repo
stringlengths
1
152
file
stringlengths
14
221
code
stringlengths
501
25k
file_length
int64
501
25k
avg_line_length
float64
20
99.5
max_line_length
int64
21
134
extension_type
stringclasses
2 values
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-neon-x16.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/neon.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__neon_x16( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vscale = vld1q_dup_f32(&params->neon.scale); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neon.magic_bias); const int32x4_t vmagic_bias_less_zero_point = vld1q_dup_s32(&params->neon.magic_bias_less_zero_point); const uint8x16_t voutput_min = vld1q_dup_u8(&params->neon.output_min); const uint8x16_t voutput_max = vld1q_dup_u8(&params->neon.output_max); for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { float32x4_t vx0123 = vld1q_f32(input); input += 4; float32x4_t vx4567 = vld1q_f32(input); input += 4; float32x4_t vx89AB = vld1q_f32(input); input += 4; float32x4_t vxCDEF = vld1q_f32(input); input += 4; vx0123 = vmulq_f32(vx0123, vscale); vx4567 = vmulq_f32(vx4567, vscale); vx89AB = vmulq_f32(vx89AB, vscale); vxCDEF = vmulq_f32(vxCDEF, vscale); vx0123 = vaddq_f32(vx0123, vmagic_bias); vx4567 = vaddq_f32(vx4567, vmagic_bias); vx89AB = vaddq_f32(vx89AB, vmagic_bias); vxCDEF = vaddq_f32(vxCDEF, vmagic_bias); const int32x4_t vacc0123 = vqsubq_s32(vreinterpretq_s32_f32(vx0123), vmagic_bias_less_zero_point); const int32x4_t vacc4567 = vqsubq_s32(vreinterpretq_s32_f32(vx4567), vmagic_bias_less_zero_point); const int32x4_t vacc89AB = vqsubq_s32(vreinterpretq_s32_f32(vx89AB), vmagic_bias_less_zero_point); const int32x4_t vaccCDEF = vqsubq_s32(vreinterpretq_s32_f32(vxCDEF), vmagic_bias_less_zero_point); const int16x8_t vacc01234567 = vcombine_s16(vqmovn_s32(vacc0123), vqmovn_s32(vacc4567)); const int16x8_t vacc89ABCDEF = vcombine_s16(vqmovn_s32(vacc89AB), vqmovn_s32(vaccCDEF)); uint8x16_t vy0123456789ABCDEF = vcombine_u8(vqmovun_s16(vacc01234567), vqmovun_s16(vacc89ABCDEF)); vy0123456789ABCDEF = vmaxq_u8(vy0123456789ABCDEF, voutput_min); vy0123456789ABCDEF = vminq_u8(vy0123456789ABCDEF, voutput_max); vst1q_u8(output, vy0123456789ABCDEF); output += 16; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { float32x4_t vx_lo = vld1q_f32(input); input += 4; float32x4_t vx_hi = vld1q_f32(input); input += 4; vx_lo = vmulq_f32(vx_lo, vscale); vx_hi = vmulq_f32(vx_hi, vscale); vx_lo = vaddq_f32(vx_lo, vmagic_bias); vx_hi = vaddq_f32(vx_hi, vmagic_bias); const int32x4_t vacc_lo = vqsubq_s32(vreinterpretq_s32_f32(vx_lo), vmagic_bias_less_zero_point); const int32x4_t vacc_hi = vqsubq_s32(vreinterpretq_s32_f32(vx_hi), vmagic_bias_less_zero_point); const int16x8_t vacc = vcombine_s16(vqmovn_s32(vacc_lo), vqmovn_s32(vacc_hi)); uint8x8_t vy = vqmovun_s16(vacc); vy = vmax_u8(vy, vget_low_u8(voutput_min)); vy = vmin_u8(vy, vget_low_u8(voutput_max)); vst1_u8(output, vy); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); float32x4_t vx_lo = vld1q_f32(input); const float* x_hi = (const float*) ((uintptr_t) input + (batch & (4 * sizeof(float)))); float32x4_t vx_hi = vld1q_f32(x_hi); vx_lo = vmulq_f32(vx_lo, vscale); vx_hi = vmulq_f32(vx_hi, vscale); vx_lo = vaddq_f32(vx_lo, vmagic_bias); vx_hi = vaddq_f32(vx_hi, vmagic_bias); const int32x4_t vacc_lo = vqsubq_s32(vreinterpretq_s32_f32(vx_lo), vmagic_bias_less_zero_point); const int32x4_t vacc_hi = vqsubq_s32(vreinterpretq_s32_f32(vx_hi), vmagic_bias_less_zero_point); const int16x8_t vacc = vcombine_s16(vqmovn_s32(vacc_lo), vqmovn_s32(vacc_hi)); uint8x8_t vy = vqmovun_s16(vacc); vy = vmax_u8(vy, vget_low_u8(voutput_min)); vy = vmin_u8(vy, vget_low_u8(voutput_max)); if (batch & (4 * sizeof(float))) { vst1_lane_u32((void*) output, vreinterpret_u32_u8(vy), 0); output += 4; vy = vext_u8(vy, vy, 4); } if (batch & (2 * sizeof(float))) { vst1_lane_u16((void*) output, vreinterpret_u16_u8(vy), 0); output += 2; vy = vext_u8(vy, vy, 2); } if (batch & (1 * sizeof(float))) { vst1_lane_u8(output, vy, 0); } } }
4,721
37.704918
104
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-neon-x24.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/neon.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__neon_x24( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vscale = vld1q_dup_f32(&params->neon.scale); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neon.magic_bias); const int32x4_t vmagic_bias_less_zero_point = vld1q_dup_s32(&params->neon.magic_bias_less_zero_point); const uint8x16_t voutput_min = vld1q_dup_u8(&params->neon.output_min); const uint8x16_t voutput_max = vld1q_dup_u8(&params->neon.output_max); for (; batch >= 24 * sizeof(float); batch -= 24 * sizeof(float)) { float32x4_t vx0123 = vld1q_f32(input); input += 4; float32x4_t vx4567 = vld1q_f32(input); input += 4; float32x4_t vx89AB = vld1q_f32(input); input += 4; float32x4_t vxCDEF = vld1q_f32(input); input += 4; float32x4_t vxGHIJ = vld1q_f32(input); input += 4; float32x4_t vxKLMN = vld1q_f32(input); input += 4; vx0123 = vmulq_f32(vx0123, vscale); vx4567 = vmulq_f32(vx4567, vscale); vx89AB = vmulq_f32(vx89AB, vscale); vxCDEF = vmulq_f32(vxCDEF, vscale); vxGHIJ = vmulq_f32(vxGHIJ, vscale); vxKLMN = vmulq_f32(vxKLMN, vscale); vx0123 = vaddq_f32(vx0123, vmagic_bias); vx4567 = vaddq_f32(vx4567, vmagic_bias); vx89AB = vaddq_f32(vx89AB, vmagic_bias); vxCDEF = vaddq_f32(vxCDEF, vmagic_bias); vxGHIJ = vaddq_f32(vxGHIJ, vmagic_bias); vxKLMN = vaddq_f32(vxKLMN, vmagic_bias); const int32x4_t vacc0123 = vqsubq_s32(vreinterpretq_s32_f32(vx0123), vmagic_bias_less_zero_point); const int32x4_t vacc4567 = vqsubq_s32(vreinterpretq_s32_f32(vx4567), vmagic_bias_less_zero_point); const int32x4_t vacc89AB = vqsubq_s32(vreinterpretq_s32_f32(vx89AB), vmagic_bias_less_zero_point); const int32x4_t vaccCDEF = vqsubq_s32(vreinterpretq_s32_f32(vxCDEF), vmagic_bias_less_zero_point); const int32x4_t vaccGHIJ = vqsubq_s32(vreinterpretq_s32_f32(vxGHIJ), vmagic_bias_less_zero_point); const int32x4_t vaccKLMN = vqsubq_s32(vreinterpretq_s32_f32(vxKLMN), vmagic_bias_less_zero_point); const int16x8_t vacc01234567 = vcombine_s16(vqmovn_s32(vacc0123), vqmovn_s32(vacc4567)); const int16x8_t vacc89ABCDEF = vcombine_s16(vqmovn_s32(vacc89AB), vqmovn_s32(vaccCDEF)); const int16x8_t vaccGHIJKLMN = vcombine_s16(vqmovn_s32(vaccGHIJ), vqmovn_s32(vaccKLMN)); uint8x16_t vy0123456789ABCDEF = vcombine_u8(vqmovun_s16(vacc01234567), vqmovun_s16(vacc89ABCDEF)); uint8x8_t vyGHIJKLMN = vqmovun_s16(vaccGHIJKLMN); vy0123456789ABCDEF = vmaxq_u8(vy0123456789ABCDEF, voutput_min); vyGHIJKLMN = vmax_u8(vyGHIJKLMN, vget_low_u8(voutput_min)); vy0123456789ABCDEF = vminq_u8(vy0123456789ABCDEF, voutput_max); vyGHIJKLMN = vmin_u8(vyGHIJKLMN, vget_low_u8(voutput_max)); vst1q_u8(output, vy0123456789ABCDEF); output += 16; vst1_u8(output, vyGHIJKLMN); output += 8; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { float32x4_t vx_lo = vld1q_f32(input); input += 4; float32x4_t vx_hi = vld1q_f32(input); input += 4; vx_lo = vmulq_f32(vx_lo, vscale); vx_hi = vmulq_f32(vx_hi, vscale); vx_lo = vaddq_f32(vx_lo, vmagic_bias); vx_hi = vaddq_f32(vx_hi, vmagic_bias); const int32x4_t vacc_lo = vqsubq_s32(vreinterpretq_s32_f32(vx_lo), vmagic_bias_less_zero_point); const int32x4_t vacc_hi = vqsubq_s32(vreinterpretq_s32_f32(vx_hi), vmagic_bias_less_zero_point); const int16x8_t vacc = vcombine_s16(vqmovn_s32(vacc_lo), vqmovn_s32(vacc_hi)); uint8x8_t vy = vqmovun_s16(vacc); vy = vmax_u8(vy, vget_low_u8(voutput_min)); vy = vmin_u8(vy, vget_low_u8(voutput_max)); vst1_u8(output, vy); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); float32x4_t vx_lo = vld1q_f32(input); const float* x_hi = (const float*) ((uintptr_t) input + (batch & (4 * sizeof(float)))); float32x4_t vx_hi = vld1q_f32(x_hi); vx_lo = vmulq_f32(vx_lo, vscale); vx_hi = vmulq_f32(vx_hi, vscale); vx_lo = vaddq_f32(vx_lo, vmagic_bias); vx_hi = vaddq_f32(vx_hi, vmagic_bias); const int32x4_t vacc_lo = vqsubq_s32(vreinterpretq_s32_f32(vx_lo), vmagic_bias_less_zero_point); const int32x4_t vacc_hi = vqsubq_s32(vreinterpretq_s32_f32(vx_hi), vmagic_bias_less_zero_point); const int16x8_t vacc = vcombine_s16(vqmovn_s32(vacc_lo), vqmovn_s32(vacc_hi)); uint8x8_t vy = vqmovun_s16(vacc); vy = vmax_u8(vy, vget_low_u8(voutput_min)); vy = vmin_u8(vy, vget_low_u8(voutput_max)); if (batch & (4 * sizeof(float))) { vst1_lane_u32((void*) output, vreinterpret_u32_u8(vy), 0); output += 4; vy = vext_u8(vy, vy, 4); } if (batch & (2 * sizeof(float))) { vst1_lane_u16((void*) output, vreinterpret_u16_u8(vy), 0); output += 2; vy = vext_u8(vy, vy, 2); } if (batch & (1 * sizeof(float))) { vst1_lane_u8(output, vy, 0); } } }
5,528
39.955556
104
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-neon-x32.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/neon.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__neon_x32( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vscale = vld1q_dup_f32(&params->neon.scale); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neon.magic_bias); const int32x4_t vmagic_bias_less_zero_point = vld1q_dup_s32(&params->neon.magic_bias_less_zero_point); const uint8x16_t voutput_min = vld1q_dup_u8(&params->neon.output_min); const uint8x16_t voutput_max = vld1q_dup_u8(&params->neon.output_max); for (; batch >= 32 * sizeof(float); batch -= 32 * sizeof(float)) { float32x4_t vx0123 = vld1q_f32(input); input += 4; float32x4_t vx4567 = vld1q_f32(input); input += 4; float32x4_t vx89AB = vld1q_f32(input); input += 4; float32x4_t vxCDEF = vld1q_f32(input); input += 4; float32x4_t vxGHIJ = vld1q_f32(input); input += 4; float32x4_t vxKLMN = vld1q_f32(input); input += 4; float32x4_t vxOPQR = vld1q_f32(input); input += 4; float32x4_t vxSTUV = vld1q_f32(input); input += 4; vx0123 = vmulq_f32(vx0123, vscale); vx4567 = vmulq_f32(vx4567, vscale); vx89AB = vmulq_f32(vx89AB, vscale); vxCDEF = vmulq_f32(vxCDEF, vscale); vxGHIJ = vmulq_f32(vxGHIJ, vscale); vxKLMN = vmulq_f32(vxKLMN, vscale); vxOPQR = vmulq_f32(vxOPQR, vscale); vxSTUV = vmulq_f32(vxSTUV, vscale); vx0123 = vaddq_f32(vx0123, vmagic_bias); vx4567 = vaddq_f32(vx4567, vmagic_bias); vx89AB = vaddq_f32(vx89AB, vmagic_bias); vxCDEF = vaddq_f32(vxCDEF, vmagic_bias); vxGHIJ = vaddq_f32(vxGHIJ, vmagic_bias); vxKLMN = vaddq_f32(vxKLMN, vmagic_bias); vxOPQR = vaddq_f32(vxOPQR, vmagic_bias); vxSTUV = vaddq_f32(vxSTUV, vmagic_bias); const int32x4_t vacc0123 = vqsubq_s32(vreinterpretq_s32_f32(vx0123), vmagic_bias_less_zero_point); const int32x4_t vacc4567 = vqsubq_s32(vreinterpretq_s32_f32(vx4567), vmagic_bias_less_zero_point); const int32x4_t vacc89AB = vqsubq_s32(vreinterpretq_s32_f32(vx89AB), vmagic_bias_less_zero_point); const int32x4_t vaccCDEF = vqsubq_s32(vreinterpretq_s32_f32(vxCDEF), vmagic_bias_less_zero_point); const int32x4_t vaccGHIJ = vqsubq_s32(vreinterpretq_s32_f32(vxGHIJ), vmagic_bias_less_zero_point); const int32x4_t vaccKLMN = vqsubq_s32(vreinterpretq_s32_f32(vxKLMN), vmagic_bias_less_zero_point); const int32x4_t vaccOPQR = vqsubq_s32(vreinterpretq_s32_f32(vxOPQR), vmagic_bias_less_zero_point); const int32x4_t vaccSTUV = vqsubq_s32(vreinterpretq_s32_f32(vxSTUV), vmagic_bias_less_zero_point); const int16x8_t vacc01234567 = vcombine_s16(vqmovn_s32(vacc0123), vqmovn_s32(vacc4567)); const int16x8_t vacc89ABCDEF = vcombine_s16(vqmovn_s32(vacc89AB), vqmovn_s32(vaccCDEF)); const int16x8_t vaccGHIJKLMN = vcombine_s16(vqmovn_s32(vaccGHIJ), vqmovn_s32(vaccKLMN)); const int16x8_t vaccOPQRSTUV = vcombine_s16(vqmovn_s32(vaccOPQR), vqmovn_s32(vaccSTUV)); uint8x16_t vy0123456789ABCDEF = vcombine_u8(vqmovun_s16(vacc01234567), vqmovun_s16(vacc89ABCDEF)); uint8x16_t vyGHIJKLMNOPQRSTUV = vcombine_u8(vqmovun_s16(vaccGHIJKLMN), vqmovun_s16(vaccOPQRSTUV)); vy0123456789ABCDEF = vmaxq_u8(vy0123456789ABCDEF, voutput_min); vyGHIJKLMNOPQRSTUV = vmaxq_u8(vyGHIJKLMNOPQRSTUV, voutput_min); vy0123456789ABCDEF = vminq_u8(vy0123456789ABCDEF, voutput_max); vyGHIJKLMNOPQRSTUV = vminq_u8(vyGHIJKLMNOPQRSTUV, voutput_max); vst1q_u8(output, vy0123456789ABCDEF); output += 16; vst1q_u8(output, vyGHIJKLMNOPQRSTUV); output += 16; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { float32x4_t vx_lo = vld1q_f32(input); input += 4; float32x4_t vx_hi = vld1q_f32(input); input += 4; vx_lo = vmulq_f32(vx_lo, vscale); vx_hi = vmulq_f32(vx_hi, vscale); vx_lo = vaddq_f32(vx_lo, vmagic_bias); vx_hi = vaddq_f32(vx_hi, vmagic_bias); const int32x4_t vacc_lo = vqsubq_s32(vreinterpretq_s32_f32(vx_lo), vmagic_bias_less_zero_point); const int32x4_t vacc_hi = vqsubq_s32(vreinterpretq_s32_f32(vx_hi), vmagic_bias_less_zero_point); const int16x8_t vacc = vcombine_s16(vqmovn_s32(vacc_lo), vqmovn_s32(vacc_hi)); uint8x8_t vy = vqmovun_s16(vacc); vy = vmax_u8(vy, vget_low_u8(voutput_min)); vy = vmin_u8(vy, vget_low_u8(voutput_max)); vst1_u8(output, vy); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); float32x4_t vx_lo = vld1q_f32(input); const float* x_hi = (const float*) ((uintptr_t) input + (batch & (4 * sizeof(float)))); float32x4_t vx_hi = vld1q_f32(x_hi); vx_lo = vmulq_f32(vx_lo, vscale); vx_hi = vmulq_f32(vx_hi, vscale); vx_lo = vaddq_f32(vx_lo, vmagic_bias); vx_hi = vaddq_f32(vx_hi, vmagic_bias); const int32x4_t vacc_lo = vqsubq_s32(vreinterpretq_s32_f32(vx_lo), vmagic_bias_less_zero_point); const int32x4_t vacc_hi = vqsubq_s32(vreinterpretq_s32_f32(vx_hi), vmagic_bias_less_zero_point); const int16x8_t vacc = vcombine_s16(vqmovn_s32(vacc_lo), vqmovn_s32(vacc_hi)); uint8x8_t vy = vqmovun_s16(vacc); vy = vmax_u8(vy, vget_low_u8(voutput_min)); vy = vmin_u8(vy, vget_low_u8(voutput_max)); if (batch & (4 * sizeof(float))) { vst1_lane_u32((void*) output, vreinterpret_u32_u8(vy), 0); output += 4; vy = vext_u8(vy, vy, 4); } if (batch & (2 * sizeof(float))) { vst1_lane_u16((void*) output, vreinterpret_u16_u8(vy), 0); output += 2; vy = vext_u8(vy, vy, 2); } if (batch & (1 * sizeof(float))) { vst1_lane_u8(output, vy, 0); } } }
6,174
41.881944
104
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-neon-x8.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/neon.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__neon_x8( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vscale = vld1q_dup_f32(&params->neon.scale); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neon.magic_bias); const int32x4_t vmagic_bias_less_zero_point = vld1q_dup_s32(&params->neon.magic_bias_less_zero_point); const uint8x8_t voutput_min = vld1_dup_u8(&params->neon.output_min); const uint8x8_t voutput_max = vld1_dup_u8(&params->neon.output_max); for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { float32x4_t vx_lo = vld1q_f32(input); input += 4; float32x4_t vx_hi = vld1q_f32(input); input += 4; vx_lo = vmulq_f32(vx_lo, vscale); vx_hi = vmulq_f32(vx_hi, vscale); vx_lo = vaddq_f32(vx_lo, vmagic_bias); vx_hi = vaddq_f32(vx_hi, vmagic_bias); const int32x4_t vacc_lo = vqsubq_s32(vreinterpretq_s32_f32(vx_lo), vmagic_bias_less_zero_point); const int32x4_t vacc_hi = vqsubq_s32(vreinterpretq_s32_f32(vx_hi), vmagic_bias_less_zero_point); const int16x8_t vacc = vcombine_s16(vqmovn_s32(vacc_lo), vqmovn_s32(vacc_hi)); uint8x8_t vy = vqmovun_s16(vacc); vy = vmax_u8(vy, voutput_min); vy = vmin_u8(vy, voutput_max); vst1_u8(output, vy); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); float32x4_t vx_lo = vld1q_f32(input); const float* x_hi = (const float*) ((uintptr_t) input + (batch & (4 * sizeof(float)))); float32x4_t vx_hi = vld1q_f32(x_hi); vx_lo = vmulq_f32(vx_lo, vscale); vx_hi = vmulq_f32(vx_hi, vscale); vx_lo = vaddq_f32(vx_lo, vmagic_bias); vx_hi = vaddq_f32(vx_hi, vmagic_bias); const int32x4_t vacc_lo = vqsubq_s32(vreinterpretq_s32_f32(vx_lo), vmagic_bias_less_zero_point); const int32x4_t vacc_hi = vqsubq_s32(vreinterpretq_s32_f32(vx_hi), vmagic_bias_less_zero_point); const int16x8_t vacc = vcombine_s16(vqmovn_s32(vacc_lo), vqmovn_s32(vacc_hi)); uint8x8_t vy = vqmovun_s16(vacc); vy = vmax_u8(vy, voutput_min); vy = vmin_u8(vy, voutput_max); if (batch & (4 * sizeof(float))) { vst1_lane_u32((void*) output, vreinterpret_u32_u8(vy), 0); output += 4; vy = vext_u8(vy, vy, 4); } if (batch & (2 * sizeof(float))) { vst1_lane_u16((void*) output, vreinterpret_u16_u8(vy), 0); output += 2; vy = vext_u8(vy, vy, 2); } if (batch & (1 * sizeof(float))) { vst1_lane_u8(output, vy, 0); } } }
3,130
33.788889
104
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-neonv8-x16.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/neonv8.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__neonv8_x16( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vscale = vld1q_dup_f32(&params->neonv8.scale); const int16x8_t voutput_zero_point = vld1q_dup_s16(&params->neonv8.output_zero_point); const uint8x16_t voutput_min = vld1q_dup_u8(&params->neonv8.output_min); const uint8x16_t voutput_max = vld1q_dup_u8(&params->neonv8.output_max); for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { float32x4_t vx0123 = vld1q_f32(input); input += 4; float32x4_t vx4567 = vld1q_f32(input); input += 4; float32x4_t vx89AB = vld1q_f32(input); input += 4; float32x4_t vxCDEF = vld1q_f32(input); input += 4; vx0123 = vmulq_f32(vx0123, vscale); vx4567 = vmulq_f32(vx4567, vscale); vx89AB = vmulq_f32(vx89AB, vscale); vxCDEF = vmulq_f32(vxCDEF, vscale); const int32x4_t vacc0123 = vcvtnq_s32_f32(vx0123); const int32x4_t vacc4567 = vcvtnq_s32_f32(vx4567); const int32x4_t vacc89AB = vcvtnq_s32_f32(vx89AB); const int32x4_t vaccCDEF = vcvtnq_s32_f32(vxCDEF); int16x8_t vacc01234567 = vcombine_s16(vqmovn_s32(vacc0123), vqmovn_s32(vacc4567)); int16x8_t vacc89ABCDEF = vcombine_s16(vqmovn_s32(vacc89AB), vqmovn_s32(vaccCDEF)); vacc01234567 = vqaddq_s16(vacc01234567, voutput_zero_point); vacc89ABCDEF = vqaddq_s16(vacc89ABCDEF, voutput_zero_point); uint8x16_t vy0123456789ABCDEF = vcombine_u8(vqmovun_s16(vacc01234567), vqmovun_s16(vacc89ABCDEF)); vy0123456789ABCDEF = vmaxq_u8(vy0123456789ABCDEF, voutput_min); vy0123456789ABCDEF = vminq_u8(vy0123456789ABCDEF, voutput_max); vst1q_u8(output, vy0123456789ABCDEF); output += 16; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { float32x4_t vx_lo = vld1q_f32(input); input += 4; float32x4_t vx_hi = vld1q_f32(input); input += 4; vx_lo = vmulq_f32(vx_lo, vscale); vx_hi = vmulq_f32(vx_hi, vscale); const int32x4_t vacc_lo = vcvtnq_s32_f32(vx_lo); const int32x4_t vacc_hi = vcvtnq_s32_f32(vx_hi); int16x8_t vacc = vcombine_s16(vqmovn_s32(vacc_lo), vqmovn_s32(vacc_hi)); vacc = vqaddq_s16(vacc, voutput_zero_point); uint8x8_t vy = vqmovun_s16(vacc); vy = vmax_u8(vy, vget_low_u8(voutput_min)); vy = vmin_u8(vy, vget_low_u8(voutput_max)); vst1_u8(output, vy); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); float32x4_t vx_lo = vld1q_f32(input); const float* x_hi = (const float*) ((uintptr_t) input + (batch & (4 * sizeof(float)))); float32x4_t vx_hi = vld1q_f32(x_hi); vx_lo = vmulq_f32(vx_lo, vscale); vx_hi = vmulq_f32(vx_hi, vscale); const int32x4_t vacc_lo = vcvtnq_s32_f32(vx_lo); const int32x4_t vacc_hi = vcvtnq_s32_f32(vx_hi); int16x8_t vacc = vcombine_s16(vqmovn_s32(vacc_lo), vqmovn_s32(vacc_hi)); vacc = vqaddq_s16(vacc, voutput_zero_point); uint8x8_t vy = vqmovun_s16(vacc); vy = vmax_u8(vy, vget_low_u8(voutput_min)); vy = vmin_u8(vy, vget_low_u8(voutput_max)); if (batch & (4 * sizeof(float))) { vst1_lane_u32((void*) output, vreinterpret_u32_u8(vy), 0); output += 4; vy = vext_u8(vy, vy, 4); } if (batch & (2 * sizeof(float))) { vst1_lane_u16((void*) output, vreinterpret_u16_u8(vy), 0); output += 2; vy = vext_u8(vy, vy, 2); } if (batch & (1 * sizeof(float))) { vst1_lane_u8(output, vy, 0); } } }
4,106
34.713043
102
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-neonv8-x24.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/neonv8.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__neonv8_x24( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vscale = vld1q_dup_f32(&params->neonv8.scale); const int16x8_t voutput_zero_point = vld1q_dup_s16(&params->neonv8.output_zero_point); const uint8x16_t voutput_min = vld1q_dup_u8(&params->neonv8.output_min); const uint8x16_t voutput_max = vld1q_dup_u8(&params->neonv8.output_max); for (; batch >= 24 * sizeof(float); batch -= 24 * sizeof(float)) { float32x4_t vx0123 = vld1q_f32(input); input += 4; float32x4_t vx4567 = vld1q_f32(input); input += 4; float32x4_t vx89AB = vld1q_f32(input); input += 4; float32x4_t vxCDEF = vld1q_f32(input); input += 4; float32x4_t vxGHIJ = vld1q_f32(input); input += 4; float32x4_t vxKLMN = vld1q_f32(input); input += 4; vx0123 = vmulq_f32(vx0123, vscale); vx4567 = vmulq_f32(vx4567, vscale); vx89AB = vmulq_f32(vx89AB, vscale); vxCDEF = vmulq_f32(vxCDEF, vscale); vxGHIJ = vmulq_f32(vxGHIJ, vscale); vxKLMN = vmulq_f32(vxKLMN, vscale); const int32x4_t vacc0123 = vcvtnq_s32_f32(vx0123); const int32x4_t vacc4567 = vcvtnq_s32_f32(vx4567); const int32x4_t vacc89AB = vcvtnq_s32_f32(vx89AB); const int32x4_t vaccCDEF = vcvtnq_s32_f32(vxCDEF); const int32x4_t vaccGHIJ = vcvtnq_s32_f32(vxGHIJ); const int32x4_t vaccKLMN = vcvtnq_s32_f32(vxKLMN); int16x8_t vacc01234567 = vcombine_s16(vqmovn_s32(vacc0123), vqmovn_s32(vacc4567)); int16x8_t vacc89ABCDEF = vcombine_s16(vqmovn_s32(vacc89AB), vqmovn_s32(vaccCDEF)); int16x8_t vaccGHIJKLMN = vcombine_s16(vqmovn_s32(vaccGHIJ), vqmovn_s32(vaccKLMN)); vacc01234567 = vqaddq_s16(vacc01234567, voutput_zero_point); vacc89ABCDEF = vqaddq_s16(vacc89ABCDEF, voutput_zero_point); vaccGHIJKLMN = vqaddq_s16(vaccGHIJKLMN, voutput_zero_point); uint8x16_t vy0123456789ABCDEF = vcombine_u8(vqmovun_s16(vacc01234567), vqmovun_s16(vacc89ABCDEF)); uint8x8_t vyGHIJKLMN = vqmovun_s16(vaccGHIJKLMN); vy0123456789ABCDEF = vmaxq_u8(vy0123456789ABCDEF, voutput_min); vyGHIJKLMN = vmax_u8(vyGHIJKLMN, vget_low_u8(voutput_min)); vy0123456789ABCDEF = vminq_u8(vy0123456789ABCDEF, voutput_max); vyGHIJKLMN = vmin_u8(vyGHIJKLMN, vget_low_u8(voutput_max)); vst1q_u8(output, vy0123456789ABCDEF); output += 16; vst1_u8(output, vyGHIJKLMN); output += 8; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { float32x4_t vx_lo = vld1q_f32(input); input += 4; float32x4_t vx_hi = vld1q_f32(input); input += 4; vx_lo = vmulq_f32(vx_lo, vscale); vx_hi = vmulq_f32(vx_hi, vscale); const int32x4_t vacc_lo = vcvtnq_s32_f32(vx_lo); const int32x4_t vacc_hi = vcvtnq_s32_f32(vx_hi); int16x8_t vacc = vcombine_s16(vqmovn_s32(vacc_lo), vqmovn_s32(vacc_hi)); vacc = vqaddq_s16(vacc, voutput_zero_point); uint8x8_t vy = vqmovun_s16(vacc); vy = vmax_u8(vy, vget_low_u8(voutput_min)); vy = vmin_u8(vy, vget_low_u8(voutput_max)); vst1_u8(output, vy); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); float32x4_t vx_lo = vld1q_f32(input); const float* x_hi = (const float*) ((uintptr_t) input + (batch & (4 * sizeof(float)))); float32x4_t vx_hi = vld1q_f32(x_hi); vx_lo = vmulq_f32(vx_lo, vscale); vx_hi = vmulq_f32(vx_hi, vscale); const int32x4_t vacc_lo = vcvtnq_s32_f32(vx_lo); const int32x4_t vacc_hi = vcvtnq_s32_f32(vx_hi); int16x8_t vacc = vcombine_s16(vqmovn_s32(vacc_lo), vqmovn_s32(vacc_hi)); vacc = vqaddq_s16(vacc, voutput_zero_point); uint8x8_t vy = vqmovun_s16(vacc); vy = vmax_u8(vy, vget_low_u8(voutput_min)); vy = vmin_u8(vy, vget_low_u8(voutput_max)); if (batch & (4 * sizeof(float))) { vst1_lane_u32((void*) output, vreinterpret_u32_u8(vy), 0); output += 4; vy = vext_u8(vy, vy, 4); } if (batch & (2 * sizeof(float))) { vst1_lane_u16((void*) output, vreinterpret_u16_u8(vy), 0); output += 2; vy = vext_u8(vy, vy, 2); } if (batch & (1 * sizeof(float))) { vst1_lane_u8(output, vy, 0); } } }
4,786
36.692913
102
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-neonv8-x32.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/neonv8.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__neonv8_x32( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vscale = vld1q_dup_f32(&params->neonv8.scale); const int16x8_t voutput_zero_point = vld1q_dup_s16(&params->neonv8.output_zero_point); const uint8x16_t voutput_min = vld1q_dup_u8(&params->neonv8.output_min); const uint8x16_t voutput_max = vld1q_dup_u8(&params->neonv8.output_max); for (; batch >= 32 * sizeof(float); batch -= 32 * sizeof(float)) { float32x4_t vx0123 = vld1q_f32(input); input += 4; float32x4_t vx4567 = vld1q_f32(input); input += 4; float32x4_t vx89AB = vld1q_f32(input); input += 4; float32x4_t vxCDEF = vld1q_f32(input); input += 4; float32x4_t vxGHIJ = vld1q_f32(input); input += 4; float32x4_t vxKLMN = vld1q_f32(input); input += 4; float32x4_t vxOPQR = vld1q_f32(input); input += 4; float32x4_t vxSTUV = vld1q_f32(input); input += 4; vx0123 = vmulq_f32(vx0123, vscale); vx4567 = vmulq_f32(vx4567, vscale); vx89AB = vmulq_f32(vx89AB, vscale); vxCDEF = vmulq_f32(vxCDEF, vscale); vxGHIJ = vmulq_f32(vxGHIJ, vscale); vxKLMN = vmulq_f32(vxKLMN, vscale); vxOPQR = vmulq_f32(vxOPQR, vscale); vxSTUV = vmulq_f32(vxSTUV, vscale); const int32x4_t vacc0123 = vcvtnq_s32_f32(vx0123); const int32x4_t vacc4567 = vcvtnq_s32_f32(vx4567); const int32x4_t vacc89AB = vcvtnq_s32_f32(vx89AB); const int32x4_t vaccCDEF = vcvtnq_s32_f32(vxCDEF); const int32x4_t vaccGHIJ = vcvtnq_s32_f32(vxGHIJ); const int32x4_t vaccKLMN = vcvtnq_s32_f32(vxKLMN); const int32x4_t vaccOPQR = vcvtnq_s32_f32(vxOPQR); const int32x4_t vaccSTUV = vcvtnq_s32_f32(vxSTUV); int16x8_t vacc01234567 = vcombine_s16(vqmovn_s32(vacc0123), vqmovn_s32(vacc4567)); int16x8_t vacc89ABCDEF = vcombine_s16(vqmovn_s32(vacc89AB), vqmovn_s32(vaccCDEF)); int16x8_t vaccGHIJKLMN = vcombine_s16(vqmovn_s32(vaccGHIJ), vqmovn_s32(vaccKLMN)); int16x8_t vaccOPQRSTUV = vcombine_s16(vqmovn_s32(vaccOPQR), vqmovn_s32(vaccSTUV)); vacc01234567 = vqaddq_s16(vacc01234567, voutput_zero_point); vacc89ABCDEF = vqaddq_s16(vacc89ABCDEF, voutput_zero_point); vaccGHIJKLMN = vqaddq_s16(vaccGHIJKLMN, voutput_zero_point); vaccOPQRSTUV = vqaddq_s16(vaccOPQRSTUV, voutput_zero_point); uint8x16_t vy0123456789ABCDEF = vcombine_u8(vqmovun_s16(vacc01234567), vqmovun_s16(vacc89ABCDEF)); uint8x16_t vyGHIJKLMNOPQRSTUV = vcombine_u8(vqmovun_s16(vaccGHIJKLMN), vqmovun_s16(vaccOPQRSTUV)); vy0123456789ABCDEF = vmaxq_u8(vy0123456789ABCDEF, voutput_min); vyGHIJKLMNOPQRSTUV = vmaxq_u8(vyGHIJKLMNOPQRSTUV, voutput_min); vy0123456789ABCDEF = vminq_u8(vy0123456789ABCDEF, voutput_max); vyGHIJKLMNOPQRSTUV = vminq_u8(vyGHIJKLMNOPQRSTUV, voutput_max); vst1q_u8(output, vy0123456789ABCDEF); output += 16; vst1q_u8(output, vyGHIJKLMNOPQRSTUV); output += 16; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { float32x4_t vx_lo = vld1q_f32(input); input += 4; float32x4_t vx_hi = vld1q_f32(input); input += 4; vx_lo = vmulq_f32(vx_lo, vscale); vx_hi = vmulq_f32(vx_hi, vscale); const int32x4_t vacc_lo = vcvtnq_s32_f32(vx_lo); const int32x4_t vacc_hi = vcvtnq_s32_f32(vx_hi); int16x8_t vacc = vcombine_s16(vqmovn_s32(vacc_lo), vqmovn_s32(vacc_hi)); vacc = vqaddq_s16(vacc, voutput_zero_point); uint8x8_t vy = vqmovun_s16(vacc); vy = vmax_u8(vy, vget_low_u8(voutput_min)); vy = vmin_u8(vy, vget_low_u8(voutput_max)); vst1_u8(output, vy); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); float32x4_t vx_lo = vld1q_f32(input); const float* x_hi = (const float*) ((uintptr_t) input + (batch & (4 * sizeof(float)))); float32x4_t vx_hi = vld1q_f32(x_hi); vx_lo = vmulq_f32(vx_lo, vscale); vx_hi = vmulq_f32(vx_hi, vscale); const int32x4_t vacc_lo = vcvtnq_s32_f32(vx_lo); const int32x4_t vacc_hi = vcvtnq_s32_f32(vx_hi); int16x8_t vacc = vcombine_s16(vqmovn_s32(vacc_lo), vqmovn_s32(vacc_hi)); vacc = vqaddq_s16(vacc, voutput_zero_point); uint8x8_t vy = vqmovun_s16(vacc); vy = vmax_u8(vy, vget_low_u8(voutput_min)); vy = vmin_u8(vy, vget_low_u8(voutput_max)); if (batch & (4 * sizeof(float))) { vst1_lane_u32((void*) output, vreinterpret_u32_u8(vy), 0); output += 4; vy = vext_u8(vy, vy, 4); } if (batch & (2 * sizeof(float))) { vst1_lane_u16((void*) output, vreinterpret_u16_u8(vy), 0); output += 2; vy = vext_u8(vy, vy, 2); } if (batch & (1 * sizeof(float))) { vst1_lane_u8(output, vy, 0); } } }
5,305
38.303704
102
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-neonv8-x8.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/neonv8.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__neonv8_x8( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vscale = vld1q_dup_f32(&params->neonv8.scale); const int16x8_t voutput_zero_point = vld1q_dup_s16(&params->neonv8.output_zero_point); const uint8x8_t voutput_min = vld1_dup_u8(&params->neonv8.output_min); const uint8x8_t voutput_max = vld1_dup_u8(&params->neonv8.output_max); for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { float32x4_t vx_lo = vld1q_f32(input); input += 4; float32x4_t vx_hi = vld1q_f32(input); input += 4; vx_lo = vmulq_f32(vx_lo, vscale); vx_hi = vmulq_f32(vx_hi, vscale); const int32x4_t vacc_lo = vcvtnq_s32_f32(vx_lo); const int32x4_t vacc_hi = vcvtnq_s32_f32(vx_hi); int16x8_t vacc = vcombine_s16(vqmovn_s32(vacc_lo), vqmovn_s32(vacc_hi)); vacc = vqaddq_s16(vacc, voutput_zero_point); uint8x8_t vy = vqmovun_s16(vacc); vy = vmax_u8(vy, voutput_min); vy = vmin_u8(vy, voutput_max); vst1_u8(output, vy); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); float32x4_t vx_lo = vld1q_f32(input); const float* x_hi = (const float*) ((uintptr_t) input + (batch & (4 * sizeof(float)))); float32x4_t vx_hi = vld1q_f32(x_hi); vx_lo = vmulq_f32(vx_lo, vscale); vx_hi = vmulq_f32(vx_hi, vscale); const int32x4_t vacc_lo = vcvtnq_s32_f32(vx_lo); const int32x4_t vacc_hi = vcvtnq_s32_f32(vx_hi); int16x8_t vacc = vcombine_s16(vqmovn_s32(vacc_lo), vqmovn_s32(vacc_hi)); vacc = vqaddq_s16(vacc, voutput_zero_point); uint8x8_t vy = vqmovun_s16(vacc); vy = vmax_u8(vy, voutput_min); vy = vmin_u8(vy, voutput_max); if (batch & (4 * sizeof(float))) { vst1_lane_u32((void*) output, vreinterpret_u32_u8(vy), 0); output += 4; vy = vext_u8(vy, vy, 4); } if (batch & (2 * sizeof(float))) { vst1_lane_u16((void*) output, vreinterpret_u16_u8(vy), 0); output += 2; vy = vext_u8(vy, vy, 2); } if (batch & (1 * sizeof(float))) { vst1_lane_u8(output, vy, 0); } } }
2,769
31.588235
91
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-scalar-fmagic-x1.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/scalar-fmagic.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <xnnpack/common.h> #include <xnnpack/math.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__scalar_fmagic_x1( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float vscale = params->scalar_fmagic.scale; const float voutput_min_less_zero_point = params->scalar_fmagic.output_min_less_zero_point; const float voutput_max_less_zero_point = params->scalar_fmagic.output_max_less_zero_point; const float vmagic_bias = params->scalar_fmagic.magic_bias; const int32_t vmagic_bias_less_zero_point = params->scalar_fmagic.magic_bias_less_zero_point; do { float vx = *input++; vx *= vscale; vx = math_max_f32(vx, voutput_min_less_zero_point); vx = math_min_f32(vx, voutput_max_less_zero_point); vx += vmagic_bias; int32_t vy = (int32_t) float_as_uint32(vx); vy -= vmagic_bias_less_zero_point; *output++ = (uint8_t) vy; batch -= sizeof(float); } while (batch != 0); }
1,448
28.571429
95
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-scalar-fmagic-x2.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/scalar-fmagic.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <xnnpack/common.h> #include <xnnpack/math.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__scalar_fmagic_x2( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float vscale = params->scalar_fmagic.scale; const float voutput_min_less_zero_point = params->scalar_fmagic.output_min_less_zero_point; const float voutput_max_less_zero_point = params->scalar_fmagic.output_max_less_zero_point; const float vmagic_bias = params->scalar_fmagic.magic_bias; const int32_t vmagic_bias_less_zero_point = params->scalar_fmagic.magic_bias_less_zero_point; for (; batch >= 2 * sizeof(float); batch -= 2 * sizeof(float)) { float vx0 = input[0]; float vx1 = input[1]; input += 2; vx0 *= vscale; vx1 *= vscale; vx0 = math_max_f32(vx0, voutput_min_less_zero_point); vx1 = math_max_f32(vx1, voutput_min_less_zero_point); vx0 = math_min_f32(vx0, voutput_max_less_zero_point); vx1 = math_min_f32(vx1, voutput_max_less_zero_point); vx0 += vmagic_bias; vx1 += vmagic_bias; int32_t vy0 = (int32_t) float_as_uint32(vx0); int32_t vy1 = (int32_t) float_as_uint32(vx1); vy0 -= vmagic_bias_less_zero_point; vy1 -= vmagic_bias_less_zero_point; output[0] = (uint8_t) vy0; output[1] = (uint8_t) vy1; output += 2; } if XNN_UNLIKELY(batch != 0) { float vx = *input; vx *= vscale; vx = math_max_f32(vx, voutput_min_less_zero_point); vx = math_min_f32(vx, voutput_max_less_zero_point); vx += vmagic_bias; int32_t vy = (int32_t) float_as_uint32(vx); vy -= vmagic_bias_less_zero_point; *output = (uint8_t) vy; } }
2,143
27.972973
95
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-scalar-fmagic-x3.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/scalar-fmagic.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <xnnpack/common.h> #include <xnnpack/math.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__scalar_fmagic_x3( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float vscale = params->scalar_fmagic.scale; const float voutput_min_less_zero_point = params->scalar_fmagic.output_min_less_zero_point; const float voutput_max_less_zero_point = params->scalar_fmagic.output_max_less_zero_point; const float vmagic_bias = params->scalar_fmagic.magic_bias; const int32_t vmagic_bias_less_zero_point = params->scalar_fmagic.magic_bias_less_zero_point; for (; batch >= 3 * sizeof(float); batch -= 3 * sizeof(float)) { float vx0 = input[0]; float vx1 = input[1]; float vx2 = input[2]; input += 3; vx0 *= vscale; vx1 *= vscale; vx2 *= vscale; vx0 = math_max_f32(vx0, voutput_min_less_zero_point); vx1 = math_max_f32(vx1, voutput_min_less_zero_point); vx2 = math_max_f32(vx2, voutput_min_less_zero_point); vx0 = math_min_f32(vx0, voutput_max_less_zero_point); vx1 = math_min_f32(vx1, voutput_max_less_zero_point); vx2 = math_min_f32(vx2, voutput_max_less_zero_point); vx0 += vmagic_bias; vx1 += vmagic_bias; vx2 += vmagic_bias; int32_t vy0 = (int32_t) float_as_uint32(vx0); int32_t vy1 = (int32_t) float_as_uint32(vx1); int32_t vy2 = (int32_t) float_as_uint32(vx2); vy0 -= vmagic_bias_less_zero_point; vy1 -= vmagic_bias_less_zero_point; vy2 -= vmagic_bias_less_zero_point; output[0] = (uint8_t) vy0; output[1] = (uint8_t) vy1; output[2] = (uint8_t) vy2; output += 3; } if XNN_UNLIKELY(batch != 0) { do { float vx = *input++; vx *= vscale; vx = math_max_f32(vx, voutput_min_less_zero_point); vx = math_min_f32(vx, voutput_max_less_zero_point); vx += vmagic_bias; int32_t vy = (int32_t) float_as_uint32(vx); vy -= vmagic_bias_less_zero_point; *output++ = (uint8_t) vy; batch -= sizeof(float); } while (batch != 0); } }
2,535
28.488372
95
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-scalar-fmagic-x4.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/scalar-fmagic.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <xnnpack/common.h> #include <xnnpack/math.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__scalar_fmagic_x4( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float vscale = params->scalar_fmagic.scale; const float voutput_min_less_zero_point = params->scalar_fmagic.output_min_less_zero_point; const float voutput_max_less_zero_point = params->scalar_fmagic.output_max_less_zero_point; const float vmagic_bias = params->scalar_fmagic.magic_bias; const int32_t vmagic_bias_less_zero_point = params->scalar_fmagic.magic_bias_less_zero_point; for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { float vx0 = input[0]; float vx1 = input[1]; float vx2 = input[2]; float vx3 = input[3]; input += 4; vx0 *= vscale; vx1 *= vscale; vx2 *= vscale; vx3 *= vscale; vx0 = math_max_f32(vx0, voutput_min_less_zero_point); vx1 = math_max_f32(vx1, voutput_min_less_zero_point); vx2 = math_max_f32(vx2, voutput_min_less_zero_point); vx3 = math_max_f32(vx3, voutput_min_less_zero_point); vx0 = math_min_f32(vx0, voutput_max_less_zero_point); vx1 = math_min_f32(vx1, voutput_max_less_zero_point); vx2 = math_min_f32(vx2, voutput_max_less_zero_point); vx3 = math_min_f32(vx3, voutput_max_less_zero_point); vx0 += vmagic_bias; vx1 += vmagic_bias; vx2 += vmagic_bias; vx3 += vmagic_bias; int32_t vy0 = (int32_t) float_as_uint32(vx0); int32_t vy1 = (int32_t) float_as_uint32(vx1); int32_t vy2 = (int32_t) float_as_uint32(vx2); int32_t vy3 = (int32_t) float_as_uint32(vx3); vy0 -= vmagic_bias_less_zero_point; vy1 -= vmagic_bias_less_zero_point; vy2 -= vmagic_bias_less_zero_point; vy3 -= vmagic_bias_less_zero_point; output[0] = (uint8_t) vy0; output[1] = (uint8_t) vy1; output[2] = (uint8_t) vy2; output[3] = (uint8_t) vy3; output += 4; } if XNN_UNLIKELY(batch != 0) { do { float vx = *input++; vx *= vscale; vx = math_max_f32(vx, voutput_min_less_zero_point); vx = math_min_f32(vx, voutput_max_less_zero_point); vx += vmagic_bias; int32_t vy = (int32_t) float_as_uint32(vx); vy -= vmagic_bias_less_zero_point; *output++ = (uint8_t) vy; batch -= sizeof(float); } while (batch != 0); } }
2,841
29.234043
95
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-scalar-imagic-x1.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/scalar-imagic.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <xnnpack/common.h> #include <xnnpack/math.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__scalar_imagic_x1( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float vscale = params->scalar_imagic.scale; const float vmagic_bias = params->scalar_imagic.magic_bias; const int32_t vmagic_min = params->scalar_imagic.magic_min; const int32_t vmagic_max = params->scalar_imagic.magic_max; const int32_t vmagic_bias_less_zero_point = params->scalar_imagic.magic_bias_less_zero_point; do { float vx = *input++; vx *= vscale; vx += vmagic_bias; int32_t vy = (int32_t) float_as_uint32(vx); vy = math_max_s32(vy, vmagic_min); vy = math_min_s32(vy, vmagic_max); vy -= vmagic_bias_less_zero_point; *output++ = (uint8_t) vy; batch -= sizeof(float); } while (batch != 0); }
1,350
26.571429
95
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-scalar-imagic-x2.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/scalar-imagic.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <xnnpack/common.h> #include <xnnpack/math.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__scalar_imagic_x2( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float vscale = params->scalar_imagic.scale; const float vmagic_bias = params->scalar_imagic.magic_bias; const int32_t vmagic_min = params->scalar_imagic.magic_min; const int32_t vmagic_max = params->scalar_imagic.magic_max; const int32_t vmagic_bias_less_zero_point = params->scalar_imagic.magic_bias_less_zero_point; for (; batch >= 2 * sizeof(float); batch -= 2 * sizeof(float)) { float vx0 = input[0]; float vx1 = input[1]; input += 2; vx0 *= vscale; vx1 *= vscale; vx0 += vmagic_bias; vx1 += vmagic_bias; int32_t vy0 = (int32_t) float_as_uint32(vx0); int32_t vy1 = (int32_t) float_as_uint32(vx1); vy0 = math_max_s32(vy0, vmagic_min); vy1 = math_max_s32(vy1, vmagic_min); vy0 = math_min_s32(vy0, vmagic_max); vy1 = math_min_s32(vy1, vmagic_max); vy0 -= vmagic_bias_less_zero_point; vy1 -= vmagic_bias_less_zero_point; output[0] = (uint8_t) vy0; output[1] = (uint8_t) vy1; output += 2; } if XNN_UNLIKELY(batch != 0) { float vx = *input; vx *= vscale; vx += vmagic_bias; int32_t vy = (int32_t) float_as_uint32(vx); vy = math_max_s32(vy, vmagic_min); vy = math_min_s32(vy, vmagic_max); vy -= vmagic_bias_less_zero_point; *output = (uint8_t) vy; } }
1,977
25.72973
95
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-scalar-imagic-x3.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/scalar-imagic.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <xnnpack/common.h> #include <xnnpack/math.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__scalar_imagic_x3( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float vscale = params->scalar_imagic.scale; const float vmagic_bias = params->scalar_imagic.magic_bias; const int32_t vmagic_min = params->scalar_imagic.magic_min; const int32_t vmagic_max = params->scalar_imagic.magic_max; const int32_t vmagic_bias_less_zero_point = params->scalar_imagic.magic_bias_less_zero_point; for (; batch >= 3 * sizeof(float); batch -= 3 * sizeof(float)) { float vx0 = input[0]; float vx1 = input[1]; float vx2 = input[2]; input += 3; vx0 *= vscale; vx1 *= vscale; vx2 *= vscale; vx0 += vmagic_bias; vx1 += vmagic_bias; vx2 += vmagic_bias; int32_t vy0 = (int32_t) float_as_uint32(vx0); int32_t vy1 = (int32_t) float_as_uint32(vx1); int32_t vy2 = (int32_t) float_as_uint32(vx2); vy0 = math_max_s32(vy0, vmagic_min); vy1 = math_max_s32(vy1, vmagic_min); vy2 = math_max_s32(vy2, vmagic_min); vy0 = math_min_s32(vy0, vmagic_max); vy1 = math_min_s32(vy1, vmagic_max); vy2 = math_min_s32(vy2, vmagic_max); vy0 -= vmagic_bias_less_zero_point; vy1 -= vmagic_bias_less_zero_point; vy2 -= vmagic_bias_less_zero_point; output[0] = (uint8_t) vy0; output[1] = (uint8_t) vy1; output[2] = (uint8_t) vy2; output += 3; } if XNN_UNLIKELY(batch != 0) { do { float vx = *input++; vx *= vscale; vx += vmagic_bias; int32_t vy = (int32_t) float_as_uint32(vx); vy = math_max_s32(vy, vmagic_min); vy = math_min_s32(vy, vmagic_max); vy -= vmagic_bias_less_zero_point; *output++ = (uint8_t) vy; batch -= sizeof(float); } while (batch != 0); } }
2,335
26.162791
95
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-scalar-imagic-x4.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/scalar-imagic.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <xnnpack/common.h> #include <xnnpack/math.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__scalar_imagic_x4( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float vscale = params->scalar_imagic.scale; const float vmagic_bias = params->scalar_imagic.magic_bias; const int32_t vmagic_min = params->scalar_imagic.magic_min; const int32_t vmagic_max = params->scalar_imagic.magic_max; const int32_t vmagic_bias_less_zero_point = params->scalar_imagic.magic_bias_less_zero_point; for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { float vx0 = input[0]; float vx1 = input[1]; float vx2 = input[2]; float vx3 = input[3]; input += 4; vx0 *= vscale; vx1 *= vscale; vx2 *= vscale; vx3 *= vscale; vx0 += vmagic_bias; vx1 += vmagic_bias; vx2 += vmagic_bias; vx3 += vmagic_bias; int32_t vy0 = (int32_t) float_as_uint32(vx0); int32_t vy1 = (int32_t) float_as_uint32(vx1); int32_t vy2 = (int32_t) float_as_uint32(vx2); int32_t vy3 = (int32_t) float_as_uint32(vx3); vy0 = math_max_s32(vy0, vmagic_min); vy1 = math_max_s32(vy1, vmagic_min); vy2 = math_max_s32(vy2, vmagic_min); vy3 = math_max_s32(vy3, vmagic_min); vy0 = math_min_s32(vy0, vmagic_max); vy1 = math_min_s32(vy1, vmagic_max); vy2 = math_min_s32(vy2, vmagic_max); vy3 = math_min_s32(vy3, vmagic_max); vy0 -= vmagic_bias_less_zero_point; vy1 -= vmagic_bias_less_zero_point; vy2 -= vmagic_bias_less_zero_point; vy3 -= vmagic_bias_less_zero_point; output[0] = (uint8_t) vy0; output[1] = (uint8_t) vy1; output[2] = (uint8_t) vy2; output[3] = (uint8_t) vy3; output += 4; } if XNN_UNLIKELY(batch != 0) { do { float vx = *input++; vx *= vscale; vx += vmagic_bias; int32_t vy = (int32_t) float_as_uint32(vx); vy = math_max_s32(vy, vmagic_min); vy = math_min_s32(vy, vmagic_max); vy -= vmagic_bias_less_zero_point; *output++ = (uint8_t) vy; batch -= sizeof(float); } while (batch != 0); } }
