repo
stringlengths 1
152
⌀ | file
stringlengths 14
221
| code
stringlengths 501
25k
| file_length
int64 501
25k
| avg_line_length
float64 20
99.5
| max_line_length
int64 21
134
| extension_type
stringclasses 2
values |
---|---|---|---|---|---|---|
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/src/rtree.c | #define JEMALLOC_RTREE_C_
#include "jemalloc/internal/jemalloc_internal.h"
static unsigned
hmin(unsigned ha, unsigned hb)
{
return (ha < hb ? ha : hb);
}
/* Only the most significant bits of keys passed to rtree_[gs]et() are used. */
bool
rtree_new(rtree_t *rtree, unsigned bits, rtree_node_alloc_t *alloc,
rtree_node_dalloc_t *dalloc)
{
unsigned bits_in_leaf, height, i;
assert(RTREE_HEIGHT_MAX == ((ZU(1) << (LG_SIZEOF_PTR+3)) /
RTREE_BITS_PER_LEVEL));
assert(bits > 0 && bits <= (sizeof(uintptr_t) << 3));
bits_in_leaf = (bits % RTREE_BITS_PER_LEVEL) == 0 ? RTREE_BITS_PER_LEVEL
: (bits % RTREE_BITS_PER_LEVEL);
if (bits > bits_in_leaf) {
height = 1 + (bits - bits_in_leaf) / RTREE_BITS_PER_LEVEL;
if ((height-1) * RTREE_BITS_PER_LEVEL + bits_in_leaf != bits)
height++;
} else
height = 1;
assert((height-1) * RTREE_BITS_PER_LEVEL + bits_in_leaf == bits);
rtree->alloc = alloc;
rtree->dalloc = dalloc;
rtree->height = height;
/* Root level. */
rtree->levels[0].subtree = NULL;
rtree->levels[0].bits = (height > 1) ? RTREE_BITS_PER_LEVEL :
bits_in_leaf;
rtree->levels[0].cumbits = rtree->levels[0].bits;
/* Interior levels. */
for (i = 1; i < height-1; i++) {
rtree->levels[i].subtree = NULL;
rtree->levels[i].bits = RTREE_BITS_PER_LEVEL;
rtree->levels[i].cumbits = rtree->levels[i-1].cumbits +
RTREE_BITS_PER_LEVEL;
}
/* Leaf level. */
if (height > 1) {
rtree->levels[height-1].subtree = NULL;
rtree->levels[height-1].bits = bits_in_leaf;
rtree->levels[height-1].cumbits = bits;
}
/* Compute lookup table to be used by rtree_start_level(). */
for (i = 0; i < RTREE_HEIGHT_MAX; i++) {
rtree->start_level[i] = hmin(RTREE_HEIGHT_MAX - 1 - i, height -
1);
}
return (false);
}
static void
rtree_delete_subtree(rtree_t *rtree, rtree_node_elm_t *node, unsigned level)
{
if (level + 1 < rtree->height) {
size_t nchildren, i;
nchildren = ZU(1) << rtree->levels[level].bits;
for (i = 0; i < nchildren; i++) {
rtree_node_elm_t *child = node[i].child;
if (child != NULL)
rtree_delete_subtree(rtree, child, level + 1);
}
}
rtree->dalloc(node);
}
void
rtree_delete(rtree_t *rtree)
{
unsigned i;
for (i = 0; i < rtree->height; i++) {
rtree_node_elm_t *subtree = rtree->levels[i].subtree;
if (subtree != NULL)
rtree_delete_subtree(rtree, subtree, i);
}
}
static rtree_node_elm_t *
rtree_node_init(rtree_t *rtree, unsigned level, rtree_node_elm_t **elmp)
{
rtree_node_elm_t *node;
if (atomic_cas_p((void **)elmp, NULL, RTREE_NODE_INITIALIZING)) {
spin_t spinner;
/*
* Another thread is already in the process of initializing.
* Spin-wait until initialization is complete.
*/
spin_init(&spinner);
do {
spin_adaptive(&spinner);
node = atomic_read_p((void **)elmp);
} while (node == RTREE_NODE_INITIALIZING);
} else {
node = rtree->alloc(ZU(1) << rtree->levels[level].bits);
if (node == NULL)
return (NULL);
atomic_write_p((void **)elmp, node);
}
return (node);
}
rtree_node_elm_t *
rtree_subtree_read_hard(rtree_t *rtree, unsigned level)
{
return (rtree_node_init(rtree, level, &rtree->levels[level].subtree));
}
rtree_node_elm_t *
rtree_child_read_hard(rtree_t *rtree, rtree_node_elm_t *elm, unsigned level)
{
return (rtree_node_init(rtree, level+1, &elm->child));
}
| 3,324 | 24 | 79 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/src/huge.c | #define JEMALLOC_HUGE_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
static extent_node_t *
huge_node_get(const void *ptr)
{
extent_node_t *node;
node = chunk_lookup(ptr, true);
assert(!extent_node_achunk_get(node));
return (node);
}
static bool
huge_node_set(tsdn_t *tsdn, const void *ptr, extent_node_t *node)
{
assert(extent_node_addr_get(node) == ptr);
assert(!extent_node_achunk_get(node));
return (chunk_register(tsdn, ptr, node));
}
static void
huge_node_reset(tsdn_t *tsdn, const void *ptr, extent_node_t *node)
{
bool err;
err = huge_node_set(tsdn, ptr, node);
assert(!err);
}
static void
huge_node_unset(const void *ptr, const extent_node_t *node)
{
chunk_deregister(ptr, node);
}
void *
huge_malloc(tsdn_t *tsdn, arena_t *arena, size_t usize, bool zero)
{
assert(usize == s2u(usize));
return (huge_palloc(tsdn, arena, usize, chunksize, zero));
}
void *
huge_palloc(tsdn_t *tsdn, arena_t *arena, size_t usize, size_t alignment,
bool zero)
{
void *ret;
size_t ausize;
arena_t *iarena;
extent_node_t *node;
size_t sn;
bool is_zeroed;
/* Allocate one or more contiguous chunks for this request. */
assert(!tsdn_null(tsdn) || arena != NULL);
ausize = sa2u(usize, alignment);
if (unlikely(ausize == 0 || ausize > HUGE_MAXCLASS))
return (NULL);
assert(ausize >= chunksize);
/* Allocate an extent node with which to track the chunk. */
iarena = (!tsdn_null(tsdn)) ? arena_ichoose(tsdn_tsd(tsdn), NULL) :
a0get();
node = ipallocztm(tsdn, CACHELINE_CEILING(sizeof(extent_node_t)),
CACHELINE, false, NULL, true, iarena);
if (node == NULL)
return (NULL);
/*
* Copy zero into is_zeroed and pass the copy to chunk_alloc(), so that
* it is possible to make correct junk/zero fill decisions below.
*/
is_zeroed = zero;
if (likely(!tsdn_null(tsdn)))
arena = arena_choose(tsdn_tsd(tsdn), arena);
if (unlikely(arena == NULL) || (ret = arena_chunk_alloc_huge(tsdn,
arena, usize, alignment, &sn, &is_zeroed)) == NULL) {
idalloctm(tsdn, node, NULL, true, true);
return (NULL);
}
extent_node_init(node, arena, ret, usize, sn, is_zeroed, true);
if (huge_node_set(tsdn, ret, node)) {
arena_chunk_dalloc_huge(tsdn, arena, ret, usize, sn);
idalloctm(tsdn, node, NULL, true, true);
return (NULL);
}
/* Insert node into huge. */
malloc_mutex_lock(tsdn, &arena->huge_mtx);
ql_elm_new(node, ql_link);
ql_tail_insert(&arena->huge, node, ql_link);
malloc_mutex_unlock(tsdn, &arena->huge_mtx);
if (zero || (config_fill && unlikely(opt_zero))) {
if (!is_zeroed)
memset(ret, 0, usize);
} else if (config_fill && unlikely(opt_junk_alloc))
memset(ret, JEMALLOC_ALLOC_JUNK, usize);
arena_decay_tick(tsdn, arena);
return (ret);
}
#ifdef JEMALLOC_JET
#undef huge_dalloc_junk
#define huge_dalloc_junk JEMALLOC_N(huge_dalloc_junk_impl)
#endif
static void
huge_dalloc_junk(void *ptr, size_t usize)
{
if (config_fill && have_dss && unlikely(opt_junk_free)) {
/*
* Only bother junk filling if the chunk isn't about to be
* unmapped.
*/
if (!config_munmap || (have_dss && chunk_in_dss(ptr)))
memset(ptr, JEMALLOC_FREE_JUNK, usize);
}
}
#ifdef JEMALLOC_JET
#undef huge_dalloc_junk
#define huge_dalloc_junk JEMALLOC_N(huge_dalloc_junk)
huge_dalloc_junk_t *huge_dalloc_junk = JEMALLOC_N(huge_dalloc_junk_impl);
#endif
static void
huge_ralloc_no_move_similar(tsdn_t *tsdn, void *ptr, size_t oldsize,
size_t usize_min, size_t usize_max, bool zero)
{
size_t usize, usize_next;
extent_node_t *node;
arena_t *arena;
chunk_hooks_t chunk_hooks = CHUNK_HOOKS_INITIALIZER;
bool pre_zeroed, post_zeroed;
/* Increase usize to incorporate extra. */
for (usize = usize_min; usize < usize_max && (usize_next = s2u(usize+1))
<= oldsize; usize = usize_next)
; /* Do nothing. */
if (oldsize == usize)
return;
node = huge_node_get(ptr);
arena = extent_node_arena_get(node);
pre_zeroed = extent_node_zeroed_get(node);
/* Fill if necessary (shrinking). */
if (oldsize > usize) {
size_t sdiff = oldsize - usize;
if (config_fill && unlikely(opt_junk_free)) {
memset((void *)((uintptr_t)ptr + usize),
JEMALLOC_FREE_JUNK, sdiff);
post_zeroed = false;
} else {
post_zeroed = !chunk_purge_wrapper(tsdn, arena,
&chunk_hooks, ptr, CHUNK_CEILING(oldsize), usize,
sdiff);
}
} else
post_zeroed = pre_zeroed;
malloc_mutex_lock(tsdn, &arena->huge_mtx);
/* Update the size of the huge allocation. */
huge_node_unset(ptr, node);
assert(extent_node_size_get(node) != usize);
extent_node_size_set(node, usize);
huge_node_reset(tsdn, ptr, node);
/* Update zeroed. */
extent_node_zeroed_set(node, post_zeroed);
malloc_mutex_unlock(tsdn, &arena->huge_mtx);
arena_chunk_ralloc_huge_similar(tsdn, arena, ptr, oldsize, usize);
/* Fill if necessary (growing). */
if (oldsize < usize) {
if (zero || (config_fill && unlikely(opt_zero))) {
if (!pre_zeroed) {
memset((void *)((uintptr_t)ptr + oldsize), 0,
usize - oldsize);
}
} else if (config_fill && unlikely(opt_junk_alloc)) {
memset((void *)((uintptr_t)ptr + oldsize),
JEMALLOC_ALLOC_JUNK, usize - oldsize);
}
}
}
static bool
huge_ralloc_no_move_shrink(tsdn_t *tsdn, void *ptr, size_t oldsize,
size_t usize)
{
extent_node_t *node;
arena_t *arena;
chunk_hooks_t chunk_hooks;
size_t cdiff;
bool pre_zeroed, post_zeroed;
node = huge_node_get(ptr);
arena = extent_node_arena_get(node);
pre_zeroed = extent_node_zeroed_get(node);
chunk_hooks = chunk_hooks_get(tsdn, arena);
assert(oldsize > usize);
/* Split excess chunks. */
cdiff = CHUNK_CEILING(oldsize) - CHUNK_CEILING(usize);
if (cdiff != 0 && chunk_hooks.split(ptr, CHUNK_CEILING(oldsize),
CHUNK_CEILING(usize), cdiff, true, arena->ind))
return (true);
if (oldsize > usize) {
size_t sdiff = oldsize - usize;
if (config_fill && unlikely(opt_junk_free)) {
huge_dalloc_junk((void *)((uintptr_t)ptr + usize),
sdiff);
post_zeroed = false;
} else {
post_zeroed = !chunk_purge_wrapper(tsdn, arena,
&chunk_hooks, CHUNK_ADDR2BASE((uintptr_t)ptr +
usize), CHUNK_CEILING(oldsize),
CHUNK_ADDR2OFFSET((uintptr_t)ptr + usize), sdiff);
}
} else
post_zeroed = pre_zeroed;
malloc_mutex_lock(tsdn, &arena->huge_mtx);
/* Update the size of the huge allocation. */
huge_node_unset(ptr, node);
extent_node_size_set(node, usize);
huge_node_reset(tsdn, ptr, node);
/* Update zeroed. */
extent_node_zeroed_set(node, post_zeroed);
malloc_mutex_unlock(tsdn, &arena->huge_mtx);
/* Zap the excess chunks. */
arena_chunk_ralloc_huge_shrink(tsdn, arena, ptr, oldsize, usize,
extent_node_sn_get(node));
return (false);
}
static bool
huge_ralloc_no_move_expand(tsdn_t *tsdn, void *ptr, size_t oldsize,
size_t usize, bool zero) {
extent_node_t *node;
arena_t *arena;
bool is_zeroed_subchunk, is_zeroed_chunk;
node = huge_node_get(ptr);
arena = extent_node_arena_get(node);
malloc_mutex_lock(tsdn, &arena->huge_mtx);
is_zeroed_subchunk = extent_node_zeroed_get(node);
malloc_mutex_unlock(tsdn, &arena->huge_mtx);
/*
* Use is_zeroed_chunk to detect whether the trailing memory is zeroed,
* update extent's zeroed field, and zero as necessary.
*/
is_zeroed_chunk = false;
if (arena_chunk_ralloc_huge_expand(tsdn, arena, ptr, oldsize, usize,
&is_zeroed_chunk))
return (true);
malloc_mutex_lock(tsdn, &arena->huge_mtx);
huge_node_unset(ptr, node);
extent_node_size_set(node, usize);
extent_node_zeroed_set(node, extent_node_zeroed_get(node) &&
is_zeroed_chunk);
huge_node_reset(tsdn, ptr, node);
malloc_mutex_unlock(tsdn, &arena->huge_mtx);
if (zero || (config_fill && unlikely(opt_zero))) {
if (!is_zeroed_subchunk) {
memset((void *)((uintptr_t)ptr + oldsize), 0,
CHUNK_CEILING(oldsize) - oldsize);
}
if (!is_zeroed_chunk) {
memset((void *)((uintptr_t)ptr +
CHUNK_CEILING(oldsize)), 0, usize -
CHUNK_CEILING(oldsize));
}
} else if (config_fill && unlikely(opt_junk_alloc)) {
memset((void *)((uintptr_t)ptr + oldsize), JEMALLOC_ALLOC_JUNK,
usize - oldsize);
}
return (false);
}
bool
huge_ralloc_no_move(tsdn_t *tsdn, void *ptr, size_t oldsize, size_t usize_min,
size_t usize_max, bool zero)
{
assert(s2u(oldsize) == oldsize);
/* The following should have been caught by callers. */
assert(usize_min > 0 && usize_max <= HUGE_MAXCLASS);
/* Both allocations must be huge to avoid a move. */
if (oldsize < chunksize || usize_max < chunksize)
return (true);
if (CHUNK_CEILING(usize_max) > CHUNK_CEILING(oldsize)) {
/* Attempt to expand the allocation in-place. */
if (!huge_ralloc_no_move_expand(tsdn, ptr, oldsize, usize_max,
zero)) {
arena_decay_tick(tsdn, huge_aalloc(ptr));
return (false);
}
/* Try again, this time with usize_min. */
if (usize_min < usize_max && CHUNK_CEILING(usize_min) >
CHUNK_CEILING(oldsize) && huge_ralloc_no_move_expand(tsdn,
ptr, oldsize, usize_min, zero)) {
arena_decay_tick(tsdn, huge_aalloc(ptr));
return (false);
}
}
/*
* Avoid moving the allocation if the existing chunk size accommodates
* the new size.
*/
if (CHUNK_CEILING(oldsize) >= CHUNK_CEILING(usize_min)
&& CHUNK_CEILING(oldsize) <= CHUNK_CEILING(usize_max)) {
huge_ralloc_no_move_similar(tsdn, ptr, oldsize, usize_min,
usize_max, zero);
arena_decay_tick(tsdn, huge_aalloc(ptr));
return (false);
}
/* Attempt to shrink the allocation in-place. */
if (CHUNK_CEILING(oldsize) > CHUNK_CEILING(usize_max)) {
if (!huge_ralloc_no_move_shrink(tsdn, ptr, oldsize,
usize_max)) {
arena_decay_tick(tsdn, huge_aalloc(ptr));
return (false);
}
}
return (true);
}
static void *
huge_ralloc_move_helper(tsdn_t *tsdn, arena_t *arena, size_t usize,
size_t alignment, bool zero)
{
if (alignment <= chunksize)
return (huge_malloc(tsdn, arena, usize, zero));
return (huge_palloc(tsdn, arena, usize, alignment, zero));
}
void *
huge_ralloc(tsd_t *tsd, arena_t *arena, void *ptr, size_t oldsize,
size_t usize, size_t alignment, bool zero, tcache_t *tcache)
{
void *ret;
size_t copysize;
/* The following should have been caught by callers. */
assert(usize > 0 && usize <= HUGE_MAXCLASS);
/* Try to avoid moving the allocation. */
if (!huge_ralloc_no_move(tsd_tsdn(tsd), ptr, oldsize, usize, usize,
zero))
return (ptr);
/*
* usize and oldsize are different enough that we need to use a
* different size class. In that case, fall back to allocating new
* space and copying.
*/
ret = huge_ralloc_move_helper(tsd_tsdn(tsd), arena, usize, alignment,
zero);
if (ret == NULL)
return (NULL);
copysize = (usize < oldsize) ? usize : oldsize;
memcpy(ret, ptr, copysize);
isqalloc(tsd, ptr, oldsize, tcache, true);
return (ret);
}
void
huge_dalloc(tsdn_t *tsdn, void *ptr)
{
extent_node_t *node;
arena_t *arena;
node = huge_node_get(ptr);
arena = extent_node_arena_get(node);
huge_node_unset(ptr, node);
malloc_mutex_lock(tsdn, &arena->huge_mtx);
ql_remove(&arena->huge, node, ql_link);
malloc_mutex_unlock(tsdn, &arena->huge_mtx);
huge_dalloc_junk(extent_node_addr_get(node),
extent_node_size_get(node));
arena_chunk_dalloc_huge(tsdn, extent_node_arena_get(node),
extent_node_addr_get(node), extent_node_size_get(node),
extent_node_sn_get(node));
idalloctm(tsdn, node, NULL, true, true);
arena_decay_tick(tsdn, arena);
}
arena_t *
huge_aalloc(const void *ptr)
{
return (extent_node_arena_get(huge_node_get(ptr)));
}
size_t
huge_salloc(tsdn_t *tsdn, const void *ptr)
{
size_t size;
extent_node_t *node;
arena_t *arena;
node = huge_node_get(ptr);
arena = extent_node_arena_get(node);
malloc_mutex_lock(tsdn, &arena->huge_mtx);
size = extent_node_size_get(node);
malloc_mutex_unlock(tsdn, &arena->huge_mtx);
return (size);
}
prof_tctx_t *
huge_prof_tctx_get(tsdn_t *tsdn, const void *ptr)
{
prof_tctx_t *tctx;
extent_node_t *node;
arena_t *arena;
node = huge_node_get(ptr);
arena = extent_node_arena_get(node);
malloc_mutex_lock(tsdn, &arena->huge_mtx);
tctx = extent_node_prof_tctx_get(node);
malloc_mutex_unlock(tsdn, &arena->huge_mtx);
return (tctx);
}
void
huge_prof_tctx_set(tsdn_t *tsdn, const void *ptr, prof_tctx_t *tctx)
{
extent_node_t *node;
arena_t *arena;
node = huge_node_get(ptr);
arena = extent_node_arena_get(node);
malloc_mutex_lock(tsdn, &arena->huge_mtx);
extent_node_prof_tctx_set(node, tctx);
malloc_mutex_unlock(tsdn, &arena->huge_mtx);
}
void
huge_prof_tctx_reset(tsdn_t *tsdn, const void *ptr)
{
huge_prof_tctx_set(tsdn, ptr, (prof_tctx_t *)(uintptr_t)1U);
}
| 12,682 | 25.533473 | 80 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/src/tcache.c | #define JEMALLOC_TCACHE_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Data. */
bool opt_tcache = true;
ssize_t opt_lg_tcache_max = LG_TCACHE_MAXCLASS_DEFAULT;
tcache_bin_info_t *tcache_bin_info;
static unsigned stack_nelms; /* Total stack elms per tcache. */
unsigned nhbins;
size_t tcache_maxclass;
tcaches_t *tcaches;
/* Index of first element within tcaches that has never been used. */
static unsigned tcaches_past;
/* Head of singly linked list tracking available tcaches elements. */
static tcaches_t *tcaches_avail;
/******************************************************************************/
size_t
tcache_salloc(tsdn_t *tsdn, const void *ptr)
{
return (arena_salloc(tsdn, ptr, false));
}
void
tcache_event_hard(tsd_t *tsd, tcache_t *tcache)
{
szind_t binind = tcache->next_gc_bin;
tcache_bin_t *tbin = &tcache->tbins[binind];
tcache_bin_info_t *tbin_info = &tcache_bin_info[binind];
if (tbin->low_water > 0) {
/*
* Flush (ceiling) 3/4 of the objects below the low water mark.
*/
if (binind < NBINS) {
tcache_bin_flush_small(tsd, tcache, tbin, binind,
tbin->ncached - tbin->low_water + (tbin->low_water
>> 2));
} else {
tcache_bin_flush_large(tsd, tbin, binind, tbin->ncached
- tbin->low_water + (tbin->low_water >> 2), tcache);
}
/*
* Reduce fill count by 2X. Limit lg_fill_div such that the
* fill count is always at least 1.
*/
if ((tbin_info->ncached_max >> (tbin->lg_fill_div+1)) >= 1)
tbin->lg_fill_div++;
} else if (tbin->low_water < 0) {
/*
* Increase fill count by 2X. Make sure lg_fill_div stays
* greater than 0.
*/
if (tbin->lg_fill_div > 1)
tbin->lg_fill_div--;
}
tbin->low_water = tbin->ncached;
tcache->next_gc_bin++;
if (tcache->next_gc_bin == nhbins)
tcache->next_gc_bin = 0;
}
void *
tcache_alloc_small_hard(tsdn_t *tsdn, arena_t *arena, tcache_t *tcache,
tcache_bin_t *tbin, szind_t binind, bool *tcache_success)
{
void *ret;
arena_tcache_fill_small(tsdn, arena, tbin, binind, config_prof ?
tcache->prof_accumbytes : 0);
if (config_prof)
tcache->prof_accumbytes = 0;
ret = tcache_alloc_easy(tbin, tcache_success);
return (ret);
}
void
tcache_bin_flush_small(tsd_t *tsd, tcache_t *tcache, tcache_bin_t *tbin,
szind_t binind, unsigned rem)
{
arena_t *arena;
void *ptr;
unsigned i, nflush, ndeferred;
bool merged_stats = false;
assert(binind < NBINS);
assert(rem <= tbin->ncached);
arena = arena_choose(tsd, NULL);
assert(arena != NULL);
for (nflush = tbin->ncached - rem; nflush > 0; nflush = ndeferred) {
/* Lock the arena bin associated with the first object. */
arena_chunk_t *chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(
*(tbin->avail - 1));
arena_t *bin_arena = extent_node_arena_get(&chunk->node);
arena_bin_t *bin = &bin_arena->bins[binind];
if (config_prof && bin_arena == arena) {
if (arena_prof_accum(tsd_tsdn(tsd), arena,
tcache->prof_accumbytes))
prof_idump(tsd_tsdn(tsd));
tcache->prof_accumbytes = 0;
}
malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock);
if (config_stats && bin_arena == arena) {
assert(!merged_stats);
merged_stats = true;
bin->stats.nflushes++;
bin->stats.nrequests += tbin->tstats.nrequests;
tbin->tstats.nrequests = 0;
}
ndeferred = 0;
for (i = 0; i < nflush; i++) {
ptr = *(tbin->avail - 1 - i);
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (extent_node_arena_get(&chunk->node) == bin_arena) {
size_t pageind = ((uintptr_t)ptr -
(uintptr_t)chunk) >> LG_PAGE;
arena_chunk_map_bits_t *bitselm =
arena_bitselm_get_mutable(chunk, pageind);
arena_dalloc_bin_junked_locked(tsd_tsdn(tsd),
bin_arena, chunk, ptr, bitselm);
} else {
/*
* This object was allocated via a different
* arena bin than the one that is currently
* locked. Stash the object, so that it can be
* handled in a future pass.
*/
*(tbin->avail - 1 - ndeferred) = ptr;
ndeferred++;
}
}
malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock);
arena_decay_ticks(tsd_tsdn(tsd), bin_arena, nflush - ndeferred);
}
if (config_stats && !merged_stats) {
/*
* The flush loop didn't happen to flush to this thread's
* arena, so the stats didn't get merged. Manually do so now.
*/
arena_bin_t *bin = &arena->bins[binind];
malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock);
bin->stats.nflushes++;
bin->stats.nrequests += tbin->tstats.nrequests;
tbin->tstats.nrequests = 0;
malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock);
}
memmove(tbin->avail - rem, tbin->avail - tbin->ncached, rem *
sizeof(void *));
tbin->ncached = rem;
if ((int)tbin->ncached < tbin->low_water)
tbin->low_water = tbin->ncached;
}
void
tcache_bin_flush_large(tsd_t *tsd, tcache_bin_t *tbin, szind_t binind,
unsigned rem, tcache_t *tcache)
{
arena_t *arena;
void *ptr;
unsigned i, nflush, ndeferred;
bool merged_stats = false;
assert(binind < nhbins);
assert(rem <= tbin->ncached);
arena = arena_choose(tsd, NULL);
assert(arena != NULL);
for (nflush = tbin->ncached - rem; nflush > 0; nflush = ndeferred) {
/* Lock the arena associated with the first object. */
arena_chunk_t *chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(
*(tbin->avail - 1));
arena_t *locked_arena = extent_node_arena_get(&chunk->node);
UNUSED bool idump;
if (config_prof)
idump = false;
malloc_mutex_lock(tsd_tsdn(tsd), &locked_arena->lock);
if ((config_prof || config_stats) && locked_arena == arena) {
if (config_prof) {
idump = arena_prof_accum_locked(arena,
tcache->prof_accumbytes);
tcache->prof_accumbytes = 0;
}
if (config_stats) {
merged_stats = true;
arena->stats.nrequests_large +=
tbin->tstats.nrequests;
arena->stats.lstats[binind - NBINS].nrequests +=
tbin->tstats.nrequests;
tbin->tstats.nrequests = 0;
}
}
ndeferred = 0;
for (i = 0; i < nflush; i++) {
ptr = *(tbin->avail - 1 - i);
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (extent_node_arena_get(&chunk->node) ==
locked_arena) {
arena_dalloc_large_junked_locked(tsd_tsdn(tsd),
locked_arena, chunk, ptr);
} else {
/*
* This object was allocated via a different
* arena than the one that is currently locked.
* Stash the object, so that it can be handled
* in a future pass.
*/
*(tbin->avail - 1 - ndeferred) = ptr;
ndeferred++;
}
}
malloc_mutex_unlock(tsd_tsdn(tsd), &locked_arena->lock);
if (config_prof && idump)
prof_idump(tsd_tsdn(tsd));
arena_decay_ticks(tsd_tsdn(tsd), locked_arena, nflush -
ndeferred);
}
if (config_stats && !merged_stats) {
/*
* The flush loop didn't happen to flush to this thread's
* arena, so the stats didn't get merged. Manually do so now.
*/
malloc_mutex_lock(tsd_tsdn(tsd), &arena->lock);
arena->stats.nrequests_large += tbin->tstats.nrequests;
arena->stats.lstats[binind - NBINS].nrequests +=
tbin->tstats.nrequests;
tbin->tstats.nrequests = 0;
malloc_mutex_unlock(tsd_tsdn(tsd), &arena->lock);
}
memmove(tbin->avail - rem, tbin->avail - tbin->ncached, rem *
sizeof(void *));
tbin->ncached = rem;
if ((int)tbin->ncached < tbin->low_water)
tbin->low_water = tbin->ncached;
}
static void
tcache_arena_associate(tsdn_t *tsdn, tcache_t *tcache, arena_t *arena)
{
if (config_stats) {
/* Link into list of extant tcaches. */
malloc_mutex_lock(tsdn, &arena->lock);
ql_elm_new(tcache, link);
ql_tail_insert(&arena->tcache_ql, tcache, link);
malloc_mutex_unlock(tsdn, &arena->lock);
}
}
static void
tcache_arena_dissociate(tsdn_t *tsdn, tcache_t *tcache, arena_t *arena)
{
if (config_stats) {
/* Unlink from list of extant tcaches. */
malloc_mutex_lock(tsdn, &arena->lock);
if (config_debug) {
bool in_ql = false;
tcache_t *iter;
ql_foreach(iter, &arena->tcache_ql, link) {
if (iter == tcache) {
in_ql = true;
break;
}
}
assert(in_ql);
}
ql_remove(&arena->tcache_ql, tcache, link);
tcache_stats_merge(tsdn, tcache, arena);
malloc_mutex_unlock(tsdn, &arena->lock);
}
}
void
tcache_arena_reassociate(tsdn_t *tsdn, tcache_t *tcache, arena_t *oldarena,
arena_t *newarena)
{
tcache_arena_dissociate(tsdn, tcache, oldarena);
tcache_arena_associate(tsdn, tcache, newarena);
}
tcache_t *
tcache_get_hard(tsd_t *tsd)
{
arena_t *arena;
if (!tcache_enabled_get()) {
if (tsd_nominal(tsd))
tcache_enabled_set(false); /* Memoize. */
return (NULL);
}
arena = arena_choose(tsd, NULL);
if (unlikely(arena == NULL))
return (NULL);
return (tcache_create(tsd_tsdn(tsd), arena));
}
tcache_t *
tcache_create(tsdn_t *tsdn, arena_t *arena)
{
tcache_t *tcache;
size_t size, stack_offset;
unsigned i;
size = offsetof(tcache_t, tbins) + (sizeof(tcache_bin_t) * nhbins);
/* Naturally align the pointer stacks. */
size = PTR_CEILING(size);
stack_offset = size;
size += stack_nelms * sizeof(void *);
/* Avoid false cacheline sharing. */
size = sa2u(size, CACHELINE);
tcache = ipallocztm(tsdn, size, CACHELINE, true, NULL, true,
arena_get(TSDN_NULL, 0, true));
if (tcache == NULL)
return (NULL);
tcache_arena_associate(tsdn, tcache, arena);
ticker_init(&tcache->gc_ticker, TCACHE_GC_INCR);
assert((TCACHE_NSLOTS_SMALL_MAX & 1U) == 0);
for (i = 0; i < nhbins; i++) {
tcache->tbins[i].lg_fill_div = 1;
stack_offset += tcache_bin_info[i].ncached_max * sizeof(void *);
/*
* avail points past the available space. Allocations will
* access the slots toward higher addresses (for the benefit of
* prefetch).
*/
tcache->tbins[i].avail = (void **)((uintptr_t)tcache +
(uintptr_t)stack_offset);
}
return (tcache);
}
static void
tcache_destroy(tsd_t *tsd, tcache_t *tcache)
{
arena_t *arena;
unsigned i;
arena = arena_choose(tsd, NULL);
tcache_arena_dissociate(tsd_tsdn(tsd), tcache, arena);
for (i = 0; i < NBINS; i++) {
tcache_bin_t *tbin = &tcache->tbins[i];
tcache_bin_flush_small(tsd, tcache, tbin, i, 0);
if (config_stats && tbin->tstats.nrequests != 0) {
arena_bin_t *bin = &arena->bins[i];
malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock);
bin->stats.nrequests += tbin->tstats.nrequests;
malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock);
}
}
for (; i < nhbins; i++) {
tcache_bin_t *tbin = &tcache->tbins[i];
tcache_bin_flush_large(tsd, tbin, i, 0, tcache);
if (config_stats && tbin->tstats.nrequests != 0) {
malloc_mutex_lock(tsd_tsdn(tsd), &arena->lock);
arena->stats.nrequests_large += tbin->tstats.nrequests;
arena->stats.lstats[i - NBINS].nrequests +=
tbin->tstats.nrequests;
malloc_mutex_unlock(tsd_tsdn(tsd), &arena->lock);
}
}
if (config_prof && tcache->prof_accumbytes > 0 &&
arena_prof_accum(tsd_tsdn(tsd), arena, tcache->prof_accumbytes))
prof_idump(tsd_tsdn(tsd));
idalloctm(tsd_tsdn(tsd), tcache, NULL, true, true);
}
void
tcache_cleanup(tsd_t *tsd)
{
tcache_t *tcache;
if (!config_tcache)
return;
if ((tcache = tsd_tcache_get(tsd)) != NULL) {
tcache_destroy(tsd, tcache);
tsd_tcache_set(tsd, NULL);
}
}
void
tcache_enabled_cleanup(tsd_t *tsd)
{
/* Do nothing. */
}
void
tcache_stats_merge(tsdn_t *tsdn, tcache_t *tcache, arena_t *arena)
{
unsigned i;
cassert(config_stats);
malloc_mutex_assert_owner(tsdn, &arena->lock);
/* Merge and reset tcache stats. */
for (i = 0; i < NBINS; i++) {
arena_bin_t *bin = &arena->bins[i];
tcache_bin_t *tbin = &tcache->tbins[i];
malloc_mutex_lock(tsdn, &bin->lock);
bin->stats.nrequests += tbin->tstats.nrequests;
malloc_mutex_unlock(tsdn, &bin->lock);
tbin->tstats.nrequests = 0;
}
for (; i < nhbins; i++) {
malloc_large_stats_t *lstats = &arena->stats.lstats[i - NBINS];
tcache_bin_t *tbin = &tcache->tbins[i];
arena->stats.nrequests_large += tbin->tstats.nrequests;
lstats->nrequests += tbin->tstats.nrequests;
tbin->tstats.nrequests = 0;
}
}
bool
tcaches_create(tsd_t *tsd, unsigned *r_ind)
{
arena_t *arena;
tcache_t *tcache;
tcaches_t *elm;
if (tcaches == NULL) {
tcaches = base_alloc(tsd_tsdn(tsd), sizeof(tcache_t *) *
(MALLOCX_TCACHE_MAX+1));
if (tcaches == NULL)
return (true);
}
if (tcaches_avail == NULL && tcaches_past > MALLOCX_TCACHE_MAX)
return (true);
arena = arena_ichoose(tsd, NULL);
if (unlikely(arena == NULL))
return (true);
tcache = tcache_create(tsd_tsdn(tsd), arena);
if (tcache == NULL)
return (true);
if (tcaches_avail != NULL) {
elm = tcaches_avail;
tcaches_avail = tcaches_avail->next;
elm->tcache = tcache;
*r_ind = (unsigned)(elm - tcaches);
} else {
elm = &tcaches[tcaches_past];
elm->tcache = tcache;
*r_ind = tcaches_past;
tcaches_past++;
}
return (false);
}
static void
tcaches_elm_flush(tsd_t *tsd, tcaches_t *elm)
{
if (elm->tcache == NULL)
return;
tcache_destroy(tsd, elm->tcache);
elm->tcache = NULL;
}
void
tcaches_flush(tsd_t *tsd, unsigned ind)
{
tcaches_elm_flush(tsd, &tcaches[ind]);
}
void
tcaches_destroy(tsd_t *tsd, unsigned ind)
{
tcaches_t *elm = &tcaches[ind];
tcaches_elm_flush(tsd, elm);
elm->next = tcaches_avail;
tcaches_avail = elm;
}
bool
tcache_boot(tsdn_t *tsdn)
{
unsigned i;
/*
* If necessary, clamp opt_lg_tcache_max, now that large_maxclass is
* known.
*/
if (opt_lg_tcache_max < 0 || (ZU(1) << opt_lg_tcache_max) < SMALL_MAXCLASS)
tcache_maxclass = SMALL_MAXCLASS;
else if ((ZU(1) << opt_lg_tcache_max) > large_maxclass)
tcache_maxclass = large_maxclass;
else
tcache_maxclass = (ZU(1) << opt_lg_tcache_max);
nhbins = size2index(tcache_maxclass) + 1;
/* Initialize tcache_bin_info. */
tcache_bin_info = (tcache_bin_info_t *)base_alloc(tsdn, nhbins *
sizeof(tcache_bin_info_t));
if (tcache_bin_info == NULL)
return (true);
stack_nelms = 0;
for (i = 0; i < NBINS; i++) {
if ((arena_bin_info[i].nregs << 1) <= TCACHE_NSLOTS_SMALL_MIN) {
tcache_bin_info[i].ncached_max =
TCACHE_NSLOTS_SMALL_MIN;
} else if ((arena_bin_info[i].nregs << 1) <=
TCACHE_NSLOTS_SMALL_MAX) {
tcache_bin_info[i].ncached_max =
(arena_bin_info[i].nregs << 1);
} else {
tcache_bin_info[i].ncached_max =
TCACHE_NSLOTS_SMALL_MAX;
}
stack_nelms += tcache_bin_info[i].ncached_max;
}
for (; i < nhbins; i++) {
tcache_bin_info[i].ncached_max = TCACHE_NSLOTS_LARGE;
stack_nelms += tcache_bin_info[i].ncached_max;
}
return (false);
}
| 14,530 | 25.134892 | 80 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/src/chunk.c | #define JEMALLOC_CHUNK_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Data. */
const char *opt_dss = DSS_DEFAULT;
size_t opt_lg_chunk = 0;
/* Used exclusively for gdump triggering. */
static size_t curchunks;
static size_t highchunks;
rtree_t chunks_rtree;
/* Various chunk-related settings. */
size_t chunksize;
size_t chunksize_mask; /* (chunksize - 1). */
size_t chunk_npages;
static void *chunk_alloc_default(void *new_addr, size_t size,
size_t alignment, bool *zero, bool *commit, unsigned arena_ind);
static bool chunk_dalloc_default(void *chunk, size_t size, bool committed,
unsigned arena_ind);
static bool chunk_commit_default(void *chunk, size_t size, size_t offset,
size_t length, unsigned arena_ind);
static bool chunk_decommit_default(void *chunk, size_t size, size_t offset,
size_t length, unsigned arena_ind);
static bool chunk_purge_default(void *chunk, size_t size, size_t offset,
size_t length, unsigned arena_ind);
static bool chunk_split_default(void *chunk, size_t size, size_t size_a,
size_t size_b, bool committed, unsigned arena_ind);
static bool chunk_merge_default(void *chunk_a, size_t size_a, void *chunk_b,
size_t size_b, bool committed, unsigned arena_ind);
const chunk_hooks_t chunk_hooks_default = {
chunk_alloc_default,
chunk_dalloc_default,
chunk_commit_default,
chunk_decommit_default,
chunk_purge_default,
chunk_split_default,
chunk_merge_default
};
/******************************************************************************/
/*
* Function prototypes for static functions that are referenced prior to
* definition.
*/
static void chunk_record(tsdn_t *tsdn, arena_t *arena,
chunk_hooks_t *chunk_hooks, extent_tree_t *chunks_szsnad,
extent_tree_t *chunks_ad, bool cache, void *chunk, size_t size, size_t sn,
bool zeroed, bool committed);
/******************************************************************************/
static chunk_hooks_t
chunk_hooks_get_locked(arena_t *arena)
{
return (arena->chunk_hooks);
}
chunk_hooks_t
chunk_hooks_get(tsdn_t *tsdn, arena_t *arena)
{
chunk_hooks_t chunk_hooks;
malloc_mutex_lock(tsdn, &arena->chunks_mtx);
chunk_hooks = chunk_hooks_get_locked(arena);
malloc_mutex_unlock(tsdn, &arena->chunks_mtx);
return (chunk_hooks);
}
chunk_hooks_t
chunk_hooks_set(tsdn_t *tsdn, arena_t *arena, const chunk_hooks_t *chunk_hooks)
{
chunk_hooks_t old_chunk_hooks;
malloc_mutex_lock(tsdn, &arena->chunks_mtx);
old_chunk_hooks = arena->chunk_hooks;
/*
* Copy each field atomically so that it is impossible for readers to
* see partially updated pointers. There are places where readers only
* need one hook function pointer (therefore no need to copy the
* entirety of arena->chunk_hooks), and stale reads do not affect
* correctness, so they perform unlocked reads.
*/
#define ATOMIC_COPY_HOOK(n) do { \
union { \
chunk_##n##_t **n; \
void **v; \
} u; \
u.n = &arena->chunk_hooks.n; \
atomic_write_p(u.v, chunk_hooks->n); \
} while (0)
ATOMIC_COPY_HOOK(alloc);
ATOMIC_COPY_HOOK(dalloc);
ATOMIC_COPY_HOOK(commit);
ATOMIC_COPY_HOOK(decommit);
ATOMIC_COPY_HOOK(purge);
ATOMIC_COPY_HOOK(split);
ATOMIC_COPY_HOOK(merge);
#undef ATOMIC_COPY_HOOK
malloc_mutex_unlock(tsdn, &arena->chunks_mtx);
return (old_chunk_hooks);
}
static void
chunk_hooks_assure_initialized_impl(tsdn_t *tsdn, arena_t *arena,
chunk_hooks_t *chunk_hooks, bool locked)
{
static const chunk_hooks_t uninitialized_hooks =
CHUNK_HOOKS_INITIALIZER;
if (memcmp(chunk_hooks, &uninitialized_hooks, sizeof(chunk_hooks_t)) ==
0) {
*chunk_hooks = locked ? chunk_hooks_get_locked(arena) :
chunk_hooks_get(tsdn, arena);
}
}
static void
chunk_hooks_assure_initialized_locked(tsdn_t *tsdn, arena_t *arena,
chunk_hooks_t *chunk_hooks)
{
chunk_hooks_assure_initialized_impl(tsdn, arena, chunk_hooks, true);
}
static void
chunk_hooks_assure_initialized(tsdn_t *tsdn, arena_t *arena,
chunk_hooks_t *chunk_hooks)
{
chunk_hooks_assure_initialized_impl(tsdn, arena, chunk_hooks, false);
}
bool
chunk_register(tsdn_t *tsdn, const void *chunk, const extent_node_t *node)
{
assert(extent_node_addr_get(node) == chunk);
if (rtree_set(&chunks_rtree, (uintptr_t)chunk, node))
return (true);
if (config_prof && opt_prof) {
size_t size = extent_node_size_get(node);
size_t nadd = (size == 0) ? 1 : size / chunksize;
size_t cur = atomic_add_z(&curchunks, nadd);
size_t high = atomic_read_z(&highchunks);
while (cur > high && atomic_cas_z(&highchunks, high, cur)) {
/*
* Don't refresh cur, because it may have decreased
* since this thread lost the highchunks update race.
*/
high = atomic_read_z(&highchunks);
}
if (cur > high && prof_gdump_get_unlocked())
prof_gdump(tsdn);
}
return (false);
}
void
chunk_deregister(const void *chunk, const extent_node_t *node)
{
bool err;
err = rtree_set(&chunks_rtree, (uintptr_t)chunk, NULL);
assert(!err);
if (config_prof && opt_prof) {
size_t size = extent_node_size_get(node);
size_t nsub = (size == 0) ? 1 : size / chunksize;
assert(atomic_read_z(&curchunks) >= nsub);
atomic_sub_z(&curchunks, nsub);
}
}
/*
* Do first-best-fit chunk selection, i.e. select the oldest/lowest chunk that
* best fits.
*/
static extent_node_t *
chunk_first_best_fit(arena_t *arena, extent_tree_t *chunks_szsnad, size_t size)
{
extent_node_t key;
assert(size == CHUNK_CEILING(size));
extent_node_init(&key, arena, NULL, size, 0, false, false);
return (extent_tree_szsnad_nsearch(chunks_szsnad, &key));
}
static void *
chunk_recycle(tsdn_t *tsdn, arena_t *arena, chunk_hooks_t *chunk_hooks,
extent_tree_t *chunks_szsnad, extent_tree_t *chunks_ad, bool cache,
void *new_addr, size_t size, size_t alignment, size_t *sn, bool *zero,
bool *commit, bool dalloc_node)
{
void *ret;
extent_node_t *node;
size_t alloc_size, leadsize, trailsize;
bool zeroed, committed;
assert(CHUNK_CEILING(size) == size);
assert(alignment > 0);
assert(new_addr == NULL || alignment == chunksize);
assert(CHUNK_ADDR2BASE(new_addr) == new_addr);
/*
* Cached chunks use the node linkage embedded in their headers, in
* which case dalloc_node is true, and new_addr is non-NULL because
* we're operating on a specific chunk.
