) net[2].apply(init_42) def my_init(m): if type(m) == nn.Linear: nn.init.uniform_(m.weight, -10, 10) m.weight.data *= m.weight.data.abs() >= 5 net.apply(my_init) net[0].weight[:2] net[0].weight.data[:] += 1 net[0].weight.data[0, 0] = 42 net[0].weight.data[0] layer = CenteredLayer() layer(torch.FloatTensor([1, 2, 3, 4, 5])) net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
from mxnet import init, np, npx from mxnet.gluon import nn npx.set_np() net = nn.Sequential() net.add(nn.Dense(8, activation='relu')) net.add(nn.Dense(1)) net.initialize() X = np.random.uniform(size=(2, 4)) net(X) net.collect_params()['dense1_bias'].data() def block1(): net = nn.Sequential() net.add(nn.Dense(32, activation='relu')) net.add(nn.Dense(16, activation='relu')) return net def block2(): net = nn.Sequential() for _ in range(4): net.add(block1()) return net rgnet = nn.Sequential() rgnet.add(block2()) rgnet.add(nn.Dense(10)) rgnet.initialize() rgnet(X) net.initialize(init=init.Normal(sigma=0.01), force_reinit=True) net[0].weight.data()[0] net.initialize(init=init.Constant(1), force_reinit=True) net[0].weight.data()[0] net[0].weight.initialize(init=init.Xavier(), force_reinit=True) net[1].initialize(init=init.Constant(42), force_reinit=True) class MyInit(init.Initializer): def _init_weight(self, name, data): data[:] = np.random.uniform(-10, 10, data.shape) data *= np.abs(data) >= 5 net.initialize(MyInit(), force_reinit=True) net[0].weight.data()[:2] net[0].weight.data()[:] += 1 net[0].weight.data()[0, 0] = 42 net[0].weight.data()[0] layer = CenteredLayer() layer(np.array([1, 2, 3, 4, 5])) net = nn.Sequential() net.add(nn.Dense(128), CenteredLayer()) net.initialize()
null
400
null
import torch import torch.nn.functional as F from torch import nn class CenteredLayer(nn.Module): def __init__(self): super().__init__() def forward(self, X): return X - X.mean() Y = net(torch.rand(4, 8)) Y.mean() class MyLinear(nn.Module): def __init__(self, in_units, units): super().__init__() self.weight = nn.Parameter(torch.randn(in_units, units)) self.bias = nn.Parameter(torch.randn(units,)) def forward(self, X): linear = torch.matmul(X, self.weight.data) + self.bias.data return F.relu(linear) linear = MyLinear(5, 3) linear.weight linear(torch.rand(2, 5)) net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1)) net(torch.rand(2, 64))
from mxnet import np, npx from mxnet.gluon import nn npx.set_np() class CenteredLayer(nn.Block): def __init__(self, **kwargs): super().__init__(**kwargs) def forward(self, X): return X - X.mean() Y = net(np.random.uniform(size=(4, 8))) Y.mean() class MyDense(nn.Block): def __init__(self, units, in_units, **kwargs): super().__init__(**kwargs) self.weight = self.params.get('weight', shape=(in_units, units)) self.bias = self.params.get('bias', shape=(units,)) def forward(self, x): linear = np.dot(x, self.weight.data(ctx=x.ctx)) + self.bias.data( ctx=x.ctx) return npx.relu(linear) dense = MyDense(units=3, in_units=5) dense.params dense.initialize() dense(np.random.uniform(size=(2, 5))) net = nn.Sequential() net.add(MyDense(8, in_units=64), MyDense(1, in_units=8)) net.initialize() net(np.random.uniform(size=(2, 64)))
null