2,607
26.744681
95
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-scalar-lrintf-x1.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/scalar-lrintf.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <xnnpack/common.h> #include <xnnpack/math.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__scalar_lrintf_x1( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float vscale = params->scalar_lrintf.scale; const float voutput_min_less_zero_point = params->scalar_lrintf.output_min_less_zero_point; const float voutput_max_less_zero_point = params->scalar_lrintf.output_max_less_zero_point; const int32_t voutput_zero_point = params->scalar_lrintf.output_zero_point; do { float vx = *input++; vx *= vscale; vx = math_max_f32(vx, voutput_min_less_zero_point); vx = math_min_f32(vx, voutput_max_less_zero_point); int32_t vy = (int32_t) lrintf(vx); vy += voutput_zero_point; *output++ = (uint8_t) vy; batch -= sizeof(float); } while (batch != 0); }
1,345
27.041667
93
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-scalar-lrintf-x2.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/scalar-lrintf.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <xnnpack/common.h> #include <xnnpack/math.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__scalar_lrintf_x2( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float vscale = params->scalar_lrintf.scale; const float voutput_min_less_zero_point = params->scalar_lrintf.output_min_less_zero_point; const float voutput_max_less_zero_point = params->scalar_lrintf.output_max_less_zero_point; const int32_t voutput_zero_point = params->scalar_lrintf.output_zero_point; for (; batch >= 2 * sizeof(float); batch -= 2 * sizeof(float)) { float vx0 = input[0]; float vx1 = input[1]; input += 2; vx0 *= vscale; vx1 *= vscale; vx0 = math_max_f32(vx0, voutput_min_less_zero_point); vx1 = math_max_f32(vx1, voutput_min_less_zero_point); vx0 = math_min_f32(vx0, voutput_max_less_zero_point); vx1 = math_min_f32(vx1, voutput_max_less_zero_point); int32_t vy0 = (int32_t) lrintf(vx0); int32_t vy1 = (int32_t) lrintf(vx1); vy0 += voutput_zero_point; vy1 += voutput_zero_point; output[0] = (uint8_t) vy0; output[1] = (uint8_t) vy1; output += 2; } if XNN_UNLIKELY(batch != 0) { float vx = *input; vx *= vscale; vx = math_max_f32(vx, voutput_min_less_zero_point); vx = math_min_f32(vx, voutput_max_less_zero_point); int32_t vy = (int32_t) lrintf(vx); vy += voutput_zero_point; *output = (uint8_t) vy; } }
1,955
26.942857
93
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-scalar-lrintf-x3.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/scalar-lrintf.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <xnnpack/common.h> #include <xnnpack/math.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__scalar_lrintf_x3( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float vscale = params->scalar_lrintf.scale; const float voutput_min_less_zero_point = params->scalar_lrintf.output_min_less_zero_point; const float voutput_max_less_zero_point = params->scalar_lrintf.output_max_less_zero_point; const int32_t voutput_zero_point = params->scalar_lrintf.output_zero_point; for (; batch >= 3 * sizeof(float); batch -= 3 * sizeof(float)) { float vx0 = input[0]; float vx1 = input[1]; float vx2 = input[2]; input += 3; vx0 *= vscale; vx1 *= vscale; vx2 *= vscale; vx0 = math_max_f32(vx0, voutput_min_less_zero_point); vx1 = math_max_f32(vx1, voutput_min_less_zero_point); vx2 = math_max_f32(vx2, voutput_min_less_zero_point); vx0 = math_min_f32(vx0, voutput_max_less_zero_point); vx1 = math_min_f32(vx1, voutput_max_less_zero_point); vx2 = math_min_f32(vx2, voutput_max_less_zero_point); int32_t vy0 = (int32_t) lrintf(vx0); int32_t vy1 = (int32_t) lrintf(vx1); int32_t vy2 = (int32_t) lrintf(vx2); vy0 += voutput_zero_point; vy1 += voutput_zero_point; vy2 += voutput_zero_point; output[0] = (uint8_t) vy0; output[1] = (uint8_t) vy1; output[2] = (uint8_t) vy2; output += 3; } if XNN_UNLIKELY(batch != 0) { do { float vx = *input++; vx *= vscale; vx = math_max_f32(vx, voutput_min_less_zero_point); vx = math_min_f32(vx, voutput_max_less_zero_point); int32_t vy = (int32_t) lrintf(vx); vy += voutput_zero_point; *output++ = (uint8_t) vy; batch -= sizeof(float); } while (batch != 0); } }
2,303
27.444444
93
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-scalar-lrintf-x4.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/scalar-lrintf.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <xnnpack/common.h> #include <xnnpack/math.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__scalar_lrintf_x4( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float vscale = params->scalar_lrintf.scale; const float voutput_min_less_zero_point = params->scalar_lrintf.output_min_less_zero_point; const float voutput_max_less_zero_point = params->scalar_lrintf.output_max_less_zero_point; const int32_t voutput_zero_point = params->scalar_lrintf.output_zero_point; for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { float vx0 = input[0]; float vx1 = input[1]; float vx2 = input[2]; float vx3 = input[3]; input += 4; vx0 *= vscale; vx1 *= vscale; vx2 *= vscale; vx3 *= vscale; vx0 = math_max_f32(vx0, voutput_min_less_zero_point); vx1 = math_max_f32(vx1, voutput_min_less_zero_point); vx2 = math_max_f32(vx2, voutput_min_less_zero_point); vx3 = math_max_f32(vx3, voutput_min_less_zero_point); vx0 = math_min_f32(vx0, voutput_max_less_zero_point); vx1 = math_min_f32(vx1, voutput_max_less_zero_point); vx2 = math_min_f32(vx2, voutput_max_less_zero_point); vx3 = math_min_f32(vx3, voutput_max_less_zero_point); int32_t vy0 = (int32_t) lrintf(vx0); int32_t vy1 = (int32_t) lrintf(vx1); int32_t vy2 = (int32_t) lrintf(vx2); int32_t vy3 = (int32_t) lrintf(vx3); vy0 += voutput_zero_point; vy1 += voutput_zero_point; vy2 += voutput_zero_point; vy3 += voutput_zero_point; output[0] = (uint8_t) vy0; output[1] = (uint8_t) vy1; output[2] = (uint8_t) vy2; output[3] = (uint8_t) vy3; output += 4; } if XNN_UNLIKELY(batch != 0) { do { float vx = *input++; vx *= vscale; vx = math_max_f32(vx, voutput_min_less_zero_point); vx = math_min_f32(vx, voutput_max_less_zero_point); int32_t vy = (int32_t) lrintf(vx); vy += voutput_zero_point; *output++ = (uint8_t) vy; batch -= sizeof(float); } while (batch != 0); } }
2,567
28.181818
93
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-sse2-x16.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/sse.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <emmintrin.h> #include <xnnpack/common.h> #include <xnnpack/unaligned.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__sse2_x16( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m128 vscale = _mm_load_ps(params->sse2.scale); const __m128 voutput_max_less_zero_point = _mm_load_ps(params->sse2.output_max_less_zero_point); const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point); const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min); for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { __m128 vx0123 = _mm_loadu_ps(input); __m128 vx4567 = _mm_loadu_ps(input + 4); __m128 vx89AB = _mm_loadu_ps(input + 8); __m128 vxCDEF = _mm_loadu_ps(input + 12); input += 16; vx0123 = _mm_mul_ps(vx0123, vscale); vx4567 = _mm_mul_ps(vx4567, vscale); vx89AB = _mm_mul_ps(vx89AB, vscale); vxCDEF = _mm_mul_ps(vxCDEF, vscale); vx0123 = _mm_min_ps(vx0123, voutput_max_less_zero_point); vx4567 = _mm_min_ps(vx4567, voutput_max_less_zero_point); vx89AB = _mm_min_ps(vx89AB, voutput_max_less_zero_point); vxCDEF = _mm_min_ps(vxCDEF, voutput_max_less_zero_point); const __m128i vy0123 = _mm_cvtps_epi32(vx0123); const __m128i vy4567 = _mm_cvtps_epi32(vx4567); const __m128i vy89AB = _mm_cvtps_epi32(vx89AB); const __m128i vyCDEF = _mm_cvtps_epi32(vxCDEF); __m128i vy01234567 = _mm_packs_epi32(vy0123, vy4567); __m128i vy89ABCDEF = _mm_packs_epi32(vy89AB, vyCDEF); vy01234567 = _mm_adds_epi16(vy01234567, voutput_zero_point); vy89ABCDEF = _mm_adds_epi16(vy89ABCDEF, voutput_zero_point); __m128i vy0123456789ABCDEF = _mm_packus_epi16(vy01234567, vy89ABCDEF); vy0123456789ABCDEF = _mm_max_epu8(vy0123456789ABCDEF, voutput_min); _mm_storeu_si128((__m128i*) output, vy0123456789ABCDEF); output += 16; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { __m128 vx_lo = _mm_loadu_ps(input); __m128 vx_hi = _mm_loadu_ps(input + 4); input += 8; vx_lo = _mm_mul_ps(vx_lo, vscale); vx_hi = _mm_mul_ps(vx_hi, vscale); vx_lo = _mm_min_ps(vx_lo, voutput_max_less_zero_point); vx_hi = _mm_min_ps(vx_hi, voutput_max_less_zero_point); const __m128i vy_lo = _mm_cvtps_epi32(vx_lo); const __m128i vy_hi = _mm_cvtps_epi32(vx_hi); __m128i vy = _mm_packs_epi32(vy_lo, vy_hi); vy = _mm_adds_epi16(vy, voutput_zero_point); vy = _mm_packus_epi16(vy, vy); vy = _mm_max_epu8(vy, voutput_min); _mm_storel_epi64((__m128i*) output, vy); output += 8; } if XNN_UNLIKELY(batch != 0) { __m128 vx_lo = _mm_loadu_ps(input); const float* x_hi = (const float*) ((uintptr_t) input + (batch & (4 * sizeof(float)))); __m128 vx_hi = _mm_loadu_ps(x_hi); vx_lo = _mm_mul_ps(vx_lo, vscale); vx_hi = _mm_mul_ps(vx_hi, vscale); vx_lo = _mm_min_ps(vx_lo, voutput_max_less_zero_point); vx_hi = _mm_min_ps(vx_hi, voutput_max_less_zero_point); const __m128i vy_lo = _mm_cvtps_epi32(vx_lo); const __m128i vy_hi = _mm_cvtps_epi32(vx_hi); __m128i vy = _mm_packs_epi32(vy_lo, vy_hi); vy = _mm_adds_epi16(vy, voutput_zero_point); vy = _mm_packus_epi16(vy, vy); vy = _mm_max_epu8(vy, voutput_min); if (batch & (4 * sizeof(float))) { unaligned_store_u32(output, (uint32_t) _mm_cvtsi128_si32(vy)); output += 4; vy = _mm_srli_epi64(vy, 32); } { uint32_t vy_lo = (uint32_t) _mm_cvtsi128_si32(vy); if (batch & (2 * sizeof(float))) { unaligned_store_u16(output, (uint16_t) vy_lo); output += 2; vy_lo >>= 16; } if (batch & (1 * sizeof(float))) { *output = (uint8_t) vy_lo; } } } }
4,290
32.007692
101
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-sse2-x24.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/sse.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <emmintrin.h> #include <xnnpack/common.h> #include <xnnpack/unaligned.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__sse2_x24( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m128 vscale = _mm_load_ps(params->sse2.scale); const __m128 voutput_max_less_zero_point = _mm_load_ps(params->sse2.output_max_less_zero_point); const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point); const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min); for (; batch >= 24 * sizeof(float); batch -= 24 * sizeof(float)) { __m128 vx0123 = _mm_loadu_ps(input); __m128 vx4567 = _mm_loadu_ps(input + 4); __m128 vx89AB = _mm_loadu_ps(input + 8); __m128 vxCDEF = _mm_loadu_ps(input + 12); __m128 vxGHIJ = _mm_loadu_ps(input + 16); __m128 vxKLMN = _mm_loadu_ps(input + 20); input += 24; vx0123 = _mm_mul_ps(vx0123, vscale); vx4567 = _mm_mul_ps(vx4567, vscale); vx89AB = _mm_mul_ps(vx89AB, vscale); vxCDEF = _mm_mul_ps(vxCDEF, vscale); vxGHIJ = _mm_mul_ps(vxGHIJ, vscale); vxKLMN = _mm_mul_ps(vxKLMN, vscale); vx0123 = _mm_min_ps(vx0123, voutput_max_less_zero_point); vx4567 = _mm_min_ps(vx4567, voutput_max_less_zero_point); vx89AB = _mm_min_ps(vx89AB, voutput_max_less_zero_point); vxCDEF = _mm_min_ps(vxCDEF, voutput_max_less_zero_point); vxGHIJ = _mm_min_ps(vxGHIJ, voutput_max_less_zero_point); vxKLMN = _mm_min_ps(vxKLMN, voutput_max_less_zero_point); const __m128i vy0123 = _mm_cvtps_epi32(vx0123); const __m128i vy4567 = _mm_cvtps_epi32(vx4567); const __m128i vy89AB = _mm_cvtps_epi32(vx89AB); const __m128i vyCDEF = _mm_cvtps_epi32(vxCDEF); const __m128i vyGHIJ = _mm_cvtps_epi32(vxGHIJ); const __m128i vyKLMN = _mm_cvtps_epi32(vxKLMN); __m128i vy01234567 = _mm_packs_epi32(vy0123, vy4567); __m128i vy89ABCDEF = _mm_packs_epi32(vy89AB, vyCDEF); __m128i vyGHIJKLMN = _mm_packs_epi32(vyGHIJ, vyKLMN); vy01234567 = _mm_adds_epi16(vy01234567, voutput_zero_point); vy89ABCDEF = _mm_adds_epi16(vy89ABCDEF, voutput_zero_point); vyGHIJKLMN = _mm_adds_epi16(vyGHIJKLMN, voutput_zero_point); __m128i vy0123456789ABCDEF = _mm_packus_epi16(vy01234567, vy89ABCDEF); vyGHIJKLMN = _mm_packus_epi16(vyGHIJKLMN, vyGHIJKLMN); vy0123456789ABCDEF = _mm_max_epu8(vy0123456789ABCDEF, voutput_min); vyGHIJKLMN = _mm_max_epu8(vyGHIJKLMN, voutput_min); _mm_storeu_si128((__m128i*) output, vy0123456789ABCDEF); _mm_storel_epi64((__m128i*) (output + 16), vyGHIJKLMN); output += 24; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { __m128 vx_lo = _mm_loadu_ps(input); __m128 vx_hi = _mm_loadu_ps(input + 4); input += 8; vx_lo = _mm_mul_ps(vx_lo, vscale); vx_hi = _mm_mul_ps(vx_hi, vscale); vx_lo = _mm_min_ps(vx_lo, voutput_max_less_zero_point); vx_hi = _mm_min_ps(vx_hi, voutput_max_less_zero_point); const __m128i vy_lo = _mm_cvtps_epi32(vx_lo); const __m128i vy_hi = _mm_cvtps_epi32(vx_hi); __m128i vy = _mm_packs_epi32(vy_lo, vy_hi); vy = _mm_adds_epi16(vy, voutput_zero_point); vy = _mm_packus_epi16(vy, vy); vy = _mm_max_epu8(vy, voutput_min); _mm_storel_epi64((__m128i*) output, vy); output += 8; } if XNN_UNLIKELY(batch != 0) { __m128 vx_lo = _mm_loadu_ps(input); const float* x_hi = (const float*) ((uintptr_t) input + (batch & (4 * sizeof(float)))); __m128 vx_hi = _mm_loadu_ps(x_hi); vx_lo = _mm_mul_ps(vx_lo, vscale); vx_hi = _mm_mul_ps(vx_hi, vscale); vx_lo = _mm_min_ps(vx_lo, voutput_max_less_zero_point); vx_hi = _mm_min_ps(vx_hi, voutput_max_less_zero_point); const __m128i vy_lo = _mm_cvtps_epi32(vx_lo); const __m128i vy_hi = _mm_cvtps_epi32(vx_hi); __m128i vy = _mm_packs_epi32(vy_lo, vy_hi); vy = _mm_adds_epi16(vy, voutput_zero_point); vy = _mm_packus_epi16(vy, vy); vy = _mm_max_epu8(vy, voutput_min); if (batch & (4 * sizeof(float))) { unaligned_store_u32(output, (uint32_t) _mm_cvtsi128_si32(vy)); output += 4; vy = _mm_srli_epi64(vy, 32); } { uint32_t vy_lo = (uint32_t) _mm_cvtsi128_si32(vy); if (batch & (2 * sizeof(float))) { unaligned_store_u16(output, (uint16_t) vy_lo); output += 2; vy_lo >>= 16; } if (batch & (1 * sizeof(float))) { *output = (uint8_t) vy_lo; } } } }
4,990
33.902098
101
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-sse2-x32.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/sse.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <emmintrin.h> #include <xnnpack/common.h> #include <xnnpack/unaligned.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__sse2_x32( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m128 vscale = _mm_load_ps(params->sse2.scale); const __m128 voutput_max_less_zero_point = _mm_load_ps(params->sse2.output_max_less_zero_point); const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point); const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min); for (; batch >= 32 * sizeof(float); batch -= 32 * sizeof(float)) { __m128 vx0123 = _mm_loadu_ps(input); __m128 vx4567 = _mm_loadu_ps(input + 4); __m128 vx89AB = _mm_loadu_ps(input + 8); __m128 vxCDEF = _mm_loadu_ps(input + 12); __m128 vxGHIJ = _mm_loadu_ps(input + 16); __m128 vxKLMN = _mm_loadu_ps(input + 20); __m128 vxOPQR = _mm_loadu_ps(input + 24); __m128 vxSTUV = _mm_loadu_ps(input + 28); input += 32; vx0123 = _mm_mul_ps(vx0123, vscale); vx4567 = _mm_mul_ps(vx4567, vscale); vx89AB = _mm_mul_ps(vx89AB, vscale); vxCDEF = _mm_mul_ps(vxCDEF, vscale); vxGHIJ = _mm_mul_ps(vxGHIJ, vscale); vxKLMN = _mm_mul_ps(vxKLMN, vscale); vxOPQR = _mm_mul_ps(vxOPQR, vscale); vxSTUV = _mm_mul_ps(vxSTUV, vscale); vx0123 = _mm_min_ps(vx0123, voutput_max_less_zero_point); vx4567 = _mm_min_ps(vx4567, voutput_max_less_zero_point); vx89AB = _mm_min_ps(vx89AB, voutput_max_less_zero_point); vxCDEF = _mm_min_ps(vxCDEF, voutput_max_less_zero_point); vxGHIJ = _mm_min_ps(vxGHIJ, voutput_max_less_zero_point); vxKLMN = _mm_min_ps(vxKLMN, voutput_max_less_zero_point); vxOPQR = _mm_min_ps(vxOPQR, voutput_max_less_zero_point); vxSTUV = _mm_min_ps(vxSTUV, voutput_max_less_zero_point); const __m128i vy0123 = _mm_cvtps_epi32(vx0123); const __m128i vy4567 = _mm_cvtps_epi32(vx4567); const __m128i vy89AB = _mm_cvtps_epi32(vx89AB); const __m128i vyCDEF = _mm_cvtps_epi32(vxCDEF); const __m128i vyGHIJ = _mm_cvtps_epi32(vxGHIJ); const __m128i vyKLMN = _mm_cvtps_epi32(vxKLMN); const __m128i vyOPQR = _mm_cvtps_epi32(vxOPQR); const __m128i vySTUV = _mm_cvtps_epi32(vxSTUV); __m128i vy01234567 = _mm_packs_epi32(vy0123, vy4567); __m128i vy89ABCDEF = _mm_packs_epi32(vy89AB, vyCDEF); __m128i vyGHIJKLMN = _mm_packs_epi32(vyGHIJ, vyKLMN); __m128i vyOPQRSTUV = _mm_packs_epi32(vyOPQR, vySTUV); vy01234567 = _mm_adds_epi16(vy01234567, voutput_zero_point); vy89ABCDEF = _mm_adds_epi16(vy89ABCDEF, voutput_zero_point); vyGHIJKLMN = _mm_adds_epi16(vyGHIJKLMN, voutput_zero_point); vyOPQRSTUV = _mm_adds_epi16(vyOPQRSTUV, voutput_zero_point); __m128i vy0123456789ABCDEF = _mm_packus_epi16(vy01234567, vy89ABCDEF); __m128i vyGHIJKLMNOPQRSTUV = _mm_packus_epi16(vyGHIJKLMN, vyOPQRSTUV); vy0123456789ABCDEF = _mm_max_epu8(vy0123456789ABCDEF, voutput_min); vyGHIJKLMNOPQRSTUV = _mm_max_epu8(vyGHIJKLMNOPQRSTUV, voutput_min); _mm_storeu_si128((__m128i*) output, vy0123456789ABCDEF); _mm_storeu_si128((__m128i*) (output + 16), vyGHIJKLMNOPQRSTUV); output += 32; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { __m128 vx_lo = _mm_loadu_ps(input); __m128 vx_hi = _mm_loadu_ps(input + 4); input += 8; vx_lo = _mm_mul_ps(vx_lo, vscale); vx_hi = _mm_mul_ps(vx_hi, vscale); vx_lo = _mm_min_ps(vx_lo, voutput_max_less_zero_point); vx_hi = _mm_min_ps(vx_hi, voutput_max_less_zero_point); const __m128i vy_lo = _mm_cvtps_epi32(vx_lo); const __m128i vy_hi = _mm_cvtps_epi32(vx_hi); __m128i vy = _mm_packs_epi32(vy_lo, vy_hi); vy = _mm_adds_epi16(vy, voutput_zero_point); vy = _mm_packus_epi16(vy, vy); vy = _mm_max_epu8(vy, voutput_min); _mm_storel_epi64((__m128i*) output, vy); output += 8; } if XNN_UNLIKELY(batch != 0) { __m128 vx_lo = _mm_loadu_ps(input); const float* x_hi = (const float*) ((uintptr_t) input + (batch & (4 * sizeof(float)))); __m128 vx_hi = _mm_loadu_ps(x_hi); vx_lo = _mm_mul_ps(vx_lo, vscale); vx_hi = _mm_mul_ps(vx_hi, vscale); vx_lo = _mm_min_ps(vx_lo, voutput_max_less_zero_point); vx_hi = _mm_min_ps(vx_hi, voutput_max_less_zero_point); const __m128i vy_lo = _mm_cvtps_epi32(vx_lo); const __m128i vy_hi = _mm_cvtps_epi32(vx_hi); __m128i vy = _mm_packs_epi32(vy_lo, vy_hi); vy = _mm_adds_epi16(vy, voutput_zero_point); vy = _mm_packus_epi16(vy, vy); vy = _mm_max_epu8(vy, voutput_min); if (batch & (4 * sizeof(float))) { unaligned_store_u32(output, (uint32_t) _mm_cvtsi128_si32(vy)); output += 4; vy = _mm_srli_epi64(vy, 32); } { uint32_t vy_lo = (uint32_t) _mm_cvtsi128_si32(vy); if (batch & (2 * sizeof(float))) { unaligned_store_u16(output, (uint16_t) vy_lo); output += 2; vy_lo >>= 16; } if (batch & (1 * sizeof(float))) { *output = (uint8_t) vy_lo; } } } }
5,555
35.313725
101
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-sse2-x8.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/sse.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <emmintrin.h> #include <xnnpack/common.h> #include <xnnpack/unaligned.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__sse2_x8( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m128 vscale = _mm_load_ps(params->sse2.scale); const __m128 voutput_max_less_zero_point = _mm_load_ps(params->sse2.output_max_less_zero_point); const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point); const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min); for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { __m128 vx_lo = _mm_loadu_ps(input); __m128 vx_hi = _mm_loadu_ps(input + 4); input += 8; vx_lo = _mm_mul_ps(vx_lo, vscale); vx_hi = _mm_mul_ps(vx_hi, vscale); vx_lo = _mm_min_ps(vx_lo, voutput_max_less_zero_point); vx_hi = _mm_min_ps(vx_hi, voutput_max_less_zero_point); const __m128i vy_lo = _mm_cvtps_epi32(vx_lo); const __m128i vy_hi = _mm_cvtps_epi32(vx_hi); __m128i vy = _mm_packs_epi32(vy_lo, vy_hi); vy = _mm_adds_epi16(vy, voutput_zero_point); vy = _mm_packus_epi16(vy, vy); vy = _mm_max_epu8(vy, voutput_min); _mm_storel_epi64((__m128i*) output, vy); output += 8; } if XNN_UNLIKELY(batch != 0) { __m128 vx_lo = _mm_loadu_ps(input); const float* x_hi = (const float*) ((uintptr_t) input + (batch & (4 * sizeof(float)))); __m128 vx_hi = _mm_loadu_ps(x_hi); vx_lo = _mm_mul_ps(vx_lo, vscale); vx_hi = _mm_mul_ps(vx_hi, vscale); vx_lo = _mm_min_ps(vx_lo, voutput_max_less_zero_point); vx_hi = _mm_min_ps(vx_hi, voutput_max_less_zero_point); const __m128i vy_lo = _mm_cvtps_epi32(vx_lo); const __m128i vy_hi = _mm_cvtps_epi32(vx_hi); __m128i vy = _mm_packs_epi32(vy_lo, vy_hi); vy = _mm_adds_epi16(vy, voutput_zero_point); vy = _mm_packus_epi16(vy, vy); vy = _mm_max_epu8(vy, voutput_min); if (batch & (4 * sizeof(float))) { unaligned_store_u32(output, (uint32_t) _mm_cvtsi128_si32(vy)); output += 4; vy = _mm_srli_epi64(vy, 32); } { uint32_t vy_lo = (uint32_t) _mm_cvtsi128_si32(vy); if (batch & (2 * sizeof(float))) { unaligned_store_u16(output, (uint16_t) vy_lo); output += 2; vy_lo >>= 16; } if (batch & (1 * sizeof(float))) { *output = (uint8_t) vy_lo; } } } }
2,921
30.085106
101
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-wasm-fmagic-x1.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/scalar-fmagic.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <xnnpack/common.h> #include <xnnpack/math.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__wasm_fmagic_x1( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float vscale = params->scalar_fmagic.scale; const float voutput_min_less_zero_point = params->scalar_fmagic.output_min_less_zero_point; const float voutput_max_less_zero_point = params->scalar_fmagic.output_max_less_zero_point; const float vmagic_bias = params->scalar_fmagic.magic_bias; const int32_t vmagic_bias_less_zero_point = params->scalar_fmagic.magic_bias_less_zero_point; do { float vx = *input++; vx *= vscale; vx = __builtin_wasm_max_f32(vx, voutput_min_less_zero_point); vx = __builtin_wasm_min_f32(vx, voutput_max_less_zero_point); vx += vmagic_bias; int32_t vy = (int32_t) float_as_uint32(vx); vy -= vmagic_bias_less_zero_point; *output++ = (uint8_t) vy; batch -= sizeof(float); } while (batch != 0); }
1,466
28.938776
95
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-wasm-fmagic-x2.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/scalar-fmagic.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <xnnpack/common.h> #include <xnnpack/math.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__wasm_fmagic_x2( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float vscale = params->scalar_fmagic.scale; const float voutput_min_less_zero_point = params->scalar_fmagic.output_min_less_zero_point; const float voutput_max_less_zero_point = params->scalar_fmagic.output_max_less_zero_point; const float vmagic_bias = params->scalar_fmagic.magic_bias; const int32_t vmagic_bias_less_zero_point = params->scalar_fmagic.magic_bias_less_zero_point; for (; batch >= 2 * sizeof(float); batch -= 2 * sizeof(float)) { float vx0 = input[0]; float vx1 = input[1]; input += 2; vx0 *= vscale; vx1 *= vscale; vx0 = __builtin_wasm_max_f32(vx0, voutput_min_less_zero_point); vx1 = __builtin_wasm_max_f32(vx1, voutput_min_less_zero_point); vx0 = __builtin_wasm_min_f32(vx0, voutput_max_less_zero_point); vx1 = __builtin_wasm_min_f32(vx1, voutput_max_less_zero_point); vx0 += vmagic_bias; vx1 += vmagic_bias; int32_t vy0 = (int32_t) float_as_uint32(vx0); int32_t vy1 = (int32_t) float_as_uint32(vx1); vy0 -= vmagic_bias_less_zero_point; vy1 -= vmagic_bias_less_zero_point; output[0] = (uint8_t) vy0; output[1] = (uint8_t) vy1; output += 2; } if XNN_UNLIKELY(batch != 0) { float vx = *input; vx *= vscale; vx = __builtin_wasm_max_f32(vx, voutput_min_less_zero_point); vx = __builtin_wasm_min_f32(vx, voutput_max_less_zero_point); vx += vmagic_bias; int32_t vy = (int32_t) float_as_uint32(vx); vy -= vmagic_bias_less_zero_point; *output = (uint8_t) vy; } }
2,201
28.756757
95
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-wasm-fmagic-x3.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/scalar-fmagic.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <xnnpack/common.h> #include <xnnpack/math.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__wasm_fmagic_x3( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float vscale = params->scalar_fmagic.scale; const float voutput_min_less_zero_point = params->scalar_fmagic.output_min_less_zero_point; const float voutput_max_less_zero_point = params->scalar_fmagic.output_max_less_zero_point; const float vmagic_bias = params->scalar_fmagic.magic_bias; const int32_t vmagic_bias_less_zero_point = params->scalar_fmagic.magic_bias_less_zero_point; for (; batch >= 3 * sizeof(float); batch -= 3 * sizeof(float)) { float vx0 = input[0]; float vx1 = input[1]; float vx2 = input[2]; input += 3; vx0 *= vscale; vx1 *= vscale; vx2 *= vscale; vx0 = __builtin_wasm_max_f32(vx0, voutput_min_less_zero_point); vx1 = __builtin_wasm_max_f32(vx1, voutput_min_less_zero_point); vx2 = __builtin_wasm_max_f32(vx2, voutput_min_less_zero_point); vx0 = __builtin_wasm_min_f32(vx0, voutput_max_less_zero_point); vx1 = __builtin_wasm_min_f32(vx1, voutput_max_less_zero_point); vx2 = __builtin_wasm_min_f32(vx2, voutput_max_less_zero_point); vx0 += vmagic_bias; vx1 += vmagic_bias; vx2 += vmagic_bias; int32_t vy0 = (int32_t) float_as_uint32(vx0); int32_t vy1 = (int32_t) float_as_uint32(vx1); int32_t vy2 = (int32_t) float_as_uint32(vx2); vy0 -= vmagic_bias_less_zero_point; vy1 -= vmagic_bias_less_zero_point; vy2 -= vmagic_bias_less_zero_point; output[0] = (uint8_t) vy0; output[1] = (uint8_t) vy1; output[2] = (uint8_t) vy2; output += 3; } if XNN_UNLIKELY(batch != 0) { do { float vx = *input++; vx *= vscale; vx = __builtin_wasm_max_f32(vx, voutput_min_less_zero_point); vx = __builtin_wasm_min_f32(vx, voutput_max_less_zero_point); vx += vmagic_bias; int32_t vy = (int32_t) float_as_uint32(vx); vy -= vmagic_bias_less_zero_point; *output++ = (uint8_t) vy; batch -= sizeof(float); } while (batch != 0); } }
2,613
29.395349
95
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-wasm-fmagic-x4.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/scalar-fmagic.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <xnnpack/common.h> #include <xnnpack/math.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__wasm_fmagic_x4( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float vscale = params->scalar_fmagic.scale; const float voutput_min_less_zero_point = params->scalar_fmagic.output_min_less_zero_point; const float voutput_max_less_zero_point = params->scalar_fmagic.output_max_less_zero_point; const float vmagic_bias = params->scalar_fmagic.magic_bias; const int32_t vmagic_bias_less_zero_point = params->scalar_fmagic.magic_bias_less_zero_point; for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { float vx0 = input[0]; float vx1 = input[1]; float vx2 = input[2]; float vx3 = input[3]; input += 4; vx0 *= vscale; vx1 *= vscale; vx2 *= vscale; vx3 *= vscale; vx0 = __builtin_wasm_max_f32(vx0, voutput_min_less_zero_point); vx1 = __builtin_wasm_max_f32(vx1, voutput_min_less_zero_point); vx2 = __builtin_wasm_max_f32(vx2, voutput_min_less_zero_point); vx3 = __builtin_wasm_max_f32(vx3, voutput_min_less_zero_point); vx0 = __builtin_wasm_min_f32(vx0, voutput_max_less_zero_point); vx1 = __builtin_wasm_min_f32(vx1, voutput_max_less_zero_point); vx2 = __builtin_wasm_min_f32(vx2, voutput_max_less_zero_point); vx3 = __builtin_wasm_min_f32(vx3, voutput_max_less_zero_point); vx0 += vmagic_bias; vx1 += vmagic_bias; vx2 += vmagic_bias; vx3 += vmagic_bias; int32_t vy0 = (int32_t) float_as_uint32(vx0); int32_t vy1 = (int32_t) float_as_uint32(vx1); int32_t vy2 = (int32_t) float_as_uint32(vx2); int32_t vy3 = (int32_t) float_as_uint32(vx3); vy0 -= vmagic_bias_less_zero_point; vy1 -= vmagic_bias_less_zero_point; vy2 -= vmagic_bias_less_zero_point; vy3 -= vmagic_bias_less_zero_point; output[0] = (uint8_t) vy0; output[1] = (uint8_t) vy1; output[2] = (uint8_t) vy2; output[3] = (uint8_t) vy3; output += 4; } if XNN_UNLIKELY(batch != 0) { do { float vx = *input++; vx *= vscale; vx = __builtin_wasm_max_f32(vx, voutput_min_less_zero_point); vx = __builtin_wasm_min_f32(vx, voutput_max_less_zero_point); vx += vmagic_bias; int32_t vy = (int32_t) float_as_uint32(vx); vy -= vmagic_bias_less_zero_point; *output++ = (uint8_t) vy; batch -= sizeof(float); } while (batch != 0); } }
2,939
30.276596
95
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-wasmsimd-cvt-x16.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/wasmsimd-cvt.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__wasmsimd_cvt_x16( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const v128_t vscale = wasm_v128_load64_splat(params->wasmsimd_cvt.scale); const v128_t voutput_zero_point = wasm_v128_load64_splat(params->wasmsimd_cvt.output_zero_point); const v128_t voutput_min = wasm_v128_load64_splat(params->wasmsimd_cvt.output_min); const v128_t voutput_max = wasm_v128_load64_splat(params->wasmsimd_cvt.output_max); for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { v128_t vx0123 = wasm_v128_load(input); v128_t vx4567 = wasm_v128_load(input + 4); v128_t vx89AB = wasm_v128_load(input + 8); v128_t vxCDEF = wasm_v128_load(input + 12); input += 16; vx0123 = wasm_f32x4_mul(vx0123, vscale); vx4567 = wasm_f32x4_mul(vx4567, vscale); vx89AB = wasm_f32x4_mul(vx89AB, vscale); vxCDEF = wasm_f32x4_mul(vxCDEF, vscale); vx0123 = wasm_f32x4_nearest(vx0123); vx4567 = wasm_f32x4_nearest(vx4567); vx89AB = wasm_f32x4_nearest(vx89AB); vxCDEF = wasm_f32x4_nearest(vxCDEF); v128_t vacc0123 = wasm_i32x4_trunc_sat_f32x4(vx0123); v128_t vacc4567 = wasm_i32x4_trunc_sat_f32x4(vx4567); v128_t vacc89AB = wasm_i32x4_trunc_sat_f32x4(vx89AB); v128_t vaccCDEF = wasm_i32x4_trunc_sat_f32x4(vxCDEF); v128_t vacc01234567 = wasm_i16x8_narrow_i32x4(vacc0123, vacc4567); v128_t vacc89ABCDEF = wasm_i16x8_narrow_i32x4(vacc89AB, vaccCDEF); vacc01234567 = wasm_i16x8_add_sat(vacc01234567, voutput_zero_point); vacc89ABCDEF = wasm_i16x8_add_sat(vacc89ABCDEF, voutput_zero_point); v128_t vy0123456789ABCDEF = wasm_u8x16_narrow_i16x8(vacc01234567, vacc89ABCDEF); vy0123456789ABCDEF = wasm_u8x16_max(vy0123456789ABCDEF, voutput_min); vy0123456789ABCDEF = wasm_u8x16_min(vy0123456789ABCDEF, voutput_max); wasm_v128_store(output, vy0123456789ABCDEF); output += 16; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { v128_t vx_lo = wasm_v128_load(input); v128_t vx_hi = wasm_v128_load(input + 4); input += 8; vx_lo = wasm_f32x4_mul(vx_lo, vscale); vx_hi = wasm_f32x4_mul(vx_hi, vscale); vx_lo = wasm_f32x4_nearest(vx_lo); vx_hi = wasm_f32x4_nearest(vx_hi); v128_t vacc_lo = wasm_i32x4_trunc_sat_f32x4(vx_lo); v128_t vacc_hi = wasm_i32x4_trunc_sat_f32x4(vx_hi); v128_t vacc = wasm_i16x8_narrow_i32x4(vacc_lo, vacc_hi); vacc = wasm_i16x8_add_sat(vacc, voutput_zero_point); v128_t vy = wasm_u8x16_narrow_i16x8(vacc, vacc); vy = wasm_u8x16_max(vy, voutput_min); vy = wasm_u8x16_min(vy, voutput_max); wasm_v128_store64_lane(output, vy, 0); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); v128_t vx_lo = wasm_v128_load(input); const float* x_hi = (const float*) ((uintptr_t) input + (batch & (4 * sizeof(float)))); v128_t vx_hi = wasm_v128_load(x_hi); vx_lo = wasm_f32x4_mul(vx_lo, vscale); vx_hi = wasm_f32x4_mul(vx_hi, vscale); vx_lo = wasm_f32x4_nearest(vx_lo); vx_hi = wasm_f32x4_nearest(vx_hi); v128_t vacc_lo = wasm_i32x4_trunc_sat_f32x4(vx_lo); v128_t vacc_hi = wasm_i32x4_trunc_sat_f32x4(vx_hi); v128_t vacc = wasm_i16x8_narrow_i32x4(vacc_lo, vacc_hi); vacc = wasm_i16x8_add_sat(vacc, voutput_zero_point); v128_t vy = wasm_u8x16_narrow_i16x8(vacc, vacc); vy = wasm_u8x16_max(vy, voutput_min); vy = wasm_u8x16_min(vy, voutput_max); if (batch & (4 * sizeof(float))) { wasm_v128_store32_lane(output, vy, 0); vy = wasm_u64x2_shr(vy, 32); output += 4; } if (batch & (2 * sizeof(float))) { wasm_v128_store16_lane(output, vy, 0); vy = wasm_u32x4_shr(vy, 16); output += 2; } if (batch & (1 * sizeof(float))) { wasm_v128_store8_lane(output, vy, 0); } } }
4,516
32.962406
99
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-wasmsimd-cvt-x24.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/wasmsimd-cvt.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__wasmsimd_cvt_x24( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const v128_t vscale = wasm_v128_load64_splat(params->wasmsimd_cvt.scale); const v128_t voutput_zero_point = wasm_v128_load64_splat(params->wasmsimd_cvt.output_zero_point); const v128_t voutput_min = wasm_v128_load64_splat(params->wasmsimd_cvt.output_min); const v128_t voutput_max = wasm_v128_load64_splat(params->wasmsimd_cvt.output_max); for (; batch >= 24 * sizeof(float); batch -= 24 * sizeof(float)) { v128_t vx0123 = wasm_v128_load(input); v128_t vx4567 = wasm_v128_load(input + 4); v128_t vx89AB = wasm_v128_load(input + 8); v128_t vxCDEF = wasm_v128_load(input + 12); v128_t vxGHIJ = wasm_v128_load(input + 16); v128_t vxKLMN = wasm_v128_load(input + 20); input += 24; vx0123 = wasm_f32x4_mul(vx0123, vscale); vx4567 = wasm_f32x4_mul(vx4567, vscale); vx89AB = wasm_f32x4_mul(vx89AB, vscale); vxCDEF = wasm_f32x4_mul(vxCDEF, vscale); vxGHIJ = wasm_f32x4_mul(vxGHIJ, vscale); vxKLMN = wasm_f32x4_mul(vxKLMN, vscale); vx0123 = wasm_f32x4_nearest(vx0123); vx4567 = wasm_f32x4_nearest(vx4567); vx89AB = wasm_f32x4_nearest(vx89AB); vxCDEF = wasm_f32x4_nearest(vxCDEF); vxGHIJ = wasm_f32x4_nearest(vxGHIJ); vxKLMN = wasm_f32x4_nearest(vxKLMN); v128_t vacc0123 = wasm_i32x4_trunc_sat_f32x4(vx0123); v128_t vacc4567 = wasm_i32x4_trunc_sat_f32x4(vx4567); v128_t vacc89AB = wasm_i32x4_trunc_sat_f32x4(vx89AB); v128_t vaccCDEF = wasm_i32x4_trunc_sat_f32x4(vxCDEF); v128_t vaccGHIJ = wasm_i32x4_trunc_sat_f32x4(vxGHIJ); v128_t vaccKLMN = wasm_i32x4_trunc_sat_f32x4(vxKLMN); v128_t vacc01234567 = wasm_i16x8_narrow_i32x4(vacc0123, vacc4567); v128_t vacc89ABCDEF = wasm_i16x8_narrow_i32x4(vacc89AB, vaccCDEF); v128_t vaccGHIJKLMN = wasm_i16x8_narrow_i32x4(vaccGHIJ, vaccKLMN); vacc01234567 = wasm_i16x8_add_sat(vacc01234567, voutput_zero_point); vacc89ABCDEF = wasm_i16x8_add_sat(vacc89ABCDEF, voutput_zero_point); vaccGHIJKLMN = wasm_i16x8_add_sat(vaccGHIJKLMN, voutput_zero_point); v128_t vy0123456789ABCDEF = wasm_u8x16_narrow_i16x8(vacc01234567, vacc89ABCDEF); v128_t vyGHIJKLMN = wasm_u8x16_narrow_i16x8(vaccGHIJKLMN, vaccGHIJKLMN); vy0123456789ABCDEF = wasm_u8x16_max(vy0123456789ABCDEF, voutput_min); vyGHIJKLMN = wasm_u8x16_max(vyGHIJKLMN, voutput_min); vy0123456789ABCDEF = wasm_u8x16_min(vy0123456789ABCDEF, voutput_max); vyGHIJKLMN = wasm_u8x16_min(vyGHIJKLMN, voutput_max); wasm_v128_store(output, vy0123456789ABCDEF); wasm_v128_store64_lane(output + 16, vyGHIJKLMN, 0); output += 24; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { v128_t vx_lo = wasm_v128_load(input); v128_t vx_hi = wasm_v128_load(input + 4); input += 8; vx_lo = wasm_f32x4_mul(vx_lo, vscale); vx_hi = wasm_f32x4_mul(vx_hi, vscale); vx_lo = wasm_f32x4_nearest(vx_lo); vx_hi = wasm_f32x4_nearest(vx_hi); v128_t vacc_lo = wasm_i32x4_trunc_sat_f32x4(vx_lo); v128_t vacc_hi = wasm_i32x4_trunc_sat_f32x4(vx_hi); v128_t vacc = wasm_i16x8_narrow_i32x4(vacc_lo, vacc_hi); vacc = wasm_i16x8_add_sat(vacc, voutput_zero_point); v128_t vy = wasm_u8x16_narrow_i16x8(vacc, vacc); vy = wasm_u8x16_max(vy, voutput_min); vy = wasm_u8x16_min(vy, voutput_max); wasm_v128_store64_lane(output, vy, 0); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); v128_t vx_lo = wasm_v128_load(input); const float* x_hi = (const float*) ((uintptr_t) input + (batch & (4 * sizeof(float)))); v128_t vx_hi = wasm_v128_load(x_hi); vx_lo = wasm_f32x4_mul(vx_lo, vscale); vx_hi = wasm_f32x4_mul(vx_hi, vscale); vx_lo = wasm_f32x4_nearest(vx_lo); vx_hi = wasm_f32x4_nearest(vx_hi); v128_t vacc_lo = wasm_i32x4_trunc_sat_f32x4(vx_lo); v128_t vacc_hi = wasm_i32x4_trunc_sat_f32x4(vx_hi); v128_t vacc = wasm_i16x8_narrow_i32x4(vacc_lo, vacc_hi); vacc = wasm_i16x8_add_sat(vacc, voutput_zero_point); v128_t vy = wasm_u8x16_narrow_i16x8(vacc, vacc); vy = wasm_u8x16_max(vy, voutput_min); vy = wasm_u8x16_min(vy, voutput_max); if (batch & (4 * sizeof(float))) { wasm_v128_store32_lane(output, vy, 0); vy = wasm_u64x2_shr(vy, 32); output += 4; } if (batch & (2 * sizeof(float))) { wasm_v128_store16_lane(output, vy, 0); vy = wasm_u32x4_shr(vy, 16); output += 2; } if (batch & (1 * sizeof(float))) { wasm_v128_store8_lane(output, vy, 0); } } }
5,293
35.013605
99
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-wasmsimd-cvt-x32.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/wasmsimd-cvt.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__wasmsimd_cvt_x32( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const v128_t vscale = wasm_v128_load64_splat(params->wasmsimd_cvt.scale); const v128_t voutput_zero_point = wasm_v128_load64_splat(params->wasmsimd_cvt.output_zero_point); const v128_t voutput_min = wasm_v128_load64_splat(params->wasmsimd_cvt.output_min); const v128_t voutput_max = wasm_v128_load64_splat(params->wasmsimd_cvt.output_max); for (; batch >= 32 * sizeof(float); batch -= 32 * sizeof(float)) { v128_t vx0123 = wasm_v128_load(input); v128_t vx4567 = wasm_v128_load(input + 4); v128_t vx89AB = wasm_v128_load(input + 8); v128_t vxCDEF = wasm_v128_load(input + 12); v128_t vxGHIJ = wasm_v128_load(input + 16); v128_t vxKLMN = wasm_v128_load(input + 20); v128_t vxOPQR = wasm_v128_load(input + 24); v128_t vxSTUV = wasm_v128_load(input + 28); input += 32; vx0123 = wasm_f32x4_mul(vx0123, vscale); vx4567 = wasm_f32x4_mul(vx4567, vscale); vx89AB = wasm_f32x4_mul(vx89AB, vscale); vxCDEF = wasm_f32x4_mul(vxCDEF, vscale); vxGHIJ = wasm_f32x4_mul(vxGHIJ, vscale); vxKLMN = wasm_f32x4_mul(vxKLMN, vscale); vxOPQR = wasm_f32x4_mul(vxOPQR, vscale); vxSTUV = wasm_f32x4_mul(vxSTUV, vscale); vx0123 = wasm_f32x4_nearest(vx0123); vx4567 = wasm_f32x4_nearest(vx4567); vx89AB = wasm_f32x4_nearest(vx89AB); vxCDEF = wasm_f32x4_nearest(vxCDEF); vxGHIJ = wasm_f32x4_nearest(vxGHIJ); vxKLMN = wasm_f32x4_nearest(vxKLMN); vxOPQR = wasm_f32x4_nearest(vxOPQR); vxSTUV = wasm_f32x4_nearest(vxSTUV); v128_t vacc0123 = wasm_i32x4_trunc_sat_f32x4(vx0123); v128_t vacc4567 = wasm_i32x4_trunc_sat_f32x4(vx4567); v128_t vacc89AB = wasm_i32x4_trunc_sat_f32x4(vx89AB); v128_t vaccCDEF = wasm_i32x4_trunc_sat_f32x4(vxCDEF); v128_t vaccGHIJ = wasm_i32x4_trunc_sat_f32x4(vxGHIJ); v128_t vaccKLMN = wasm_i32x4_trunc_sat_f32x4(vxKLMN); v128_t vaccOPQR = wasm_i32x4_trunc_sat_f32x4(vxOPQR); v128_t vaccSTUV = wasm_i32x4_trunc_sat_f32x4(vxSTUV); v128_t vacc01234567 = wasm_i16x8_narrow_i32x4(vacc0123, vacc4567); v128_t vacc89ABCDEF = wasm_i16x8_narrow_i32x4(vacc89AB, vaccCDEF); v128_t vaccGHIJKLMN = wasm_i16x8_narrow_i32x4(vaccGHIJ, vaccKLMN); v128_t vaccOPQRSTUV = wasm_i16x8_narrow_i32x4(vaccOPQR, vaccSTUV); vacc01234567 = wasm_i16x8_add_sat(vacc01234567, voutput_zero_point); vacc89ABCDEF = wasm_i16x8_add_sat(vacc89ABCDEF, voutput_zero_point); vaccGHIJKLMN = wasm_i16x8_add_sat(vaccGHIJKLMN, voutput_zero_point); vaccOPQRSTUV = wasm_i16x8_add_sat(vaccOPQRSTUV, voutput_zero_point); v128_t vy0123456789ABCDEF = wasm_u8x16_narrow_i16x8(vacc01234567, vacc89ABCDEF); v128_t vyGHIJKLMNOPQRSTUV = wasm_u8x16_narrow_i16x8(vaccGHIJKLMN, vaccOPQRSTUV); vy0123456789ABCDEF = wasm_u8x16_max(vy0123456789ABCDEF, voutput_min); vyGHIJKLMNOPQRSTUV = wasm_u8x16_max(vyGHIJKLMNOPQRSTUV, voutput_min); vy0123456789ABCDEF = wasm_u8x16_min(vy0123456789ABCDEF, voutput_max); vyGHIJKLMNOPQRSTUV = wasm_u8x16_min(vyGHIJKLMNOPQRSTUV, voutput_max); wasm_v128_store(output, vy0123456789ABCDEF); wasm_v128_store(output + 16, vyGHIJKLMNOPQRSTUV); output += 32; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { v128_t vx_lo = wasm_v128_load(input); v128_t vx_hi = wasm_v128_load(input + 4); input += 8; vx_lo = wasm_f32x4_mul(vx_lo, vscale); vx_hi = wasm_f32x4_mul(vx_hi, vscale); vx_lo = wasm_f32x4_nearest(vx_lo); vx_hi = wasm_f32x4_nearest(vx_hi); v128_t vacc_lo = wasm_i32x4_trunc_sat_f32x4(vx_lo); v128_t vacc_hi = wasm_i32x4_trunc_sat_f32x4(vx_hi); v128_t vacc = wasm_i16x8_narrow_i32x4(vacc_lo, vacc_hi); vacc = wasm_i16x8_add_sat(vacc, voutput_zero_point); v128_t vy = wasm_u8x16_narrow_i16x8(vacc, vacc); vy = wasm_u8x16_max(vy, voutput_min); vy = wasm_u8x16_min(vy, voutput_max); wasm_v128_store64_lane(output, vy, 0); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); v128_t vx_lo = wasm_v128_load(input); const float* x_hi = (const float*) ((uintptr_t) input + (batch & (4 * sizeof(float)))); v128_t vx_hi = wasm_v128_load(x_hi); vx_lo = wasm_f32x4_mul(vx_lo, vscale); vx_hi = wasm_f32x4_mul(vx_hi, vscale); vx_lo = wasm_f32x4_nearest(vx_lo); vx_hi = wasm_f32x4_nearest(vx_hi); v128_t vacc_lo = wasm_i32x4_trunc_sat_f32x4(vx_lo); v128_t vacc_hi = wasm_i32x4_trunc_sat_f32x4(vx_hi); v128_t vacc = wasm_i16x8_narrow_i32x4(vacc_lo, vacc_hi); vacc = wasm_i16x8_add_sat(vacc, voutput_zero_point); v128_t vy = wasm_u8x16_narrow_i16x8(vacc, vacc); vy = wasm_u8x16_max(vy, voutput_min); vy = wasm_u8x16_min(vy, voutput_max); if (batch & (4 * sizeof(float))) { wasm_v128_store32_lane(output, vy, 0); vy = wasm_u64x2_shr(vy, 32); output += 4; } if (batch & (2 * sizeof(float))) { wasm_v128_store16_lane(output, vy, 0); vy = wasm_u32x4_shr(vy, 16); output += 2; } if (batch & (1 * sizeof(float))) { wasm_v128_store8_lane(output, vy, 0); } } }
5,859
36.324841
99