*/
assert(dalloc_node || new_addr != NULL);
alloc_size = size + CHUNK_CEILING(alignment) - chunksize;
/* Beware size_t wrap-around. */
if (alloc_size < size)
return (NULL);
malloc_mutex_lock(tsdn, &arena->chunks_mtx);
chunk_hooks_assure_initialized_locked(tsdn, arena, chunk_hooks);
if (new_addr != NULL) {
extent_node_t key;
extent_node_init(&key, arena, new_addr, alloc_size, 0, false,
false);
node = extent_tree_ad_search(chunks_ad, &key);
} else {
node = chunk_first_best_fit(arena, chunks_szsnad, alloc_size);
}
if (node == NULL || (new_addr != NULL && extent_node_size_get(node) <
size)) {
malloc_mutex_unlock(tsdn, &arena->chunks_mtx);
return (NULL);
}
leadsize = ALIGNMENT_CEILING((uintptr_t)extent_node_addr_get(node),
alignment) - (uintptr_t)extent_node_addr_get(node);
assert(new_addr == NULL || leadsize == 0);
assert(extent_node_size_get(node) >= leadsize + size);
trailsize = extent_node_size_get(node) - leadsize - size;
ret = (void *)((uintptr_t)extent_node_addr_get(node) + leadsize);
*sn = extent_node_sn_get(node);
zeroed = extent_node_zeroed_get(node);
if (zeroed)
*zero = true;
committed = extent_node_committed_get(node);
if (committed)
*commit = true;
/* Split the lead. */
if (leadsize != 0 &&
chunk_hooks->split(extent_node_addr_get(node),
extent_node_size_get(node), leadsize, size, false, arena->ind)) {
malloc_mutex_unlock(tsdn, &arena->chunks_mtx);
return (NULL);
}
/* Remove node from the tree. */
extent_tree_szsnad_remove(chunks_szsnad, node);
extent_tree_ad_remove(chunks_ad, node);
arena_chunk_cache_maybe_remove(arena, node, cache);
if (leadsize != 0) {
/* Insert the leading space as a smaller chunk. */
extent_node_size_set(node, leadsize);
extent_tree_szsnad_insert(chunks_szsnad, node);
extent_tree_ad_insert(chunks_ad, node);
arena_chunk_cache_maybe_insert(arena, node, cache);
node = NULL;
}
if (trailsize != 0) {
/* Split the trail. */
if (chunk_hooks->split(ret, size + trailsize, size,
trailsize, false, arena->ind)) {
if (dalloc_node && node != NULL)
arena_node_dalloc(tsdn, arena, node);
malloc_mutex_unlock(tsdn, &arena->chunks_mtx);
chunk_record(tsdn, arena, chunk_hooks, chunks_szsnad,
chunks_ad, cache, ret, size + trailsize, *sn,
zeroed, committed);
return (NULL);
}
/* Insert the trailing space as a smaller chunk. */
if (node == NULL) {
node = arena_node_alloc(tsdn, arena);
if (node == NULL) {
malloc_mutex_unlock(tsdn, &arena->chunks_mtx);
chunk_record(tsdn, arena, chunk_hooks,
chunks_szsnad, chunks_ad, cache, ret, size
+ trailsize, *sn, zeroed, committed);
return (NULL);
}
}
extent_node_init(node, arena, (void *)((uintptr_t)(ret) + size),
trailsize, *sn, zeroed, committed);
extent_tree_szsnad_insert(chunks_szsnad, node);
extent_tree_ad_insert(chunks_ad, node);
arena_chunk_cache_maybe_insert(arena, node, cache);
node = NULL;
}
if (!committed && chunk_hooks->commit(ret, size, 0, size, arena->ind)) {
malloc_mutex_unlock(tsdn, &arena->chunks_mtx);
chunk_record(tsdn, arena, chunk_hooks, chunks_szsnad, chunks_ad,
cache, ret, size, *sn, zeroed, committed);
return (NULL);
}
malloc_mutex_unlock(tsdn, &arena->chunks_mtx);
assert(dalloc_node || node != NULL);
if (dalloc_node && node != NULL)
arena_node_dalloc(tsdn, arena, node);
if (*zero) {
if (!zeroed)
memset(ret, 0, size);
else if (config_debug) {
size_t i;
size_t *p = (size_t *)(uintptr_t)ret;
for (i = 0; i < size / sizeof(size_t); i++)
assert(p[i] == 0);
}
if (config_valgrind)
JEMALLOC_VALGRIND_MAKE_MEM_DEFINED(ret, size);
}
return (ret);
}
/*
* If the caller specifies (!*zero), it is still possible to receive zeroed
* memory, in which case *zero is toggled to true. arena_chunk_alloc() takes
* advantage of this to avoid demanding zeroed chunks, but taking advantage of
* them if they are returned.
*/
static void *
chunk_alloc_core(tsdn_t *tsdn, arena_t *arena, void *new_addr, size_t size,
size_t alignment, bool *zero, bool *commit, dss_prec_t dss_prec)
{
void *ret;
assert(size != 0);
assert((size & chunksize_mask) == 0);
assert(alignment != 0);
assert((alignment & chunksize_mask) == 0);
/* "primary" dss. */
if (have_dss && dss_prec == dss_prec_primary && (ret =
chunk_alloc_dss(tsdn, arena, new_addr, size, alignment, zero,
commit)) != NULL)
return (ret);
/* mmap. */
if ((ret = chunk_alloc_mmap(new_addr, size, alignment, zero, commit)) !=
NULL)
return (ret);
/* "secondary" dss. */
if (have_dss && dss_prec == dss_prec_secondary && (ret =
chunk_alloc_dss(tsdn, arena, new_addr, size, alignment, zero,
commit)) != NULL)
return (ret);
/* All strategies for allocation failed. */
return (NULL);
}
void *
chunk_alloc_base(size_t size)
{
void *ret;
bool zero, commit;
/*
* Directly call chunk_alloc_mmap() rather than chunk_alloc_core()
* because it's critical that chunk_alloc_base() return untouched
* demand-zeroed virtual memory.
*/
zero = true;
commit = true;
ret = chunk_alloc_mmap(NULL, size, chunksize, &zero, &commit);
if (ret == NULL)
return (NULL);
if (config_valgrind)
JEMALLOC_VALGRIND_MAKE_MEM_UNDEFINED(ret, size);
return (ret);
}
void *
chunk_alloc_cache(tsdn_t *tsdn, arena_t *arena, chunk_hooks_t *chunk_hooks,
void *new_addr, size_t size, size_t alignment, size_t *sn, bool *zero,
bool *commit, bool dalloc_node)
{
void *ret;
assert(size != 0);
assert((size & chunksize_mask) == 0);
assert(alignment != 0);
assert((alignment & chunksize_mask) == 0);
ret = chunk_recycle(tsdn, arena, chunk_hooks,
&arena->chunks_szsnad_cached, &arena->chunks_ad_cached, true,
new_addr, size, alignment, sn, zero, commit, dalloc_node);
if (ret == NULL)
return (NULL);
if (config_valgrind)
JEMALLOC_VALGRIND_MAKE_MEM_UNDEFINED(ret, size);
return (ret);
}
static arena_t *
chunk_arena_get(tsdn_t *tsdn, unsigned arena_ind)
{
arena_t *arena;
arena = arena_get(tsdn, arena_ind, false);
/*
* The arena we're allocating on behalf of must have been initialized
* already.
*/
assert(arena != NULL);
return (arena);
}
static void *
chunk_alloc_default_impl(tsdn_t *tsdn, arena_t *arena, void *new_addr,
size_t size, size_t alignment, bool *zero, bool *commit)
{
void *ret;
ret = chunk_alloc_core(tsdn, arena, new_addr, size, alignment, zero,
commit, arena->dss_prec);
if (ret == NULL)
return (NULL);
if (config_valgrind)
JEMALLOC_VALGRIND_MAKE_MEM_UNDEFINED(ret, size);
return (ret);
}
static void *
chunk_alloc_default(void *new_addr, size_t size, size_t alignment, bool *zero,
bool *commit, unsigned arena_ind)
{
tsdn_t *tsdn;
arena_t *arena;
tsdn = tsdn_fetch();
arena = chunk_arena_get(tsdn, arena_ind);
return (chunk_alloc_default_impl(tsdn, arena, new_addr, size, alignment,
zero, commit));
}
static void *
chunk_alloc_retained(tsdn_t *tsdn, arena_t *arena, chunk_hooks_t *chunk_hooks,
void *new_addr, size_t size, size_t alignment, size_t *sn, bool *zero,
bool *commit)
{
void *ret;
assert(size != 0);
assert((size & chunksize_mask) == 0);
assert(alignment != 0);
assert((alignment & chunksize_mask) == 0);
ret = chunk_recycle(tsdn, arena, chunk_hooks,
&arena->chunks_szsnad_retained, &arena->chunks_ad_retained, false,
new_addr, size, alignment, sn, zero, commit, true);
if (config_stats && ret != NULL)
arena->stats.retained -= size;
return (ret);
}
void *
chunk_alloc_wrapper(tsdn_t *tsdn, arena_t *arena, chunk_hooks_t *chunk_hooks,
void *new_addr, size_t size, size_t alignment, size_t *sn, bool *zero,
bool *commit)
{
void *ret;
chunk_hooks_assure_initialized(tsdn, arena, chunk_hooks);
ret = chunk_alloc_retained(tsdn, arena, chunk_hooks, new_addr, size,
alignment, sn, zero, commit);
if (ret == NULL) {
if (chunk_hooks->alloc == chunk_alloc_default) {
/* Call directly to propagate tsdn. */
ret = chunk_alloc_default_impl(tsdn, arena, new_addr,
size, alignment, zero, commit);
} else {
ret = chunk_hooks->alloc(new_addr, size, alignment,
zero, commit, arena->ind);
}
if (ret == NULL)
return (NULL);
*sn = arena_extent_sn_next(arena);
if (config_valgrind && chunk_hooks->alloc !=
chunk_alloc_default)
JEMALLOC_VALGRIND_MAKE_MEM_UNDEFINED(ret, chunksize);
}
return (ret);
}
static void
chunk_record(tsdn_t *tsdn, arena_t *arena, chunk_hooks_t *chunk_hooks,
extent_tree_t *chunks_szsnad, extent_tree_t *chunks_ad, bool cache,
void *chunk, size_t size, size_t sn, bool zeroed, bool committed)
{
bool unzeroed;
extent_node_t *node, *prev;
extent_node_t key;
assert(!cache || !zeroed);
unzeroed = cache || !zeroed;
JEMALLOC_VALGRIND_MAKE_MEM_NOACCESS(chunk, size);
malloc_mutex_lock(tsdn, &arena->chunks_mtx);
chunk_hooks_assure_initialized_locked(tsdn, arena, chunk_hooks);
extent_node_init(&key, arena, (void *)((uintptr_t)chunk + size), 0, 0,
false, false);
node = extent_tree_ad_nsearch(chunks_ad, &key);
/* Try to coalesce forward. */
if (node != NULL && extent_node_addr_get(node) ==
extent_node_addr_get(&key) && extent_node_committed_get(node) ==
committed && !chunk_hooks->merge(chunk, size,
extent_node_addr_get(node), extent_node_size_get(node), false,
arena->ind)) {
/*
* Coalesce chunk with the following address range. This does
* not change the position within chunks_ad, so only
* remove/insert from/into chunks_szsnad.
*/
extent_tree_szsnad_remove(chunks_szsnad, node);
arena_chunk_cache_maybe_remove(arena, node, cache);
extent_node_addr_set(node, chunk);
extent_node_size_set(node, size + extent_node_size_get(node));
if (sn < extent_node_sn_get(node))
extent_node_sn_set(node, sn);
extent_node_zeroed_set(node, extent_node_zeroed_get(node) &&
!unzeroed);
extent_tree_szsnad_insert(chunks_szsnad, node);
arena_chunk_cache_maybe_insert(arena, node, cache);
} else {
/* Coalescing forward failed, so insert a new node. */
node = arena_node_alloc(tsdn, arena);
if (node == NULL) {
/*
* Node allocation failed, which is an exceedingly
* unlikely failure. Leak chunk after making sure its
* pages have already been purged, so that this is only
* a virtual memory leak.
*/
if (cache) {
chunk_purge_wrapper(tsdn, arena, chunk_hooks,
chunk, size, 0, size);
}
goto label_return;
}
extent_node_init(node, arena, chunk, size, sn, !unzeroed,
committed);
extent_tree_ad_insert(chunks_ad, node);
extent_tree_szsnad_insert(chunks_szsnad, node);
arena_chunk_cache_maybe_insert(arena, node, cache);
}
/* Try to coalesce backward. */
prev = extent_tree_ad_prev(chunks_ad, node);
if (prev != NULL && (void *)((uintptr_t)extent_node_addr_get(prev) +
extent_node_size_get(prev)) == chunk &&
extent_node_committed_get(prev) == committed &&
!chunk_hooks->merge(extent_node_addr_get(prev),
extent_node_size_get(prev), chunk, size, false, arena->ind)) {
/*
* Coalesce chunk with the previous address range. This does
* not change the position within chunks_ad, so only
* remove/insert node from/into chunks_szsnad.
*/
extent_tree_szsnad_remove(chunks_szsnad, prev);
extent_tree_ad_remove(chunks_ad, prev);
arena_chunk_cache_maybe_remove(arena, prev, cache);
extent_tree_szsnad_remove(chunks_szsnad, node);
arena_chunk_cache_maybe_remove(arena, node, cache);
extent_node_addr_set(node, extent_node_addr_get(prev));
extent_node_size_set(node, extent_node_size_get(prev) +
extent_node_size_get(node));
if (extent_node_sn_get(prev) < extent_node_sn_get(node))
extent_node_sn_set(node, extent_node_sn_get(prev));
extent_node_zeroed_set(node, extent_node_zeroed_get(prev) &&
extent_node_zeroed_get(node));
extent_tree_szsnad_insert(chunks_szsnad, node);
arena_chunk_cache_maybe_insert(arena, node, cache);
arena_node_dalloc(tsdn, arena, prev);
}
label_return:
malloc_mutex_unlock(tsdn, &arena->chunks_mtx);
}
void
chunk_dalloc_cache(tsdn_t *tsdn, arena_t *arena, chunk_hooks_t *chunk_hooks,
void *chunk, size_t size, size_t sn, bool committed)
{
assert(chunk != NULL);
assert(CHUNK_ADDR2BASE(chunk) == chunk);
assert(size != 0);
assert((size & chunksize_mask) == 0);
chunk_record(tsdn, arena, chunk_hooks, &arena->chunks_szsnad_cached,
&arena->chunks_ad_cached, true, chunk, size, sn, false,
committed);
arena_maybe_purge(tsdn, arena);
}
static bool
chunk_dalloc_default_impl(void *chunk, size_t size)
{
if (!have_dss || !chunk_in_dss(chunk))
return (chunk_dalloc_mmap(chunk, size));
return (true);
}
static bool
chunk_dalloc_default(void *chunk, size_t size, bool committed,
unsigned arena_ind)
{
return (chunk_dalloc_default_impl(chunk, size));
}
void
chunk_dalloc_wrapper(tsdn_t *tsdn, arena_t *arena, chunk_hooks_t *chunk_hooks,
void *chunk, size_t size, size_t sn, bool zeroed, bool committed)
{
bool err;
assert(chunk != NULL);
assert(CHUNK_ADDR2BASE(chunk) == chunk);
assert(size != 0);
assert((size & chunksize_mask) == 0);
chunk_hooks_assure_initialized(tsdn, arena, chunk_hooks);
/* Try to deallocate. */
if (chunk_hooks->dalloc == chunk_dalloc_default) {
/* Call directly to propagate tsdn. */
err = chunk_dalloc_default_impl(chunk, size);
} else
err = chunk_hooks->dalloc(chunk, size, committed, arena->ind);
if (!err)
return;
/* Try to decommit; purge if that fails. */
if (committed) {
committed = chunk_hooks->decommit(chunk, size, 0, size,
arena->ind);
}
zeroed = !committed || !chunk_hooks->purge(chunk, size, 0, size,
arena->ind);
chunk_record(tsdn, arena, chunk_hooks, &arena->chunks_szsnad_retained,
&arena->chunks_ad_retained, false, chunk, size, sn, zeroed,
committed);
if (config_stats)
arena->stats.retained += size;
}
static bool
chunk_commit_default(void *chunk, size_t size, size_t offset, size_t length,
unsigned arena_ind)
{
return (pages_commit((void *)((uintptr_t)chunk + (uintptr_t)offset),
length));
}
static bool
chunk_decommit_default(void *chunk, size_t size, size_t offset, size_t length,
unsigned arena_ind)
{
return (pages_decommit((void *)((uintptr_t)chunk + (uintptr_t)offset),
length));
}
static bool
chunk_purge_default(void *chunk, size_t size, size_t offset, size_t length,
unsigned arena_ind)
{
assert(chunk != NULL);
assert(CHUNK_ADDR2BASE(chunk) == chunk);
assert((offset & PAGE_MASK) == 0);
assert(length != 0);
assert((length & PAGE_MASK) == 0);
return (pages_purge((void *)((uintptr_t)chunk + (uintptr_t)offset),
length));
}
bool
chunk_purge_wrapper(tsdn_t *tsdn, arena_t *arena, chunk_hooks_t *chunk_hooks,
void *chunk, size_t size, size_t offset, size_t length)
{
chunk_hooks_assure_initialized(tsdn, arena, chunk_hooks);
return (chunk_hooks->purge(chunk, size, offset, length, arena->ind));
}
static bool
chunk_split_default(void *chunk, size_t size, size_t size_a, size_t size_b,
bool committed, unsigned arena_ind)
{
if (!maps_coalesce)
return (true);
return (false);
}
static bool
chunk_merge_default_impl(void *chunk_a, void *chunk_b)
{
if (!maps_coalesce)
return (true);
if (have_dss && !chunk_dss_mergeable(chunk_a, chunk_b))
return (true);
return (false);
}
static bool
chunk_merge_default(void *chunk_a, size_t size_a, void *chunk_b, size_t size_b,
bool committed, unsigned arena_ind)
{
return (chunk_merge_default_impl(chunk_a, chunk_b));
}
static rtree_node_elm_t *
chunks_rtree_node_alloc(size_t nelms)
{
return ((rtree_node_elm_t *)base_alloc(TSDN_NULL, nelms *
sizeof(rtree_node_elm_t)));
}
bool
chunk_boot(void)
{
#ifdef _WIN32
SYSTEM_INFO info;
GetSystemInfo(&info);
/*
* Verify actual page size is equal to or an integral multiple of
* configured page size.
*/
if (info.dwPageSize & ((1U << LG_PAGE) - 1))
return (true);
/*
* Configure chunksize (if not set) to match granularity (usually 64K),
* so pages_map will always take fast path.
*/
if (!opt_lg_chunk) {
opt_lg_chunk = ffs_u((unsigned)info.dwAllocationGranularity)
- 1;
}
#else
if (!opt_lg_chunk)
opt_lg_chunk = LG_CHUNK_DEFAULT;
#endif
/* Set variables according to the value of opt_lg_chunk. */
chunksize = (ZU(1) << opt_lg_chunk);
assert(chunksize >= PAGE);
chunksize_mask = chunksize - 1;
chunk_npages = (chunksize >> LG_PAGE);
if (have_dss)
chunk_dss_boot();
if (rtree_new(&chunks_rtree, (unsigned)((ZU(1) << (LG_SIZEOF_PTR+3)) -
opt_lg_chunk), chunks_rtree_node_alloc, NULL))
return (true);
return (false);
}
| 23,043 | 27.949749 | 80 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/src/chunk_mmap.c | #define JEMALLOC_CHUNK_MMAP_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
static void *
chunk_alloc_mmap_slow(size_t size, size_t alignment, bool *zero, bool *commit)
{
void *ret;
size_t alloc_size;
alloc_size = size + alignment - PAGE;
/* Beware size_t wrap-around. */
if (alloc_size < size)
return (NULL);
do {
void *pages;
size_t leadsize;
pages = pages_map(NULL, alloc_size, commit);
if (pages == NULL)
return (NULL);
leadsize = ALIGNMENT_CEILING((uintptr_t)pages, alignment) -
(uintptr_t)pages;
ret = pages_trim(pages, alloc_size, leadsize, size, commit);
} while (ret == NULL);
assert(ret != NULL);
*zero = true;
return (ret);
}
void *
chunk_alloc_mmap(void *new_addr, size_t size, size_t alignment, bool *zero,
bool *commit)
{
void *ret;
size_t offset;
/*
* Ideally, there would be a way to specify alignment to mmap() (like
* NetBSD has), but in the absence of such a feature, we have to work
* hard to efficiently create aligned mappings. The reliable, but
* slow method is to create a mapping that is over-sized, then trim the
* excess. However, that always results in one or two calls to
* pages_unmap().
*
* Optimistically try mapping precisely the right amount before falling
* back to the slow method, with the expectation that the optimistic
* approach works most of the time.
*/
assert(alignment != 0);
assert((alignment & chunksize_mask) == 0);
ret = pages_map(new_addr, size, commit);
if (ret == NULL || ret == new_addr)
return (ret);
assert(new_addr == NULL);
offset = ALIGNMENT_ADDR2OFFSET(ret, alignment);
if (offset != 0) {
pages_unmap(ret, size);
return (chunk_alloc_mmap_slow(size, alignment, zero, commit));
}
assert(ret != NULL);
*zero = true;
return (ret);
}
bool
chunk_dalloc_mmap(void *chunk, size_t size)
{
if (config_munmap)
pages_unmap(chunk, size);
return (!config_munmap);
}
| 1,993 | 24.240506 | 80 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/src/quarantine.c | #define JEMALLOC_QUARANTINE_C_
#include "jemalloc/internal/jemalloc_internal.h"
/*
* Quarantine pointers close to NULL are used to encode state information that
* is used for cleaning up during thread shutdown.
*/
#define QUARANTINE_STATE_REINCARNATED ((quarantine_t *)(uintptr_t)1)
#define QUARANTINE_STATE_PURGATORY ((quarantine_t *)(uintptr_t)2)
#define QUARANTINE_STATE_MAX QUARANTINE_STATE_PURGATORY
/******************************************************************************/
/* Function prototypes for non-inline static functions. */
static quarantine_t *quarantine_grow(tsd_t *tsd, quarantine_t *quarantine);
static void quarantine_drain_one(tsdn_t *tsdn, quarantine_t *quarantine);
static void quarantine_drain(tsdn_t *tsdn, quarantine_t *quarantine,
size_t upper_bound);
/******************************************************************************/
static quarantine_t *
quarantine_init(tsdn_t *tsdn, size_t lg_maxobjs)
{
quarantine_t *quarantine;
size_t size;
size = offsetof(quarantine_t, objs) + ((ZU(1) << lg_maxobjs) *
sizeof(quarantine_obj_t));
quarantine = (quarantine_t *)iallocztm(tsdn, size, size2index(size),
false, NULL, true, arena_get(TSDN_NULL, 0, true), true);
if (quarantine == NULL)
return (NULL);
quarantine->curbytes = 0;
quarantine->curobjs = 0;
quarantine->first = 0;
quarantine->lg_maxobjs = lg_maxobjs;
return (quarantine);
}
void
quarantine_alloc_hook_work(tsd_t *tsd)
{
quarantine_t *quarantine;
if (!tsd_nominal(tsd))
return;
quarantine = quarantine_init(tsd_tsdn(tsd), LG_MAXOBJS_INIT);
/*
* Check again whether quarantine has been initialized, because
* quarantine_init() may have triggered recursive initialization.
*/
if (tsd_quarantine_get(tsd) == NULL)
tsd_quarantine_set(tsd, quarantine);
else
idalloctm(tsd_tsdn(tsd), quarantine, NULL, true, true);
}
static quarantine_t *
quarantine_grow(tsd_t *tsd, quarantine_t *quarantine)
{
quarantine_t *ret;
ret = quarantine_init(tsd_tsdn(tsd), quarantine->lg_maxobjs + 1);
if (ret == NULL) {
quarantine_drain_one(tsd_tsdn(tsd), quarantine);
return (quarantine);
}
ret->curbytes = quarantine->curbytes;
ret->curobjs = quarantine->curobjs;
if (quarantine->first + quarantine->curobjs <= (ZU(1) <<
quarantine->lg_maxobjs)) {
/* objs ring buffer data are contiguous. */
memcpy(ret->objs, &quarantine->objs[quarantine->first],
quarantine->curobjs * sizeof(quarantine_obj_t));
} else {
/* objs ring buffer data wrap around. */
size_t ncopy_a = (ZU(1) << quarantine->lg_maxobjs) -
quarantine->first;
size_t ncopy_b = quarantine->curobjs - ncopy_a;
memcpy(ret->objs, &quarantine->objs[quarantine->first], ncopy_a
* sizeof(quarantine_obj_t));
memcpy(&ret->objs[ncopy_a], quarantine->objs, ncopy_b *
sizeof(quarantine_obj_t));
}
idalloctm(tsd_tsdn(tsd), quarantine, NULL, true, true);
tsd_quarantine_set(tsd, ret);
return (ret);
}
static void
quarantine_drain_one(tsdn_t *tsdn, quarantine_t *quarantine)
{
quarantine_obj_t *obj = &quarantine->objs[quarantine->first];
assert(obj->usize == isalloc(tsdn, obj->ptr, config_prof));
idalloctm(tsdn, obj->ptr, NULL, false, true);
quarantine->curbytes -= obj->usize;
quarantine->curobjs--;
quarantine->first = (quarantine->first + 1) & ((ZU(1) <<
quarantine->lg_maxobjs) - 1);
}
static void
quarantine_drain(tsdn_t *tsdn, quarantine_t *quarantine, size_t upper_bound)
{
while (quarantine->curbytes > upper_bound && quarantine->curobjs > 0)
quarantine_drain_one(tsdn, quarantine);
}
void
quarantine(tsd_t *tsd, void *ptr)
{
quarantine_t *quarantine;
size_t usize = isalloc(tsd_tsdn(tsd), ptr, config_prof);
cassert(config_fill);
assert(opt_quarantine);
if ((quarantine = tsd_quarantine_get(tsd)) == NULL) {
idalloctm(tsd_tsdn(tsd), ptr, NULL, false, true);
return;
}
/*
* Drain one or more objects if the quarantine size limit would be
* exceeded by appending ptr.
*/
if (quarantine->curbytes + usize > opt_quarantine) {
size_t upper_bound = (opt_quarantine >= usize) ? opt_quarantine
- usize : 0;
quarantine_drain(tsd_tsdn(tsd), quarantine, upper_bound);
}
/* Grow the quarantine ring buffer if it's full. */
if (quarantine->curobjs == (ZU(1) << quarantine->lg_maxobjs))
quarantine = quarantine_grow(tsd, quarantine);
/* quarantine_grow() must free a slot if it fails to grow. */
assert(quarantine->curobjs < (ZU(1) << quarantine->lg_maxobjs));
/* Append ptr if its size doesn't exceed the quarantine size. */
if (quarantine->curbytes + usize <= opt_quarantine) {
size_t offset = (quarantine->first + quarantine->curobjs) &
((ZU(1) << quarantine->lg_maxobjs) - 1);
quarantine_obj_t *obj = &quarantine->objs[offset];
obj->ptr = ptr;
obj->usize = usize;
quarantine->curbytes += usize;
quarantine->curobjs++;
if (config_fill && unlikely(opt_junk_free)) {
/*
* Only do redzone validation if Valgrind isn't in
* operation.
*/
if ((!config_valgrind || likely(!in_valgrind))
&& usize <= SMALL_MAXCLASS)
arena_quarantine_junk_small(ptr, usize);
else
memset(ptr, JEMALLOC_FREE_JUNK, usize);
}
} else {
assert(quarantine->curbytes == 0);
idalloctm(tsd_tsdn(tsd), ptr, NULL, false, true);
}
}
void
quarantine_cleanup(tsd_t *tsd)
{
quarantine_t *quarantine;
if (!config_fill)
return;
quarantine = tsd_quarantine_get(tsd);
if (quarantine != NULL) {
quarantine_drain(tsd_tsdn(tsd), quarantine, 0);
idalloctm(tsd_tsdn(tsd), quarantine, NULL, true, true);
tsd_quarantine_set(tsd, NULL);
}
}
| 5,560 | 29.222826 | 80 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/src/mutex.c | #define JEMALLOC_MUTEX_C_
#include "jemalloc/internal/jemalloc_internal.h"
#if defined(JEMALLOC_LAZY_LOCK) && !defined(_WIN32)
#include <dlfcn.h>
#endif
#ifndef _CRT_SPINCOUNT
#define _CRT_SPINCOUNT 4000
#endif
/******************************************************************************/
/* Data. */
#ifdef JEMALLOC_LAZY_LOCK
bool isthreaded = false;
#endif
#ifdef JEMALLOC_MUTEX_INIT_CB
static bool postpone_init = true;
static malloc_mutex_t *postponed_mutexes = NULL;
#endif
#if defined(JEMALLOC_LAZY_LOCK) && !defined(_WIN32)
static void pthread_create_once(void);
#endif
/******************************************************************************/
/*
* We intercept pthread_create() calls in order to toggle isthreaded if the
* process goes multi-threaded.
*/
#if defined(JEMALLOC_LAZY_LOCK) && !defined(_WIN32)
static int (*pthread_create_fptr)(pthread_t *__restrict, const pthread_attr_t *,
void *(*)(void *), void *__restrict);
static void
pthread_create_once(void)
{
pthread_create_fptr = dlsym(RTLD_NEXT, "pthread_create");
if (pthread_create_fptr == NULL) {
malloc_write("<jemalloc>: Error in dlsym(RTLD_NEXT, "
"\"pthread_create\")\n");
abort();
}
isthreaded = true;
}
JEMALLOC_EXPORT int
pthread_create(pthread_t *__restrict thread,
const pthread_attr_t *__restrict attr, void *(*start_routine)(void *),
void *__restrict arg)
{
static pthread_once_t once_control = PTHREAD_ONCE_INIT;
pthread_once(&once_control, pthread_create_once);
return (pthread_create_fptr(thread, attr, start_routine, arg));
}
#endif
/******************************************************************************/
#ifdef JEMALLOC_MUTEX_INIT_CB
JEMALLOC_EXPORT int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
void *(calloc_cb)(size_t, size_t));
#endif
bool
malloc_mutex_init(malloc_mutex_t *mutex, const char *name, witness_rank_t rank)
{
#ifdef _WIN32
# if _WIN32_WINNT >= 0x0600
InitializeSRWLock(&mutex->lock);
# else
if (!InitializeCriticalSectionAndSpinCount(&mutex->lock,
_CRT_SPINCOUNT))
return (true);
# endif
#elif (defined(JEMALLOC_OS_UNFAIR_LOCK))
mutex->lock = OS_UNFAIR_LOCK_INIT;
#elif (defined(JEMALLOC_OSSPIN))
mutex->lock = 0;
#elif (defined(JEMALLOC_MUTEX_INIT_CB))
if (postpone_init) {
mutex->postponed_next = postponed_mutexes;
postponed_mutexes = mutex;
} else {
if (_pthread_mutex_init_calloc_cb(&mutex->lock,
bootstrap_calloc) != 0)
return (true);
}
#else
pthread_mutexattr_t attr;
if (pthread_mutexattr_init(&attr) != 0)
return (true);
pthread_mutexattr_settype(&attr, MALLOC_MUTEX_TYPE);
if (pthread_mutex_init(&mutex->lock, &attr) != 0) {
pthread_mutexattr_destroy(&attr);
return (true);
}
pthread_mutexattr_destroy(&attr);
#endif
if (config_debug)
witness_init(&mutex->witness, name, rank, NULL);
return (false);
}
void
malloc_mutex_prefork(tsdn_t *tsdn, malloc_mutex_t *mutex)
{
malloc_mutex_lock(tsdn, mutex);
}
void
malloc_mutex_postfork_parent(tsdn_t *tsdn, malloc_mutex_t *mutex)
{
malloc_mutex_unlock(tsdn, mutex);
}
void
malloc_mutex_postfork_child(tsdn_t *tsdn, malloc_mutex_t *mutex)
{
#ifdef JEMALLOC_MUTEX_INIT_CB
malloc_mutex_unlock(tsdn, mutex);
#else
if (malloc_mutex_init(mutex, mutex->witness.name,
mutex->witness.rank)) {
malloc_printf("<jemalloc>: Error re-initializing mutex in "
"child\n");
if (opt_abort)
abort();
}
#endif
}
bool
malloc_mutex_boot(void)
{
#ifdef JEMALLOC_MUTEX_INIT_CB
postpone_init = false;
while (postponed_mutexes != NULL) {
if (_pthread_mutex_init_calloc_cb(&postponed_mutexes->lock,
bootstrap_calloc) != 0)
return (true);
postponed_mutexes = postponed_mutexes->postponed_next;
}
#endif
return (false);
}
| 3,729 | 22.459119 | 80 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/pack.c | #include "test/jemalloc_test.h"
const char *malloc_conf =
/* Use smallest possible chunk size. */
"lg_chunk:0"
/* Immediately purge to minimize fragmentation. */
",lg_dirty_mult:-1"
",decay_time:-1"
;
/*
* Size class that is a divisor of the page size, ideally 4+ regions per run.
*/
#if LG_PAGE <= 14
#define SZ (ZU(1) << (LG_PAGE - 2))
#else
#define SZ 4096
#endif
/*
* Number of chunks to consume at high water mark. Should be at least 2 so that
* if mmap()ed memory grows downward, downward growth of mmap()ed memory is
* tested.
*/
#define NCHUNKS 8
static unsigned
binind_compute(void)
{
size_t sz;
unsigned nbins, i;
sz = sizeof(nbins);
assert_d_eq(mallctl("arenas.nbins", (void *)&nbins, &sz, NULL, 0), 0,
"Unexpected mallctl failure");
for (i = 0; i < nbins; i++) {
size_t mib[4];
size_t miblen = sizeof(mib)/sizeof(size_t);
size_t size;
assert_d_eq(mallctlnametomib("arenas.bin.0.size", mib,
&miblen), 0, "Unexpected mallctlnametomb failure");
mib[2] = (size_t)i;
sz = sizeof(size);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&size, &sz, NULL,
0), 0, "Unexpected mallctlbymib failure");
if (size == SZ)
return (i);
}
test_fail("Unable to compute nregs_per_run");
return (0);
}
static size_t
nregs_per_run_compute(void)
{
uint32_t nregs;
size_t sz;
unsigned binind = binind_compute();
size_t mib[4];
size_t miblen = sizeof(mib)/sizeof(size_t);
assert_d_eq(mallctlnametomib("arenas.bin.0.nregs", mib, &miblen), 0,
"Unexpected mallctlnametomb failure");
mib[2] = (size_t)binind;
sz = sizeof(nregs);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&nregs, &sz, NULL,
0), 0, "Unexpected mallctlbymib failure");
return (nregs);
}
static size_t
npages_per_run_compute(void)
{
size_t sz;
unsigned binind = binind_compute();
size_t mib[4];
size_t miblen = sizeof(mib)/sizeof(size_t);
size_t run_size;
assert_d_eq(mallctlnametomib("arenas.bin.0.run_size", mib, &miblen), 0,
"Unexpected mallctlnametomb failure");
mib[2] = (size_t)binind;
sz = sizeof(run_size);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&run_size, &sz, NULL,
0), 0, "Unexpected mallctlbymib failure");
return (run_size >> LG_PAGE);
}
static size_t
npages_per_chunk_compute(void)
{
return ((chunksize >> LG_PAGE) - map_bias);
}
static size_t
nruns_per_chunk_compute(void)
{
return (npages_per_chunk_compute() / npages_per_run_compute());
}
static unsigned
arenas_extend_mallctl(void)
{
unsigned arena_ind;
size_t sz;
sz = sizeof(arena_ind);
assert_d_eq(mallctl("arenas.extend", (void *)&arena_ind, &sz, NULL, 0),
0, "Error in arenas.extend");
return (arena_ind);
}
static void
arena_reset_mallctl(unsigned arena_ind)
{
size_t mib[3];
size_t miblen = sizeof(mib)/sizeof(size_t);
assert_d_eq(mallctlnametomib("arena.0.reset", mib, &miblen), 0,
"Unexpected mallctlnametomib() failure");
mib[1] = (size_t)arena_ind;
assert_d_eq(mallctlbymib(mib, miblen, NULL, NULL, NULL, 0), 0,
"Unexpected mallctlbymib() failure");
}
TEST_BEGIN(test_pack)
{
unsigned arena_ind = arenas_extend_mallctl();
size_t nregs_per_run = nregs_per_run_compute();
size_t nruns_per_chunk = nruns_per_chunk_compute();
size_t nruns = nruns_per_chunk * NCHUNKS;
size_t nregs = nregs_per_run * nruns;
VARIABLE_ARRAY(void *, ptrs, nregs);
size_t i, j, offset;
/* Fill matrix. */
for (i = offset = 0; i < nruns; i++) {
for (j = 0; j < nregs_per_run; j++) {
void *p = mallocx(SZ, MALLOCX_ARENA(arena_ind) |
MALLOCX_TCACHE_NONE);
assert_ptr_not_null(p,
"Unexpected mallocx(%zu, MALLOCX_ARENA(%u) |"
" MALLOCX_TCACHE_NONE) failure, run=%zu, reg=%zu",
SZ, arena_ind, i, j);
ptrs[(i * nregs_per_run) + j] = p;
}
}
/*
* Free all but one region of each run, but rotate which region is
* preserved, so that subsequent allocations exercise the within-run
* layout policy.
*/
offset = 0;
for (i = offset = 0;
i < nruns;
i++, offset = (offset + 1) % nregs_per_run) {
for (j = 0; j < nregs_per_run; j++) {
void *p = ptrs[(i * nregs_per_run) + j];
if (offset == j)
continue;
dallocx(p, MALLOCX_ARENA(arena_ind) |
MALLOCX_TCACHE_NONE);
}
}
/*
* Logically refill matrix, skipping preserved regions and verifying
* that the matrix is unmodified.
