Datasets:
Modalities:
Text
Formats:
text
Size:
< 1K
Tags:
humanoid-robotics
fall-prediction
machine-learning
sensor-data
robotics
temporal-convolutional-networks
License:
# Usage Example for the Fall Prediction Dataset | |
# Please install dependencies before: | |
# pip install -r requirements.txt | |
# Import necessary libraries | |
import pandas as pd | |
import tensorflow as tf | |
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.layers import Dense, LSTM, Dropout, Input | |
from sklearn.model_selection import train_test_split | |
# Load the dataset from Huggingface or a local file path | |
# Example for local loading; replace with Huggingface dataset call if applicable | |
real_data = pd.read_csv('dataset.csv.bz2', compression='bz2') | |
# Preview the dataset | |
print(real_data.head()) | |
# Select relevant columns (replace these with actual column names from your dataset) | |
# Here we assume that the dataset contains sensor readings like gyroscope and accelerometer data | |
relevant_columns = ['gyro_x', 'gyro_y', 'gyro_z', 'acc_x', 'acc_y', 'acc_z', 'upright'] | |
sensordata = real_data[relevant_columns] | |
# Split the data into features (X) and labels (y) | |
# 'fall_label' is assumed to be the column indicating whether a fall occurred | |
X = sensordata.drop(columns=['upright']) # Replace 'fall_label' with the actual label column | |
y = sensordata['upright'] | |
# Split data into training and test sets | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
# Reshape data for LSTM input (assuming time-series data) | |
# Adjust the reshaping based on your dataset structure | |
X_train = X_train.values.reshape(X_train.shape[0], X_train.shape[1], 1) | |
X_test = X_test.values.reshape(X_test.shape[0], X_test.shape[1], 1) | |
# Define a simple LSTM model | |
model = Sequential() | |
model.add(Input((X_train.shape[1], 1))) | |
model.add(LSTM(64, input_shape=(X_train.shape[1], 1))) | |
model.add(Dropout(0.2)) | |
model.add(Dense(1, activation='sigmoid')) | |
# Compile the model | |
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) | |
# Train the model | |
history = model.fit(X_train, y_train, epochs=10, batch_size=64, validation_data=(X_test, y_test)) | |
# Evaluate the model on the test set | |
loss, accuracy = model.evaluate(X_test, y_test) | |
print(f"Test Accuracy: {accuracy * 100:.2f}%") | |
# You can save the model if needed | |
# model.save('fall_prediction_model.h5') |