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-wasmsimd-cvt-x8.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/wasmsimd-cvt.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__wasmsimd_cvt_x8( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const v128_t vscale = wasm_v128_load64_splat(params->wasmsimd_cvt.scale); const v128_t voutput_zero_point = wasm_v128_load64_splat(params->wasmsimd_cvt.output_zero_point); const v128_t voutput_min = wasm_v128_load64_splat(params->wasmsimd_cvt.output_min); const v128_t voutput_max = wasm_v128_load64_splat(params->wasmsimd_cvt.output_max); for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { v128_t vx_lo = wasm_v128_load(input); v128_t vx_hi = wasm_v128_load(input + 4); input += 8; vx_lo = wasm_f32x4_mul(vx_lo, vscale); vx_hi = wasm_f32x4_mul(vx_hi, vscale); vx_lo = wasm_f32x4_nearest(vx_lo); vx_hi = wasm_f32x4_nearest(vx_hi); v128_t vacc_lo = wasm_i32x4_trunc_sat_f32x4(vx_lo); v128_t vacc_hi = wasm_i32x4_trunc_sat_f32x4(vx_hi); v128_t vacc = wasm_i16x8_narrow_i32x4(vacc_lo, vacc_hi); vacc = wasm_i16x8_add_sat(vacc, voutput_zero_point); v128_t vy = wasm_u8x16_narrow_i16x8(vacc, vacc); vy = wasm_u8x16_max(vy, voutput_min); vy = wasm_u8x16_min(vy, voutput_max); wasm_v128_store64_lane(output, vy, 0); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); v128_t vx_lo = wasm_v128_load(input); const float* x_hi = (const float*) ((uintptr_t) input + (batch & (4 * sizeof(float)))); v128_t vx_hi = wasm_v128_load(x_hi); vx_lo = wasm_f32x4_mul(vx_lo, vscale); vx_hi = wasm_f32x4_mul(vx_hi, vscale); vx_lo = wasm_f32x4_nearest(vx_lo); vx_hi = wasm_f32x4_nearest(vx_hi); v128_t vacc_lo = wasm_i32x4_trunc_sat_f32x4(vx_lo); v128_t vacc_hi = wasm_i32x4_trunc_sat_f32x4(vx_hi); v128_t vacc = wasm_i16x8_narrow_i32x4(vacc_lo, vacc_hi); vacc = wasm_i16x8_add_sat(vacc, voutput_zero_point); v128_t vy = wasm_u8x16_narrow_i16x8(vacc, vacc); vy = wasm_u8x16_max(vy, voutput_min); vy = wasm_u8x16_min(vy, voutput_max); if (batch & (4 * sizeof(float))) { wasm_v128_store32_lane(output, vy, 0); vy = wasm_u64x2_shr(vy, 32); output += 4; } if (batch & (2 * sizeof(float))) { wasm_v128_store16_lane(output, vy, 0); vy = wasm_u32x4_shr(vy, 16); output += 2; } if (batch & (1 * sizeof(float))) { wasm_v128_store8_lane(output, vy, 0); } } }
3,067
30.958333
99
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-wasmsimd-magic-x16.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/wasmsimd-magic.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__wasmsimd_magic_x16( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const v128_t vscale = wasm_v128_load64_splat(params->wasmsimd_magic.scale); const v128_t vmagic_bias = wasm_v128_load64_splat(params->wasmsimd_magic.magic_bias); const v128_t vmagic_min = wasm_v128_load64_splat(params->wasmsimd_magic.magic_min); const v128_t vmagic_bias_less_zero_point = wasm_v128_load64_splat(params->wasmsimd_magic.magic_bias_less_zero_point); const v128_t voutput_max = wasm_v128_load64_splat(params->wasmsimd_magic.output_max); for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { v128_t vx0123 = wasm_v128_load(input); v128_t vx4567 = wasm_v128_load(input + 4); v128_t vx89AB = wasm_v128_load(input + 8); v128_t vxCDEF = wasm_v128_load(input + 12); input += 16; vx0123 = wasm_f32x4_mul(vx0123, vscale); vx4567 = wasm_f32x4_mul(vx4567, vscale); vx89AB = wasm_f32x4_mul(vx89AB, vscale); vxCDEF = wasm_f32x4_mul(vxCDEF, vscale); vx0123 = wasm_f32x4_add(vx0123, vmagic_bias); vx4567 = wasm_f32x4_add(vx4567, vmagic_bias); vx89AB = wasm_f32x4_add(vx89AB, vmagic_bias); vxCDEF = wasm_f32x4_add(vxCDEF, vmagic_bias); v128_t vacc0123 = wasm_i32x4_max(vx0123, vmagic_min); v128_t vacc4567 = wasm_i32x4_max(vx4567, vmagic_min); v128_t vacc89AB = wasm_i32x4_max(vx89AB, vmagic_min); v128_t vaccCDEF = wasm_i32x4_max(vxCDEF, vmagic_min); vacc0123 = wasm_i32x4_sub(vacc0123, vmagic_bias_less_zero_point); vacc4567 = wasm_i32x4_sub(vacc4567, vmagic_bias_less_zero_point); vacc89AB = wasm_i32x4_sub(vacc89AB, vmagic_bias_less_zero_point); vaccCDEF = wasm_i32x4_sub(vaccCDEF, vmagic_bias_less_zero_point); const v128_t vacc01234567 = wasm_i16x8_narrow_i32x4(vacc0123, vacc4567); const v128_t vacc89ABCDEF = wasm_i16x8_narrow_i32x4(vacc89AB, vaccCDEF); v128_t vy0123456789ABCDEF = wasm_u8x16_narrow_i16x8(vacc01234567, vacc89ABCDEF); vy0123456789ABCDEF = wasm_u8x16_min(vy0123456789ABCDEF, voutput_max); wasm_v128_store(output, vy0123456789ABCDEF); output += 16; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { v128_t vx_lo = wasm_v128_load(input); v128_t vx_hi = wasm_v128_load(input + 4); input += 8; vx_lo = wasm_f32x4_mul(vx_lo, vscale); vx_hi = wasm_f32x4_mul(vx_hi, vscale); vx_lo = wasm_f32x4_add(vx_lo, vmagic_bias); vx_hi = wasm_f32x4_add(vx_hi, vmagic_bias); v128_t vacc_lo = wasm_i32x4_max(vx_lo, vmagic_min); v128_t vacc_hi = wasm_i32x4_max(vx_hi, vmagic_min); vacc_lo = wasm_i32x4_sub(vacc_lo, vmagic_bias_less_zero_point); vacc_hi = wasm_i32x4_sub(vacc_hi, vmagic_bias_less_zero_point); const v128_t vacc = wasm_i16x8_narrow_i32x4(vacc_lo, vacc_hi); v128_t vy = wasm_u8x16_narrow_i16x8(vacc, vacc); vy = wasm_u8x16_min(vy, voutput_max); wasm_v128_store64_lane(output, vy, 0); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); v128_t vx_lo = wasm_v128_load(input); const float* x_hi = (const float*) ((uintptr_t) input + (batch & (4 * sizeof(float)))); v128_t vx_hi = wasm_v128_load(x_hi); vx_lo = wasm_f32x4_mul(vx_lo, vscale); vx_hi = wasm_f32x4_mul(vx_hi, vscale); vx_lo = wasm_f32x4_add(vx_lo, vmagic_bias); vx_hi = wasm_f32x4_add(vx_hi, vmagic_bias); v128_t vacc_lo = wasm_i32x4_max(vx_lo, vmagic_min); v128_t vacc_hi = wasm_i32x4_max(vx_hi, vmagic_min); vacc_lo = wasm_i32x4_sub(vacc_lo, vmagic_bias_less_zero_point); vacc_hi = wasm_i32x4_sub(vacc_hi, vmagic_bias_less_zero_point); const v128_t vacc = wasm_i16x8_narrow_i32x4(vacc_lo, vacc_hi); v128_t vy = wasm_u8x16_narrow_i16x8(vacc, vacc); vy = wasm_u8x16_min(vy, voutput_max); if (batch & (4 * sizeof(float))) { wasm_v128_store32_lane(output, vy, 0); vy = wasm_u64x2_shr(vy, 32); output += 4; } if (batch & (2 * sizeof(float))) { wasm_v128_store16_lane(output, vy, 0); vy = wasm_u32x4_shr(vy, 16); output += 2; } if (batch & (1 * sizeof(float))) { wasm_v128_store8_lane(output, vy, 0); } } }
4,862
35.022222
119
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-wasmsimd-magic-x24.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/wasmsimd-magic.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__wasmsimd_magic_x24( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const v128_t vscale = wasm_v128_load64_splat(params->wasmsimd_magic.scale); const v128_t vmagic_bias = wasm_v128_load64_splat(params->wasmsimd_magic.magic_bias); const v128_t vmagic_min = wasm_v128_load64_splat(params->wasmsimd_magic.magic_min); const v128_t vmagic_bias_less_zero_point = wasm_v128_load64_splat(params->wasmsimd_magic.magic_bias_less_zero_point); const v128_t voutput_max = wasm_v128_load64_splat(params->wasmsimd_magic.output_max); for (; batch >= 24 * sizeof(float); batch -= 24 * sizeof(float)) { v128_t vx0123 = wasm_v128_load(input); v128_t vx4567 = wasm_v128_load(input + 4); v128_t vx89AB = wasm_v128_load(input + 8); v128_t vxCDEF = wasm_v128_load(input + 12); v128_t vxGHIJ = wasm_v128_load(input + 16); v128_t vxKLMN = wasm_v128_load(input + 20); input += 24; vx0123 = wasm_f32x4_mul(vx0123, vscale); vx4567 = wasm_f32x4_mul(vx4567, vscale); vx89AB = wasm_f32x4_mul(vx89AB, vscale); vxCDEF = wasm_f32x4_mul(vxCDEF, vscale); vxGHIJ = wasm_f32x4_mul(vxGHIJ, vscale); vxKLMN = wasm_f32x4_mul(vxKLMN, vscale); vx0123 = wasm_f32x4_add(vx0123, vmagic_bias); vx4567 = wasm_f32x4_add(vx4567, vmagic_bias); vx89AB = wasm_f32x4_add(vx89AB, vmagic_bias); vxCDEF = wasm_f32x4_add(vxCDEF, vmagic_bias); vxGHIJ = wasm_f32x4_add(vxGHIJ, vmagic_bias); vxKLMN = wasm_f32x4_add(vxKLMN, vmagic_bias); v128_t vacc0123 = wasm_i32x4_max(vx0123, vmagic_min); v128_t vacc4567 = wasm_i32x4_max(vx4567, vmagic_min); v128_t vacc89AB = wasm_i32x4_max(vx89AB, vmagic_min); v128_t vaccCDEF = wasm_i32x4_max(vxCDEF, vmagic_min); v128_t vaccGHIJ = wasm_i32x4_max(vxGHIJ, vmagic_min); v128_t vaccKLMN = wasm_i32x4_max(vxKLMN, vmagic_min); vacc0123 = wasm_i32x4_sub(vacc0123, vmagic_bias_less_zero_point); vacc4567 = wasm_i32x4_sub(vacc4567, vmagic_bias_less_zero_point); vacc89AB = wasm_i32x4_sub(vacc89AB, vmagic_bias_less_zero_point); vaccCDEF = wasm_i32x4_sub(vaccCDEF, vmagic_bias_less_zero_point); vaccGHIJ = wasm_i32x4_sub(vaccGHIJ, vmagic_bias_less_zero_point); vaccKLMN = wasm_i32x4_sub(vaccKLMN, vmagic_bias_less_zero_point); const v128_t vacc01234567 = wasm_i16x8_narrow_i32x4(vacc0123, vacc4567); const v128_t vacc89ABCDEF = wasm_i16x8_narrow_i32x4(vacc89AB, vaccCDEF); const v128_t vaccGHIJKLMN = wasm_i16x8_narrow_i32x4(vaccGHIJ, vaccKLMN); v128_t vy0123456789ABCDEF = wasm_u8x16_narrow_i16x8(vacc01234567, vacc89ABCDEF); v128_t vyGHIJKLMN = wasm_u8x16_narrow_i16x8(vaccGHIJKLMN, vaccGHIJKLMN); vy0123456789ABCDEF = wasm_u8x16_min(vy0123456789ABCDEF, voutput_max); vyGHIJKLMN = wasm_u8x16_min(vyGHIJKLMN, voutput_max); wasm_v128_store(output, vy0123456789ABCDEF); wasm_v128_store64_lane(output + 16, vyGHIJKLMN, 0); output += 24; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { v128_t vx_lo = wasm_v128_load(input); v128_t vx_hi = wasm_v128_load(input + 4); input += 8; vx_lo = wasm_f32x4_mul(vx_lo, vscale); vx_hi = wasm_f32x4_mul(vx_hi, vscale); vx_lo = wasm_f32x4_add(vx_lo, vmagic_bias); vx_hi = wasm_f32x4_add(vx_hi, vmagic_bias); v128_t vacc_lo = wasm_i32x4_max(vx_lo, vmagic_min); v128_t vacc_hi = wasm_i32x4_max(vx_hi, vmagic_min); vacc_lo = wasm_i32x4_sub(vacc_lo, vmagic_bias_less_zero_point); vacc_hi = wasm_i32x4_sub(vacc_hi, vmagic_bias_less_zero_point); const v128_t vacc = wasm_i16x8_narrow_i32x4(vacc_lo, vacc_hi); v128_t vy = wasm_u8x16_narrow_i16x8(vacc, vacc); vy = wasm_u8x16_min(vy, voutput_max); wasm_v128_store64_lane(output, vy, 0); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); v128_t vx_lo = wasm_v128_load(input); const float* x_hi = (const float*) ((uintptr_t) input + (batch & (4 * sizeof(float)))); v128_t vx_hi = wasm_v128_load(x_hi); vx_lo = wasm_f32x4_mul(vx_lo, vscale); vx_hi = wasm_f32x4_mul(vx_hi, vscale); vx_lo = wasm_f32x4_add(vx_lo, vmagic_bias); vx_hi = wasm_f32x4_add(vx_hi, vmagic_bias); v128_t vacc_lo = wasm_i32x4_max(vx_lo, vmagic_min); v128_t vacc_hi = wasm_i32x4_max(vx_hi, vmagic_min); vacc_lo = wasm_i32x4_sub(vacc_lo, vmagic_bias_less_zero_point); vacc_hi = wasm_i32x4_sub(vacc_hi, vmagic_bias_less_zero_point); const v128_t vacc = wasm_i16x8_narrow_i32x4(vacc_lo, vacc_hi); v128_t vy = wasm_u8x16_narrow_i16x8(vacc, vacc); vy = wasm_u8x16_min(vy, voutput_max); if (batch & (4 * sizeof(float))) { wasm_v128_store32_lane(output, vy, 0); vy = wasm_u64x2_shr(vy, 32); output += 4; } if (batch & (2 * sizeof(float))) { wasm_v128_store16_lane(output, vy, 0); vy = wasm_u32x4_shr(vy, 16); output += 2; } if (batch & (1 * sizeof(float))) { wasm_v128_store8_lane(output, vy, 0); } } }
5,672
37.073826
119
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-wasmsimd-magic-x32.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/wasmsimd-magic.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__wasmsimd_magic_x32( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const v128_t vscale = wasm_v128_load64_splat(params->wasmsimd_magic.scale); const v128_t vmagic_bias = wasm_v128_load64_splat(params->wasmsimd_magic.magic_bias); const v128_t vmagic_min = wasm_v128_load64_splat(params->wasmsimd_magic.magic_min); const v128_t vmagic_bias_less_zero_point = wasm_v128_load64_splat(params->wasmsimd_magic.magic_bias_less_zero_point); const v128_t voutput_max = wasm_v128_load64_splat(params->wasmsimd_magic.output_max); for (; batch >= 32 * sizeof(float); batch -= 32 * sizeof(float)) { v128_t vx0123 = wasm_v128_load(input); v128_t vx4567 = wasm_v128_load(input + 4); v128_t vx89AB = wasm_v128_load(input + 8); v128_t vxCDEF = wasm_v128_load(input + 12); v128_t vxGHIJ = wasm_v128_load(input + 16); v128_t vxKLMN = wasm_v128_load(input + 20); v128_t vxOPQR = wasm_v128_load(input + 24); v128_t vxSTUV = wasm_v128_load(input + 28); input += 32; vx0123 = wasm_f32x4_mul(vx0123, vscale); vx4567 = wasm_f32x4_mul(vx4567, vscale); vx89AB = wasm_f32x4_mul(vx89AB, vscale); vxCDEF = wasm_f32x4_mul(vxCDEF, vscale); vxGHIJ = wasm_f32x4_mul(vxGHIJ, vscale); vxKLMN = wasm_f32x4_mul(vxKLMN, vscale); vxOPQR = wasm_f32x4_mul(vxOPQR, vscale); vxSTUV = wasm_f32x4_mul(vxSTUV, vscale); vx0123 = wasm_f32x4_add(vx0123, vmagic_bias); vx4567 = wasm_f32x4_add(vx4567, vmagic_bias); vx89AB = wasm_f32x4_add(vx89AB, vmagic_bias); vxCDEF = wasm_f32x4_add(vxCDEF, vmagic_bias); vxGHIJ = wasm_f32x4_add(vxGHIJ, vmagic_bias); vxKLMN = wasm_f32x4_add(vxKLMN, vmagic_bias); vxOPQR = wasm_f32x4_add(vxOPQR, vmagic_bias); vxSTUV = wasm_f32x4_add(vxSTUV, vmagic_bias); v128_t vacc0123 = wasm_i32x4_max(vx0123, vmagic_min); v128_t vacc4567 = wasm_i32x4_max(vx4567, vmagic_min); v128_t vacc89AB = wasm_i32x4_max(vx89AB, vmagic_min); v128_t vaccCDEF = wasm_i32x4_max(vxCDEF, vmagic_min); v128_t vaccGHIJ = wasm_i32x4_max(vxGHIJ, vmagic_min); v128_t vaccKLMN = wasm_i32x4_max(vxKLMN, vmagic_min); v128_t vaccOPQR = wasm_i32x4_max(vxOPQR, vmagic_min); v128_t vaccSTUV = wasm_i32x4_max(vxSTUV, vmagic_min); vacc0123 = wasm_i32x4_sub(vacc0123, vmagic_bias_less_zero_point); vacc4567 = wasm_i32x4_sub(vacc4567, vmagic_bias_less_zero_point); vacc89AB = wasm_i32x4_sub(vacc89AB, vmagic_bias_less_zero_point); vaccCDEF = wasm_i32x4_sub(vaccCDEF, vmagic_bias_less_zero_point); vaccGHIJ = wasm_i32x4_sub(vaccGHIJ, vmagic_bias_less_zero_point); vaccKLMN = wasm_i32x4_sub(vaccKLMN, vmagic_bias_less_zero_point); vaccOPQR = wasm_i32x4_sub(vaccOPQR, vmagic_bias_less_zero_point); vaccSTUV = wasm_i32x4_sub(vaccSTUV, vmagic_bias_less_zero_point); const v128_t vacc01234567 = wasm_i16x8_narrow_i32x4(vacc0123, vacc4567); const v128_t vacc89ABCDEF = wasm_i16x8_narrow_i32x4(vacc89AB, vaccCDEF); const v128_t vaccGHIJKLMN = wasm_i16x8_narrow_i32x4(vaccGHIJ, vaccKLMN); const v128_t vaccOPQRSTUV = wasm_i16x8_narrow_i32x4(vaccOPQR, vaccSTUV); v128_t vy0123456789ABCDEF = wasm_u8x16_narrow_i16x8(vacc01234567, vacc89ABCDEF); v128_t vyGHIJKLMNOPQRSTUV = wasm_u8x16_narrow_i16x8(vaccGHIJKLMN, vaccOPQRSTUV); vy0123456789ABCDEF = wasm_u8x16_min(vy0123456789ABCDEF, voutput_max); vyGHIJKLMNOPQRSTUV = wasm_u8x16_min(vyGHIJKLMNOPQRSTUV, voutput_max); wasm_v128_store(output, vy0123456789ABCDEF); wasm_v128_store(output + 16, vyGHIJKLMNOPQRSTUV); output += 32; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { v128_t vx_lo = wasm_v128_load(input); v128_t vx_hi = wasm_v128_load(input + 4); input += 8; vx_lo = wasm_f32x4_mul(vx_lo, vscale); vx_hi = wasm_f32x4_mul(vx_hi, vscale); vx_lo = wasm_f32x4_add(vx_lo, vmagic_bias); vx_hi = wasm_f32x4_add(vx_hi, vmagic_bias); v128_t vacc_lo = wasm_i32x4_max(vx_lo, vmagic_min); v128_t vacc_hi = wasm_i32x4_max(vx_hi, vmagic_min); vacc_lo = wasm_i32x4_sub(vacc_lo, vmagic_bias_less_zero_point); vacc_hi = wasm_i32x4_sub(vacc_hi, vmagic_bias_less_zero_point); const v128_t vacc = wasm_i16x8_narrow_i32x4(vacc_lo, vacc_hi); v128_t vy = wasm_u8x16_narrow_i16x8(vacc, vacc); vy = wasm_u8x16_min(vy, voutput_max); wasm_v128_store64_lane(output, vy, 0); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); v128_t vx_lo = wasm_v128_load(input); const float* x_hi = (const float*) ((uintptr_t) input + (batch & (4 * sizeof(float)))); v128_t vx_hi = wasm_v128_load(x_hi); vx_lo = wasm_f32x4_mul(vx_lo, vscale); vx_hi = wasm_f32x4_mul(vx_hi, vscale); vx_lo = wasm_f32x4_add(vx_lo, vmagic_bias); vx_hi = wasm_f32x4_add(vx_hi, vmagic_bias); v128_t vacc_lo = wasm_i32x4_max(vx_lo, vmagic_min); v128_t vacc_hi = wasm_i32x4_max(vx_hi, vmagic_min); vacc_lo = wasm_i32x4_sub(vacc_lo, vmagic_bias_less_zero_point); vacc_hi = wasm_i32x4_sub(vacc_hi, vmagic_bias_less_zero_point); const v128_t vacc = wasm_i16x8_narrow_i32x4(vacc_lo, vacc_hi); v128_t vy = wasm_u8x16_narrow_i16x8(vacc, vacc); vy = wasm_u8x16_min(vy, voutput_max); if (batch & (4 * sizeof(float))) { wasm_v128_store32_lane(output, vy, 0); vy = wasm_u64x2_shr(vy, 32); output += 4; } if (batch & (2 * sizeof(float))) { wasm_v128_store16_lane(output, vy, 0); vy = wasm_u32x4_shr(vy, 16); output += 2; } if (batch & (1 * sizeof(float))) { wasm_v128_store8_lane(output, vy, 0); } } }
6,313
38.4625
119
c
XNNPACK
XNNPACK-master/src/f32-qu8-vcvt/gen/f32-qu8-vcvt-wasmsimd-magic-x8.c
// Auto-generated file. Do not edit! // Template: src/f32-qs8-vcvt/wasmsimd-magic.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vcvt.h> void xnn_f32_qu8_vcvt_ukernel__wasmsimd_magic_x8( size_t batch, const float* input, uint8_t* output, const union xnn_f32_qu8_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const v128_t vscale = wasm_v128_load64_splat(params->wasmsimd_magic.scale); const v128_t vmagic_bias = wasm_v128_load64_splat(params->wasmsimd_magic.magic_bias); const v128_t vmagic_min = wasm_v128_load64_splat(params->wasmsimd_magic.magic_min); const v128_t vmagic_bias_less_zero_point = wasm_v128_load64_splat(params->wasmsimd_magic.magic_bias_less_zero_point); const v128_t voutput_max = wasm_v128_load64_splat(params->wasmsimd_magic.output_max); for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { v128_t vx_lo = wasm_v128_load(input); v128_t vx_hi = wasm_v128_load(input + 4); input += 8; vx_lo = wasm_f32x4_mul(vx_lo, vscale); vx_hi = wasm_f32x4_mul(vx_hi, vscale); vx_lo = wasm_f32x4_add(vx_lo, vmagic_bias); vx_hi = wasm_f32x4_add(vx_hi, vmagic_bias); v128_t vacc_lo = wasm_i32x4_max(vx_lo, vmagic_min); v128_t vacc_hi = wasm_i32x4_max(vx_hi, vmagic_min); vacc_lo = wasm_i32x4_sub(vacc_lo, vmagic_bias_less_zero_point); vacc_hi = wasm_i32x4_sub(vacc_hi, vmagic_bias_less_zero_point); const v128_t vacc = wasm_i16x8_narrow_i32x4(vacc_lo, vacc_hi); v128_t vy = wasm_u8x16_narrow_i16x8(vacc, vacc); vy = wasm_u8x16_min(vy, voutput_max); wasm_v128_store64_lane(output, vy, 0); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); v128_t vx_lo = wasm_v128_load(input); const float* x_hi = (const float*) ((uintptr_t) input + (batch & (4 * sizeof(float)))); v128_t vx_hi = wasm_v128_load(x_hi); vx_lo = wasm_f32x4_mul(vx_lo, vscale); vx_hi = wasm_f32x4_mul(vx_hi, vscale); vx_lo = wasm_f32x4_add(vx_lo, vmagic_bias); vx_hi = wasm_f32x4_add(vx_hi, vmagic_bias); v128_t vacc_lo = wasm_i32x4_max(vx_lo, vmagic_min); v128_t vacc_hi = wasm_i32x4_max(vx_hi, vmagic_min); vacc_lo = wasm_i32x4_sub(vacc_lo, vmagic_bias_less_zero_point); vacc_hi = wasm_i32x4_sub(vacc_hi, vmagic_bias_less_zero_point); const v128_t vacc = wasm_i16x8_narrow_i32x4(vacc_lo, vacc_hi); v128_t vy = wasm_u8x16_narrow_i16x8(vacc, vacc); vy = wasm_u8x16_min(vy, voutput_max); if (batch & (4 * sizeof(float))) { wasm_v128_store32_lane(output, vy, 0); vy = wasm_u64x2_shr(vy, 32); output += 4; } if (batch & (2 * sizeof(float))) { wasm_v128_store16_lane(output, vy, 0); vy = wasm_u32x4_shr(vy, 16); output += 2; } if (batch & (1 * sizeof(float))) { wasm_v128_store8_lane(output, vy, 0); } } }
3,306
32.744898
119
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx2-p5-x64-acc2.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddexpminusmax_ukernel__avx2_p5_x64_acc2( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vi_max = _mm256_set1_ps(max); __m256 vacc0 = _mm256_setzero_ps(); __m256 vacc1 = _mm256_setzero_ps(); for (; batch >= 64 * sizeof(float); batch -= 64 * sizeof(float)) { // Load 64 (8x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); input += 64; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); // Accumulate computed exponents. vacc0 = _mm256_add_ps(vacc0, vf0); vacc1 = _mm256_add_ps(vacc1, vf1); vacc0 = _mm256_add_ps(vacc0, vf2); vacc1 = _mm256_add_ps(vacc1, vf3); vacc0 = _mm256_add_ps(vacc0, vf4); vacc1 = _mm256_add_ps(vacc1, vf5); vacc0 = _mm256_add_ps(vacc0, vf6); vacc1 = _mm256_add_ps(vacc1, vf7); } // Add up all accumulators to vacc0 vacc0 = _mm256_add_ps(vacc0, vacc1); __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. And addend with mask to leave unmasked 32-bit lanes unchanged. vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } // Reduce 8 batch in the SIMD register __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
13,445
43.82
116
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx2-p5-x64-acc4.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddexpminusmax_ukernel__avx2_p5_x64_acc4( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vi_max = _mm256_set1_ps(max); __m256 vacc0 = _mm256_setzero_ps(); __m256 vacc1 = _mm256_setzero_ps(); __m256 vacc2 = _mm256_setzero_ps(); __m256 vacc3 = _mm256_setzero_ps(); for (; batch >= 64 * sizeof(float); batch -= 64 * sizeof(float)) { // Load 64 (8x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); input += 64; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); // Accumulate computed exponents. vacc0 = _mm256_add_ps(vacc0, vf0); vacc1 = _mm256_add_ps(vacc1, vf1); vacc2 = _mm256_add_ps(vacc2, vf2); vacc3 = _mm256_add_ps(vacc3, vf3); vacc0 = _mm256_add_ps(vacc0, vf4); vacc1 = _mm256_add_ps(vacc1, vf5); vacc2 = _mm256_add_ps(vacc2, vf6); vacc3 = _mm256_add_ps(vacc3, vf7); } // Add up all accumulators to vacc0 vacc0 = _mm256_add_ps(vacc0, vacc1); vacc2 = _mm256_add_ps(vacc2, vacc3); vacc0 = _mm256_add_ps(vacc0, vacc2); __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. And addend with mask to leave unmasked 32-bit lanes unchanged. vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } // Reduce 8 batch in the SIMD register __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
13,599
43.736842
116
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx2-p5-x64.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddexpminusmax_ukernel__avx2_p5_x64( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vi_max = _mm256_set1_ps(max); __m256 vacc0 = _mm256_setzero_ps(); for (; batch >= 64 * sizeof(float); batch -= 64 * sizeof(float)) { // Load 64 (8x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); input += 64; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); // Accumulate computed exponents. vacc0 = _mm256_add_ps(vacc0, vf0); vacc0 = _mm256_add_ps(vacc0, vf1); vacc0 = _mm256_add_ps(vacc0, vf2); vacc0 = _mm256_add_ps(vacc0, vf3); vacc0 = _mm256_add_ps(vacc0, vf4); vacc0 = _mm256_add_ps(vacc0, vf5); vacc0 = _mm256_add_ps(vacc0, vf6); vacc0 = _mm256_add_ps(vacc0, vf7); } __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. And addend with mask to leave unmasked 32-bit lanes unchanged. vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } // Reduce 8 batch in the SIMD register __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
13,325
43.868687
116
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx2-p5-x72-acc3.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddexpminusmax_ukernel__avx2_p5_x72_acc3( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vi_max = _mm256_set1_ps(max); __m256 vacc0 = _mm256_setzero_ps(); __m256 vacc1 = _mm256_setzero_ps(); __m256 vacc2 = _mm256_setzero_ps(); for (; batch >= 72 * sizeof(float); batch -= 72 * sizeof(float)) { // Load 72 (9x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); input += 72; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); // Accumulate computed exponents. vacc0 = _mm256_add_ps(vacc0, vf0); vacc1 = _mm256_add_ps(vacc1, vf1); vacc2 = _mm256_add_ps(vacc2, vf2); vacc0 = _mm256_add_ps(vacc0, vf3); vacc1 = _mm256_add_ps(vacc1, vf4); vacc2 = _mm256_add_ps(vacc2, vf5); vacc0 = _mm256_add_ps(vacc0, vf6); vacc1 = _mm256_add_ps(vacc1, vf7); vacc2 = _mm256_add_ps(vacc2, vf8); } // Add up all accumulators to vacc0 vacc0 = _mm256_add_ps(vacc0, vacc1); vacc0 = _mm256_add_ps(vacc0, vacc2); __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. And addend with mask to leave unmasked 32-bit lanes unchanged. vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } // Reduce 8 batch in the SIMD register __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
14,311
44.148265
116
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx2-p5-x72.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddexpminusmax_ukernel__avx2_p5_x72( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vi_max = _mm256_set1_ps(max); __m256 vacc0 = _mm256_setzero_ps(); for (; batch >= 72 * sizeof(float); batch -= 72 * sizeof(float)) { // Load 72 (9x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); input += 72; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); // Accumulate computed exponents. vacc0 = _mm256_add_ps(vacc0, vf0); vacc0 = _mm256_add_ps(vacc0, vf1); vacc0 = _mm256_add_ps(vacc0, vf2); vacc0 = _mm256_add_ps(vacc0, vf3); vacc0 = _mm256_add_ps(vacc0, vf4); vacc0 = _mm256_add_ps(vacc0, vf5); vacc0 = _mm256_add_ps(vacc0, vf6); vacc0 = _mm256_add_ps(vacc0, vf7); vacc0 = _mm256_add_ps(vacc0, vf8); } __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. And addend with mask to leave unmasked 32-bit lanes unchanged. vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } // Reduce 8 batch in the SIMD register __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
14,114
44.240385
116
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx2-p5-x80-acc2.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddexpminusmax_ukernel__avx2_p5_x80_acc2( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vi_max = _mm256_set1_ps(max); __m256 vacc0 = _mm256_setzero_ps(); __m256 vacc1 = _mm256_setzero_ps(); for (; batch >= 80 * sizeof(float); batch -= 80 * sizeof(float)) { // Load 80 (10x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); const __m256 vi9 = _mm256_loadu_ps(input + 72); input += 80; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); const __m256 vx9 = _mm256_sub_ps(vi9, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); vn9 = _mm256_sub_ps(vn9, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); vt9 = _mm256_mul_ps(vt9, vs9); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9); // Accumulate computed exponents. vacc0 = _mm256_add_ps(vacc0, vf0); vacc1 = _mm256_add_ps(vacc1, vf1); vacc0 = _mm256_add_ps(vacc0, vf2); vacc1 = _mm256_add_ps(vacc1, vf3); vacc0 = _mm256_add_ps(vacc0, vf4); vacc1 = _mm256_add_ps(vacc1, vf5); vacc0 = _mm256_add_ps(vacc0, vf6); vacc1 = _mm256_add_ps(vacc1, vf7); vacc0 = _mm256_add_ps(vacc0, vf8); vacc1 = _mm256_add_ps(vacc1, vf9); } // Add up all accumulators to vacc0 vacc0 = _mm256_add_ps(vacc0, vacc1); __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. And addend with mask to leave unmasked 32-bit lanes unchanged. vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } // Reduce 8 batch in the SIMD register __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
15,024
44.530303
116
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx2-p5-x80-acc5.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddexpminusmax_ukernel__avx2_p5_x80_acc5( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vi_max = _mm256_set1_ps(max); __m256 vacc0 = _mm256_setzero_ps(); __m256 vacc1 = _mm256_setzero_ps(); __m256 vacc2 = _mm256_setzero_ps(); __m256 vacc3 = _mm256_setzero_ps(); __m256 vacc4 = _mm256_setzero_ps(); for (; batch >= 80 * sizeof(float); batch -= 80 * sizeof(float)) { // Load 80 (10x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); const __m256 vi9 = _mm256_loadu_ps(input + 72); input += 80; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); const __m256 vx9 = _mm256_sub_ps(vi9, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); vn9 = _mm256_sub_ps(vn9, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); vt9 = _mm256_mul_ps(vt9, vs9); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9); // Accumulate computed exponents. vacc0 = _mm256_add_ps(vacc0, vf0); vacc1 = _mm256_add_ps(vacc1, vf1); vacc2 = _mm256_add_ps(vacc2, vf2); vacc3 = _mm256_add_ps(vacc3, vf3); vacc4 = _mm256_add_ps(vacc4, vf4); vacc0 = _mm256_add_ps(vacc0, vf5); vacc1 = _mm256_add_ps(vacc1, vf6); vacc2 = _mm256_add_ps(vacc2, vf7); vacc3 = _mm256_add_ps(vacc3, vf8); vacc4 = _mm256_add_ps(vacc4, vf9); } // Add up all accumulators to vacc0 vacc0 = _mm256_add_ps(vacc0, vacc1); vacc2 = _mm256_add_ps(vacc2, vacc3); vacc0 = _mm256_add_ps(vacc0, vacc2); vacc0 = _mm256_add_ps(vacc0, vacc4); __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. And addend with mask to leave unmasked 32-bit lanes unchanged. vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } // Reduce 8 batch in the SIMD register __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
15,255
44.404762
116
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx2-p5-x80.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddexpminusmax_ukernel__avx2_p5_x80( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vi_max = _mm256_set1_ps(max); __m256 vacc0 = _mm256_setzero_ps(); for (; batch >= 80 * sizeof(float); batch -= 80 * sizeof(float)) { // Load 80 (10x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); const __m256 vi9 = _mm256_loadu_ps(input + 72); input += 80; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); const __m256 vx9 = _mm256_sub_ps(vi9, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); vn9 = _mm256_sub_ps(vn9, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); vt9 = _mm256_mul_ps(vt9, vs9); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9); // Accumulate computed exponents. vacc0 = _mm256_add_ps(vacc0, vf0); vacc0 = _mm256_add_ps(vacc0, vf1); vacc0 = _mm256_add_ps(vacc0, vf2); vacc0 = _mm256_add_ps(vacc0, vf3); vacc0 = _mm256_add_ps(vacc0, vf4); vacc0 = _mm256_add_ps(vacc0, vf5); vacc0 = _mm256_add_ps(vacc0, vf6); vacc0 = _mm256_add_ps(vacc0, vf7); vacc0 = _mm256_add_ps(vacc0, vf8); vacc0 = _mm256_add_ps(vacc0, vf9); } __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. And addend with mask to leave unmasked 32-bit lanes unchanged. vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } // Reduce 8 batch in the SIMD register __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
14,904
44.58104
116
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx2-p5-x96-acc2.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddexpminusmax_ukernel__avx2_p5_x96_acc2( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vi_max = _mm256_set1_ps(max); __m256 vacc0 = _mm256_setzero_ps(); __m256 vacc1 = _mm256_setzero_ps(); for (; batch >= 96 * sizeof(float); batch -= 96 * sizeof(float)) { // Load 96 (12x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); const __m256 vi9 = _mm256_loadu_ps(input + 72); const __m256 vi10 = _mm256_loadu_ps(input + 80); const __m256 vi11 = _mm256_loadu_ps(input + 88); input += 96; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); const __m256 vx9 = _mm256_sub_ps(vi9, vi_max); const __m256 vx10 = _mm256_sub_ps(vi10, vi_max); const __m256 vx11 = _mm256_sub_ps(vi11, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias); __m256 vn10 = _mm256_fmadd_ps(vx10, vlog2e, vmagic_bias); __m256 vn11 = _mm256_fmadd_ps(vx11, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23)); const __m256 vs10 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn10), 23)); const __m256 vs11 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn11), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); vn9 = _mm256_sub_ps(vn9, vmagic_bias); vn10 = _mm256_sub_ps(vn10, vmagic_bias); vn11 = _mm256_sub_ps(vn11, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m256 vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m256 vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); __m256 vp10 = _mm256_fmadd_ps(vc5, vt10, vc4); __m256 vp11 = _mm256_fmadd_ps(vc5, vt11, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp10 = _mm256_fmadd_ps(vp10, vt10, vc3); vp11 = _mm256_fmadd_ps(vp11, vt11, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp10 = _mm256_fmadd_ps(vp10, vt10, vc2); vp11 = _mm256_fmadd_ps(vp11, vt11, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vp10 = _mm256_fmadd_ps(vp10, vt10, vc1); vp11 = _mm256_fmadd_ps(vp11, vt11, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); vt9 = _mm256_mul_ps(vt9, vs9); vt10 = _mm256_mul_ps(vt10, vs10); vt11 = _mm256_mul_ps(vt11, vs11); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9); __m256 vf10 = _mm256_fmadd_ps(vt10, vp10, vs10); __m256 vf11 = _mm256_fmadd_ps(vt11, vp11, vs11); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9); vf10 = _mm256_andnot_ps(_mm256_cmp_ps(vx10, vdenorm_cutoff, _CMP_LT_OS), vf10); vf11 = _mm256_andnot_ps(_mm256_cmp_ps(vx11, vdenorm_cutoff, _CMP_LT_OS), vf11); // Accumulate computed exponents. vacc0 = _mm256_add_ps(vacc0, vf0); vacc1 = _mm256_add_ps(vacc1, vf1); vacc0 = _mm256_add_ps(vacc0, vf2); vacc1 = _mm256_add_ps(vacc1, vf3); vacc0 = _mm256_add_ps(vacc0, vf4); vacc1 = _mm256_add_ps(vacc1, vf5); vacc0 = _mm256_add_ps(vacc0, vf6); vacc1 = _mm256_add_ps(vacc1, vf7); vacc0 = _mm256_add_ps(vacc0, vf8); vacc1 = _mm256_add_ps(vacc1, vf9); vacc0 = _mm256_add_ps(vacc0, vf10); vacc1 = _mm256_add_ps(vacc1, vf11); } // Add up all accumulators to vacc0 vacc0 = _mm256_add_ps(vacc0, vacc1); __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. And addend with mask to leave unmasked 32-bit lanes unchanged. vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } // Reduce 8 batch in the SIMD register __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
16,676
45.325
116
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx2-p5-x96-acc3.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddexpminusmax_ukernel__avx2_p5_x96_acc3( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vi_max = _mm256_set1_ps(max); __m256 vacc0 = _mm256_setzero_ps(); __m256 vacc1 = _mm256_setzero_ps(); __m256 vacc2 = _mm256_setzero_ps(); for (; batch >= 96 * sizeof(float); batch -= 96 * sizeof(float)) { // Load 96 (12x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); const __m256 vi9 = _mm256_loadu_ps(input + 72); const __m256 vi10 = _mm256_loadu_ps(input + 80); const __m256 vi11 = _mm256_loadu_ps(input + 88); input += 96; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); const __m256 vx9 = _mm256_sub_ps(vi9, vi_max); const __m256 vx10 = _mm256_sub_ps(vi10, vi_max); const __m256 vx11 = _mm256_sub_ps(vi11, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias); __m256 vn10 = _mm256_fmadd_ps(vx10, vlog2e, vmagic_bias); __m256 vn11 = _mm256_fmadd_ps(vx11, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23)); const __m256 vs10 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn10), 23)); const __m256 vs11 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn11), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); vn9 = _mm256_sub_ps(vn9, vmagic_bias); vn10 = _mm256_sub_ps(vn10, vmagic_bias); vn11 = _mm256_sub_ps(vn11, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m256 vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m256 vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); __m256 vp10 = _mm256_fmadd_ps(vc5, vt10, vc4); __m256 vp11 = _mm256_fmadd_ps(vc5, vt11, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp10 = _mm256_fmadd_ps(vp10, vt10, vc3); vp11 = _mm256_fmadd_ps(vp11, vt11, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp10 = _mm256_fmadd_ps(vp10, vt10, vc2); vp11 = _mm256_fmadd_ps(vp11, vt11, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vp10 = _mm256_fmadd_ps(vp10, vt10, vc1); vp11 = _mm256_fmadd_ps(vp11, vt11, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); vt9 = _mm256_mul_ps(vt9, vs9); vt10 = _mm256_mul_ps(vt10, vs10); vt11 = _mm256_mul_ps(vt11, vs11); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9); __m256 vf10 = _mm256_fmadd_ps(vt10, vp10, vs10); __m256 vf11 = _mm256_fmadd_ps(vt11, vp11, vs11); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9); vf10 = _mm256_andnot_ps(_mm256_cmp_ps(vx10, vdenorm_cutoff, _CMP_LT_OS), vf10); vf11 = _mm256_andnot_ps(_mm256_cmp_ps(vx11, vdenorm_cutoff, _CMP_LT_OS), vf11); // Accumulate computed exponents. vacc0 = _mm256_add_ps(vacc0, vf0); vacc1 = _mm256_add_ps(vacc1, vf1); vacc2 = _mm256_add_ps(vacc2, vf2); vacc0 = _mm256_add_ps(vacc0, vf3); vacc1 = _mm256_add_ps(vacc1, vf4); vacc2 = _mm256_add_ps(vacc2, vf5); vacc0 = _mm256_add_ps(vacc0, vf6); vacc1 = _mm256_add_ps(vacc1, vf7); vacc2 = _mm256_add_ps(vacc2, vf8); vacc0 = _mm256_add_ps(vacc0, vf9); vacc1 = _mm256_add_ps(vacc1, vf10); vacc2 = _mm256_add_ps(vacc2, vf11); } // Add up all accumulators to vacc0 vacc0 = _mm256_add_ps(vacc0, vacc1); vacc0 = _mm256_add_ps(vacc0, vacc2); __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. And addend with mask to leave unmasked 32-bit lanes unchanged. vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } // Reduce 8 batch in the SIMD register __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
16,753
45.281768
116
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx2-p5-x96-acc6.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddexpminusmax_ukernel__avx2_p5_x96_acc6( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vi_max = _mm256_set1_ps(max); __m256 vacc0 = _mm256_setzero_ps(); __m256 vacc1 = _mm256_setzero_ps(); __m256 vacc2 = _mm256_setzero_ps(); __m256 vacc3 = _mm256_setzero_ps(); __m256 vacc4 = _mm256_setzero_ps(); __m256 vacc5 = _mm256_setzero_ps(); for (; batch >= 96 * sizeof(float); batch -= 96 * sizeof(float)) { // Load 96 (12x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); const __m256 vi9 = _mm256_loadu_ps(input + 72); const __m256 vi10 = _mm256_loadu_ps(input + 80); const __m256 vi11 = _mm256_loadu_ps(input + 88); input += 96; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); const __m256 vx9 = _mm256_sub_ps(vi9, vi_max); const __m256 vx10 = _mm256_sub_ps(vi10, vi_max); const __m256 vx11 = _mm256_sub_ps(vi11, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias); __m256 vn10 = _mm256_fmadd_ps(vx10, vlog2e, vmagic_bias); __m256 vn11 = _mm256_fmadd_ps(vx11, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23)); const __m256 vs10 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn10), 23)); const __m256 vs11 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn11), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); vn9 = _mm256_sub_ps(vn9, vmagic_bias); vn10 = _mm256_sub_ps(vn10, vmagic_bias); vn11 = _mm256_sub_ps(vn11, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m256 vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m256 vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); __m256 vp10 = _mm256_fmadd_ps(vc5, vt10, vc4); __m256 vp11 = _mm256_fmadd_ps(vc5, vt11, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp10 = _mm256_fmadd_ps(vp10, vt10, vc3); vp11 = _mm256_fmadd_ps(vp11, vt11, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp10 = _mm256_fmadd_ps(vp10, vt10, vc2); vp11 = _mm256_fmadd_ps(vp11, vt11, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vp10 = _mm256_fmadd_ps(vp10, vt10, vc1); vp11 = _mm256_fmadd_ps(vp11, vt11, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); vt9 = _mm256_mul_ps(vt9, vs9); vt10 = _mm256_mul_ps(vt10, vs10); vt11 = _mm256_mul_ps(vt11, vs11); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9); __m256 vf10 = _mm256_fmadd_ps(vt10, vp10, vs10); __m256 vf11 = _mm256_fmadd_ps(vt11, vp11, vs11); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9); vf10 = _mm256_andnot_ps(_mm256_cmp_ps(vx10, vdenorm_cutoff, _CMP_LT_OS), vf10); vf11 = _mm256_andnot_ps(_mm256_cmp_ps(vx11, vdenorm_cutoff, _CMP_LT_OS), vf11); // Accumulate computed exponents. vacc0 = _mm256_add_ps(vacc0, vf0); vacc1 = _mm256_add_ps(vacc1, vf1); vacc2 = _mm256_add_ps(vacc2, vf2); vacc3 = _mm256_add_ps(vacc3, vf3); vacc4 = _mm256_add_ps(vacc4, vf4); vacc5 = _mm256_add_ps(vacc5, vf5); vacc0 = _mm256_add_ps(vacc0, vf6); vacc1 = _mm256_add_ps(vacc1, vf7); vacc2 = _mm256_add_ps(vacc2, vf8); vacc3 = _mm256_add_ps(vacc3, vf9); vacc4 = _mm256_add_ps(vacc4, vf10); vacc5 = _mm256_add_ps(vacc5, vf11); } // Add up all accumulators to vacc0 vacc0 = _mm256_add_ps(vacc0, vacc1); vacc2 = _mm256_add_ps(vacc2, vacc3); vacc4 = _mm256_add_ps(vacc4, vacc5); vacc0 = _mm256_add_ps(vacc0, vacc2); vacc0 = _mm256_add_ps(vacc0, vacc4); __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. And addend with mask to leave unmasked 32-bit lanes unchanged. vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } // Reduce 8 batch in the SIMD register __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
16,984
45.154891
116
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx2-p5-x96.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddexpminusmax_ukernel__avx2_p5_x96( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vi_max = _mm256_set1_ps(max); __m256 vacc0 = _mm256_setzero_ps(); for (; batch >= 96 * sizeof(float); batch -= 96 * sizeof(float)) { // Load 96 (12x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); const __m256 vi9 = _mm256_loadu_ps(input + 72); const __m256 vi10 = _mm256_loadu_ps(input + 80); const __m256 vi11 = _mm256_loadu_ps(input + 88); input += 96; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); const __m256 vx9 = _mm256_sub_ps(vi9, vi_max); const __m256 vx10 = _mm256_sub_ps(vi10, vi_max); const __m256 vx11 = _mm256_sub_ps(vi11, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias); __m256 vn10 = _mm256_fmadd_ps(vx10, vlog2e, vmagic_bias); __m256 vn11 = _mm256_fmadd_ps(vx11, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23)); const __m256 vs10 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn10), 23)); const __m256 vs11 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn11), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); vn9 = _mm256_sub_ps(vn9, vmagic_bias); vn10 = _mm256_sub_ps(vn10, vmagic_bias); vn11 = _mm256_sub_ps(vn11, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m256 vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m256 vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); __m256 vp10 = _mm256_fmadd_ps(vc5, vt10, vc4); __m256 vp11 = _mm256_fmadd_ps(vc5, vt11, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp10 = _mm256_fmadd_ps(vp10, vt10, vc3); vp11 = _mm256_fmadd_ps(vp11, vt11, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp10 = _mm256_fmadd_ps(vp10, vt10, vc2); vp11 = _mm256_fmadd_ps(vp11, vt11, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vp10 = _mm256_fmadd_ps(vp10, vt10, vc1); vp11 = _mm256_fmadd_ps(vp11, vt11, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); vt9 = _mm256_mul_ps(vt9, vs9); vt10 = _mm256_mul_ps(vt10, vs10); vt11 = _mm256_mul_ps(vt11, vs11); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9); __m256 vf10 = _mm256_fmadd_ps(vt10, vp10, vs10); __m256 vf11 = _mm256_fmadd_ps(vt11, vp11, vs11); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9); vf10 = _mm256_andnot_ps(_mm256_cmp_ps(vx10, vdenorm_cutoff, _CMP_LT_OS), vf10); vf11 = _mm256_andnot_ps(_mm256_cmp_ps(vx11, vdenorm_cutoff, _CMP_LT_OS), vf11); // Accumulate computed exponents. vacc0 = _mm256_add_ps(vacc0, vf0); vacc0 = _mm256_add_ps(vacc0, vf1); vacc0 = _mm256_add_ps(vacc0, vf2); vacc0 = _mm256_add_ps(vacc0, vf3); vacc0 = _mm256_add_ps(vacc0, vf4); vacc0 = _mm256_add_ps(vacc0, vf5); vacc0 = _mm256_add_ps(vacc0, vf6); vacc0 = _mm256_add_ps(vacc0, vf7); vacc0 = _mm256_add_ps(vacc0, vf8); vacc0 = _mm256_add_ps(vacc0, vf9); vacc0 = _mm256_add_ps(vacc0, vf10); vacc0 = _mm256_add_ps(vacc0, vf11); } __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Accumulate computed exponents. And addend with mask to leave unmasked 32-bit lanes unchanged. vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } // Reduce 8 batch in the SIMD register __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