*/
offset = 0;
for (i = offset = 0;
i < nruns;
i++, offset = (offset + 1) % nregs_per_run) {
for (j = 0; j < nregs_per_run; j++) {
void *p;
if (offset == j)
continue;
p = mallocx(SZ, MALLOCX_ARENA(arena_ind) |
MALLOCX_TCACHE_NONE);
assert_ptr_eq(p, ptrs[(i * nregs_per_run) + j],
"Unexpected refill discrepancy, run=%zu, reg=%zu\n",
i, j);
}
}
/* Clean up. */
arena_reset_mallctl(arena_ind);
}
TEST_END
int
main(void)
{
return (test(
test_pack));
}
| 4,849 | 22.429952 | 80 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/prof_thread_name.c | #include "test/jemalloc_test.h"
#ifdef JEMALLOC_PROF
const char *malloc_conf = "prof:true,prof_active:false";
#endif
static void
mallctl_thread_name_get_impl(const char *thread_name_expected, const char *func,
int line)
{
const char *thread_name_old;
size_t sz;
sz = sizeof(thread_name_old);
assert_d_eq(mallctl("thread.prof.name", (void *)&thread_name_old, &sz,
NULL, 0), 0,
"%s():%d: Unexpected mallctl failure reading thread.prof.name",
func, line);
assert_str_eq(thread_name_old, thread_name_expected,
"%s():%d: Unexpected thread.prof.name value", func, line);
}
#define mallctl_thread_name_get(a) \
mallctl_thread_name_get_impl(a, __func__, __LINE__)
static void
mallctl_thread_name_set_impl(const char *thread_name, const char *func,
int line)
{
assert_d_eq(mallctl("thread.prof.name", NULL, NULL,
(void *)&thread_name, sizeof(thread_name)), 0,
"%s():%d: Unexpected mallctl failure reading thread.prof.name",
func, line);
mallctl_thread_name_get_impl(thread_name, func, line);
}
#define mallctl_thread_name_set(a) \
mallctl_thread_name_set_impl(a, __func__, __LINE__)
TEST_BEGIN(test_prof_thread_name_validation)
{
const char *thread_name;
test_skip_if(!config_prof);
mallctl_thread_name_get("");
mallctl_thread_name_set("hi there");
/* NULL input shouldn't be allowed. */
thread_name = NULL;
assert_d_eq(mallctl("thread.prof.name", NULL, NULL,
(void *)&thread_name, sizeof(thread_name)), EFAULT,
"Unexpected mallctl result writing \"%s\" to thread.prof.name",
thread_name);
/* '\n' shouldn't be allowed. */
thread_name = "hi\nthere";
assert_d_eq(mallctl("thread.prof.name", NULL, NULL,
(void *)&thread_name, sizeof(thread_name)), EFAULT,
"Unexpected mallctl result writing \"%s\" to thread.prof.name",
thread_name);
/* Simultaneous read/write shouldn't be allowed. */
{
const char *thread_name_old;
size_t sz;
sz = sizeof(thread_name_old);
assert_d_eq(mallctl("thread.prof.name",
(void *)&thread_name_old, &sz, (void *)&thread_name,
sizeof(thread_name)), EPERM,
"Unexpected mallctl result writing \"%s\" to "
"thread.prof.name", thread_name);
}
mallctl_thread_name_set("");
}
TEST_END
#define NTHREADS 4
#define NRESET 25
static void *
thd_start(void *varg)
{
unsigned thd_ind = *(unsigned *)varg;
char thread_name[16] = "";
unsigned i;
malloc_snprintf(thread_name, sizeof(thread_name), "thread %u", thd_ind);
mallctl_thread_name_get("");
mallctl_thread_name_set(thread_name);
for (i = 0; i < NRESET; i++) {
assert_d_eq(mallctl("prof.reset", NULL, NULL, NULL, 0), 0,
"Unexpected error while resetting heap profile data");
mallctl_thread_name_get(thread_name);
}
mallctl_thread_name_set(thread_name);
mallctl_thread_name_set("");
return (NULL);
}
TEST_BEGIN(test_prof_thread_name_threaded)
{
thd_t thds[NTHREADS];
unsigned thd_args[NTHREADS];
unsigned i;
test_skip_if(!config_prof);
for (i = 0; i < NTHREADS; i++) {
thd_args[i] = i;
thd_create(&thds[i], thd_start, (void *)&thd_args[i]);
}
for (i = 0; i < NTHREADS; i++)
thd_join(thds[i], NULL);
}
TEST_END
#undef NTHREADS
#undef NRESET
int
main(void)
{
return (test(
test_prof_thread_name_validation,
test_prof_thread_name_threaded));
}
| 3,300 | 24.007576 | 80 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/arena_reset.c | #include "test/jemalloc_test.h"
#ifdef JEMALLOC_PROF
const char *malloc_conf = "prof:true,lg_prof_sample:0";
#endif
static unsigned
get_nsizes_impl(const char *cmd)
{
unsigned ret;
size_t z;
z = sizeof(unsigned);
assert_d_eq(mallctl(cmd, (void *)&ret, &z, NULL, 0), 0,
"Unexpected mallctl(\"%s\", ...) failure", cmd);
return (ret);
}
static unsigned
get_nsmall(void)
{
return (get_nsizes_impl("arenas.nbins"));
}
static unsigned
get_nlarge(void)
{
return (get_nsizes_impl("arenas.nlruns"));
}
static unsigned
get_nhuge(void)
{
return (get_nsizes_impl("arenas.nhchunks"));
}
static size_t
get_size_impl(const char *cmd, size_t ind)
{
size_t ret;
size_t z;
size_t mib[4];
size_t miblen = 4;
z = sizeof(size_t);
assert_d_eq(mallctlnametomib(cmd, mib, &miblen),
0, "Unexpected mallctlnametomib(\"%s\", ...) failure", cmd);
mib[2] = ind;
z = sizeof(size_t);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&ret, &z, NULL, 0),
0, "Unexpected mallctlbymib([\"%s\", %zu], ...) failure", cmd, ind);
return (ret);
}
static size_t
get_small_size(size_t ind)
{
return (get_size_impl("arenas.bin.0.size", ind));
}
static size_t
get_large_size(size_t ind)
{
return (get_size_impl("arenas.lrun.0.size", ind));
}
static size_t
get_huge_size(size_t ind)
{
return (get_size_impl("arenas.hchunk.0.size", ind));
}
TEST_BEGIN(test_arena_reset)
{
#define NHUGE 4
unsigned arena_ind, nsmall, nlarge, nhuge, nptrs, i;
size_t sz, miblen;
void **ptrs;
int flags;
size_t mib[3];
tsdn_t *tsdn;
test_skip_if((config_valgrind && unlikely(in_valgrind)) || (config_fill
&& unlikely(opt_quarantine)));
sz = sizeof(unsigned);
assert_d_eq(mallctl("arenas.extend", (void *)&arena_ind, &sz, NULL, 0),
0, "Unexpected mallctl() failure");
flags = MALLOCX_ARENA(arena_ind) | MALLOCX_TCACHE_NONE;
nsmall = get_nsmall();
nlarge = get_nlarge();
nhuge = get_nhuge() > NHUGE ? NHUGE : get_nhuge();
nptrs = nsmall + nlarge + nhuge;
ptrs = (void **)malloc(nptrs * sizeof(void *));
assert_ptr_not_null(ptrs, "Unexpected malloc() failure");
/* Allocate objects with a wide range of sizes. */
for (i = 0; i < nsmall; i++) {
sz = get_small_size(i);
ptrs[i] = mallocx(sz, flags);
assert_ptr_not_null(ptrs[i],
"Unexpected mallocx(%zu, %#x) failure", sz, flags);
}
for (i = 0; i < nlarge; i++) {
sz = get_large_size(i);
ptrs[nsmall + i] = mallocx(sz, flags);
assert_ptr_not_null(ptrs[i],
"Unexpected mallocx(%zu, %#x) failure", sz, flags);
}
for (i = 0; i < nhuge; i++) {
sz = get_huge_size(i);
ptrs[nsmall + nlarge + i] = mallocx(sz, flags);
assert_ptr_not_null(ptrs[i],
"Unexpected mallocx(%zu, %#x) failure", sz, flags);
}
tsdn = tsdn_fetch();
/* Verify allocations. */
for (i = 0; i < nptrs; i++) {
assert_zu_gt(ivsalloc(tsdn, ptrs[i], false), 0,
"Allocation should have queryable size");
}
/* Reset. */
miblen = sizeof(mib)/sizeof(size_t);
assert_d_eq(mallctlnametomib("arena.0.reset", mib, &miblen), 0,
"Unexpected mallctlnametomib() failure");
mib[1] = (size_t)arena_ind;
assert_d_eq(mallctlbymib(mib, miblen, NULL, NULL, NULL, 0), 0,
"Unexpected mallctlbymib() failure");
/* Verify allocations no longer exist. */
for (i = 0; i < nptrs; i++) {
assert_zu_eq(ivsalloc(tsdn, ptrs[i], false), 0,
"Allocation should no longer exist");
}
free(ptrs);
}
TEST_END
int
main(void)
{
return (test(
test_arena_reset));
}
| 3,442 | 20.51875 | 73 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/witness.c | #include "test/jemalloc_test.h"
static witness_lock_error_t *witness_lock_error_orig;
static witness_owner_error_t *witness_owner_error_orig;
static witness_not_owner_error_t *witness_not_owner_error_orig;
static witness_lockless_error_t *witness_lockless_error_orig;
static bool saw_lock_error;
static bool saw_owner_error;
static bool saw_not_owner_error;
static bool saw_lockless_error;
static void
witness_lock_error_intercept(const witness_list_t *witnesses,
const witness_t *witness)
{
saw_lock_error = true;
}
static void
witness_owner_error_intercept(const witness_t *witness)
{
saw_owner_error = true;
}
static void
witness_not_owner_error_intercept(const witness_t *witness)
{
saw_not_owner_error = true;
}
static void
witness_lockless_error_intercept(const witness_list_t *witnesses)
{
saw_lockless_error = true;
}
static int
witness_comp(const witness_t *a, const witness_t *b)
{
assert_u_eq(a->rank, b->rank, "Witnesses should have equal rank");
return (strcmp(a->name, b->name));
}
static int
witness_comp_reverse(const witness_t *a, const witness_t *b)
{
assert_u_eq(a->rank, b->rank, "Witnesses should have equal rank");
return (-strcmp(a->name, b->name));
}
TEST_BEGIN(test_witness)
{
witness_t a, b;
tsdn_t *tsdn;
test_skip_if(!config_debug);
tsdn = tsdn_fetch();
witness_assert_lockless(tsdn);
witness_init(&a, "a", 1, NULL);
witness_assert_not_owner(tsdn, &a);
witness_lock(tsdn, &a);
witness_assert_owner(tsdn, &a);
witness_init(&b, "b", 2, NULL);
witness_assert_not_owner(tsdn, &b);
witness_lock(tsdn, &b);
witness_assert_owner(tsdn, &b);
witness_unlock(tsdn, &a);
witness_unlock(tsdn, &b);
witness_assert_lockless(tsdn);
}
TEST_END
TEST_BEGIN(test_witness_comp)
{
witness_t a, b, c, d;
tsdn_t *tsdn;
test_skip_if(!config_debug);
tsdn = tsdn_fetch();
witness_assert_lockless(tsdn);
witness_init(&a, "a", 1, witness_comp);
witness_assert_not_owner(tsdn, &a);
witness_lock(tsdn, &a);
witness_assert_owner(tsdn, &a);
witness_init(&b, "b", 1, witness_comp);
witness_assert_not_owner(tsdn, &b);
witness_lock(tsdn, &b);
witness_assert_owner(tsdn, &b);
witness_unlock(tsdn, &b);
witness_lock_error_orig = witness_lock_error;
witness_lock_error = witness_lock_error_intercept;
saw_lock_error = false;
witness_init(&c, "c", 1, witness_comp_reverse);
witness_assert_not_owner(tsdn, &c);
assert_false(saw_lock_error, "Unexpected witness lock error");
witness_lock(tsdn, &c);
assert_true(saw_lock_error, "Expected witness lock error");
witness_unlock(tsdn, &c);
saw_lock_error = false;
witness_init(&d, "d", 1, NULL);
witness_assert_not_owner(tsdn, &d);
assert_false(saw_lock_error, "Unexpected witness lock error");
witness_lock(tsdn, &d);
assert_true(saw_lock_error, "Expected witness lock error");
witness_unlock(tsdn, &d);
witness_unlock(tsdn, &a);
witness_assert_lockless(tsdn);
witness_lock_error = witness_lock_error_orig;
}
TEST_END
TEST_BEGIN(test_witness_reversal)
{
witness_t a, b;
tsdn_t *tsdn;
test_skip_if(!config_debug);
witness_lock_error_orig = witness_lock_error;
witness_lock_error = witness_lock_error_intercept;
saw_lock_error = false;
tsdn = tsdn_fetch();
witness_assert_lockless(tsdn);
witness_init(&a, "a", 1, NULL);
witness_init(&b, "b", 2, NULL);
witness_lock(tsdn, &b);
assert_false(saw_lock_error, "Unexpected witness lock error");
witness_lock(tsdn, &a);
assert_true(saw_lock_error, "Expected witness lock error");
witness_unlock(tsdn, &a);
witness_unlock(tsdn, &b);
witness_assert_lockless(tsdn);
witness_lock_error = witness_lock_error_orig;
}
TEST_END
TEST_BEGIN(test_witness_recursive)
{
witness_t a;
tsdn_t *tsdn;
test_skip_if(!config_debug);
witness_not_owner_error_orig = witness_not_owner_error;
witness_not_owner_error = witness_not_owner_error_intercept;
saw_not_owner_error = false;
witness_lock_error_orig = witness_lock_error;
witness_lock_error = witness_lock_error_intercept;
saw_lock_error = false;
tsdn = tsdn_fetch();
witness_assert_lockless(tsdn);
witness_init(&a, "a", 1, NULL);
witness_lock(tsdn, &a);
assert_false(saw_lock_error, "Unexpected witness lock error");
assert_false(saw_not_owner_error, "Unexpected witness not owner error");
witness_lock(tsdn, &a);
assert_true(saw_lock_error, "Expected witness lock error");
assert_true(saw_not_owner_error, "Expected witness not owner error");
witness_unlock(tsdn, &a);
witness_assert_lockless(tsdn);
witness_owner_error = witness_owner_error_orig;
witness_lock_error = witness_lock_error_orig;
}
TEST_END
TEST_BEGIN(test_witness_unlock_not_owned)
{
witness_t a;
tsdn_t *tsdn;
test_skip_if(!config_debug);
witness_owner_error_orig = witness_owner_error;
witness_owner_error = witness_owner_error_intercept;
saw_owner_error = false;
tsdn = tsdn_fetch();
witness_assert_lockless(tsdn);
witness_init(&a, "a", 1, NULL);
assert_false(saw_owner_error, "Unexpected owner error");
witness_unlock(tsdn, &a);
assert_true(saw_owner_error, "Expected owner error");
witness_assert_lockless(tsdn);
witness_owner_error = witness_owner_error_orig;
}
TEST_END
TEST_BEGIN(test_witness_lockful)
{
witness_t a;
tsdn_t *tsdn;
test_skip_if(!config_debug);
witness_lockless_error_orig = witness_lockless_error;
witness_lockless_error = witness_lockless_error_intercept;
saw_lockless_error = false;
tsdn = tsdn_fetch();
witness_assert_lockless(tsdn);
witness_init(&a, "a", 1, NULL);
assert_false(saw_lockless_error, "Unexpected lockless error");
witness_assert_lockless(tsdn);
witness_lock(tsdn, &a);
witness_assert_lockless(tsdn);
assert_true(saw_lockless_error, "Expected lockless error");
witness_unlock(tsdn, &a);
witness_assert_lockless(tsdn);
witness_lockless_error = witness_lockless_error_orig;
}
TEST_END
int
main(void)
{
return (test(
test_witness,
test_witness_comp,
test_witness_reversal,
test_witness_recursive,
test_witness_unlock_not_owned,
test_witness_lockful));
}
| 6,010 | 20.544803 | 73 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/rb.c | #include "test/jemalloc_test.h"
#define rbtn_black_height(a_type, a_field, a_rbt, r_height) do { \
a_type *rbp_bh_t; \
for (rbp_bh_t = (a_rbt)->rbt_root, (r_height) = 0; \
rbp_bh_t != NULL; \
rbp_bh_t = rbtn_left_get(a_type, a_field, rbp_bh_t)) { \
if (!rbtn_red_get(a_type, a_field, rbp_bh_t)) { \
(r_height)++; \
} \
} \
} while (0)
typedef struct node_s node_t;
struct node_s {
#define NODE_MAGIC 0x9823af7e
uint32_t magic;
rb_node(node_t) link;
uint64_t key;
};
static int
node_cmp(const node_t *a, const node_t *b) {
int ret;
assert_u32_eq(a->magic, NODE_MAGIC, "Bad magic");
assert_u32_eq(b->magic, NODE_MAGIC, "Bad magic");
ret = (a->key > b->key) - (a->key < b->key);
if (ret == 0) {
/*
* Duplicates are not allowed in the tree, so force an
* arbitrary ordering for non-identical items with equal keys.
*/
ret = (((uintptr_t)a) > ((uintptr_t)b))
- (((uintptr_t)a) < ((uintptr_t)b));
}
return (ret);
}
typedef rb_tree(node_t) tree_t;
rb_gen(static, tree_, tree_t, node_t, link, node_cmp);
TEST_BEGIN(test_rb_empty)
{
tree_t tree;
node_t key;
tree_new(&tree);
assert_true(tree_empty(&tree), "Tree should be empty");
assert_ptr_null(tree_first(&tree), "Unexpected node");
assert_ptr_null(tree_last(&tree), "Unexpected node");
key.key = 0;
key.magic = NODE_MAGIC;
assert_ptr_null(tree_search(&tree, &key), "Unexpected node");
key.key = 0;
key.magic = NODE_MAGIC;
assert_ptr_null(tree_nsearch(&tree, &key), "Unexpected node");
key.key = 0;
key.magic = NODE_MAGIC;
assert_ptr_null(tree_psearch(&tree, &key), "Unexpected node");
}
TEST_END
static unsigned
tree_recurse(node_t *node, unsigned black_height, unsigned black_depth)
{
unsigned ret = 0;
node_t *left_node;
node_t *right_node;
if (node == NULL)
return (ret);
left_node = rbtn_left_get(node_t, link, node);
right_node = rbtn_right_get(node_t, link, node);
if (!rbtn_red_get(node_t, link, node))
black_depth++;
/* Red nodes must be interleaved with black nodes. */
if (rbtn_red_get(node_t, link, node)) {
if (left_node != NULL)
assert_false(rbtn_red_get(node_t, link, left_node),
"Node should be black");
if (right_node != NULL)
assert_false(rbtn_red_get(node_t, link, right_node),
"Node should be black");
}
/* Self. */
assert_u32_eq(node->magic, NODE_MAGIC, "Bad magic");
/* Left subtree. */
if (left_node != NULL)
ret += tree_recurse(left_node, black_height, black_depth);
else
ret += (black_depth != black_height);
/* Right subtree. */
if (right_node != NULL)
ret += tree_recurse(right_node, black_height, black_depth);
else
ret += (black_depth != black_height);
return (ret);
}
static node_t *
tree_iterate_cb(tree_t *tree, node_t *node, void *data)
{
unsigned *i = (unsigned *)data;
node_t *search_node;
assert_u32_eq(node->magic, NODE_MAGIC, "Bad magic");
/* Test rb_search(). */
search_node = tree_search(tree, node);
assert_ptr_eq(search_node, node,
"tree_search() returned unexpected node");
/* Test rb_nsearch(). */
search_node = tree_nsearch(tree, node);
assert_ptr_eq(search_node, node,
"tree_nsearch() returned unexpected node");
/* Test rb_psearch(). */
search_node = tree_psearch(tree, node);
assert_ptr_eq(search_node, node,
"tree_psearch() returned unexpected node");
(*i)++;
return (NULL);
}
static unsigned
tree_iterate(tree_t *tree)
{
unsigned i;
i = 0;
tree_iter(tree, NULL, tree_iterate_cb, (void *)&i);
return (i);
}
static unsigned
tree_iterate_reverse(tree_t *tree)
{
unsigned i;
i = 0;
tree_reverse_iter(tree, NULL, tree_iterate_cb, (void *)&i);
return (i);
}
static void
node_remove(tree_t *tree, node_t *node, unsigned nnodes)
{
node_t *search_node;
unsigned black_height, imbalances;
tree_remove(tree, node);
/* Test rb_nsearch(). */
search_node = tree_nsearch(tree, node);
if (search_node != NULL) {
assert_u64_ge(search_node->key, node->key,
"Key ordering error");
}
/* Test rb_psearch(). */
search_node = tree_psearch(tree, node);
if (search_node != NULL) {
assert_u64_le(search_node->key, node->key,
"Key ordering error");
}
node->magic = 0;
rbtn_black_height(node_t, link, tree, black_height);
imbalances = tree_recurse(tree->rbt_root, black_height, 0);
assert_u_eq(imbalances, 0, "Tree is unbalanced");
assert_u_eq(tree_iterate(tree), nnodes-1,
"Unexpected node iteration count");
assert_u_eq(tree_iterate_reverse(tree), nnodes-1,
"Unexpected node iteration count");
}
static node_t *
remove_iterate_cb(tree_t *tree, node_t *node, void *data)
{
unsigned *nnodes = (unsigned *)data;
node_t *ret = tree_next(tree, node);
node_remove(tree, node, *nnodes);
return (ret);
}
static node_t *
remove_reverse_iterate_cb(tree_t *tree, node_t *node, void *data)
{
unsigned *nnodes = (unsigned *)data;
node_t *ret = tree_prev(tree, node);
node_remove(tree, node, *nnodes);
return (ret);
}
static void
destroy_cb(node_t *node, void *data)
{
unsigned *nnodes = (unsigned *)data;
assert_u_gt(*nnodes, 0, "Destruction removed too many nodes");
(*nnodes)--;
}
TEST_BEGIN(test_rb_random)
{
#define NNODES 25
#define NBAGS 250
#define SEED 42
sfmt_t *sfmt;
uint64_t bag[NNODES];
tree_t tree;
node_t nodes[NNODES];
unsigned i, j, k, black_height, imbalances;
sfmt = init_gen_rand(SEED);
for (i = 0; i < NBAGS; i++) {
switch (i) {
case 0:
/* Insert in order. */
for (j = 0; j < NNODES; j++)
bag[j] = j;
break;
case 1:
/* Insert in reverse order. */
for (j = 0; j < NNODES; j++)
bag[j] = NNODES - j - 1;
break;
default:
for (j = 0; j < NNODES; j++)
bag[j] = gen_rand64_range(sfmt, NNODES);
}
for (j = 1; j <= NNODES; j++) {
/* Initialize tree and nodes. */
tree_new(&tree);
for (k = 0; k < j; k++) {
nodes[k].magic = NODE_MAGIC;
nodes[k].key = bag[k];
}
/* Insert nodes. */
for (k = 0; k < j; k++) {
tree_insert(&tree, &nodes[k]);
rbtn_black_height(node_t, link, &tree,
black_height);
imbalances = tree_recurse(tree.rbt_root,
black_height, 0);
assert_u_eq(imbalances, 0,
"Tree is unbalanced");
assert_u_eq(tree_iterate(&tree), k+1,
"Unexpected node iteration count");
assert_u_eq(tree_iterate_reverse(&tree), k+1,
"Unexpected node iteration count");
assert_false(tree_empty(&tree),
"Tree should not be empty");
assert_ptr_not_null(tree_first(&tree),
"Tree should not be empty");
assert_ptr_not_null(tree_last(&tree),
"Tree should not be empty");
tree_next(&tree, &nodes[k]);
tree_prev(&tree, &nodes[k]);
}
/* Remove nodes. */
switch (i % 5) {
case 0:
for (k = 0; k < j; k++)
node_remove(&tree, &nodes[k], j - k);
break;
case 1:
for (k = j; k > 0; k--)
node_remove(&tree, &nodes[k-1], k);
break;
case 2: {
node_t *start;
unsigned nnodes = j;
start = NULL;
do {
start = tree_iter(&tree, start,
remove_iterate_cb, (void *)&nnodes);
nnodes--;
} while (start != NULL);
assert_u_eq(nnodes, 0,
"Removal terminated early");
break;
} case 3: {
node_t *start;
unsigned nnodes = j;
start = NULL;
do {
start = tree_reverse_iter(&tree, start,
remove_reverse_iterate_cb,
(void *)&nnodes);
nnodes--;
} while (start != NULL);
assert_u_eq(nnodes, 0,
"Removal terminated early");
break;
} case 4: {
unsigned nnodes = j;
tree_destroy(&tree, destroy_cb, &nnodes);
assert_u_eq(nnodes, 0,
"Destruction terminated early");
break;
} default:
not_reached();
}
}
}
fini_gen_rand(sfmt);
#undef NNODES
#undef NBAGS
#undef SEED
}
TEST_END
int
main(void)
{
return (test(
test_rb_empty,
test_rb_random));
}
| 7,865 | 21.157746 | 71 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/util.c | #include "test/jemalloc_test.h"
#define TEST_POW2_CEIL(t, suf, pri) do { \
unsigned i, pow2; \
t x; \
\
assert_##suf##_eq(pow2_ceil_##suf(0), 0, "Unexpected result"); \
\
for (i = 0; i < sizeof(t) * 8; i++) { \
assert_##suf##_eq(pow2_ceil_##suf(((t)1) << i), ((t)1) \
<< i, "Unexpected result"); \
} \
\
for (i = 2; i < sizeof(t) * 8; i++) { \
assert_##suf##_eq(pow2_ceil_##suf((((t)1) << i) - 1), \
((t)1) << i, "Unexpected result"); \
} \
\
for (i = 0; i < sizeof(t) * 8 - 1; i++) { \
assert_##suf##_eq(pow2_ceil_##suf((((t)1) << i) + 1), \
((t)1) << (i+1), "Unexpected result"); \
} \
\
for (pow2 = 1; pow2 < 25; pow2++) { \
for (x = (((t)1) << (pow2-1)) + 1; x <= ((t)1) << pow2; \
x++) { \
assert_##suf##_eq(pow2_ceil_##suf(x), \
((t)1) << pow2, \
"Unexpected result, x=%"pri, x); \
} \
} \
} while (0)
TEST_BEGIN(test_pow2_ceil_u64)
{
TEST_POW2_CEIL(uint64_t, u64, FMTu64);
}
TEST_END
TEST_BEGIN(test_pow2_ceil_u32)
{
TEST_POW2_CEIL(uint32_t, u32, FMTu32);
}
TEST_END
TEST_BEGIN(test_pow2_ceil_zu)
{
TEST_POW2_CEIL(size_t, zu, "zu");
}
TEST_END
TEST_BEGIN(test_malloc_strtoumax_no_endptr)
{
int err;
set_errno(0);
assert_ju_eq(malloc_strtoumax("0", NULL, 0), 0, "Unexpected result");
err = get_errno();
assert_d_eq(err, 0, "Unexpected failure");
}
TEST_END
TEST_BEGIN(test_malloc_strtoumax)
{
struct test_s {
const char *input;
const char *expected_remainder;
int base;
int expected_errno;
const char *expected_errno_name;
uintmax_t expected_x;
};
#define ERR(e) e, #e
#define KUMAX(x) ((uintmax_t)x##ULL)
#define KSMAX(x) ((uintmax_t)(intmax_t)x##LL)
struct test_s tests[] = {
{"0", "0", -1, ERR(EINVAL), UINTMAX_MAX},
{"0", "0", 1, ERR(EINVAL), UINTMAX_MAX},
{"0", "0", 37, ERR(EINVAL), UINTMAX_MAX},
{"", "", 0, ERR(EINVAL), UINTMAX_MAX},
{"+", "+", 0, ERR(EINVAL), UINTMAX_MAX},
{"++3", "++3", 0, ERR(EINVAL), UINTMAX_MAX},
{"-", "-", 0, ERR(EINVAL), UINTMAX_MAX},
{"42", "", 0, ERR(0), KUMAX(42)},
{"+42", "", 0, ERR(0), KUMAX(42)},
{"-42", "", 0, ERR(0), KSMAX(-42)},
{"042", "", 0, ERR(0), KUMAX(042)},
{"+042", "", 0, ERR(0), KUMAX(042)},
{"-042", "", 0, ERR(0), KSMAX(-042)},
{"0x42", "", 0, ERR(0), KUMAX(0x42)},
{"+0x42", "", 0, ERR(0), KUMAX(0x42)},
{"-0x42", "", 0, ERR(0), KSMAX(-0x42)},
{"0", "", 0, ERR(0), KUMAX(0)},
{"1", "", 0, ERR(0), KUMAX(1)},
{"42", "", 0, ERR(0), KUMAX(42)},
{" 42", "", 0, ERR(0), KUMAX(42)},
{"42 ", " ", 0, ERR(0), KUMAX(42)},
{"0x", "x", 0, ERR(0), KUMAX(0)},
{"42x", "x", 0, ERR(0), KUMAX(42)},
{"07", "", 0, ERR(0), KUMAX(7)},
{"010", "", 0, ERR(0), KUMAX(8)},
{"08", "8", 0, ERR(0), KUMAX(0)},
{"0_", "_", 0, ERR(0), KUMAX(0)},
{"0x", "x", 0, ERR(0), KUMAX(0)},
{"0X", "X", 0, ERR(0), KUMAX(0)},
{"0xg", "xg", 0, ERR(0), KUMAX(0)},
{"0XA", "", 0, ERR(0), KUMAX(10)},
{"010", "", 10, ERR(0), KUMAX(10)},
{"0x3", "x3", 10, ERR(0), KUMAX(0)},
{"12", "2", 2, ERR(0), KUMAX(1)},
{"78", "8", 8, ERR(0), KUMAX(7)},
{"9a", "a", 10, ERR(0), KUMAX(9)},
{"9A", "A", 10, ERR(0), KUMAX(9)},
{"fg", "g", 16, ERR(0), KUMAX(15)},
{"FG", "G", 16, ERR(0), KUMAX(15)},
{"0xfg", "g", 16, ERR(0), KUMAX(15)},
{"0XFG", "G", 16, ERR(0), KUMAX(15)},
{"z_", "_", 36, ERR(0), KUMAX(35)},
{"Z_", "_", 36, ERR(0), KUMAX(35)}
};
#undef ERR
#undef KUMAX
#undef KSMAX
unsigned i;
for (i = 0; i < sizeof(tests)/sizeof(struct test_s); i++) {
struct test_s *test = &tests[i];
int err;
uintmax_t result;
char *remainder;
set_errno(0);
result = malloc_strtoumax(test->input, &remainder, test->base);
err = get_errno();
assert_d_eq(err, test->expected_errno,
"Expected errno %s for \"%s\", base %d",
test->expected_errno_name, test->input, test->base);
assert_str_eq(remainder, test->expected_remainder,
"Unexpected remainder for \"%s\", base %d",
test->input, test->base);
if (err == 0) {
assert_ju_eq(result, test->expected_x,
"Unexpected result for \"%s\", base %d",
test->input, test->base);
}
}
}
TEST_END
TEST_BEGIN(test_malloc_snprintf_truncated)
{
#define BUFLEN 15
char buf[BUFLEN];
size_t result;
size_t len;
#define TEST(expected_str_untruncated, ...) do { \
result = malloc_snprintf(buf, len, __VA_ARGS__); \
assert_d_eq(strncmp(buf, expected_str_untruncated, len-1), 0, \
"Unexpected string inequality (\"%s\" vs \"%s\")", \
buf, expected_str_untruncated); \
assert_zu_eq(result, strlen(expected_str_untruncated), \
"Unexpected result"); \
} while (0)
for (len = 1; len < BUFLEN; len++) {
TEST("012346789", "012346789");
TEST("a0123b", "a%sb", "0123");
TEST("a01234567", "a%s%s", "0123", "4567");
TEST("a0123 ", "a%-6s", "0123");
TEST("a 0123", "a%6s", "0123");
TEST("a 012", "a%6.3s", "0123");
TEST("a 012", "a%*.*s", 6, 3, "0123");
TEST("a 123b", "a% db", 123);
TEST("a123b", "a%-db", 123);
TEST("a-123b", "a%-db", -123);
TEST("a+123b", "a%+db", 123);
}
#undef BUFLEN
#undef TEST
}
TEST_END
TEST_BEGIN(test_malloc_snprintf)
{
#define BUFLEN 128
char buf[BUFLEN];
size_t result;
#define TEST(expected_str, ...) do { \
result = malloc_snprintf(buf, sizeof(buf), __VA_ARGS__); \
assert_str_eq(buf, expected_str, "Unexpected output"); \
assert_zu_eq(result, strlen(expected_str), "Unexpected result");\
} while (0)
TEST("hello", "hello");
TEST("50%, 100%", "50%%, %d%%", 100);
TEST("a0123b", "a%sb", "0123");
TEST("a 0123b", "a%5sb", "0123");
TEST("a 0123b", "a%*sb", 5, "0123");
TEST("a0123 b", "a%-5sb", "0123");
TEST("a0123b", "a%*sb", -1, "0123");
TEST("a0123 b", "a%*sb", -5, "0123");
TEST("a0123 b", "a%-*sb", -5, "0123");
TEST("a012b", "a%.3sb", "0123");
TEST("a012b", "a%.*sb", 3, "0123");
TEST("a0123b", "a%.*sb", -3, "0123");
TEST("a 012b", "a%5.3sb", "0123");
TEST("a 012b", "a%5.*sb", 3, "0123");
TEST("a 012b", "a%*.3sb", 5, "0123");
TEST("a 012b", "a%*.*sb", 5, 3, "0123");
TEST("a 0123b", "a%*.*sb", 5, -3, "0123");
TEST("_abcd_", "_%x_", 0xabcd);
TEST("_0xabcd_", "_%#x_", 0xabcd);
TEST("_1234_", "_%o_", 01234);
TEST("_01234_", "_%#o_", 01234);
TEST("_1234_", "_%u_", 1234);
TEST("_1234_", "_%d_", 1234);
TEST("_ 1234_", "_% d_", 1234);
TEST("_+1234_", "_%+d_", 1234);
TEST("_-1234_", "_%d_", -1234);
TEST("_-1234_", "_% d_", -1234);
TEST("_-1234_", "_%+d_", -1234);
TEST("_-1234_", "_%d_", -1234);
TEST("_1234_", "_%d_", 1234);
TEST("_-1234_", "_%i_", -1234);
TEST("_1234_", "_%i_", 1234);
TEST("_01234_", "_%#o_", 01234);
TEST("_1234_", "_%u_", 1234);
TEST("_0x1234abc_", "_%#x_", 0x1234abc);
TEST("_0X1234ABC_", "_%#X_", 0x1234abc);
TEST("_c_", "_%c_", 'c');
TEST("_string_", "_%s_", "string");
TEST("_0x42_", "_%p_", ((void *)0x42));
TEST("_-1234_", "_%ld_", ((long)-1234));
TEST("_1234_", "_%ld_", ((long)1234));
TEST("_-1234_", "_%li_", ((long)-1234));
TEST("_1234_", "_%li_", ((long)1234));
TEST("_01234_", "_%#lo_", ((long)01234));
TEST("_1234_", "_%lu_", ((long)1234));
TEST("_0x1234abc_", "_%#lx_", ((long)0x1234abc));
TEST("_0X1234ABC_", "_%#lX_", ((long)0x1234ABC));
TEST("_-1234_", "_%lld_", ((long long)-1234));
TEST("_1234_", "_%lld_", ((long long)1234));
TEST("_-1234_", "_%lli_", ((long long)-1234));
TEST("_1234_", "_%lli_", ((long long)1234));
TEST("_01234_", "_%#llo_", ((long long)01234));
TEST("_1234_", "_%llu_", ((long long)1234));
TEST("_0x1234abc_", "_%#llx_", ((long long)0x1234abc));
TEST("_0X1234ABC_", "_%#llX_", ((long long)0x1234ABC));
TEST("_-1234_", "_%qd_", ((long long)-1234));
TEST("_1234_", "_%qd_", ((long long)1234));
TEST("_-1234_", "_%qi_", ((long long)-1234));
TEST("_1234_", "_%qi_", ((long long)1234));
TEST("_01234_", "_%#qo_", ((long long)01234));
TEST("_1234_", "_%qu_", ((long long)1234));
TEST("_0x1234abc_", "_%#qx_", ((long long)0x1234abc));
TEST("_0X1234ABC_", "_%#qX_", ((long long)0x1234ABC));
TEST("_-1234_", "_%jd_", ((intmax_t)-1234));
TEST("_1234_", "_%jd_", ((intmax_t)1234));
TEST("_-1234_", "_%ji_", ((intmax_t)-1234));
TEST("_1234_", "_%ji_", ((intmax_t)1234));
TEST("_01234_", "_%#jo_", ((intmax_t)01234));
TEST("_1234_", "_%ju_", ((intmax_t)1234));
TEST("_0x1234abc_", "_%#jx_", ((intmax_t)0x1234abc));
TEST("_0X1234ABC_", "_%#jX_", ((intmax_t)0x1234ABC));
TEST("_1234_", "_%td_", ((ptrdiff_t)1234));
TEST("_-1234_", "_%td_", ((ptrdiff_t)-1234));
TEST("_1234_", "_%ti_", ((ptrdiff_t)1234));
TEST("_-1234_", "_%ti_", ((ptrdiff_t)-1234));
TEST("_-1234_", "_%zd_", ((ssize_t)-1234));
TEST("_1234_", "_%zd_", ((ssize_t)1234));
TEST("_-1234_", "_%zi_", ((ssize_t)-1234));
TEST("_1234_", "_%zi_", ((ssize_t)1234));
TEST("_01234_", "_%#zo_", ((ssize_t)01234));
TEST("_1234_", "_%zu_", ((ssize_t)1234));
TEST("_0x1234abc_", "_%#zx_", ((ssize_t)0x1234abc));
TEST("_0X1234ABC_", "_%#zX_", ((ssize_t)0x1234ABC));
#undef BUFLEN
}
TEST_END
int
main(void)
{
return (test(
test_pow2_ceil_u64,
test_pow2_ceil_u32,
test_pow2_ceil_zu,
test_malloc_strtoumax_no_endptr,
test_malloc_strtoumax,
test_malloc_snprintf_truncated,
test_malloc_snprintf));
}
| 9,319 | 28.125 | 70 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/prng.c | #include "test/jemalloc_test.h"
static void
test_prng_lg_range_u32(bool atomic)
{
uint32_t sa, sb, ra, rb;
unsigned lg_range;
sa = 42;
ra = prng_lg_range_u32(&sa, 32, atomic);
sa = 42;
rb = prng_lg_range_u32(&sa, 32, atomic);
assert_u32_eq(ra, rb,
"Repeated generation should produce repeated results");
sb = 42;
rb = prng_lg_range_u32(&sb, 32, atomic);
assert_u32_eq(ra, rb,
"Equivalent generation should produce equivalent results");
sa = 42;
ra = prng_lg_range_u32(&sa, 32, atomic);
rb = prng_lg_range_u32(&sa, 32, atomic);
assert_u32_ne(ra, rb,
"Full-width results must not immediately repeat");
sa = 42;
ra = prng_lg_range_u32(&sa, 32, atomic);
for (lg_range = 31; lg_range > 0; lg_range--) {
sb = 42;
rb = prng_lg_range_u32(&sb, lg_range, atomic);
assert_u32_eq((rb & (UINT32_C(0xffffffff) << lg_range)),
0, "High order bits should be 0, lg_range=%u", lg_range);
assert_u32_eq(rb, (ra >> (32 - lg_range)),
"Expected high order bits of full-width result, "
"lg_range=%u", lg_range);
}
}
static void
test_prng_lg_range_u64(void)
{
uint64_t sa, sb, ra, rb;
unsigned lg_range;
sa = 42;
ra = prng_lg_range_u64(&sa, 64);
sa = 42;
rb = prng_lg_range_u64(&sa, 64);
assert_u64_eq(ra, rb,
"Repeated generation should produce repeated results");
sb = 42;
rb = prng_lg_range_u64(&sb, 64);
assert_u64_eq(ra, rb,
"Equivalent generation should produce equivalent results");
sa = 42;
ra = prng_lg_range_u64(&sa, 64);
rb = prng_lg_range_u64(&sa, 64);
assert_u64_ne(ra, rb,
"Full-width results must not immediately repeat");
sa = 42;
ra = prng_lg_range_u64(&sa, 64);
for (lg_range = 63; lg_range > 0; lg_range--) {
sb = 42;
rb = prng_lg_range_u64(&sb, lg_range);
assert_u64_eq((rb & (UINT64_C(0xffffffffffffffff) << lg_range)),
0, "High order bits should be 0, lg_range=%u", lg_range);
assert_u64_eq(rb, (ra >> (64 - lg_range)),
"Expected high order bits of full-width result, "
"lg_range=%u", lg_range);
}
}
static void
test_prng_lg_range_zu(bool atomic)
{
size_t sa, sb, ra, rb;
unsigned lg_range;
sa = 42;
ra = prng_lg_range_zu(&sa, ZU(1) << (3 + LG_SIZEOF_PTR), atomic);
sa = 42;
rb = prng_lg_range_zu(&sa, ZU(1) << (3 + LG_SIZEOF_PTR), atomic);
assert_zu_eq(ra, rb,
"Repeated generation should produce repeated results");
sb = 42;
rb = prng_lg_range_zu(&sb, ZU(1) << (3 + LG_SIZEOF_PTR), atomic);
assert_zu_eq(ra, rb,
"Equivalent generation should produce equivalent results");
sa = 42;
ra = prng_lg_range_zu(&sa, ZU(1) << (3 + LG_SIZEOF_PTR), atomic);
rb = prng_lg_range_zu(&sa, ZU(1) << (3 + LG_SIZEOF_PTR), atomic);
assert_zu_ne(ra, rb,
"Full-width results must not immediately repeat");
sa = 42;
ra = prng_lg_range_zu(&sa, ZU(1) << (3 + LG_SIZEOF_PTR), atomic);
for (lg_range = (ZU(1) << (3 + LG_SIZEOF_PTR)) - 1; lg_range > 0;
lg_range--) {
sb = 42;
rb = prng_lg_range_zu(&sb, lg_range, atomic);
assert_zu_eq((rb & (SIZE_T_MAX << lg_range)),
0, "High order bits should be 0, lg_range=%u", lg_range);
assert_zu_eq(rb, (ra >> ((ZU(1) << (3 + LG_SIZEOF_PTR)) -
lg_range)), "Expected high order bits of full-width "
"result, lg_range=%u", lg_range);
}
}
TEST_BEGIN(test_prng_lg_range_u32_nonatomic)
{
test_prng_lg_range_u32(false);
}
TEST_END
TEST_BEGIN(test_prng_lg_range_u32_atomic)
{
test_prng_lg_range_u32(true);
}
TEST_END
TEST_BEGIN(test_prng_lg_range_u64_nonatomic)
{
test_prng_lg_range_u64();
}
TEST_END
TEST_BEGIN(test_prng_lg_range_zu_nonatomic)
{
test_prng_lg_range_zu(false);
}
TEST_END
TEST_BEGIN(test_prng_lg_range_zu_atomic)
{
test_prng_lg_range_zu(true);
}
TEST_END
static void
test_prng_range_u32(bool atomic)
{
uint32_t range;
#define MAX_RANGE 10000000
#define RANGE_STEP 97
#define NREPS 10
for (range = 2; range < MAX_RANGE; range += RANGE_STEP) {
uint32_t s;
unsigned rep;
s = range;
for (rep = 0; rep < NREPS; rep++) {
uint32_t r = prng_range_u32(&s, range, atomic);
assert_u32_lt(r, range, "Out of range");
}
}
}
static void
test_prng_range_u64(void)
{
uint64_t range;
#define MAX_RANGE 10000000
#define RANGE_STEP 97
#define NREPS 10
for (range = 2; range < MAX_RANGE; range += RANGE_STEP) {
uint64_t s;
unsigned rep;
s = range;
for (rep = 0; rep < NREPS; rep++) {
uint64_t r = prng_range_u64(&s, range);
assert_u64_lt(r, range, "Out of range");
}
}
}
static void
test_prng_range_zu(bool atomic)
{
size_t range;
#define MAX_RANGE 10000000
#define RANGE_STEP 97
#define NREPS 10
for (range = 2; range < MAX_RANGE; range += RANGE_STEP) {
size_t s;
unsigned rep;
s = range;
for (rep = 0; rep < NREPS; rep++) {
size_t r = prng_range_zu(&s, range, atomic);
assert_zu_lt(r, range, "Out of range");
}
}
}
TEST_BEGIN(test_prng_range_u32_nonatomic)
{
test_prng_range_u32(false);
}
TEST_END
TEST_BEGIN(test_prng_range_u32_atomic)
{
test_prng_range_u32(true);
}
TEST_END
TEST_BEGIN(test_prng_range_u64_nonatomic)
{
test_prng_range_u64();
}
TEST_END
TEST_BEGIN(test_prng_range_zu_nonatomic)
{
test_prng_range_zu(false);
}
TEST_END
TEST_BEGIN(test_prng_range_zu_atomic)
{
test_prng_range_zu(true);
}
TEST_END
int
main(void)
{
return (test(
test_prng_lg_range_u32_nonatomic,
test_prng_lg_range_u32_atomic,
test_prng_lg_range_u64_nonatomic,
test_prng_lg_range_zu_nonatomic,
test_prng_lg_range_zu_atomic,
test_prng_range_u32_nonatomic,
test_prng_range_u32_atomic,
test_prng_range_u64_nonatomic,
test_prng_range_zu_nonatomic,
test_prng_range_zu_atomic));
}
| 5,611 | 20.257576 | 66 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/stats.c | #include "test/jemalloc_test.h"
TEST_BEGIN(test_stats_summary)
{
size_t *cactive;
size_t sz, allocated, active, resident, mapped;
int expected = config_stats ? 0 : ENOENT;
sz = sizeof(cactive);
assert_d_eq(mallctl("stats.cactive", (void *)&cactive, &sz, NULL, 0),
expected, "Unexpected mallctl() result");
sz = sizeof(size_t);
assert_d_eq(mallctl("stats.allocated", (void *)&allocated, &sz, NULL,
0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.active", (void *)&active, &sz, NULL, 0),
expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.resident", (void *)&resident, &sz, NULL, 0),
expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.mapped", (void *)&mapped, &sz, NULL, 0),
expected, "Unexpected mallctl() result");
if (config_stats) {
assert_zu_le(active, *cactive,
"active should be no larger than cactive");
assert_zu_le(allocated, active,
"allocated should be no larger than active");
assert_zu_lt(active, resident,
"active should be less than resident");
assert_zu_lt(active, mapped,
"active should be less than mapped");
}
}
TEST_END
TEST_BEGIN(test_stats_huge)
{
void *p;
uint64_t epoch;
size_t allocated;
uint64_t nmalloc, ndalloc, nrequests;
size_t sz;
int expected = config_stats ? 0 : ENOENT;
p = mallocx(large_maxclass+1, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch, sizeof(epoch)),
0, "Unexpected mallctl() failure");
sz = sizeof(size_t);
assert_d_eq(mallctl("stats.arenas.0.huge.allocated", (void *)&allocated,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.huge.nmalloc", (void *)&nmalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.huge.ndalloc", (void *)&ndalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.huge.nrequests", (void *)&nrequests,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
if (config_stats) {
assert_zu_gt(allocated, 0,
"allocated should be greater than zero");
assert_u64_ge(nmalloc, ndalloc,
"nmalloc should be at least as large as ndalloc");
assert_u64_le(nmalloc, nrequests,
"nmalloc should no larger than nrequests");
}
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_stats_arenas_summary)
{
unsigned arena;
void *little, *large, *huge;
uint64_t epoch;
size_t sz;
int expected = config_stats ? 0 : ENOENT;
size_t mapped;
uint64_t npurge, nmadvise, purged;
arena = 0;
assert_d_eq(mallctl("thread.arena", NULL, NULL, (void *)&arena,
sizeof(arena)), 0, "Unexpected mallctl() failure");
little = mallocx(SMALL_MAXCLASS, 0);
assert_ptr_not_null(little, "Unexpected mallocx() failure");
large = mallocx(large_maxclass, 0);
assert_ptr_not_null(large, "Unexpected mallocx() failure");
huge = mallocx(chunksize, 0);
assert_ptr_not_null(huge, "Unexpected mallocx() failure");
dallocx(little, 0);
dallocx(large, 0);
dallocx(huge, 0);
assert_d_eq(mallctl("arena.0.purge", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl() failure");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch, sizeof(epoch)),
0, "Unexpected mallctl() failure");
sz = sizeof(size_t);
assert_d_eq(mallctl("stats.arenas.0.mapped", (void *)&mapped, &sz, NULL,
0), expected, "Unexepected mallctl() result");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.npurge", (void *)&npurge, &sz, NULL,
0), expected, "Unexepected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.nmadvise", (void *)&nmadvise, &sz,
NULL, 0), expected, "Unexepected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.purged", (void *)&purged, &sz, NULL,
0), expected, "Unexepected mallctl() result");
if (config_stats) {
assert_u64_gt(npurge, 0,
"At least one purge should have occurred");
assert_u64_le(nmadvise, purged,
"nmadvise should be no greater than purged");
}
}
TEST_END
void *
thd_start(void *arg)
{
return (NULL);
}
static void
no_lazy_lock(void)
{
thd_t thd;
thd_create(&thd, thd_start, NULL);
thd_join(thd, NULL);
}
TEST_BEGIN(test_stats_arenas_small)
{
unsigned arena;
void *p;
size_t sz, allocated;
uint64_t epoch, nmalloc, ndalloc, nrequests;
int expected = config_stats ? 0 : ENOENT;
no_lazy_lock(); /* Lazy locking would dodge tcache testing. */
arena = 0;
assert_d_eq(mallctl("thread.arena", NULL, NULL, (void *)&arena,
sizeof(arena)), 0, "Unexpected mallctl() failure");
p = mallocx(SMALL_MAXCLASS, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_d_eq(mallctl("thread.tcache.flush", NULL, NULL, NULL, 0),
config_tcache ? 0 : ENOENT, "Unexpected mallctl() result");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch, sizeof(epoch)),
0, "Unexpected mallctl() failure");
sz = sizeof(size_t);
assert_d_eq(mallctl("stats.arenas.0.small.allocated",
(void *)&allocated, &sz, NULL, 0), expected,
"Unexpected mallctl() result");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.small.nmalloc", (void *)&nmalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.small.ndalloc", (void *)&ndalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.small.nrequests",
(void *)&nrequests, &sz, NULL, 0), expected,
"Unexpected mallctl() result");
if (config_stats) {
assert_zu_gt(allocated, 0,
"allocated should be greater than zero");
assert_u64_gt(nmalloc, 0,
"nmalloc should be no greater than zero");
assert_u64_ge(nmalloc, ndalloc,
"nmalloc should be at least as large as ndalloc");
assert_u64_gt(nrequests, 0,
"nrequests should be greater than zero");
}
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_stats_arenas_large)
{
unsigned arena;
void *p;
size_t sz, allocated;
uint64_t epoch, nmalloc, ndalloc, nrequests;
int expected = config_stats ? 0 : ENOENT;
arena = 0;
assert_d_eq(mallctl("thread.arena", NULL, NULL, (void *)&arena,
sizeof(arena)), 0, "Unexpected mallctl() failure");
p = mallocx(large_maxclass, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch, sizeof(epoch)),
0, "Unexpected mallctl() failure");
sz = sizeof(size_t);
assert_d_eq(mallctl("stats.arenas.0.large.allocated",
(void *)&allocated, &sz, NULL, 0), expected,
"Unexpected mallctl() result");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.large.nmalloc", (void *)&nmalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.large.ndalloc", (void *)&ndalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.large.nrequests",
(void *)&nrequests, &sz, NULL, 0), expected,
"Unexpected mallctl() result");
if (config_stats) {
assert_zu_gt(allocated, 0,
"allocated should be greater than zero");
assert_u64_gt(nmalloc, 0,
"nmalloc should be greater than zero");
assert_u64_ge(nmalloc, ndalloc,
"nmalloc should be at least as large as ndalloc");
assert_u64_gt(nrequests, 0,
"nrequests should be greater than zero");
}
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_stats_arenas_huge)
{
unsigned arena;
void *p;
size_t sz, allocated;
uint64_t epoch, nmalloc, ndalloc;
int expected = config_stats ? 0 : ENOENT;
arena = 0;
assert_d_eq(mallctl("thread.arena", NULL, NULL, (void *)&arena,
sizeof(arena)), 0, "Unexpected mallctl() failure");
p = mallocx(chunksize, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch, sizeof(epoch)),
0, "Unexpected mallctl() failure");
sz = sizeof(size_t);
assert_d_eq(mallctl("stats.arenas.0.huge.allocated", (void *)&allocated,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.huge.nmalloc", (void *)&nmalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.huge.ndalloc", (void *)&ndalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
if (config_stats) {
assert_zu_gt(allocated, 0,
"allocated should be greater than zero");
assert_u64_gt(nmalloc, 0,
"nmalloc should be greater than zero");
assert_u64_ge(nmalloc, ndalloc,
"nmalloc should be at least as large as ndalloc");
}
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_stats_arenas_bins)
{
unsigned arena;
void *p;
size_t sz, curruns, curregs;
uint64_t epoch, nmalloc, ndalloc, nrequests, nfills, nflushes;
uint64_t nruns, nreruns;
int expected = config_stats ? 0 : ENOENT;
arena = 0;
assert_d_eq(mallctl("thread.arena", NULL, NULL, (void *)&arena,
sizeof(arena)), 0, "Unexpected mallctl() failure");
p = mallocx(arena_bin_info[0].reg_size, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_d_eq(mallctl("thread.tcache.flush", NULL, NULL, NULL, 0),
config_tcache ? 0 : ENOENT, "Unexpected mallctl() result");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch, sizeof(epoch)),
0, "Unexpected mallctl() failure");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.bins.0.nmalloc", (void *)&nmalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.bins.0.ndalloc", (void *)&ndalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.bins.0.nrequests",
(void *)&nrequests, &sz, NULL, 0), expected,
"Unexpected mallctl() result");
sz = sizeof(size_t);
assert_d_eq(mallctl("stats.arenas.0.bins.0.curregs", (void *)&curregs,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.bins.0.nfills", (void *)&nfills,
&sz, NULL, 0), config_tcache ? expected : ENOENT,
"Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.bins.0.nflushes", (void *)&nflushes,
&sz, NULL, 0), config_tcache ? expected : ENOENT,
"Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.bins.0.nruns", (void *)&nruns, &sz,
NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.bins.0.nreruns", (void *)&nreruns,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
sz = sizeof(size_t);
assert_d_eq(mallctl("stats.arenas.0.bins.0.curruns", (void *)&curruns,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
if (config_stats) {
assert_u64_gt(nmalloc, 0,
"nmalloc should be greater than zero");
assert_u64_ge(nmalloc, ndalloc,
"nmalloc should be at least as large as ndalloc");
assert_u64_gt(nrequests, 0,
"nrequests should be greater than zero");
assert_zu_gt(curregs, 0,
"allocated should be greater than zero");
if (config_tcache) {
assert_u64_gt(nfills, 0,
"At least one fill should have occurred");
assert_u64_gt(nflushes, 0,
"At least one flush should have occurred");
}
assert_u64_gt(nruns, 0,
"At least one run should have been allocated");
assert_zu_gt(curruns, 0,
"At least one run should be currently allocated");
}
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_stats_arenas_lruns)
{
unsigned arena;
void *p;
uint64_t epoch, nmalloc, ndalloc, nrequests;
size_t curruns, sz;
int expected = config_stats ? 0 : ENOENT;
arena = 0;
assert_d_eq(mallctl("thread.arena", NULL, NULL, (void *)&arena,
sizeof(arena)), 0, "Unexpected mallctl() failure");
p = mallocx(LARGE_MINCLASS, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch, sizeof(epoch)),
0, "Unexpected mallctl() failure");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.lruns.0.nmalloc", (void *)&nmalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.lruns.0.ndalloc", (void *)&ndalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.lruns.0.nrequests",
(void *)&nrequests, &sz, NULL, 0), expected,
"Unexpected mallctl() result");
sz = sizeof(size_t);
assert_d_eq(mallctl("stats.arenas.0.lruns.0.curruns", (void *)&curruns,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
if (config_stats) {
assert_u64_gt(nmalloc, 0,
"nmalloc should be greater than zero");
assert_u64_ge(nmalloc, ndalloc,
"nmalloc should be at least as large as ndalloc");
assert_u64_gt(nrequests, 0,
"nrequests should be greater than zero");
assert_u64_gt(curruns, 0,
"At least one run should be currently allocated");
}
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_stats_arenas_hchunks)
{
unsigned arena;
void *p;
uint64_t epoch, nmalloc, ndalloc;
size_t curhchunks, sz;
int expected = config_stats ? 0 : ENOENT;
arena = 0;
assert_d_eq(mallctl("thread.arena", NULL, NULL, (void *)&arena,
sizeof(arena)), 0, "Unexpected mallctl() failure");
p = mallocx(chunksize, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch, sizeof(epoch)),
0, "Unexpected mallctl() failure");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.hchunks.0.nmalloc",
(void *)&nmalloc, &sz, NULL, 0), expected,
"Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.hchunks.0.ndalloc",
(void *)&ndalloc, &sz, NULL, 0), expected,
"Unexpected mallctl() result");
sz = sizeof(size_t);
assert_d_eq(mallctl("stats.arenas.0.hchunks.0.curhchunks",
(void *)&curhchunks, &sz, NULL, 0), expected,
"Unexpected mallctl() result");
if (config_stats) {
assert_u64_gt(nmalloc, 0,
"nmalloc should be greater than zero");
assert_u64_ge(nmalloc, ndalloc,
"nmalloc should be at least as large as ndalloc");
assert_u64_gt(curhchunks, 0,
"At least one chunk should be currently allocated");
}
dallocx(p, 0);
}
TEST_END
int
main(void)
{
return (test(
test_stats_summary,
test_stats_huge,
test_stats_arenas_summary,
test_stats_arenas_small,
test_stats_arenas_large,
test_stats_arenas_huge,
test_stats_arenas_bins,
test_stats_arenas_lruns,
test_stats_arenas_hchunks));
}
| 14,583 | 30.912473 | 73 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/nstime.c | #include "test/jemalloc_test.h"
#define BILLION UINT64_C(1000000000)
TEST_BEGIN(test_nstime_init)
{
nstime_t nst;
nstime_init(&nst, 42000000043);
assert_u64_eq(nstime_ns(&nst), 42000000043, "ns incorrectly read");
assert_u64_eq(nstime_sec(&nst), 42, "sec incorrectly read");
assert_u64_eq(nstime_nsec(&nst), 43, "nsec incorrectly read");
}
TEST_END
TEST_BEGIN(test_nstime_init2)
{
nstime_t nst;
nstime_init2(&nst, 42, 43);
assert_u64_eq(nstime_sec(&nst), 42, "sec incorrectly read");
assert_u64_eq(nstime_nsec(&nst), 43, "nsec incorrectly read");
}
TEST_END
TEST_BEGIN(test_nstime_copy)
{
nstime_t nsta, nstb;
nstime_init2(&nsta, 42, 43);
nstime_init(&nstb, 0);
nstime_copy(&nstb, &nsta);
assert_u64_eq(nstime_sec(&nstb), 42, "sec incorrectly copied");
assert_u64_eq(nstime_nsec(&nstb), 43, "nsec incorrectly copied");
}
TEST_END
TEST_BEGIN(test_nstime_compare)
{
nstime_t nsta, nstb;
nstime_init2(&nsta, 42, 43);
nstime_copy(&nstb, &nsta);
assert_d_eq(nstime_compare(&nsta, &nstb), 0, "Times should be equal");
assert_d_eq(nstime_compare(&nstb, &nsta), 0, "Times should be equal");
nstime_init2(&nstb, 42, 42);
assert_d_eq(nstime_compare(&nsta, &nstb), 1,
"nsta should be greater than nstb");
assert_d_eq(nstime_compare(&nstb, &nsta), -1,
"nstb should be less than nsta");
nstime_init2(&nstb, 42, 44);
assert_d_eq(nstime_compare(&nsta, &nstb), -1,
"nsta should be less than nstb");
assert_d_eq(nstime_compare(&nstb, &nsta), 1,
"nstb should be greater than nsta");
nstime_init2(&nstb, 41, BILLION - 1);
assert_d_eq(nstime_compare(&nsta, &nstb), 1,
"nsta should be greater than nstb");
assert_d_eq(nstime_compare(&nstb, &nsta), -1,
"nstb should be less than nsta");
nstime_init2(&nstb, 43, 0);
assert_d_eq(nstime_compare(&nsta, &nstb), -1,
"nsta should be less than nstb");
assert_d_eq(nstime_compare(&nstb, &nsta), 1,
"nstb should be greater than nsta");
}
TEST_END
TEST_BEGIN(test_nstime_add)
{
nstime_t nsta, nstb;
nstime_init2(&nsta, 42, 43);
nstime_copy(&nstb, &nsta);
nstime_add(&nsta, &nstb);
nstime_init2(&nstb, 84, 86);
assert_d_eq(nstime_compare(&nsta, &nstb), 0,
"Incorrect addition result");
nstime_init2(&nsta, 42, BILLION - 1);
nstime_copy(&nstb, &nsta);
nstime_add(&nsta, &nstb);
nstime_init2(&nstb, 85, BILLION - 2);
assert_d_eq(nstime_compare(&nsta, &nstb), 0,
"Incorrect addition result");
}
TEST_END
TEST_BEGIN(test_nstime_subtract)
{
nstime_t nsta, nstb;
nstime_init2(&nsta, 42, 43);
nstime_copy(&nstb, &nsta);
nstime_subtract(&nsta, &nstb);
nstime_init(&nstb, 0);
assert_d_eq(nstime_compare(&nsta, &nstb), 0,
"Incorrect subtraction result");
nstime_init2(&nsta, 42, 43);
nstime_init2(&nstb, 41, 44);
nstime_subtract(&nsta, &nstb);
nstime_init2(&nstb, 0, BILLION - 1);
assert_d_eq(nstime_compare(&nsta, &nstb), 0,
"Incorrect subtraction result");
}
TEST_END
TEST_BEGIN(test_nstime_imultiply)
{
nstime_t nsta, nstb;
nstime_init2(&nsta, 42, 43);
nstime_imultiply(&nsta, 10);
nstime_init2(&nstb, 420, 430);
assert_d_eq(nstime_compare(&nsta, &nstb), 0,
"Incorrect multiplication result");
nstime_init2(&nsta, 42, 666666666);
nstime_imultiply(&nsta, 3);
nstime_init2(&nstb, 127, 999999998);
assert_d_eq(nstime_compare(&nsta, &nstb), 0,
"Incorrect multiplication result");
}
TEST_END
TEST_BEGIN(test_nstime_idivide)
{
nstime_t nsta, nstb;
nstime_init2(&nsta, 42, 43);
nstime_copy(&nstb, &nsta);
nstime_imultiply(&nsta, 10);
nstime_idivide(&nsta, 10);
assert_d_eq(nstime_compare(&nsta, &nstb), 0,
"Incorrect division result");
nstime_init2(&nsta, 42, 666666666);
nstime_copy(&nstb, &nsta);
nstime_imultiply(&nsta, 3);
nstime_idivide(&nsta, 3);
assert_d_eq(nstime_compare(&nsta, &nstb), 0,
"Incorrect division result");
}
TEST_END
TEST_BEGIN(test_nstime_divide)
{
nstime_t nsta, nstb, nstc;
nstime_init2(&nsta, 42, 43);
nstime_copy(&nstb, &nsta);
nstime_imultiply(&nsta, 10);
assert_u64_eq(nstime_divide(&nsta, &nstb), 10,
"Incorrect division result");
nstime_init2(&nsta, 42, 43);
nstime_copy(&nstb, &nsta);
nstime_imultiply(&nsta, 10);
nstime_init(&nstc, 1);
nstime_add(&nsta, &nstc);
assert_u64_eq(nstime_divide(&nsta, &nstb), 10,
"Incorrect division result");
nstime_init2(&nsta, 42, 43);
nstime_copy(&nstb, &nsta);
nstime_imultiply(&nsta, 10);
nstime_init(&nstc, 1);
nstime_subtract(&nsta, &nstc);
assert_u64_eq(nstime_divide(&nsta, &nstb), 9,
"Incorrect division result");
}
TEST_END
TEST_BEGIN(test_nstime_monotonic)
{
nstime_monotonic();
}
TEST_END
TEST_BEGIN(test_nstime_update)
{
nstime_t nst;
nstime_init(&nst, 0);
assert_false(nstime_update(&nst), "Basic time update failed.");
/* Only Rip Van Winkle sleeps this long. */
{
nstime_t addend;
nstime_init2(&addend, 631152000, 0);
nstime_add(&nst, &addend);
}
{
nstime_t nst0;
nstime_copy(&nst0, &nst);
assert_true(nstime_update(&nst),
"Update should detect time roll-back.");
assert_d_eq(nstime_compare(&nst, &nst0), 0,
"Time should not have been modified");
}
}
TEST_END
int
main(void)
{
return (test(
test_nstime_init,
test_nstime_init2,
test_nstime_copy,
test_nstime_compare,
test_nstime_add,
test_nstime_subtract,
test_nstime_imultiply,
test_nstime_idivide,
test_nstime_divide,
test_nstime_monotonic,
test_nstime_update));
}
| 5,414 | 22.75 | 71 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/atomic.c | #include "test/jemalloc_test.h"
#define TEST_STRUCT(p, t) \
struct p##_test_s { \
t accum0; \
t x; \
t s; \
}; \
typedef struct p##_test_s p##_test_t;
#define TEST_BODY(p, t, tc, ta, FMT) do { \
const p##_test_t tests[] = { \
{(t)-1, (t)-1, (t)-2}, \
{(t)-1, (t) 0, (t)-2}, \
{(t)-1, (t) 1, (t)-2}, \
\
{(t) 0, (t)-1, (t)-2}, \
{(t) 0, (t) 0, (t)-2}, \
{(t) 0, (t) 1, (t)-2}, \
\
{(t) 1, (t)-1, (t)-2}, \
{(t) 1, (t) 0, (t)-2}, \
{(t) 1, (t) 1, (t)-2}, \
\
{(t)0, (t)-(1 << 22), (t)-2}, \
{(t)0, (t)(1 << 22), (t)-2}, \
{(t)(1 << 22), (t)-(1 << 22), (t)-2}, \
{(t)(1 << 22), (t)(1 << 22), (t)-2} \
}; \
unsigned i; \
\
for (i = 0; i < sizeof(tests)/sizeof(p##_test_t); i++) { \
bool err; \
t accum = tests[i].accum0; \
assert_##ta##_eq(atomic_read_##p(&accum), \
tests[i].accum0, \
"Erroneous read, i=%u", i); \
\
assert_##ta##_eq(atomic_add_##p(&accum, tests[i].x), \
(t)((tc)tests[i].accum0 + (tc)tests[i].x), \
"i=%u, accum=%"FMT", x=%"FMT, \
i, tests[i].accum0, tests[i].x); \
assert_##ta##_eq(atomic_read_##p(&accum), accum, \
"Erroneous add, i=%u", i); \
\
accum = tests[i].accum0; \
assert_##ta##_eq(atomic_sub_##p(&accum, tests[i].x), \
(t)((tc)tests[i].accum0 - (tc)tests[i].x), \
"i=%u, accum=%"FMT", x=%"FMT, \
i, tests[i].accum0, tests[i].x); \
assert_##ta##_eq(atomic_read_##p(&accum), accum, \
"Erroneous sub, i=%u", i); \
\
accum = tests[i].accum0; \
err = atomic_cas_##p(&accum, tests[i].x, tests[i].s); \
assert_b_eq(err, tests[i].accum0 != tests[i].x, \
"Erroneous cas success/failure result"); \
assert_##ta##_eq(accum, err ? tests[i].accum0 : \
tests[i].s, "Erroneous cas effect, i=%u", i); \
\
accum = tests[i].accum0; \
atomic_write_##p(&accum, tests[i].s); \
assert_##ta##_eq(accum, tests[i].s, \
"Erroneous write, i=%u", i); \
} \
} while (0)
TEST_STRUCT(uint64, uint64_t)
TEST_BEGIN(test_atomic_uint64)
{
#if !(LG_SIZEOF_PTR == 3 || LG_SIZEOF_INT == 3)
test_skip("64-bit atomic operations not supported");
#else
TEST_BODY(uint64, uint64_t, uint64_t, u64, FMTx64);
#endif
}
TEST_END
TEST_STRUCT(uint32, uint32_t)
TEST_BEGIN(test_atomic_uint32)
{
TEST_BODY(uint32, uint32_t, uint32_t, u32, "#"FMTx32);
}
TEST_END
TEST_STRUCT(p, void *)
TEST_BEGIN(test_atomic_p)
{
TEST_BODY(p, void *, uintptr_t, ptr, "p");
}
TEST_END
TEST_STRUCT(z, size_t)
TEST_BEGIN(test_atomic_z)
{
TEST_BODY(z, size_t, size_t, zu, "#zx");
}
TEST_END
TEST_STRUCT(u, unsigned)
TEST_BEGIN(test_atomic_u)
{
TEST_BODY(u, unsigned, unsigned, u, "#x");
}
TEST_END
int
main(void)
{
return (test(
test_atomic_uint64,
test_atomic_uint32,
test_atomic_p,
test_atomic_z,
test_atomic_u));
}
| 2,991 | 23.325203 | 59 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/bitmap.c | #include "test/jemalloc_test.h"
TEST_BEGIN(test_bitmap_size)
{
size_t i, prev_size;
prev_size = 0;
for (i = 1; i <= BITMAP_MAXBITS; i++) {
bitmap_info_t binfo;
size_t size;
bitmap_info_init(&binfo, i);
size = bitmap_size(&binfo);
assert_true(size >= prev_size,
"Bitmap size is smaller than expected");
prev_size = size;
}
}
TEST_END
TEST_BEGIN(test_bitmap_init)
{
size_t i;
for (i = 1; i <= BITMAP_MAXBITS; i++) {
bitmap_info_t binfo;
bitmap_info_init(&binfo, i);
{
size_t j;
bitmap_t *bitmap = (bitmap_t *)malloc(
bitmap_size(&binfo));
bitmap_init(bitmap, &binfo);
for (j = 0; j < i; j++) {
assert_false(bitmap_get(bitmap, &binfo, j),
"Bit should be unset");
}
free(bitmap);
}
}
}
TEST_END
TEST_BEGIN(test_bitmap_set)
{
size_t i;
for (i = 1; i <= BITMAP_MAXBITS; i++) {
bitmap_info_t binfo;
bitmap_info_init(&binfo, i);
{
size_t j;
bitmap_t *bitmap = (bitmap_t *)malloc(
bitmap_size(&binfo));
bitmap_init(bitmap, &binfo);
for (j = 0; j < i; j++)
bitmap_set(bitmap, &binfo, j);
assert_true(bitmap_full(bitmap, &binfo),
"All bits should be set");
free(bitmap);
}
}
}
TEST_END
TEST_BEGIN(test_bitmap_unset)
{
size_t i;
for (i = 1; i <= BITMAP_MAXBITS; i++) {
bitmap_info_t binfo;
bitmap_info_init(&binfo, i);
{
size_t j;
bitmap_t *bitmap = (bitmap_t *)malloc(
bitmap_size(&binfo));
bitmap_init(bitmap, &binfo);
for (j = 0; j < i; j++)
bitmap_set(bitmap, &binfo, j);
assert_true(bitmap_full(bitmap, &binfo),
"All bits should be set");
for (j = 0; j < i; j++)
bitmap_unset(bitmap, &binfo, j);
for (j = 0; j < i; j++)
bitmap_set(bitmap, &binfo, j);
assert_true(bitmap_full(bitmap, &binfo),
"All bits should be set");
free(bitmap);
}
}
}
TEST_END
TEST_BEGIN(test_bitmap_sfu)
{
size_t i;
for (i = 1; i <= BITMAP_MAXBITS; i++) {
bitmap_info_t binfo;
bitmap_info_init(&binfo, i);
{
size_t j;
bitmap_t *bitmap = (bitmap_t *)malloc(
bitmap_size(&binfo));
bitmap_init(bitmap, &binfo);
/* Iteratively set bits starting at the beginning. */
for (j = 0; j < i; j++) {
assert_zd_eq(bitmap_sfu(bitmap, &binfo), j,
"First unset bit should be just after "
"previous first unset bit");
}
assert_true(bitmap_full(bitmap, &binfo),
"All bits should be set");
/*
* Iteratively unset bits starting at the end, and
* verify that bitmap_sfu() reaches the unset bits.
*/
for (j = i - 1; j < i; j--) { /* (i..0] */
bitmap_unset(bitmap, &binfo, j);
assert_zd_eq(bitmap_sfu(bitmap, &binfo), j,
"First unset bit should the bit previously "
"unset");
bitmap_unset(bitmap, &binfo, j);
}
assert_false(bitmap_get(bitmap, &binfo, 0),
"Bit should be unset");
/*
* Iteratively set bits starting at the beginning, and
* verify that bitmap_sfu() looks past them.
*/
for (j = 1; j < i; j++) {
bitmap_set(bitmap, &binfo, j - 1);
assert_zd_eq(bitmap_sfu(bitmap, &binfo), j,
"First unset bit should be just after the "
"bit previously set");
bitmap_unset(bitmap, &binfo, j);
}
assert_zd_eq(bitmap_sfu(bitmap, &binfo), i - 1,
"First unset bit should be the last bit");
assert_true(bitmap_full(bitmap, &binfo),
"All bits should be set");
free(bitmap);
}
}
}
TEST_END
int
main(void)
{
return (test(
test_bitmap_size,
test_bitmap_init,
test_bitmap_set,
test_bitmap_unset,
test_bitmap_sfu));
}
| 3,574 | 20.79878 | 57 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/junk.c | #include "test/jemalloc_test.h"
#ifdef JEMALLOC_FILL
# ifndef JEMALLOC_TEST_JUNK_OPT
# define JEMALLOC_TEST_JUNK_OPT "junk:true"
# endif
const char *malloc_conf =
"abort:false,zero:false,redzone:true,quarantine:0," JEMALLOC_TEST_JUNK_OPT;
#endif
static arena_dalloc_junk_small_t *arena_dalloc_junk_small_orig;
static arena_dalloc_junk_large_t *arena_dalloc_junk_large_orig;
static huge_dalloc_junk_t *huge_dalloc_junk_orig;
static void *watch_for_junking;
static bool saw_junking;
static void
watch_junking(void *p)
{
watch_for_junking = p;
saw_junking = false;
}
static void
arena_dalloc_junk_small_intercept(void *ptr, arena_bin_info_t *bin_info)
{
size_t i;
arena_dalloc_junk_small_orig(ptr, bin_info);
for (i = 0; i < bin_info->reg_size; i++) {
assert_u_eq(((uint8_t *)ptr)[i], JEMALLOC_FREE_JUNK,
"Missing junk fill for byte %zu/%zu of deallocated region",
i, bin_info->reg_size);
}
if (ptr == watch_for_junking)
saw_junking = true;
}
static void
arena_dalloc_junk_large_intercept(void *ptr, size_t usize)
{
size_t i;
arena_dalloc_junk_large_orig(ptr, usize);
for (i = 0; i < usize; i++) {
assert_u_eq(((uint8_t *)ptr)[i], JEMALLOC_FREE_JUNK,
"Missing junk fill for byte %zu/%zu of deallocated region",
i, usize);
}
if (ptr == watch_for_junking)
saw_junking = true;
}
static void
huge_dalloc_junk_intercept(void *ptr, size_t usize)
{
huge_dalloc_junk_orig(ptr, usize);
/*
* The conditions under which junk filling actually occurs are nuanced
* enough that it doesn't make sense to duplicate the decision logic in
* test code, so don't actually check that the region is junk-filled.
*/
if (ptr == watch_for_junking)
saw_junking = true;
}
static void
test_junk(size_t sz_min, size_t sz_max)
{
uint8_t *s;
size_t sz_prev, sz, i;
if (opt_junk_free) {
arena_dalloc_junk_small_orig = arena_dalloc_junk_small;
arena_dalloc_junk_small = arena_dalloc_junk_small_intercept;
arena_dalloc_junk_large_orig = arena_dalloc_junk_large;
arena_dalloc_junk_large = arena_dalloc_junk_large_intercept;
huge_dalloc_junk_orig = huge_dalloc_junk;
huge_dalloc_junk = huge_dalloc_junk_intercept;
}
sz_prev = 0;
s = (uint8_t *)mallocx(sz_min, 0);
assert_ptr_not_null((void *)s, "Unexpected mallocx() failure");
for (sz = sallocx(s, 0); sz <= sz_max;
sz_prev = sz, sz = sallocx(s, 0)) {
if (sz_prev > 0) {
assert_u_eq(s[0], 'a',
"Previously allocated byte %zu/%zu is corrupted",
ZU(0), sz_prev);
assert_u_eq(s[sz_prev-1], 'a',
"Previously allocated byte %zu/%zu is corrupted",
sz_prev-1, sz_prev);
}
for (i = sz_prev; i < sz; i++) {
if (opt_junk_alloc) {
assert_u_eq(s[i], JEMALLOC_ALLOC_JUNK,
"Newly allocated byte %zu/%zu isn't "
"junk-filled", i, sz);
}
s[i] = 'a';
}
if (xallocx(s, sz+1, 0, 0) == sz) {
watch_junking(s);
s = (uint8_t *)rallocx(s, sz+1, 0);
assert_ptr_not_null((void *)s,
"Unexpected rallocx() failure");
assert_true(!opt_junk_free || saw_junking,
"Expected region of size %zu to be junk-filled",
sz);
}
}
watch_junking(s);
dallocx(s, 0);
assert_true(!opt_junk_free || saw_junking,
"Expected region of size %zu to be junk-filled", sz);
if (opt_junk_free) {
arena_dalloc_junk_small = arena_dalloc_junk_small_orig;
arena_dalloc_junk_large = arena_dalloc_junk_large_orig;
huge_dalloc_junk = huge_dalloc_junk_orig;
}
}
TEST_BEGIN(test_junk_small)
{
test_skip_if(!config_fill);
test_junk(1, SMALL_MAXCLASS-1);
}
TEST_END
TEST_BEGIN(test_junk_large)
{
test_skip_if(!config_fill);
test_junk(SMALL_MAXCLASS+1, large_maxclass);
}
TEST_END
TEST_BEGIN(test_junk_huge)
{
test_skip_if(!config_fill);
test_junk(large_maxclass+1, chunksize*2);
}
TEST_END
arena_ralloc_junk_large_t *arena_ralloc_junk_large_orig;
static void *most_recently_trimmed;
static size_t
shrink_size(size_t size)
{
size_t shrink_size;
for (shrink_size = size - 1; nallocx(shrink_size, 0) == size;
shrink_size--)
; /* Do nothing. */
return (shrink_size);
}
static void
arena_ralloc_junk_large_intercept(void *ptr, size_t old_usize, size_t usize)
{
arena_ralloc_junk_large_orig(ptr, old_usize, usize);
assert_zu_eq(old_usize, large_maxclass, "Unexpected old_usize");
assert_zu_eq(usize, shrink_size(large_maxclass), "Unexpected usize");
most_recently_trimmed = ptr;
}
TEST_BEGIN(test_junk_large_ralloc_shrink)
{
void *p1, *p2;
p1 = mallocx(large_maxclass, 0);
assert_ptr_not_null(p1, "Unexpected mallocx() failure");
arena_ralloc_junk_large_orig = arena_ralloc_junk_large;
arena_ralloc_junk_large = arena_ralloc_junk_large_intercept;
p2 = rallocx(p1, shrink_size(large_maxclass), 0);
assert_ptr_eq(p1, p2, "Unexpected move during shrink");
arena_ralloc_junk_large = arena_ralloc_junk_large_orig;
assert_ptr_eq(most_recently_trimmed, p1,
"Expected trimmed portion of region to be junk-filled");
}
TEST_END
static bool detected_redzone_corruption;
static void
arena_redzone_corruption_replacement(void *ptr, size_t usize, bool after,
size_t offset, uint8_t byte)
{
detected_redzone_corruption = true;
}
TEST_BEGIN(test_junk_redzone)
{
char *s;
arena_redzone_corruption_t *arena_redzone_corruption_orig;
test_skip_if(!config_fill);
test_skip_if(!opt_junk_alloc || !opt_junk_free);
arena_redzone_corruption_orig = arena_redzone_corruption;
arena_redzone_corruption = arena_redzone_corruption_replacement;
/* Test underflow. */
detected_redzone_corruption = false;
s = (char *)mallocx(1, 0);
assert_ptr_not_null((void *)s, "Unexpected mallocx() failure");
s[-1] = 0xbb;
dallocx(s, 0);
assert_true(detected_redzone_corruption,
"Did not detect redzone corruption");
/* Test overflow. */
detected_redzone_corruption = false;
s = (char *)mallocx(1, 0);
assert_ptr_not_null((void *)s, "Unexpected mallocx() failure");
s[sallocx(s, 0)] = 0xbb;
dallocx(s, 0);
assert_true(detected_redzone_corruption,
"Did not detect redzone corruption");
arena_redzone_corruption = arena_redzone_corruption_orig;
}
TEST_END
int
main(void)
{
return (test(
test_junk_small,
test_junk_large,
test_junk_huge,
test_junk_large_ralloc_shrink,
test_junk_redzone));
}
| 6,244 | 23.586614 | 79 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/ckh.c | #include "test/jemalloc_test.h"
TEST_BEGIN(test_new_delete)
{
tsd_t *tsd;
ckh_t ckh;
tsd = tsd_fetch();
assert_false(ckh_new(tsd, &ckh, 2, ckh_string_hash,
ckh_string_keycomp), "Unexpected ckh_new() error");
ckh_delete(tsd, &ckh);
assert_false(ckh_new(tsd, &ckh, 3, ckh_pointer_hash,
ckh_pointer_keycomp), "Unexpected ckh_new() error");
ckh_delete(tsd, &ckh);
}
TEST_END
TEST_BEGIN(test_count_insert_search_remove)
{
tsd_t *tsd;
ckh_t ckh;
const char *strs[] = {
"a string",
"A string",
"a string.",
"A string."
};
const char *missing = "A string not in the hash table.";
size_t i;
tsd = tsd_fetch();
assert_false(ckh_new(tsd, &ckh, 2, ckh_string_hash,
ckh_string_keycomp), "Unexpected ckh_new() error");
assert_zu_eq(ckh_count(&ckh), 0,
"ckh_count() should return %zu, but it returned %zu", ZU(0),
ckh_count(&ckh));
/* Insert. */
for (i = 0; i < sizeof(strs)/sizeof(const char *); i++) {
ckh_insert(tsd, &ckh, strs[i], strs[i]);
assert_zu_eq(ckh_count(&ckh), i+1,
"ckh_count() should return %zu, but it returned %zu", i+1,
ckh_count(&ckh));
}
/* Search. */
for (i = 0; i < sizeof(strs)/sizeof(const char *); i++) {
union {
void *p;
const char *s;
} k, v;
void **kp, **vp;
const char *ks, *vs;
kp = (i & 1) ? &k.p : NULL;
vp = (i & 2) ? &v.p : NULL;
k.p = NULL;
v.p = NULL;
assert_false(ckh_search(&ckh, strs[i], kp, vp),
"Unexpected ckh_search() error");
ks = (i & 1) ? strs[i] : (const char *)NULL;
vs = (i & 2) ? strs[i] : (const char *)NULL;
assert_ptr_eq((void *)ks, (void *)k.s, "Key mismatch, i=%zu",
i);
assert_ptr_eq((void *)vs, (void *)v.s, "Value mismatch, i=%zu",
i);
}
assert_true(ckh_search(&ckh, missing, NULL, NULL),
"Unexpected ckh_search() success");
/* Remove. */
for (i = 0; i < sizeof(strs)/sizeof(const char *); i++) {
union {
void *p;
const char *s;
} k, v;
void **kp, **vp;
const char *ks, *vs;
kp = (i & 1) ? &k.p : NULL;
vp = (i & 2) ? &v.p : NULL;
k.p = NULL;
v.p = NULL;
assert_false(ckh_remove(tsd, &ckh, strs[i], kp, vp),
"Unexpected ckh_remove() error");
ks = (i & 1) ? strs[i] : (const char *)NULL;
vs = (i & 2) ? strs[i] : (const char *)NULL;
assert_ptr_eq((void *)ks, (void *)k.s, "Key mismatch, i=%zu",
i);
assert_ptr_eq((void *)vs, (void *)v.s, "Value mismatch, i=%zu",
i);
assert_zu_eq(ckh_count(&ckh),
sizeof(strs)/sizeof(const char *) - i - 1,
"ckh_count() should return %zu, but it returned %zu",
sizeof(strs)/sizeof(const char *) - i - 1,
ckh_count(&ckh));
}
ckh_delete(tsd, &ckh);
}
TEST_END
TEST_BEGIN(test_insert_iter_remove)
{
#define NITEMS ZU(1000)
tsd_t *tsd;
ckh_t ckh;
void **p[NITEMS];
void *q, *r;
size_t i;
tsd = tsd_fetch();
assert_false(ckh_new(tsd, &ckh, 2, ckh_pointer_hash,
ckh_pointer_keycomp), "Unexpected ckh_new() error");
for (i = 0; i < NITEMS; i++) {
p[i] = mallocx(i+1, 0);
assert_ptr_not_null(p[i], "Unexpected mallocx() failure");
}
for (i = 0; i < NITEMS; i++) {
size_t j;
for (j = i; j < NITEMS; j++) {
assert_false(ckh_insert(tsd, &ckh, p[j], p[j]),
"Unexpected ckh_insert() failure");
assert_false(ckh_search(&ckh, p[j], &q, &r),
"Unexpected ckh_search() failure");
assert_ptr_eq(p[j], q, "Key pointer mismatch");
assert_ptr_eq(p[j], r, "Value pointer mismatch");
}
assert_zu_eq(ckh_count(&ckh), NITEMS,
"ckh_count() should return %zu, but it returned %zu",
NITEMS, ckh_count(&ckh));
for (j = i + 1; j < NITEMS; j++) {
assert_false(ckh_search(&ckh, p[j], NULL, NULL),
"Unexpected ckh_search() failure");
assert_false(ckh_remove(tsd, &ckh, p[j], &q, &r),
"Unexpected ckh_remove() failure");
assert_ptr_eq(p[j], q, "Key pointer mismatch");
assert_ptr_eq(p[j], r, "Value pointer mismatch");
assert_true(ckh_search(&ckh, p[j], NULL, NULL),
"Unexpected ckh_search() success");
assert_true(ckh_remove(tsd, &ckh, p[j], &q, &r),
"Unexpected ckh_remove() success");
}
{
bool seen[NITEMS];
size_t tabind;
memset(seen, 0, sizeof(seen));
for (tabind = 0; !ckh_iter(&ckh, &tabind, &q, &r);) {
size_t k;
assert_ptr_eq(q, r, "Key and val not equal");
for (k = 0; k < NITEMS; k++) {
if (p[k] == q) {
assert_false(seen[k],
"Item %zu already seen", k);
seen[k] = true;
break;
}
}
}
for (j = 0; j < i + 1; j++)
assert_true(seen[j], "Item %zu not seen", j);
for (; j < NITEMS; j++)
assert_false(seen[j], "Item %zu seen", j);
}
}
for (i = 0; i < NITEMS; i++) {
assert_false(ckh_search(&ckh, p[i], NULL, NULL),
"Unexpected ckh_search() failure");
assert_false(ckh_remove(tsd, &ckh, p[i], &q, &r),
"Unexpected ckh_remove() failure");
assert_ptr_eq(p[i], q, "Key pointer mismatch");
assert_ptr_eq(p[i], r, "Value pointer mismatch");
assert_true(ckh_search(&ckh, p[i], NULL, NULL),
"Unexpected ckh_search() success");
assert_true(ckh_remove(tsd, &ckh, p[i], &q, &r),
"Unexpected ckh_remove() success");
dallocx(p[i], 0);
}
assert_zu_eq(ckh_count(&ckh), 0,
"ckh_count() should return %zu, but it returned %zu",
ZU(0), ckh_count(&ckh));
ckh_delete(tsd, &ckh);
#undef NITEMS
}
TEST_END
int
main(void)
{
return (test(
test_new_delete,
test_count_insert_search_remove,
test_insert_iter_remove));
}
| 5,467 | 24.432558 | 65 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/run_quantize.c | #include "test/jemalloc_test.h"
TEST_BEGIN(test_small_run_size)
{
unsigned nbins, i;
size_t sz, run_size;
size_t mib[4];
size_t miblen = sizeof(mib) / sizeof(size_t);
/*
* Iterate over all small size classes, get their run sizes, and verify
* that the quantized size is the same as the run size.
*/
sz = sizeof(unsigned);
assert_d_eq(mallctl("arenas.nbins", (void *)&nbins, &sz, NULL, 0), 0,
"Unexpected mallctl failure");
assert_d_eq(mallctlnametomib("arenas.bin.0.run_size", mib, &miblen), 0,
"Unexpected mallctlnametomib failure");
for (i = 0; i < nbins; i++) {
mib[2] = i;
sz = sizeof(size_t);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&run_size, &sz,
NULL, 0), 0, "Unexpected mallctlbymib failure");
assert_zu_eq(run_size, run_quantize_floor(run_size),
"Small run quantization should be a no-op (run_size=%zu)",
run_size);
assert_zu_eq(run_size, run_quantize_ceil(run_size),
"Small run quantization should be a no-op (run_size=%zu)",
run_size);
}
}
TEST_END
TEST_BEGIN(test_large_run_size)
{
bool cache_oblivious;
unsigned nlruns, i;
size_t sz, run_size_prev, ceil_prev;
size_t mib[4];
size_t miblen = sizeof(mib) / sizeof(size_t);
/*
* Iterate over all large size classes, get their run sizes, and verify
* that the quantized size is the same as the run size.
*/
sz = sizeof(bool);
assert_d_eq(mallctl("config.cache_oblivious", (void *)&cache_oblivious,
&sz, NULL, 0), 0, "Unexpected mallctl failure");
sz = sizeof(unsigned);
assert_d_eq(mallctl("arenas.nlruns", (void *)&nlruns, &sz, NULL, 0), 0,
"Unexpected mallctl failure");
assert_d_eq(mallctlnametomib("arenas.lrun.0.size", mib, &miblen), 0,
"Unexpected mallctlnametomib failure");
for (i = 0; i < nlruns; i++) {
size_t lrun_size, run_size, floor, ceil;
mib[2] = i;
sz = sizeof(size_t);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&lrun_size, &sz,
NULL, 0), 0, "Unexpected mallctlbymib failure");
run_size = cache_oblivious ? lrun_size + PAGE : lrun_size;
floor = run_quantize_floor(run_size);
ceil = run_quantize_ceil(run_size);
assert_zu_eq(run_size, floor,
"Large run quantization should be a no-op for precise "
"size (lrun_size=%zu, run_size=%zu)", lrun_size, run_size);
assert_zu_eq(run_size, ceil,
"Large run quantization should be a no-op for precise "
"size (lrun_size=%zu, run_size=%zu)", lrun_size, run_size);
if (i > 0) {
assert_zu_eq(run_size_prev, run_quantize_floor(run_size
- PAGE), "Floor should be a precise size");
if (run_size_prev < ceil_prev) {
assert_zu_eq(ceil_prev, run_size,
"Ceiling should be a precise size "
"(run_size_prev=%zu, ceil_prev=%zu, "
"run_size=%zu)", run_size_prev, ceil_prev,
run_size);
}
}
run_size_prev = floor;
ceil_prev = run_quantize_ceil(run_size + PAGE);
}
}
TEST_END
TEST_BEGIN(test_monotonic)
{
unsigned nbins, nlruns, i;
size_t sz, floor_prev, ceil_prev;
/*
* Iterate over all run sizes and verify that
* run_quantize_{floor,ceil}() are monotonic.