16,556
45.378151
116
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx512f-p5-scalef-x128-acc2.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddexpminusmax.h> void xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_x128_acc2( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vi_max = _mm512_set1_ps(max); __m512 vacc0 = _mm512_setzero_ps(); __m512 vacc1 = _mm512_setzero_ps(); for (; batch >= 128 * sizeof(float); batch -= 128 * sizeof(float)) { // Load 128 (8x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); input += 128; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf0 = _mm512_scalef_ps(vp0, vn0); const __m512 vf1 = _mm512_scalef_ps(vp1, vn1); const __m512 vf2 = _mm512_scalef_ps(vp2, vn2); const __m512 vf3 = _mm512_scalef_ps(vp3, vn3); const __m512 vf4 = _mm512_scalef_ps(vp4, vn4); const __m512 vf5 = _mm512_scalef_ps(vp5, vn5); const __m512 vf6 = _mm512_scalef_ps(vp6, vn6); const __m512 vf7 = _mm512_scalef_ps(vp7, vn7); // Accumulate computed exponents. vacc0 = _mm512_add_ps(vacc0, vf0); vacc1 = _mm512_add_ps(vacc1, vf1); vacc0 = _mm512_add_ps(vacc0, vf2); vacc1 = _mm512_add_ps(vacc1, vf3); vacc0 = _mm512_add_ps(vacc0, vf4); vacc1 = _mm512_add_ps(vacc1, vf5); vacc0 = _mm512_add_ps(vacc0, vf6); vacc1 = _mm512_add_ps(vacc1, vf7); } // Add up all accumulators to vacc0 vacc0 = _mm512_add_ps(vacc0, vacc1); __m512 vacc = vacc0; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_add_ps(vacc, vf); } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_maskz_loadu_ps(vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf); } *sum = _mm512_reduce_add_ps(vacc); }
9,517
39.502128
106
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx512f-p5-scalef-x128-acc4.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddexpminusmax.h> void xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_x128_acc4( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vi_max = _mm512_set1_ps(max); __m512 vacc0 = _mm512_setzero_ps(); __m512 vacc1 = _mm512_setzero_ps(); __m512 vacc2 = _mm512_setzero_ps(); __m512 vacc3 = _mm512_setzero_ps(); for (; batch >= 128 * sizeof(float); batch -= 128 * sizeof(float)) { // Load 128 (8x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); input += 128; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf0 = _mm512_scalef_ps(vp0, vn0); const __m512 vf1 = _mm512_scalef_ps(vp1, vn1); const __m512 vf2 = _mm512_scalef_ps(vp2, vn2); const __m512 vf3 = _mm512_scalef_ps(vp3, vn3); const __m512 vf4 = _mm512_scalef_ps(vp4, vn4); const __m512 vf5 = _mm512_scalef_ps(vp5, vn5); const __m512 vf6 = _mm512_scalef_ps(vp6, vn6); const __m512 vf7 = _mm512_scalef_ps(vp7, vn7); // Accumulate computed exponents. vacc0 = _mm512_add_ps(vacc0, vf0); vacc1 = _mm512_add_ps(vacc1, vf1); vacc2 = _mm512_add_ps(vacc2, vf2); vacc3 = _mm512_add_ps(vacc3, vf3); vacc0 = _mm512_add_ps(vacc0, vf4); vacc1 = _mm512_add_ps(vacc1, vf5); vacc2 = _mm512_add_ps(vacc2, vf6); vacc3 = _mm512_add_ps(vacc3, vf7); } // Add up all accumulators to vacc0 vacc0 = _mm512_add_ps(vacc0, vacc1); vacc2 = _mm512_add_ps(vacc2, vacc3); vacc0 = _mm512_add_ps(vacc0, vacc2); __m512 vacc = vacc0; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_add_ps(vacc, vf); } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_maskz_loadu_ps(vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf); } *sum = _mm512_reduce_add_ps(vacc); }
9,671
39.468619
106
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx512f-p5-scalef-x128.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddexpminusmax.h> void xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_x128( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vi_max = _mm512_set1_ps(max); __m512 vacc0 = _mm512_setzero_ps(); for (; batch >= 128 * sizeof(float); batch -= 128 * sizeof(float)) { // Load 128 (8x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); input += 128; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf0 = _mm512_scalef_ps(vp0, vn0); const __m512 vf1 = _mm512_scalef_ps(vp1, vn1); const __m512 vf2 = _mm512_scalef_ps(vp2, vn2); const __m512 vf3 = _mm512_scalef_ps(vp3, vn3); const __m512 vf4 = _mm512_scalef_ps(vp4, vn4); const __m512 vf5 = _mm512_scalef_ps(vp5, vn5); const __m512 vf6 = _mm512_scalef_ps(vp6, vn6); const __m512 vf7 = _mm512_scalef_ps(vp7, vn7); // Accumulate computed exponents. vacc0 = _mm512_add_ps(vacc0, vf0); vacc0 = _mm512_add_ps(vacc0, vf1); vacc0 = _mm512_add_ps(vacc0, vf2); vacc0 = _mm512_add_ps(vacc0, vf3); vacc0 = _mm512_add_ps(vacc0, vf4); vacc0 = _mm512_add_ps(vacc0, vf5); vacc0 = _mm512_add_ps(vacc0, vf6); vacc0 = _mm512_add_ps(vacc0, vf7); } __m512 vacc = vacc0; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_add_ps(vacc, vf); } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_maskz_loadu_ps(vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf); } *sum = _mm512_reduce_add_ps(vacc); }
9,397
39.508621
106
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx512f-p5-scalef-x144-acc3.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddexpminusmax.h> void xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_x144_acc3( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vi_max = _mm512_set1_ps(max); __m512 vacc0 = _mm512_setzero_ps(); __m512 vacc1 = _mm512_setzero_ps(); __m512 vacc2 = _mm512_setzero_ps(); for (; batch >= 144 * sizeof(float); batch -= 144 * sizeof(float)) { // Load 144 (9x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); const __m512 vi8 = _mm512_loadu_ps(input + 128); input += 144; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); const __m512 vx8 = _mm512_sub_ps(vi8, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf0 = _mm512_scalef_ps(vp0, vn0); const __m512 vf1 = _mm512_scalef_ps(vp1, vn1); const __m512 vf2 = _mm512_scalef_ps(vp2, vn2); const __m512 vf3 = _mm512_scalef_ps(vp3, vn3); const __m512 vf4 = _mm512_scalef_ps(vp4, vn4); const __m512 vf5 = _mm512_scalef_ps(vp5, vn5); const __m512 vf6 = _mm512_scalef_ps(vp6, vn6); const __m512 vf7 = _mm512_scalef_ps(vp7, vn7); const __m512 vf8 = _mm512_scalef_ps(vp8, vn8); // Accumulate computed exponents. vacc0 = _mm512_add_ps(vacc0, vf0); vacc1 = _mm512_add_ps(vacc1, vf1); vacc2 = _mm512_add_ps(vacc2, vf2); vacc0 = _mm512_add_ps(vacc0, vf3); vacc1 = _mm512_add_ps(vacc1, vf4); vacc2 = _mm512_add_ps(vacc2, vf5); vacc0 = _mm512_add_ps(vacc0, vf6); vacc1 = _mm512_add_ps(vacc1, vf7); vacc2 = _mm512_add_ps(vacc2, vf8); } // Add up all accumulators to vacc0 vacc0 = _mm512_add_ps(vacc0, vacc1); vacc0 = _mm512_add_ps(vacc0, vacc2); __m512 vacc = vacc0; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_add_ps(vacc, vf); } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_maskz_loadu_ps(vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf); } *sum = _mm512_reduce_add_ps(vacc); }
10,192
39.935743
106
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx512f-p5-scalef-x144.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddexpminusmax.h> void xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_x144( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vi_max = _mm512_set1_ps(max); __m512 vacc0 = _mm512_setzero_ps(); for (; batch >= 144 * sizeof(float); batch -= 144 * sizeof(float)) { // Load 144 (9x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); const __m512 vi8 = _mm512_loadu_ps(input + 128); input += 144; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); const __m512 vx8 = _mm512_sub_ps(vi8, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf0 = _mm512_scalef_ps(vp0, vn0); const __m512 vf1 = _mm512_scalef_ps(vp1, vn1); const __m512 vf2 = _mm512_scalef_ps(vp2, vn2); const __m512 vf3 = _mm512_scalef_ps(vp3, vn3); const __m512 vf4 = _mm512_scalef_ps(vp4, vn4); const __m512 vf5 = _mm512_scalef_ps(vp5, vn5); const __m512 vf6 = _mm512_scalef_ps(vp6, vn6); const __m512 vf7 = _mm512_scalef_ps(vp7, vn7); const __m512 vf8 = _mm512_scalef_ps(vp8, vn8); // Accumulate computed exponents. vacc0 = _mm512_add_ps(vacc0, vf0); vacc0 = _mm512_add_ps(vacc0, vf1); vacc0 = _mm512_add_ps(vacc0, vf2); vacc0 = _mm512_add_ps(vacc0, vf3); vacc0 = _mm512_add_ps(vacc0, vf4); vacc0 = _mm512_add_ps(vacc0, vf5); vacc0 = _mm512_add_ps(vacc0, vf6); vacc0 = _mm512_add_ps(vacc0, vf7); vacc0 = _mm512_add_ps(vacc0, vf8); } __m512 vacc = vacc0; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_add_ps(vacc, vf); } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_maskz_loadu_ps(vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf); } *sum = _mm512_reduce_add_ps(vacc); }
9,995
39.967213
106
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx512f-p5-scalef-x160-acc2.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddexpminusmax.h> void xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_x160_acc2( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vi_max = _mm512_set1_ps(max); __m512 vacc0 = _mm512_setzero_ps(); __m512 vacc1 = _mm512_setzero_ps(); for (; batch >= 160 * sizeof(float); batch -= 160 * sizeof(float)) { // Load 160 (10x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); const __m512 vi8 = _mm512_loadu_ps(input + 128); const __m512 vi9 = _mm512_loadu_ps(input + 144); input += 160; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); const __m512 vx8 = _mm512_sub_ps(vi8, vi_max); const __m512 vx9 = _mm512_sub_ps(vi9, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf0 = _mm512_scalef_ps(vp0, vn0); const __m512 vf1 = _mm512_scalef_ps(vp1, vn1); const __m512 vf2 = _mm512_scalef_ps(vp2, vn2); const __m512 vf3 = _mm512_scalef_ps(vp3, vn3); const __m512 vf4 = _mm512_scalef_ps(vp4, vn4); const __m512 vf5 = _mm512_scalef_ps(vp5, vn5); const __m512 vf6 = _mm512_scalef_ps(vp6, vn6); const __m512 vf7 = _mm512_scalef_ps(vp7, vn7); const __m512 vf8 = _mm512_scalef_ps(vp8, vn8); const __m512 vf9 = _mm512_scalef_ps(vp9, vn9); // Accumulate computed exponents. vacc0 = _mm512_add_ps(vacc0, vf0); vacc1 = _mm512_add_ps(vacc1, vf1); vacc0 = _mm512_add_ps(vacc0, vf2); vacc1 = _mm512_add_ps(vacc1, vf3); vacc0 = _mm512_add_ps(vacc0, vf4); vacc1 = _mm512_add_ps(vacc1, vf5); vacc0 = _mm512_add_ps(vacc0, vf6); vacc1 = _mm512_add_ps(vacc1, vf7); vacc0 = _mm512_add_ps(vacc0, vf8); vacc1 = _mm512_add_ps(vacc1, vf9); } // Add up all accumulators to vacc0 vacc0 = _mm512_add_ps(vacc0, vacc1); __m512 vacc = vacc0; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_add_ps(vacc, vf); } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_maskz_loadu_ps(vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf); } *sum = _mm512_reduce_add_ps(vacc); }
10,714
40.370656
106
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx512f-p5-scalef-x160-acc5.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddexpminusmax.h> void xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_x160_acc5( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vi_max = _mm512_set1_ps(max); __m512 vacc0 = _mm512_setzero_ps(); __m512 vacc1 = _mm512_setzero_ps(); __m512 vacc2 = _mm512_setzero_ps(); __m512 vacc3 = _mm512_setzero_ps(); __m512 vacc4 = _mm512_setzero_ps(); for (; batch >= 160 * sizeof(float); batch -= 160 * sizeof(float)) { // Load 160 (10x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); const __m512 vi8 = _mm512_loadu_ps(input + 128); const __m512 vi9 = _mm512_loadu_ps(input + 144); input += 160; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); const __m512 vx8 = _mm512_sub_ps(vi8, vi_max); const __m512 vx9 = _mm512_sub_ps(vi9, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf0 = _mm512_scalef_ps(vp0, vn0); const __m512 vf1 = _mm512_scalef_ps(vp1, vn1); const __m512 vf2 = _mm512_scalef_ps(vp2, vn2); const __m512 vf3 = _mm512_scalef_ps(vp3, vn3); const __m512 vf4 = _mm512_scalef_ps(vp4, vn4); const __m512 vf5 = _mm512_scalef_ps(vp5, vn5); const __m512 vf6 = _mm512_scalef_ps(vp6, vn6); const __m512 vf7 = _mm512_scalef_ps(vp7, vn7); const __m512 vf8 = _mm512_scalef_ps(vp8, vn8); const __m512 vf9 = _mm512_scalef_ps(vp9, vn9); // Accumulate computed exponents. vacc0 = _mm512_add_ps(vacc0, vf0); vacc1 = _mm512_add_ps(vacc1, vf1); vacc2 = _mm512_add_ps(vacc2, vf2); vacc3 = _mm512_add_ps(vacc3, vf3); vacc4 = _mm512_add_ps(vacc4, vf4); vacc0 = _mm512_add_ps(vacc0, vf5); vacc1 = _mm512_add_ps(vacc1, vf6); vacc2 = _mm512_add_ps(vacc2, vf7); vacc3 = _mm512_add_ps(vacc3, vf8); vacc4 = _mm512_add_ps(vacc4, vf9); } // Add up all accumulators to vacc0 vacc0 = _mm512_add_ps(vacc0, vacc1); vacc2 = _mm512_add_ps(vacc2, vacc3); vacc0 = _mm512_add_ps(vacc0, vacc2); vacc0 = _mm512_add_ps(vacc0, vacc4); __m512 vacc = vacc0; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_add_ps(vacc, vf); } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_maskz_loadu_ps(vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf); } *sum = _mm512_reduce_add_ps(vacc); }
10,945
40.30566
106
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx512f-p5-scalef-x160.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddexpminusmax.h> void xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_x160( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vi_max = _mm512_set1_ps(max); __m512 vacc0 = _mm512_setzero_ps(); for (; batch >= 160 * sizeof(float); batch -= 160 * sizeof(float)) { // Load 160 (10x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); const __m512 vi8 = _mm512_loadu_ps(input + 128); const __m512 vi9 = _mm512_loadu_ps(input + 144); input += 160; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); const __m512 vx8 = _mm512_sub_ps(vi8, vi_max); const __m512 vx9 = _mm512_sub_ps(vi9, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf0 = _mm512_scalef_ps(vp0, vn0); const __m512 vf1 = _mm512_scalef_ps(vp1, vn1); const __m512 vf2 = _mm512_scalef_ps(vp2, vn2); const __m512 vf3 = _mm512_scalef_ps(vp3, vn3); const __m512 vf4 = _mm512_scalef_ps(vp4, vn4); const __m512 vf5 = _mm512_scalef_ps(vp5, vn5); const __m512 vf6 = _mm512_scalef_ps(vp6, vn6); const __m512 vf7 = _mm512_scalef_ps(vp7, vn7); const __m512 vf8 = _mm512_scalef_ps(vp8, vn8); const __m512 vf9 = _mm512_scalef_ps(vp9, vn9); // Accumulate computed exponents. vacc0 = _mm512_add_ps(vacc0, vf0); vacc0 = _mm512_add_ps(vacc0, vf1); vacc0 = _mm512_add_ps(vacc0, vf2); vacc0 = _mm512_add_ps(vacc0, vf3); vacc0 = _mm512_add_ps(vacc0, vf4); vacc0 = _mm512_add_ps(vacc0, vf5); vacc0 = _mm512_add_ps(vacc0, vf6); vacc0 = _mm512_add_ps(vacc0, vf7); vacc0 = _mm512_add_ps(vacc0, vf8); vacc0 = _mm512_add_ps(vacc0, vf9); } __m512 vacc = vacc0; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_add_ps(vacc, vf); } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_maskz_loadu_ps(vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf); } *sum = _mm512_reduce_add_ps(vacc); }
10,594
40.386719
106
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx512f-p5-scalef-x192-acc2.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddexpminusmax.h> void xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_x192_acc2( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vi_max = _mm512_set1_ps(max); __m512 vacc0 = _mm512_setzero_ps(); __m512 vacc1 = _mm512_setzero_ps(); for (; batch >= 192 * sizeof(float); batch -= 192 * sizeof(float)) { // Load 192 (12x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); const __m512 vi8 = _mm512_loadu_ps(input + 128); const __m512 vi9 = _mm512_loadu_ps(input + 144); const __m512 vi10 = _mm512_loadu_ps(input + 160); const __m512 vi11 = _mm512_loadu_ps(input + 176); input += 192; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); const __m512 vx8 = _mm512_sub_ps(vi8, vi_max); const __m512 vx9 = _mm512_sub_ps(vi9, vi_max); const __m512 vx10 = _mm512_sub_ps(vi10, vi_max); const __m512 vx11 = _mm512_sub_ps(vi11, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); const __m512 vn10 = _mm512_roundscale_ps(_mm512_mul_ps(vx10, vlog2e), 0); const __m512 vn11 = _mm512_roundscale_ps(_mm512_mul_ps(vx11, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m512 vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m512 vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); __m512 vp10 = _mm512_fmadd_ps(vc5, vt10, vc4); __m512 vp11 = _mm512_fmadd_ps(vc5, vt11, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp10 = _mm512_fmadd_ps(vp10, vt10, vc3); vp11 = _mm512_fmadd_ps(vp11, vt11, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp10 = _mm512_fmadd_ps(vp10, vt10, vc2); vp11 = _mm512_fmadd_ps(vp11, vt11, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp10 = _mm512_fmadd_ps(vp10, vt10, vc1); vp11 = _mm512_fmadd_ps(vp11, vt11, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); vp10 = _mm512_fmadd_ps(vp10, vt10, vc0); vp11 = _mm512_fmadd_ps(vp11, vt11, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf0 = _mm512_scalef_ps(vp0, vn0); const __m512 vf1 = _mm512_scalef_ps(vp1, vn1); const __m512 vf2 = _mm512_scalef_ps(vp2, vn2); const __m512 vf3 = _mm512_scalef_ps(vp3, vn3); const __m512 vf4 = _mm512_scalef_ps(vp4, vn4); const __m512 vf5 = _mm512_scalef_ps(vp5, vn5); const __m512 vf6 = _mm512_scalef_ps(vp6, vn6); const __m512 vf7 = _mm512_scalef_ps(vp7, vn7); const __m512 vf8 = _mm512_scalef_ps(vp8, vn8); const __m512 vf9 = _mm512_scalef_ps(vp9, vn9); const __m512 vf10 = _mm512_scalef_ps(vp10, vn10); const __m512 vf11 = _mm512_scalef_ps(vp11, vn11); // Accumulate computed exponents. vacc0 = _mm512_add_ps(vacc0, vf0); vacc1 = _mm512_add_ps(vacc1, vf1); vacc0 = _mm512_add_ps(vacc0, vf2); vacc1 = _mm512_add_ps(vacc1, vf3); vacc0 = _mm512_add_ps(vacc0, vf4); vacc1 = _mm512_add_ps(vacc1, vf5); vacc0 = _mm512_add_ps(vacc0, vf6); vacc1 = _mm512_add_ps(vacc1, vf7); vacc0 = _mm512_add_ps(vacc0, vf8); vacc1 = _mm512_add_ps(vacc1, vf9); vacc0 = _mm512_add_ps(vacc0, vf10); vacc1 = _mm512_add_ps(vacc1, vf11); } // Add up all accumulators to vacc0 vacc0 = _mm512_add_ps(vacc0, vacc1); __m512 vacc = vacc0; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_add_ps(vacc, vf); } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_maskz_loadu_ps(vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf); } *sum = _mm512_reduce_add_ps(vacc); }
11,968
41.293286
106
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx512f-p5-scalef-x192-acc3.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddexpminusmax.h> void xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_x192_acc3( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vi_max = _mm512_set1_ps(max); __m512 vacc0 = _mm512_setzero_ps(); __m512 vacc1 = _mm512_setzero_ps(); __m512 vacc2 = _mm512_setzero_ps(); for (; batch >= 192 * sizeof(float); batch -= 192 * sizeof(float)) { // Load 192 (12x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); const __m512 vi8 = _mm512_loadu_ps(input + 128); const __m512 vi9 = _mm512_loadu_ps(input + 144); const __m512 vi10 = _mm512_loadu_ps(input + 160); const __m512 vi11 = _mm512_loadu_ps(input + 176); input += 192; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); const __m512 vx8 = _mm512_sub_ps(vi8, vi_max); const __m512 vx9 = _mm512_sub_ps(vi9, vi_max); const __m512 vx10 = _mm512_sub_ps(vi10, vi_max); const __m512 vx11 = _mm512_sub_ps(vi11, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); const __m512 vn10 = _mm512_roundscale_ps(_mm512_mul_ps(vx10, vlog2e), 0); const __m512 vn11 = _mm512_roundscale_ps(_mm512_mul_ps(vx11, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m512 vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m512 vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); __m512 vp10 = _mm512_fmadd_ps(vc5, vt10, vc4); __m512 vp11 = _mm512_fmadd_ps(vc5, vt11, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp10 = _mm512_fmadd_ps(vp10, vt10, vc3); vp11 = _mm512_fmadd_ps(vp11, vt11, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp10 = _mm512_fmadd_ps(vp10, vt10, vc2); vp11 = _mm512_fmadd_ps(vp11, vt11, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp10 = _mm512_fmadd_ps(vp10, vt10, vc1); vp11 = _mm512_fmadd_ps(vp11, vt11, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); vp10 = _mm512_fmadd_ps(vp10, vt10, vc0); vp11 = _mm512_fmadd_ps(vp11, vt11, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf0 = _mm512_scalef_ps(vp0, vn0); const __m512 vf1 = _mm512_scalef_ps(vp1, vn1); const __m512 vf2 = _mm512_scalef_ps(vp2, vn2); const __m512 vf3 = _mm512_scalef_ps(vp3, vn3); const __m512 vf4 = _mm512_scalef_ps(vp4, vn4); const __m512 vf5 = _mm512_scalef_ps(vp5, vn5); const __m512 vf6 = _mm512_scalef_ps(vp6, vn6); const __m512 vf7 = _mm512_scalef_ps(vp7, vn7); const __m512 vf8 = _mm512_scalef_ps(vp8, vn8); const __m512 vf9 = _mm512_scalef_ps(vp9, vn9); const __m512 vf10 = _mm512_scalef_ps(vp10, vn10); const __m512 vf11 = _mm512_scalef_ps(vp11, vn11); // Accumulate computed exponents. vacc0 = _mm512_add_ps(vacc0, vf0); vacc1 = _mm512_add_ps(vacc1, vf1); vacc2 = _mm512_add_ps(vacc2, vf2); vacc0 = _mm512_add_ps(vacc0, vf3); vacc1 = _mm512_add_ps(vacc1, vf4); vacc2 = _mm512_add_ps(vacc2, vf5); vacc0 = _mm512_add_ps(vacc0, vf6); vacc1 = _mm512_add_ps(vacc1, vf7); vacc2 = _mm512_add_ps(vacc2, vf8); vacc0 = _mm512_add_ps(vacc0, vf9); vacc1 = _mm512_add_ps(vacc1, vf10); vacc2 = _mm512_add_ps(vacc2, vf11); } // Add up all accumulators to vacc0 vacc0 = _mm512_add_ps(vacc0, vacc1); vacc0 = _mm512_add_ps(vacc0, vacc2); __m512 vacc = vacc0; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_add_ps(vacc, vf); } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_maskz_loadu_ps(vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf); } *sum = _mm512_reduce_add_ps(vacc); }
12,045
41.266667
106
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx512f-p5-scalef-x192-acc6.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddexpminusmax.h> void xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_x192_acc6( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vi_max = _mm512_set1_ps(max); __m512 vacc0 = _mm512_setzero_ps(); __m512 vacc1 = _mm512_setzero_ps(); __m512 vacc2 = _mm512_setzero_ps(); __m512 vacc3 = _mm512_setzero_ps(); __m512 vacc4 = _mm512_setzero_ps(); __m512 vacc5 = _mm512_setzero_ps(); for (; batch >= 192 * sizeof(float); batch -= 192 * sizeof(float)) { // Load 192 (12x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); const __m512 vi8 = _mm512_loadu_ps(input + 128); const __m512 vi9 = _mm512_loadu_ps(input + 144); const __m512 vi10 = _mm512_loadu_ps(input + 160); const __m512 vi11 = _mm512_loadu_ps(input + 176); input += 192; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); const __m512 vx8 = _mm512_sub_ps(vi8, vi_max); const __m512 vx9 = _mm512_sub_ps(vi9, vi_max); const __m512 vx10 = _mm512_sub_ps(vi10, vi_max); const __m512 vx11 = _mm512_sub_ps(vi11, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); const __m512 vn10 = _mm512_roundscale_ps(_mm512_mul_ps(vx10, vlog2e), 0); const __m512 vn11 = _mm512_roundscale_ps(_mm512_mul_ps(vx11, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m512 vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m512 vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); __m512 vp10 = _mm512_fmadd_ps(vc5, vt10, vc4); __m512 vp11 = _mm512_fmadd_ps(vc5, vt11, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp10 = _mm512_fmadd_ps(vp10, vt10, vc3); vp11 = _mm512_fmadd_ps(vp11, vt11, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp10 = _mm512_fmadd_ps(vp10, vt10, vc2); vp11 = _mm512_fmadd_ps(vp11, vt11, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp10 = _mm512_fmadd_ps(vp10, vt10, vc1); vp11 = _mm512_fmadd_ps(vp11, vt11, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); vp10 = _mm512_fmadd_ps(vp10, vt10, vc0); vp11 = _mm512_fmadd_ps(vp11, vt11, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf0 = _mm512_scalef_ps(vp0, vn0); const __m512 vf1 = _mm512_scalef_ps(vp1, vn1); const __m512 vf2 = _mm512_scalef_ps(vp2, vn2); const __m512 vf3 = _mm512_scalef_ps(vp3, vn3); const __m512 vf4 = _mm512_scalef_ps(vp4, vn4); const __m512 vf5 = _mm512_scalef_ps(vp5, vn5); const __m512 vf6 = _mm512_scalef_ps(vp6, vn6); const __m512 vf7 = _mm512_scalef_ps(vp7, vn7); const __m512 vf8 = _mm512_scalef_ps(vp8, vn8); const __m512 vf9 = _mm512_scalef_ps(vp9, vn9); const __m512 vf10 = _mm512_scalef_ps(vp10, vn10); const __m512 vf11 = _mm512_scalef_ps(vp11, vn11); // Accumulate computed exponents. vacc0 = _mm512_add_ps(vacc0, vf0); vacc1 = _mm512_add_ps(vacc1, vf1); vacc2 = _mm512_add_ps(vacc2, vf2); vacc3 = _mm512_add_ps(vacc3, vf3); vacc4 = _mm512_add_ps(vacc4, vf4); vacc5 = _mm512_add_ps(vacc5, vf5); vacc0 = _mm512_add_ps(vacc0, vf6); vacc1 = _mm512_add_ps(vacc1, vf7); vacc2 = _mm512_add_ps(vacc2, vf8); vacc3 = _mm512_add_ps(vacc3, vf9); vacc4 = _mm512_add_ps(vacc4, vf10); vacc5 = _mm512_add_ps(vacc5, vf11); } // Add up all accumulators to vacc0 vacc0 = _mm512_add_ps(vacc0, vacc1); vacc2 = _mm512_add_ps(vacc2, vacc3); vacc4 = _mm512_add_ps(vacc4, vacc5); vacc0 = _mm512_add_ps(vacc0, vacc2); vacc0 = _mm512_add_ps(vacc0, vacc4); __m512 vacc = vacc0; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_add_ps(vacc, vf); } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_maskz_loadu_ps(vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf); } *sum = _mm512_reduce_add_ps(vacc); }
12,276
41.189003
106
c
XNNPACK
XNNPACK-master/src/f32-raddexpminusmax/gen/f32-raddexpminusmax-avx512f-p5-scalef-x192.c
// Auto-generated file. Do not edit! // Template: src/f32-raddexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddexpminusmax.h> void xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_x192( size_t batch, const float* input, float* sum, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vi_max = _mm512_set1_ps(max); __m512 vacc0 = _mm512_setzero_ps(); for (; batch >= 192 * sizeof(float); batch -= 192 * sizeof(float)) { // Load 192 (12x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); const __m512 vi8 = _mm512_loadu_ps(input + 128); const __m512 vi9 = _mm512_loadu_ps(input + 144); const __m512 vi10 = _mm512_loadu_ps(input + 160); const __m512 vi11 = _mm512_loadu_ps(input + 176); input += 192; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); const __m512 vx8 = _mm512_sub_ps(vi8, vi_max); const __m512 vx9 = _mm512_sub_ps(vi9, vi_max); const __m512 vx10 = _mm512_sub_ps(vi10, vi_max); const __m512 vx11 = _mm512_sub_ps(vi11, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); const __m512 vn10 = _mm512_roundscale_ps(_mm512_mul_ps(vx10, vlog2e), 0); const __m512 vn11 = _mm512_roundscale_ps(_mm512_mul_ps(vx11, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m512 vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m512 vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); __m512 vp10 = _mm512_fmadd_ps(vc5, vt10, vc4); __m512 vp11 = _mm512_fmadd_ps(vc5, vt11, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp10 = _mm512_fmadd_ps(vp10, vt10, vc3); vp11 = _mm512_fmadd_ps(vp11, vt11, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp10 = _mm512_fmadd_ps(vp10, vt10, vc2); vp11 = _mm512_fmadd_ps(vp11, vt11, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp10 = _mm512_fmadd_ps(vp10, vt10, vc1); vp11 = _mm512_fmadd_ps(vp11, vt11, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); vp10 = _mm512_fmadd_ps(vp10, vt10, vc0); vp11 = _mm512_fmadd_ps(vp11, vt11, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf0 = _mm512_scalef_ps(vp0, vn0); const __m512 vf1 = _mm512_scalef_ps(vp1, vn1); const __m512 vf2 = _mm512_scalef_ps(vp2, vn2); const __m512 vf3 = _mm512_scalef_ps(vp3, vn3); const __m512 vf4 = _mm512_scalef_ps(vp4, vn4); const __m512 vf5 = _mm512_scalef_ps(vp5, vn5); const __m512 vf6 = _mm512_scalef_ps(vp6, vn6); const __m512 vf7 = _mm512_scalef_ps(vp7, vn7); const __m512 vf8 = _mm512_scalef_ps(vp8, vn8); const __m512 vf9 = _mm512_scalef_ps(vp9, vn9); const __m512 vf10 = _mm512_scalef_ps(vp10, vn10); const __m512 vf11 = _mm512_scalef_ps(vp11, vn11); // Accumulate computed exponents. vacc0 = _mm512_add_ps(vacc0, vf0); vacc0 = _mm512_add_ps(vacc0, vf1); vacc0 = _mm512_add_ps(vacc0, vf2); vacc0 = _mm512_add_ps(vacc0, vf3); vacc0 = _mm512_add_ps(vacc0, vf4); vacc0 = _mm512_add_ps(vacc0, vf5); vacc0 = _mm512_add_ps(vacc0, vf6); vacc0 = _mm512_add_ps(vacc0, vf7); vacc0 = _mm512_add_ps(vacc0, vf8); vacc0 = _mm512_add_ps(vacc0, vf9); vacc0 = _mm512_add_ps(vacc0, vf10); vacc0 = _mm512_add_ps(vacc0, vf11); } __m512 vacc = vacc0; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_add_ps(vacc, vf); } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_maskz_loadu_ps(vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf); } *sum = _mm512_reduce_add_ps(vacc); }
11,848
41.317857
106
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx2-p5-x64-acc2.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/raddextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddextexp_ukernel__avx2_p5_x64_acc2( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vminus_inf = _mm256_set1_ps(-INFINITY); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); __m256 vaccv0 = _mm256_setzero_ps(); __m256 vaccv1 = _mm256_setzero_ps(); __m256 vacce0 = vminus_inf; __m256 vacce1 = vminus_inf; for (; batch >= 64 * sizeof(float); batch -= 64 * sizeof(float)) { // Load 64 (8x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); input += 64; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); vp5 = _mm256_fmadd_ps(vp5, vt5, vc0); vp6 = _mm256_fmadd_ps(vp6, vt6, vc0); vp7 = _mm256_fmadd_ps(vp7, vt7, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we may add several "extended" floating-point numbers at a time. __m256 vmax_e0 = _mm256_max_ps(vacce0, vn0); __m256 vmax_e1 = _mm256_max_ps(vacce1, vn1); vmax_e0 = _mm256_max_ps(vmax_e0, vn2); vmax_e1 = _mm256_max_ps(vmax_e1, vn3); vmax_e0 = _mm256_max_ps(vmax_e0, vn4); vmax_e1 = _mm256_max_ps(vmax_e1, vn5); vmax_e0 = _mm256_max_ps(vmax_e0, vn6); vmax_e1 = _mm256_max_ps(vmax_e1, vn7); // For computational efficiency, replace exp2(delta_e) with 0.0f when delta_e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum delta_e at -127.0. // 2. Map delta_e to scale factor 0.0 when delta_e == -127.0 const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_e0), vmin_exponent); const __m256 vdelta_acce1 = _mm256_max_ps(_mm256_sub_ps(vacce1, vmax_e1), vmin_exponent); const __m256 vdelta_e0 = _mm256_max_ps(_mm256_sub_ps(vn0, vmax_e0), vmin_exponent); const __m256 vdelta_e1 = _mm256_max_ps(_mm256_sub_ps(vn1, vmax_e1), vmin_exponent); const __m256 vdelta_e2 = _mm256_max_ps(_mm256_sub_ps(vn2, vmax_e0), vmin_exponent); const __m256 vdelta_e3 = _mm256_max_ps(_mm256_sub_ps(vn3, vmax_e1), vmin_exponent); const __m256 vdelta_e4 = _mm256_max_ps(_mm256_sub_ps(vn4, vmax_e0), vmin_exponent); const __m256 vdelta_e5 = _mm256_max_ps(_mm256_sub_ps(vn5, vmax_e1), vmin_exponent); const __m256 vdelta_e6 = _mm256_max_ps(_mm256_sub_ps(vn6, vmax_e0), vmin_exponent); const __m256 vdelta_e7 = _mm256_max_ps(_mm256_sub_ps(vn7, vmax_e1), vmin_exponent); // Convert delta-exponents into scale factors: // - s = exp2(delta_e) when delta_e > -127.0 // - s = 0.0 when delta_e <= -127.0 // // Note: delta-exponents can not exceed 0.0, thus scale factors can not exceed 1.0. const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23)); const __m256 vaccs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce1, vmagic_bias)), 23)); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e3, vmagic_bias)), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e4, vmagic_bias)), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e5, vmagic_bias)), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e6, vmagic_bias)), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e7, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm256_mul_ps(vaccv0, vaccs0); vaccv1 = _mm256_mul_ps(vaccv1, vaccs1); vaccv0 = _mm256_fmadd_ps(vp0, vs0, vaccv0); vaccv1 = _mm256_fmadd_ps(vp1, vs1, vaccv1); vaccv0 = _mm256_fmadd_ps(vp2, vs2, vaccv0); vaccv1 = _mm256_fmadd_ps(vp3, vs3, vaccv1); vaccv0 = _mm256_fmadd_ps(vp4, vs4, vaccv0); vaccv1 = _mm256_fmadd_ps(vp5, vs5, vaccv1); vaccv0 = _mm256_fmadd_ps(vp6, vs6, vaccv0); vaccv1 = _mm256_fmadd_ps(vp7, vs7, vaccv1); vacce0 = vmax_e0; vacce1 = vmax_e1; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. const __m256 vmax_acce01 = _mm256_max_ps(vacce0, vacce1); const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_acce01), vmin_exponent); const __m256 vdelta_acce1 = _mm256_max_ps(_mm256_sub_ps(vacce1, vmax_acce01), vmin_exponent); const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23)); const __m256 vaccs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce1, vmagic_bias)), 23)); __m256 vaccv = _mm256_mul_ps(vaccv0, vaccs0); vaccv = _mm256_fmadd_ps(vaccv1, vaccs1, vaccv); __m256 vacce = vmax_acce01; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Correct reduced argument batch for masked out batch. vn = _mm256_blendv_ps(vacce, vn, _mm256_castsi256_ps(vmask)); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); vp = _mm256_and_ps(vp, _mm256_castsi256_ps(vmask)); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. __m256 vmax_acce = _mm256_max_ps(vacce, _mm256_permute2f128_ps(vacce, vacce, 1)); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(1, 0, 3, 2))); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(2, 3, 0, 1))); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_acce), vmin_exponent); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); vaccv = _mm256_mul_ps(vaccv, vaccs); __m128 vaccv_sum = _mm_add_ps(_mm256_castps256_ps128(vaccv), _mm256_extractf128_ps(vaccv, 1)); vaccv_sum = _mm_add_ps(vaccv_sum, _mm_movehl_ps(vaccv_sum, vaccv_sum)); vaccv_sum = _mm_add_ss(vaccv_sum, _mm_movehdup_ps(vaccv_sum)); _mm_store_ss(&sum[0], vaccv_sum); _mm_store_ss(&sum[1], _mm256_castps256_ps128(vmax_acce)); _mm256_zeroupper(); }
15,929
49.252366
132
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx2-p5-x64-acc4.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/raddextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddextexp_ukernel__avx2_p5_x64_acc4( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vminus_inf = _mm256_set1_ps(-INFINITY); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); __m256 vaccv0 = _mm256_setzero_ps(); __m256 vaccv1 = _mm256_setzero_ps(); __m256 vaccv2 = _mm256_setzero_ps(); __m256 vaccv3 = _mm256_setzero_ps(); __m256 vacce0 = vminus_inf; __m256 vacce1 = vminus_inf; __m256 vacce2 = vminus_inf; __m256 vacce3 = vminus_inf; for (; batch >= 64 * sizeof(float); batch -= 64 * sizeof(float)) { // Load 64 (8x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); input += 64; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); vp5 = _mm256_fmadd_ps(vp5, vt5, vc0); vp6 = _mm256_fmadd_ps(vp6, vt6, vc0); vp7 = _mm256_fmadd_ps(vp7, vt7, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we may add several "extended" floating-point numbers at a time. __m256 vmax_e0 = _mm256_max_ps(vacce0, vn0); __m256 vmax_e1 = _mm256_max_ps(vacce1, vn1); __m256 vmax_e2 = _mm256_max_ps(vacce2, vn2); __m256 vmax_e3 = _mm256_max_ps(vacce3, vn3); vmax_e0 = _mm256_max_ps(vmax_e0, vn4); vmax_e1 = _mm256_max_ps(vmax_e1, vn5); vmax_e2 = _mm256_max_ps(vmax_e2, vn6); vmax_e3 = _mm256_max_ps(vmax_e3, vn7); // For computational efficiency, replace exp2(delta_e) with 0.0f when delta_e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum delta_e at -127.0. // 2. Map delta_e to scale factor 0.0 when delta_e == -127.0 const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_e0), vmin_exponent); const __m256 vdelta_acce1 = _mm256_max_ps(_mm256_sub_ps(vacce1, vmax_e1), vmin_exponent); const __m256 vdelta_acce2 = _mm256_max_ps(_mm256_sub_ps(vacce2, vmax_e2), vmin_exponent); const __m256 vdelta_acce3 = _mm256_max_ps(_mm256_sub_ps(vacce3, vmax_e3), vmin_exponent); const __m256 vdelta_e0 = _mm256_max_ps(_mm256_sub_ps(vn0, vmax_e0), vmin_exponent); const __m256 vdelta_e1 = _mm256_max_ps(_mm256_sub_ps(vn1, vmax_e1), vmin_exponent); const __m256 vdelta_e2 = _mm256_max_ps(_mm256_sub_ps(vn2, vmax_e2), vmin_exponent); const __m256 vdelta_e3 = _mm256_max_ps(_mm256_sub_ps(vn3, vmax_e3), vmin_exponent); const __m256 vdelta_e4 = _mm256_max_ps(_mm256_sub_ps(vn4, vmax_e0), vmin_exponent); const __m256 vdelta_e5 = _mm256_max_ps(_mm256_sub_ps(vn5, vmax_e1), vmin_exponent); const __m256 vdelta_e6 = _mm256_max_ps(_mm256_sub_ps(vn6, vmax_e2), vmin_exponent); const __m256 vdelta_e7 = _mm256_max_ps(_mm256_sub_ps(vn7, vmax_e3), vmin_exponent); // Convert delta-exponents into scale factors: // - s = exp2(delta_e) when delta_e > -127.0 // - s = 0.0 when delta_e <= -127.0 // // Note: delta-exponents can not exceed 0.0, thus scale factors can not exceed 1.0. const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23)); const __m256 vaccs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce1, vmagic_bias)), 23)); const __m256 vaccs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce2, vmagic_bias)), 23)); const __m256 vaccs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce3, vmagic_bias)), 23)); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e3, vmagic_bias)), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e4, vmagic_bias)), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e5, vmagic_bias)), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e6, vmagic_bias)), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e7, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm256_mul_ps(vaccv0, vaccs0); vaccv1 = _mm256_mul_ps(vaccv1, vaccs1); vaccv2 = _mm256_mul_ps(vaccv2, vaccs2); vaccv3 = _mm256_mul_ps(vaccv3, vaccs3); vaccv0 = _mm256_fmadd_ps(vp0, vs0, vaccv0); vaccv1 = _mm256_fmadd_ps(vp1, vs1, vaccv1); vaccv2 = _mm256_fmadd_ps(vp2, vs2, vaccv2); vaccv3 = _mm256_fmadd_ps(vp3, vs3, vaccv3); vaccv0 = _mm256_fmadd_ps(vp4, vs4, vaccv0); vaccv1 = _mm256_fmadd_ps(vp5, vs5, vaccv1); vaccv2 = _mm256_fmadd_ps(vp6, vs6, vaccv2); vaccv3 = _mm256_fmadd_ps(vp7, vs7, vaccv3); vacce0 = vmax_e0; vacce1 = vmax_e1; vacce2 = vmax_e2; vacce3 = vmax_e3; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. const __m256 vmax_acce01 = _mm256_max_ps(vacce0, vacce1); const __m256 vmax_acce23 = _mm256_max_ps(vacce2, vacce3); const __m256 vmax_acce0123 = _mm256_max_ps(vmax_acce01, vmax_acce23); const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_acce0123), vmin_exponent); const __m256 vdelta_acce1 = _mm256_max_ps(_mm256_sub_ps(vacce1, vmax_acce0123), vmin_exponent); const __m256 vdelta_acce2 = _mm256_max_ps(_mm256_sub_ps(vacce2, vmax_acce0123), vmin_exponent); const __m256 vdelta_acce3 = _mm256_max_ps(_mm256_sub_ps(vacce3, vmax_acce0123), vmin_exponent); const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23)); const __m256 vaccs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce1, vmagic_bias)), 23)); const __m256 vaccs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce2, vmagic_bias)), 23)); const __m256 vaccs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce3, vmagic_bias)), 23)); __m256 vaccv = _mm256_mul_ps(vaccv0, vaccs0); vaccv = _mm256_fmadd_ps(vaccv1, vaccs1, vaccv); vaccv = _mm256_fmadd_ps(vaccv2, vaccs2, vaccv); vaccv = _mm256_fmadd_ps(vaccv3, vaccs3, vaccv); __m256 vacce = vmax_acce0123; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Correct reduced argument batch for masked out batch. vn = _mm256_blendv_ps(vacce, vn, _mm256_castsi256_ps(vmask)); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); vp = _mm256_and_ps(vp, _mm256_castsi256_ps(vmask)); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. __m256 vmax_acce = _mm256_max_ps(vacce, _mm256_permute2f128_ps(vacce, vacce, 1)); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(1, 0, 3, 2))); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(2, 3, 0, 1))); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_acce), vmin_exponent); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); vaccv = _mm256_mul_ps(vaccv, vaccs); __m128 vaccv_sum = _mm_add_ps(_mm256_castps256_ps128(vaccv), _mm256_extractf128_ps(vaccv, 1)); vaccv_sum = _mm_add_ps(vaccv_sum, _mm_movehl_ps(vaccv_sum, vaccv_sum)); vaccv_sum = _mm_add_ss(vaccv_sum, _mm_movehdup_ps(vaccv_sum)); _mm_store_ss(&sum[0], vaccv_sum); _mm_store_ss(&sum[1], _mm256_castps256_ps128(vmax_acce)); _mm256_zeroupper(); }
17,361
50.519288
132