*/
sz = sizeof(unsigned);
assert_d_eq(mallctl("arenas.nbins", (void *)&nbins, &sz, NULL, 0), 0,
"Unexpected mallctl failure");
sz = sizeof(unsigned);
assert_d_eq(mallctl("arenas.nlruns", (void *)&nlruns, &sz, NULL, 0), 0,
"Unexpected mallctl failure");
floor_prev = 0;
ceil_prev = 0;
for (i = 1; i <= chunksize >> LG_PAGE; i++) {
size_t run_size, floor, ceil;
run_size = i << LG_PAGE;
floor = run_quantize_floor(run_size);
ceil = run_quantize_ceil(run_size);
assert_zu_le(floor, run_size,
"Floor should be <= (floor=%zu, run_size=%zu, ceil=%zu)",
floor, run_size, ceil);
assert_zu_ge(ceil, run_size,
"Ceiling should be >= (floor=%zu, run_size=%zu, ceil=%zu)",
floor, run_size, ceil);
assert_zu_le(floor_prev, floor, "Floor should be monotonic "
"(floor_prev=%zu, floor=%zu, run_size=%zu, ceil=%zu)",
floor_prev, floor, run_size, ceil);
assert_zu_le(ceil_prev, ceil, "Ceiling should be monotonic "
"(floor=%zu, run_size=%zu, ceil_prev=%zu, ceil=%zu)",
floor, run_size, ceil_prev, ceil);
floor_prev = floor;
ceil_prev = ceil;
}
}
TEST_END
int
main(void)
{
return (test(
test_small_run_size,
test_large_run_size,
test_monotonic));
}
| 4,340 | 27.94 | 72 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/math.c | #include "test/jemalloc_test.h"
#define MAX_REL_ERR 1.0e-9
#define MAX_ABS_ERR 1.0e-9
#include <float.h>
#ifdef __PGI
#undef INFINITY
#endif
#ifndef INFINITY
#define INFINITY (DBL_MAX + DBL_MAX)
#endif
static bool
double_eq_rel(double a, double b, double max_rel_err, double max_abs_err)
{
double rel_err;
if (fabs(a - b) < max_abs_err)
return (true);
rel_err = (fabs(b) > fabs(a)) ? fabs((a-b)/b) : fabs((a-b)/a);
return (rel_err < max_rel_err);
}
static uint64_t
factorial(unsigned x)
{
uint64_t ret = 1;
unsigned i;
for (i = 2; i <= x; i++)
ret *= (uint64_t)i;
return (ret);
}
TEST_BEGIN(test_ln_gamma_factorial)
{
unsigned x;
/* exp(ln_gamma(x)) == (x-1)! for integer x. */
for (x = 1; x <= 21; x++) {
assert_true(double_eq_rel(exp(ln_gamma(x)),
(double)factorial(x-1), MAX_REL_ERR, MAX_ABS_ERR),
"Incorrect factorial result for x=%u", x);
}
}
TEST_END
/* Expected ln_gamma([0.0..100.0] increment=0.25). */
static const double ln_gamma_misc_expected[] = {
INFINITY,
1.28802252469807743, 0.57236494292470008, 0.20328095143129538,
0.00000000000000000, -0.09827183642181320, -0.12078223763524518,
-0.08440112102048555, 0.00000000000000000, 0.12487171489239651,
0.28468287047291918, 0.47521466691493719, 0.69314718055994529,
0.93580193110872523, 1.20097360234707429, 1.48681557859341718,
1.79175946922805496, 2.11445692745037128, 2.45373657084244234,
2.80857141857573644, 3.17805383034794575, 3.56137591038669710,
3.95781396761871651, 4.36671603662228680, 4.78749174278204581,
5.21960398699022932, 5.66256205985714178, 6.11591589143154568,
6.57925121201010121, 7.05218545073853953, 7.53436423675873268,
8.02545839631598312, 8.52516136106541467, 9.03318691960512332,
9.54926725730099690, 10.07315123968123949, 10.60460290274525086,
11.14340011995171231, 11.68933342079726856, 12.24220494005076176,
12.80182748008146909, 13.36802367147604720, 13.94062521940376342,
14.51947222506051816, 15.10441257307551943, 15.69530137706046524,
16.29200047656724237, 16.89437797963419285, 17.50230784587389010,
18.11566950571089407, 18.73434751193644843, 19.35823122022435427,
19.98721449566188468, 20.62119544270163018, 21.26007615624470048,
21.90376249182879320, 22.55216385312342098, 23.20519299513386002,
23.86276584168908954, 24.52480131594137802, 25.19122118273868338,
25.86194990184851861, 26.53691449111561340, 27.21604439872720604,
27.89927138384089389, 28.58652940490193828, 29.27775451504081516,
29.97288476399884871, 30.67186010608067548, 31.37462231367769050,
32.08111489594735843, 32.79128302226991565, 33.50507345013689076,
34.22243445715505317, 34.94331577687681545, 35.66766853819134298,
36.39544520803305261, 37.12659953718355865, 37.86108650896109395,
38.59886229060776230, 39.33988418719949465, 40.08411059791735198,
40.83150097453079752, 41.58201578195490100, 42.33561646075348506,
43.09226539146988699, 43.85192586067515208, 44.61456202863158893,
45.38013889847690052, 46.14862228684032885, 46.91997879580877395,
47.69417578616628361, 48.47118135183522014, 49.25096429545256882,
50.03349410501914463, 50.81874093156324790, 51.60667556776436982,
52.39726942748592364, 53.19049452616926743, 53.98632346204390586,
54.78472939811231157, 55.58568604486942633, 56.38916764371992940,
57.19514895105859864, 58.00360522298051080, 58.81451220059079787,
59.62784609588432261, 60.44358357816834371, 61.26170176100199427,
62.08217818962842927, 62.90499082887649962, 63.73011805151035958,
64.55753862700632340, 65.38723171073768015, 66.21917683354901385,
67.05335389170279825, 67.88974313718154008, 68.72832516833013017,
69.56908092082363737, 70.41199165894616385, 71.25703896716800045,
72.10420474200799390, 72.95347118416940191, 73.80482079093779646,
74.65823634883015814, 75.51370092648485866, 76.37119786778275454,
77.23071078519033961, 78.09222355331530707, 78.95572030266725960,
79.82118541361435859, 80.68860351052903468, 81.55795945611502873,
82.42923834590904164, 83.30242550295004378, 84.17750647261028973,
85.05446701758152983, 85.93329311301090456, 86.81397094178107920,
87.69648688992882057, 88.58082754219766741, 89.46697967771913795,
90.35493026581838194, 91.24466646193963015, 92.13617560368709292,
93.02944520697742803, 93.92446296229978486, 94.82121673107967297,
95.71969454214321615, 96.61988458827809723, 97.52177522288820910,
98.42535495673848800, 99.33061245478741341, 100.23753653310367895,
101.14611615586458981, 102.05634043243354370, 102.96819861451382394,
103.88168009337621811, 104.79677439715833032, 105.71347118823287303,
106.63176026064346047, 107.55163153760463501, 108.47307506906540198,
109.39608102933323153, 110.32063971475740516, 111.24674154146920557,
112.17437704317786995, 113.10353686902013237, 114.03421178146170689,
114.96639265424990128, 115.90007047041454769, 116.83523632031698014,
117.77188139974506953, 118.70999700805310795, 119.64957454634490830,
120.59060551569974962, 121.53308151543865279, 122.47699424143097247,
123.42233548443955726, 124.36909712850338394, 125.31727114935689826,
126.26684961288492559, 127.21782467361175861, 128.17018857322420899,
129.12393363912724453, 130.07905228303084755, 131.03553699956862033,
131.99338036494577864, 132.95257503561629164, 133.91311374698926784,
134.87498931216194364, 135.83819462068046846, 136.80272263732638294,
137.76856640092901785, 138.73571902320256299, 139.70417368760718091,
140.67392364823425055, 141.64496222871400732, 142.61728282114600574,
143.59087888505104047, 144.56574394634486680, 145.54187159633210058,
146.51925549072063859, 147.49788934865566148, 148.47776695177302031,
149.45888214327129617, 150.44122882700193600, 151.42480096657754984,
152.40959258449737490, 153.39559776128982094, 154.38281063467164245,
155.37122539872302696, 156.36083630307879844, 157.35163765213474107,
158.34362380426921391, 159.33678917107920370, 160.33112821663092973,
161.32663545672428995, 162.32330545817117695, 163.32113283808695314,
164.32011226319519892, 165.32023844914485267, 166.32150615984036790,
167.32391020678358018, 168.32744544842768164, 169.33210678954270634,
170.33788918059275375, 171.34478761712384198, 172.35279713916281707,
173.36191283062726143, 174.37212981874515094, 175.38344327348534080,
176.39584840699734514, 177.40934047306160437, 178.42391476654847793,
179.43956662288721304, 180.45629141754378111, 181.47408456550741107,
182.49294152078630304, 183.51285777591152737, 184.53382886144947861,
185.55585034552262869, 186.57891783333786861, 187.60302696672312095,
188.62817342367162610, 189.65435291789341932, 190.68156119837468054,
191.70979404894376330, 192.73904728784492590, 193.76931676731820176,
194.80059837318714244, 195.83288802445184729, 196.86618167288995096,
197.90047530266301123, 198.93576492992946214, 199.97204660246373464,
201.00931639928148797, 202.04757043027063901, 203.08680483582807597,
204.12701578650228385, 205.16819948264117102, 206.21035215404597807,
207.25347005962987623, 208.29754948708190909, 209.34258675253678916,
210.38857820024875878, 211.43552020227099320, 212.48340915813977858,
213.53224149456323744, 214.58201366511514152, 215.63272214993284592,
216.68436345542014010, 217.73693411395422004, 218.79043068359703739,
219.84484974781133815, 220.90018791517996988, 221.95644181913033322,
223.01360811766215875, 224.07168349307951871, 225.13066465172661879,
226.19054832372759734, 227.25133126272962159, 228.31301024565024704,
229.37558207242807384, 230.43904356577689896, 231.50339157094342113,
232.56862295546847008, 233.63473460895144740, 234.70172344281823484,
235.76958639009222907, 236.83832040516844586, 237.90792246359117712,
238.97838956183431947, 240.04971871708477238, 241.12190696702904802,
242.19495136964280846, 243.26884900298270509, 244.34359696498191283,
245.41919237324782443, 246.49563236486270057, 247.57291409618682110,
248.65103474266476269, 249.72999149863338175, 250.80978157713354904,
251.89040220972316320, 252.97185064629374551, 254.05412415488834199,
255.13722002152300661, 256.22113555000953511, 257.30586806178126835,
258.39141489572085675, 259.47777340799029844, 260.56494097186322279,
261.65291497755913497, 262.74169283208021852, 263.83127195904967266,
264.92164979855277807, 266.01282380697938379, 267.10479145686849733,
268.19755023675537586, 269.29109765101975427, 270.38543121973674488,
271.48054847852881721, 272.57644697842033565, 273.67312428569374561,
274.77057798174683967, 275.86880566295326389, 276.96780494052313770,
278.06757344036617496, 279.16810880295668085, 280.26940868320008349,
281.37147075030043197, 282.47429268763045229, 283.57787219260217171,
284.68220697654078322, 285.78729476455760050, 286.89313329542699194,
287.99972032146268930, 289.10705360839756395, 290.21513093526289140,
291.32395009427028754, 292.43350889069523646, 293.54380514276073200,
294.65483668152336350, 295.76660135076059532, 296.87909700685889902,
297.99232151870342022, 299.10627276756946458, 300.22094864701409733,
301.33634706277030091, 302.45246593264130297, 303.56930318639643929,
304.68685676566872189, 305.80512462385280514, 306.92410472600477078,
308.04379504874236773, 309.16419358014690033, 310.28529831966631036,
311.40710727801865687, 312.52961847709792664, 313.65282994987899201,
314.77673974032603610, 315.90134590329950015, 317.02664650446632777,
318.15263962020929966, 319.27932333753892635, 320.40669575400545455,
321.53475497761127144, 322.66349912672620803, 323.79292633000159185,
324.92303472628691452, 326.05382246454587403, 327.18528770377525916,
328.31742861292224234, 329.45024337080525356, 330.58373016603343331,
331.71788719692847280, 332.85271267144611329, 333.98820480709991898,
335.12436183088397001, 336.26118197919845443, 337.39866349777429377,
338.53680464159958774, 339.67560367484657036, 340.81505887079896411,
341.95516851178109619, 343.09593088908627578, 344.23734430290727460,
345.37940706226686416, 346.52211748494903532, 347.66547389743118401,
348.80947463481720661, 349.95411804077025408, 351.09940246744753267,
352.24532627543504759, 353.39188783368263103, 354.53908551944078908,
355.68691771819692349, 356.83538282361303118, 357.98447923746385868,
359.13420536957539753
};
TEST_BEGIN(test_ln_gamma_misc)
{
unsigned i;
for (i = 1; i < sizeof(ln_gamma_misc_expected)/sizeof(double); i++) {
double x = (double)i * 0.25;
assert_true(double_eq_rel(ln_gamma(x),
ln_gamma_misc_expected[i], MAX_REL_ERR, MAX_ABS_ERR),
"Incorrect ln_gamma result for i=%u", i);
}
}
TEST_END
/* Expected pt_norm([0.01..0.99] increment=0.01). */
static const double pt_norm_expected[] = {
-INFINITY,
-2.32634787404084076, -2.05374891063182252, -1.88079360815125085,
-1.75068607125216946, -1.64485362695147264, -1.55477359459685305,
-1.47579102817917063, -1.40507156030963221, -1.34075503369021654,
-1.28155156554460081, -1.22652812003661049, -1.17498679206608991,
-1.12639112903880045, -1.08031934081495606, -1.03643338949378938,
-0.99445788320975281, -0.95416525314619416, -0.91536508784281390,
-0.87789629505122846, -0.84162123357291418, -0.80642124701824025,
-0.77219321418868492, -0.73884684918521371, -0.70630256284008752,
-0.67448975019608171, -0.64334540539291685, -0.61281299101662701,
-0.58284150727121620, -0.55338471955567281, -0.52440051270804067,
-0.49585034734745320, -0.46769879911450812, -0.43991316567323380,
-0.41246312944140462, -0.38532046640756751, -0.35845879325119373,
-0.33185334643681652, -0.30548078809939738, -0.27931903444745404,
-0.25334710313579978, -0.22754497664114931, -0.20189347914185077,
-0.17637416478086135, -0.15096921549677725, -0.12566134685507399,
-0.10043372051146975, -0.07526986209982976, -0.05015358346473352,
-0.02506890825871106, 0.00000000000000000, 0.02506890825871106,
0.05015358346473366, 0.07526986209982990, 0.10043372051146990,
0.12566134685507413, 0.15096921549677739, 0.17637416478086146,
0.20189347914185105, 0.22754497664114931, 0.25334710313579978,
0.27931903444745404, 0.30548078809939738, 0.33185334643681652,
0.35845879325119373, 0.38532046640756762, 0.41246312944140484,
0.43991316567323391, 0.46769879911450835, 0.49585034734745348,
0.52440051270804111, 0.55338471955567303, 0.58284150727121620,
0.61281299101662701, 0.64334540539291685, 0.67448975019608171,
0.70630256284008752, 0.73884684918521371, 0.77219321418868492,
0.80642124701824036, 0.84162123357291441, 0.87789629505122879,
0.91536508784281423, 0.95416525314619460, 0.99445788320975348,
1.03643338949378938, 1.08031934081495606, 1.12639112903880045,
1.17498679206608991, 1.22652812003661049, 1.28155156554460081,
1.34075503369021654, 1.40507156030963265, 1.47579102817917085,
1.55477359459685394, 1.64485362695147308, 1.75068607125217102,
1.88079360815125041, 2.05374891063182208, 2.32634787404084076
};
TEST_BEGIN(test_pt_norm)
{
unsigned i;
for (i = 1; i < sizeof(pt_norm_expected)/sizeof(double); i++) {
double p = (double)i * 0.01;
assert_true(double_eq_rel(pt_norm(p), pt_norm_expected[i],
MAX_REL_ERR, MAX_ABS_ERR),
"Incorrect pt_norm result for i=%u", i);
}
}
TEST_END
/*
* Expected pt_chi2(p=[0.01..0.99] increment=0.07,
* df={0.1, 1.1, 10.1, 100.1, 1000.1}).
*/
static const double pt_chi2_df[] = {0.1, 1.1, 10.1, 100.1, 1000.1};
static const double pt_chi2_expected[] = {
1.168926411457320e-40, 1.347680397072034e-22, 3.886980416666260e-17,
8.245951724356564e-14, 2.068936347497604e-11, 1.562561743309233e-09,
5.459543043426564e-08, 1.114775688149252e-06, 1.532101202364371e-05,
1.553884683726585e-04, 1.239396954915939e-03, 8.153872320255721e-03,
4.631183739647523e-02, 2.473187311701327e-01, 2.175254800183617e+00,
0.0003729887888876379, 0.0164409238228929513, 0.0521523015190650113,
0.1064701372271216612, 0.1800913735793082115, 0.2748704281195626931,
0.3939246282787986497, 0.5420727552260817816, 0.7267265822221973259,
0.9596554296000253670, 1.2607440376386165326, 1.6671185084541604304,
2.2604828984738705167, 3.2868613342148607082, 6.9298574921692139839,
2.606673548632508, 4.602913725294877, 5.646152813924212,
6.488971315540869, 7.249823275816285, 7.977314231410841,
8.700354939944047, 9.441728024225892, 10.224338321374127,
11.076435368801061, 12.039320937038386, 13.183878752697167,
14.657791935084575, 16.885728216339373, 23.361991680031817,
70.14844087392152, 80.92379498849355, 85.53325420085891,
88.94433120715347, 91.83732712857017, 94.46719943606301,
96.96896479994635, 99.43412843510363, 101.94074719829733,
104.57228644307247, 107.43900093448734, 110.71844673417287,
114.76616819871325, 120.57422505959563, 135.92318818757556,
899.0072447849649, 937.9271278858220, 953.8117189560207,
965.3079371501154, 974.8974061207954, 983.4936235182347,
991.5691170518946, 999.4334123954690, 1007.3391826856553,
1015.5445154999951, 1024.3777075619569, 1034.3538789836223,
1046.4872561869577, 1063.5717461999654, 1107.0741966053859
};
TEST_BEGIN(test_pt_chi2)
{
unsigned i, j;
unsigned e = 0;
for (i = 0; i < sizeof(pt_chi2_df)/sizeof(double); i++) {
double df = pt_chi2_df[i];
double ln_gamma_df = ln_gamma(df * 0.5);
for (j = 1; j < 100; j += 7) {
double p = (double)j * 0.01;
assert_true(double_eq_rel(pt_chi2(p, df, ln_gamma_df),
pt_chi2_expected[e], MAX_REL_ERR, MAX_ABS_ERR),
"Incorrect pt_chi2 result for i=%u, j=%u", i, j);
e++;
}
}
}
TEST_END
/*
* Expected pt_gamma(p=[0.1..0.99] increment=0.07,
* shape=[0.5..3.0] increment=0.5).
*/
static const double pt_gamma_shape[] = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0};
static const double pt_gamma_expected[] = {
7.854392895485103e-05, 5.043466107888016e-03, 1.788288957794883e-02,
3.900956150232906e-02, 6.913847560638034e-02, 1.093710833465766e-01,
1.613412523825817e-01, 2.274682115597864e-01, 3.114117323127083e-01,
4.189466220207417e-01, 5.598106789059246e-01, 7.521856146202706e-01,
1.036125427911119e+00, 1.532450860038180e+00, 3.317448300510606e+00,
0.01005033585350144, 0.08338160893905107, 0.16251892949777497,
0.24846135929849966, 0.34249030894677596, 0.44628710262841947,
0.56211891815354142, 0.69314718055994529, 0.84397007029452920,
1.02165124753198167, 1.23787435600161766, 1.51412773262977574,
1.89711998488588196, 2.52572864430825783, 4.60517018598809091,
0.05741590094955853, 0.24747378084860744, 0.39888572212236084,
0.54394139997444901, 0.69048812513915159, 0.84311389861296104,
1.00580622221479898, 1.18298694218766931, 1.38038096305861213,
1.60627736383027453, 1.87396970522337947, 2.20749220408081070,
2.65852391865854942, 3.37934630984842244, 5.67243336507218476,
0.1485547402532659, 0.4657458011640391, 0.6832386130709406,
0.8794297834672100, 1.0700752852474524, 1.2629614217350744,
1.4638400448580779, 1.6783469900166610, 1.9132338090606940,
2.1778589228618777, 2.4868823970010991, 2.8664695666264195,
3.3724415436062114, 4.1682658512758071, 6.6383520679938108,
0.2771490383641385, 0.7195001279643727, 0.9969081732265243,
1.2383497880608061, 1.4675206597269927, 1.6953064251816552,
1.9291243435606809, 2.1757300955477641, 2.4428032131216391,
2.7406534569230616, 3.0851445039665513, 3.5043101122033367,
4.0575997065264637, 4.9182956424675286, 7.5431362346944937,
0.4360451650782932, 0.9983600902486267, 1.3306365880734528,
1.6129750834753802, 1.8767241606994294, 2.1357032436097660,
2.3988853336865565, 2.6740603137235603, 2.9697561737517959,
3.2971457713883265, 3.6731795898504660, 4.1275751617770631,
4.7230515633946677, 5.6417477865306020, 8.4059469148854635
};
TEST_BEGIN(test_pt_gamma_shape)
{
unsigned i, j;
unsigned e = 0;
for (i = 0; i < sizeof(pt_gamma_shape)/sizeof(double); i++) {
double shape = pt_gamma_shape[i];
double ln_gamma_shape = ln_gamma(shape);
for (j = 1; j < 100; j += 7) {
double p = (double)j * 0.01;
assert_true(double_eq_rel(pt_gamma(p, shape, 1.0,
ln_gamma_shape), pt_gamma_expected[e], MAX_REL_ERR,
MAX_ABS_ERR),
"Incorrect pt_gamma result for i=%u, j=%u", i, j);
e++;
}
}
}
TEST_END
TEST_BEGIN(test_pt_gamma_scale)
{
double shape = 1.0;
double ln_gamma_shape = ln_gamma(shape);
assert_true(double_eq_rel(
pt_gamma(0.5, shape, 1.0, ln_gamma_shape) * 10.0,
pt_gamma(0.5, shape, 10.0, ln_gamma_shape), MAX_REL_ERR,
MAX_ABS_ERR),
"Scale should be trivially equivalent to external multiplication");
}
TEST_END
int
main(void)
{
return (test(
test_ln_gamma_factorial,
test_ln_gamma_misc,
test_pt_norm,
test_pt_chi2,
test_pt_gamma_shape,
test_pt_gamma_scale));
}
| 18,485 | 45.330827 | 73 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/ql.c | #include "test/jemalloc_test.h"
/* Number of ring entries, in [2..26]. */
#define NENTRIES 9
typedef struct list_s list_t;
typedef ql_head(list_t) list_head_t;
struct list_s {
ql_elm(list_t) link;
char id;
};
static void
test_empty_list(list_head_t *head)
{
list_t *t;
unsigned i;
assert_ptr_null(ql_first(head), "Unexpected element for empty list");
assert_ptr_null(ql_last(head, link),
"Unexpected element for empty list");
i = 0;
ql_foreach(t, head, link) {
i++;
}
assert_u_eq(i, 0, "Unexpected element for empty list");
i = 0;
ql_reverse_foreach(t, head, link) {
i++;
}
assert_u_eq(i, 0, "Unexpected element for empty list");
}
TEST_BEGIN(test_ql_empty)
{
list_head_t head;
ql_new(&head);
test_empty_list(&head);
}
TEST_END
static void
init_entries(list_t *entries, unsigned nentries)
{
unsigned i;
for (i = 0; i < nentries; i++) {
entries[i].id = 'a' + i;
ql_elm_new(&entries[i], link);
}
}
static void
test_entries_list(list_head_t *head, list_t *entries, unsigned nentries)
{
list_t *t;
unsigned i;
assert_c_eq(ql_first(head)->id, entries[0].id, "Element id mismatch");
assert_c_eq(ql_last(head, link)->id, entries[nentries-1].id,
"Element id mismatch");
i = 0;
ql_foreach(t, head, link) {
assert_c_eq(t->id, entries[i].id, "Element id mismatch");
i++;
}
i = 0;
ql_reverse_foreach(t, head, link) {
assert_c_eq(t->id, entries[nentries-i-1].id,
"Element id mismatch");
i++;
}
for (i = 0; i < nentries-1; i++) {
t = ql_next(head, &entries[i], link);
assert_c_eq(t->id, entries[i+1].id, "Element id mismatch");
}
assert_ptr_null(ql_next(head, &entries[nentries-1], link),
"Unexpected element");
assert_ptr_null(ql_prev(head, &entries[0], link), "Unexpected element");
for (i = 1; i < nentries; i++) {
t = ql_prev(head, &entries[i], link);
assert_c_eq(t->id, entries[i-1].id, "Element id mismatch");
}
}
TEST_BEGIN(test_ql_tail_insert)
{
list_head_t head;
list_t entries[NENTRIES];
unsigned i;
ql_new(&head);
init_entries(entries, sizeof(entries)/sizeof(list_t));
for (i = 0; i < NENTRIES; i++)
ql_tail_insert(&head, &entries[i], link);
test_entries_list(&head, entries, NENTRIES);
}
TEST_END
TEST_BEGIN(test_ql_tail_remove)
{
list_head_t head;
list_t entries[NENTRIES];
unsigned i;
ql_new(&head);
init_entries(entries, sizeof(entries)/sizeof(list_t));
for (i = 0; i < NENTRIES; i++)
ql_tail_insert(&head, &entries[i], link);
for (i = 0; i < NENTRIES; i++) {
test_entries_list(&head, entries, NENTRIES-i);
ql_tail_remove(&head, list_t, link);
}
test_empty_list(&head);
}
TEST_END
TEST_BEGIN(test_ql_head_insert)
{
list_head_t head;
list_t entries[NENTRIES];
unsigned i;
ql_new(&head);
init_entries(entries, sizeof(entries)/sizeof(list_t));
for (i = 0; i < NENTRIES; i++)
ql_head_insert(&head, &entries[NENTRIES-i-1], link);
test_entries_list(&head, entries, NENTRIES);
}
TEST_END
TEST_BEGIN(test_ql_head_remove)
{
list_head_t head;
list_t entries[NENTRIES];
unsigned i;
ql_new(&head);
init_entries(entries, sizeof(entries)/sizeof(list_t));
for (i = 0; i < NENTRIES; i++)
ql_head_insert(&head, &entries[NENTRIES-i-1], link);
for (i = 0; i < NENTRIES; i++) {
test_entries_list(&head, &entries[i], NENTRIES-i);
ql_head_remove(&head, list_t, link);
}
test_empty_list(&head);
}
TEST_END
TEST_BEGIN(test_ql_insert)
{
list_head_t head;
list_t entries[8];
list_t *a, *b, *c, *d, *e, *f, *g, *h;
ql_new(&head);
init_entries(entries, sizeof(entries)/sizeof(list_t));
a = &entries[0];
b = &entries[1];
c = &entries[2];
d = &entries[3];
e = &entries[4];
f = &entries[5];
g = &entries[6];
h = &entries[7];
/*
* ql_remove(), ql_before_insert(), and ql_after_insert() are used
* internally by other macros that are already tested, so there's no
* need to test them completely. However, insertion/deletion from the
* middle of lists is not otherwise tested; do so here.
*/
ql_tail_insert(&head, f, link);
ql_before_insert(&head, f, b, link);
ql_before_insert(&head, f, c, link);
ql_after_insert(f, h, link);
ql_after_insert(f, g, link);
ql_before_insert(&head, b, a, link);
ql_after_insert(c, d, link);
ql_before_insert(&head, f, e, link);
test_entries_list(&head, entries, sizeof(entries)/sizeof(list_t));
}
TEST_END
int
main(void)
{
return (test(
test_ql_empty,
test_ql_tail_insert,
test_ql_tail_remove,
test_ql_head_insert,
test_ql_head_remove,
test_ql_insert));
}
| 4,483 | 20.352381 | 73 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/mallctl.c | #include "test/jemalloc_test.h"
TEST_BEGIN(test_mallctl_errors)
{
uint64_t epoch;
size_t sz;
assert_d_eq(mallctl("no_such_name", NULL, NULL, NULL, 0), ENOENT,
"mallctl() should return ENOENT for non-existent names");
assert_d_eq(mallctl("version", NULL, NULL, "0.0.0", strlen("0.0.0")),
EPERM, "mallctl() should return EPERM on attempt to write "
"read-only value");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch,
sizeof(epoch)-1), EINVAL,
"mallctl() should return EINVAL for input size mismatch");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch,
sizeof(epoch)+1), EINVAL,
"mallctl() should return EINVAL for input size mismatch");
sz = sizeof(epoch)-1;
assert_d_eq(mallctl("epoch", (void *)&epoch, &sz, NULL, 0), EINVAL,
"mallctl() should return EINVAL for output size mismatch");
sz = sizeof(epoch)+1;
assert_d_eq(mallctl("epoch", (void *)&epoch, &sz, NULL, 0), EINVAL,
"mallctl() should return EINVAL for output size mismatch");
}
TEST_END
TEST_BEGIN(test_mallctlnametomib_errors)
{
size_t mib[1];
size_t miblen;
miblen = sizeof(mib)/sizeof(size_t);
assert_d_eq(mallctlnametomib("no_such_name", mib, &miblen), ENOENT,
"mallctlnametomib() should return ENOENT for non-existent names");
}
TEST_END
TEST_BEGIN(test_mallctlbymib_errors)
{
uint64_t epoch;
size_t sz;
size_t mib[1];
size_t miblen;
miblen = sizeof(mib)/sizeof(size_t);
assert_d_eq(mallctlnametomib("version", mib, &miblen), 0,
"Unexpected mallctlnametomib() failure");
assert_d_eq(mallctlbymib(mib, miblen, NULL, NULL, "0.0.0",
strlen("0.0.0")), EPERM, "mallctl() should return EPERM on "
"attempt to write read-only value");
miblen = sizeof(mib)/sizeof(size_t);
assert_d_eq(mallctlnametomib("epoch", mib, &miblen), 0,
"Unexpected mallctlnametomib() failure");
assert_d_eq(mallctlbymib(mib, miblen, NULL, NULL, (void *)&epoch,
sizeof(epoch)-1), EINVAL,
"mallctlbymib() should return EINVAL for input size mismatch");
assert_d_eq(mallctlbymib(mib, miblen, NULL, NULL, (void *)&epoch,
sizeof(epoch)+1), EINVAL,
"mallctlbymib() should return EINVAL for input size mismatch");
sz = sizeof(epoch)-1;
assert_d_eq(mallctlbymib(mib, miblen, (void *)&epoch, &sz, NULL, 0),
EINVAL,
"mallctlbymib() should return EINVAL for output size mismatch");
sz = sizeof(epoch)+1;
assert_d_eq(mallctlbymib(mib, miblen, (void *)&epoch, &sz, NULL, 0),
EINVAL,
"mallctlbymib() should return EINVAL for output size mismatch");
}
TEST_END
TEST_BEGIN(test_mallctl_read_write)
{
uint64_t old_epoch, new_epoch;
size_t sz = sizeof(old_epoch);
/* Blind. */
assert_d_eq(mallctl("epoch", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl() failure");
assert_zu_eq(sz, sizeof(old_epoch), "Unexpected output size");
/* Read. */
assert_d_eq(mallctl("epoch", (void *)&old_epoch, &sz, NULL, 0), 0,
"Unexpected mallctl() failure");
assert_zu_eq(sz, sizeof(old_epoch), "Unexpected output size");
/* Write. */
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&new_epoch,
sizeof(new_epoch)), 0, "Unexpected mallctl() failure");
assert_zu_eq(sz, sizeof(old_epoch), "Unexpected output size");
/* Read+write. */
assert_d_eq(mallctl("epoch", (void *)&old_epoch, &sz,
(void *)&new_epoch, sizeof(new_epoch)), 0,
"Unexpected mallctl() failure");
assert_zu_eq(sz, sizeof(old_epoch), "Unexpected output size");
}
TEST_END
TEST_BEGIN(test_mallctlnametomib_short_mib)
{
size_t mib[4];
size_t miblen;
miblen = 3;
mib[3] = 42;
assert_d_eq(mallctlnametomib("arenas.bin.0.nregs", mib, &miblen), 0,
"Unexpected mallctlnametomib() failure");
assert_zu_eq(miblen, 3, "Unexpected mib output length");
assert_zu_eq(mib[3], 42,
"mallctlnametomib() wrote past the end of the input mib");
}
TEST_END
TEST_BEGIN(test_mallctl_config)
{
#define TEST_MALLCTL_CONFIG(config, t) do { \
t oldval; \
size_t sz = sizeof(oldval); \
assert_d_eq(mallctl("config."#config, (void *)&oldval, &sz, \
NULL, 0), 0, "Unexpected mallctl() failure"); \
assert_b_eq(oldval, config_##config, "Incorrect config value"); \
assert_zu_eq(sz, sizeof(oldval), "Unexpected output size"); \
} while (0)
TEST_MALLCTL_CONFIG(cache_oblivious, bool);
TEST_MALLCTL_CONFIG(debug, bool);
TEST_MALLCTL_CONFIG(fill, bool);
TEST_MALLCTL_CONFIG(lazy_lock, bool);
TEST_MALLCTL_CONFIG(malloc_conf, const char *);
TEST_MALLCTL_CONFIG(munmap, bool);
TEST_MALLCTL_CONFIG(prof, bool);
TEST_MALLCTL_CONFIG(prof_libgcc, bool);
TEST_MALLCTL_CONFIG(prof_libunwind, bool);
TEST_MALLCTL_CONFIG(stats, bool);
TEST_MALLCTL_CONFIG(tcache, bool);
TEST_MALLCTL_CONFIG(tls, bool);
TEST_MALLCTL_CONFIG(utrace, bool);
TEST_MALLCTL_CONFIG(valgrind, bool);
TEST_MALLCTL_CONFIG(xmalloc, bool);
#undef TEST_MALLCTL_CONFIG
}
TEST_END
TEST_BEGIN(test_mallctl_opt)
{
bool config_always = true;
#define TEST_MALLCTL_OPT(t, opt, config) do { \
t oldval; \
size_t sz = sizeof(oldval); \
int expected = config_##config ? 0 : ENOENT; \
int result = mallctl("opt."#opt, (void *)&oldval, &sz, NULL, \
0); \
assert_d_eq(result, expected, \
"Unexpected mallctl() result for opt."#opt); \
assert_zu_eq(sz, sizeof(oldval), "Unexpected output size"); \
} while (0)
TEST_MALLCTL_OPT(bool, abort, always);
TEST_MALLCTL_OPT(size_t, lg_chunk, always);
TEST_MALLCTL_OPT(const char *, dss, always);
TEST_MALLCTL_OPT(unsigned, narenas, always);
TEST_MALLCTL_OPT(const char *, purge, always);
TEST_MALLCTL_OPT(ssize_t, lg_dirty_mult, always);
TEST_MALLCTL_OPT(ssize_t, decay_time, always);
TEST_MALLCTL_OPT(bool, stats_print, always);
TEST_MALLCTL_OPT(const char *, junk, fill);
TEST_MALLCTL_OPT(size_t, quarantine, fill);
TEST_MALLCTL_OPT(bool, redzone, fill);
TEST_MALLCTL_OPT(bool, zero, fill);
TEST_MALLCTL_OPT(bool, utrace, utrace);
TEST_MALLCTL_OPT(bool, xmalloc, xmalloc);
TEST_MALLCTL_OPT(bool, tcache, tcache);
TEST_MALLCTL_OPT(size_t, lg_tcache_max, tcache);
TEST_MALLCTL_OPT(bool, prof, prof);
TEST_MALLCTL_OPT(const char *, prof_prefix, prof);
TEST_MALLCTL_OPT(bool, prof_active, prof);
TEST_MALLCTL_OPT(ssize_t, lg_prof_sample, prof);
TEST_MALLCTL_OPT(bool, prof_accum, prof);
TEST_MALLCTL_OPT(ssize_t, lg_prof_interval, prof);
TEST_MALLCTL_OPT(bool, prof_gdump, prof);
TEST_MALLCTL_OPT(bool, prof_final, prof);
TEST_MALLCTL_OPT(bool, prof_leak, prof);
#undef TEST_MALLCTL_OPT
}
TEST_END
TEST_BEGIN(test_manpage_example)
{
unsigned nbins, i;
size_t mib[4];
size_t len, miblen;
len = sizeof(nbins);
assert_d_eq(mallctl("arenas.nbins", (void *)&nbins, &len, NULL, 0), 0,
"Unexpected mallctl() failure");
miblen = 4;
assert_d_eq(mallctlnametomib("arenas.bin.0.size", mib, &miblen), 0,
"Unexpected mallctlnametomib() failure");
for (i = 0; i < nbins; i++) {
size_t bin_size;
mib[2] = i;
len = sizeof(bin_size);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&bin_size, &len,
NULL, 0), 0, "Unexpected mallctlbymib() failure");
/* Do something with bin_size... */
}
}
TEST_END
TEST_BEGIN(test_tcache_none)
{
void *p0, *q, *p1;
test_skip_if(!config_tcache);
/* Allocate p and q. */
p0 = mallocx(42, 0);
assert_ptr_not_null(p0, "Unexpected mallocx() failure");
q = mallocx(42, 0);
assert_ptr_not_null(q, "Unexpected mallocx() failure");
/* Deallocate p and q, but bypass the tcache for q. */
dallocx(p0, 0);
dallocx(q, MALLOCX_TCACHE_NONE);
/* Make sure that tcache-based allocation returns p, not q. */
p1 = mallocx(42, 0);
assert_ptr_not_null(p1, "Unexpected mallocx() failure");
assert_ptr_eq(p0, p1, "Expected tcache to allocate cached region");
/* Clean up. */
dallocx(p1, MALLOCX_TCACHE_NONE);
}
TEST_END
TEST_BEGIN(test_tcache)
{
#define NTCACHES 10
unsigned tis[NTCACHES];
void *ps[NTCACHES];
void *qs[NTCACHES];
unsigned i;
size_t sz, psz, qsz;
test_skip_if(!config_tcache);
psz = 42;
qsz = nallocx(psz, 0) + 1;
/* Create tcaches. */
for (i = 0; i < NTCACHES; i++) {
sz = sizeof(unsigned);
assert_d_eq(mallctl("tcache.create", (void *)&tis[i], &sz, NULL,
0), 0, "Unexpected mallctl() failure, i=%u", i);
}
/* Exercise tcache ID recycling. */
for (i = 0; i < NTCACHES; i++) {
assert_d_eq(mallctl("tcache.destroy", NULL, NULL,
(void *)&tis[i], sizeof(unsigned)), 0,
"Unexpected mallctl() failure, i=%u", i);
}
for (i = 0; i < NTCACHES; i++) {
sz = sizeof(unsigned);
assert_d_eq(mallctl("tcache.create", (void *)&tis[i], &sz, NULL,
0), 0, "Unexpected mallctl() failure, i=%u", i);
}
/* Flush empty tcaches. */
for (i = 0; i < NTCACHES; i++) {
assert_d_eq(mallctl("tcache.flush", NULL, NULL, (void *)&tis[i],
sizeof(unsigned)), 0, "Unexpected mallctl() failure, i=%u",
i);
}
/* Cache some allocations. */
for (i = 0; i < NTCACHES; i++) {
ps[i] = mallocx(psz, MALLOCX_TCACHE(tis[i]));
assert_ptr_not_null(ps[i], "Unexpected mallocx() failure, i=%u",
i);
dallocx(ps[i], MALLOCX_TCACHE(tis[i]));
qs[i] = mallocx(qsz, MALLOCX_TCACHE(tis[i]));
assert_ptr_not_null(qs[i], "Unexpected mallocx() failure, i=%u",
i);
dallocx(qs[i], MALLOCX_TCACHE(tis[i]));
}
/* Verify that tcaches allocate cached regions. */
for (i = 0; i < NTCACHES; i++) {
void *p0 = ps[i];
ps[i] = mallocx(psz, MALLOCX_TCACHE(tis[i]));
assert_ptr_not_null(ps[i], "Unexpected mallocx() failure, i=%u",
i);
assert_ptr_eq(ps[i], p0,
"Expected mallocx() to allocate cached region, i=%u", i);
}
/* Verify that reallocation uses cached regions. */
for (i = 0; i < NTCACHES; i++) {
void *q0 = qs[i];
qs[i] = rallocx(ps[i], qsz, MALLOCX_TCACHE(tis[i]));
assert_ptr_not_null(qs[i], "Unexpected rallocx() failure, i=%u",
i);
assert_ptr_eq(qs[i], q0,
"Expected rallocx() to allocate cached region, i=%u", i);
/* Avoid undefined behavior in case of test failure. */
if (qs[i] == NULL)
qs[i] = ps[i];
}
for (i = 0; i < NTCACHES; i++)
dallocx(qs[i], MALLOCX_TCACHE(tis[i]));
/* Flush some non-empty tcaches. */
for (i = 0; i < NTCACHES/2; i++) {
assert_d_eq(mallctl("tcache.flush", NULL, NULL, (void *)&tis[i],
sizeof(unsigned)), 0, "Unexpected mallctl() failure, i=%u",
i);
}
/* Destroy tcaches. */
for (i = 0; i < NTCACHES; i++) {
assert_d_eq(mallctl("tcache.destroy", NULL, NULL,
(void *)&tis[i], sizeof(unsigned)), 0,
"Unexpected mallctl() failure, i=%u", i);
}
}
TEST_END
TEST_BEGIN(test_thread_arena)
{
unsigned arena_old, arena_new, narenas;
size_t sz = sizeof(unsigned);
assert_d_eq(mallctl("arenas.narenas", (void *)&narenas, &sz, NULL, 0),
0, "Unexpected mallctl() failure");
assert_u_eq(narenas, opt_narenas, "Number of arenas incorrect");
arena_new = narenas - 1;
assert_d_eq(mallctl("thread.arena", (void *)&arena_old, &sz,
(void *)&arena_new, sizeof(unsigned)), 0,
"Unexpected mallctl() failure");
arena_new = 0;
assert_d_eq(mallctl("thread.arena", (void *)&arena_old, &sz,
(void *)&arena_new, sizeof(unsigned)), 0,
"Unexpected mallctl() failure");
}
TEST_END
TEST_BEGIN(test_arena_i_lg_dirty_mult)
{
ssize_t lg_dirty_mult, orig_lg_dirty_mult, prev_lg_dirty_mult;
size_t sz = sizeof(ssize_t);
test_skip_if(opt_purge != purge_mode_ratio);
assert_d_eq(mallctl("arena.0.lg_dirty_mult",
(void *)&orig_lg_dirty_mult, &sz, NULL, 0), 0,
"Unexpected mallctl() failure");
lg_dirty_mult = -2;
assert_d_eq(mallctl("arena.0.lg_dirty_mult", NULL, NULL,
(void *)&lg_dirty_mult, sizeof(ssize_t)), EFAULT,
"Unexpected mallctl() success");
lg_dirty_mult = (sizeof(size_t) << 3);
assert_d_eq(mallctl("arena.0.lg_dirty_mult", NULL, NULL,
(void *)&lg_dirty_mult, sizeof(ssize_t)), EFAULT,
"Unexpected mallctl() success");
for (prev_lg_dirty_mult = orig_lg_dirty_mult, lg_dirty_mult = -1;
lg_dirty_mult < (ssize_t)(sizeof(size_t) << 3); prev_lg_dirty_mult
= lg_dirty_mult, lg_dirty_mult++) {
ssize_t old_lg_dirty_mult;
assert_d_eq(mallctl("arena.0.lg_dirty_mult",
(void *)&old_lg_dirty_mult, &sz, (void *)&lg_dirty_mult,
sizeof(ssize_t)), 0, "Unexpected mallctl() failure");
assert_zd_eq(old_lg_dirty_mult, prev_lg_dirty_mult,
"Unexpected old arena.0.lg_dirty_mult");
}
}
TEST_END
TEST_BEGIN(test_arena_i_decay_time)
{
ssize_t decay_time, orig_decay_time, prev_decay_time;
size_t sz = sizeof(ssize_t);
test_skip_if(opt_purge != purge_mode_decay);
assert_d_eq(mallctl("arena.0.decay_time", (void *)&orig_decay_time, &sz,
NULL, 0), 0, "Unexpected mallctl() failure");
decay_time = -2;
assert_d_eq(mallctl("arena.0.decay_time", NULL, NULL,
(void *)&decay_time, sizeof(ssize_t)), EFAULT,
"Unexpected mallctl() success");
decay_time = 0x7fffffff;
assert_d_eq(mallctl("arena.0.decay_time", NULL, NULL,
(void *)&decay_time, sizeof(ssize_t)), 0,
"Unexpected mallctl() failure");
for (prev_decay_time = decay_time, decay_time = -1;
decay_time < 20; prev_decay_time = decay_time, decay_time++) {
ssize_t old_decay_time;
assert_d_eq(mallctl("arena.0.decay_time", (void *)&old_decay_time,
&sz, (void *)&decay_time, sizeof(ssize_t)), 0,
"Unexpected mallctl() failure");
assert_zd_eq(old_decay_time, prev_decay_time,
"Unexpected old arena.0.decay_time");
}
}
TEST_END
TEST_BEGIN(test_arena_i_purge)
{
unsigned narenas;
size_t sz = sizeof(unsigned);
size_t mib[3];
size_t miblen = 3;
assert_d_eq(mallctl("arena.0.purge", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl() failure");
assert_d_eq(mallctl("arenas.narenas", (void *)&narenas, &sz, NULL, 0),
0, "Unexpected mallctl() failure");
assert_d_eq(mallctlnametomib("arena.0.purge", mib, &miblen), 0,
"Unexpected mallctlnametomib() failure");
mib[1] = narenas;
assert_d_eq(mallctlbymib(mib, miblen, NULL, NULL, NULL, 0), 0,
"Unexpected mallctlbymib() failure");
}
TEST_END
TEST_BEGIN(test_arena_i_decay)
{
unsigned narenas;
size_t sz = sizeof(unsigned);