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx2-p5-x64.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/raddextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddextexp_ukernel__avx2_p5_x64( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vminus_inf = _mm256_set1_ps(-INFINITY); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); __m256 vaccv0 = _mm256_setzero_ps(); __m256 vacce0 = vminus_inf; for (; batch >= 64 * sizeof(float); batch -= 64 * sizeof(float)) { // Load 64 (8x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); input += 64; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); vp5 = _mm256_fmadd_ps(vp5, vt5, vc0); vp6 = _mm256_fmadd_ps(vp6, vt6, vc0); vp7 = _mm256_fmadd_ps(vp7, vt7, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we may add several "extended" floating-point numbers at a time. __m256 vmax_e0 = _mm256_max_ps(vacce0, vn0); vmax_e0 = _mm256_max_ps(vmax_e0, vn1); vmax_e0 = _mm256_max_ps(vmax_e0, vn2); vmax_e0 = _mm256_max_ps(vmax_e0, vn3); vmax_e0 = _mm256_max_ps(vmax_e0, vn4); vmax_e0 = _mm256_max_ps(vmax_e0, vn5); vmax_e0 = _mm256_max_ps(vmax_e0, vn6); vmax_e0 = _mm256_max_ps(vmax_e0, vn7); // For computational efficiency, replace exp2(delta_e) with 0.0f when delta_e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum delta_e at -127.0. // 2. Map delta_e to scale factor 0.0 when delta_e == -127.0 const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_e0), vmin_exponent); const __m256 vdelta_e0 = _mm256_max_ps(_mm256_sub_ps(vn0, vmax_e0), vmin_exponent); const __m256 vdelta_e1 = _mm256_max_ps(_mm256_sub_ps(vn1, vmax_e0), vmin_exponent); const __m256 vdelta_e2 = _mm256_max_ps(_mm256_sub_ps(vn2, vmax_e0), vmin_exponent); const __m256 vdelta_e3 = _mm256_max_ps(_mm256_sub_ps(vn3, vmax_e0), vmin_exponent); const __m256 vdelta_e4 = _mm256_max_ps(_mm256_sub_ps(vn4, vmax_e0), vmin_exponent); const __m256 vdelta_e5 = _mm256_max_ps(_mm256_sub_ps(vn5, vmax_e0), vmin_exponent); const __m256 vdelta_e6 = _mm256_max_ps(_mm256_sub_ps(vn6, vmax_e0), vmin_exponent); const __m256 vdelta_e7 = _mm256_max_ps(_mm256_sub_ps(vn7, vmax_e0), vmin_exponent); // Convert delta-exponents into scale factors: // - s = exp2(delta_e) when delta_e > -127.0 // - s = 0.0 when delta_e <= -127.0 // // Note: delta-exponents can not exceed 0.0, thus scale factors can not exceed 1.0. const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23)); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e3, vmagic_bias)), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e4, vmagic_bias)), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e5, vmagic_bias)), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e6, vmagic_bias)), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e7, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm256_mul_ps(vaccv0, vaccs0); vaccv0 = _mm256_fmadd_ps(vp0, vs0, vaccv0); vaccv0 = _mm256_fmadd_ps(vp1, vs1, vaccv0); vaccv0 = _mm256_fmadd_ps(vp2, vs2, vaccv0); vaccv0 = _mm256_fmadd_ps(vp3, vs3, vaccv0); vaccv0 = _mm256_fmadd_ps(vp4, vs4, vaccv0); vaccv0 = _mm256_fmadd_ps(vp5, vs5, vaccv0); vaccv0 = _mm256_fmadd_ps(vp6, vs6, vaccv0); vaccv0 = _mm256_fmadd_ps(vp7, vs7, vaccv0); vacce0 = vmax_e0; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. __m256 vaccv = vaccv0; __m256 vacce = vacce0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Correct reduced argument batch for masked out batch. vn = _mm256_blendv_ps(vacce, vn, _mm256_castsi256_ps(vmask)); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); vp = _mm256_and_ps(vp, _mm256_castsi256_ps(vmask)); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. __m256 vmax_acce = _mm256_max_ps(vacce, _mm256_permute2f128_ps(vacce, vacce, 1)); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(1, 0, 3, 2))); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(2, 3, 0, 1))); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_acce), vmin_exponent); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); vaccv = _mm256_mul_ps(vaccv, vaccs); __m128 vaccv_sum = _mm_add_ps(_mm256_castps256_ps128(vaccv), _mm256_extractf128_ps(vaccv, 1)); vaccv_sum = _mm_add_ps(vaccv_sum, _mm_movehl_ps(vaccv_sum, vaccv_sum)); vaccv_sum = _mm_add_ss(vaccv_sum, _mm_movehdup_ps(vaccv_sum)); _mm_store_ss(&sum[0], vaccv_sum); _mm_store_ss(&sum[1], _mm256_castps256_ps128(vmax_acce)); _mm256_zeroupper(); }
14,961
48.543046
132
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx2-p5-x72-acc3.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/raddextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddextexp_ukernel__avx2_p5_x72_acc3( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vminus_inf = _mm256_set1_ps(-INFINITY); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); __m256 vaccv0 = _mm256_setzero_ps(); __m256 vaccv1 = _mm256_setzero_ps(); __m256 vaccv2 = _mm256_setzero_ps(); __m256 vacce0 = vminus_inf; __m256 vacce1 = vminus_inf; __m256 vacce2 = vminus_inf; for (; batch >= 72 * sizeof(float); batch -= 72 * sizeof(float)) { // Load 72 (9x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); const __m256 vx8 = _mm256_loadu_ps(input + 64); input += 72; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn8 = _mm256_round_ps(_mm256_mul_ps(vx8, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); vp5 = _mm256_fmadd_ps(vp5, vt5, vc0); vp6 = _mm256_fmadd_ps(vp6, vt6, vc0); vp7 = _mm256_fmadd_ps(vp7, vt7, vc0); vp8 = _mm256_fmadd_ps(vp8, vt8, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we may add several "extended" floating-point numbers at a time. __m256 vmax_e0 = _mm256_max_ps(vacce0, vn0); __m256 vmax_e1 = _mm256_max_ps(vacce1, vn1); __m256 vmax_e2 = _mm256_max_ps(vacce2, vn2); vmax_e0 = _mm256_max_ps(vmax_e0, vn3); vmax_e1 = _mm256_max_ps(vmax_e1, vn4); vmax_e2 = _mm256_max_ps(vmax_e2, vn5); vmax_e0 = _mm256_max_ps(vmax_e0, vn6); vmax_e1 = _mm256_max_ps(vmax_e1, vn7); vmax_e2 = _mm256_max_ps(vmax_e2, vn8); // For computational efficiency, replace exp2(delta_e) with 0.0f when delta_e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum delta_e at -127.0. // 2. Map delta_e to scale factor 0.0 when delta_e == -127.0 const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_e0), vmin_exponent); const __m256 vdelta_acce1 = _mm256_max_ps(_mm256_sub_ps(vacce1, vmax_e1), vmin_exponent); const __m256 vdelta_acce2 = _mm256_max_ps(_mm256_sub_ps(vacce2, vmax_e2), vmin_exponent); const __m256 vdelta_e0 = _mm256_max_ps(_mm256_sub_ps(vn0, vmax_e0), vmin_exponent); const __m256 vdelta_e1 = _mm256_max_ps(_mm256_sub_ps(vn1, vmax_e1), vmin_exponent); const __m256 vdelta_e2 = _mm256_max_ps(_mm256_sub_ps(vn2, vmax_e2), vmin_exponent); const __m256 vdelta_e3 = _mm256_max_ps(_mm256_sub_ps(vn3, vmax_e0), vmin_exponent); const __m256 vdelta_e4 = _mm256_max_ps(_mm256_sub_ps(vn4, vmax_e1), vmin_exponent); const __m256 vdelta_e5 = _mm256_max_ps(_mm256_sub_ps(vn5, vmax_e2), vmin_exponent); const __m256 vdelta_e6 = _mm256_max_ps(_mm256_sub_ps(vn6, vmax_e0), vmin_exponent); const __m256 vdelta_e7 = _mm256_max_ps(_mm256_sub_ps(vn7, vmax_e1), vmin_exponent); const __m256 vdelta_e8 = _mm256_max_ps(_mm256_sub_ps(vn8, vmax_e2), vmin_exponent); // Convert delta-exponents into scale factors: // - s = exp2(delta_e) when delta_e > -127.0 // - s = 0.0 when delta_e <= -127.0 // // Note: delta-exponents can not exceed 0.0, thus scale factors can not exceed 1.0. const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23)); const __m256 vaccs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce1, vmagic_bias)), 23)); const __m256 vaccs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce2, vmagic_bias)), 23)); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e3, vmagic_bias)), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e4, vmagic_bias)), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e5, vmagic_bias)), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e6, vmagic_bias)), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e7, vmagic_bias)), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e8, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm256_mul_ps(vaccv0, vaccs0); vaccv1 = _mm256_mul_ps(vaccv1, vaccs1); vaccv2 = _mm256_mul_ps(vaccv2, vaccs2); vaccv0 = _mm256_fmadd_ps(vp0, vs0, vaccv0); vaccv1 = _mm256_fmadd_ps(vp1, vs1, vaccv1); vaccv2 = _mm256_fmadd_ps(vp2, vs2, vaccv2); vaccv0 = _mm256_fmadd_ps(vp3, vs3, vaccv0); vaccv1 = _mm256_fmadd_ps(vp4, vs4, vaccv1); vaccv2 = _mm256_fmadd_ps(vp5, vs5, vaccv2); vaccv0 = _mm256_fmadd_ps(vp6, vs6, vaccv0); vaccv1 = _mm256_fmadd_ps(vp7, vs7, vaccv1); vaccv2 = _mm256_fmadd_ps(vp8, vs8, vaccv2); vacce0 = vmax_e0; vacce1 = vmax_e1; vacce2 = vmax_e2; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. const __m256 vmax_acce01 = _mm256_max_ps(vacce0, vacce1); const __m256 vmax_acce2 = vacce2; const __m256 vmax_acce012 = _mm256_max_ps(vmax_acce01, vmax_acce2); const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_acce012), vmin_exponent); const __m256 vdelta_acce1 = _mm256_max_ps(_mm256_sub_ps(vacce1, vmax_acce012), vmin_exponent); const __m256 vdelta_acce2 = _mm256_max_ps(_mm256_sub_ps(vacce2, vmax_acce012), vmin_exponent); const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23)); const __m256 vaccs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce1, vmagic_bias)), 23)); const __m256 vaccs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce2, vmagic_bias)), 23)); __m256 vaccv = _mm256_mul_ps(vaccv0, vaccs0); vaccv = _mm256_fmadd_ps(vaccv1, vaccs1, vaccv); vaccv = _mm256_fmadd_ps(vaccv2, vaccs2, vaccv); __m256 vacce = vmax_acce012; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Correct reduced argument batch for masked out batch. vn = _mm256_blendv_ps(vacce, vn, _mm256_castsi256_ps(vmask)); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); vp = _mm256_and_ps(vp, _mm256_castsi256_ps(vmask)); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. __m256 vmax_acce = _mm256_max_ps(vacce, _mm256_permute2f128_ps(vacce, vacce, 1)); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(1, 0, 3, 2))); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(2, 3, 0, 1))); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_acce), vmin_exponent); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); vaccv = _mm256_mul_ps(vaccv, vaccs); __m128 vaccv_sum = _mm_add_ps(_mm256_castps256_ps128(vaccv), _mm256_extractf128_ps(vaccv, 1)); vaccv_sum = _mm_add_ps(vaccv_sum, _mm_movehl_ps(vaccv_sum, vaccv_sum)); vaccv_sum = _mm_add_ss(vaccv_sum, _mm_movehdup_ps(vaccv_sum)); _mm_store_ss(&sum[0], vaccv_sum); _mm_store_ss(&sum[1], _mm256_castps256_ps128(vmax_acce)); _mm256_zeroupper(); }
17,485
50.278592
132
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx2-p5-x72.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/raddextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddextexp_ukernel__avx2_p5_x72( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vminus_inf = _mm256_set1_ps(-INFINITY); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); __m256 vaccv0 = _mm256_setzero_ps(); __m256 vacce0 = vminus_inf; for (; batch >= 72 * sizeof(float); batch -= 72 * sizeof(float)) { // Load 72 (9x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); const __m256 vx8 = _mm256_loadu_ps(input + 64); input += 72; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn8 = _mm256_round_ps(_mm256_mul_ps(vx8, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); vp5 = _mm256_fmadd_ps(vp5, vt5, vc0); vp6 = _mm256_fmadd_ps(vp6, vt6, vc0); vp7 = _mm256_fmadd_ps(vp7, vt7, vc0); vp8 = _mm256_fmadd_ps(vp8, vt8, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we may add several "extended" floating-point numbers at a time. __m256 vmax_e0 = _mm256_max_ps(vacce0, vn0); vmax_e0 = _mm256_max_ps(vmax_e0, vn1); vmax_e0 = _mm256_max_ps(vmax_e0, vn2); vmax_e0 = _mm256_max_ps(vmax_e0, vn3); vmax_e0 = _mm256_max_ps(vmax_e0, vn4); vmax_e0 = _mm256_max_ps(vmax_e0, vn5); vmax_e0 = _mm256_max_ps(vmax_e0, vn6); vmax_e0 = _mm256_max_ps(vmax_e0, vn7); vmax_e0 = _mm256_max_ps(vmax_e0, vn8); // For computational efficiency, replace exp2(delta_e) with 0.0f when delta_e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum delta_e at -127.0. // 2. Map delta_e to scale factor 0.0 when delta_e == -127.0 const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_e0), vmin_exponent); const __m256 vdelta_e0 = _mm256_max_ps(_mm256_sub_ps(vn0, vmax_e0), vmin_exponent); const __m256 vdelta_e1 = _mm256_max_ps(_mm256_sub_ps(vn1, vmax_e0), vmin_exponent); const __m256 vdelta_e2 = _mm256_max_ps(_mm256_sub_ps(vn2, vmax_e0), vmin_exponent); const __m256 vdelta_e3 = _mm256_max_ps(_mm256_sub_ps(vn3, vmax_e0), vmin_exponent); const __m256 vdelta_e4 = _mm256_max_ps(_mm256_sub_ps(vn4, vmax_e0), vmin_exponent); const __m256 vdelta_e5 = _mm256_max_ps(_mm256_sub_ps(vn5, vmax_e0), vmin_exponent); const __m256 vdelta_e6 = _mm256_max_ps(_mm256_sub_ps(vn6, vmax_e0), vmin_exponent); const __m256 vdelta_e7 = _mm256_max_ps(_mm256_sub_ps(vn7, vmax_e0), vmin_exponent); const __m256 vdelta_e8 = _mm256_max_ps(_mm256_sub_ps(vn8, vmax_e0), vmin_exponent); // Convert delta-exponents into scale factors: // - s = exp2(delta_e) when delta_e > -127.0 // - s = 0.0 when delta_e <= -127.0 // // Note: delta-exponents can not exceed 0.0, thus scale factors can not exceed 1.0. const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23)); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e3, vmagic_bias)), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e4, vmagic_bias)), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e5, vmagic_bias)), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e6, vmagic_bias)), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e7, vmagic_bias)), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e8, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm256_mul_ps(vaccv0, vaccs0); vaccv0 = _mm256_fmadd_ps(vp0, vs0, vaccv0); vaccv0 = _mm256_fmadd_ps(vp1, vs1, vaccv0); vaccv0 = _mm256_fmadd_ps(vp2, vs2, vaccv0); vaccv0 = _mm256_fmadd_ps(vp3, vs3, vaccv0); vaccv0 = _mm256_fmadd_ps(vp4, vs4, vaccv0); vaccv0 = _mm256_fmadd_ps(vp5, vs5, vaccv0); vaccv0 = _mm256_fmadd_ps(vp6, vs6, vaccv0); vaccv0 = _mm256_fmadd_ps(vp7, vs7, vaccv0); vaccv0 = _mm256_fmadd_ps(vp8, vs8, vaccv0); vacce0 = vmax_e0; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. __m256 vaccv = vaccv0; __m256 vacce = vacce0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Correct reduced argument batch for masked out batch. vn = _mm256_blendv_ps(vacce, vn, _mm256_castsi256_ps(vmask)); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); vp = _mm256_and_ps(vp, _mm256_castsi256_ps(vmask)); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. __m256 vmax_acce = _mm256_max_ps(vacce, _mm256_permute2f128_ps(vacce, vacce, 1)); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(1, 0, 3, 2))); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(2, 3, 0, 1))); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_acce), vmin_exponent); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); vaccv = _mm256_mul_ps(vaccv, vaccs); __m128 vaccv_sum = _mm_add_ps(_mm256_castps256_ps128(vaccv), _mm256_extractf128_ps(vaccv, 1)); vaccv_sum = _mm_add_ps(vaccv_sum, _mm_movehl_ps(vaccv_sum, vaccv_sum)); vaccv_sum = _mm_add_ss(vaccv_sum, _mm_movehdup_ps(vaccv_sum)); _mm_store_ss(&sum[0], vaccv_sum); _mm_store_ss(&sum[1], _mm256_castps256_ps128(vmax_acce)); _mm256_zeroupper(); }
15,762
49.04127
132
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx2-p5-x80-acc2.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/raddextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddextexp_ukernel__avx2_p5_x80_acc2( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vminus_inf = _mm256_set1_ps(-INFINITY); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); __m256 vaccv0 = _mm256_setzero_ps(); __m256 vaccv1 = _mm256_setzero_ps(); __m256 vacce0 = vminus_inf; __m256 vacce1 = vminus_inf; for (; batch >= 80 * sizeof(float); batch -= 80 * sizeof(float)) { // Load 80 (10x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); const __m256 vx8 = _mm256_loadu_ps(input + 64); const __m256 vx9 = _mm256_loadu_ps(input + 72); input += 80; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn8 = _mm256_round_ps(_mm256_mul_ps(vx8, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn9 = _mm256_round_ps(_mm256_mul_ps(vx9, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); vp5 = _mm256_fmadd_ps(vp5, vt5, vc0); vp6 = _mm256_fmadd_ps(vp6, vt6, vc0); vp7 = _mm256_fmadd_ps(vp7, vt7, vc0); vp8 = _mm256_fmadd_ps(vp8, vt8, vc0); vp9 = _mm256_fmadd_ps(vp9, vt9, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we may add several "extended" floating-point numbers at a time. __m256 vmax_e0 = _mm256_max_ps(vacce0, vn0); __m256 vmax_e1 = _mm256_max_ps(vacce1, vn1); vmax_e0 = _mm256_max_ps(vmax_e0, vn2); vmax_e1 = _mm256_max_ps(vmax_e1, vn3); vmax_e0 = _mm256_max_ps(vmax_e0, vn4); vmax_e1 = _mm256_max_ps(vmax_e1, vn5); vmax_e0 = _mm256_max_ps(vmax_e0, vn6); vmax_e1 = _mm256_max_ps(vmax_e1, vn7); vmax_e0 = _mm256_max_ps(vmax_e0, vn8); vmax_e1 = _mm256_max_ps(vmax_e1, vn9); // For computational efficiency, replace exp2(delta_e) with 0.0f when delta_e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum delta_e at -127.0. // 2. Map delta_e to scale factor 0.0 when delta_e == -127.0 const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_e0), vmin_exponent); const __m256 vdelta_acce1 = _mm256_max_ps(_mm256_sub_ps(vacce1, vmax_e1), vmin_exponent); const __m256 vdelta_e0 = _mm256_max_ps(_mm256_sub_ps(vn0, vmax_e0), vmin_exponent); const __m256 vdelta_e1 = _mm256_max_ps(_mm256_sub_ps(vn1, vmax_e1), vmin_exponent); const __m256 vdelta_e2 = _mm256_max_ps(_mm256_sub_ps(vn2, vmax_e0), vmin_exponent); const __m256 vdelta_e3 = _mm256_max_ps(_mm256_sub_ps(vn3, vmax_e1), vmin_exponent); const __m256 vdelta_e4 = _mm256_max_ps(_mm256_sub_ps(vn4, vmax_e0), vmin_exponent); const __m256 vdelta_e5 = _mm256_max_ps(_mm256_sub_ps(vn5, vmax_e1), vmin_exponent); const __m256 vdelta_e6 = _mm256_max_ps(_mm256_sub_ps(vn6, vmax_e0), vmin_exponent); const __m256 vdelta_e7 = _mm256_max_ps(_mm256_sub_ps(vn7, vmax_e1), vmin_exponent); const __m256 vdelta_e8 = _mm256_max_ps(_mm256_sub_ps(vn8, vmax_e0), vmin_exponent); const __m256 vdelta_e9 = _mm256_max_ps(_mm256_sub_ps(vn9, vmax_e1), vmin_exponent); // Convert delta-exponents into scale factors: // - s = exp2(delta_e) when delta_e > -127.0 // - s = 0.0 when delta_e <= -127.0 // // Note: delta-exponents can not exceed 0.0, thus scale factors can not exceed 1.0. const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23)); const __m256 vaccs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce1, vmagic_bias)), 23)); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e3, vmagic_bias)), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e4, vmagic_bias)), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e5, vmagic_bias)), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e6, vmagic_bias)), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e7, vmagic_bias)), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e8, vmagic_bias)), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e9, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm256_mul_ps(vaccv0, vaccs0); vaccv1 = _mm256_mul_ps(vaccv1, vaccs1); vaccv0 = _mm256_fmadd_ps(vp0, vs0, vaccv0); vaccv1 = _mm256_fmadd_ps(vp1, vs1, vaccv1); vaccv0 = _mm256_fmadd_ps(vp2, vs2, vaccv0); vaccv1 = _mm256_fmadd_ps(vp3, vs3, vaccv1); vaccv0 = _mm256_fmadd_ps(vp4, vs4, vaccv0); vaccv1 = _mm256_fmadd_ps(vp5, vs5, vaccv1); vaccv0 = _mm256_fmadd_ps(vp6, vs6, vaccv0); vaccv1 = _mm256_fmadd_ps(vp7, vs7, vaccv1); vaccv0 = _mm256_fmadd_ps(vp8, vs8, vaccv0); vaccv1 = _mm256_fmadd_ps(vp9, vs9, vaccv1); vacce0 = vmax_e0; vacce1 = vmax_e1; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. const __m256 vmax_acce01 = _mm256_max_ps(vacce0, vacce1); const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_acce01), vmin_exponent); const __m256 vdelta_acce1 = _mm256_max_ps(_mm256_sub_ps(vacce1, vmax_acce01), vmin_exponent); const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23)); const __m256 vaccs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce1, vmagic_bias)), 23)); __m256 vaccv = _mm256_mul_ps(vaccv0, vaccs0); vaccv = _mm256_fmadd_ps(vaccv1, vaccs1, vaccv); __m256 vacce = vmax_acce01; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Correct reduced argument batch for masked out batch. vn = _mm256_blendv_ps(vacce, vn, _mm256_castsi256_ps(vmask)); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); vp = _mm256_and_ps(vp, _mm256_castsi256_ps(vmask)); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. __m256 vmax_acce = _mm256_max_ps(vacce, _mm256_permute2f128_ps(vacce, vacce, 1)); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(1, 0, 3, 2))); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(2, 3, 0, 1))); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_acce), vmin_exponent); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); vaccv = _mm256_mul_ps(vaccv, vaccs); __m128 vaccv_sum = _mm_add_ps(_mm256_castps256_ps128(vaccv), _mm256_extractf128_ps(vaccv, 1)); vaccv_sum = _mm_add_ps(vaccv_sum, _mm_movehl_ps(vaccv_sum, vaccv_sum)); vaccv_sum = _mm_add_ss(vaccv_sum, _mm_movehdup_ps(vaccv_sum)); _mm_store_ss(&sum[0], vaccv_sum); _mm_store_ss(&sum[1], _mm256_castps256_ps128(vmax_acce)); _mm256_zeroupper(); }
17,532
50.116618
132
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx2-p5-x80-acc5.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/raddextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddextexp_ukernel__avx2_p5_x80_acc5( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vminus_inf = _mm256_set1_ps(-INFINITY); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); __m256 vaccv0 = _mm256_setzero_ps(); __m256 vaccv1 = _mm256_setzero_ps(); __m256 vaccv2 = _mm256_setzero_ps(); __m256 vaccv3 = _mm256_setzero_ps(); __m256 vaccv4 = _mm256_setzero_ps(); __m256 vacce0 = vminus_inf; __m256 vacce1 = vminus_inf; __m256 vacce2 = vminus_inf; __m256 vacce3 = vminus_inf; __m256 vacce4 = vminus_inf; for (; batch >= 80 * sizeof(float); batch -= 80 * sizeof(float)) { // Load 80 (10x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); const __m256 vx8 = _mm256_loadu_ps(input + 64); const __m256 vx9 = _mm256_loadu_ps(input + 72); input += 80; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn8 = _mm256_round_ps(_mm256_mul_ps(vx8, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn9 = _mm256_round_ps(_mm256_mul_ps(vx9, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); vp5 = _mm256_fmadd_ps(vp5, vt5, vc0); vp6 = _mm256_fmadd_ps(vp6, vt6, vc0); vp7 = _mm256_fmadd_ps(vp7, vt7, vc0); vp8 = _mm256_fmadd_ps(vp8, vt8, vc0); vp9 = _mm256_fmadd_ps(vp9, vt9, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we may add several "extended" floating-point numbers at a time. __m256 vmax_e0 = _mm256_max_ps(vacce0, vn0); __m256 vmax_e1 = _mm256_max_ps(vacce1, vn1); __m256 vmax_e2 = _mm256_max_ps(vacce2, vn2); __m256 vmax_e3 = _mm256_max_ps(vacce3, vn3); __m256 vmax_e4 = _mm256_max_ps(vacce4, vn4); vmax_e0 = _mm256_max_ps(vmax_e0, vn5); vmax_e1 = _mm256_max_ps(vmax_e1, vn6); vmax_e2 = _mm256_max_ps(vmax_e2, vn7); vmax_e3 = _mm256_max_ps(vmax_e3, vn8); vmax_e4 = _mm256_max_ps(vmax_e4, vn9); // For computational efficiency, replace exp2(delta_e) with 0.0f when delta_e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum delta_e at -127.0. // 2. Map delta_e to scale factor 0.0 when delta_e == -127.0 const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_e0), vmin_exponent); const __m256 vdelta_acce1 = _mm256_max_ps(_mm256_sub_ps(vacce1, vmax_e1), vmin_exponent); const __m256 vdelta_acce2 = _mm256_max_ps(_mm256_sub_ps(vacce2, vmax_e2), vmin_exponent); const __m256 vdelta_acce3 = _mm256_max_ps(_mm256_sub_ps(vacce3, vmax_e3), vmin_exponent); const __m256 vdelta_acce4 = _mm256_max_ps(_mm256_sub_ps(vacce4, vmax_e4), vmin_exponent); const __m256 vdelta_e0 = _mm256_max_ps(_mm256_sub_ps(vn0, vmax_e0), vmin_exponent); const __m256 vdelta_e1 = _mm256_max_ps(_mm256_sub_ps(vn1, vmax_e1), vmin_exponent); const __m256 vdelta_e2 = _mm256_max_ps(_mm256_sub_ps(vn2, vmax_e2), vmin_exponent); const __m256 vdelta_e3 = _mm256_max_ps(_mm256_sub_ps(vn3, vmax_e3), vmin_exponent); const __m256 vdelta_e4 = _mm256_max_ps(_mm256_sub_ps(vn4, vmax_e4), vmin_exponent); const __m256 vdelta_e5 = _mm256_max_ps(_mm256_sub_ps(vn5, vmax_e0), vmin_exponent); const __m256 vdelta_e6 = _mm256_max_ps(_mm256_sub_ps(vn6, vmax_e1), vmin_exponent); const __m256 vdelta_e7 = _mm256_max_ps(_mm256_sub_ps(vn7, vmax_e2), vmin_exponent); const __m256 vdelta_e8 = _mm256_max_ps(_mm256_sub_ps(vn8, vmax_e3), vmin_exponent); const __m256 vdelta_e9 = _mm256_max_ps(_mm256_sub_ps(vn9, vmax_e4), vmin_exponent); // Convert delta-exponents into scale factors: // - s = exp2(delta_e) when delta_e > -127.0 // - s = 0.0 when delta_e <= -127.0 // // Note: delta-exponents can not exceed 0.0, thus scale factors can not exceed 1.0. const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23)); const __m256 vaccs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce1, vmagic_bias)), 23)); const __m256 vaccs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce2, vmagic_bias)), 23)); const __m256 vaccs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce3, vmagic_bias)), 23)); const __m256 vaccs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce4, vmagic_bias)), 23)); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e3, vmagic_bias)), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e4, vmagic_bias)), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e5, vmagic_bias)), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e6, vmagic_bias)), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e7, vmagic_bias)), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e8, vmagic_bias)), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e9, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm256_mul_ps(vaccv0, vaccs0); vaccv1 = _mm256_mul_ps(vaccv1, vaccs1); vaccv2 = _mm256_mul_ps(vaccv2, vaccs2); vaccv3 = _mm256_mul_ps(vaccv3, vaccs3); vaccv4 = _mm256_mul_ps(vaccv4, vaccs4); vaccv0 = _mm256_fmadd_ps(vp0, vs0, vaccv0); vaccv1 = _mm256_fmadd_ps(vp1, vs1, vaccv1); vaccv2 = _mm256_fmadd_ps(vp2, vs2, vaccv2); vaccv3 = _mm256_fmadd_ps(vp3, vs3, vaccv3); vaccv4 = _mm256_fmadd_ps(vp4, vs4, vaccv4); vaccv0 = _mm256_fmadd_ps(vp5, vs5, vaccv0); vaccv1 = _mm256_fmadd_ps(vp6, vs6, vaccv1); vaccv2 = _mm256_fmadd_ps(vp7, vs7, vaccv2); vaccv3 = _mm256_fmadd_ps(vp8, vs8, vaccv3); vaccv4 = _mm256_fmadd_ps(vp9, vs9, vaccv4); vacce0 = vmax_e0; vacce1 = vmax_e1; vacce2 = vmax_e2; vacce3 = vmax_e3; vacce4 = vmax_e4; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. const __m256 vmax_acce01 = _mm256_max_ps(vacce0, vacce1); const __m256 vmax_acce23 = _mm256_max_ps(vacce2, vacce3); const __m256 vmax_acce4 = vacce4; const __m256 vmax_acce0123 = _mm256_max_ps(vmax_acce01, vmax_acce23); const __m256 vmax_acce01234 = _mm256_max_ps(vmax_acce0123, vmax_acce4); const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_acce01234), vmin_exponent); const __m256 vdelta_acce1 = _mm256_max_ps(_mm256_sub_ps(vacce1, vmax_acce01234), vmin_exponent); const __m256 vdelta_acce2 = _mm256_max_ps(_mm256_sub_ps(vacce2, vmax_acce01234), vmin_exponent); const __m256 vdelta_acce3 = _mm256_max_ps(_mm256_sub_ps(vacce3, vmax_acce01234), vmin_exponent); const __m256 vdelta_acce4 = _mm256_max_ps(_mm256_sub_ps(vacce4, vmax_acce01234), vmin_exponent); const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23)); const __m256 vaccs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce1, vmagic_bias)), 23)); const __m256 vaccs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce2, vmagic_bias)), 23)); const __m256 vaccs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce3, vmagic_bias)), 23)); const __m256 vaccs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce4, vmagic_bias)), 23)); __m256 vaccv = _mm256_mul_ps(vaccv0, vaccs0); vaccv = _mm256_fmadd_ps(vaccv1, vaccs1, vaccv); vaccv = _mm256_fmadd_ps(vaccv2, vaccs2, vaccv); vaccv = _mm256_fmadd_ps(vaccv3, vaccs3, vaccv); vaccv = _mm256_fmadd_ps(vaccv4, vaccs4, vaccv); __m256 vacce = vmax_acce01234; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Correct reduced argument batch for masked out batch. vn = _mm256_blendv_ps(vacce, vn, _mm256_castsi256_ps(vmask)); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); vp = _mm256_and_ps(vp, _mm256_castsi256_ps(vmask)); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. __m256 vmax_acce = _mm256_max_ps(vacce, _mm256_permute2f128_ps(vacce, vacce, 1)); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(1, 0, 3, 2))); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(2, 3, 0, 1))); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_acce), vmin_exponent); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); vaccv = _mm256_mul_ps(vaccv, vaccs); __m128 vaccv_sum = _mm_add_ps(_mm256_castps256_ps128(vaccv), _mm256_extractf128_ps(vaccv, 1)); vaccv_sum = _mm_add_ps(vaccv_sum, _mm_movehl_ps(vaccv_sum, vaccv_sum)); vaccv_sum = _mm_add_ss(vaccv_sum, _mm_movehdup_ps(vaccv_sum)); _mm_store_ss(&sum[0], vaccv_sum); _mm_store_ss(&sum[1], _mm256_castps256_ps128(vmax_acce)); _mm256_zeroupper(); }
19,727
51.748663
132
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx2-p5-x80.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/raddextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddextexp_ukernel__avx2_p5_x80( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vminus_inf = _mm256_set1_ps(-INFINITY); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); __m256 vaccv0 = _mm256_setzero_ps(); __m256 vacce0 = vminus_inf; for (; batch >= 80 * sizeof(float); batch -= 80 * sizeof(float)) { // Load 80 (10x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); const __m256 vx8 = _mm256_loadu_ps(input + 64); const __m256 vx9 = _mm256_loadu_ps(input + 72); input += 80; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn8 = _mm256_round_ps(_mm256_mul_ps(vx8, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn9 = _mm256_round_ps(_mm256_mul_ps(vx9, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); vp5 = _mm256_fmadd_ps(vp5, vt5, vc0); vp6 = _mm256_fmadd_ps(vp6, vt6, vc0); vp7 = _mm256_fmadd_ps(vp7, vt7, vc0); vp8 = _mm256_fmadd_ps(vp8, vt8, vc0); vp9 = _mm256_fmadd_ps(vp9, vt9, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we may add several "extended" floating-point numbers at a time. __m256 vmax_e0 = _mm256_max_ps(vacce0, vn0); vmax_e0 = _mm256_max_ps(vmax_e0, vn1); vmax_e0 = _mm256_max_ps(vmax_e0, vn2); vmax_e0 = _mm256_max_ps(vmax_e0, vn3); vmax_e0 = _mm256_max_ps(vmax_e0, vn4); vmax_e0 = _mm256_max_ps(vmax_e0, vn5); vmax_e0 = _mm256_max_ps(vmax_e0, vn6); vmax_e0 = _mm256_max_ps(vmax_e0, vn7); vmax_e0 = _mm256_max_ps(vmax_e0, vn8); vmax_e0 = _mm256_max_ps(vmax_e0, vn9); // For computational efficiency, replace exp2(delta_e) with 0.0f when delta_e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum delta_e at -127.0. // 2. Map delta_e to scale factor 0.0 when delta_e == -127.0 const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_e0), vmin_exponent); const __m256 vdelta_e0 = _mm256_max_ps(_mm256_sub_ps(vn0, vmax_e0), vmin_exponent); const __m256 vdelta_e1 = _mm256_max_ps(_mm256_sub_ps(vn1, vmax_e0), vmin_exponent); const __m256 vdelta_e2 = _mm256_max_ps(_mm256_sub_ps(vn2, vmax_e0), vmin_exponent); const __m256 vdelta_e3 = _mm256_max_ps(_mm256_sub_ps(vn3, vmax_e0), vmin_exponent); const __m256 vdelta_e4 = _mm256_max_ps(_mm256_sub_ps(vn4, vmax_e0), vmin_exponent); const __m256 vdelta_e5 = _mm256_max_ps(_mm256_sub_ps(vn5, vmax_e0), vmin_exponent); const __m256 vdelta_e6 = _mm256_max_ps(_mm256_sub_ps(vn6, vmax_e0), vmin_exponent); const __m256 vdelta_e7 = _mm256_max_ps(_mm256_sub_ps(vn7, vmax_e0), vmin_exponent); const __m256 vdelta_e8 = _mm256_max_ps(_mm256_sub_ps(vn8, vmax_e0), vmin_exponent); const __m256 vdelta_e9 = _mm256_max_ps(_mm256_sub_ps(vn9, vmax_e0), vmin_exponent); // Convert delta-exponents into scale factors: // - s = exp2(delta_e) when delta_e > -127.0 // - s = 0.0 when delta_e <= -127.0 // // Note: delta-exponents can not exceed 0.0, thus scale factors can not exceed 1.0. const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23)); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e3, vmagic_bias)), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e4, vmagic_bias)), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e5, vmagic_bias)), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e6, vmagic_bias)), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e7, vmagic_bias)), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e8, vmagic_bias)), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e9, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm256_mul_ps(vaccv0, vaccs0); vaccv0 = _mm256_fmadd_ps(vp0, vs0, vaccv0); vaccv0 = _mm256_fmadd_ps(vp1, vs1, vaccv0); vaccv0 = _mm256_fmadd_ps(vp2, vs2, vaccv0); vaccv0 = _mm256_fmadd_ps(vp3, vs3, vaccv0); vaccv0 = _mm256_fmadd_ps(vp4, vs4, vaccv0); vaccv0 = _mm256_fmadd_ps(vp5, vs5, vaccv0); vaccv0 = _mm256_fmadd_ps(vp6, vs6, vaccv0); vaccv0 = _mm256_fmadd_ps(vp7, vs7, vaccv0); vaccv0 = _mm256_fmadd_ps(vp8, vs8, vaccv0); vaccv0 = _mm256_fmadd_ps(vp9, vs9, vaccv0); vacce0 = vmax_e0; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. __m256 vaccv = vaccv0; __m256 vacce = vacce0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Correct reduced argument batch for masked out batch. vn = _mm256_blendv_ps(vacce, vn, _mm256_castsi256_ps(vmask)); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); vp = _mm256_and_ps(vp, _mm256_castsi256_ps(vmask)); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. __m256 vmax_acce = _mm256_max_ps(vacce, _mm256_permute2f128_ps(vacce, vacce, 1)); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(1, 0, 3, 2))); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(2, 3, 0, 1))); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_acce), vmin_exponent); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); vaccv = _mm256_mul_ps(vaccv, vaccs); __m128 vaccv_sum = _mm_add_ps(_mm256_castps256_ps128(vaccv), _mm256_extractf128_ps(vaccv, 1)); vaccv_sum = _mm_add_ps(vaccv_sum, _mm_movehl_ps(vaccv_sum, vaccv_sum)); vaccv_sum = _mm_add_ss(vaccv_sum, _mm_movehdup_ps(vaccv_sum)); _mm_store_ss(&sum[0], vaccv_sum); _mm_store_ss(&sum[1], _mm256_castps256_ps128(vmax_acce)); _mm256_zeroupper(); }
16,564
49.503049
132
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx2-p5-x96-acc2.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/raddextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddextexp_ukernel__avx2_p5_x96_acc2( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vminus_inf = _mm256_set1_ps(-INFINITY); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); __m256 vaccv0 = _mm256_setzero_ps(); __m256 vaccv1 = _mm256_setzero_ps(); __m256 vacce0 = vminus_inf; __m256 vacce1 = vminus_inf; for (; batch >= 96 * sizeof(float); batch -= 96 * sizeof(float)) { // Load 96 (12x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); const __m256 vx8 = _mm256_loadu_ps(input + 64); const __m256 vx9 = _mm256_loadu_ps(input + 72); const __m256 vx10 = _mm256_loadu_ps(input + 80); const __m256 vx11 = _mm256_loadu_ps(input + 88); input += 96; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn8 = _mm256_round_ps(_mm256_mul_ps(vx8, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn9 = _mm256_round_ps(_mm256_mul_ps(vx9, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn10 = _mm256_round_ps(_mm256_mul_ps(vx10, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn11 = _mm256_round_ps(_mm256_mul_ps(vx11, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m256 vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m256 vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); __m256 vp10 = _mm256_fmadd_ps(vc5, vt10, vc4); __m256 vp11 = _mm256_fmadd_ps(vc5, vt11, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp10 = _mm256_fmadd_ps(vp10, vt10, vc3); vp11 = _mm256_fmadd_ps(vp11, vt11, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp10 = _mm256_fmadd_ps(vp10, vt10, vc2); vp11 = _mm256_fmadd_ps(vp11, vt11, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vp10 = _mm256_fmadd_ps(vp10, vt10, vc1); vp11 = _mm256_fmadd_ps(vp11, vt11, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); vp5 = _mm256_fmadd_ps(vp5, vt5, vc0); vp6 = _mm256_fmadd_ps(vp6, vt6, vc0); vp7 = _mm256_fmadd_ps(vp7, vt7, vc0); vp8 = _mm256_fmadd_ps(vp8, vt8, vc0); vp9 = _mm256_fmadd_ps(vp9, vt9, vc0); vp10 = _mm256_fmadd_ps(vp10, vt10, vc0); vp11 = _mm256_fmadd_ps(vp11, vt11, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we may add several "extended" floating-point numbers at a time. __m256 vmax_e0 = _mm256_max_ps(vacce0, vn0); __m256 vmax_e1 = _mm256_max_ps(vacce1, vn1); vmax_e0 = _mm256_max_ps(vmax_e0, vn2); vmax_e1 = _mm256_max_ps(vmax_e1, vn3); vmax_e0 = _mm256_max_ps(vmax_e0, vn4); vmax_e1 = _mm256_max_ps(vmax_e1, vn5); vmax_e0 = _mm256_max_ps(vmax_e0, vn6); vmax_e1 = _mm256_max_ps(vmax_e1, vn7); vmax_e0 = _mm256_max_ps(vmax_e0, vn8); vmax_e1 = _mm256_max_ps(vmax_e1, vn9); vmax_e0 = _mm256_max_ps(vmax_e0, vn10); vmax_e1 = _mm256_max_ps(vmax_e1, vn11); // For computational efficiency, replace exp2(delta_e) with 0.0f when delta_e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum delta_e at -127.0. // 2. Map delta_e to scale factor 0.0 when delta_e == -127.0 const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_e0), vmin_exponent); const __m256 vdelta_acce1 = _mm256_max_ps(_mm256_sub_ps(vacce1, vmax_e1), vmin_exponent); const __m256 vdelta_e0 = _mm256_max_ps(_mm256_sub_ps(vn0, vmax_e0), vmin_exponent); const __m256 vdelta_e1 = _mm256_max_ps(_mm256_sub_ps(vn1, vmax_e1), vmin_exponent); const __m256 vdelta_e2 = _mm256_max_ps(_mm256_sub_ps(vn2, vmax_e0), vmin_exponent); const __m256 vdelta_e3 = _mm256_max_ps(_mm256_sub_ps(vn3, vmax_e1), vmin_exponent); const __m256 vdelta_e4 = _mm256_max_ps(_mm256_sub_ps(vn4, vmax_e0), vmin_exponent); const __m256 vdelta_e5 = _mm256_max_ps(_mm256_sub_ps(vn5, vmax_e1), vmin_exponent); const __m256 vdelta_e6 = _mm256_max_ps(_mm256_sub_ps(vn6, vmax_e0), vmin_exponent); const __m256 vdelta_e7 = _mm256_max_ps(_mm256_sub_ps(vn7, vmax_e1), vmin_exponent); const __m256 vdelta_e8 = _mm256_max_ps(_mm256_sub_ps(vn8, vmax_e0), vmin_exponent); const __m256 vdelta_e9 = _mm256_max_ps(_mm256_sub_ps(vn9, vmax_e1), vmin_exponent); const __m256 vdelta_e10 = _mm256_max_ps(_mm256_sub_ps(vn10, vmax_e0), vmin_exponent); const __m256 vdelta_e11 = _mm256_max_ps(_mm256_sub_ps(vn11, vmax_e1), vmin_exponent); // Convert delta-exponents into scale factors: // - s = exp2(delta_e) when delta_e > -127.0 // - s = 0.0 when delta_e <= -127.0 // // Note: delta-exponents can not exceed 0.0, thus scale factors can not exceed 1.0. const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23)); const __m256 vaccs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce1, vmagic_bias)), 23)); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e3, vmagic_bias)), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e4, vmagic_bias)), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e5, vmagic_bias)), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e6, vmagic_bias)), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e7, vmagic_bias)), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e8, vmagic_bias)), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e9, vmagic_bias)), 23)); const __m256 vs10 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e10, vmagic_bias)), 23)); const __m256 vs11 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e11, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm256_mul_ps(vaccv0, vaccs0); vaccv1 = _mm256_mul_ps(vaccv1, vaccs1); vaccv0 = _mm256_fmadd_ps(vp0, vs0, vaccv0); vaccv1 = _mm256_fmadd_ps(vp1, vs1, vaccv1); vaccv0 = _mm256_fmadd_ps(vp2, vs2, vaccv0); vaccv1 = _mm256_fmadd_ps(vp3, vs3, vaccv1); vaccv0 = _mm256_fmadd_ps(vp4, vs4, vaccv0); vaccv1 = _mm256_fmadd_ps(vp5, vs5, vaccv1); vaccv0 = _mm256_fmadd_ps(vp6, vs6, vaccv0); vaccv1 = _mm256_fmadd_ps(vp7, vs7, vaccv1); vaccv0 = _mm256_fmadd_ps(vp8, vs8, vaccv0); vaccv1 = _mm256_fmadd_ps(vp9, vs9, vaccv1); vaccv0 = _mm256_fmadd_ps(vp10, vs10, vaccv0); vaccv1 = _mm256_fmadd_ps(vp11, vs11, vaccv1); vacce0 = vmax_e0; vacce1 = vmax_e1; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. const __m256 vmax_acce01 = _mm256_max_ps(vacce0, vacce1); const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_acce01), vmin_exponent); const __m256 vdelta_acce1 = _mm256_max_ps(_mm256_sub_ps(vacce1, vmax_acce01), vmin_exponent); const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23)); const __m256 vaccs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce1, vmagic_bias)), 23)); __m256 vaccv = _mm256_mul_ps(vaccv0, vaccs0); vaccv = _mm256_fmadd_ps(vaccv1, vaccs1, vaccv); __m256 vacce = vmax_acce01; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Correct reduced argument batch for masked out batch. vn = _mm256_blendv_ps(vacce, vn, _mm256_castsi256_ps(vmask)); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); vp = _mm256_and_ps(vp, _mm256_castsi256_ps(vmask)); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. __m256 vmax_acce = _mm256_max_ps(vacce, _mm256_permute2f128_ps(vacce, vacce, 1)); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(1, 0, 3, 2))); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(2, 3, 0, 1))); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_acce), vmin_exponent); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); vaccv = _mm256_mul_ps(vaccv, vaccs); __m128 vaccv_sum = _mm_add_ps(_mm256_castps256_ps128(vaccv), _mm256_extractf128_ps(vaccv, 1)); vaccv_sum = _mm_add_ps(vaccv_sum, _mm_movehl_ps(vaccv_sum, vaccv_sum)); vaccv_sum = _mm_add_ss(vaccv_sum, _mm_movehdup_ps(vaccv_sum)); _mm_store_ss(&sum[0], vaccv_sum); _mm_store_ss(&sum[1], _mm256_castps256_ps128(vmax_acce)); _mm256_zeroupper(); }
19,194
51.01897
132
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx2-p5-x96-acc3.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/raddextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddextexp_ukernel__avx2_p5_x96_acc3( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vminus_inf = _mm256_set1_ps(-INFINITY); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); __m256 vaccv0 = _mm256_setzero_ps(); __m256 vaccv1 = _mm256_setzero_ps(); __m256 vaccv2 = _mm256_setzero_ps(); __m256 vacce0 = vminus_inf; __m256 vacce1 = vminus_inf; __m256 vacce2 = vminus_inf; for (; batch >= 96 * sizeof(float); batch -= 96 * sizeof(float)) { // Load 96 (12x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); const __m256 vx8 = _mm256_loadu_ps(input + 64); const __m256 vx9 = _mm256_loadu_ps(input + 72); const __m256 vx10 = _mm256_loadu_ps(input + 80); const __m256 vx11 = _mm256_loadu_ps(input + 88); input += 96; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn8 = _mm256_round_ps(_mm256_mul_ps(vx8, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn9 = _mm256_round_ps(_mm256_mul_ps(vx9, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn10 = _mm256_round_ps(_mm256_mul_ps(vx10, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn11 = _mm256_round_ps(_mm256_mul_ps(vx11, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m256 vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m256 vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); __m256 vp10 = _mm256_fmadd_ps(vc5, vt10, vc4); __m256 vp11 = _mm256_fmadd_ps(vc5, vt11, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp10 = _mm256_fmadd_ps(vp10, vt10, vc3); vp11 = _mm256_fmadd_ps(vp11, vt11, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp10 = _mm256_fmadd_ps(vp10, vt10, vc2); vp11 = _mm256_fmadd_ps(vp11, vt11, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vp10 = _mm256_fmadd_ps(vp10, vt10, vc1); vp11 = _mm256_fmadd_ps(vp11, vt11, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); vp5 = _mm256_fmadd_ps(vp5, vt5, vc0); vp6 = _mm256_fmadd_ps(vp6, vt6, vc0); vp7 = _mm256_fmadd_ps(vp7, vt7, vc0); vp8 = _mm256_fmadd_ps(vp8, vt8, vc0); vp9 = _mm256_fmadd_ps(vp9, vt9, vc0); vp10 = _mm256_fmadd_ps(vp10, vt10, vc0); vp11 = _mm256_fmadd_ps(vp11, vt11, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we may add several "extended" floating-point numbers at a time. __m256 vmax_e0 = _mm256_max_ps(vacce0, vn0); __m256 vmax_e1 = _mm256_max_ps(vacce1, vn1); __m256 vmax_e2 = _mm256_max_ps(vacce2, vn2); vmax_e0 = _mm256_max_ps(vmax_e0, vn3); vmax_e1 = _mm256_max_ps(vmax_e1, vn4); vmax_e2 = _mm256_max_ps(vmax_e2, vn5); vmax_e0 = _mm256_max_ps(vmax_e0, vn6); vmax_e1 = _mm256_max_ps(vmax_e1, vn7); vmax_e2 = _mm256_max_ps(vmax_e2, vn8); vmax_e0 = _mm256_max_ps(vmax_e0, vn9); vmax_e1 = _mm256_max_ps(vmax_e1, vn10); vmax_e2 = _mm256_max_ps(vmax_e2, vn11); // For computational efficiency, replace exp2(delta_e) with 0.0f when delta_e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum delta_e at -127.0. // 2. Map delta_e to scale factor 0.0 when delta_e == -127.0 const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_e0), vmin_exponent); const __m256 vdelta_acce1 = _mm256_max_ps(_mm256_sub_ps(vacce1, vmax_e1), vmin_exponent); const __m256 vdelta_acce2 = _mm256_max_ps(_mm256_sub_ps(vacce2, vmax_e2), vmin_exponent); const __m256 vdelta_e0 = _mm256_max_ps(_mm256_sub_ps(vn0, vmax_e0), vmin_exponent); const __m256 vdelta_e1 = _mm256_max_ps(_mm256_sub_ps(vn1, vmax_e1), vmin_exponent); const __m256 vdelta_e2 = _mm256_max_ps(_mm256_sub_ps(vn2, vmax_e2), vmin_exponent); const __m256 vdelta_e3 = _mm256_max_ps(_mm256_sub_ps(vn3, vmax_e0), vmin_exponent); const __m256 vdelta_e4 = _mm256_max_ps(_mm256_sub_ps(vn4, vmax_e1), vmin_exponent); const __m256 vdelta_e5 = _mm256_max_ps(_mm256_sub_ps(vn5, vmax_e2), vmin_exponent); const __m256 vdelta_e6 = _mm256_max_ps(_mm256_sub_ps(vn6, vmax_e0), vmin_exponent); const __m256 vdelta_e7 = _mm256_max_ps(_mm256_sub_ps(vn7, vmax_e1), vmin_exponent); const __m256 vdelta_e8 = _mm256_max_ps(_mm256_sub_ps(vn8, vmax_e2), vmin_exponent); const __m256 vdelta_e9 = _mm256_max_ps(_mm256_sub_ps(vn9, vmax_e0), vmin_exponent); const __m256 vdelta_e10 = _mm256_max_ps(_mm256_sub_ps(vn10, vmax_e1), vmin_exponent); const __m256 vdelta_e11 = _mm256_max_ps(_mm256_sub_ps(vn11, vmax_e2), vmin_exponent); // Convert delta-exponents into scale factors: // - s = exp2(delta_e) when delta_e > -127.0 // - s = 0.0 when delta_e <= -127.0 // // Note: delta-exponents can not exceed 0.0, thus scale factors can not exceed 1.0. const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23)); const __m256 vaccs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce1, vmagic_bias)), 23)); const __m256 vaccs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce2, vmagic_bias)), 23)); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e3, vmagic_bias)), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e4, vmagic_bias)), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e5, vmagic_bias)), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e6, vmagic_bias)), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e7, vmagic_bias)), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e8, vmagic_bias)), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e9, vmagic_bias)), 23)); const __m256 vs10 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e10, vmagic_bias)), 23)); const __m256 vs11 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e11, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm256_mul_ps(vaccv0, vaccs0); vaccv1 = _mm256_mul_ps(vaccv1, vaccs1); vaccv2 = _mm256_mul_ps(vaccv2, vaccs2); vaccv0 = _mm256_fmadd_ps(vp0, vs0, vaccv0); vaccv1 = _mm256_fmadd_ps(vp1, vs1, vaccv1); vaccv2 = _mm256_fmadd_ps(vp2, vs2, vaccv2); vaccv0 = _mm256_fmadd_ps(vp3, vs3, vaccv0); vaccv1 = _mm256_fmadd_ps(vp4, vs4, vaccv1); vaccv2 = _mm256_fmadd_ps(vp5, vs5, vaccv2); vaccv0 = _mm256_fmadd_ps(vp6, vs6, vaccv0); vaccv1 = _mm256_fmadd_ps(vp7, vs7, vaccv1); vaccv2 = _mm256_fmadd_ps(vp8, vs8, vaccv2); vaccv0 = _mm256_fmadd_ps(vp9, vs9, vaccv0); vaccv1 = _mm256_fmadd_ps(vp10, vs10, vaccv1); vaccv2 = _mm256_fmadd_ps(vp11, vs11, vaccv2); vacce0 = vmax_e0; vacce1 = vmax_e1; vacce2 = vmax_e2; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. const __m256 vmax_acce01 = _mm256_max_ps(vacce0, vacce1); const __m256 vmax_acce2 = vacce2; const __m256 vmax_acce012 = _mm256_max_ps(vmax_acce01, vmax_acce2); const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_acce012), vmin_exponent); const __m256 vdelta_acce1 = _mm256_max_ps(_mm256_sub_ps(vacce1, vmax_acce012), vmin_exponent); const __m256 vdelta_acce2 = _mm256_max_ps(_mm256_sub_ps(vacce2, vmax_acce012), vmin_exponent); const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23)); const __m256 vaccs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce1, vmagic_bias)), 23)); const __m256 vaccs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce2, vmagic_bias)), 23)); __m256 vaccv = _mm256_mul_ps(vaccv0, vaccs0); vaccv = _mm256_fmadd_ps(vaccv1, vaccs1, vaccv); vaccv = _mm256_fmadd_ps(vaccv2, vaccs2, vaccv); __m256 vacce = vmax_acce012; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Correct reduced argument batch for masked out batch. vn = _mm256_blendv_ps(vacce, vn, _mm256_castsi256_ps(vmask)); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); vp = _mm256_and_ps(vp, _mm256_castsi256_ps(vmask)); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. __m256 vmax_acce = _mm256_max_ps(vacce, _mm256_permute2f128_ps(vacce, vacce, 1)); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(1, 0, 3, 2))); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(2, 3, 0, 1))); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_acce), vmin_exponent); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); vaccv = _mm256_mul_ps(vaccv, vaccs); __m128 vaccv_sum = _mm_add_ps(_mm256_castps256_ps128(vaccv), _mm256_extractf128_ps(vaccv, 1)); vaccv_sum = _mm_add_ps(vaccv_sum, _mm_movehl_ps(vaccv_sum, vaccv_sum)); vaccv_sum = _mm_add_ss(vaccv_sum, _mm_movehdup_ps(vaccv_sum)); _mm_store_ss(&sum[0], vaccv_sum); _mm_store_ss(&sum[1], _mm256_castps256_ps128(vmax_acce)); _mm256_zeroupper(); }
19,949
51.5
132
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx2-p5-x96-acc6.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/raddextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddextexp_ukernel__avx2_p5_x96_acc6( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vminus_inf = _mm256_set1_ps(-INFINITY); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); __m256 vaccv0 = _mm256_setzero_ps(); __m256 vaccv1 = _mm256_setzero_ps(); __m256 vaccv2 = _mm256_setzero_ps(); __m256 vaccv3 = _mm256_setzero_ps(); __m256 vaccv4 = _mm256_setzero_ps(); __m256 vaccv5 = _mm256_setzero_ps(); __m256 vacce0 = vminus_inf; __m256 vacce1 = vminus_inf; __m256 vacce2 = vminus_inf; __m256 vacce3 = vminus_inf; __m256 vacce4 = vminus_inf; __m256 vacce5 = vminus_inf; for (; batch >= 96 * sizeof(float); batch -= 96 * sizeof(float)) { // Load 96 (12x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); const __m256 vx8 = _mm256_loadu_ps(input + 64); const __m256 vx9 = _mm256_loadu_ps(input + 72); const __m256 vx10 = _mm256_loadu_ps(input + 80); const __m256 vx11 = _mm256_loadu_ps(input + 88); input += 96; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn8 = _mm256_round_ps(_mm256_mul_ps(vx8, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn9 = _mm256_round_ps(_mm256_mul_ps(vx9, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn10 = _mm256_round_ps(_mm256_mul_ps(vx10, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn11 = _mm256_round_ps(_mm256_mul_ps(vx11, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m256 vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m256 vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); __m256 vp10 = _mm256_fmadd_ps(vc5, vt10, vc4); __m256 vp11 = _mm256_fmadd_ps(vc5, vt11, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp10 = _mm256_fmadd_ps(vp10, vt10, vc3); vp11 = _mm256_fmadd_ps(vp11, vt11, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp10 = _mm256_fmadd_ps(vp10, vt10, vc2); vp11 = _mm256_fmadd_ps(vp11, vt11, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vp10 = _mm256_fmadd_ps(vp10, vt10, vc1); vp11 = _mm256_fmadd_ps(vp11, vt11, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); vp5 = _mm256_fmadd_ps(vp5, vt5, vc0); vp6 = _mm256_fmadd_ps(vp6, vt6, vc0); vp7 = _mm256_fmadd_ps(vp7, vt7, vc0); vp8 = _mm256_fmadd_ps(vp8, vt8, vc0); vp9 = _mm256_fmadd_ps(vp9, vt9, vc0); vp10 = _mm256_fmadd_ps(vp10, vt10, vc0); vp11 = _mm256_fmadd_ps(vp11, vt11, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we may add several "extended" floating-point numbers at a time. __m256 vmax_e0 = _mm256_max_ps(vacce0, vn0); __m256 vmax_e1 = _mm256_max_ps(vacce1, vn1); __m256 vmax_e2 = _mm256_max_ps(vacce2, vn2); __m256 vmax_e3 = _mm256_max_ps(vacce3, vn3); __m256 vmax_e4 = _mm256_max_ps(vacce4, vn4); __m256 vmax_e5 = _mm256_max_ps(vacce5, vn5); vmax_e0 = _mm256_max_ps(vmax_e0, vn6); vmax_e1 = _mm256_max_ps(vmax_e1, vn7); vmax_e2 = _mm256_max_ps(vmax_e2, vn8); vmax_e3 = _mm256_max_ps(vmax_e3, vn9); vmax_e4 = _mm256_max_ps(vmax_e4, vn10); vmax_e5 = _mm256_max_ps(vmax_e5, vn11); // For computational efficiency, replace exp2(delta_e) with 0.0f when delta_e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum delta_e at -127.0. // 2. Map delta_e to scale factor 0.0 when delta_e == -127.0 const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_e0), vmin_exponent); const __m256 vdelta_acce1 = _mm256_max_ps(_mm256_sub_ps(vacce1, vmax_e1), vmin_exponent); const __m256 vdelta_acce2 = _mm256_max_ps(_mm256_sub_ps(vacce2, vmax_e2), vmin_exponent); const __m256 vdelta_acce3 = _mm256_max_ps(_mm256_sub_ps(vacce3, vmax_e3), vmin_exponent); const __m256 vdelta_acce4 = _mm256_max_ps(_mm256_sub_ps(vacce4, vmax_e4), vmin_exponent); const __m256 vdelta_acce5 = _mm256_max_ps(_mm256_sub_ps(vacce5, vmax_e5), vmin_exponent); const __m256 vdelta_e0 = _mm256_max_ps(_mm256_sub_ps(vn0, vmax_e0), vmin_exponent); const __m256 vdelta_e1 = _mm256_max_ps(_mm256_sub_ps(vn1, vmax_e1), vmin_exponent); const __m256 vdelta_e2 = _mm256_max_ps(_mm256_sub_ps(vn2, vmax_e2), vmin_exponent); const __m256 vdelta_e3 = _mm256_max_ps(_mm256_sub_ps(vn3, vmax_e3), vmin_exponent); const __m256 vdelta_e4 = _mm256_max_ps(_mm256_sub_ps(vn4, vmax_e4), vmin_exponent); const __m256 vdelta_e5 = _mm256_max_ps(_mm256_sub_ps(vn5, vmax_e5), vmin_exponent); const __m256 vdelta_e6 = _mm256_max_ps(_mm256_sub_ps(vn6, vmax_e0), vmin_exponent); const __m256 vdelta_e7 = _mm256_max_ps(_mm256_sub_ps(vn7, vmax_e1), vmin_exponent); const __m256 vdelta_e8 = _mm256_max_ps(_mm256_sub_ps(vn8, vmax_e2), vmin_exponent); const __m256 vdelta_e9 = _mm256_max_ps(_mm256_sub_ps(vn9, vmax_e3), vmin_exponent); const __m256 vdelta_e10 = _mm256_max_ps(_mm256_sub_ps(vn10, vmax_e4), vmin_exponent); const __m256 vdelta_e11 = _mm256_max_ps(_mm256_sub_ps(vn11, vmax_e5), vmin_exponent); // Convert delta-exponents into scale factors: // - s = exp2(delta_e) when delta_e > -127.0 // - s = 0.0 when delta_e <= -127.0 // // Note: delta-exponents can not exceed 0.0, thus scale factors can not exceed 1.0. const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23)); const __m256 vaccs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce1, vmagic_bias)), 23)); const __m256 vaccs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce2, vmagic_bias)), 23)); const __m256 vaccs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce3, vmagic_bias)), 23)); const __m256 vaccs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce4, vmagic_bias)), 23)); const __m256 vaccs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce5, vmagic_bias)), 23)); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e3, vmagic_bias)), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e4, vmagic_bias)), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e5, vmagic_bias)), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e6, vmagic_bias)), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e7, vmagic_bias)), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e8, vmagic_bias)), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e9, vmagic_bias)), 23)); const __m256 vs10 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e10, vmagic_bias)), 23)); const __m256 vs11 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e11, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm256_mul_ps(vaccv0, vaccs0); vaccv1 = _mm256_mul_ps(vaccv1, vaccs1); vaccv2 = _mm256_mul_ps(vaccv2, vaccs2); vaccv3 = _mm256_mul_ps(vaccv3, vaccs3); vaccv4 = _mm256_mul_ps(vaccv4, vaccs4); vaccv5 = _mm256_mul_ps(vaccv5, vaccs5); vaccv0 = _mm256_fmadd_ps(vp0, vs0, vaccv0); vaccv1 = _mm256_fmadd_ps(vp1, vs1, vaccv1); vaccv2 = _mm256_fmadd_ps(vp2, vs2, vaccv2); vaccv3 = _mm256_fmadd_ps(vp3, vs3, vaccv3); vaccv4 = _mm256_fmadd_ps(vp4, vs4, vaccv4); vaccv5 = _mm256_fmadd_ps(vp5, vs5, vaccv5); vaccv0 = _mm256_fmadd_ps(vp6, vs6, vaccv0); vaccv1 = _mm256_fmadd_ps(vp7, vs7, vaccv1); vaccv2 = _mm256_fmadd_ps(vp8, vs8, vaccv2); vaccv3 = _mm256_fmadd_ps(vp9, vs9, vaccv3); vaccv4 = _mm256_fmadd_ps(vp10, vs10, vaccv4); vaccv5 = _mm256_fmadd_ps(vp11, vs11, vaccv5); vacce0 = vmax_e0; vacce1 = vmax_e1; vacce2 = vmax_e2; vacce3 = vmax_e3; vacce4 = vmax_e4; vacce5 = vmax_e5; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. const __m256 vmax_acce01 = _mm256_max_ps(vacce0, vacce1); const __m256 vmax_acce23 = _mm256_max_ps(vacce2, vacce3); const __m256 vmax_acce45 = _mm256_max_ps(vacce4, vacce5); const __m256 vmax_acce0123 = _mm256_max_ps(vmax_acce01, vmax_acce23); const __m256 vmax_acce012345 = _mm256_max_ps(vmax_acce0123, vmax_acce45); const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_acce012345), vmin_exponent); const __m256 vdelta_acce1 = _mm256_max_ps(_mm256_sub_ps(vacce1, vmax_acce012345), vmin_exponent); const __m256 vdelta_acce2 = _mm256_max_ps(_mm256_sub_ps(vacce2, vmax_acce012345), vmin_exponent); const __m256 vdelta_acce3 = _mm256_max_ps(_mm256_sub_ps(vacce3, vmax_acce012345), vmin_exponent); const __m256 vdelta_acce4 = _mm256_max_ps(_mm256_sub_ps(vacce4, vmax_acce012345), vmin_exponent); const __m256 vdelta_acce5 = _mm256_max_ps(_mm256_sub_ps(vacce5, vmax_acce012345), vmin_exponent); const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23)); const __m256 vaccs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce1, vmagic_bias)), 23)); const __m256 vaccs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce2, vmagic_bias)), 23)); const __m256 vaccs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce3, vmagic_bias)), 23)); const __m256 vaccs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce4, vmagic_bias)), 23)); const __m256 vaccs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce5, vmagic_bias)), 23)); __m256 vaccv = _mm256_mul_ps(vaccv0, vaccs0); vaccv = _mm256_fmadd_ps(vaccv1, vaccs1, vaccv); vaccv = _mm256_fmadd_ps(vaccv2, vaccs2, vaccv); vaccv = _mm256_fmadd_ps(vaccv3, vaccs3, vaccv); vaccv = _mm256_fmadd_ps(vaccv4, vaccs4, vaccv); vaccv = _mm256_fmadd_ps(vaccv5, vaccs5, vaccv); __m256 vacce = vmax_acce012345; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Correct reduced argument batch for masked out batch. vn = _mm256_blendv_ps(vacce, vn, _mm256_castsi256_ps(vmask)); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); vp = _mm256_and_ps(vp, _mm256_castsi256_ps(vmask)); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. __m256 vmax_acce = _mm256_max_ps(vacce, _mm256_permute2f128_ps(vacce, vacce, 1)); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(1, 0, 3, 2))); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(2, 3, 0, 1))); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_acce), vmin_exponent); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); vaccv = _mm256_mul_ps(vaccv, vaccs); __m128 vaccv_sum = _mm_add_ps(_mm256_castps256_ps128(vaccv), _mm256_extractf128_ps(vaccv, 1)); vaccv_sum = _mm_add_ps(vaccv_sum, _mm_movehl_ps(vaccv_sum, vaccv_sum)); vaccv_sum = _mm_add_ss(vaccv_sum, _mm_movehdup_ps(vaccv_sum)); _mm_store_ss(&sum[0], vaccv_sum); _mm_store_ss(&sum[1], _mm256_castps256_ps128(vmax_acce)); _mm256_zeroupper(); }
22,070
52.963325
132
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx2-p5-x96.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/raddextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_raddextexp_ukernel__avx2_p5_x96( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vminus_inf = _mm256_set1_ps(-INFINITY); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); __m256 vaccv0 = _mm256_setzero_ps(); __m256 vacce0 = vminus_inf; for (; batch >= 96 * sizeof(float); batch -= 96 * sizeof(float)) { // Load 96 (12x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); const __m256 vx8 = _mm256_loadu_ps(input + 64); const __m256 vx9 = _mm256_loadu_ps(input + 72); const __m256 vx10 = _mm256_loadu_ps(input + 80); const __m256 vx11 = _mm256_loadu_ps(input + 88); input += 96; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn8 = _mm256_round_ps(_mm256_mul_ps(vx8, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn9 = _mm256_round_ps(_mm256_mul_ps(vx9, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn10 = _mm256_round_ps(_mm256_mul_ps(vx10, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn11 = _mm256_round_ps(_mm256_mul_ps(vx11, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m256 vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m256 vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); __m256 vp10 = _mm256_fmadd_ps(vc5, vt10, vc4); __m256 vp11 = _mm256_fmadd_ps(vc5, vt11, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp10 = _mm256_fmadd_ps(vp10, vt10, vc3); vp11 = _mm256_fmadd_ps(vp11, vt11, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp10 = _mm256_fmadd_ps(vp10, vt10, vc2); vp11 = _mm256_fmadd_ps(vp11, vt11, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vp10 = _mm256_fmadd_ps(vp10, vt10, vc1); vp11 = _mm256_fmadd_ps(vp11, vt11, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); vp5 = _mm256_fmadd_ps(vp5, vt5, vc0); vp6 = _mm256_fmadd_ps(vp6, vt6, vc0); vp7 = _mm256_fmadd_ps(vp7, vt7, vc0); vp8 = _mm256_fmadd_ps(vp8, vt8, vc0); vp9 = _mm256_fmadd_ps(vp9, vt9, vc0); vp10 = _mm256_fmadd_ps(vp10, vt10, vc0); vp11 = _mm256_fmadd_ps(vp11, vt11, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we may add several "extended" floating-point numbers at a time. __m256 vmax_e0 = _mm256_max_ps(vacce0, vn0); vmax_e0 = _mm256_max_ps(vmax_e0, vn1); vmax_e0 = _mm256_max_ps(vmax_e0, vn2); vmax_e0 = _mm256_max_ps(vmax_e0, vn3); vmax_e0 = _mm256_max_ps(vmax_e0, vn4); vmax_e0 = _mm256_max_ps(vmax_e0, vn5); vmax_e0 = _mm256_max_ps(vmax_e0, vn6); vmax_e0 = _mm256_max_ps(vmax_e0, vn7); vmax_e0 = _mm256_max_ps(vmax_e0, vn8); vmax_e0 = _mm256_max_ps(vmax_e0, vn9); vmax_e0 = _mm256_max_ps(vmax_e0, vn10); vmax_e0 = _mm256_max_ps(vmax_e0, vn11); // For computational efficiency, replace exp2(delta_e) with 0.0f when delta_e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum delta_e at -127.0. // 2. Map delta_e to scale factor 0.0 when delta_e == -127.0 const __m256 vdelta_acce0 = _mm256_max_ps(_mm256_sub_ps(vacce0, vmax_e0), vmin_exponent); const __m256 vdelta_e0 = _mm256_max_ps(_mm256_sub_ps(vn0, vmax_e0), vmin_exponent); const __m256 vdelta_e1 = _mm256_max_ps(_mm256_sub_ps(vn1, vmax_e0), vmin_exponent); const __m256 vdelta_e2 = _mm256_max_ps(_mm256_sub_ps(vn2, vmax_e0), vmin_exponent); const __m256 vdelta_e3 = _mm256_max_ps(_mm256_sub_ps(vn3, vmax_e0), vmin_exponent); const __m256 vdelta_e4 = _mm256_max_ps(_mm256_sub_ps(vn4, vmax_e0), vmin_exponent); const __m256 vdelta_e5 = _mm256_max_ps(_mm256_sub_ps(vn5, vmax_e0), vmin_exponent); const __m256 vdelta_e6 = _mm256_max_ps(_mm256_sub_ps(vn6, vmax_e0), vmin_exponent); const __m256 vdelta_e7 = _mm256_max_ps(_mm256_sub_ps(vn7, vmax_e0), vmin_exponent); const __m256 vdelta_e8 = _mm256_max_ps(_mm256_sub_ps(vn8, vmax_e0), vmin_exponent); const __m256 vdelta_e9 = _mm256_max_ps(_mm256_sub_ps(vn9, vmax_e0), vmin_exponent); const __m256 vdelta_e10 = _mm256_max_ps(_mm256_sub_ps(vn10, vmax_e0), vmin_exponent); const __m256 vdelta_e11 = _mm256_max_ps(_mm256_sub_ps(vn11, vmax_e0), vmin_exponent); // Convert delta-exponents into scale factors: // - s = exp2(delta_e) when delta_e > -127.0 // - s = 0.0 when delta_e <= -127.0 // // Note: delta-exponents can not exceed 0.0, thus scale factors can not exceed 1.0. const __m256 vaccs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce0, vmagic_bias)), 23)); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e3, vmagic_bias)), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e4, vmagic_bias)), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e5, vmagic_bias)), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e6, vmagic_bias)), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e7, vmagic_bias)), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e8, vmagic_bias)), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e9, vmagic_bias)), 23)); const __m256 vs10 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e10, vmagic_bias)), 23)); const __m256 vs11 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e11, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm256_mul_ps(vaccv0, vaccs0); vaccv0 = _mm256_fmadd_ps(vp0, vs0, vaccv0); vaccv0 = _mm256_fmadd_ps(vp1, vs1, vaccv0); vaccv0 = _mm256_fmadd_ps(vp2, vs2, vaccv0); vaccv0 = _mm256_fmadd_ps(vp3, vs3, vaccv0); vaccv0 = _mm256_fmadd_ps(vp4, vs4, vaccv0); vaccv0 = _mm256_fmadd_ps(vp5, vs5, vaccv0); vaccv0 = _mm256_fmadd_ps(vp6, vs6, vaccv0); vaccv0 = _mm256_fmadd_ps(vp7, vs7, vaccv0); vaccv0 = _mm256_fmadd_ps(vp8, vs8, vaccv0); vaccv0 = _mm256_fmadd_ps(vp9, vs9, vaccv0); vaccv0 = _mm256_fmadd_ps(vp10, vs10, vaccv0); vaccv0 = _mm256_fmadd_ps(vp11, vs11, vaccv0); vacce0 = vmax_e0; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. __m256 vaccv = vaccv0; __m256 vacce = vacce0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Correct reduced argument batch for masked out batch. vn = _mm256_blendv_ps(vacce, vn, _mm256_castsi256_ps(vmask)); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); vp = _mm256_and_ps(vp, _mm256_castsi256_ps(vmask)); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m256 vmax_e = _mm256_max_ps(vacce, vn); // For computational efficiency, clamp minimum exp2(delta_e) at -127.0. It will be mapped to 0.0 scale factor later. const __m256 vdelta_e = _mm256_max_ps(_mm256_sub_ps(vn, vmax_e), vmin_exponent); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_e), vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_e, vmagic_bias)), 23)); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); // Update accumulated "mantissa" and "exponent" values. vaccv = _mm256_mul_ps(vaccv, vaccs); vaccv = _mm256_fmadd_ps(vp, vs, vaccv); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. __m256 vmax_acce = _mm256_max_ps(vacce, _mm256_permute2f128_ps(vacce, vacce, 1)); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(1, 0, 3, 2))); vmax_acce = _mm256_max_ps(vmax_acce, _mm256_shuffle_ps(vmax_acce, vmax_acce, _MM_SHUFFLE(2, 3, 0, 1))); const __m256 vdelta_acce = _mm256_max_ps(_mm256_sub_ps(vacce, vmax_acce), vmin_exponent); const __m256 vaccs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(vdelta_acce, vmagic_bias)), 23)); vaccv = _mm256_mul_ps(vaccv, vaccs); __m128 vaccv_sum = _mm_add_ps(_mm256_castps256_ps128(vaccv), _mm256_extractf128_ps(vaccv, 1)); vaccv_sum = _mm_add_ps(vaccv_sum, _mm_movehl_ps(vaccv_sum, vaccv_sum)); vaccv_sum = _mm_add_ss(vaccv_sum, _mm_movehdup_ps(vaccv_sum)); _mm_store_ss(&sum[0], vaccv_sum); _mm_store_ss(&sum[1], _mm256_castps256_ps128(vmax_acce)); _mm256_zeroupper(); }
18,226
50.488701
132
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx512f-p5-scalef-x128-acc2.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddextexp.h> void xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x128_acc2( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vminus_inf = _mm512_set1_ps(-INFINITY); __m512 vaccv0 = _mm512_setzero_ps(); __m512 vaccv1 = _mm512_setzero_ps(); __m512 vacce0 = vminus_inf; __m512 vacce1 = vminus_inf; for (; batch >= 128 * sizeof(float); batch -= 128 * sizeof(float)) { // Load 128 (8x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); const __m512 vx4 = _mm512_loadu_ps(input + 64); const __m512 vx5 = _mm512_loadu_ps(input + 80); const __m512 vx6 = _mm512_loadu_ps(input + 96); const __m512 vx7 = _mm512_loadu_ps(input + 112); input += 128; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we add three "extended" floating-point numbers at a time. __m512 vmax_e0 = _mm512_max_ps(vacce0, vn0); __m512 vmax_e1 = _mm512_max_ps(vacce1, vn1); vmax_e0 = _mm512_max_ps(vmax_e0, vn2); vmax_e1 = _mm512_max_ps(vmax_e1, vn3); vmax_e0 = _mm512_max_ps(vmax_e0, vn4); vmax_e1 = _mm512_max_ps(vmax_e1, vn5); vmax_e0 = _mm512_max_ps(vmax_e0, vn6); vmax_e1 = _mm512_max_ps(vmax_e1, vn7); const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_e0); const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_e1); const __m512 vdelta_e0 = _mm512_sub_ps(vn0, vmax_e0); const __m512 vdelta_e1 = _mm512_sub_ps(vn1, vmax_e1); const __m512 vdelta_e2 = _mm512_sub_ps(vn2, vmax_e0); const __m512 vdelta_e3 = _mm512_sub_ps(vn3, vmax_e1); const __m512 vdelta_e4 = _mm512_sub_ps(vn4, vmax_e0); const __m512 vdelta_e5 = _mm512_sub_ps(vn5, vmax_e1); const __m512 vdelta_e6 = _mm512_sub_ps(vn6, vmax_e0); const __m512 vdelta_e7 = _mm512_sub_ps(vn7, vmax_e1); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm512_scalef_ps(vaccv0, vdelta_acce0); vaccv1 = _mm512_scalef_ps(vaccv1, vdelta_acce1); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp0, vdelta_e0)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp1, vdelta_e1)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp2, vdelta_e2)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp3, vdelta_e3)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp4, vdelta_e4)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp5, vdelta_e5)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp6, vdelta_e6)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp7, vdelta_e7)); vacce0 = vmax_e0; vacce1 = vmax_e1; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. const __m512 vmax_acce01 = _mm512_max_ps(vacce0, vacce1); const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_acce01); const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_acce01); __m512 vaccv = _mm512_scalef_ps(vaccv0, vdelta_acce0); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv1, vdelta_acce1)); __m512 vacce = vmax_acce01; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_max_ps(vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_scalef_ps(vaccv, vdelta_acce); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vp, vdelta_e)); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_mask_max_ps(vacce, vmask, vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_mask_scalef_ps(vaccv, vmask, vaccv, vdelta_acce); vaccv = _mm512_mask_add_ps(vaccv, vmask, vaccv, _mm512_maskz_scalef_ps(vmask, vp, vdelta_e)); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. const float vmax_acce = _mm512_reduce_max_ps(vacce); const __m512 vdelta_acce = _mm512_sub_ps(vacce, _mm512_set1_ps(vmax_acce)); sum[0] = _mm512_reduce_add_ps(_mm512_scalef_ps(vaccv, vdelta_acce)); sum[1] = vmax_acce; _mm256_zeroupper(); }
11,365
42.547893
108
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx512f-p5-scalef-x128-acc4.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddextexp.h> void xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x128_acc4( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vminus_inf = _mm512_set1_ps(-INFINITY); __m512 vaccv0 = _mm512_setzero_ps(); __m512 vaccv1 = _mm512_setzero_ps(); __m512 vaccv2 = _mm512_setzero_ps(); __m512 vaccv3 = _mm512_setzero_ps(); __m512 vacce0 = vminus_inf; __m512 vacce1 = vminus_inf; __m512 vacce2 = vminus_inf; __m512 vacce3 = vminus_inf; for (; batch >= 128 * sizeof(float); batch -= 128 * sizeof(float)) { // Load 128 (8x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); const __m512 vx4 = _mm512_loadu_ps(input + 64); const __m512 vx5 = _mm512_loadu_ps(input + 80); const __m512 vx6 = _mm512_loadu_ps(input + 96); const __m512 vx7 = _mm512_loadu_ps(input + 112); input += 128; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we add three "extended" floating-point numbers at a time. __m512 vmax_e0 = _mm512_max_ps(vacce0, vn0); __m512 vmax_e1 = _mm512_max_ps(vacce1, vn1); __m512 vmax_e2 = _mm512_max_ps(vacce2, vn2); __m512 vmax_e3 = _mm512_max_ps(vacce3, vn3); vmax_e0 = _mm512_max_ps(vmax_e0, vn4); vmax_e1 = _mm512_max_ps(vmax_e1, vn5); vmax_e2 = _mm512_max_ps(vmax_e2, vn6); vmax_e3 = _mm512_max_ps(vmax_e3, vn7); const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_e0); const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_e1); const __m512 vdelta_acce2 = _mm512_sub_ps(vacce2, vmax_e2); const __m512 vdelta_acce3 = _mm512_sub_ps(vacce3, vmax_e3); const __m512 vdelta_e0 = _mm512_sub_ps(vn0, vmax_e0); const __m512 vdelta_e1 = _mm512_sub_ps(vn1, vmax_e1); const __m512 vdelta_e2 = _mm512_sub_ps(vn2, vmax_e2); const __m512 vdelta_e3 = _mm512_sub_ps(vn3, vmax_e3); const __m512 vdelta_e4 = _mm512_sub_ps(vn4, vmax_e0); const __m512 vdelta_e5 = _mm512_sub_ps(vn5, vmax_e1); const __m512 vdelta_e6 = _mm512_sub_ps(vn6, vmax_e2); const __m512 vdelta_e7 = _mm512_sub_ps(vn7, vmax_e3); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm512_scalef_ps(vaccv0, vdelta_acce0); vaccv1 = _mm512_scalef_ps(vaccv1, vdelta_acce1); vaccv2 = _mm512_scalef_ps(vaccv2, vdelta_acce2); vaccv3 = _mm512_scalef_ps(vaccv3, vdelta_acce3); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp0, vdelta_e0)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp1, vdelta_e1)); vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp2, vdelta_e2)); vaccv3 = _mm512_add_ps(vaccv3, _mm512_scalef_ps(vp3, vdelta_e3)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp4, vdelta_e4)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp5, vdelta_e5)); vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp6, vdelta_e6)); vaccv3 = _mm512_add_ps(vaccv3, _mm512_scalef_ps(vp7, vdelta_e7)); vacce0 = vmax_e0; vacce1 = vmax_e1; vacce2 = vmax_e2; vacce3 = vmax_e3; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. const __m512 vmax_acce01 = _mm512_max_ps(vacce0, vacce1); const __m512 vmax_acce23 = _mm512_max_ps(vacce2, vacce3); const __m512 vmax_acce0123 = _mm512_max_ps(vmax_acce01, vmax_acce23); const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_acce0123); const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_acce0123); const __m512 vdelta_acce2 = _mm512_sub_ps(vacce2, vmax_acce0123); const __m512 vdelta_acce3 = _mm512_sub_ps(vacce3, vmax_acce0123); __m512 vaccv = _mm512_scalef_ps(vaccv0, vdelta_acce0); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv1, vdelta_acce1)); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv2, vdelta_acce2)); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv3, vdelta_acce3)); __m512 vacce = vmax_acce0123; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_max_ps(vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_scalef_ps(vaccv, vdelta_acce); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vp, vdelta_e)); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_mask_max_ps(vacce, vmask, vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_mask_scalef_ps(vaccv, vmask, vaccv, vdelta_acce); vaccv = _mm512_mask_add_ps(vaccv, vmask, vaccv, _mm512_maskz_scalef_ps(vmask, vp, vdelta_e)); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. const float vmax_acce = _mm512_reduce_max_ps(vacce); const __m512 vdelta_acce = _mm512_sub_ps(vacce, _mm512_set1_ps(vmax_acce)); sum[0] = _mm512_reduce_add_ps(_mm512_scalef_ps(vaccv, vdelta_acce)); sum[1] = vmax_acce; _mm256_zeroupper(); }
12,211
43.086643
108
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx512f-p5-scalef-x128.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddextexp.h> void xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x128( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vminus_inf = _mm512_set1_ps(-INFINITY); __m512 vaccv0 = _mm512_setzero_ps(); __m512 vacce0 = vminus_inf; for (; batch >= 128 * sizeof(float); batch -= 128 * sizeof(float)) { // Load 128 (8x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); const __m512 vx4 = _mm512_loadu_ps(input + 64); const __m512 vx5 = _mm512_loadu_ps(input + 80); const __m512 vx6 = _mm512_loadu_ps(input + 96); const __m512 vx7 = _mm512_loadu_ps(input + 112); input += 128; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we add three "extended" floating-point numbers at a time. __m512 vmax_e0 = _mm512_max_ps(vacce0, vn0); vmax_e0 = _mm512_max_ps(vmax_e0, vn1); vmax_e0 = _mm512_max_ps(vmax_e0, vn2); vmax_e0 = _mm512_max_ps(vmax_e0, vn3); vmax_e0 = _mm512_max_ps(vmax_e0, vn4); vmax_e0 = _mm512_max_ps(vmax_e0, vn5); vmax_e0 = _mm512_max_ps(vmax_e0, vn6); vmax_e0 = _mm512_max_ps(vmax_e0, vn7); const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_e0); const __m512 vdelta_e0 = _mm512_sub_ps(vn0, vmax_e0); const __m512 vdelta_e1 = _mm512_sub_ps(vn1, vmax_e0); const __m512 vdelta_e2 = _mm512_sub_ps(vn2, vmax_e0); const __m512 vdelta_e3 = _mm512_sub_ps(vn3, vmax_e0); const __m512 vdelta_e4 = _mm512_sub_ps(vn4, vmax_e0); const __m512 vdelta_e5 = _mm512_sub_ps(vn5, vmax_e0); const __m512 vdelta_e6 = _mm512_sub_ps(vn6, vmax_e0); const __m512 vdelta_e7 = _mm512_sub_ps(vn7, vmax_e0); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm512_scalef_ps(vaccv0, vdelta_acce0); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp0, vdelta_e0)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp1, vdelta_e1)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp2, vdelta_e2)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp3, vdelta_e3)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp4, vdelta_e4)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp5, vdelta_e5)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp6, vdelta_e6)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp7, vdelta_e7)); vacce0 = vmax_e0; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. __m512 vaccv = vaccv0; __m512 vacce = vacce0; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_max_ps(vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_scalef_ps(vaccv, vdelta_acce); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vp, vdelta_e)); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_mask_max_ps(vacce, vmask, vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_mask_scalef_ps(vaccv, vmask, vaccv, vdelta_acce); vaccv = _mm512_mask_add_ps(vaccv, vmask, vaccv, _mm512_maskz_scalef_ps(vmask, vp, vdelta_e)); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. const float vmax_acce = _mm512_reduce_max_ps(vacce); const __m512 vdelta_acce = _mm512_sub_ps(vacce, _mm512_set1_ps(vmax_acce)); sum[0] = _mm512_reduce_add_ps(_mm512_scalef_ps(vaccv, vdelta_acce)); sum[1] = vmax_acce; _mm256_zeroupper(); }
10,843
42.376
108
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx512f-p5-scalef-x144-acc3.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddextexp.h> void xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x144_acc3( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vminus_inf = _mm512_set1_ps(-INFINITY); __m512 vaccv0 = _mm512_setzero_ps(); __m512 vaccv1 = _mm512_setzero_ps(); __m512 vaccv2 = _mm512_setzero_ps(); __m512 vacce0 = vminus_inf; __m512 vacce1 = vminus_inf; __m512 vacce2 = vminus_inf; for (; batch >= 144 * sizeof(float); batch -= 144 * sizeof(float)) { // Load 144 (9x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); const __m512 vx4 = _mm512_loadu_ps(input + 64); const __m512 vx5 = _mm512_loadu_ps(input + 80); const __m512 vx6 = _mm512_loadu_ps(input + 96); const __m512 vx7 = _mm512_loadu_ps(input + 112); const __m512 vx8 = _mm512_loadu_ps(input + 128); input += 144; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we add three "extended" floating-point numbers at a time. __m512 vmax_e0 = _mm512_max_ps(vacce0, vn0); __m512 vmax_e1 = _mm512_max_ps(vacce1, vn1); __m512 vmax_e2 = _mm512_max_ps(vacce2, vn2); vmax_e0 = _mm512_max_ps(vmax_e0, vn3); vmax_e1 = _mm512_max_ps(vmax_e1, vn4); vmax_e2 = _mm512_max_ps(vmax_e2, vn5); vmax_e0 = _mm512_max_ps(vmax_e0, vn6); vmax_e1 = _mm512_max_ps(vmax_e1, vn7); vmax_e2 = _mm512_max_ps(vmax_e2, vn8); const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_e0); const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_e1); const __m512 vdelta_acce2 = _mm512_sub_ps(vacce2, vmax_e2); const __m512 vdelta_e0 = _mm512_sub_ps(vn0, vmax_e0); const __m512 vdelta_e1 = _mm512_sub_ps(vn1, vmax_e1); const __m512 vdelta_e2 = _mm512_sub_ps(vn2, vmax_e2); const __m512 vdelta_e3 = _mm512_sub_ps(vn3, vmax_e0); const __m512 vdelta_e4 = _mm512_sub_ps(vn4, vmax_e1); const __m512 vdelta_e5 = _mm512_sub_ps(vn5, vmax_e2); const __m512 vdelta_e6 = _mm512_sub_ps(vn6, vmax_e0); const __m512 vdelta_e7 = _mm512_sub_ps(vn7, vmax_e1); const __m512 vdelta_e8 = _mm512_sub_ps(vn8, vmax_e2); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm512_scalef_ps(vaccv0, vdelta_acce0); vaccv1 = _mm512_scalef_ps(vaccv1, vdelta_acce1); vaccv2 = _mm512_scalef_ps(vaccv2, vdelta_acce2); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp0, vdelta_e0)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp1, vdelta_e1)); vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp2, vdelta_e2)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp3, vdelta_e3)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp4, vdelta_e4)); vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp5, vdelta_e5)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp6, vdelta_e6)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp7, vdelta_e7)); vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp8, vdelta_e8)); vacce0 = vmax_e0; vacce1 = vmax_e1; vacce2 = vmax_e2; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. const __m512 vmax_acce01 = _mm512_max_ps(vacce0, vacce1); const __m512 vmax_acce2 = vacce2; const __m512 vmax_acce012 = _mm512_max_ps(vmax_acce01, vmax_acce2); const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_acce012); const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_acce012); const __m512 vdelta_acce2 = _mm512_sub_ps(vacce2, vmax_acce012); __m512 vaccv = _mm512_scalef_ps(vaccv0, vdelta_acce0); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv1, vdelta_acce1)); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv2, vdelta_acce2)); __m512 vacce = vmax_acce012; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_max_ps(vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_scalef_ps(vaccv, vdelta_acce); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vp, vdelta_e)); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_mask_max_ps(vacce, vmask, vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_mask_scalef_ps(vaccv, vmask, vaccv, vdelta_acce); vaccv = _mm512_mask_add_ps(vaccv, vmask, vaccv, _mm512_maskz_scalef_ps(vmask, vp, vdelta_e)); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. const float vmax_acce = _mm512_reduce_max_ps(vacce); const __m512 vdelta_acce = _mm512_sub_ps(vacce, _mm512_set1_ps(vmax_acce)); sum[0] = _mm512_reduce_add_ps(_mm512_scalef_ps(vaccv, vdelta_acce)); sum[1] = vmax_acce; _mm256_zeroupper(); }
12,455
43.170213
108
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx512f-p5-scalef-x144.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddextexp.h> void xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x144( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vminus_inf = _mm512_set1_ps(-INFINITY); __m512 vaccv0 = _mm512_setzero_ps(); __m512 vacce0 = vminus_inf; for (; batch >= 144 * sizeof(float); batch -= 144 * sizeof(float)) { // Load 144 (9x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); const __m512 vx4 = _mm512_loadu_ps(input + 64); const __m512 vx5 = _mm512_loadu_ps(input + 80); const __m512 vx6 = _mm512_loadu_ps(input + 96); const __m512 vx7 = _mm512_loadu_ps(input + 112); const __m512 vx8 = _mm512_loadu_ps(input + 128); input += 144; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we add three "extended" floating-point numbers at a time. __m512 vmax_e0 = _mm512_max_ps(vacce0, vn0); vmax_e0 = _mm512_max_ps(vmax_e0, vn1); vmax_e0 = _mm512_max_ps(vmax_e0, vn2); vmax_e0 = _mm512_max_ps(vmax_e0, vn3); vmax_e0 = _mm512_max_ps(vmax_e0, vn4); vmax_e0 = _mm512_max_ps(vmax_e0, vn5); vmax_e0 = _mm512_max_ps(vmax_e0, vn6); vmax_e0 = _mm512_max_ps(vmax_e0, vn7); vmax_e0 = _mm512_max_ps(vmax_e0, vn8); const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_e0); const __m512 vdelta_e0 = _mm512_sub_ps(vn0, vmax_e0); const __m512 vdelta_e1 = _mm512_sub_ps(vn1, vmax_e0); const __m512 vdelta_e2 = _mm512_sub_ps(vn2, vmax_e0); const __m512 vdelta_e3 = _mm512_sub_ps(vn3, vmax_e0); const __m512 vdelta_e4 = _mm512_sub_ps(vn4, vmax_e0); const __m512 vdelta_e5 = _mm512_sub_ps(vn5, vmax_e0); const __m512 vdelta_e6 = _mm512_sub_ps(vn6, vmax_e0); const __m512 vdelta_e7 = _mm512_sub_ps(vn7, vmax_e0); const __m512 vdelta_e8 = _mm512_sub_ps(vn8, vmax_e0); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm512_scalef_ps(vaccv0, vdelta_acce0); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp0, vdelta_e0)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp1, vdelta_e1)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp2, vdelta_e2)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp3, vdelta_e3)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp4, vdelta_e4)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp5, vdelta_e5)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp6, vdelta_e6)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp7, vdelta_e7)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp8, vdelta_e8)); vacce0 = vmax_e0; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. __m512 vaccv = vaccv0; __m512 vacce = vacce0; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_max_ps(vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_scalef_ps(vaccv, vdelta_acce); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vp, vdelta_e)); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_mask_max_ps(vacce, vmask, vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_mask_scalef_ps(vaccv, vmask, vaccv, vdelta_acce); vaccv = _mm512_mask_add_ps(vaccv, vmask, vaccv, _mm512_maskz_scalef_ps(vmask, vp, vdelta_e)); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. const float vmax_acce = _mm512_reduce_max_ps(vacce); const __m512 vdelta_acce = _mm512_sub_ps(vacce, _mm512_set1_ps(vmax_acce)); sum[0] = _mm512_reduce_add_ps(_mm512_scalef_ps(vaccv, vdelta_acce)); sum[1] = vmax_acce; _mm256_zeroupper(); }