size_t mib[3];
size_t miblen = 3;
assert_d_eq(mallctl("arena.0.decay", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl() failure");
assert_d_eq(mallctl("arenas.narenas", (void *)&narenas, &sz, NULL, 0),
0, "Unexpected mallctl() failure");
assert_d_eq(mallctlnametomib("arena.0.decay", mib, &miblen), 0,
"Unexpected mallctlnametomib() failure");
mib[1] = narenas;
assert_d_eq(mallctlbymib(mib, miblen, NULL, NULL, NULL, 0), 0,
"Unexpected mallctlbymib() failure");
}
TEST_END
TEST_BEGIN(test_arena_i_dss)
{
const char *dss_prec_old, *dss_prec_new;
size_t sz = sizeof(dss_prec_old);
size_t mib[3];
size_t miblen;
miblen = sizeof(mib)/sizeof(size_t);
assert_d_eq(mallctlnametomib("arena.0.dss", mib, &miblen), 0,
"Unexpected mallctlnametomib() error");
dss_prec_new = "disabled";
assert_d_eq(mallctlbymib(mib, miblen, (void *)&dss_prec_old, &sz,
(void *)&dss_prec_new, sizeof(dss_prec_new)), 0,
"Unexpected mallctl() failure");
assert_str_ne(dss_prec_old, "primary",
"Unexpected default for dss precedence");
assert_d_eq(mallctlbymib(mib, miblen, (void *)&dss_prec_new, &sz,
(void *)&dss_prec_old, sizeof(dss_prec_old)), 0,
"Unexpected mallctl() failure");
assert_d_eq(mallctlbymib(mib, miblen, (void *)&dss_prec_old, &sz, NULL,
0), 0, "Unexpected mallctl() failure");
assert_str_ne(dss_prec_old, "primary",
"Unexpected value for dss precedence");
mib[1] = narenas_total_get();
dss_prec_new = "disabled";
assert_d_eq(mallctlbymib(mib, miblen, (void *)&dss_prec_old, &sz,
(void *)&dss_prec_new, sizeof(dss_prec_new)), 0,
"Unexpected mallctl() failure");
assert_str_ne(dss_prec_old, "primary",
"Unexpected default for dss precedence");
assert_d_eq(mallctlbymib(mib, miblen, (void *)&dss_prec_new, &sz,
(void *)&dss_prec_old, sizeof(dss_prec_new)), 0,
"Unexpected mallctl() failure");
assert_d_eq(mallctlbymib(mib, miblen, (void *)&dss_prec_old, &sz, NULL,
0), 0, "Unexpected mallctl() failure");
assert_str_ne(dss_prec_old, "primary",
"Unexpected value for dss precedence");
}
TEST_END
TEST_BEGIN(test_arenas_initialized)
{
unsigned narenas;
size_t sz = sizeof(narenas);
assert_d_eq(mallctl("arenas.narenas", (void *)&narenas, &sz, NULL, 0),
0, "Unexpected mallctl() failure");
{
VARIABLE_ARRAY(bool, initialized, narenas);
sz = narenas * sizeof(bool);
assert_d_eq(mallctl("arenas.initialized", (void *)initialized,
&sz, NULL, 0), 0, "Unexpected mallctl() failure");
}
}
TEST_END
TEST_BEGIN(test_arenas_lg_dirty_mult)
{
ssize_t lg_dirty_mult, orig_lg_dirty_mult, prev_lg_dirty_mult;
size_t sz = sizeof(ssize_t);
test_skip_if(opt_purge != purge_mode_ratio);
assert_d_eq(mallctl("arenas.lg_dirty_mult", (void *)&orig_lg_dirty_mult,
&sz, NULL, 0), 0, "Unexpected mallctl() failure");
lg_dirty_mult = -2;
assert_d_eq(mallctl("arenas.lg_dirty_mult", NULL, NULL,
(void *)&lg_dirty_mult, sizeof(ssize_t)), EFAULT,
"Unexpected mallctl() success");
lg_dirty_mult = (sizeof(size_t) << 3);
assert_d_eq(mallctl("arenas.lg_dirty_mult", NULL, NULL,
(void *)&lg_dirty_mult, sizeof(ssize_t)), EFAULT,
"Unexpected mallctl() success");
for (prev_lg_dirty_mult = orig_lg_dirty_mult, lg_dirty_mult = -1;
lg_dirty_mult < (ssize_t)(sizeof(size_t) << 3); prev_lg_dirty_mult =
lg_dirty_mult, lg_dirty_mult++) {
ssize_t old_lg_dirty_mult;
assert_d_eq(mallctl("arenas.lg_dirty_mult",
(void *)&old_lg_dirty_mult, &sz, (void *)&lg_dirty_mult,
sizeof(ssize_t)), 0, "Unexpected mallctl() failure");
assert_zd_eq(old_lg_dirty_mult, prev_lg_dirty_mult,
"Unexpected old arenas.lg_dirty_mult");
}
}
TEST_END
TEST_BEGIN(test_arenas_decay_time)
{
ssize_t decay_time, orig_decay_time, prev_decay_time;
size_t sz = sizeof(ssize_t);
test_skip_if(opt_purge != purge_mode_decay);
assert_d_eq(mallctl("arenas.decay_time", (void *)&orig_decay_time, &sz,
NULL, 0), 0, "Unexpected mallctl() failure");
decay_time = -2;
assert_d_eq(mallctl("arenas.decay_time", NULL, NULL,
(void *)&decay_time, sizeof(ssize_t)), EFAULT,
"Unexpected mallctl() success");
decay_time = 0x7fffffff;
assert_d_eq(mallctl("arenas.decay_time", NULL, NULL,
(void *)&decay_time, sizeof(ssize_t)), 0,
"Expected mallctl() failure");
for (prev_decay_time = decay_time, decay_time = -1;
decay_time < 20; prev_decay_time = decay_time, decay_time++) {
ssize_t old_decay_time;
assert_d_eq(mallctl("arenas.decay_time",
(void *)&old_decay_time, &sz, (void *)&decay_time,
sizeof(ssize_t)), 0, "Unexpected mallctl() failure");
assert_zd_eq(old_decay_time, prev_decay_time,
"Unexpected old arenas.decay_time");
}
}
TEST_END
TEST_BEGIN(test_arenas_constants)
{
#define TEST_ARENAS_CONSTANT(t, name, expected) do { \
t name; \
size_t sz = sizeof(t); \
assert_d_eq(mallctl("arenas."#name, (void *)&name, &sz, NULL, \
0), 0, "Unexpected mallctl() failure"); \
assert_zu_eq(name, expected, "Incorrect "#name" size"); \
} while (0)
TEST_ARENAS_CONSTANT(size_t, quantum, QUANTUM);
TEST_ARENAS_CONSTANT(size_t, page, PAGE);
TEST_ARENAS_CONSTANT(unsigned, nbins, NBINS);
TEST_ARENAS_CONSTANT(unsigned, nlruns, nlclasses);
TEST_ARENAS_CONSTANT(unsigned, nhchunks, nhclasses);
#undef TEST_ARENAS_CONSTANT
}
TEST_END
TEST_BEGIN(test_arenas_bin_constants)
{
#define TEST_ARENAS_BIN_CONSTANT(t, name, expected) do { \
t name; \
size_t sz = sizeof(t); \
assert_d_eq(mallctl("arenas.bin.0."#name, (void *)&name, &sz, \
NULL, 0), 0, "Unexpected mallctl() failure"); \
assert_zu_eq(name, expected, "Incorrect "#name" size"); \
} while (0)
TEST_ARENAS_BIN_CONSTANT(size_t, size, arena_bin_info[0].reg_size);
TEST_ARENAS_BIN_CONSTANT(uint32_t, nregs, arena_bin_info[0].nregs);
TEST_ARENAS_BIN_CONSTANT(size_t, run_size, arena_bin_info[0].run_size);
#undef TEST_ARENAS_BIN_CONSTANT
}
TEST_END
TEST_BEGIN(test_arenas_lrun_constants)
{
#define TEST_ARENAS_LRUN_CONSTANT(t, name, expected) do { \
t name; \
size_t sz = sizeof(t); \
assert_d_eq(mallctl("arenas.lrun.0."#name, (void *)&name, &sz, \
NULL, 0), 0, "Unexpected mallctl() failure"); \
assert_zu_eq(name, expected, "Incorrect "#name" size"); \
} while (0)
TEST_ARENAS_LRUN_CONSTANT(size_t, size, LARGE_MINCLASS);
#undef TEST_ARENAS_LRUN_CONSTANT
}
TEST_END
TEST_BEGIN(test_arenas_hchunk_constants)
{
#define TEST_ARENAS_HCHUNK_CONSTANT(t, name, expected) do { \
t name; \
size_t sz = sizeof(t); \
assert_d_eq(mallctl("arenas.hchunk.0."#name, (void *)&name, \
&sz, NULL, 0), 0, "Unexpected mallctl() failure"); \
assert_zu_eq(name, expected, "Incorrect "#name" size"); \
} while (0)
TEST_ARENAS_HCHUNK_CONSTANT(size_t, size, chunksize);
#undef TEST_ARENAS_HCHUNK_CONSTANT
}
TEST_END
TEST_BEGIN(test_arenas_extend)
{
unsigned narenas_before, arena, narenas_after;
size_t sz = sizeof(unsigned);
assert_d_eq(mallctl("arenas.narenas", (void *)&narenas_before, &sz,
NULL, 0), 0, "Unexpected mallctl() failure");
assert_d_eq(mallctl("arenas.extend", (void *)&arena, &sz, NULL, 0), 0,
"Unexpected mallctl() failure");
assert_d_eq(mallctl("arenas.narenas", (void *)&narenas_after, &sz, NULL,
0), 0, "Unexpected mallctl() failure");
assert_u_eq(narenas_before+1, narenas_after,
"Unexpected number of arenas before versus after extension");
assert_u_eq(arena, narenas_after-1, "Unexpected arena index");
}
TEST_END
TEST_BEGIN(test_stats_arenas)
{
#define TEST_STATS_ARENAS(t, name) do { \
t name; \
size_t sz = sizeof(t); \
assert_d_eq(mallctl("stats.arenas.0."#name, (void *)&name, &sz, \
NULL, 0), 0, "Unexpected mallctl() failure"); \
} while (0)
TEST_STATS_ARENAS(unsigned, nthreads);
TEST_STATS_ARENAS(const char *, dss);
TEST_STATS_ARENAS(ssize_t, lg_dirty_mult);
TEST_STATS_ARENAS(ssize_t, decay_time);
TEST_STATS_ARENAS(size_t, pactive);
TEST_STATS_ARENAS(size_t, pdirty);
#undef TEST_STATS_ARENAS
}
TEST_END
int
main(void)
{
return (test(
test_mallctl_errors,
test_mallctlnametomib_errors,
test_mallctlbymib_errors,
test_mallctl_read_write,
test_mallctlnametomib_short_mib,
test_mallctl_config,
test_mallctl_opt,
test_manpage_example,
test_tcache_none,
test_tcache,
test_thread_arena,
test_arena_i_lg_dirty_mult,
test_arena_i_decay_time,
test_arena_i_purge,
test_arena_i_decay,
test_arena_i_dss,
test_arenas_initialized,
test_arenas_lg_dirty_mult,
test_arenas_decay_time,
test_arenas_constants,
test_arenas_bin_constants,
test_arenas_lrun_constants,
test_arenas_hchunk_constants,
test_arenas_extend,
test_stats_arenas));
}
| 22,753 | 29.542282 | 73 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/rtree.c | #include "test/jemalloc_test.h"
static rtree_node_elm_t *
node_alloc(size_t nelms)
{
return ((rtree_node_elm_t *)calloc(nelms, sizeof(rtree_node_elm_t)));
}
static void
node_dalloc(rtree_node_elm_t *node)
{
free(node);
}
TEST_BEGIN(test_rtree_get_empty)
{
unsigned i;
for (i = 1; i <= (sizeof(uintptr_t) << 3); i++) {
rtree_t rtree;
assert_false(rtree_new(&rtree, i, node_alloc, node_dalloc),
"Unexpected rtree_new() failure");
assert_ptr_null(rtree_get(&rtree, 0, false),
"rtree_get() should return NULL for empty tree");
rtree_delete(&rtree);
}
}
TEST_END
TEST_BEGIN(test_rtree_extrema)
{
unsigned i;
extent_node_t node_a, node_b;
for (i = 1; i <= (sizeof(uintptr_t) << 3); i++) {
rtree_t rtree;
assert_false(rtree_new(&rtree, i, node_alloc, node_dalloc),
"Unexpected rtree_new() failure");
assert_false(rtree_set(&rtree, 0, &node_a),
"Unexpected rtree_set() failure");
assert_ptr_eq(rtree_get(&rtree, 0, true), &node_a,
"rtree_get() should return previously set value");
assert_false(rtree_set(&rtree, ~((uintptr_t)0), &node_b),
"Unexpected rtree_set() failure");
assert_ptr_eq(rtree_get(&rtree, ~((uintptr_t)0), true), &node_b,
"rtree_get() should return previously set value");
rtree_delete(&rtree);
}
}
TEST_END
TEST_BEGIN(test_rtree_bits)
{
unsigned i, j, k;
for (i = 1; i < (sizeof(uintptr_t) << 3); i++) {
uintptr_t keys[] = {0, 1,
(((uintptr_t)1) << (sizeof(uintptr_t)*8-i)) - 1};
extent_node_t node;
rtree_t rtree;
assert_false(rtree_new(&rtree, i, node_alloc, node_dalloc),
"Unexpected rtree_new() failure");
for (j = 0; j < sizeof(keys)/sizeof(uintptr_t); j++) {
assert_false(rtree_set(&rtree, keys[j], &node),
"Unexpected rtree_set() failure");
for (k = 0; k < sizeof(keys)/sizeof(uintptr_t); k++) {
assert_ptr_eq(rtree_get(&rtree, keys[k], true),
&node, "rtree_get() should return "
"previously set value and ignore "
"insignificant key bits; i=%u, j=%u, k=%u, "
"set key=%#"FMTxPTR", get key=%#"FMTxPTR, i,
j, k, keys[j], keys[k]);
}
assert_ptr_null(rtree_get(&rtree,
(((uintptr_t)1) << (sizeof(uintptr_t)*8-i)), false),
"Only leftmost rtree leaf should be set; "
"i=%u, j=%u", i, j);
assert_false(rtree_set(&rtree, keys[j], NULL),
"Unexpected rtree_set() failure");
}
rtree_delete(&rtree);
}
}
TEST_END
TEST_BEGIN(test_rtree_random)
{
unsigned i;
sfmt_t *sfmt;
#define NSET 16
#define SEED 42
sfmt = init_gen_rand(SEED);
for (i = 1; i <= (sizeof(uintptr_t) << 3); i++) {
uintptr_t keys[NSET];
extent_node_t node;
unsigned j;
rtree_t rtree;
assert_false(rtree_new(&rtree, i, node_alloc, node_dalloc),
"Unexpected rtree_new() failure");
for (j = 0; j < NSET; j++) {
keys[j] = (uintptr_t)gen_rand64(sfmt);
assert_false(rtree_set(&rtree, keys[j], &node),
"Unexpected rtree_set() failure");
assert_ptr_eq(rtree_get(&rtree, keys[j], true), &node,
"rtree_get() should return previously set value");
}
for (j = 0; j < NSET; j++) {
assert_ptr_eq(rtree_get(&rtree, keys[j], true), &node,
"rtree_get() should return previously set value");
}
for (j = 0; j < NSET; j++) {
assert_false(rtree_set(&rtree, keys[j], NULL),
"Unexpected rtree_set() failure");
assert_ptr_null(rtree_get(&rtree, keys[j], true),
"rtree_get() should return previously set value");
}
for (j = 0; j < NSET; j++) {
assert_ptr_null(rtree_get(&rtree, keys[j], true),
"rtree_get() should return previously set value");
}
rtree_delete(&rtree);
}
fini_gen_rand(sfmt);
#undef NSET
#undef SEED
}
TEST_END
int
main(void)
{
return (test(
test_rtree_get_empty,
test_rtree_extrema,
test_rtree_bits,
test_rtree_random));
}
| 3,831 | 24.210526 | 70 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/decay.c | #include "test/jemalloc_test.h"
const char *malloc_conf = "purge:decay,decay_time:1";
static nstime_monotonic_t *nstime_monotonic_orig;
static nstime_update_t *nstime_update_orig;
static unsigned nupdates_mock;
static nstime_t time_mock;
static bool monotonic_mock;
static bool
nstime_monotonic_mock(void)
{
return (monotonic_mock);
}
static bool
nstime_update_mock(nstime_t *time)
{
nupdates_mock++;
if (monotonic_mock)
nstime_copy(time, &time_mock);
return (!monotonic_mock);
}
TEST_BEGIN(test_decay_ticks)
{
ticker_t *decay_ticker;
unsigned tick0, tick1;
size_t sz, huge0, large0;
void *p;
test_skip_if(opt_purge != purge_mode_decay);
decay_ticker = decay_ticker_get(tsd_fetch(), 0);
assert_ptr_not_null(decay_ticker,
"Unexpected failure getting decay ticker");
sz = sizeof(size_t);
assert_d_eq(mallctl("arenas.hchunk.0.size", (void *)&huge0, &sz, NULL,
0), 0, "Unexpected mallctl failure");
assert_d_eq(mallctl("arenas.lrun.0.size", (void *)&large0, &sz, NULL,
0), 0, "Unexpected mallctl failure");
/*
* Test the standard APIs using a huge size class, since we can't
* control tcache interactions (except by completely disabling tcache
* for the entire test program).
*/
/* malloc(). */
tick0 = ticker_read(decay_ticker);
p = malloc(huge0);
assert_ptr_not_null(p, "Unexpected malloc() failure");
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0, "Expected ticker to tick during malloc()");
/* free(). */
tick0 = ticker_read(decay_ticker);
free(p);
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0, "Expected ticker to tick during free()");
/* calloc(). */
tick0 = ticker_read(decay_ticker);
p = calloc(1, huge0);
assert_ptr_not_null(p, "Unexpected calloc() failure");
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0, "Expected ticker to tick during calloc()");
free(p);
/* posix_memalign(). */
tick0 = ticker_read(decay_ticker);
assert_d_eq(posix_memalign(&p, sizeof(size_t), huge0), 0,
"Unexpected posix_memalign() failure");
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0,
"Expected ticker to tick during posix_memalign()");
free(p);
/* aligned_alloc(). */
tick0 = ticker_read(decay_ticker);
p = aligned_alloc(sizeof(size_t), huge0);
assert_ptr_not_null(p, "Unexpected aligned_alloc() failure");
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0,
"Expected ticker to tick during aligned_alloc()");
free(p);
/* realloc(). */
/* Allocate. */
tick0 = ticker_read(decay_ticker);
p = realloc(NULL, huge0);
assert_ptr_not_null(p, "Unexpected realloc() failure");
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0, "Expected ticker to tick during realloc()");
/* Reallocate. */
tick0 = ticker_read(decay_ticker);
p = realloc(p, huge0);
assert_ptr_not_null(p, "Unexpected realloc() failure");
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0, "Expected ticker to tick during realloc()");
/* Deallocate. */
tick0 = ticker_read(decay_ticker);
realloc(p, 0);
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0, "Expected ticker to tick during realloc()");
/*
* Test the *allocx() APIs using huge, large, and small size classes,
* with tcache explicitly disabled.
*/
{
unsigned i;
size_t allocx_sizes[3];
allocx_sizes[0] = huge0;
allocx_sizes[1] = large0;
allocx_sizes[2] = 1;
for (i = 0; i < sizeof(allocx_sizes) / sizeof(size_t); i++) {
sz = allocx_sizes[i];
/* mallocx(). */
tick0 = ticker_read(decay_ticker);
p = mallocx(sz, MALLOCX_TCACHE_NONE);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0,
"Expected ticker to tick during mallocx() (sz=%zu)",
sz);
/* rallocx(). */
tick0 = ticker_read(decay_ticker);
p = rallocx(p, sz, MALLOCX_TCACHE_NONE);
assert_ptr_not_null(p, "Unexpected rallocx() failure");
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0,
"Expected ticker to tick during rallocx() (sz=%zu)",
sz);
/* xallocx(). */
tick0 = ticker_read(decay_ticker);
xallocx(p, sz, 0, MALLOCX_TCACHE_NONE);
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0,
"Expected ticker to tick during xallocx() (sz=%zu)",
sz);
/* dallocx(). */
tick0 = ticker_read(decay_ticker);
dallocx(p, MALLOCX_TCACHE_NONE);
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0,
"Expected ticker to tick during dallocx() (sz=%zu)",
sz);
/* sdallocx(). */
p = mallocx(sz, MALLOCX_TCACHE_NONE);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
tick0 = ticker_read(decay_ticker);
sdallocx(p, sz, MALLOCX_TCACHE_NONE);
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0,
"Expected ticker to tick during sdallocx() "
"(sz=%zu)", sz);
}
}
/*
* Test tcache fill/flush interactions for large and small size classes,
* using an explicit tcache.
*/
if (config_tcache) {
unsigned tcache_ind, i;
size_t tcache_sizes[2];
tcache_sizes[0] = large0;
tcache_sizes[1] = 1;
sz = sizeof(unsigned);
assert_d_eq(mallctl("tcache.create", (void *)&tcache_ind, &sz,
NULL, 0), 0, "Unexpected mallctl failure");
for (i = 0; i < sizeof(tcache_sizes) / sizeof(size_t); i++) {
sz = tcache_sizes[i];
/* tcache fill. */
tick0 = ticker_read(decay_ticker);
p = mallocx(sz, MALLOCX_TCACHE(tcache_ind));
assert_ptr_not_null(p, "Unexpected mallocx() failure");
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0,
"Expected ticker to tick during tcache fill "
"(sz=%zu)", sz);
/* tcache flush. */
dallocx(p, MALLOCX_TCACHE(tcache_ind));
tick0 = ticker_read(decay_ticker);
assert_d_eq(mallctl("tcache.flush", NULL, NULL,
(void *)&tcache_ind, sizeof(unsigned)), 0,
"Unexpected mallctl failure");
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0,
"Expected ticker to tick during tcache flush "
"(sz=%zu)", sz);
}
}
}
TEST_END
TEST_BEGIN(test_decay_ticker)
{
#define NPS 1024
int flags = (MALLOCX_ARENA(0) | MALLOCX_TCACHE_NONE);
void *ps[NPS];
uint64_t epoch;
uint64_t npurge0 = 0;
uint64_t npurge1 = 0;
size_t sz, large;
unsigned i, nupdates0;
nstime_t time, decay_time, deadline;
test_skip_if(opt_purge != purge_mode_decay);
/*
* Allocate a bunch of large objects, pause the clock, deallocate the
* objects, restore the clock, then [md]allocx() in a tight loop to
* verify the ticker triggers purging.
*/
if (config_tcache) {
size_t tcache_max;
sz = sizeof(size_t);
assert_d_eq(mallctl("arenas.tcache_max", (void *)&tcache_max,
&sz, NULL, 0), 0, "Unexpected mallctl failure");
large = nallocx(tcache_max + 1, flags);
} else {
sz = sizeof(size_t);
assert_d_eq(mallctl("arenas.lrun.0.size", (void *)&large, &sz,
NULL, 0), 0, "Unexpected mallctl failure");
}
assert_d_eq(mallctl("arena.0.purge", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl failure");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch,
sizeof(uint64_t)), 0, "Unexpected mallctl failure");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.npurge", (void *)&npurge0, &sz,
NULL, 0), config_stats ? 0 : ENOENT, "Unexpected mallctl result");
for (i = 0; i < NPS; i++) {
ps[i] = mallocx(large, flags);
assert_ptr_not_null(ps[i], "Unexpected mallocx() failure");
}
nupdates_mock = 0;
nstime_init(&time_mock, 0);
nstime_update(&time_mock);
monotonic_mock = true;
nstime_monotonic_orig = nstime_monotonic;
nstime_update_orig = nstime_update;
nstime_monotonic = nstime_monotonic_mock;
nstime_update = nstime_update_mock;
for (i = 0; i < NPS; i++) {
dallocx(ps[i], flags);
nupdates0 = nupdates_mock;
assert_d_eq(mallctl("arena.0.decay", NULL, NULL, NULL, 0), 0,
"Unexpected arena.0.decay failure");
assert_u_gt(nupdates_mock, nupdates0,
"Expected nstime_update() to be called");
}
nstime_monotonic = nstime_monotonic_orig;
nstime_update = nstime_update_orig;
nstime_init(&time, 0);
nstime_update(&time);
nstime_init2(&decay_time, opt_decay_time, 0);
nstime_copy(&deadline, &time);
nstime_add(&deadline, &decay_time);
do {
for (i = 0; i < DECAY_NTICKS_PER_UPDATE / 2; i++) {
void *p = mallocx(1, flags);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
dallocx(p, flags);
}
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch,
sizeof(uint64_t)), 0, "Unexpected mallctl failure");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.npurge", (void *)&npurge1,
&sz, NULL, 0), config_stats ? 0 : ENOENT,
"Unexpected mallctl result");
nstime_update(&time);
} while (nstime_compare(&time, &deadline) <= 0 && npurge1 == npurge0);
if (config_stats)
assert_u64_gt(npurge1, npurge0, "Expected purging to occur");
#undef NPS
}
TEST_END
TEST_BEGIN(test_decay_nonmonotonic)
{
#define NPS (SMOOTHSTEP_NSTEPS + 1)
int flags = (MALLOCX_ARENA(0) | MALLOCX_TCACHE_NONE);
void *ps[NPS];
uint64_t epoch;
uint64_t npurge0 = 0;
uint64_t npurge1 = 0;
size_t sz, large0;
unsigned i, nupdates0;
test_skip_if(opt_purge != purge_mode_decay);
sz = sizeof(size_t);
assert_d_eq(mallctl("arenas.lrun.0.size", (void *)&large0, &sz, NULL,
0), 0, "Unexpected mallctl failure");
assert_d_eq(mallctl("arena.0.purge", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl failure");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch,
sizeof(uint64_t)), 0, "Unexpected mallctl failure");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.npurge", (void *)&npurge0, &sz,
NULL, 0), config_stats ? 0 : ENOENT, "Unexpected mallctl result");
nupdates_mock = 0;
nstime_init(&time_mock, 0);
nstime_update(&time_mock);
monotonic_mock = false;
nstime_monotonic_orig = nstime_monotonic;
nstime_update_orig = nstime_update;
nstime_monotonic = nstime_monotonic_mock;
nstime_update = nstime_update_mock;
for (i = 0; i < NPS; i++) {
ps[i] = mallocx(large0, flags);
assert_ptr_not_null(ps[i], "Unexpected mallocx() failure");
}
for (i = 0; i < NPS; i++) {
dallocx(ps[i], flags);
nupdates0 = nupdates_mock;
assert_d_eq(mallctl("arena.0.decay", NULL, NULL, NULL, 0), 0,
"Unexpected arena.0.decay failure");
assert_u_gt(nupdates_mock, nupdates0,
"Expected nstime_update() to be called");
}
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch,
sizeof(uint64_t)), 0, "Unexpected mallctl failure");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.npurge", (void *)&npurge1, &sz,
NULL, 0), config_stats ? 0 : ENOENT, "Unexpected mallctl result");
if (config_stats)
assert_u64_eq(npurge0, npurge1, "Unexpected purging occurred");
nstime_monotonic = nstime_monotonic_orig;
nstime_update = nstime_update_orig;
#undef NPS
}
TEST_END
int
main(void)
{
return (test(
test_decay_ticks,
test_decay_ticker,
test_decay_nonmonotonic));
}
| 11,060 | 28.496 | 73 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/ph.c | #include "test/jemalloc_test.h"
typedef struct node_s node_t;
struct node_s {
#define NODE_MAGIC 0x9823af7e
uint32_t magic;
phn(node_t) link;
uint64_t key;
};
static int
node_cmp(const node_t *a, const node_t *b)
{
int ret;
ret = (a->key > b->key) - (a->key < b->key);
if (ret == 0) {
/*
* Duplicates are not allowed in the heap, so force an
* arbitrary ordering for non-identical items with equal keys.
*/
ret = (((uintptr_t)a) > ((uintptr_t)b))
- (((uintptr_t)a) < ((uintptr_t)b));
}
return (ret);
}
static int
node_cmp_magic(const node_t *a, const node_t *b) {
assert_u32_eq(a->magic, NODE_MAGIC, "Bad magic");
assert_u32_eq(b->magic, NODE_MAGIC, "Bad magic");
return (node_cmp(a, b));
}
typedef ph(node_t) heap_t;
ph_gen(static, heap_, heap_t, node_t, link, node_cmp_magic);
static void
node_print(const node_t *node, unsigned depth)
{
unsigned i;
node_t *leftmost_child, *sibling;
for (i = 0; i < depth; i++)
malloc_printf("\t");
malloc_printf("%2"FMTu64"\n", node->key);
leftmost_child = phn_lchild_get(node_t, link, node);
if (leftmost_child == NULL)
return;
node_print(leftmost_child, depth + 1);
for (sibling = phn_next_get(node_t, link, leftmost_child); sibling !=
NULL; sibling = phn_next_get(node_t, link, sibling)) {
node_print(sibling, depth + 1);
}
}
static void
heap_print(const heap_t *heap)
{
node_t *auxelm;
malloc_printf("vvv heap %p vvv\n", heap);
if (heap->ph_root == NULL)
goto label_return;
node_print(heap->ph_root, 0);
for (auxelm = phn_next_get(node_t, link, heap->ph_root); auxelm != NULL;
auxelm = phn_next_get(node_t, link, auxelm)) {
assert_ptr_eq(phn_next_get(node_t, link, phn_prev_get(node_t,
link, auxelm)), auxelm,
"auxelm's prev doesn't link to auxelm");
node_print(auxelm, 0);
}
label_return:
malloc_printf("^^^ heap %p ^^^\n", heap);
}
static unsigned
node_validate(const node_t *node, const node_t *parent)
{
unsigned nnodes = 1;
node_t *leftmost_child, *sibling;
if (parent != NULL) {
assert_d_ge(node_cmp_magic(node, parent), 0,
"Child is less than parent");
}
leftmost_child = phn_lchild_get(node_t, link, node);
if (leftmost_child == NULL)
return (nnodes);
assert_ptr_eq((void *)phn_prev_get(node_t, link, leftmost_child),
(void *)node, "Leftmost child does not link to node");
nnodes += node_validate(leftmost_child, node);
for (sibling = phn_next_get(node_t, link, leftmost_child); sibling !=
NULL; sibling = phn_next_get(node_t, link, sibling)) {
assert_ptr_eq(phn_next_get(node_t, link, phn_prev_get(node_t,
link, sibling)), sibling,
"sibling's prev doesn't link to sibling");
nnodes += node_validate(sibling, node);
}
return (nnodes);
}
static unsigned
heap_validate(const heap_t *heap)
{
unsigned nnodes = 0;
node_t *auxelm;
if (heap->ph_root == NULL)
goto label_return;
nnodes += node_validate(heap->ph_root, NULL);
for (auxelm = phn_next_get(node_t, link, heap->ph_root); auxelm != NULL;
auxelm = phn_next_get(node_t, link, auxelm)) {
assert_ptr_eq(phn_next_get(node_t, link, phn_prev_get(node_t,
link, auxelm)), auxelm,
"auxelm's prev doesn't link to auxelm");
nnodes += node_validate(auxelm, NULL);
}
label_return:
if (false)
heap_print(heap);
return (nnodes);
}
TEST_BEGIN(test_ph_empty)
{
heap_t heap;
heap_new(&heap);
assert_true(heap_empty(&heap), "Heap should be empty");
assert_ptr_null(heap_first(&heap), "Unexpected node");
}
TEST_END
static void
node_remove(heap_t *heap, node_t *node)
{
heap_remove(heap, node);
node->magic = 0;
}
static node_t *
node_remove_first(heap_t *heap)
{
node_t *node = heap_remove_first(heap);
node->magic = 0;
return (node);
}
TEST_BEGIN(test_ph_random)
{
#define NNODES 25
#define NBAGS 250
#define SEED 42
sfmt_t *sfmt;
uint64_t bag[NNODES];
heap_t heap;
node_t nodes[NNODES];
unsigned i, j, k;
sfmt = init_gen_rand(SEED);
for (i = 0; i < NBAGS; i++) {
switch (i) {
case 0:
/* Insert in order. */
for (j = 0; j < NNODES; j++)
bag[j] = j;
break;
case 1:
/* Insert in reverse order. */
for (j = 0; j < NNODES; j++)
bag[j] = NNODES - j - 1;
break;
default:
for (j = 0; j < NNODES; j++)
bag[j] = gen_rand64_range(sfmt, NNODES);
}
for (j = 1; j <= NNODES; j++) {
/* Initialize heap and nodes. */
heap_new(&heap);
assert_u_eq(heap_validate(&heap), 0,
"Incorrect node count");
for (k = 0; k < j; k++) {
nodes[k].magic = NODE_MAGIC;
nodes[k].key = bag[k];
}
/* Insert nodes. */
for (k = 0; k < j; k++) {
heap_insert(&heap, &nodes[k]);
if (i % 13 == 12) {
/* Trigger merging. */
assert_ptr_not_null(heap_first(&heap),
"Heap should not be empty");
}
assert_u_eq(heap_validate(&heap), k + 1,
"Incorrect node count");
}
assert_false(heap_empty(&heap),
"Heap should not be empty");
/* Remove nodes. */
switch (i % 4) {
case 0:
for (k = 0; k < j; k++) {
assert_u_eq(heap_validate(&heap), j - k,
"Incorrect node count");
node_remove(&heap, &nodes[k]);
assert_u_eq(heap_validate(&heap), j - k
- 1, "Incorrect node count");
}
break;
case 1:
for (k = j; k > 0; k--) {
node_remove(&heap, &nodes[k-1]);
assert_u_eq(heap_validate(&heap), k - 1,
"Incorrect node count");
}
break;
case 2: {
node_t *prev = NULL;
for (k = 0; k < j; k++) {
node_t *node = node_remove_first(&heap);
assert_u_eq(heap_validate(&heap), j - k
- 1, "Incorrect node count");
if (prev != NULL) {
assert_d_ge(node_cmp(node,
prev), 0,
"Bad removal order");
}
prev = node;
}
break;
} case 3: {
node_t *prev = NULL;
for (k = 0; k < j; k++) {
node_t *node = heap_first(&heap);
assert_u_eq(heap_validate(&heap), j - k,
"Incorrect node count");
if (prev != NULL) {
assert_d_ge(node_cmp(node,
prev), 0,
"Bad removal order");
}
node_remove(&heap, node);
assert_u_eq(heap_validate(&heap), j - k
- 1, "Incorrect node count");
prev = node;
}
break;
} default:
not_reached();
}
assert_ptr_null(heap_first(&heap),
"Heap should be empty");
assert_true(heap_empty(&heap), "Heap should be empty");
}
}
fini_gen_rand(sfmt);
#undef NNODES
#undef SEED
}
TEST_END
int
main(void)
{
return (test(
test_ph_empty,
test_ph_random));
}
| 6,510 | 21.37457 | 73 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/prof_reset.c | #include "test/jemalloc_test.h"
#ifdef JEMALLOC_PROF
const char *malloc_conf =
"prof:true,prof_active:false,lg_prof_sample:0";
#endif
static int
prof_dump_open_intercept(bool propagate_err, const char *filename)
{
int fd;
fd = open("/dev/null", O_WRONLY);
assert_d_ne(fd, -1, "Unexpected open() failure");
return (fd);
}
static void
set_prof_active(bool active)
{
assert_d_eq(mallctl("prof.active", NULL, NULL, (void *)&active,
sizeof(active)), 0, "Unexpected mallctl failure");
}
static size_t
get_lg_prof_sample(void)
{
size_t lg_prof_sample;
size_t sz = sizeof(size_t);
assert_d_eq(mallctl("prof.lg_sample", (void *)&lg_prof_sample, &sz,
NULL, 0), 0,
"Unexpected mallctl failure while reading profiling sample rate");
return (lg_prof_sample);
}
static void
do_prof_reset(size_t lg_prof_sample)
{
assert_d_eq(mallctl("prof.reset", NULL, NULL,
(void *)&lg_prof_sample, sizeof(size_t)), 0,
"Unexpected mallctl failure while resetting profile data");
assert_zu_eq(lg_prof_sample, get_lg_prof_sample(),
"Expected profile sample rate change");
}
TEST_BEGIN(test_prof_reset_basic)
{
size_t lg_prof_sample_orig, lg_prof_sample, lg_prof_sample_next;
size_t sz;
unsigned i;
test_skip_if(!config_prof);
sz = sizeof(size_t);
assert_d_eq(mallctl("opt.lg_prof_sample", (void *)&lg_prof_sample_orig,
&sz, NULL, 0), 0,
"Unexpected mallctl failure while reading profiling sample rate");
assert_zu_eq(lg_prof_sample_orig, 0,
"Unexpected profiling sample rate");
lg_prof_sample = get_lg_prof_sample();
assert_zu_eq(lg_prof_sample_orig, lg_prof_sample,
"Unexpected disagreement between \"opt.lg_prof_sample\" and "
"\"prof.lg_sample\"");
/* Test simple resets. */
for (i = 0; i < 2; i++) {
assert_d_eq(mallctl("prof.reset", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl failure while resetting profile data");
lg_prof_sample = get_lg_prof_sample();
assert_zu_eq(lg_prof_sample_orig, lg_prof_sample,
"Unexpected profile sample rate change");
}
/* Test resets with prof.lg_sample changes. */
lg_prof_sample_next = 1;
for (i = 0; i < 2; i++) {
do_prof_reset(lg_prof_sample_next);
lg_prof_sample = get_lg_prof_sample();
assert_zu_eq(lg_prof_sample, lg_prof_sample_next,
"Expected profile sample rate change");
lg_prof_sample_next = lg_prof_sample_orig;
}
/* Make sure the test code restored prof.lg_sample. */
lg_prof_sample = get_lg_prof_sample();
assert_zu_eq(lg_prof_sample_orig, lg_prof_sample,
"Unexpected disagreement between \"opt.lg_prof_sample\" and "
"\"prof.lg_sample\"");
}
TEST_END
bool prof_dump_header_intercepted = false;
prof_cnt_t cnt_all_copy = {0, 0, 0, 0};
static bool
prof_dump_header_intercept(tsdn_t *tsdn, bool propagate_err,
const prof_cnt_t *cnt_all)
{
prof_dump_header_intercepted = true;
memcpy(&cnt_all_copy, cnt_all, sizeof(prof_cnt_t));
return (false);
}
TEST_BEGIN(test_prof_reset_cleanup)
{
void *p;
prof_dump_header_t *prof_dump_header_orig;
test_skip_if(!config_prof);
set_prof_active(true);
assert_zu_eq(prof_bt_count(), 0, "Expected 0 backtraces");
p = mallocx(1, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_zu_eq(prof_bt_count(), 1, "Expected 1 backtrace");
prof_dump_header_orig = prof_dump_header;
prof_dump_header = prof_dump_header_intercept;
assert_false(prof_dump_header_intercepted, "Unexpected intercept");
assert_d_eq(mallctl("prof.dump", NULL, NULL, NULL, 0),
0, "Unexpected error while dumping heap profile");
assert_true(prof_dump_header_intercepted, "Expected intercept");
assert_u64_eq(cnt_all_copy.curobjs, 1, "Expected 1 allocation");
assert_d_eq(mallctl("prof.reset", NULL, NULL, NULL, 0), 0,
"Unexpected error while resetting heap profile data");
assert_d_eq(mallctl("prof.dump", NULL, NULL, NULL, 0),
0, "Unexpected error while dumping heap profile");
assert_u64_eq(cnt_all_copy.curobjs, 0, "Expected 0 allocations");
assert_zu_eq(prof_bt_count(), 1, "Expected 1 backtrace");
prof_dump_header = prof_dump_header_orig;
dallocx(p, 0);
assert_zu_eq(prof_bt_count(), 0, "Expected 0 backtraces");
set_prof_active(false);
}
TEST_END
#define NTHREADS 4
#define NALLOCS_PER_THREAD (1U << 13)
#define OBJ_RING_BUF_COUNT 1531
#define RESET_INTERVAL (1U << 10)
#define DUMP_INTERVAL 3677
static void *
thd_start(void *varg)
{
unsigned thd_ind = *(unsigned *)varg;
unsigned i;
void *objs[OBJ_RING_BUF_COUNT];
memset(objs, 0, sizeof(objs));
for (i = 0; i < NALLOCS_PER_THREAD; i++) {
if (i % RESET_INTERVAL == 0) {
assert_d_eq(mallctl("prof.reset", NULL, NULL, NULL, 0),
0, "Unexpected error while resetting heap profile "
"data");
}
if (i % DUMP_INTERVAL == 0) {
assert_d_eq(mallctl("prof.dump", NULL, NULL, NULL, 0),
0, "Unexpected error while dumping heap profile");
}
{
void **pp = &objs[i % OBJ_RING_BUF_COUNT];
if (*pp != NULL) {
dallocx(*pp, 0);
*pp = NULL;
}
*pp = btalloc(1, thd_ind*NALLOCS_PER_THREAD + i);
assert_ptr_not_null(*pp,
"Unexpected btalloc() failure");
}
}
/* Clean up any remaining objects. */
for (i = 0; i < OBJ_RING_BUF_COUNT; i++) {
void **pp = &objs[i % OBJ_RING_BUF_COUNT];
if (*pp != NULL) {
dallocx(*pp, 0);
*pp = NULL;
}
}
return (NULL);
}
TEST_BEGIN(test_prof_reset)
{
size_t lg_prof_sample_orig;
thd_t thds[NTHREADS];
unsigned thd_args[NTHREADS];
unsigned i;
size_t bt_count, tdata_count;
test_skip_if(!config_prof);
bt_count = prof_bt_count();
assert_zu_eq(bt_count, 0,
"Unexpected pre-existing tdata structures");
tdata_count = prof_tdata_count();
lg_prof_sample_orig = get_lg_prof_sample();
do_prof_reset(5);
set_prof_active(true);
for (i = 0; i < NTHREADS; i++) {
thd_args[i] = i;
thd_create(&thds[i], thd_start, (void *)&thd_args[i]);
}
for (i = 0; i < NTHREADS; i++)
thd_join(thds[i], NULL);
assert_zu_eq(prof_bt_count(), bt_count,
"Unexpected bactrace count change");
assert_zu_eq(prof_tdata_count(), tdata_count,
"Unexpected remaining tdata structures");
set_prof_active(false);
do_prof_reset(lg_prof_sample_orig);
}
TEST_END
#undef NTHREADS
#undef NALLOCS_PER_THREAD
#undef OBJ_RING_BUF_COUNT
#undef RESET_INTERVAL
#undef DUMP_INTERVAL
/* Test sampling at the same allocation site across resets. */
#define NITER 10
TEST_BEGIN(test_xallocx)
{
size_t lg_prof_sample_orig;
unsigned i;
void *ptrs[NITER];
test_skip_if(!config_prof);
lg_prof_sample_orig = get_lg_prof_sample();
set_prof_active(true);
/* Reset profiling. */
do_prof_reset(0);
for (i = 0; i < NITER; i++) {
void *p;
size_t sz, nsz;
/* Reset profiling. */
do_prof_reset(0);
/* Allocate small object (which will be promoted). */
p = ptrs[i] = mallocx(1, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
/* Reset profiling. */
do_prof_reset(0);
/* Perform successful xallocx(). */
sz = sallocx(p, 0);
assert_zu_eq(xallocx(p, sz, 0, 0), sz,
"Unexpected xallocx() failure");
/* Perform unsuccessful xallocx(). */
nsz = nallocx(sz+1, 0);
assert_zu_eq(xallocx(p, nsz, 0, 0), sz,
"Unexpected xallocx() success");
}
for (i = 0; i < NITER; i++) {
/* dallocx. */
dallocx(ptrs[i], 0);
}
set_prof_active(false);
do_prof_reset(lg_prof_sample_orig);
}
TEST_END
#undef NITER
int
main(void)
{
/* Intercept dumping prior to running any tests. */
prof_dump_open = prof_dump_open_intercept;
return (test(
test_prof_reset_basic,
test_prof_reset_cleanup,
test_prof_reset,
test_xallocx));
}
| 7,580 | 23.855738 | 72 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/hash.c | /*
* This file is based on code that is part of SMHasher
* (https://code.google.com/p/smhasher/), and is subject to the MIT license
* (http://www.opensource.org/licenses/mit-license.php). Both email addresses
* associated with the source code's revision history belong to Austin Appleby,
* and the revision history ranges from 2010 to 2012. Therefore the copyright
* and license are here taken to be:
*
* Copyright (c) 2010-2012 Austin Appleby
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "test/jemalloc_test.h"
typedef enum {
hash_variant_x86_32,
hash_variant_x86_128,
hash_variant_x64_128
} hash_variant_t;
static int
hash_variant_bits(hash_variant_t variant)
{
switch (variant) {
case hash_variant_x86_32: return (32);
case hash_variant_x86_128: return (128);
case hash_variant_x64_128: return (128);
default: not_reached();
}
}
static const char *
hash_variant_string(hash_variant_t variant)
{
switch (variant) {
case hash_variant_x86_32: return ("hash_x86_32");
case hash_variant_x86_128: return ("hash_x86_128");
case hash_variant_x64_128: return ("hash_x64_128");
default: not_reached();
}
}
#define KEY_SIZE 256
static void
hash_variant_verify_key(hash_variant_t variant, uint8_t *key)
{
const int hashbytes = hash_variant_bits(variant) / 8;
const int hashes_size = hashbytes * 256;
VARIABLE_ARRAY(uint8_t, hashes, hashes_size);
VARIABLE_ARRAY(uint8_t, final, hashbytes);
unsigned i;
uint32_t computed, expected;
memset(key, 0, KEY_SIZE);
memset(hashes, 0, hashes_size);
memset(final, 0, hashbytes);
/*
* Hash keys of the form {0}, {0,1}, {0,1,2}, ..., {0,1,...,255} as the
* seed.