11,471
42.78626
108
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx512f-p5-scalef-x160-acc2.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddextexp.h> void xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x160_acc2( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vminus_inf = _mm512_set1_ps(-INFINITY); __m512 vaccv0 = _mm512_setzero_ps(); __m512 vaccv1 = _mm512_setzero_ps(); __m512 vacce0 = vminus_inf; __m512 vacce1 = vminus_inf; for (; batch >= 160 * sizeof(float); batch -= 160 * sizeof(float)) { // Load 160 (10x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); const __m512 vx4 = _mm512_loadu_ps(input + 64); const __m512 vx5 = _mm512_loadu_ps(input + 80); const __m512 vx6 = _mm512_loadu_ps(input + 96); const __m512 vx7 = _mm512_loadu_ps(input + 112); const __m512 vx8 = _mm512_loadu_ps(input + 128); const __m512 vx9 = _mm512_loadu_ps(input + 144); input += 160; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we add three "extended" floating-point numbers at a time. __m512 vmax_e0 = _mm512_max_ps(vacce0, vn0); __m512 vmax_e1 = _mm512_max_ps(vacce1, vn1); vmax_e0 = _mm512_max_ps(vmax_e0, vn2); vmax_e1 = _mm512_max_ps(vmax_e1, vn3); vmax_e0 = _mm512_max_ps(vmax_e0, vn4); vmax_e1 = _mm512_max_ps(vmax_e1, vn5); vmax_e0 = _mm512_max_ps(vmax_e0, vn6); vmax_e1 = _mm512_max_ps(vmax_e1, vn7); vmax_e0 = _mm512_max_ps(vmax_e0, vn8); vmax_e1 = _mm512_max_ps(vmax_e1, vn9); const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_e0); const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_e1); const __m512 vdelta_e0 = _mm512_sub_ps(vn0, vmax_e0); const __m512 vdelta_e1 = _mm512_sub_ps(vn1, vmax_e1); const __m512 vdelta_e2 = _mm512_sub_ps(vn2, vmax_e0); const __m512 vdelta_e3 = _mm512_sub_ps(vn3, vmax_e1); const __m512 vdelta_e4 = _mm512_sub_ps(vn4, vmax_e0); const __m512 vdelta_e5 = _mm512_sub_ps(vn5, vmax_e1); const __m512 vdelta_e6 = _mm512_sub_ps(vn6, vmax_e0); const __m512 vdelta_e7 = _mm512_sub_ps(vn7, vmax_e1); const __m512 vdelta_e8 = _mm512_sub_ps(vn8, vmax_e0); const __m512 vdelta_e9 = _mm512_sub_ps(vn9, vmax_e1); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm512_scalef_ps(vaccv0, vdelta_acce0); vaccv1 = _mm512_scalef_ps(vaccv1, vdelta_acce1); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp0, vdelta_e0)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp1, vdelta_e1)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp2, vdelta_e2)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp3, vdelta_e3)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp4, vdelta_e4)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp5, vdelta_e5)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp6, vdelta_e6)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp7, vdelta_e7)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp8, vdelta_e8)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp9, vdelta_e9)); vacce0 = vmax_e0; vacce1 = vmax_e1; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. const __m512 vmax_acce01 = _mm512_max_ps(vacce0, vacce1); const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_acce01); const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_acce01); __m512 vaccv = _mm512_scalef_ps(vaccv0, vdelta_acce0); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv1, vdelta_acce1)); __m512 vacce = vmax_acce01; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_max_ps(vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_scalef_ps(vaccv, vdelta_acce); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vp, vdelta_e)); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_mask_max_ps(vacce, vmask, vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_mask_scalef_ps(vaccv, vmask, vaccv, vdelta_acce); vaccv = _mm512_mask_add_ps(vaccv, vmask, vaccv, _mm512_maskz_scalef_ps(vmask, vp, vdelta_e)); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. const float vmax_acce = _mm512_reduce_max_ps(vacce); const __m512 vdelta_acce = _mm512_sub_ps(vacce, _mm512_set1_ps(vmax_acce)); sum[0] = _mm512_reduce_add_ps(_mm512_scalef_ps(vaccv, vdelta_acce)); sum[1] = vmax_acce; _mm256_zeroupper(); }
12,622
43.291228
108
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx512f-p5-scalef-x160-acc5.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddextexp.h> void xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x160_acc5( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vminus_inf = _mm512_set1_ps(-INFINITY); __m512 vaccv0 = _mm512_setzero_ps(); __m512 vaccv1 = _mm512_setzero_ps(); __m512 vaccv2 = _mm512_setzero_ps(); __m512 vaccv3 = _mm512_setzero_ps(); __m512 vaccv4 = _mm512_setzero_ps(); __m512 vacce0 = vminus_inf; __m512 vacce1 = vminus_inf; __m512 vacce2 = vminus_inf; __m512 vacce3 = vminus_inf; __m512 vacce4 = vminus_inf; for (; batch >= 160 * sizeof(float); batch -= 160 * sizeof(float)) { // Load 160 (10x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); const __m512 vx4 = _mm512_loadu_ps(input + 64); const __m512 vx5 = _mm512_loadu_ps(input + 80); const __m512 vx6 = _mm512_loadu_ps(input + 96); const __m512 vx7 = _mm512_loadu_ps(input + 112); const __m512 vx8 = _mm512_loadu_ps(input + 128); const __m512 vx9 = _mm512_loadu_ps(input + 144); input += 160; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we add three "extended" floating-point numbers at a time. __m512 vmax_e0 = _mm512_max_ps(vacce0, vn0); __m512 vmax_e1 = _mm512_max_ps(vacce1, vn1); __m512 vmax_e2 = _mm512_max_ps(vacce2, vn2); __m512 vmax_e3 = _mm512_max_ps(vacce3, vn3); __m512 vmax_e4 = _mm512_max_ps(vacce4, vn4); vmax_e0 = _mm512_max_ps(vmax_e0, vn5); vmax_e1 = _mm512_max_ps(vmax_e1, vn6); vmax_e2 = _mm512_max_ps(vmax_e2, vn7); vmax_e3 = _mm512_max_ps(vmax_e3, vn8); vmax_e4 = _mm512_max_ps(vmax_e4, vn9); const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_e0); const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_e1); const __m512 vdelta_acce2 = _mm512_sub_ps(vacce2, vmax_e2); const __m512 vdelta_acce3 = _mm512_sub_ps(vacce3, vmax_e3); const __m512 vdelta_acce4 = _mm512_sub_ps(vacce4, vmax_e4); const __m512 vdelta_e0 = _mm512_sub_ps(vn0, vmax_e0); const __m512 vdelta_e1 = _mm512_sub_ps(vn1, vmax_e1); const __m512 vdelta_e2 = _mm512_sub_ps(vn2, vmax_e2); const __m512 vdelta_e3 = _mm512_sub_ps(vn3, vmax_e3); const __m512 vdelta_e4 = _mm512_sub_ps(vn4, vmax_e4); const __m512 vdelta_e5 = _mm512_sub_ps(vn5, vmax_e0); const __m512 vdelta_e6 = _mm512_sub_ps(vn6, vmax_e1); const __m512 vdelta_e7 = _mm512_sub_ps(vn7, vmax_e2); const __m512 vdelta_e8 = _mm512_sub_ps(vn8, vmax_e3); const __m512 vdelta_e9 = _mm512_sub_ps(vn9, vmax_e4); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm512_scalef_ps(vaccv0, vdelta_acce0); vaccv1 = _mm512_scalef_ps(vaccv1, vdelta_acce1); vaccv2 = _mm512_scalef_ps(vaccv2, vdelta_acce2); vaccv3 = _mm512_scalef_ps(vaccv3, vdelta_acce3); vaccv4 = _mm512_scalef_ps(vaccv4, vdelta_acce4); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp0, vdelta_e0)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp1, vdelta_e1)); vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp2, vdelta_e2)); vaccv3 = _mm512_add_ps(vaccv3, _mm512_scalef_ps(vp3, vdelta_e3)); vaccv4 = _mm512_add_ps(vaccv4, _mm512_scalef_ps(vp4, vdelta_e4)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp5, vdelta_e5)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp6, vdelta_e6)); vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp7, vdelta_e7)); vaccv3 = _mm512_add_ps(vaccv3, _mm512_scalef_ps(vp8, vdelta_e8)); vaccv4 = _mm512_add_ps(vaccv4, _mm512_scalef_ps(vp9, vdelta_e9)); vacce0 = vmax_e0; vacce1 = vmax_e1; vacce2 = vmax_e2; vacce3 = vmax_e3; vacce4 = vmax_e4; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. const __m512 vmax_acce01 = _mm512_max_ps(vacce0, vacce1); const __m512 vmax_acce23 = _mm512_max_ps(vacce2, vacce3); const __m512 vmax_acce4 = vacce4; const __m512 vmax_acce0123 = _mm512_max_ps(vmax_acce01, vmax_acce23); const __m512 vmax_acce01234 = _mm512_max_ps(vmax_acce0123, vmax_acce4); const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_acce01234); const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_acce01234); const __m512 vdelta_acce2 = _mm512_sub_ps(vacce2, vmax_acce01234); const __m512 vdelta_acce3 = _mm512_sub_ps(vacce3, vmax_acce01234); const __m512 vdelta_acce4 = _mm512_sub_ps(vacce4, vmax_acce01234); __m512 vaccv = _mm512_scalef_ps(vaccv0, vdelta_acce0); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv1, vdelta_acce1)); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv2, vdelta_acce2)); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv3, vdelta_acce3)); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv4, vdelta_acce4)); __m512 vacce = vmax_acce01234; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_max_ps(vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_scalef_ps(vaccv, vdelta_acce); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vp, vdelta_e)); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_mask_max_ps(vacce, vmask, vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_mask_scalef_ps(vaccv, vmask, vaccv, vdelta_acce); vaccv = _mm512_mask_add_ps(vaccv, vmask, vaccv, _mm512_maskz_scalef_ps(vmask, vp, vdelta_e)); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. const float vmax_acce = _mm512_reduce_max_ps(vacce); const __m512 vdelta_acce = _mm512_sub_ps(vacce, _mm512_set1_ps(vmax_acce)); sum[0] = _mm512_reduce_add_ps(_mm512_scalef_ps(vaccv, vdelta_acce)); sum[1] = vmax_acce; _mm256_zeroupper(); }
13,938
43.964516
108
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx512f-p5-scalef-x160.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddextexp.h> void xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x160( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vminus_inf = _mm512_set1_ps(-INFINITY); __m512 vaccv0 = _mm512_setzero_ps(); __m512 vacce0 = vminus_inf; for (; batch >= 160 * sizeof(float); batch -= 160 * sizeof(float)) { // Load 160 (10x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); const __m512 vx4 = _mm512_loadu_ps(input + 64); const __m512 vx5 = _mm512_loadu_ps(input + 80); const __m512 vx6 = _mm512_loadu_ps(input + 96); const __m512 vx7 = _mm512_loadu_ps(input + 112); const __m512 vx8 = _mm512_loadu_ps(input + 128); const __m512 vx9 = _mm512_loadu_ps(input + 144); input += 160; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we add three "extended" floating-point numbers at a time. __m512 vmax_e0 = _mm512_max_ps(vacce0, vn0); vmax_e0 = _mm512_max_ps(vmax_e0, vn1); vmax_e0 = _mm512_max_ps(vmax_e0, vn2); vmax_e0 = _mm512_max_ps(vmax_e0, vn3); vmax_e0 = _mm512_max_ps(vmax_e0, vn4); vmax_e0 = _mm512_max_ps(vmax_e0, vn5); vmax_e0 = _mm512_max_ps(vmax_e0, vn6); vmax_e0 = _mm512_max_ps(vmax_e0, vn7); vmax_e0 = _mm512_max_ps(vmax_e0, vn8); vmax_e0 = _mm512_max_ps(vmax_e0, vn9); const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_e0); const __m512 vdelta_e0 = _mm512_sub_ps(vn0, vmax_e0); const __m512 vdelta_e1 = _mm512_sub_ps(vn1, vmax_e0); const __m512 vdelta_e2 = _mm512_sub_ps(vn2, vmax_e0); const __m512 vdelta_e3 = _mm512_sub_ps(vn3, vmax_e0); const __m512 vdelta_e4 = _mm512_sub_ps(vn4, vmax_e0); const __m512 vdelta_e5 = _mm512_sub_ps(vn5, vmax_e0); const __m512 vdelta_e6 = _mm512_sub_ps(vn6, vmax_e0); const __m512 vdelta_e7 = _mm512_sub_ps(vn7, vmax_e0); const __m512 vdelta_e8 = _mm512_sub_ps(vn8, vmax_e0); const __m512 vdelta_e9 = _mm512_sub_ps(vn9, vmax_e0); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm512_scalef_ps(vaccv0, vdelta_acce0); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp0, vdelta_e0)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp1, vdelta_e1)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp2, vdelta_e2)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp3, vdelta_e3)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp4, vdelta_e4)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp5, vdelta_e5)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp6, vdelta_e6)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp7, vdelta_e7)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp8, vdelta_e8)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp9, vdelta_e9)); vacce0 = vmax_e0; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. __m512 vaccv = vaccv0; __m512 vacce = vacce0; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_max_ps(vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_scalef_ps(vaccv, vdelta_acce); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vp, vdelta_e)); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_mask_max_ps(vacce, vmask, vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_mask_scalef_ps(vaccv, vmask, vaccv, vdelta_acce); vaccv = _mm512_mask_add_ps(vaccv, vmask, vaccv, _mm512_maskz_scalef_ps(vmask, vp, vdelta_e)); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. const float vmax_acce = _mm512_reduce_max_ps(vacce); const __m512 vdelta_acce = _mm512_sub_ps(vacce, _mm512_set1_ps(vmax_acce)); sum[0] = _mm512_reduce_add_ps(_mm512_scalef_ps(vaccv, vdelta_acce)); sum[1] = vmax_acce; _mm256_zeroupper(); }
12,100
43.164234
108
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx512f-p5-scalef-x192-acc2.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddextexp.h> void xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x192_acc2( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vminus_inf = _mm512_set1_ps(-INFINITY); __m512 vaccv0 = _mm512_setzero_ps(); __m512 vaccv1 = _mm512_setzero_ps(); __m512 vacce0 = vminus_inf; __m512 vacce1 = vminus_inf; for (; batch >= 192 * sizeof(float); batch -= 192 * sizeof(float)) { // Load 192 (12x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); const __m512 vx4 = _mm512_loadu_ps(input + 64); const __m512 vx5 = _mm512_loadu_ps(input + 80); const __m512 vx6 = _mm512_loadu_ps(input + 96); const __m512 vx7 = _mm512_loadu_ps(input + 112); const __m512 vx8 = _mm512_loadu_ps(input + 128); const __m512 vx9 = _mm512_loadu_ps(input + 144); const __m512 vx10 = _mm512_loadu_ps(input + 160); const __m512 vx11 = _mm512_loadu_ps(input + 176); input += 192; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); const __m512 vn10 = _mm512_roundscale_ps(_mm512_mul_ps(vx10, vlog2e), 0); const __m512 vn11 = _mm512_roundscale_ps(_mm512_mul_ps(vx11, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m512 vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m512 vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); __m512 vp10 = _mm512_fmadd_ps(vc5, vt10, vc4); __m512 vp11 = _mm512_fmadd_ps(vc5, vt11, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp10 = _mm512_fmadd_ps(vp10, vt10, vc3); vp11 = _mm512_fmadd_ps(vp11, vt11, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp10 = _mm512_fmadd_ps(vp10, vt10, vc2); vp11 = _mm512_fmadd_ps(vp11, vt11, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp10 = _mm512_fmadd_ps(vp10, vt10, vc1); vp11 = _mm512_fmadd_ps(vp11, vt11, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); vp10 = _mm512_fmadd_ps(vp10, vt10, vc0); vp11 = _mm512_fmadd_ps(vp11, vt11, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we add three "extended" floating-point numbers at a time. __m512 vmax_e0 = _mm512_max_ps(vacce0, vn0); __m512 vmax_e1 = _mm512_max_ps(vacce1, vn1); vmax_e0 = _mm512_max_ps(vmax_e0, vn2); vmax_e1 = _mm512_max_ps(vmax_e1, vn3); vmax_e0 = _mm512_max_ps(vmax_e0, vn4); vmax_e1 = _mm512_max_ps(vmax_e1, vn5); vmax_e0 = _mm512_max_ps(vmax_e0, vn6); vmax_e1 = _mm512_max_ps(vmax_e1, vn7); vmax_e0 = _mm512_max_ps(vmax_e0, vn8); vmax_e1 = _mm512_max_ps(vmax_e1, vn9); vmax_e0 = _mm512_max_ps(vmax_e0, vn10); vmax_e1 = _mm512_max_ps(vmax_e1, vn11); const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_e0); const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_e1); const __m512 vdelta_e0 = _mm512_sub_ps(vn0, vmax_e0); const __m512 vdelta_e1 = _mm512_sub_ps(vn1, vmax_e1); const __m512 vdelta_e2 = _mm512_sub_ps(vn2, vmax_e0); const __m512 vdelta_e3 = _mm512_sub_ps(vn3, vmax_e1); const __m512 vdelta_e4 = _mm512_sub_ps(vn4, vmax_e0); const __m512 vdelta_e5 = _mm512_sub_ps(vn5, vmax_e1); const __m512 vdelta_e6 = _mm512_sub_ps(vn6, vmax_e0); const __m512 vdelta_e7 = _mm512_sub_ps(vn7, vmax_e1); const __m512 vdelta_e8 = _mm512_sub_ps(vn8, vmax_e0); const __m512 vdelta_e9 = _mm512_sub_ps(vn9, vmax_e1); const __m512 vdelta_e10 = _mm512_sub_ps(vn10, vmax_e0); const __m512 vdelta_e11 = _mm512_sub_ps(vn11, vmax_e1); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm512_scalef_ps(vaccv0, vdelta_acce0); vaccv1 = _mm512_scalef_ps(vaccv1, vdelta_acce1); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp0, vdelta_e0)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp1, vdelta_e1)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp2, vdelta_e2)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp3, vdelta_e3)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp4, vdelta_e4)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp5, vdelta_e5)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp6, vdelta_e6)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp7, vdelta_e7)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp8, vdelta_e8)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp9, vdelta_e9)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp10, vdelta_e10)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp11, vdelta_e11)); vacce0 = vmax_e0; vacce1 = vmax_e1; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. const __m512 vmax_acce01 = _mm512_max_ps(vacce0, vacce1); const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_acce01); const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_acce01); __m512 vaccv = _mm512_scalef_ps(vaccv0, vdelta_acce0); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv1, vdelta_acce1)); __m512 vacce = vmax_acce01; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_max_ps(vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_scalef_ps(vaccv, vdelta_acce); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vp, vdelta_e)); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_mask_max_ps(vacce, vmask, vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_mask_scalef_ps(vaccv, vmask, vaccv, vdelta_acce); vaccv = _mm512_mask_add_ps(vaccv, vmask, vaccv, _mm512_maskz_scalef_ps(vmask, vp, vdelta_e)); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. const float vmax_acce = _mm512_reduce_max_ps(vacce); const __m512 vdelta_acce = _mm512_sub_ps(vacce, _mm512_set1_ps(vmax_acce)); sum[0] = _mm512_reduce_add_ps(_mm512_scalef_ps(vaccv, vdelta_acce)); sum[1] = vmax_acce; _mm256_zeroupper(); }
13,934
44.097087
108
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx512f-p5-scalef-x192-acc3.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddextexp.h> void xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x192_acc3( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vminus_inf = _mm512_set1_ps(-INFINITY); __m512 vaccv0 = _mm512_setzero_ps(); __m512 vaccv1 = _mm512_setzero_ps(); __m512 vaccv2 = _mm512_setzero_ps(); __m512 vacce0 = vminus_inf; __m512 vacce1 = vminus_inf; __m512 vacce2 = vminus_inf; for (; batch >= 192 * sizeof(float); batch -= 192 * sizeof(float)) { // Load 192 (12x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); const __m512 vx4 = _mm512_loadu_ps(input + 64); const __m512 vx5 = _mm512_loadu_ps(input + 80); const __m512 vx6 = _mm512_loadu_ps(input + 96); const __m512 vx7 = _mm512_loadu_ps(input + 112); const __m512 vx8 = _mm512_loadu_ps(input + 128); const __m512 vx9 = _mm512_loadu_ps(input + 144); const __m512 vx10 = _mm512_loadu_ps(input + 160); const __m512 vx11 = _mm512_loadu_ps(input + 176); input += 192; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); const __m512 vn10 = _mm512_roundscale_ps(_mm512_mul_ps(vx10, vlog2e), 0); const __m512 vn11 = _mm512_roundscale_ps(_mm512_mul_ps(vx11, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m512 vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m512 vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); __m512 vp10 = _mm512_fmadd_ps(vc5, vt10, vc4); __m512 vp11 = _mm512_fmadd_ps(vc5, vt11, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp10 = _mm512_fmadd_ps(vp10, vt10, vc3); vp11 = _mm512_fmadd_ps(vp11, vt11, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp10 = _mm512_fmadd_ps(vp10, vt10, vc2); vp11 = _mm512_fmadd_ps(vp11, vt11, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp10 = _mm512_fmadd_ps(vp10, vt10, vc1); vp11 = _mm512_fmadd_ps(vp11, vt11, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); vp10 = _mm512_fmadd_ps(vp10, vt10, vc0); vp11 = _mm512_fmadd_ps(vp11, vt11, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we add three "extended" floating-point numbers at a time. __m512 vmax_e0 = _mm512_max_ps(vacce0, vn0); __m512 vmax_e1 = _mm512_max_ps(vacce1, vn1); __m512 vmax_e2 = _mm512_max_ps(vacce2, vn2); vmax_e0 = _mm512_max_ps(vmax_e0, vn3); vmax_e1 = _mm512_max_ps(vmax_e1, vn4); vmax_e2 = _mm512_max_ps(vmax_e2, vn5); vmax_e0 = _mm512_max_ps(vmax_e0, vn6); vmax_e1 = _mm512_max_ps(vmax_e1, vn7); vmax_e2 = _mm512_max_ps(vmax_e2, vn8); vmax_e0 = _mm512_max_ps(vmax_e0, vn9); vmax_e1 = _mm512_max_ps(vmax_e1, vn10); vmax_e2 = _mm512_max_ps(vmax_e2, vn11); const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_e0); const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_e1); const __m512 vdelta_acce2 = _mm512_sub_ps(vacce2, vmax_e2); const __m512 vdelta_e0 = _mm512_sub_ps(vn0, vmax_e0); const __m512 vdelta_e1 = _mm512_sub_ps(vn1, vmax_e1); const __m512 vdelta_e2 = _mm512_sub_ps(vn2, vmax_e2); const __m512 vdelta_e3 = _mm512_sub_ps(vn3, vmax_e0); const __m512 vdelta_e4 = _mm512_sub_ps(vn4, vmax_e1); const __m512 vdelta_e5 = _mm512_sub_ps(vn5, vmax_e2); const __m512 vdelta_e6 = _mm512_sub_ps(vn6, vmax_e0); const __m512 vdelta_e7 = _mm512_sub_ps(vn7, vmax_e1); const __m512 vdelta_e8 = _mm512_sub_ps(vn8, vmax_e2); const __m512 vdelta_e9 = _mm512_sub_ps(vn9, vmax_e0); const __m512 vdelta_e10 = _mm512_sub_ps(vn10, vmax_e1); const __m512 vdelta_e11 = _mm512_sub_ps(vn11, vmax_e2); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm512_scalef_ps(vaccv0, vdelta_acce0); vaccv1 = _mm512_scalef_ps(vaccv1, vdelta_acce1); vaccv2 = _mm512_scalef_ps(vaccv2, vdelta_acce2); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp0, vdelta_e0)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp1, vdelta_e1)); vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp2, vdelta_e2)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp3, vdelta_e3)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp4, vdelta_e4)); vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp5, vdelta_e5)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp6, vdelta_e6)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp7, vdelta_e7)); vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp8, vdelta_e8)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp9, vdelta_e9)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp10, vdelta_e10)); vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp11, vdelta_e11)); vacce0 = vmax_e0; vacce1 = vmax_e1; vacce2 = vmax_e2; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. const __m512 vmax_acce01 = _mm512_max_ps(vacce0, vacce1); const __m512 vmax_acce2 = vacce2; const __m512 vmax_acce012 = _mm512_max_ps(vmax_acce01, vmax_acce2); const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_acce012); const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_acce012); const __m512 vdelta_acce2 = _mm512_sub_ps(vacce2, vmax_acce012); __m512 vaccv = _mm512_scalef_ps(vaccv0, vdelta_acce0); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv1, vdelta_acce1)); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv2, vdelta_acce2)); __m512 vacce = vmax_acce012; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_max_ps(vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_scalef_ps(vaccv, vdelta_acce); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vp, vdelta_e)); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_mask_max_ps(vacce, vmask, vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_mask_scalef_ps(vaccv, vmask, vaccv, vdelta_acce); vaccv = _mm512_mask_add_ps(vaccv, vmask, vaccv, _mm512_maskz_scalef_ps(vmask, vp, vdelta_e)); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. const float vmax_acce = _mm512_reduce_max_ps(vacce); const __m512 vdelta_acce = _mm512_sub_ps(vacce, _mm512_set1_ps(vmax_acce)); sum[0] = _mm512_reduce_add_ps(_mm512_scalef_ps(vaccv, vdelta_acce)); sum[1] = vmax_acce; _mm256_zeroupper(); }
14,396
44.273585
108
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx512f-p5-scalef-x192-acc6.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddextexp.h> void xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x192_acc6( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vminus_inf = _mm512_set1_ps(-INFINITY); __m512 vaccv0 = _mm512_setzero_ps(); __m512 vaccv1 = _mm512_setzero_ps(); __m512 vaccv2 = _mm512_setzero_ps(); __m512 vaccv3 = _mm512_setzero_ps(); __m512 vaccv4 = _mm512_setzero_ps(); __m512 vaccv5 = _mm512_setzero_ps(); __m512 vacce0 = vminus_inf; __m512 vacce1 = vminus_inf; __m512 vacce2 = vminus_inf; __m512 vacce3 = vminus_inf; __m512 vacce4 = vminus_inf; __m512 vacce5 = vminus_inf; for (; batch >= 192 * sizeof(float); batch -= 192 * sizeof(float)) { // Load 192 (12x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); const __m512 vx4 = _mm512_loadu_ps(input + 64); const __m512 vx5 = _mm512_loadu_ps(input + 80); const __m512 vx6 = _mm512_loadu_ps(input + 96); const __m512 vx7 = _mm512_loadu_ps(input + 112); const __m512 vx8 = _mm512_loadu_ps(input + 128); const __m512 vx9 = _mm512_loadu_ps(input + 144); const __m512 vx10 = _mm512_loadu_ps(input + 160); const __m512 vx11 = _mm512_loadu_ps(input + 176); input += 192; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); const __m512 vn10 = _mm512_roundscale_ps(_mm512_mul_ps(vx10, vlog2e), 0); const __m512 vn11 = _mm512_roundscale_ps(_mm512_mul_ps(vx11, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m512 vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m512 vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); __m512 vp10 = _mm512_fmadd_ps(vc5, vt10, vc4); __m512 vp11 = _mm512_fmadd_ps(vc5, vt11, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp10 = _mm512_fmadd_ps(vp10, vt10, vc3); vp11 = _mm512_fmadd_ps(vp11, vt11, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp10 = _mm512_fmadd_ps(vp10, vt10, vc2); vp11 = _mm512_fmadd_ps(vp11, vt11, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp10 = _mm512_fmadd_ps(vp10, vt10, vc1); vp11 = _mm512_fmadd_ps(vp11, vt11, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); vp10 = _mm512_fmadd_ps(vp10, vt10, vc0); vp11 = _mm512_fmadd_ps(vp11, vt11, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we add three "extended" floating-point numbers at a time. __m512 vmax_e0 = _mm512_max_ps(vacce0, vn0); __m512 vmax_e1 = _mm512_max_ps(vacce1, vn1); __m512 vmax_e2 = _mm512_max_ps(vacce2, vn2); __m512 vmax_e3 = _mm512_max_ps(vacce3, vn3); __m512 vmax_e4 = _mm512_max_ps(vacce4, vn4); __m512 vmax_e5 = _mm512_max_ps(vacce5, vn5); vmax_e0 = _mm512_max_ps(vmax_e0, vn6); vmax_e1 = _mm512_max_ps(vmax_e1, vn7); vmax_e2 = _mm512_max_ps(vmax_e2, vn8); vmax_e3 = _mm512_max_ps(vmax_e3, vn9); vmax_e4 = _mm512_max_ps(vmax_e4, vn10); vmax_e5 = _mm512_max_ps(vmax_e5, vn11); const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_e0); const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_e1); const __m512 vdelta_acce2 = _mm512_sub_ps(vacce2, vmax_e2); const __m512 vdelta_acce3 = _mm512_sub_ps(vacce3, vmax_e3); const __m512 vdelta_acce4 = _mm512_sub_ps(vacce4, vmax_e4); const __m512 vdelta_acce5 = _mm512_sub_ps(vacce5, vmax_e5); const __m512 vdelta_e0 = _mm512_sub_ps(vn0, vmax_e0); const __m512 vdelta_e1 = _mm512_sub_ps(vn1, vmax_e1); const __m512 vdelta_e2 = _mm512_sub_ps(vn2, vmax_e2); const __m512 vdelta_e3 = _mm512_sub_ps(vn3, vmax_e3); const __m512 vdelta_e4 = _mm512_sub_ps(vn4, vmax_e4); const __m512 vdelta_e5 = _mm512_sub_ps(vn5, vmax_e5); const __m512 vdelta_e6 = _mm512_sub_ps(vn6, vmax_e0); const __m512 vdelta_e7 = _mm512_sub_ps(vn7, vmax_e1); const __m512 vdelta_e8 = _mm512_sub_ps(vn8, vmax_e2); const __m512 vdelta_e9 = _mm512_sub_ps(vn9, vmax_e3); const __m512 vdelta_e10 = _mm512_sub_ps(vn10, vmax_e4); const __m512 vdelta_e11 = _mm512_sub_ps(vn11, vmax_e5); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm512_scalef_ps(vaccv0, vdelta_acce0); vaccv1 = _mm512_scalef_ps(vaccv1, vdelta_acce1); vaccv2 = _mm512_scalef_ps(vaccv2, vdelta_acce2); vaccv3 = _mm512_scalef_ps(vaccv3, vdelta_acce3); vaccv4 = _mm512_scalef_ps(vaccv4, vdelta_acce4); vaccv5 = _mm512_scalef_ps(vaccv5, vdelta_acce5); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp0, vdelta_e0)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp1, vdelta_e1)); vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp2, vdelta_e2)); vaccv3 = _mm512_add_ps(vaccv3, _mm512_scalef_ps(vp3, vdelta_e3)); vaccv4 = _mm512_add_ps(vaccv4, _mm512_scalef_ps(vp4, vdelta_e4)); vaccv5 = _mm512_add_ps(vaccv5, _mm512_scalef_ps(vp5, vdelta_e5)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp6, vdelta_e6)); vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp7, vdelta_e7)); vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp8, vdelta_e8)); vaccv3 = _mm512_add_ps(vaccv3, _mm512_scalef_ps(vp9, vdelta_e9)); vaccv4 = _mm512_add_ps(vaccv4, _mm512_scalef_ps(vp10, vdelta_e10)); vaccv5 = _mm512_add_ps(vaccv5, _mm512_scalef_ps(vp11, vdelta_e11)); vacce0 = vmax_e0; vacce1 = vmax_e1; vacce2 = vmax_e2; vacce3 = vmax_e3; vacce4 = vmax_e4; vacce5 = vmax_e5; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. const __m512 vmax_acce01 = _mm512_max_ps(vacce0, vacce1); const __m512 vmax_acce23 = _mm512_max_ps(vacce2, vacce3); const __m512 vmax_acce45 = _mm512_max_ps(vacce4, vacce5); const __m512 vmax_acce0123 = _mm512_max_ps(vmax_acce01, vmax_acce23); const __m512 vmax_acce012345 = _mm512_max_ps(vmax_acce0123, vmax_acce45); const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_acce012345); const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_acce012345); const __m512 vdelta_acce2 = _mm512_sub_ps(vacce2, vmax_acce012345); const __m512 vdelta_acce3 = _mm512_sub_ps(vacce3, vmax_acce012345); const __m512 vdelta_acce4 = _mm512_sub_ps(vacce4, vmax_acce012345); const __m512 vdelta_acce5 = _mm512_sub_ps(vacce5, vmax_acce012345); __m512 vaccv = _mm512_scalef_ps(vaccv0, vdelta_acce0); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv1, vdelta_acce1)); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv2, vdelta_acce2)); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv3, vdelta_acce3)); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv4, vdelta_acce4)); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv5, vdelta_acce5)); __m512 vacce = vmax_acce012345; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_max_ps(vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_scalef_ps(vaccv, vdelta_acce); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vp, vdelta_e)); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_mask_max_ps(vacce, vmask, vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_mask_scalef_ps(vaccv, vmask, vaccv, vdelta_acce); vaccv = _mm512_mask_add_ps(vaccv, vmask, vaccv, _mm512_maskz_scalef_ps(vmask, vp, vdelta_e)); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. const float vmax_acce = _mm512_reduce_max_ps(vacce); const __m512 vdelta_acce = _mm512_sub_ps(vacce, _mm512_set1_ps(vmax_acce)); sum[0] = _mm512_reduce_add_ps(_mm512_scalef_ps(vaccv, vdelta_acce)); sum[1] = vmax_acce; _mm256_zeroupper(); }
15,638
44.86217
108
c
XNNPACK
XNNPACK-master/src/f32-raddextexp/gen/f32-raddextexp-avx512f-p5-scalef-x192.c
// Auto-generated file. Do not edit! // Template: src/f32-raddextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <math.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddextexp.h> void xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x192( size_t batch, const float* input, float* sum) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(sum != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vminus_inf = _mm512_set1_ps(-INFINITY); __m512 vaccv0 = _mm512_setzero_ps(); __m512 vacce0 = vminus_inf; for (; batch >= 192 * sizeof(float); batch -= 192 * sizeof(float)) { // Load 192 (12x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); const __m512 vx4 = _mm512_loadu_ps(input + 64); const __m512 vx5 = _mm512_loadu_ps(input + 80); const __m512 vx6 = _mm512_loadu_ps(input + 96); const __m512 vx7 = _mm512_loadu_ps(input + 112); const __m512 vx8 = _mm512_loadu_ps(input + 128); const __m512 vx9 = _mm512_loadu_ps(input + 144); const __m512 vx10 = _mm512_loadu_ps(input + 160); const __m512 vx11 = _mm512_loadu_ps(input + 176); input += 192; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); const __m512 vn10 = _mm512_roundscale_ps(_mm512_mul_ps(vx10, vlog2e), 0); const __m512 vn11 = _mm512_roundscale_ps(_mm512_mul_ps(vx11, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m512 vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m512 vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); __m512 vp10 = _mm512_fmadd_ps(vc5, vt10, vc4); __m512 vp11 = _mm512_fmadd_ps(vc5, vt11, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp10 = _mm512_fmadd_ps(vp10, vt10, vc3); vp11 = _mm512_fmadd_ps(vp11, vt11, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp10 = _mm512_fmadd_ps(vp10, vt10, vc2); vp11 = _mm512_fmadd_ps(vp11, vt11, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp10 = _mm512_fmadd_ps(vp10, vt10, vc1); vp11 = _mm512_fmadd_ps(vp11, vt11, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); vp10 = _mm512_fmadd_ps(vp10, vt10, vc0); vp11 = _mm512_fmadd_ps(vp11, vt11, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we add three "extended" floating-point numbers at a time. __m512 vmax_e0 = _mm512_max_ps(vacce0, vn0); vmax_e0 = _mm512_max_ps(vmax_e0, vn1); vmax_e0 = _mm512_max_ps(vmax_e0, vn2); vmax_e0 = _mm512_max_ps(vmax_e0, vn3); vmax_e0 = _mm512_max_ps(vmax_e0, vn4); vmax_e0 = _mm512_max_ps(vmax_e0, vn5); vmax_e0 = _mm512_max_ps(vmax_e0, vn6); vmax_e0 = _mm512_max_ps(vmax_e0, vn7); vmax_e0 = _mm512_max_ps(vmax_e0, vn8); vmax_e0 = _mm512_max_ps(vmax_e0, vn9); vmax_e0 = _mm512_max_ps(vmax_e0, vn10); vmax_e0 = _mm512_max_ps(vmax_e0, vn11); const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_e0); const __m512 vdelta_e0 = _mm512_sub_ps(vn0, vmax_e0); const __m512 vdelta_e1 = _mm512_sub_ps(vn1, vmax_e0); const __m512 vdelta_e2 = _mm512_sub_ps(vn2, vmax_e0); const __m512 vdelta_e3 = _mm512_sub_ps(vn3, vmax_e0); const __m512 vdelta_e4 = _mm512_sub_ps(vn4, vmax_e0); const __m512 vdelta_e5 = _mm512_sub_ps(vn5, vmax_e0); const __m512 vdelta_e6 = _mm512_sub_ps(vn6, vmax_e0); const __m512 vdelta_e7 = _mm512_sub_ps(vn7, vmax_e0); const __m512 vdelta_e8 = _mm512_sub_ps(vn8, vmax_e0); const __m512 vdelta_e9 = _mm512_sub_ps(vn9, vmax_e0); const __m512 vdelta_e10 = _mm512_sub_ps(vn10, vmax_e0); const __m512 vdelta_e11 = _mm512_sub_ps(vn11, vmax_e0); // Update accumulated "mantissa" and "exponent" values vaccv0 = _mm512_scalef_ps(vaccv0, vdelta_acce0); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp0, vdelta_e0)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp1, vdelta_e1)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp2, vdelta_e2)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp3, vdelta_e3)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp4, vdelta_e4)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp5, vdelta_e5)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp6, vdelta_e6)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp7, vdelta_e7)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp8, vdelta_e8)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp9, vdelta_e9)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp10, vdelta_e10)); vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp11, vdelta_e11)); vacce0 = vmax_e0; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. __m512 vaccv = vaccv0; __m512 vacce = vacce0; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_max_ps(vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_scalef_ps(vaccv, vdelta_acce); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vp, vdelta_e)); vacce = vmax_e; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_mask_max_ps(vacce, vmask, vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_mask_scalef_ps(vaccv, vmask, vaccv, vdelta_acce); vaccv = _mm512_mask_add_ps(vaccv, vmask, vaccv, _mm512_maskz_scalef_ps(vmask, vp, vdelta_e)); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. const float vmax_acce = _mm512_reduce_max_ps(vacce); const __m512 vdelta_acce = _mm512_sub_ps(vacce, _mm512_set1_ps(vmax_acce)); sum[0] = _mm512_reduce_add_ps(_mm512_scalef_ps(vaccv, vdelta_acce)); sum[1] = vmax_acce; _mm256_zeroupper(); }
13,412
44.010067
108
c
XNNPACK
XNNPACK-master/src/f32-raddstoreexpminusmax/gen/f32-raddstoreexpminusmax-avx2-rr1-p5-x64-acc2.c
// Auto-generated file. Do not edit! // Template: src/f32-raddstoreexpminusmax/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddstoreexpminusmax.h> void xnn_f32_raddstoreexpminusmax_ukernel__avx2_rr1_p5_x64_acc2( size_t batch, const float* input, const float* max, float* output, float* sum, const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(max != NULL); assert(output != NULL); assert(sum != NULL); const __m256 vi_max = _mm256_broadcast_ss(max); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); __m256 vacc0 = _mm256_setzero_ps(); __m256 vacc1 = _mm256_setzero_ps(); for (; batch >= 64 * sizeof(float); batch -= 64 * sizeof(float)) { const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); input += 64; const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vx7); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); output += 64; vacc0 = _mm256_add_ps(vacc0, vf0); vacc1 = _mm256_add_ps(vacc1, vf1); vacc0 = _mm256_add_ps(vacc0, vf2); vacc1 = _mm256_add_ps(vacc1, vf3); vacc0 = _mm256_add_ps(vacc0, vf4); vacc1 = _mm256_add_ps(vacc1, vf5); vacc0 = _mm256_add_ps(vacc0, vf6); vacc1 = _mm256_add_ps(vacc1, vf7); } vacc0 = _mm256_add_ps(vacc0, vacc1); __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vi = _mm256_loadu_ps(input); input += 8; const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); _mm256_storeu_ps(output, vf); output += 8; vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vi = _mm256_maskload_ps(input, vmask); const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
10,402
38.256604
120
c
XNNPACK
XNNPACK-master/src/f32-raddstoreexpminusmax/gen/f32-raddstoreexpminusmax-avx2-rr1-p5-x64-acc4.c
// Auto-generated file. Do not edit! // Template: src/f32-raddstoreexpminusmax/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddstoreexpminusmax.h> void xnn_f32_raddstoreexpminusmax_ukernel__avx2_rr1_p5_x64_acc4( size_t batch, const float* input, const float* max, float* output, float* sum, const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(max != NULL); assert(output != NULL); assert(sum != NULL); const __m256 vi_max = _mm256_broadcast_ss(max); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); __m256 vacc0 = _mm256_setzero_ps(); __m256 vacc1 = _mm256_setzero_ps(); __m256 vacc2 = _mm256_setzero_ps(); __m256 vacc3 = _mm256_setzero_ps(); for (; batch >= 64 * sizeof(float); batch -= 64 * sizeof(float)) { const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); input += 64; const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vx7); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); output += 64; vacc0 = _mm256_add_ps(vacc0, vf0); vacc1 = _mm256_add_ps(vacc1, vf1); vacc2 = _mm256_add_ps(vacc2, vf2); vacc3 = _mm256_add_ps(vacc3, vf3); vacc0 = _mm256_add_ps(vacc0, vf4); vacc1 = _mm256_add_ps(vacc1, vf5); vacc2 = _mm256_add_ps(vacc2, vf6); vacc3 = _mm256_add_ps(vacc3, vf7); } vacc0 = _mm256_add_ps(vacc0, vacc1); vacc2 = _mm256_add_ps(vacc2, vacc3); vacc0 = _mm256_add_ps(vacc0, vacc2); __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vi = _mm256_loadu_ps(input); input += 8; const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); _mm256_storeu_ps(output, vf); output += 8; vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vi = _mm256_maskload_ps(input, vmask); const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
10,556
38.245353
120
c
XNNPACK
XNNPACK-master/src/f32-raddstoreexpminusmax/gen/f32-raddstoreexpminusmax-avx2-rr1-p5-x64.c
// Auto-generated file. Do not edit! // Template: src/f32-raddstoreexpminusmax/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddstoreexpminusmax.h> void xnn_f32_raddstoreexpminusmax_ukernel__avx2_rr1_p5_x64( size_t batch, const float* input, const float* max, float* output, float* sum, const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(max != NULL); assert(output != NULL); assert(sum != NULL); const __m256 vi_max = _mm256_broadcast_ss(max); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); __m256 vacc0 = _mm256_setzero_ps(); for (; batch >= 64 * sizeof(float); batch -= 64 * sizeof(float)) { const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); input += 64; const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vx7); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); output += 64; vacc0 = _mm256_add_ps(vacc0, vf0); vacc0 = _mm256_add_ps(vacc0, vf1); vacc0 = _mm256_add_ps(vacc0, vf2); vacc0 = _mm256_add_ps(vacc0, vf3); vacc0 = _mm256_add_ps(vacc0, vf4); vacc0 = _mm256_add_ps(vacc0, vf5); vacc0 = _mm256_add_ps(vacc0, vf6); vacc0 = _mm256_add_ps(vacc0, vf7); } __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vi = _mm256_loadu_ps(input); input += 8; const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); _mm256_storeu_ps(output, vf); output += 8; vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vi = _mm256_maskload_ps(input, vmask); const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
10,320
38.243346
120
c
XNNPACK
XNNPACK-master/src/f32-raddstoreexpminusmax/gen/f32-raddstoreexpminusmax-avx2-rr1-p5-x72-acc3.c
// Auto-generated file. Do not edit! // Template: src/f32-raddstoreexpminusmax/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddstoreexpminusmax.h> void xnn_f32_raddstoreexpminusmax_ukernel__avx2_rr1_p5_x72_acc3( size_t batch, const float* input, const float* max, float* output, float* sum, const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(max != NULL); assert(output != NULL); assert(sum != NULL); const __m256 vi_max = _mm256_broadcast_ss(max); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); __m256 vacc0 = _mm256_setzero_ps(); __m256 vacc1 = _mm256_setzero_ps(); __m256 vacc2 = _mm256_setzero_ps(); for (; batch >= 72 * sizeof(float); batch -= 72 * sizeof(float)) { const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); input += 72; const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2, vx8); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); output += 72; vacc0 = _mm256_add_ps(vacc0, vf0); vacc1 = _mm256_add_ps(vacc1, vf1); vacc2 = _mm256_add_ps(vacc2, vf2); vacc0 = _mm256_add_ps(vacc0, vf3); vacc1 = _mm256_add_ps(vacc1, vf4); vacc2 = _mm256_add_ps(vacc2, vf5); vacc0 = _mm256_add_ps(vacc0, vf6); vacc1 = _mm256_add_ps(vacc1, vf7); vacc2 = _mm256_add_ps(vacc2, vf8); } vacc0 = _mm256_add_ps(vacc0, vacc1); vacc0 = _mm256_add_ps(vacc0, vacc2); __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vi = _mm256_loadu_ps(input); input += 8; const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); _mm256_storeu_ps(output, vf); output += 8; vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vi = _mm256_maskload_ps(input, vmask); const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
11,253
38.907801
120
c
XNNPACK
XNNPACK-master/src/f32-raddstoreexpminusmax/gen/f32-raddstoreexpminusmax-avx2-rr1-p5-x72.c
// Auto-generated file. Do not edit! // Template: src/f32-raddstoreexpminusmax/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddstoreexpminusmax.h> void xnn_f32_raddstoreexpminusmax_ukernel__avx2_rr1_p5_x72( size_t batch, const float* input, const float* max, float* output, float* sum, const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(max != NULL); assert(output != NULL); assert(sum != NULL); const __m256 vi_max = _mm256_broadcast_ss(max); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); __m256 vacc0 = _mm256_setzero_ps(); for (; batch >= 72 * sizeof(float); batch -= 72 * sizeof(float)) { const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); input += 72; const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2, vx8); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); output += 72; vacc0 = _mm256_add_ps(vacc0, vf0); vacc0 = _mm256_add_ps(vacc0, vf1); vacc0 = _mm256_add_ps(vacc0, vf2); vacc0 = _mm256_add_ps(vacc0, vf3); vacc0 = _mm256_add_ps(vacc0, vf4); vacc0 = _mm256_add_ps(vacc0, vf5); vacc0 = _mm256_add_ps(vacc0, vf6); vacc0 = _mm256_add_ps(vacc0, vf7); vacc0 = _mm256_add_ps(vacc0, vf8); } __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vi = _mm256_loadu_ps(input); input += 8; const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); _mm256_storeu_ps(output, vf); output += 8; vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vi = _mm256_maskload_ps(input, vmask); const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
11,094
38.910072
120
c
XNNPACK
XNNPACK-master/src/f32-raddstoreexpminusmax/gen/f32-raddstoreexpminusmax-avx2-rr1-p5-x80-acc2.c
// Auto-generated file. Do not edit! // Template: src/f32-raddstoreexpminusmax/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddstoreexpminusmax.h> void xnn_f32_raddstoreexpminusmax_ukernel__avx2_rr1_p5_x80_acc2( size_t batch, const float* input, const float* max, float* output, float* sum, const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(max != NULL); assert(output != NULL); assert(sum != NULL); const __m256 vi_max = _mm256_broadcast_ss(max); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); __m256 vacc0 = _mm256_setzero_ps(); __m256 vacc1 = _mm256_setzero_ps(); for (; batch >= 80 * sizeof(float); batch -= 80 * sizeof(float)) { const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); const __m256 vi9 = _mm256_loadu_ps(input + 72); input += 80; const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); const __m256 vx9 = _mm256_sub_ps(vi9, vi_max); __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); vn9 = _mm256_sub_ps(vn9, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2, vx9); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); vt9 = _mm256_mul_ps(vt9, vs9); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); _mm256_storeu_ps(output + 72, vf9); output += 80; vacc0 = _mm256_add_ps(vacc0, vf0); vacc1 = _mm256_add_ps(vacc1, vf1); vacc0 = _mm256_add_ps(vacc0, vf2); vacc1 = _mm256_add_ps(vacc1, vf3); vacc0 = _mm256_add_ps(vacc0, vf4); vacc1 = _mm256_add_ps(vacc1, vf5); vacc0 = _mm256_add_ps(vacc0, vf6); vacc1 = _mm256_add_ps(vacc1, vf7); vacc0 = _mm256_add_ps(vacc0, vf8); vacc1 = _mm256_add_ps(vacc1, vf9); } vacc0 = _mm256_add_ps(vacc0, vacc1); __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vi = _mm256_loadu_ps(input); input += 8; const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); _mm256_storeu_ps(output, vf); output += 8; vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vi = _mm256_maskload_ps(input, vmask); const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
11,950
39.511864
120
c
XNNPACK
XNNPACK-master/src/f32-raddstoreexpminusmax/gen/f32-raddstoreexpminusmax-avx2-rr1-p5-x80-acc5.c
// Auto-generated file. Do not edit! // Template: src/f32-raddstoreexpminusmax/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddstoreexpminusmax.h> void xnn_f32_raddstoreexpminusmax_ukernel__avx2_rr1_p5_x80_acc5( size_t batch, const float* input, const float* max, float* output, float* sum, const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(max != NULL); assert(output != NULL); assert(sum != NULL); const __m256 vi_max = _mm256_broadcast_ss(max); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); __m256 vacc0 = _mm256_setzero_ps(); __m256 vacc1 = _mm256_setzero_ps(); __m256 vacc2 = _mm256_setzero_ps(); __m256 vacc3 = _mm256_setzero_ps(); __m256 vacc4 = _mm256_setzero_ps(); for (; batch >= 80 * sizeof(float); batch -= 80 * sizeof(float)) { const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); const __m256 vi9 = _mm256_loadu_ps(input + 72); input += 80; const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); const __m256 vx9 = _mm256_sub_ps(vi9, vi_max); __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); vn9 = _mm256_sub_ps(vn9, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2, vx9); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); vt9 = _mm256_mul_ps(vt9, vs9); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); _mm256_storeu_ps(output + 72, vf9); output += 80; vacc0 = _mm256_add_ps(vacc0, vf0); vacc1 = _mm256_add_ps(vacc1, vf1); vacc2 = _mm256_add_ps(vacc2, vf2); vacc3 = _mm256_add_ps(vacc3, vf3); vacc4 = _mm256_add_ps(vacc4, vf4); vacc0 = _mm256_add_ps(vacc0, vf5); vacc1 = _mm256_add_ps(vacc1, vf6); vacc2 = _mm256_add_ps(vacc2, vf7); vacc3 = _mm256_add_ps(vacc3, vf8); vacc4 = _mm256_add_ps(vacc4, vf9); } vacc0 = _mm256_add_ps(vacc0, vacc1); vacc2 = _mm256_add_ps(vacc2, vacc3); vacc0 = _mm256_add_ps(vacc0, vacc2); vacc0 = _mm256_add_ps(vacc0, vacc4); __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vi = _mm256_loadu_ps(input); input += 8; const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); _mm256_storeu_ps(output, vf); output += 8; vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vi = _mm256_maskload_ps(input, vmask); const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
12,181
39.471761
120
c
XNNPACK
XNNPACK-master/src/f32-raddstoreexpminusmax/gen/f32-raddstoreexpminusmax-avx2-rr1-p5-x80.c
// Auto-generated file. Do not edit! // Template: src/f32-raddstoreexpminusmax/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddstoreexpminusmax.h> void xnn_f32_raddstoreexpminusmax_ukernel__avx2_rr1_p5_x80( size_t batch, const float* input, const float* max, float* output, float* sum, const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(max != NULL); assert(output != NULL); assert(sum != NULL); const __m256 vi_max = _mm256_broadcast_ss(max); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); __m256 vacc0 = _mm256_setzero_ps(); for (; batch >= 80 * sizeof(float); batch -= 80 * sizeof(float)) { const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); const __m256 vi9 = _mm256_loadu_ps(input + 72); input += 80; const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); const __m256 vx9 = _mm256_sub_ps(vi9, vi_max); __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); vn9 = _mm256_sub_ps(vn9, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2, vx9); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); vt9 = _mm256_mul_ps(vt9, vs9); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); _mm256_storeu_ps(output + 72, vf9); output += 80; vacc0 = _mm256_add_ps(vacc0, vf0); vacc0 = _mm256_add_ps(vacc0, vf1); vacc0 = _mm256_add_ps(vacc0, vf2); vacc0 = _mm256_add_ps(vacc0, vf3); vacc0 = _mm256_add_ps(vacc0, vf4); vacc0 = _mm256_add_ps(vacc0, vf5); vacc0 = _mm256_add_ps(vacc0, vf6); vacc0 = _mm256_add_ps(vacc0, vf7); vacc0 = _mm256_add_ps(vacc0, vf8); vacc0 = _mm256_add_ps(vacc0, vf9); } __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vi = _mm256_loadu_ps(input); input += 8; const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); _mm256_storeu_ps(output, vf); output += 8; vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vi = _mm256_maskload_ps(input, vmask); const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
11,868
39.508532
120
c
XNNPACK
XNNPACK-master/src/f32-raddstoreexpminusmax/gen/f32-raddstoreexpminusmax-avx2-rr1-p5-x96-acc2.c
// Auto-generated file. Do not edit! // Template: src/f32-raddstoreexpminusmax/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddstoreexpminusmax.h> void xnn_f32_raddstoreexpminusmax_ukernel__avx2_rr1_p5_x96_acc2( size_t batch, const float* input, const float* max, float* output, float* sum, const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(max != NULL); assert(output != NULL); assert(sum != NULL); const __m256 vi_max = _mm256_broadcast_ss(max); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); __m256 vacc0 = _mm256_setzero_ps(); __m256 vacc1 = _mm256_setzero_ps(); for (; batch >= 96 * sizeof(float); batch -= 96 * sizeof(float)) { const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); const __m256 vi9 = _mm256_loadu_ps(input + 72); const __m256 vi10 = _mm256_loadu_ps(input + 80); const __m256 vi11 = _mm256_loadu_ps(input + 88); input += 96; const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); const __m256 vx9 = _mm256_sub_ps(vi9, vi_max); const __m256 vx10 = _mm256_sub_ps(vi10, vi_max); const __m256 vx11 = _mm256_sub_ps(vi11, vi_max); __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias); __m256 vn10 = _mm256_fmadd_ps(vx10, vlog2e, vmagic_bias); __m256 vn11 = _mm256_fmadd_ps(vx11, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23)); const __m256 vs10 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn10), 23)); const __m256 vs11 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn11), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); vn9 = _mm256_sub_ps(vn9, vmagic_bias); vn10 = _mm256_sub_ps(vn10, vmagic_bias); vn11 = _mm256_sub_ps(vn11, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2, vx9); __m256 vt10 = _mm256_fmadd_ps(vn10, vminus_ln2, vx10); __m256 vt11 = _mm256_fmadd_ps(vn11, vminus_ln2, vx11); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); __m256 vp10 = _mm256_fmadd_ps(vc5, vt10, vc4); __m256 vp11 = _mm256_fmadd_ps(vc5, vt11, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp10 = _mm256_fmadd_ps(vp10, vt10, vc3); vp11 = _mm256_fmadd_ps(vp11, vt11, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp10 = _mm256_fmadd_ps(vp10, vt10, vc2); vp11 = _mm256_fmadd_ps(vp11, vt11, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vp10 = _mm256_fmadd_ps(vp10, vt10, vc1); vp11 = _mm256_fmadd_ps(vp11, vt11, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); vt9 = _mm256_mul_ps(vt9, vs9); vt10 = _mm256_mul_ps(vt10, vs10); vt11 = _mm256_mul_ps(vt11, vs11); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9); __m256 vf10 = _mm256_fmadd_ps(vt10, vp10, vs10); __m256 vf11 = _mm256_fmadd_ps(vt11, vp11, vs11); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9); vf10 = _mm256_andnot_ps(_mm256_cmp_ps(vx10, vdenorm_cutoff, _CMP_LT_OS), vf10); vf11 = _mm256_andnot_ps(_mm256_cmp_ps(vx11, vdenorm_cutoff, _CMP_LT_OS), vf11); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); _mm256_storeu_ps(output + 72, vf9); _mm256_storeu_ps(output + 80, vf10); _mm256_storeu_ps(output + 88, vf11); output += 96; vacc0 = _mm256_add_ps(vacc0, vf0); vacc1 = _mm256_add_ps(vacc1, vf1); vacc0 = _mm256_add_ps(vacc0, vf2); vacc1 = _mm256_add_ps(vacc1, vf3); vacc0 = _mm256_add_ps(vacc0, vf4); vacc1 = _mm256_add_ps(vacc1, vf5); vacc0 = _mm256_add_ps(vacc0, vf6); vacc1 = _mm256_add_ps(vacc1, vf7); vacc0 = _mm256_add_ps(vacc0, vf8); vacc1 = _mm256_add_ps(vacc1, vf9); vacc0 = _mm256_add_ps(vacc0, vf10); vacc1 = _mm256_add_ps(vacc1, vf11); } vacc0 = _mm256_add_ps(vacc0, vacc1); __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vi = _mm256_loadu_ps(input); input += 8; const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); _mm256_storeu_ps(output, vf); output += 8; vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vi = _mm256_maskload_ps(input, vmask); const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
13,568
40.750769
120
c
XNNPACK
XNNPACK-master/src/f32-raddstoreexpminusmax/gen/f32-raddstoreexpminusmax-avx2-rr1-p5-x96-acc3.c
// Auto-generated file. Do not edit! // Template: src/f32-raddstoreexpminusmax/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddstoreexpminusmax.h> void xnn_f32_raddstoreexpminusmax_ukernel__avx2_rr1_p5_x96_acc3( size_t batch, const float* input, const float* max, float* output, float* sum, const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(max != NULL); assert(output != NULL); assert(sum != NULL); const __m256 vi_max = _mm256_broadcast_ss(max); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); __m256 vacc0 = _mm256_setzero_ps(); __m256 vacc1 = _mm256_setzero_ps(); __m256 vacc2 = _mm256_setzero_ps(); for (; batch >= 96 * sizeof(float); batch -= 96 * sizeof(float)) { const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); const __m256 vi9 = _mm256_loadu_ps(input + 72); const __m256 vi10 = _mm256_loadu_ps(input + 80); const __m256 vi11 = _mm256_loadu_ps(input + 88); input += 96; const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); const __m256 vx9 = _mm256_sub_ps(vi9, vi_max); const __m256 vx10 = _mm256_sub_ps(vi10, vi_max); const __m256 vx11 = _mm256_sub_ps(vi11, vi_max); __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias); __m256 vn10 = _mm256_fmadd_ps(vx10, vlog2e, vmagic_bias); __m256 vn11 = _mm256_fmadd_ps(vx11, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23)); const __m256 vs10 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn10), 23)); const __m256 vs11 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn11), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); vn9 = _mm256_sub_ps(vn9, vmagic_bias); vn10 = _mm256_sub_ps(vn10, vmagic_bias); vn11 = _mm256_sub_ps(vn11, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2, vx9); __m256 vt10 = _mm256_fmadd_ps(vn10, vminus_ln2, vx10); __m256 vt11 = _mm256_fmadd_ps(vn11, vminus_ln2, vx11); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); __m256 vp10 = _mm256_fmadd_ps(vc5, vt10, vc4); __m256 vp11 = _mm256_fmadd_ps(vc5, vt11, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp10 = _mm256_fmadd_ps(vp10, vt10, vc3); vp11 = _mm256_fmadd_ps(vp11, vt11, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp10 = _mm256_fmadd_ps(vp10, vt10, vc2); vp11 = _mm256_fmadd_ps(vp11, vt11, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vp10 = _mm256_fmadd_ps(vp10, vt10, vc1); vp11 = _mm256_fmadd_ps(vp11, vt11, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); vt9 = _mm256_mul_ps(vt9, vs9); vt10 = _mm256_mul_ps(vt10, vs10); vt11 = _mm256_mul_ps(vt11, vs11); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9); __m256 vf10 = _mm256_fmadd_ps(vt10, vp10, vs10); __m256 vf11 = _mm256_fmadd_ps(vt11, vp11, vs11); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9); vf10 = _mm256_andnot_ps(_mm256_cmp_ps(vx10, vdenorm_cutoff, _CMP_LT_OS), vf10); vf11 = _mm256_andnot_ps(_mm256_cmp_ps(vx11, vdenorm_cutoff, _CMP_LT_OS), vf11); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); _mm256_storeu_ps(output + 72, vf9); _mm256_storeu_ps(output + 80, vf10); _mm256_storeu_ps(output + 88, vf11); output += 96; vacc0 = _mm256_add_ps(vacc0, vf0); vacc1 = _mm256_add_ps(vacc1, vf1); vacc2 = _mm256_add_ps(vacc2, vf2); vacc0 = _mm256_add_ps(vacc0, vf3); vacc1 = _mm256_add_ps(vacc1, vf4); vacc2 = _mm256_add_ps(vacc2, vf5); vacc0 = _mm256_add_ps(vacc0, vf6); vacc1 = _mm256_add_ps(vacc1, vf7); vacc2 = _mm256_add_ps(vacc2, vf8); vacc0 = _mm256_add_ps(vacc0, vf9); vacc1 = _mm256_add_ps(vacc1, vf10); vacc2 = _mm256_add_ps(vacc2, vf11); } vacc0 = _mm256_add_ps(vacc0, vacc1); vacc0 = _mm256_add_ps(vacc0, vacc2); __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vi = _mm256_loadu_ps(input); input += 8; const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); _mm256_storeu_ps(output, vf); output += 8; vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vi = _mm256_maskload_ps(input, vmask); const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
13,645
40.730887
120
c
XNNPACK
XNNPACK-master/src/f32-raddstoreexpminusmax/gen/f32-raddstoreexpminusmax-avx2-rr1-p5-x96-acc6.c
// Auto-generated file. Do not edit! // Template: src/f32-raddstoreexpminusmax/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddstoreexpminusmax.h> void xnn_f32_raddstoreexpminusmax_ukernel__avx2_rr1_p5_x96_acc6( size_t batch, const float* input, const float* max, float* output, float* sum, const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(max != NULL); assert(output != NULL); assert(sum != NULL); const __m256 vi_max = _mm256_broadcast_ss(max); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); __m256 vacc0 = _mm256_setzero_ps(); __m256 vacc1 = _mm256_setzero_ps(); __m256 vacc2 = _mm256_setzero_ps(); __m256 vacc3 = _mm256_setzero_ps(); __m256 vacc4 = _mm256_setzero_ps(); __m256 vacc5 = _mm256_setzero_ps(); for (; batch >= 96 * sizeof(float); batch -= 96 * sizeof(float)) { const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); const __m256 vi9 = _mm256_loadu_ps(input + 72); const __m256 vi10 = _mm256_loadu_ps(input + 80); const __m256 vi11 = _mm256_loadu_ps(input + 88); input += 96; const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); const __m256 vx9 = _mm256_sub_ps(vi9, vi_max); const __m256 vx10 = _mm256_sub_ps(vi10, vi_max); const __m256 vx11 = _mm256_sub_ps(vi11, vi_max); __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias); __m256 vn10 = _mm256_fmadd_ps(vx10, vlog2e, vmagic_bias); __m256 vn11 = _mm256_fmadd_ps(vx11, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23)); const __m256 vs10 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn10), 23)); const __m256 vs11 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn11), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); vn9 = _mm256_sub_ps(vn9, vmagic_bias); vn10 = _mm256_sub_ps(vn10, vmagic_bias); vn11 = _mm256_sub_ps(vn11, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2, vx9); __m256 vt10 = _mm256_fmadd_ps(vn10, vminus_ln2, vx10); __m256 vt11 = _mm256_fmadd_ps(vn11, vminus_ln2, vx11); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); __m256 vp10 = _mm256_fmadd_ps(vc5, vt10, vc4); __m256 vp11 = _mm256_fmadd_ps(vc5, vt11, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp10 = _mm256_fmadd_ps(vp10, vt10, vc3); vp11 = _mm256_fmadd_ps(vp11, vt11, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp10 = _mm256_fmadd_ps(vp10, vt10, vc2); vp11 = _mm256_fmadd_ps(vp11, vt11, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vp10 = _mm256_fmadd_ps(vp10, vt10, vc1); vp11 = _mm256_fmadd_ps(vp11, vt11, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); vt9 = _mm256_mul_ps(vt9, vs9); vt10 = _mm256_mul_ps(vt10, vs10); vt11 = _mm256_mul_ps(vt11, vs11); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9); __m256 vf10 = _mm256_fmadd_ps(vt10, vp10, vs10); __m256 vf11 = _mm256_fmadd_ps(vt11, vp11, vs11); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9); vf10 = _mm256_andnot_ps(_mm256_cmp_ps(vx10, vdenorm_cutoff, _CMP_LT_OS), vf10); vf11 = _mm256_andnot_ps(_mm256_cmp_ps(vx11, vdenorm_cutoff, _CMP_LT_OS), vf11); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); _mm256_storeu_ps(output + 72, vf9); _mm256_storeu_ps(output + 80, vf10); _mm256_storeu_ps(output + 88, vf11); output += 96; vacc0 = _mm256_add_ps(vacc0, vf0); vacc1 = _mm256_add_ps(vacc1, vf1); vacc2 = _mm256_add_ps(vacc2, vf2); vacc3 = _mm256_add_ps(vacc3, vf3); vacc4 = _mm256_add_ps(vacc4, vf4); vacc5 = _mm256_add_ps(vacc5, vf5); vacc0 = _mm256_add_ps(vacc0, vf6); vacc1 = _mm256_add_ps(vacc1, vf7); vacc2 = _mm256_add_ps(vacc2, vf8); vacc3 = _mm256_add_ps(vacc3, vf9); vacc4 = _mm256_add_ps(vacc4, vf10); vacc5 = _mm256_add_ps(vacc5, vf11); } vacc0 = _mm256_add_ps(vacc0, vacc1); vacc2 = _mm256_add_ps(vacc2, vacc3); vacc4 = _mm256_add_ps(vacc4, vacc5); vacc0 = _mm256_add_ps(vacc0, vacc2); vacc0 = _mm256_add_ps(vacc0, vacc4); __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vi = _mm256_loadu_ps(input); input += 8; const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); _mm256_storeu_ps(output, vf); output += 8; vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vi = _mm256_maskload_ps(input, vmask); const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
13,876
40.672673
120
c
XNNPACK
XNNPACK-master/src/f32-raddstoreexpminusmax/gen/f32-raddstoreexpminusmax-avx2-rr1-p5-x96.c
// Auto-generated file. Do not edit! // Template: src/f32-raddstoreexpminusmax/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/raddstoreexpminusmax.h> void xnn_f32_raddstoreexpminusmax_ukernel__avx2_rr1_p5_x96( size_t batch, const float* input, const float* max, float* output, float* sum, const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(max != NULL); assert(output != NULL); assert(sum != NULL); const __m256 vi_max = _mm256_broadcast_ss(max); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); __m256 vacc0 = _mm256_setzero_ps(); for (; batch >= 96 * sizeof(float); batch -= 96 * sizeof(float)) { const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); const __m256 vi9 = _mm256_loadu_ps(input + 72); const __m256 vi10 = _mm256_loadu_ps(input + 80); const __m256 vi11 = _mm256_loadu_ps(input + 88); input += 96; const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); const __m256 vx9 = _mm256_sub_ps(vi9, vi_max); const __m256 vx10 = _mm256_sub_ps(vi10, vi_max); const __m256 vx11 = _mm256_sub_ps(vi11, vi_max); __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias); __m256 vn10 = _mm256_fmadd_ps(vx10, vlog2e, vmagic_bias); __m256 vn11 = _mm256_fmadd_ps(vx11, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23)); const __m256 vs10 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn10), 23)); const __m256 vs11 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn11), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); vn9 = _mm256_sub_ps(vn9, vmagic_bias); vn10 = _mm256_sub_ps(vn10, vmagic_bias); vn11 = _mm256_sub_ps(vn11, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2, vx9); __m256 vt10 = _mm256_fmadd_ps(vn10, vminus_ln2, vx10); __m256 vt11 = _mm256_fmadd_ps(vn11, vminus_ln2, vx11); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); __m256 vp10 = _mm256_fmadd_ps(vc5, vt10, vc4); __m256 vp11 = _mm256_fmadd_ps(vc5, vt11, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp10 = _mm256_fmadd_ps(vp10, vt10, vc3); vp11 = _mm256_fmadd_ps(vp11, vt11, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp10 = _mm256_fmadd_ps(vp10, vt10, vc2); vp11 = _mm256_fmadd_ps(vp11, vt11, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vp10 = _mm256_fmadd_ps(vp10, vt10, vc1); vp11 = _mm256_fmadd_ps(vp11, vt11, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); vt9 = _mm256_mul_ps(vt9, vs9); vt10 = _mm256_mul_ps(vt10, vs10); vt11 = _mm256_mul_ps(vt11, vs11); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9); __m256 vf10 = _mm256_fmadd_ps(vt10, vp10, vs10); __m256 vf11 = _mm256_fmadd_ps(vt11, vp11, vs11); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9); vf10 = _mm256_andnot_ps(_mm256_cmp_ps(vx10, vdenorm_cutoff, _CMP_LT_OS), vf10); vf11 = _mm256_andnot_ps(_mm256_cmp_ps(vx11, vdenorm_cutoff, _CMP_LT_OS), vf11); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); _mm256_storeu_ps(output + 72, vf9); _mm256_storeu_ps(output + 80, vf10); _mm256_storeu_ps(output + 88, vf11); output += 96; vacc0 = _mm256_add_ps(vacc0, vf0); vacc0 = _mm256_add_ps(vacc0, vf1); vacc0 = _mm256_add_ps(vacc0, vf2); vacc0 = _mm256_add_ps(vacc0, vf3); vacc0 = _mm256_add_ps(vacc0, vf4); vacc0 = _mm256_add_ps(vacc0, vf5); vacc0 = _mm256_add_ps(vacc0, vf6); vacc0 = _mm256_add_ps(vacc0, vf7); vacc0 = _mm256_add_ps(vacc0, vf8); vacc0 = _mm256_add_ps(vacc0, vf9); vacc0 = _mm256_add_ps(vacc0, vf10); vacc0 = _mm256_add_ps(vacc0, vf11); } __m256 vacc = vacc0; for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vi = _mm256_loadu_ps(input); input += 8; const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); _mm256_storeu_ps(output, vf); output += 8; vacc = _mm256_add_ps(vacc, vf); } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vi = _mm256_maskload_ps(input, vmask); const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask))); } __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); _mm_store_ss(sum, vacc_lo); _mm256_zeroupper(); }
13,486
40.755418
120
c
XNNPACK
XNNPACK-master/src/f32-raddstoreexpminusmax/gen/f32-raddstoreexpminusmax-avx512f-rr1-p5-scalef-x128-acc2.c
// Auto-generated file. Do not edit! // Template: src/f32-raddstoreexpminusmax/avx512f-rr1-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddstoreexpminusmax.h> void xnn_f32_raddstoreexpminusmax_ukernel__avx512f_rr1_p5_scalef_x128_acc2( size_t batch, const float* input, const float* max, float* output, float* sum, const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(max != NULL); assert(output != NULL); assert(sum != NULL); const __m512 vi_max = _mm512_set1_ps(*max); const __m512 vlog2e = _mm512_set1_ps(params->avx512_rr1_p5.log2e); const __m512 vminus_ln2 = _mm512_set1_ps(params->avx512_rr1_p5.minus_ln2); const __m512 vc5 = _mm512_set1_ps(params->avx512_rr1_p5.c5); const __m512 vc4 = _mm512_set1_ps(params->avx512_rr1_p5.c4); const __m512 vc3 = _mm512_set1_ps(params->avx512_rr1_p5.c3); const __m512 vc2 = _mm512_set1_ps(params->avx512_rr1_p5.c2); const __m512 vc1 = _mm512_set1_ps(params->avx512_rr1_p5.c1); const __m512 vc0 = _mm512_set1_ps(params->avx512_rr1_p5.c0); __m512 vacc0 = _mm512_setzero_ps(); __m512 vacc1 = _mm512_setzero_ps(); for (; batch >= 128 * sizeof(float); batch -= 128 * sizeof(float)) { const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); input += 128; const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2, vx0); const __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2, vx1); const __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2, vx2); const __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2, vx3); const __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2, vx4); const __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2, vx5); const __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2, vx6); const __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2, vx7); __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); const __m512 vf0 = _mm512_scalef_ps(vp0, vn0); const __m512 vf1 = _mm512_scalef_ps(vp1, vn1); const __m512 vf2 = _mm512_scalef_ps(vp2, vn2); const __m512 vf3 = _mm512_scalef_ps(vp3, vn3); const __m512 vf4 = _mm512_scalef_ps(vp4, vn4); const __m512 vf5 = _mm512_scalef_ps(vp5, vn5); const __m512 vf6 = _mm512_scalef_ps(vp6, vn6); const __m512 vf7 = _mm512_scalef_ps(vp7, vn7); _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); _mm512_storeu_ps(output + 64, vf4); _mm512_storeu_ps(output + 80, vf5); _mm512_storeu_ps(output + 96, vf6); _mm512_storeu_ps(output + 112, vf7); output += 128; vacc0 = _mm512_add_ps(vacc0, vf0); vacc1 = _mm512_add_ps(vacc1, vf1); vacc0 = _mm512_add_ps(vacc0, vf2); vacc1 = _mm512_add_ps(vacc1, vf3); vacc0 = _mm512_add_ps(vacc0, vf4); vacc1 = _mm512_add_ps(vacc1, vf5); vacc0 = _mm512_add_ps(vacc0, vf6); vacc1 = _mm512_add_ps(vacc1, vf7); } vacc0 = _mm512_add_ps(vacc0, vacc1); __m512 vacc = vacc0; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { const __m512 vi = _mm512_loadu_ps(input); input += 16; const __m512 vx = _mm512_sub_ps(vi, vi_max); const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); const __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2, vx); __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); const __m512 vf = _mm512_scalef_ps(vp, vn); _mm512_storeu_ps(output, vf); output += 16; vacc = _mm512_add_ps(vacc, vf); } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); const __m512 vi = _mm512_maskz_loadu_ps(vmask, input); const __m512 vx = _mm512_sub_ps(vi, vi_max); const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); const __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2, vx); __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); const __m512 vf = _mm512_scalef_ps(vp, vn); _mm512_mask_storeu_ps(output, vmask, vf); vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf); } *sum = _mm512_reduce_add_ps(vacc); }
7,909
36.84689
105
c
XNNPACK
XNNPACK-master/src/f32-raddstoreexpminusmax/gen/f32-raddstoreexpminusmax-avx512f-rr1-p5-scalef-x128-acc4.c
// Auto-generated file. Do not edit! // Template: src/f32-raddstoreexpminusmax/avx512f-rr1-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddstoreexpminusmax.h> void xnn_f32_raddstoreexpminusmax_ukernel__avx512f_rr1_p5_scalef_x128_acc4( size_t batch, const float* input, const float* max, float* output, float* sum, const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(max != NULL); assert(output != NULL); assert(sum != NULL); const __m512 vi_max = _mm512_set1_ps(*max); const __m512 vlog2e = _mm512_set1_ps(params->avx512_rr1_p5.log2e); const __m512 vminus_ln2 = _mm512_set1_ps(params->avx512_rr1_p5.minus_ln2); const __m512 vc5 = _mm512_set1_ps(params->avx512_rr1_p5.c5); const __m512 vc4 = _mm512_set1_ps(params->avx512_rr1_p5.c4); const __m512 vc3 = _mm512_set1_ps(params->avx512_rr1_p5.c3); const __m512 vc2 = _mm512_set1_ps(params->avx512_rr1_p5.c2); const __m512 vc1 = _mm512_set1_ps(params->avx512_rr1_p5.c1); const __m512 vc0 = _mm512_set1_ps(params->avx512_rr1_p5.c0); __m512 vacc0 = _mm512_setzero_ps(); __m512 vacc1 = _mm512_setzero_ps(); __m512 vacc2 = _mm512_setzero_ps(); __m512 vacc3 = _mm512_setzero_ps(); for (; batch >= 128 * sizeof(float); batch -= 128 * sizeof(float)) { const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); input += 128; const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2, vx0); const __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2, vx1); const __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2, vx2); const __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2, vx3); const __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2, vx4); const __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2, vx5); const __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2, vx6); const __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2, vx7); __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); const __m512 vf0 = _mm512_scalef_ps(vp0, vn0); const __m512 vf1 = _mm512_scalef_ps(vp1, vn1); const __m512 vf2 = _mm512_scalef_ps(vp2, vn2); const __m512 vf3 = _mm512_scalef_ps(vp3, vn3); const __m512 vf4 = _mm512_scalef_ps(vp4, vn4); const __m512 vf5 = _mm512_scalef_ps(vp5, vn5); const __m512 vf6 = _mm512_scalef_ps(vp6, vn6); const __m512 vf7 = _mm512_scalef_ps(vp7, vn7); _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); _mm512_storeu_ps(output + 64, vf4); _mm512_storeu_ps(output + 80, vf5); _mm512_storeu_ps(output + 96, vf6); _mm512_storeu_ps(output + 112, vf7); output += 128; vacc0 = _mm512_add_ps(vacc0, vf0); vacc1 = _mm512_add_ps(vacc1, vf1); vacc2 = _mm512_add_ps(vacc2, vf2); vacc3 = _mm512_add_ps(vacc3, vf3); vacc0 = _mm512_add_ps(vacc0, vf4); vacc1 = _mm512_add_ps(vacc1, vf5); vacc2 = _mm512_add_ps(vacc2, vf6); vacc3 = _mm512_add_ps(vacc3, vf7); } vacc0 = _mm512_add_ps(vacc0, vacc1); vacc2 = _mm512_add_ps(vacc2, vacc3); vacc0 = _mm512_add_ps(vacc0, vacc2); __m512 vacc = vacc0; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { const __m512 vi = _mm512_loadu_ps(input); input += 16; const __m512 vx = _mm512_sub_ps(vi, vi_max); const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); const __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2, vx); __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); const __m512 vf = _mm512_scalef_ps(vp, vn); _mm512_storeu_ps(output, vf); output += 16; vacc = _mm512_add_ps(vacc, vf); } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); const __m512 vi = _mm512_maskz_loadu_ps(vmask, input); const __m512 vx = _mm512_sub_ps(vi, vi_max); const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); const __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2, vx); __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); const __m512 vf = _mm512_scalef_ps(vp, vn); _mm512_mask_storeu_ps(output, vmask, vf); vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf); } *sum = _mm512_reduce_add_ps(vacc); }
8,063
36.859155
105
c
XNNPACK
XNNPACK-master/src/f32-raddstoreexpminusmax/gen/f32-raddstoreexpminusmax-avx512f-rr1-p5-scalef-x128.c
// Auto-generated file. Do not edit! // Template: src/f32-raddstoreexpminusmax/avx512f-rr1-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddstoreexpminusmax.h> void xnn_f32_raddstoreexpminusmax_ukernel__avx512f_rr1_p5_scalef_x128( size_t batch, const float* input, const float* max, float* output, float* sum, const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(max != NULL); assert(output != NULL); assert(sum != NULL); const __m512 vi_max = _mm512_set1_ps(*max); const __m512 vlog2e = _mm512_set1_ps(params->avx512_rr1_p5.log2e); const __m512 vminus_ln2 = _mm512_set1_ps(params->avx512_rr1_p5.minus_ln2); const __m512 vc5 = _mm512_set1_ps(params->avx512_rr1_p5.c5); const __m512 vc4 = _mm512_set1_ps(params->avx512_rr1_p5.c4); const __m512 vc3 = _mm512_set1_ps(params->avx512_rr1_p5.c3); const __m512 vc2 = _mm512_set1_ps(params->avx512_rr1_p5.c2); const __m512 vc1 = _mm512_set1_ps(params->avx512_rr1_p5.c1); const __m512 vc0 = _mm512_set1_ps(params->avx512_rr1_p5.c0); __m512 vacc0 = _mm512_setzero_ps(); for (; batch >= 128 * sizeof(float); batch -= 128 * sizeof(float)) { const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); input += 128; const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2, vx0); const __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2, vx1); const __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2, vx2); const __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2, vx3); const __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2, vx4); const __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2, vx5); const __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2, vx6); const __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2, vx7); __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); const __m512 vf0 = _mm512_scalef_ps(vp0, vn0); const __m512 vf1 = _mm512_scalef_ps(vp1, vn1); const __m512 vf2 = _mm512_scalef_ps(vp2, vn2); const __m512 vf3 = _mm512_scalef_ps(vp3, vn3); const __m512 vf4 = _mm512_scalef_ps(vp4, vn4); const __m512 vf5 = _mm512_scalef_ps(vp5, vn5); const __m512 vf6 = _mm512_scalef_ps(vp6, vn6); const __m512 vf7 = _mm512_scalef_ps(vp7, vn7); _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); _mm512_storeu_ps(output + 64, vf4); _mm512_storeu_ps(output + 80, vf5); _mm512_storeu_ps(output + 96, vf6); _mm512_storeu_ps(output + 112, vf7); output += 128; vacc0 = _mm512_add_ps(vacc0, vf0); vacc0 = _mm512_add_ps(vacc0, vf1); vacc0 = _mm512_add_ps(vacc0, vf2); vacc0 = _mm512_add_ps(vacc0, vf3); vacc0 = _mm512_add_ps(vacc0, vf4); vacc0 = _mm512_add_ps(vacc0, vf5); vacc0 = _mm512_add_ps(vacc0, vf6); vacc0 = _mm512_add_ps(vacc0, vf7); } __m512 vacc = vacc0; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { const __m512 vi = _mm512_loadu_ps(input); input += 16; const __m512 vx = _mm512_sub_ps(vi, vi_max); const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); const __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2, vx); __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); const __m512 vf = _mm512_scalef_ps(vp, vn); _mm512_storeu_ps(output, vf); output += 16; vacc = _mm512_add_ps(vacc, vf); } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); const __m512 vi = _mm512_maskz_loadu_ps(vmask, input); const __m512 vx = _mm512_sub_ps(vi, vi_max); const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); const __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2, vx); __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); const __m512 vf = _mm512_scalef_ps(vp, vn); _mm512_mask_storeu_ps(output, vmask, vf); vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf); } *sum = _mm512_reduce_add_ps(vacc); }
7,827
36.816425
105
c
XNNPACK
XNNPACK-master/src/f32-raddstoreexpminusmax/gen/f32-raddstoreexpminusmax-avx512f-rr1-p5-scalef-x144-acc3.c
// Auto-generated file. Do not edit! // Template: src/f32-raddstoreexpminusmax/avx512f-rr1-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/raddstoreexpminusmax.h> void xnn_f32_raddstoreexpminusmax_ukernel__avx512f_rr1_p5_scalef_x144_acc3( size_t batch, const float* input, const float* max, float* output, float* sum, const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(max != NULL); assert(output != NULL); assert(sum != NULL); const __m512 vi_max = _mm512_set1_ps(*max); const __m512 vlog2e = _mm512_set1_ps(params->avx512_rr1_p5.log2e); const __m512 vminus_ln2 = _mm512_set1_ps(params->avx512_rr1_p5.minus_ln2); const __m512 vc5 = _mm512_set1_ps(params->avx512_rr1_p5.c5); const __m512 vc4 = _mm512_set1_ps(params->avx512_rr1_p5.c4); const __m512 vc3 = _mm512_set1_ps(params->avx512_rr1_p5.c3); const __m512 vc2 = _mm512_set1_ps(params->avx512_rr1_p5.c2); const __m512 vc1 = _mm512_set1_ps(params->avx512_rr1_p5.c1); const __m512 vc0 = _mm512_set1_ps(params->avx512_rr1_p5.c0); __m512 vacc0 = _mm512_setzero_ps(); __m512 vacc1 = _mm512_setzero_ps(); __m512 vacc2 = _mm512_setzero_ps(); for (; batch >= 144 * sizeof(float); batch -= 144 * sizeof(float)) { const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); const __m512 vi8 = _mm512_loadu_ps(input + 128); input += 144; const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); const __m512 vx8 = _mm512_sub_ps(vi8, vi_max); const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); const __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2, vx0); const __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2, vx1); const __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2, vx2); const __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2, vx3); const __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2, vx4); const __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2, vx5); const __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2, vx6); const __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2, vx7); const __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2, vx8); __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); const __m512 vf0 = _mm512_scalef_ps(vp0, vn0); const __m512 vf1 = _mm512_scalef_ps(vp1, vn1); const __m512 vf2 = _mm512_scalef_ps(vp2, vn2); const __m512 vf3 = _mm512_scalef_ps(vp3, vn3); const __m512 vf4 = _mm512_scalef_ps(vp4, vn4); const __m512 vf5 = _mm512_scalef_ps(vp5, vn5); const __m512 vf6 = _mm512_scalef_ps(vp6, vn6); const __m512 vf7 = _mm512_scalef_ps(vp7, vn7); const __m512 vf8 = _mm512_scalef_ps(vp8, vn8); _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); _mm512_storeu_ps(output + 64, vf4); _mm512_storeu_ps(output + 80, vf5); _mm512_storeu_ps(output + 96, vf6); _mm512_storeu_ps(output + 112, vf7); _mm512_storeu_ps(output + 128, vf8); output += 144; vacc0 = _mm512_add_ps(vacc0, vf0); vacc1 = _mm512_add_ps(vacc1, vf1); vacc2 = _mm512_add_ps(vacc2, vf2); vacc0 = _mm512_add_ps(vacc0, vf3); vacc1 = _mm512_add_ps(vacc1, vf4); vacc2 = _mm512_add_ps(vacc2, vf5); vacc0 = _mm512_add_ps(vacc0, vf6); vacc1 = _mm512_add_ps(vacc1, vf7); vacc2 = _mm512_add_ps(vacc2, vf8); } vacc0 = _mm512_add_ps(vacc0, vacc1); vacc0 = _mm512_add_ps(vacc0, vacc2); __m512 vacc = vacc0; for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { const __m512 vi = _mm512_loadu_ps(input); input += 16; const __m512 vx = _mm512_sub_ps(vi, vi_max); const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); const __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2, vx); __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); const __m512 vf = _mm512_scalef_ps(vp, vn); _mm512_storeu_ps(output, vf); output += 16; vacc = _mm512_add_ps(vacc, vf); } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); const __m512 vi = _mm512_maskz_loadu_ps(vmask, input); const __m512 vx = _mm512_sub_ps(vi, vi_max); const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); const __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2, vx); __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); const __m512 vf = _mm512_scalef_ps(vp, vn); _mm512_mask_storeu_ps(output, vmask, vf); vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf); } *sum = _mm512_reduce_add_ps(vacc); }
8,576
37.461883
105
c