*/
for (i = 0; i < 256; i++) {
key[i] = (uint8_t)i;
switch (variant) {
case hash_variant_x86_32: {
uint32_t out;
out = hash_x86_32(key, i, 256-i);
memcpy(&hashes[i*hashbytes], &out, hashbytes);
break;
} case hash_variant_x86_128: {
uint64_t out[2];
hash_x86_128(key, i, 256-i, out);
memcpy(&hashes[i*hashbytes], out, hashbytes);
break;
} case hash_variant_x64_128: {
uint64_t out[2];
hash_x64_128(key, i, 256-i, out);
memcpy(&hashes[i*hashbytes], out, hashbytes);
break;
} default: not_reached();
}
}
/* Hash the result array. */
switch (variant) {
case hash_variant_x86_32: {
uint32_t out = hash_x86_32(hashes, hashes_size, 0);
memcpy(final, &out, sizeof(out));
break;
} case hash_variant_x86_128: {
uint64_t out[2];
hash_x86_128(hashes, hashes_size, 0, out);
memcpy(final, out, sizeof(out));
break;
} case hash_variant_x64_128: {
uint64_t out[2];
hash_x64_128(hashes, hashes_size, 0, out);
memcpy(final, out, sizeof(out));
break;
} default: not_reached();
}
computed = (final[0] << 0) | (final[1] << 8) | (final[2] << 16) |
(final[3] << 24);
switch (variant) {
#ifdef JEMALLOC_BIG_ENDIAN
case hash_variant_x86_32: expected = 0x6213303eU; break;
case hash_variant_x86_128: expected = 0x266820caU; break;
case hash_variant_x64_128: expected = 0xcc622b6fU; break;
#else
case hash_variant_x86_32: expected = 0xb0f57ee3U; break;
case hash_variant_x86_128: expected = 0xb3ece62aU; break;
case hash_variant_x64_128: expected = 0x6384ba69U; break;
#endif
default: not_reached();
}
assert_u32_eq(computed, expected,
"Hash mismatch for %s(): expected %#x but got %#x",
hash_variant_string(variant), expected, computed);
}
static void
hash_variant_verify(hash_variant_t variant)
{
#define MAX_ALIGN 16
uint8_t key[KEY_SIZE + (MAX_ALIGN - 1)];
unsigned i;
for (i = 0; i < MAX_ALIGN; i++)
hash_variant_verify_key(variant, &key[i]);
#undef MAX_ALIGN
}
#undef KEY_SIZE
TEST_BEGIN(test_hash_x86_32)
{
hash_variant_verify(hash_variant_x86_32);
}
TEST_END
TEST_BEGIN(test_hash_x86_128)
{
hash_variant_verify(hash_variant_x86_128);
}
TEST_END
TEST_BEGIN(test_hash_x64_128)
{
hash_variant_verify(hash_variant_x64_128);
}
TEST_END
int
main(void)
{
return (test(
test_hash_x86_32,
test_hash_x86_128,
test_hash_x64_128));
}
| 5,031 | 26.053763 | 80 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/smoothstep.c | #include "test/jemalloc_test.h"
static const uint64_t smoothstep_tab[] = {
#define STEP(step, h, x, y) \
h,
SMOOTHSTEP
#undef STEP
};
TEST_BEGIN(test_smoothstep_integral)
{
uint64_t sum, min, max;
unsigned i;
/*
* The integral of smoothstep in the [0..1] range equals 1/2. Verify
* that the fixed point representation's integral is no more than
* rounding error distant from 1/2. Regarding rounding, each table
* element is rounded down to the nearest fixed point value, so the
* integral may be off by as much as SMOOTHSTEP_NSTEPS ulps.
*/
sum = 0;
for (i = 0; i < SMOOTHSTEP_NSTEPS; i++)
sum += smoothstep_tab[i];
max = (KQU(1) << (SMOOTHSTEP_BFP-1)) * (SMOOTHSTEP_NSTEPS+1);
min = max - SMOOTHSTEP_NSTEPS;
assert_u64_ge(sum, min,
"Integral too small, even accounting for truncation");
assert_u64_le(sum, max, "Integral exceeds 1/2");
if (false) {
malloc_printf("%"FMTu64" ulps under 1/2 (limit %d)\n",
max - sum, SMOOTHSTEP_NSTEPS);
}
}
TEST_END
TEST_BEGIN(test_smoothstep_monotonic)
{
uint64_t prev_h;
unsigned i;
/*
* The smoothstep function is monotonic in [0..1], i.e. its slope is
* non-negative. In practice we want to parametrize table generation
* such that piecewise slope is greater than zero, but do not require
* that here.
*/
prev_h = 0;
for (i = 0; i < SMOOTHSTEP_NSTEPS; i++) {
uint64_t h = smoothstep_tab[i];
assert_u64_ge(h, prev_h, "Piecewise non-monotonic, i=%u", i);
prev_h = h;
}
assert_u64_eq(smoothstep_tab[SMOOTHSTEP_NSTEPS-1],
(KQU(1) << SMOOTHSTEP_BFP), "Last step must equal 1");
}
TEST_END
TEST_BEGIN(test_smoothstep_slope)
{
uint64_t prev_h, prev_delta;
unsigned i;
/*
* The smoothstep slope strictly increases until x=0.5, and then
* strictly decreases until x=1.0. Verify the slightly weaker
* requirement of monotonicity, so that inadequate table precision does
* not cause false test failures.
*/
prev_h = 0;
prev_delta = 0;
for (i = 0; i < SMOOTHSTEP_NSTEPS / 2 + SMOOTHSTEP_NSTEPS % 2; i++) {
uint64_t h = smoothstep_tab[i];
uint64_t delta = h - prev_h;
assert_u64_ge(delta, prev_delta,
"Slope must monotonically increase in 0.0 <= x <= 0.5, "
"i=%u", i);
prev_h = h;
prev_delta = delta;
}
prev_h = KQU(1) << SMOOTHSTEP_BFP;
prev_delta = 0;
for (i = SMOOTHSTEP_NSTEPS-1; i >= SMOOTHSTEP_NSTEPS / 2; i--) {
uint64_t h = smoothstep_tab[i];
uint64_t delta = prev_h - h;
assert_u64_ge(delta, prev_delta,
"Slope must monotonically decrease in 0.5 <= x <= 1.0, "
"i=%u", i);
prev_h = h;
prev_delta = delta;
}
}
TEST_END
int
main(void)
{
return (test(
test_smoothstep_integral,
test_smoothstep_monotonic,
test_smoothstep_slope));
}
| 2,728 | 24.504673 | 72 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/prof_gdump.c | #include "test/jemalloc_test.h"
#ifdef JEMALLOC_PROF
const char *malloc_conf = "prof:true,prof_active:false,prof_gdump:true";
#endif
static bool did_prof_dump_open;
static int
prof_dump_open_intercept(bool propagate_err, const char *filename)
{
int fd;
did_prof_dump_open = true;
fd = open("/dev/null", O_WRONLY);
assert_d_ne(fd, -1, "Unexpected open() failure");
return (fd);
}
TEST_BEGIN(test_gdump)
{
bool active, gdump, gdump_old;
void *p, *q, *r, *s;
size_t sz;
test_skip_if(!config_prof);
active = true;
assert_d_eq(mallctl("prof.active", NULL, NULL, (void *)&active,
sizeof(active)), 0,
"Unexpected mallctl failure while activating profiling");
prof_dump_open = prof_dump_open_intercept;
did_prof_dump_open = false;
p = mallocx(chunksize, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_true(did_prof_dump_open, "Expected a profile dump");
did_prof_dump_open = false;
q = mallocx(chunksize, 0);
assert_ptr_not_null(q, "Unexpected mallocx() failure");
assert_true(did_prof_dump_open, "Expected a profile dump");
gdump = false;
sz = sizeof(gdump_old);
assert_d_eq(mallctl("prof.gdump", (void *)&gdump_old, &sz,
(void *)&gdump, sizeof(gdump)), 0,
"Unexpected mallctl failure while disabling prof.gdump");
assert(gdump_old);
did_prof_dump_open = false;
r = mallocx(chunksize, 0);
assert_ptr_not_null(q, "Unexpected mallocx() failure");
assert_false(did_prof_dump_open, "Unexpected profile dump");
gdump = true;
sz = sizeof(gdump_old);
assert_d_eq(mallctl("prof.gdump", (void *)&gdump_old, &sz,
(void *)&gdump, sizeof(gdump)), 0,
"Unexpected mallctl failure while enabling prof.gdump");
assert(!gdump_old);
did_prof_dump_open = false;
s = mallocx(chunksize, 0);
assert_ptr_not_null(q, "Unexpected mallocx() failure");
assert_true(did_prof_dump_open, "Expected a profile dump");
dallocx(p, 0);
dallocx(q, 0);
dallocx(r, 0);
dallocx(s, 0);
}
TEST_END
int
main(void)
{
return (test(
test_gdump));
}
| 2,010 | 23.228916 | 72 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/prof_active.c | #include "test/jemalloc_test.h"
#ifdef JEMALLOC_PROF
const char *malloc_conf =
"prof:true,prof_thread_active_init:false,lg_prof_sample:0";
#endif
static void
mallctl_bool_get(const char *name, bool expected, const char *func, int line)
{
bool old;
size_t sz;
sz = sizeof(old);
assert_d_eq(mallctl(name, (void *)&old, &sz, NULL, 0), 0,
"%s():%d: Unexpected mallctl failure reading %s", func, line, name);
assert_b_eq(old, expected, "%s():%d: Unexpected %s value", func, line,
name);
}
static void
mallctl_bool_set(const char *name, bool old_expected, bool val_new,
const char *func, int line)
{
bool old;
size_t sz;
sz = sizeof(old);
assert_d_eq(mallctl(name, (void *)&old, &sz, (void *)&val_new,
sizeof(val_new)), 0,
"%s():%d: Unexpected mallctl failure reading/writing %s", func,
line, name);
assert_b_eq(old, old_expected, "%s():%d: Unexpected %s value", func,
line, name);
}
static void
mallctl_prof_active_get_impl(bool prof_active_old_expected, const char *func,
int line)
{
mallctl_bool_get("prof.active", prof_active_old_expected, func, line);
}
#define mallctl_prof_active_get(a) \
mallctl_prof_active_get_impl(a, __func__, __LINE__)
static void
mallctl_prof_active_set_impl(bool prof_active_old_expected,
bool prof_active_new, const char *func, int line)
{
mallctl_bool_set("prof.active", prof_active_old_expected,
prof_active_new, func, line);
}
#define mallctl_prof_active_set(a, b) \
mallctl_prof_active_set_impl(a, b, __func__, __LINE__)
static void
mallctl_thread_prof_active_get_impl(bool thread_prof_active_old_expected,
const char *func, int line)
{
mallctl_bool_get("thread.prof.active", thread_prof_active_old_expected,
func, line);
}
#define mallctl_thread_prof_active_get(a) \
mallctl_thread_prof_active_get_impl(a, __func__, __LINE__)
static void
mallctl_thread_prof_active_set_impl(bool thread_prof_active_old_expected,
bool thread_prof_active_new, const char *func, int line)
{
mallctl_bool_set("thread.prof.active", thread_prof_active_old_expected,
thread_prof_active_new, func, line);
}
#define mallctl_thread_prof_active_set(a, b) \
mallctl_thread_prof_active_set_impl(a, b, __func__, __LINE__)
static void
prof_sampling_probe_impl(bool expect_sample, const char *func, int line)
{
void *p;
size_t expected_backtraces = expect_sample ? 1 : 0;
assert_zu_eq(prof_bt_count(), 0, "%s():%d: Expected 0 backtraces", func,
line);
p = mallocx(1, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_zu_eq(prof_bt_count(), expected_backtraces,
"%s():%d: Unexpected backtrace count", func, line);
dallocx(p, 0);
}
#define prof_sampling_probe(a) \
prof_sampling_probe_impl(a, __func__, __LINE__)
TEST_BEGIN(test_prof_active)
{
test_skip_if(!config_prof);
mallctl_prof_active_get(true);
mallctl_thread_prof_active_get(false);
mallctl_prof_active_set(true, true);
mallctl_thread_prof_active_set(false, false);
/* prof.active, !thread.prof.active. */
prof_sampling_probe(false);
mallctl_prof_active_set(true, false);
mallctl_thread_prof_active_set(false, false);
/* !prof.active, !thread.prof.active. */
prof_sampling_probe(false);
mallctl_prof_active_set(false, false);
mallctl_thread_prof_active_set(false, true);
/* !prof.active, thread.prof.active. */
prof_sampling_probe(false);
mallctl_prof_active_set(false, true);
mallctl_thread_prof_active_set(true, true);
/* prof.active, thread.prof.active. */
prof_sampling_probe(true);
/* Restore settings. */
mallctl_prof_active_set(true, true);
mallctl_thread_prof_active_set(true, false);
}
TEST_END
int
main(void)
{
return (test(
test_prof_active));
}
| 3,706 | 25.862319 | 77 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/quarantine.c | #include "test/jemalloc_test.h"
#define QUARANTINE_SIZE 8192
#define STRINGIFY_HELPER(x) #x
#define STRINGIFY(x) STRINGIFY_HELPER(x)
#ifdef JEMALLOC_FILL
const char *malloc_conf = "abort:false,junk:true,redzone:true,quarantine:"
STRINGIFY(QUARANTINE_SIZE);
#endif
void
quarantine_clear(void)
{
void *p;
p = mallocx(QUARANTINE_SIZE*2, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
dallocx(p, 0);
}
TEST_BEGIN(test_quarantine)
{
#define SZ ZU(256)
#define NQUARANTINED (QUARANTINE_SIZE/SZ)
void *quarantined[NQUARANTINED+1];
size_t i, j;
test_skip_if(!config_fill);
assert_zu_eq(nallocx(SZ, 0), SZ,
"SZ=%zu does not precisely equal a size class", SZ);
quarantine_clear();
/*
* Allocate enough regions to completely fill the quarantine, plus one
* more. The last iteration occurs with a completely full quarantine,
* but no regions should be drained from the quarantine until the last
* deallocation occurs. Therefore no region recycling should occur
* until after this loop completes.
*/
for (i = 0; i < NQUARANTINED+1; i++) {
void *p = mallocx(SZ, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
quarantined[i] = p;
dallocx(p, 0);
for (j = 0; j < i; j++) {
assert_ptr_ne(p, quarantined[j],
"Quarantined region recycled too early; "
"i=%zu, j=%zu", i, j);
}
}
#undef NQUARANTINED
#undef SZ
}
TEST_END
static bool detected_redzone_corruption;
static void
arena_redzone_corruption_replacement(void *ptr, size_t usize, bool after,
size_t offset, uint8_t byte)
{
detected_redzone_corruption = true;
}
TEST_BEGIN(test_quarantine_redzone)
{
char *s;
arena_redzone_corruption_t *arena_redzone_corruption_orig;
test_skip_if(!config_fill);
arena_redzone_corruption_orig = arena_redzone_corruption;
arena_redzone_corruption = arena_redzone_corruption_replacement;
/* Test underflow. */
detected_redzone_corruption = false;
s = (char *)mallocx(1, 0);
assert_ptr_not_null((void *)s, "Unexpected mallocx() failure");
s[-1] = 0xbb;
dallocx(s, 0);
assert_true(detected_redzone_corruption,
"Did not detect redzone corruption");
/* Test overflow. */
detected_redzone_corruption = false;
s = (char *)mallocx(1, 0);
assert_ptr_not_null((void *)s, "Unexpected mallocx() failure");
s[sallocx(s, 0)] = 0xbb;
dallocx(s, 0);
assert_true(detected_redzone_corruption,
"Did not detect redzone corruption");
arena_redzone_corruption = arena_redzone_corruption_orig;
}
TEST_END
int
main(void)
{
return (test(
test_quarantine,
test_quarantine_redzone));
}
| 2,583 | 22.706422 | 74 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/ticker.c | #include "test/jemalloc_test.h"
TEST_BEGIN(test_ticker_tick)
{
#define NREPS 2
#define NTICKS 3
ticker_t ticker;
int32_t i, j;
ticker_init(&ticker, NTICKS);
for (i = 0; i < NREPS; i++) {
for (j = 0; j < NTICKS; j++) {
assert_u_eq(ticker_read(&ticker), NTICKS - j,
"Unexpected ticker value (i=%d, j=%d)", i, j);
assert_false(ticker_tick(&ticker),
"Unexpected ticker fire (i=%d, j=%d)", i, j);
}
assert_u32_eq(ticker_read(&ticker), 0,
"Expected ticker depletion");
assert_true(ticker_tick(&ticker),
"Expected ticker fire (i=%d)", i);
assert_u32_eq(ticker_read(&ticker), NTICKS,
"Expected ticker reset");
}
#undef NTICKS
}
TEST_END
TEST_BEGIN(test_ticker_ticks)
{
#define NTICKS 3
ticker_t ticker;
ticker_init(&ticker, NTICKS);
assert_u_eq(ticker_read(&ticker), NTICKS, "Unexpected ticker value");
assert_false(ticker_ticks(&ticker, NTICKS), "Unexpected ticker fire");
assert_u_eq(ticker_read(&ticker), 0, "Unexpected ticker value");
assert_true(ticker_ticks(&ticker, NTICKS), "Expected ticker fire");
assert_u_eq(ticker_read(&ticker), NTICKS, "Unexpected ticker value");
assert_true(ticker_ticks(&ticker, NTICKS + 1), "Expected ticker fire");
assert_u_eq(ticker_read(&ticker), NTICKS, "Unexpected ticker value");
#undef NTICKS
}
TEST_END
TEST_BEGIN(test_ticker_copy)
{
#define NTICKS 3
ticker_t ta, tb;
ticker_init(&ta, NTICKS);
ticker_copy(&tb, &ta);
assert_u_eq(ticker_read(&tb), NTICKS, "Unexpected ticker value");
assert_true(ticker_ticks(&tb, NTICKS + 1), "Expected ticker fire");
assert_u_eq(ticker_read(&tb), NTICKS, "Unexpected ticker value");
ticker_tick(&ta);
ticker_copy(&tb, &ta);
assert_u_eq(ticker_read(&tb), NTICKS - 1, "Unexpected ticker value");
assert_true(ticker_ticks(&tb, NTICKS), "Expected ticker fire");
assert_u_eq(ticker_read(&tb), NTICKS, "Unexpected ticker value");
#undef NTICKS
}
TEST_END
int
main(void)
{
return (test(
test_ticker_tick,
test_ticker_ticks,
test_ticker_copy));
}
| 2,006 | 25.064935 | 72 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/unit/size_classes.c | #include "test/jemalloc_test.h"
static size_t
get_max_size_class(void)
{
unsigned nhchunks;
size_t mib[4];
size_t sz, miblen, max_size_class;
sz = sizeof(unsigned);
assert_d_eq(mallctl("arenas.nhchunks", (void *)&nhchunks, &sz, NULL, 0),
0, "Unexpected mallctl() error");
miblen = sizeof(mib) / sizeof(size_t);
assert_d_eq(mallctlnametomib("arenas.hchunk.0.size", mib, &miblen), 0,
"Unexpected mallctlnametomib() error");
mib[2] = nhchunks - 1;
sz = sizeof(size_t);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&max_size_class, &sz,
NULL, 0), 0, "Unexpected mallctlbymib() error");
return (max_size_class);
}
TEST_BEGIN(test_size_classes)
{
size_t size_class, max_size_class;
szind_t index, max_index;
max_size_class = get_max_size_class();
max_index = size2index(max_size_class);
for (index = 0, size_class = index2size(index); index < max_index ||
size_class < max_size_class; index++, size_class =
index2size(index)) {
assert_true(index < max_index,
"Loop conditionals should be equivalent; index=%u, "
"size_class=%zu (%#zx)", index, size_class, size_class);
assert_true(size_class < max_size_class,
"Loop conditionals should be equivalent; index=%u, "
"size_class=%zu (%#zx)", index, size_class, size_class);
assert_u_eq(index, size2index(size_class),
"size2index() does not reverse index2size(): index=%u -->"
" size_class=%zu --> index=%u --> size_class=%zu", index,
size_class, size2index(size_class),
index2size(size2index(size_class)));
assert_zu_eq(size_class, index2size(size2index(size_class)),
"index2size() does not reverse size2index(): index=%u -->"
" size_class=%zu --> index=%u --> size_class=%zu", index,
size_class, size2index(size_class),
index2size(size2index(size_class)));
assert_u_eq(index+1, size2index(size_class+1),
"Next size_class does not round up properly");
assert_zu_eq(size_class, (index > 0) ?
s2u(index2size(index-1)+1) : s2u(1),
"s2u() does not round up to size class");
assert_zu_eq(size_class, s2u(size_class-1),
"s2u() does not round up to size class");
assert_zu_eq(size_class, s2u(size_class),
"s2u() does not compute same size class");
assert_zu_eq(s2u(size_class+1), index2size(index+1),
"s2u() does not round up to next size class");
}
assert_u_eq(index, size2index(index2size(index)),
"size2index() does not reverse index2size()");
assert_zu_eq(max_size_class, index2size(size2index(max_size_class)),
"index2size() does not reverse size2index()");
assert_zu_eq(size_class, s2u(index2size(index-1)+1),
"s2u() does not round up to size class");
assert_zu_eq(size_class, s2u(size_class-1),
"s2u() does not round up to size class");
assert_zu_eq(size_class, s2u(size_class),
"s2u() does not compute same size class");
}
TEST_END
TEST_BEGIN(test_psize_classes)
{
size_t size_class, max_size_class;
pszind_t pind, max_pind;
max_size_class = get_max_size_class();
max_pind = psz2ind(max_size_class);
for (pind = 0, size_class = pind2sz(pind); pind < max_pind ||
size_class < max_size_class; pind++, size_class =
pind2sz(pind)) {
assert_true(pind < max_pind,
"Loop conditionals should be equivalent; pind=%u, "
"size_class=%zu (%#zx)", pind, size_class, size_class);
assert_true(size_class < max_size_class,
"Loop conditionals should be equivalent; pind=%u, "
"size_class=%zu (%#zx)", pind, size_class, size_class);
assert_u_eq(pind, psz2ind(size_class),
"psz2ind() does not reverse pind2sz(): pind=%u -->"
" size_class=%zu --> pind=%u --> size_class=%zu", pind,
size_class, psz2ind(size_class),
pind2sz(psz2ind(size_class)));
assert_zu_eq(size_class, pind2sz(psz2ind(size_class)),
"pind2sz() does not reverse psz2ind(): pind=%u -->"
" size_class=%zu --> pind=%u --> size_class=%zu", pind,
size_class, psz2ind(size_class),
pind2sz(psz2ind(size_class)));
assert_u_eq(pind+1, psz2ind(size_class+1),
"Next size_class does not round up properly");
assert_zu_eq(size_class, (pind > 0) ?
psz2u(pind2sz(pind-1)+1) : psz2u(1),
"psz2u() does not round up to size class");
assert_zu_eq(size_class, psz2u(size_class-1),
"psz2u() does not round up to size class");
assert_zu_eq(size_class, psz2u(size_class),
"psz2u() does not compute same size class");
assert_zu_eq(psz2u(size_class+1), pind2sz(pind+1),
"psz2u() does not round up to next size class");
}
assert_u_eq(pind, psz2ind(pind2sz(pind)),
"psz2ind() does not reverse pind2sz()");
assert_zu_eq(max_size_class, pind2sz(psz2ind(max_size_class)),
"pind2sz() does not reverse psz2ind()");
assert_zu_eq(size_class, psz2u(pind2sz(pind-1)+1),
"psz2u() does not round up to size class");
assert_zu_eq(size_class, psz2u(size_class-1),
"psz2u() does not round up to size class");
assert_zu_eq(size_class, psz2u(size_class),
"psz2u() does not compute same size class");
}
TEST_END
TEST_BEGIN(test_overflow)
{
size_t max_size_class;
max_size_class = get_max_size_class();
assert_u_eq(size2index(max_size_class+1), NSIZES,
"size2index() should return NSIZES on overflow");
assert_u_eq(size2index(ZU(PTRDIFF_MAX)+1), NSIZES,
"size2index() should return NSIZES on overflow");
assert_u_eq(size2index(SIZE_T_MAX), NSIZES,
"size2index() should return NSIZES on overflow");
assert_zu_eq(s2u(max_size_class+1), 0,
"s2u() should return 0 for unsupported size");
assert_zu_eq(s2u(ZU(PTRDIFF_MAX)+1), 0,
"s2u() should return 0 for unsupported size");
assert_zu_eq(s2u(SIZE_T_MAX), 0,
"s2u() should return 0 on overflow");
assert_u_eq(psz2ind(max_size_class+1), NPSIZES,
"psz2ind() should return NPSIZES on overflow");
assert_u_eq(psz2ind(ZU(PTRDIFF_MAX)+1), NPSIZES,
"psz2ind() should return NPSIZES on overflow");
assert_u_eq(psz2ind(SIZE_T_MAX), NPSIZES,
"psz2ind() should return NPSIZES on overflow");
assert_zu_eq(psz2u(max_size_class+1), 0,
"psz2u() should return 0 for unsupported size");
assert_zu_eq(psz2u(ZU(PTRDIFF_MAX)+1), 0,
"psz2u() should return 0 for unsupported size");
assert_zu_eq(psz2u(SIZE_T_MAX), 0,
"psz2u() should return 0 on overflow");
}
TEST_END
int
main(void)
{
return (test(
test_size_classes,
test_psize_classes,
test_overflow));
}
| 6,414 | 33.675676 | 73 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/src/SFMT.c | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file SFMT.c
* @brief SIMD oriented Fast Mersenne Twister(SFMT)
*
* @author Mutsuo Saito (Hiroshima University)
* @author Makoto Matsumoto (Hiroshima University)
*
* Copyright (C) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* The new BSD License is applied to this software, see LICENSE.txt
*/
#define SFMT_C_
#include "test/jemalloc_test.h"
#include "test/SFMT-params.h"
#if defined(JEMALLOC_BIG_ENDIAN) && !defined(BIG_ENDIAN64)
#define BIG_ENDIAN64 1
#endif
#if defined(__BIG_ENDIAN__) && !defined(__amd64) && !defined(BIG_ENDIAN64)
#define BIG_ENDIAN64 1
#endif
#if defined(HAVE_ALTIVEC) && !defined(BIG_ENDIAN64)
#define BIG_ENDIAN64 1
#endif
#if defined(ONLY64) && !defined(BIG_ENDIAN64)
#if defined(__GNUC__)
#error "-DONLY64 must be specified with -DBIG_ENDIAN64"
#endif
#undef ONLY64
#endif
/*------------------------------------------------------
128-bit SIMD data type for Altivec, SSE2 or standard C
------------------------------------------------------*/
#if defined(HAVE_ALTIVEC)
/** 128-bit data structure */
union W128_T {
vector unsigned int s;
uint32_t u[4];
};
/** 128-bit data type */
typedef union W128_T w128_t;
#elif defined(HAVE_SSE2)
/** 128-bit data structure */
union W128_T {
__m128i si;
uint32_t u[4];
};
/** 128-bit data type */
typedef union W128_T w128_t;
#else
/** 128-bit data structure */
struct W128_T {
uint32_t u[4];
};
/** 128-bit data type */
typedef struct W128_T w128_t;
#endif
struct sfmt_s {
/** the 128-bit internal state array */
w128_t sfmt[N];
/** index counter to the 32-bit internal state array */
int idx;
/** a flag: it is 0 if and only if the internal state is not yet
* initialized. */
int initialized;
};
/*--------------------------------------
FILE GLOBAL VARIABLES
internal state, index counter and flag
--------------------------------------*/
/** a parity check vector which certificate the period of 2^{MEXP} */
static uint32_t parity[4] = {PARITY1, PARITY2, PARITY3, PARITY4};
/*----------------
STATIC FUNCTIONS
----------------*/
JEMALLOC_INLINE_C int idxof(int i);
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
JEMALLOC_INLINE_C void rshift128(w128_t *out, w128_t const *in, int shift);
JEMALLOC_INLINE_C void lshift128(w128_t *out, w128_t const *in, int shift);
#endif
JEMALLOC_INLINE_C void gen_rand_all(sfmt_t *ctx);
JEMALLOC_INLINE_C void gen_rand_array(sfmt_t *ctx, w128_t *array, int size);
JEMALLOC_INLINE_C uint32_t func1(uint32_t x);
JEMALLOC_INLINE_C uint32_t func2(uint32_t x);
static void period_certification(sfmt_t *ctx);
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
JEMALLOC_INLINE_C void swap(w128_t *array, int size);
#endif
#if defined(HAVE_ALTIVEC)
#include "test/SFMT-alti.h"
#elif defined(HAVE_SSE2)
#include "test/SFMT-sse2.h"
#endif
/**
* This function simulate a 64-bit index of LITTLE ENDIAN
* in BIG ENDIAN machine.
*/
#ifdef ONLY64
JEMALLOC_INLINE_C int idxof(int i) {
return i ^ 1;
}
#else
JEMALLOC_INLINE_C int idxof(int i) {
return i;
}
#endif
/**
* This function simulates SIMD 128-bit right shift by the standard C.
* The 128-bit integer given in in is shifted by (shift * 8) bits.
* This function simulates the LITTLE ENDIAN SIMD.
* @param out the output of this function
* @param in the 128-bit data to be shifted
* @param shift the shift value
*/
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
#ifdef ONLY64
JEMALLOC_INLINE_C void rshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);
oh = th >> (shift * 8);
ol = tl >> (shift * 8);
ol |= th << (64 - shift * 8);
out->u[0] = (uint32_t)(ol >> 32);
out->u[1] = (uint32_t)ol;
out->u[2] = (uint32_t)(oh >> 32);
out->u[3] = (uint32_t)oh;
}
#else
JEMALLOC_INLINE_C void rshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);
oh = th >> (shift * 8);
ol = tl >> (shift * 8);
ol |= th << (64 - shift * 8);
out->u[1] = (uint32_t)(ol >> 32);
out->u[0] = (uint32_t)ol;
out->u[3] = (uint32_t)(oh >> 32);
out->u[2] = (uint32_t)oh;
}
#endif
/**
* This function simulates SIMD 128-bit left shift by the standard C.
* The 128-bit integer given in in is shifted by (shift * 8) bits.
* This function simulates the LITTLE ENDIAN SIMD.
* @param out the output of this function
* @param in the 128-bit data to be shifted
* @param shift the shift value
*/
#ifdef ONLY64
JEMALLOC_INLINE_C void lshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);
oh = th << (shift * 8);
ol = tl << (shift * 8);
oh |= tl >> (64 - shift * 8);
out->u[0] = (uint32_t)(ol >> 32);
out->u[1] = (uint32_t)ol;
out->u[2] = (uint32_t)(oh >> 32);
out->u[3] = (uint32_t)oh;
}
#else
JEMALLOC_INLINE_C void lshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);
oh = th << (shift * 8);
ol = tl << (shift * 8);
oh |= tl >> (64 - shift * 8);
out->u[1] = (uint32_t)(ol >> 32);
out->u[0] = (uint32_t)ol;
out->u[3] = (uint32_t)(oh >> 32);
out->u[2] = (uint32_t)oh;
}
#endif
#endif
/**
* This function represents the recursion formula.
* @param r output
* @param a a 128-bit part of the internal state array
* @param b a 128-bit part of the internal state array
* @param c a 128-bit part of the internal state array
* @param d a 128-bit part of the internal state array
*/
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
#ifdef ONLY64
JEMALLOC_INLINE_C void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
w128_t *d) {
w128_t x;
w128_t y;
lshift128(&x, a, SL2);
rshift128(&y, c, SR2);
r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK2) ^ y.u[0]
^ (d->u[0] << SL1);
r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK1) ^ y.u[1]
^ (d->u[1] << SL1);
r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK4) ^ y.u[2]
^ (d->u[2] << SL1);
r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK3) ^ y.u[3]
^ (d->u[3] << SL1);
}
#else
JEMALLOC_INLINE_C void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
w128_t *d) {
w128_t x;
w128_t y;
lshift128(&x, a, SL2);
rshift128(&y, c, SR2);
r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK1) ^ y.u[0]
^ (d->u[0] << SL1);
r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK2) ^ y.u[1]
^ (d->u[1] << SL1);
r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK3) ^ y.u[2]
^ (d->u[2] << SL1);
r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK4) ^ y.u[3]
^ (d->u[3] << SL1);
}
#endif
#endif
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
/**
* This function fills the internal state array with pseudorandom
* integers.
*/
JEMALLOC_INLINE_C void gen_rand_all(sfmt_t *ctx) {
int i;
w128_t *r1, *r2;
r1 = &ctx->sfmt[N - 2];
r2 = &ctx->sfmt[N - 1];
for (i = 0; i < N - POS1; i++) {
do_recursion(&ctx->sfmt[i], &ctx->sfmt[i], &ctx->sfmt[i + POS1], r1,
r2);
r1 = r2;
r2 = &ctx->sfmt[i];
}
for (; i < N; i++) {
do_recursion(&ctx->sfmt[i], &ctx->sfmt[i], &ctx->sfmt[i + POS1 - N], r1,
r2);
r1 = r2;
r2 = &ctx->sfmt[i];
}
}
/**
* This function fills the user-specified array with pseudorandom
* integers.
*
* @param array an 128-bit array to be filled by pseudorandom numbers.
* @param size number of 128-bit pseudorandom numbers to be generated.
*/
JEMALLOC_INLINE_C void gen_rand_array(sfmt_t *ctx, w128_t *array, int size) {
int i, j;
w128_t *r1, *r2;
r1 = &ctx->sfmt[N - 2];
r2 = &ctx->sfmt[N - 1];
for (i = 0; i < N - POS1; i++) {
do_recursion(&array[i], &ctx->sfmt[i], &ctx->sfmt[i + POS1], r1, r2);
r1 = r2;
r2 = &array[i];
}
for (; i < N; i++) {
do_recursion(&array[i], &ctx->sfmt[i], &array[i + POS1 - N], r1, r2);
r1 = r2;
r2 = &array[i];
}
for (; i < size - N; i++) {
do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
r1 = r2;
r2 = &array[i];
}
for (j = 0; j < 2 * N - size; j++) {
ctx->sfmt[j] = array[j + size - N];
}
for (; i < size; i++, j++) {
do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
r1 = r2;
r2 = &array[i];
ctx->sfmt[j] = array[i];
}
}
#endif
#if defined(BIG_ENDIAN64) && !defined(ONLY64) && !defined(HAVE_ALTIVEC)
JEMALLOC_INLINE_C void swap(w128_t *array, int size) {
int i;
uint32_t x, y;
for (i = 0; i < size; i++) {
x = array[i].u[0];
y = array[i].u[2];
array[i].u[0] = array[i].u[1];
array[i].u[2] = array[i].u[3];
array[i].u[1] = x;
array[i].u[3] = y;
}
}
#endif
/**
* This function represents a function used in the initialization
* by init_by_array
* @param x 32-bit integer
* @return 32-bit integer
*/
static uint32_t func1(uint32_t x) {
return (x ^ (x >> 27)) * (uint32_t)1664525UL;
}
/**
* This function represents a function used in the initialization
* by init_by_array
* @param x 32-bit integer
* @return 32-bit integer
*/
static uint32_t func2(uint32_t x) {
return (x ^ (x >> 27)) * (uint32_t)1566083941UL;
}
/**
* This function certificate the period of 2^{MEXP}
*/
static void period_certification(sfmt_t *ctx) {
int inner = 0;
int i, j;
uint32_t work;
uint32_t *psfmt32 = &ctx->sfmt[0].u[0];
for (i = 0; i < 4; i++)
inner ^= psfmt32[idxof(i)] & parity[i];
for (i = 16; i > 0; i >>= 1)
inner ^= inner >> i;
inner &= 1;
/* check OK */
if (inner == 1) {
return;
}
/* check NG, and modification */
for (i = 0; i < 4; i++) {
work = 1;
for (j = 0; j < 32; j++) {
if ((work & parity[i]) != 0) {
psfmt32[idxof(i)] ^= work;
return;
}
work = work << 1;
}
}
}
/*----------------
PUBLIC FUNCTIONS
----------------*/
/**
* This function returns the identification string.
* The string shows the word size, the Mersenne exponent,
* and all parameters of this generator.
*/
const char *get_idstring(void) {
return IDSTR;
}
/**
* This function returns the minimum size of array used for \b
* fill_array32() function.
* @return minimum size of array used for fill_array32() function.
*/
int get_min_array_size32(void) {
return N32;
}
/**
* This function returns the minimum size of array used for \b
* fill_array64() function.
* @return minimum size of array used for fill_array64() function.
*/
int get_min_array_size64(void) {
return N64;
}
#ifndef ONLY64
/**
* This function generates and returns 32-bit pseudorandom number.
* init_gen_rand or init_by_array must be called before this function.
* @return 32-bit pseudorandom number
*/
uint32_t gen_rand32(sfmt_t *ctx) {
uint32_t r;
uint32_t *psfmt32 = &ctx->sfmt[0].u[0];
assert(ctx->initialized);
if (ctx->idx >= N32) {
gen_rand_all(ctx);
ctx->idx = 0;
}
r = psfmt32[ctx->idx++];
return r;
}
/* Generate a random integer in [0..limit). */
uint32_t gen_rand32_range(sfmt_t *ctx, uint32_t limit) {
uint32_t ret, above;
above = 0xffffffffU - (0xffffffffU % limit);
while (1) {
ret = gen_rand32(ctx);
if (ret < above) {
ret %= limit;
break;
}
}
return ret;
}
#endif
/**
* This function generates and returns 64-bit pseudorandom number.
* init_gen_rand or init_by_array must be called before this function.
* The function gen_rand64 should not be called after gen_rand32,
* unless an initialization is again executed.
* @return 64-bit pseudorandom number
*/
uint64_t gen_rand64(sfmt_t *ctx) {
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
uint32_t r1, r2;
uint32_t *psfmt32 = &ctx->sfmt[0].u[0];
#else
uint64_t r;
uint64_t *psfmt64 = (uint64_t *)&ctx->sfmt[0].u[0];
#endif
assert(ctx->initialized);
assert(ctx->idx % 2 == 0);
if (ctx->idx >= N32) {
gen_rand_all(ctx);
ctx->idx = 0;
}
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
r1 = psfmt32[ctx->idx];
r2 = psfmt32[ctx->idx + 1];
ctx->idx += 2;
return ((uint64_t)r2 << 32) | r1;
#else
r = psfmt64[ctx->idx / 2];
ctx->idx += 2;
return r;
#endif
}
/* Generate a random integer in [0..limit). */
uint64_t gen_rand64_range(sfmt_t *ctx, uint64_t limit) {
uint64_t ret, above;
above = KQU(0xffffffffffffffff) - (KQU(0xffffffffffffffff) % limit);
while (1) {
ret = gen_rand64(ctx);
if (ret < above) {
ret %= limit;
break;
}
}
return ret;
}
#ifndef ONLY64
/**
* This function generates pseudorandom 32-bit integers in the
* specified array[] by one call. The number of pseudorandom integers
* is specified by the argument size, which must be at least 624 and a
* multiple of four. The generation by this function is much faster
* than the following gen_rand function.
*
* For initialization, init_gen_rand or init_by_array must be called
* before the first call of this function. This function can not be
* used after calling gen_rand function, without initialization.
*
* @param array an array where pseudorandom 32-bit integers are filled
* by this function. The pointer to the array must be \b "aligned"
* (namely, must be a multiple of 16) in the SIMD version, since it
* refers to the address of a 128-bit integer. In the standard C
* version, the pointer is arbitrary.
*
* @param size the number of 32-bit pseudorandom integers to be
* generated. size must be a multiple of 4, and greater than or equal
* to (MEXP / 128 + 1) * 4.
*
* @note \b memalign or \b posix_memalign is available to get aligned
* memory. Mac OSX doesn't have these functions, but \b malloc of OSX
* returns the pointer to the aligned memory block.
*/
void fill_array32(sfmt_t *ctx, uint32_t *array, int size) {
assert(ctx->initialized);
assert(ctx->idx == N32);
assert(size % 4 == 0);
assert(size >= N32);
gen_rand_array(ctx, (w128_t *)array, size / 4);
ctx->idx = N32;
}
#endif
/**
* This function generates pseudorandom 64-bit integers in the
* specified array[] by one call. The number of pseudorandom integers
* is specified by the argument size, which must be at least 312 and a
* multiple of two. The generation by this function is much faster
* than the following gen_rand function.
*
* For initialization, init_gen_rand or init_by_array must be called
* before the first call of this function. This function can not be
* used after calling gen_rand function, without initialization.
*
* @param array an array where pseudorandom 64-bit integers are filled
* by this function. The pointer to the array must be "aligned"
* (namely, must be a multiple of 16) in the SIMD version, since it
* refers to the address of a 128-bit integer. In the standard C
* version, the pointer is arbitrary.
*
* @param size the number of 64-bit pseudorandom integers to be
* generated. size must be a multiple of 2, and greater than or equal
* to (MEXP / 128 + 1) * 2
*
* @note \b memalign or \b posix_memalign is available to get aligned
* memory. Mac OSX doesn't have these functions, but \b malloc of OSX
* returns the pointer to the aligned memory block.
*/
void fill_array64(sfmt_t *ctx, uint64_t *array, int size) {
assert(ctx->initialized);
assert(ctx->idx == N32);
assert(size % 2 == 0);
assert(size >= N64);
gen_rand_array(ctx, (w128_t *)array, size / 2);
ctx->idx = N32;
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
swap((w128_t *)array, size /2);
#endif
}
/**
* This function initializes the internal state array with a 32-bit
* integer seed.
*
* @param seed a 32-bit integer used as the seed.
*/
sfmt_t *init_gen_rand(uint32_t seed) {
void *p;
sfmt_t *ctx;
int i;
uint32_t *psfmt32;
if (posix_memalign(&p, sizeof(w128_t), sizeof(sfmt_t)) != 0) {
return NULL;
}
ctx = (sfmt_t *)p;
psfmt32 = &ctx->sfmt[0].u[0];
psfmt32[idxof(0)] = seed;
for (i = 1; i < N32; i++) {
psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)]
^ (psfmt32[idxof(i - 1)] >> 30))
+ i;
}
ctx->idx = N32;
period_certification(ctx);
ctx->initialized = 1;
return ctx;
}
/**
* This function initializes the internal state array,
* with an array of 32-bit integers used as the seeds
* @param init_key the array of 32-bit integers, used as a seed.
* @param key_length the length of init_key.
*/
sfmt_t *init_by_array(uint32_t *init_key, int key_length) {
void *p;
sfmt_t *ctx;
int i, j, count;
uint32_t r;
int lag;
int mid;
int size = N * 4;
uint32_t *psfmt32;
if (posix_memalign(&p, sizeof(w128_t), sizeof(sfmt_t)) != 0) {
return NULL;
}
ctx = (sfmt_t *)p;
psfmt32 = &ctx->sfmt[0].u[0];
if (size >= 623) {
lag = 11;
} else if (size >= 68) {
lag = 7;
} else if (size >= 39) {
lag = 5;
} else {
lag = 3;
}
mid = (size - lag) / 2;
memset(ctx->sfmt, 0x8b, sizeof(ctx->sfmt));
if (key_length + 1 > N32) {
count = key_length + 1;
} else {
count = N32;
}
r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)]
^ psfmt32[idxof(N32 - 1)]);
psfmt32[idxof(mid)] += r;
r += key_length;
psfmt32[idxof(mid + lag)] += r;
psfmt32[idxof(0)] = r;
count--;
for (i = 1, j = 0; (j < count) && (j < key_length); j++) {
r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
^ psfmt32[idxof((i + N32 - 1) % N32)]);
psfmt32[idxof((i + mid) % N32)] += r;
r += init_key[j] + i;
psfmt32[idxof((i + mid + lag) % N32)] += r;
psfmt32[idxof(i)] = r;
i = (i + 1) % N32;
}
for (; j < count; j++) {
r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
^ psfmt32[idxof((i + N32 - 1) % N32)]);
psfmt32[idxof((i + mid) % N32)] += r;
r += i;
psfmt32[idxof((i + mid + lag) % N32)] += r;
psfmt32[idxof(i)] = r;
i = (i + 1) % N32;
}
for (j = 0; j < N32; j++) {
r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % N32)]
+ psfmt32[idxof((i + N32 - 1) % N32)]);
psfmt32[idxof((i + mid) % N32)] ^= r;
r -= i;
psfmt32[idxof((i + mid + lag) % N32)] ^= r;
psfmt32[idxof(i)] = r;
i = (i + 1) % N32;
}
ctx->idx = N32;
period_certification(ctx);
ctx->initialized = 1;
return ctx;
}
void fini_gen_rand(sfmt_t *ctx) {
assert(ctx != NULL);
ctx->initialized = 0;
free(ctx);
}
| 20,695 | 27.744444 | 79 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/integration/allocated.c | #include "test/jemalloc_test.h"
static const bool config_stats =
#ifdef JEMALLOC_STATS
true
#else
false
#endif
;
void *
thd_start(void *arg)
{
int err;
void *p;
uint64_t a0, a1, d0, d1;
uint64_t *ap0, *ap1, *dp0, *dp1;
size_t sz, usize;
sz = sizeof(a0);
if ((err = mallctl("thread.allocated", (void *)&a0, &sz, NULL, 0))) {
if (err == ENOENT)
goto label_ENOENT;
test_fail("%s(): Error in mallctl(): %s", __func__,
strerror(err));
}
sz = sizeof(ap0);
if ((err = mallctl("thread.allocatedp", (void *)&ap0, &sz, NULL, 0))) {
if (err == ENOENT)
goto label_ENOENT;
test_fail("%s(): Error in mallctl(): %s", __func__,
strerror(err));
}
assert_u64_eq(*ap0, a0,
"\"thread.allocatedp\" should provide a pointer to internal "
"storage");
sz = sizeof(d0);
if ((err = mallctl("thread.deallocated", (void *)&d0, &sz, NULL, 0))) {
if (err == ENOENT)
goto label_ENOENT;
test_fail("%s(): Error in mallctl(): %s", __func__,
strerror(err));
}
sz = sizeof(dp0);
if ((err = mallctl("thread.deallocatedp", (void *)&dp0, &sz, NULL,
0))) {
if (err == ENOENT)
goto label_ENOENT;
test_fail("%s(): Error in mallctl(): %s", __func__,
strerror(err));
}
assert_u64_eq(*dp0, d0,
"\"thread.deallocatedp\" should provide a pointer to internal "
"storage");
p = malloc(1);
assert_ptr_not_null(p, "Unexpected malloc() error");
sz = sizeof(a1);
mallctl("thread.allocated", (void *)&a1, &sz, NULL, 0);
sz = sizeof(ap1);
mallctl("thread.allocatedp", (void *)&ap1, &sz, NULL, 0);
assert_u64_eq(*ap1, a1,
"Dereferenced \"thread.allocatedp\" value should equal "
"\"thread.allocated\" value");
assert_ptr_eq(ap0, ap1,
"Pointer returned by \"thread.allocatedp\" should not change");
usize = malloc_usable_size(p);
assert_u64_le(a0 + usize, a1,
"Allocated memory counter should increase by at least the amount "
"explicitly allocated");
free(p);
sz = sizeof(d1);
mallctl("thread.deallocated", (void *)&d1, &sz, NULL, 0);
sz = sizeof(dp1);
mallctl("thread.deallocatedp", (void *)&dp1, &sz, NULL, 0);
assert_u64_eq(*dp1, d1,
"Dereferenced \"thread.deallocatedp\" value should equal "
"\"thread.deallocated\" value");
assert_ptr_eq(dp0, dp1,
"Pointer returned by \"thread.deallocatedp\" should not change");
assert_u64_le(d0 + usize, d1,
"Deallocated memory counter should increase by at least the amount "
"explicitly deallocated");
return (NULL);
label_ENOENT:
assert_false(config_stats,
"ENOENT should only be returned if stats are disabled");
test_skip("\"thread.allocated\" mallctl not available");
return (NULL);
}
TEST_BEGIN(test_main_thread)
{
thd_start(NULL);
}
TEST_END
TEST_BEGIN(test_subthread)
{
thd_t thd;
thd_create(&thd, thd_start, NULL);
thd_join(thd, NULL);
}
TEST_END
int
main(void)
{
/* Run tests multiple times to check for bad interactions. */
return (test(
test_main_thread,
test_subthread,
test_main_thread,
test_subthread,
test_main_thread));
}
| 3,058 | 23.086614 | 73 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/integration/xallocx.c | #include "test/jemalloc_test.h"
#ifdef JEMALLOC_FILL
const char *malloc_conf = "junk:false";
#endif
/*
* Use a separate arena for xallocx() extension/contraction tests so that
* internal allocation e.g. by heap profiling can't interpose allocations where
* xallocx() would ordinarily be able to extend.
*/
static unsigned
arena_ind(void)
{
static unsigned ind = 0;
if (ind == 0) {
size_t sz = sizeof(ind);
assert_d_eq(mallctl("arenas.extend", (void *)&ind, &sz, NULL,
0), 0, "Unexpected mallctl failure creating arena");
}
return (ind);
}
TEST_BEGIN(test_same_size)
{
void *p;
size_t sz, tsz;
p = mallocx(42, 0);
assert_ptr_not_null(p, "Unexpected mallocx() error");
sz = sallocx(p, 0);
tsz = xallocx(p, sz, 0, 0);
assert_zu_eq(tsz, sz, "Unexpected size change: %zu --> %zu", sz, tsz);
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_extra_no_move)
{
void *p;
size_t sz, tsz;
p = mallocx(42, 0);
assert_ptr_not_null(p, "Unexpected mallocx() error");
sz = sallocx(p, 0);
tsz = xallocx(p, sz, sz-42, 0);
assert_zu_eq(tsz, sz, "Unexpected size change: %zu --> %zu", sz, tsz);
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_no_move_fail)
{
void *p;
size_t sz, tsz;
p = mallocx(42, 0);
assert_ptr_not_null(p, "Unexpected mallocx() error");
sz = sallocx(p, 0);
tsz = xallocx(p, sz + 5, 0, 0);
assert_zu_eq(tsz, sz, "Unexpected size change: %zu --> %zu", sz, tsz);
dallocx(p, 0);
}
TEST_END
static unsigned
get_nsizes_impl(const char *cmd)
{
unsigned ret;
size_t z;
z = sizeof(unsigned);
assert_d_eq(mallctl(cmd, (void *)&ret, &z, NULL, 0), 0,
"Unexpected mallctl(\"%s\", ...) failure", cmd);
return (ret);
}
static unsigned
get_nsmall(void)
{
return (get_nsizes_impl("arenas.nbins"));
}
static unsigned
get_nlarge(void)
{
return (get_nsizes_impl("arenas.nlruns"));
}
static unsigned
get_nhuge(void)
{
return (get_nsizes_impl("arenas.nhchunks"));
}
static size_t
get_size_impl(const char *cmd, size_t ind)
{
size_t ret;
size_t z;
size_t mib[4];
size_t miblen = 4;
z = sizeof(size_t);
assert_d_eq(mallctlnametomib(cmd, mib, &miblen),
0, "Unexpected mallctlnametomib(\"%s\", ...) failure", cmd);
mib[2] = ind;
z = sizeof(size_t);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&ret, &z, NULL, 0),
0, "Unexpected mallctlbymib([\"%s\", %zu], ...) failure", cmd, ind);
return (ret);
}
static size_t
get_small_size(size_t ind)
{
return (get_size_impl("arenas.bin.0.size", ind));
}
static size_t
get_large_size(size_t ind)
{
return (get_size_impl("arenas.lrun.0.size", ind));
}
static size_t
get_huge_size(size_t ind)
{
return (get_size_impl("arenas.hchunk.0.size", ind));
}
TEST_BEGIN(test_size)
{
size_t small0, hugemax;
void *p;
/* Get size classes. */
small0 = get_small_size(0);
hugemax = get_huge_size(get_nhuge()-1);
p = mallocx(small0, 0);
assert_ptr_not_null(p, "Unexpected mallocx() error");
/* Test smallest supported size. */
assert_zu_eq(xallocx(p, 1, 0, 0), small0,
"Unexpected xallocx() behavior");
/* Test largest supported size. */
assert_zu_le(xallocx(p, hugemax, 0, 0), hugemax,
"Unexpected xallocx() behavior");
/* Test size overflow. */
assert_zu_le(xallocx(p, hugemax+1, 0, 0), hugemax,
"Unexpected xallocx() behavior");
assert_zu_le(xallocx(p, SIZE_T_MAX, 0, 0), hugemax,
"Unexpected xallocx() behavior");
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_size_extra_overflow)
{
size_t small0, hugemax;
void *p;
/* Get size classes. */
small0 = get_small_size(0);
hugemax = get_huge_size(get_nhuge()-1);
p = mallocx(small0, 0);
assert_ptr_not_null(p, "Unexpected mallocx() error");
/* Test overflows that can be resolved by clamping extra. */
assert_zu_le(xallocx(p, hugemax-1, 2, 0), hugemax,
"Unexpected xallocx() behavior");
assert_zu_le(xallocx(p, hugemax, 1, 0), hugemax,
"Unexpected xallocx() behavior");
/* Test overflow such that hugemax-size underflows. */
assert_zu_le(xallocx(p, hugemax+1, 2, 0), hugemax,
"Unexpected xallocx() behavior");
assert_zu_le(xallocx(p, hugemax+2, 3, 0), hugemax,
"Unexpected xallocx() behavior");
assert_zu_le(xallocx(p, SIZE_T_MAX-2, 2, 0), hugemax,
"Unexpected xallocx() behavior");
assert_zu_le(xallocx(p, SIZE_T_MAX-1, 1, 0), hugemax,
"Unexpected xallocx() behavior");
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_extra_small)
{
size_t small0, small1, hugemax;
void *p;
/* Get size classes. */
small0 = get_small_size(0);
small1 = get_small_size(1);
hugemax = get_huge_size(get_nhuge()-1);
p = mallocx(small0, 0);
assert_ptr_not_null(p, "Unexpected mallocx() error");
assert_zu_eq(xallocx(p, small1, 0, 0), small0,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, small1, 0, 0), small0,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, small0, small1 - small0, 0), small0,
"Unexpected xallocx() behavior");
/* Test size+extra overflow. */
assert_zu_eq(xallocx(p, small0, hugemax - small0 + 1, 0), small0,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, small0, SIZE_T_MAX - small0, 0), small0,
"Unexpected xallocx() behavior");
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_extra_large)
{
int flags = MALLOCX_ARENA(arena_ind());
size_t smallmax, large0, large1, large2, huge0, hugemax;
void *p;
/* Get size classes. */
smallmax = get_small_size(get_nsmall()-1);
large0 = get_large_size(0);
large1 = get_large_size(1);
large2 = get_large_size(2);
huge0 = get_huge_size(0);
hugemax = get_huge_size(get_nhuge()-1);
p = mallocx(large2, flags);
assert_ptr_not_null(p, "Unexpected mallocx() error");
assert_zu_eq(xallocx(p, large2, 0, flags), large2,
"Unexpected xallocx() behavior");
/* Test size decrease with zero extra. */
assert_zu_eq(xallocx(p, large0, 0, flags), large0,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, smallmax, 0, flags), large0,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, large2, 0, flags), large2,
"Unexpected xallocx() behavior");
/* Test size decrease with non-zero extra. */
assert_zu_eq(xallocx(p, large0, large2 - large0, flags), large2,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, large1, large2 - large1, flags), large2,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, large0, large1 - large0, flags), large1,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, smallmax, large0 - smallmax, flags), large0,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, large0, 0, flags), large0,
"Unexpected xallocx() behavior");
/* Test size increase with zero extra. */
assert_zu_eq(xallocx(p, large2, 0, flags), large2,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, huge0, 0, flags), large2,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, large0, 0, flags), large0,
"Unexpected xallocx() behavior");
/* Test size increase with non-zero extra. */
assert_zu_lt(xallocx(p, large0, huge0 - large0, flags), huge0,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, large0, 0, flags), large0,
"Unexpected xallocx() behavior");
/* Test size increase with non-zero extra. */
assert_zu_eq(xallocx(p, large0, large2 - large0, flags), large2,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, large2, 0, flags), large2,
"Unexpected xallocx() behavior");
/* Test size+extra overflow. */
assert_zu_lt(xallocx(p, large2, hugemax - large2 + 1, flags), huge0,
"Unexpected xallocx() behavior");
dallocx(p, flags);
}
TEST_END
TEST_BEGIN(test_extra_huge)
{
int flags = MALLOCX_ARENA(arena_ind());
size_t largemax, huge1, huge2, huge3, hugemax;
void *p;
/* Get size classes. */
largemax = get_large_size(get_nlarge()-1);
huge1 = get_huge_size(1);
huge2 = get_huge_size(2);
huge3 = get_huge_size(3);
hugemax = get_huge_size(get_nhuge()-1);
p = mallocx(huge3, flags);
assert_ptr_not_null(p, "Unexpected mallocx() error");
assert_zu_eq(xallocx(p, huge3, 0, flags), huge3,
"Unexpected xallocx() behavior");
/* Test size decrease with zero extra. */
assert_zu_ge(xallocx(p, huge1, 0, flags), huge1,
"Unexpected xallocx() behavior");
assert_zu_ge(xallocx(p, largemax, 0, flags), huge1,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, huge3, 0, flags), huge3,
"Unexpected xallocx() behavior");
/* Test size decrease with non-zero extra. */
assert_zu_eq(xallocx(p, huge1, huge3 - huge1, flags), huge3,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, huge2, huge3 - huge2, flags), huge3,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, huge1, huge2 - huge1, flags), huge2,
"Unexpected xallocx() behavior");
assert_zu_ge(xallocx(p, largemax, huge1 - largemax, flags), huge1,
"Unexpected xallocx() behavior");
assert_zu_ge(xallocx(p, huge1, 0, flags), huge1,
"Unexpected xallocx() behavior");
/* Test size increase with zero extra. */
assert_zu_le(xallocx(p, huge3, 0, flags), huge3,
"Unexpected xallocx() behavior");
assert_zu_le(xallocx(p, hugemax+1, 0, flags), huge3,
"Unexpected xallocx() behavior");
assert_zu_ge(xallocx(p, huge1, 0, flags), huge1,
"Unexpected xallocx() behavior");
/* Test size increase with non-zero extra. */
assert_zu_le(xallocx(p, huge1, SIZE_T_MAX - huge1, flags), hugemax,
"Unexpected xallocx() behavior");
assert_zu_ge(xallocx(p, huge1, 0, flags), huge1,
"Unexpected xallocx() behavior");
/* Test size increase with non-zero extra. */
assert_zu_le(xallocx(p, huge1, huge3 - huge1, flags), huge3,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, huge3, 0, flags), huge3,
"Unexpected xallocx() behavior");
/* Test size+extra overflow. */
assert_zu_le(xallocx(p, huge3, hugemax - huge3 + 1, flags), hugemax,
"Unexpected xallocx() behavior");
dallocx(p, flags);
}
TEST_END
static void
print_filled_extents(const void *p, uint8_t c, size_t len)
{
const uint8_t *pc = (const uint8_t *)p;
size_t i, range0;
uint8_t c0;
malloc_printf(" p=%p, c=%#x, len=%zu:", p, c, len);
range0 = 0;
c0 = pc[0];
for (i = 0; i < len; i++) {
if (pc[i] != c0) {
malloc_printf(" %#x[%zu..%zu)", c0, range0, i);
range0 = i;
c0 = pc[i];
}
}
malloc_printf(" %#x[%zu..%zu)\n", c0, range0, i);
}
static bool
validate_fill(const void *p, uint8_t c, size_t offset, size_t len)
{
const uint8_t *pc = (const uint8_t *)p;
bool err;
size_t i;
for (i = offset, err = false; i < offset+len; i++) {
if (pc[i] != c)
err = true;
}
if (err)
print_filled_extents(p, c, offset + len);
return (err);
}
static void
test_zero(size_t szmin, size_t szmax)
{
int flags = MALLOCX_ARENA(arena_ind()) | MALLOCX_ZERO;
size_t sz, nsz;
void *p;
#define FILL_BYTE 0x7aU
sz = szmax;
p = mallocx(sz, flags);
assert_ptr_not_null(p, "Unexpected mallocx() error");
assert_false(validate_fill(p, 0x00, 0, sz), "Memory not filled: sz=%zu",
sz);
/*
* Fill with non-zero so that non-debug builds are more likely to detect
* errors.
*/
memset(p, FILL_BYTE, sz);
assert_false(validate_fill(p, FILL_BYTE, 0, sz),
"Memory not filled: sz=%zu", sz);
/* Shrink in place so that we can expect growing in place to succeed. */
sz = szmin;
assert_zu_eq(xallocx(p, sz, 0, flags), sz,
"Unexpected xallocx() error");
assert_false(validate_fill(p, FILL_BYTE, 0, sz),
"Memory not filled: sz=%zu", sz);
for (sz = szmin; sz < szmax; sz = nsz) {
nsz = nallocx(sz+1, flags);
assert_zu_eq(xallocx(p, sz+1, 0, flags), nsz,
"Unexpected xallocx() failure");
assert_false(validate_fill(p, FILL_BYTE, 0, sz),
"Memory not filled: sz=%zu", sz);
assert_false(validate_fill(p, 0x00, sz, nsz-sz),
"Memory not filled: sz=%zu, nsz-sz=%zu", sz, nsz-sz);
memset((void *)((uintptr_t)p + sz), FILL_BYTE, nsz-sz);
assert_false(validate_fill(p, FILL_BYTE, 0, nsz),
"Memory not filled: nsz=%zu", nsz);
}
dallocx(p, flags);
}
TEST_BEGIN(test_zero_large)
{
size_t large0, largemax;
/* Get size classes. */
large0 = get_large_size(0);
largemax = get_large_size(get_nlarge()-1);
test_zero(large0, largemax);
}
TEST_END
TEST_BEGIN(test_zero_huge)
{
size_t huge0, huge1;
/* Get size classes. */
huge0 = get_huge_size(0);
huge1 = get_huge_size(1);
test_zero(huge1, huge0 * 2);
}
TEST_END
int
main(void)
{
return (test(
test_same_size,
test_extra_no_move,
test_no_move_fail,
test_size,
test_size_extra_overflow,
test_extra_small,
test_extra_large,
test_extra_huge,
test_zero_large,
test_zero_huge));
}
| 12,608 | 24.319277 | 79 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/integration/mallocx.c | #include "test/jemalloc_test.h"
#ifdef JEMALLOC_FILL
const char *malloc_conf = "junk:false";
#endif
static unsigned
get_nsizes_impl(const char *cmd)
{
unsigned ret;
size_t z;
z = sizeof(unsigned);
assert_d_eq(mallctl(cmd, (void *)&ret, &z, NULL, 0), 0,
"Unexpected mallctl(\"%s\", ...) failure", cmd);
return (ret);
}
static unsigned
get_nhuge(void)
{
return (get_nsizes_impl("arenas.nhchunks"));
}
static size_t
get_size_impl(const char *cmd, size_t ind)
{
size_t ret;
size_t z;
size_t mib[4];
size_t miblen = 4;
z = sizeof(size_t);
assert_d_eq(mallctlnametomib(cmd, mib, &miblen),
0, "Unexpected mallctlnametomib(\"%s\", ...) failure", cmd);
mib[2] = ind;
z = sizeof(size_t);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&ret, &z, NULL, 0),
0, "Unexpected mallctlbymib([\"%s\", %zu], ...) failure", cmd, ind);
return (ret);
}
static size_t
get_huge_size(size_t ind)
{
return (get_size_impl("arenas.hchunk.0.size", ind));
}
/*
* On systems which can't merge extents, tests that call this function generate
* a lot of dirty memory very quickly. Purging between cycles mitigates
* potential OOM on e.g. 32-bit Windows.
*/
static void
purge(void)
{
assert_d_eq(mallctl("arena.0.purge", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl error");
}
TEST_BEGIN(test_overflow)
{
size_t hugemax;
hugemax = get_huge_size(get_nhuge()-1);
assert_ptr_null(mallocx(hugemax+1, 0),
"Expected OOM for mallocx(size=%#zx, 0)", hugemax+1);
assert_ptr_null(mallocx(ZU(PTRDIFF_MAX)+1, 0),
"Expected OOM for mallocx(size=%#zx, 0)", ZU(PTRDIFF_MAX)+1);
assert_ptr_null(mallocx(SIZE_T_MAX, 0),
"Expected OOM for mallocx(size=%#zx, 0)", SIZE_T_MAX);
assert_ptr_null(mallocx(1, MALLOCX_ALIGN(ZU(PTRDIFF_MAX)+1)),
"Expected OOM for mallocx(size=1, MALLOCX_ALIGN(%#zx))",
ZU(PTRDIFF_MAX)+1);
}
TEST_END
TEST_BEGIN(test_oom)
{
size_t hugemax;
bool oom;
void *ptrs[3];
unsigned i;
/*
* It should be impossible to allocate three objects that each consume
* nearly half the virtual address space.
*/
hugemax = get_huge_size(get_nhuge()-1);
oom = false;
for (i = 0; i < sizeof(ptrs) / sizeof(void *); i++) {
ptrs[i] = mallocx(hugemax, 0);
if (ptrs[i] == NULL)
oom = true;
}
assert_true(oom,
"Expected OOM during series of calls to mallocx(size=%zu, 0)",
hugemax);
for (i = 0; i < sizeof(ptrs) / sizeof(void *); i++) {
if (ptrs[i] != NULL)
dallocx(ptrs[i], 0);
}
purge();
#if LG_SIZEOF_PTR == 3
assert_ptr_null(mallocx(0x8000000000000000ULL,
MALLOCX_ALIGN(0x8000000000000000ULL)),
"Expected OOM for mallocx()");
assert_ptr_null(mallocx(0x8000000000000000ULL,
MALLOCX_ALIGN(0x80000000)),
"Expected OOM for mallocx()");
#else
assert_ptr_null(mallocx(0x80000000UL, MALLOCX_ALIGN(0x80000000UL)),
"Expected OOM for mallocx()");
#endif
}
TEST_END
TEST_BEGIN(test_basic)
{
#define MAXSZ (((size_t)1) << 23)
size_t sz;
for (sz = 1; sz < MAXSZ; sz = nallocx(sz, 0) + 1) {
size_t nsz, rsz;
void *p;
nsz = nallocx(sz, 0);
assert_zu_ne(nsz, 0, "Unexpected nallocx() error");
p = mallocx(sz, 0);
assert_ptr_not_null(p,
"Unexpected mallocx(size=%zx, flags=0) error", sz);
rsz = sallocx(p, 0);
assert_zu_ge(rsz, sz, "Real size smaller than expected");
assert_zu_eq(nsz, rsz, "nallocx()/sallocx() size mismatch");
dallocx(p, 0);
p = mallocx(sz, 0);
assert_ptr_not_null(p,
"Unexpected mallocx(size=%zx, flags=0) error", sz);
dallocx(p, 0);
nsz = nallocx(sz, MALLOCX_ZERO);
assert_zu_ne(nsz, 0, "Unexpected nallocx() error");
p = mallocx(sz, MALLOCX_ZERO);
assert_ptr_not_null(p,
"Unexpected mallocx(size=%zx, flags=MALLOCX_ZERO) error",
nsz);
rsz = sallocx(p, 0);
assert_zu_eq(nsz, rsz, "nallocx()/sallocx() rsize mismatch");
dallocx(p, 0);
purge();
}
#undef MAXSZ
}
TEST_END
TEST_BEGIN(test_alignment_and_size)
{
#define MAXALIGN (((size_t)1) << 23)
#define NITER 4
size_t nsz, rsz, sz, alignment, total;
unsigned i;
void *ps[NITER];
for (i = 0; i < NITER; i++)
ps[i] = NULL;
for (alignment = 8;
alignment <= MAXALIGN;
alignment <<= 1) {
total = 0;
for (sz = 1;
sz < 3 * alignment && sz < (1U << 31);
sz += (alignment >> (LG_SIZEOF_PTR-1)) - 1) {
for (i = 0; i < NITER; i++) {
nsz = nallocx(sz, MALLOCX_ALIGN(alignment) |
MALLOCX_ZERO);
assert_zu_ne(nsz, 0,
"nallocx() error for alignment=%zu, "
"size=%zu (%#zx)", alignment, sz, sz);
ps[i] = mallocx(sz, MALLOCX_ALIGN(alignment) |
MALLOCX_ZERO);
assert_ptr_not_null(ps[i],
"mallocx() error for alignment=%zu, "
"size=%zu (%#zx)", alignment, sz, sz);
rsz = sallocx(ps[i], 0);
assert_zu_ge(rsz, sz,
"Real size smaller than expected for "
"alignment=%zu, size=%zu", alignment, sz);
assert_zu_eq(nsz, rsz,
"nallocx()/sallocx() size mismatch for "
"alignment=%zu, size=%zu", alignment, sz);
assert_ptr_null(
(void *)((uintptr_t)ps[i] & (alignment-1)),
"%p inadequately aligned for"
" alignment=%zu, size=%zu", ps[i],
alignment, sz);
total += rsz;
if (total >= (MAXALIGN << 1))
break;
}
for (i = 0; i < NITER; i++) {
if (ps[i] != NULL) {
dallocx(ps[i], 0);
ps[i] = NULL;
}
}
}
purge();
}
#undef MAXALIGN
#undef NITER
}
TEST_END
int
main(void)
{
return (test(
test_overflow,
test_oom,
test_basic,
test_alignment_and_size));
}
| 5,506 | 22.434043 | 79 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/integration/rallocx.c | #include "test/jemalloc_test.h"
static unsigned
get_nsizes_impl(const char *cmd)
{
unsigned ret;
size_t z;
z = sizeof(unsigned);
assert_d_eq(mallctl(cmd, (void *)&ret, &z, NULL, 0), 0,
"Unexpected mallctl(\"%s\", ...) failure", cmd);
return (ret);
}
static unsigned
get_nhuge(void)
{
return (get_nsizes_impl("arenas.nhchunks"));
}
static size_t
get_size_impl(const char *cmd, size_t ind)
{
size_t ret;
size_t z;
size_t mib[4];
size_t miblen = 4;
z = sizeof(size_t);
assert_d_eq(mallctlnametomib(cmd, mib, &miblen),
0, "Unexpected mallctlnametomib(\"%s\", ...) failure", cmd);
mib[2] = ind;
z = sizeof(size_t);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&ret, &z, NULL, 0),
0, "Unexpected mallctlbymib([\"%s\", %zu], ...) failure", cmd, ind);
return (ret);
}
static size_t
get_huge_size(size_t ind)
{
return (get_size_impl("arenas.hchunk.0.size", ind));
}
TEST_BEGIN(test_grow_and_shrink)
{
void *p, *q;
size_t tsz;
#define NCYCLES 3
unsigned i, j;
#define NSZS 2500
size_t szs[NSZS];
#define MAXSZ ZU(12 * 1024 * 1024)
p = mallocx(1, 0);
assert_ptr_not_null(p, "Unexpected mallocx() error");
szs[0] = sallocx(p, 0);
for (i = 0; i < NCYCLES; i++) {
for (j = 1; j < NSZS && szs[j-1] < MAXSZ; j++) {
q = rallocx(p, szs[j-1]+1, 0);
assert_ptr_not_null(q,
"Unexpected rallocx() error for size=%zu-->%zu",
szs[j-1], szs[j-1]+1);
szs[j] = sallocx(q, 0);
assert_zu_ne(szs[j], szs[j-1]+1,
"Expected size to be at least: %zu", szs[j-1]+1);
p = q;
}
for (j--; j > 0; j--) {
q = rallocx(p, szs[j-1], 0);
assert_ptr_not_null(q,
"Unexpected rallocx() error for size=%zu-->%zu",
szs[j], szs[j-1]);
tsz = sallocx(q, 0);
assert_zu_eq(tsz, szs[j-1],
"Expected size=%zu, got size=%zu", szs[j-1], tsz);
p = q;
}
}
dallocx(p, 0);
#undef MAXSZ
#undef NSZS
#undef NCYCLES
}
TEST_END
static bool
validate_fill(const void *p, uint8_t c, size_t offset, size_t len)
{
bool ret = false;
const uint8_t *buf = (const uint8_t *)p;
size_t i;
for (i = 0; i < len; i++) {
uint8_t b = buf[offset+i];
if (b != c) {
test_fail("Allocation at %p (len=%zu) contains %#x "
"rather than %#x at offset %zu", p, len, b, c,
offset+i);
ret = true;
}
}
return (ret);
}
TEST_BEGIN(test_zero)
{
void *p, *q;
size_t psz, qsz, i, j;
size_t start_sizes[] = {1, 3*1024, 63*1024, 4095*1024};
#define FILL_BYTE 0xaaU
#define RANGE 2048
for (i = 0; i < sizeof(start_sizes)/sizeof(size_t); i++) {
size_t start_size = start_sizes[i];
p = mallocx(start_size, MALLOCX_ZERO);
assert_ptr_not_null(p, "Unexpected mallocx() error");
psz = sallocx(p, 0);
assert_false(validate_fill(p, 0, 0, psz),
"Expected zeroed memory");
memset(p, FILL_BYTE, psz);
assert_false(validate_fill(p, FILL_BYTE, 0, psz),
"Expected filled memory");
for (j = 1; j < RANGE; j++) {
q = rallocx(p, start_size+j, MALLOCX_ZERO);
assert_ptr_not_null(q, "Unexpected rallocx() error");
qsz = sallocx(q, 0);
if (q != p || qsz != psz) {
assert_false(validate_fill(q, FILL_BYTE, 0,
psz), "Expected filled memory");
assert_false(validate_fill(q, 0, psz, qsz-psz),
"Expected zeroed memory");
}
if (psz != qsz) {
memset((void *)((uintptr_t)q+psz), FILL_BYTE,
qsz-psz);
psz = qsz;
}
p = q;
}
assert_false(validate_fill(p, FILL_BYTE, 0, psz),
"Expected filled memory");
dallocx(p, 0);
}
#undef FILL_BYTE
}
TEST_END
TEST_BEGIN(test_align)
{
void *p, *q;
size_t align;
#define MAX_ALIGN (ZU(1) << 25)
align = ZU(1);
p = mallocx(1, MALLOCX_ALIGN(align));
assert_ptr_not_null(p, "Unexpected mallocx() error");
for (align <<= 1; align <= MAX_ALIGN; align <<= 1) {
q = rallocx(p, 1, MALLOCX_ALIGN(align));
assert_ptr_not_null(q,
"Unexpected rallocx() error for align=%zu", align);
assert_ptr_null(
(void *)((uintptr_t)q & (align-1)),
"%p inadequately aligned for align=%zu",
q, align);
p = q;
}
dallocx(p, 0);
#undef MAX_ALIGN
}
TEST_END
TEST_BEGIN(test_lg_align_and_zero)
{
void *p, *q;
unsigned lg_align;
size_t sz;
#define MAX_LG_ALIGN 25
#define MAX_VALIDATE (ZU(1) << 22)
lg_align = 0;
p = mallocx(1, MALLOCX_LG_ALIGN(lg_align)|MALLOCX_ZERO);
assert_ptr_not_null(p, "Unexpected mallocx() error");
for (lg_align++; lg_align <= MAX_LG_ALIGN; lg_align++) {
q = rallocx(p, 1, MALLOCX_LG_ALIGN(lg_align)|MALLOCX_ZERO);
assert_ptr_not_null(q,
"Unexpected rallocx() error for lg_align=%u", lg_align);
assert_ptr_null(
(void *)((uintptr_t)q & ((ZU(1) << lg_align)-1)),
"%p inadequately aligned for lg_align=%u", q, lg_align);
sz = sallocx(q, 0);
if ((sz << 1) <= MAX_VALIDATE) {
assert_false(validate_fill(q, 0, 0, sz),
"Expected zeroed memory");
} else {
assert_false(validate_fill(q, 0, 0, MAX_VALIDATE),
"Expected zeroed memory");
assert_false(validate_fill(
(void *)((uintptr_t)q+sz-MAX_VALIDATE),
0, 0, MAX_VALIDATE), "Expected zeroed memory");
}
p = q;
}
dallocx(p, 0);
#undef MAX_VALIDATE
#undef MAX_LG_ALIGN
}
TEST_END
TEST_BEGIN(test_overflow)
{
size_t hugemax;
void *p;
hugemax = get_huge_size(get_nhuge()-1);
p = mallocx(1, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_ptr_null(rallocx(p, hugemax+1, 0),
"Expected OOM for rallocx(p, size=%#zx, 0)", hugemax+1);
assert_ptr_null(rallocx(p, ZU(PTRDIFF_MAX)+1, 0),
"Expected OOM for rallocx(p, size=%#zx, 0)", ZU(PTRDIFF_MAX)+1);
assert_ptr_null(rallocx(p, SIZE_T_MAX, 0),
"Expected OOM for rallocx(p, size=%#zx, 0)", SIZE_T_MAX);
assert_ptr_null(rallocx(p, 1, MALLOCX_ALIGN(ZU(PTRDIFF_MAX)+1)),
"Expected OOM for rallocx(p, size=1, MALLOCX_ALIGN(%#zx))",
ZU(PTRDIFF_MAX)+1);
dallocx(p, 0);
}
TEST_END
int
main(void)
{
return (test(
test_grow_and_shrink,
test_zero,
test_align,
test_lg_align_and_zero,
test_overflow));
}
| 5,973 | 21.976923 | 73 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/integration/thread_tcache_enabled.c | #include "test/jemalloc_test.h"
static const bool config_tcache =
#ifdef JEMALLOC_TCACHE
true
#else
false
#endif
;
void *
thd_start(void *arg)
{
int err;
size_t sz;
bool e0, e1;
sz = sizeof(bool);
if ((err = mallctl("thread.tcache.enabled", (void *)&e0, &sz, NULL,
0))) {
if (err == ENOENT) {
assert_false(config_tcache,
"ENOENT should only be returned if tcache is "
"disabled");
}
goto label_ENOENT;
}
if (e0) {
e1 = false;
assert_d_eq(mallctl("thread.tcache.enabled", (void *)&e0, &sz,
(void *)&e1, sz), 0, "Unexpected mallctl() error");
assert_true(e0, "tcache should be enabled");
}
e1 = true;
assert_d_eq(mallctl("thread.tcache.enabled", (void *)&e0, &sz,
(void *)&e1, sz), 0, "Unexpected mallctl() error");
assert_false(e0, "tcache should be disabled");
e1 = true;
assert_d_eq(mallctl("thread.tcache.enabled", (void *)&e0, &sz,
(void *)&e1, sz), 0, "Unexpected mallctl() error");
assert_true(e0, "tcache should be enabled");
e1 = false;
assert_d_eq(mallctl("thread.tcache.enabled", (void *)&e0, &sz,
(void *)&e1, sz), 0, "Unexpected mallctl() error");
assert_true(e0, "tcache should be enabled");
e1 = false;
assert_d_eq(mallctl("thread.tcache.enabled", (void *)&e0, &sz,
(void *)&e1, sz), 0, "Unexpected mallctl() error");
assert_false(e0, "tcache should be disabled");
free(malloc(1));
e1 = true;
assert_d_eq(mallctl("thread.tcache.enabled", (void *)&e0, &sz,
(void *)&e1, sz), 0, "Unexpected mallctl() error");
assert_false(e0, "tcache should be disabled");
free(malloc(1));
e1 = true;
assert_d_eq(mallctl("thread.tcache.enabled", (void *)&e0, &sz,
(void *)&e1, sz), 0, "Unexpected mallctl() error");
assert_true(e0, "tcache should be enabled");
free(malloc(1));
e1 = false;
assert_d_eq(mallctl("thread.tcache.enabled", (void *)&e0, &sz,
(void *)&e1, sz), 0, "Unexpected mallctl() error");
assert_true(e0, "tcache should be enabled");
free(malloc(1));
e1 = false;
assert_d_eq(mallctl("thread.tcache.enabled", (void *)&e0, &sz,
(void *)&e1, sz), 0, "Unexpected mallctl() error");
assert_false(e0, "tcache should be disabled");
free(malloc(1));
return (NULL);
label_ENOENT:
test_skip("\"thread.tcache.enabled\" mallctl not available");
return (NULL);
}
TEST_BEGIN(test_main_thread)
{
thd_start(NULL);
}
TEST_END
TEST_BEGIN(test_subthread)
{
thd_t thd;
thd_create(&thd, thd_start, NULL);
thd_join(thd, NULL);
}
TEST_END
int
main(void)
{
/* Run tests multiple times to check for bad interactions. */
return (test(
test_main_thread,
test_subthread,
test_main_thread,
test_subthread,
test_main_thread));
}
| 2,692 | 22.417391 | 68 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/integration/chunk.c | #include "test/jemalloc_test.h"
#ifdef JEMALLOC_FILL
const char *malloc_conf = "junk:false";
#endif
static chunk_hooks_t orig_hooks;
static chunk_hooks_t old_hooks;
static bool do_dalloc = true;
static bool do_decommit;
static bool did_alloc;
static bool did_dalloc;
static bool did_commit;
static bool did_decommit;
static bool did_purge;
static bool did_split;
static bool did_merge;
#if 0
# define TRACE_HOOK(fmt, ...) malloc_printf(fmt, __VA_ARGS__)
#else
# define TRACE_HOOK(fmt, ...)
#endif
void *
chunk_alloc(void *new_addr, size_t size, size_t alignment, bool *zero,
bool *commit, unsigned arena_ind)
{
TRACE_HOOK("%s(new_addr=%p, size=%zu, alignment=%zu, *zero=%s, "
"*commit=%s, arena_ind=%u)\n", __func__, new_addr, size, alignment,
*zero ? "true" : "false", *commit ? "true" : "false", arena_ind);
did_alloc = true;
return (old_hooks.alloc(new_addr, size, alignment, zero, commit,
arena_ind));
}
bool
chunk_dalloc(void *chunk, size_t size, bool committed, unsigned arena_ind)
{
TRACE_HOOK("%s(chunk=%p, size=%zu, committed=%s, arena_ind=%u)\n",
__func__, chunk, size, committed ? "true" : "false", arena_ind);
did_dalloc = true;
if (!do_dalloc)
return (true);
return (old_hooks.dalloc(chunk, size, committed, arena_ind));
}
bool
chunk_commit(void *chunk, size_t size, size_t offset, size_t length,
unsigned arena_ind)
{
bool err;
TRACE_HOOK("%s(chunk=%p, size=%zu, offset=%zu, length=%zu, "
"arena_ind=%u)\n", __func__, chunk, size, offset, length,
arena_ind);
err = old_hooks.commit(chunk, size, offset, length, arena_ind);
did_commit = !err;
return (err);
}
bool
chunk_decommit(void *chunk, size_t size, size_t offset, size_t length,
unsigned arena_ind)
{
bool err;
TRACE_HOOK("%s(chunk=%p, size=%zu, offset=%zu, length=%zu, "
"arena_ind=%u)\n", __func__, chunk, size, offset, length,
arena_ind);
if (!do_decommit)
return (true);
err = old_hooks.decommit(chunk, size, offset, length, arena_ind);
did_decommit = !err;
return (err);
}
bool
chunk_purge(void *chunk, size_t size, size_t offset, size_t length,
unsigned arena_ind)
{
TRACE_HOOK("%s(chunk=%p, size=%zu, offset=%zu, length=%zu "
"arena_ind=%u)\n", __func__, chunk, size, offset, length,
arena_ind);
did_purge = true;
return (old_hooks.purge(chunk, size, offset, length, arena_ind));
}
bool
chunk_split(void *chunk, size_t size, size_t size_a, size_t size_b,
bool committed, unsigned arena_ind)
{
TRACE_HOOK("%s(chunk=%p, size=%zu, size_a=%zu, size_b=%zu, "
"committed=%s, arena_ind=%u)\n", __func__, chunk, size, size_a,
size_b, committed ? "true" : "false", arena_ind);
did_split = true;
return (old_hooks.split(chunk, size, size_a, size_b, committed,
arena_ind));
}
bool
chunk_merge(void *chunk_a, size_t size_a, void *chunk_b, size_t size_b,
bool committed, unsigned arena_ind)
{
TRACE_HOOK("%s(chunk_a=%p, size_a=%zu, chunk_b=%p size_b=%zu, "
"committed=%s, arena_ind=%u)\n", __func__, chunk_a, size_a, chunk_b,
size_b, committed ? "true" : "false", arena_ind);
did_merge = true;
return (old_hooks.merge(chunk_a, size_a, chunk_b, size_b,
committed, arena_ind));
}
TEST_BEGIN(test_chunk)
{
void *p;
size_t old_size, new_size, large0, large1, huge0, huge1, huge2, sz;
unsigned arena_ind;
int flags;
size_t hooks_mib[3], purge_mib[3];
size_t hooks_miblen, purge_miblen;
chunk_hooks_t new_hooks = {
chunk_alloc,
chunk_dalloc,
chunk_commit,
chunk_decommit,
chunk_purge,
chunk_split,
chunk_merge
};
bool xallocx_success_a, xallocx_success_b, xallocx_success_c;
sz = sizeof(unsigned);
assert_d_eq(mallctl("arenas.extend", (void *)&arena_ind, &sz, NULL, 0),
0, "Unexpected mallctl() failure");
flags = MALLOCX_ARENA(arena_ind) | MALLOCX_TCACHE_NONE;
/* Install custom chunk hooks. */
hooks_miblen = sizeof(hooks_mib)/sizeof(size_t);
assert_d_eq(mallctlnametomib("arena.0.chunk_hooks", hooks_mib,
&hooks_miblen), 0, "Unexpected mallctlnametomib() failure");
hooks_mib[1] = (size_t)arena_ind;
old_size = sizeof(chunk_hooks_t);
new_size = sizeof(chunk_hooks_t);
assert_d_eq(mallctlbymib(hooks_mib, hooks_miblen, (void *)&old_hooks,
&old_size, (void *)&new_hooks, new_size), 0,
"Unexpected chunk_hooks error");
orig_hooks = old_hooks;
assert_ptr_ne(old_hooks.alloc, chunk_alloc, "Unexpected alloc error");
assert_ptr_ne(old_hooks.dalloc, chunk_dalloc,
"Unexpected dalloc error");
assert_ptr_ne(old_hooks.commit, chunk_commit,
"Unexpected commit error");
assert_ptr_ne(old_hooks.decommit, chunk_decommit,
"Unexpected decommit error");
assert_ptr_ne(old_hooks.purge, chunk_purge, "Unexpected purge error");
assert_ptr_ne(old_hooks.split, chunk_split, "Unexpected split error");
assert_ptr_ne(old_hooks.merge, chunk_merge, "Unexpected merge error");
/* Get large size classes. */
sz = sizeof(size_t);
assert_d_eq(mallctl("arenas.lrun.0.size", (void *)&large0, &sz, NULL,
0), 0, "Unexpected arenas.lrun.0.size failure");
assert_d_eq(mallctl("arenas.lrun.1.size", (void *)&large1, &sz, NULL,
0), 0, "Unexpected arenas.lrun.1.size failure");
/* Get huge size classes. */
assert_d_eq(mallctl("arenas.hchunk.0.size", (void *)&huge0, &sz, NULL,
0), 0, "Unexpected arenas.hchunk.0.size failure");
assert_d_eq(mallctl("arenas.hchunk.1.size", (void *)&huge1, &sz, NULL,
0), 0, "Unexpected arenas.hchunk.1.size failure");
assert_d_eq(mallctl("arenas.hchunk.2.size", (void *)&huge2, &sz, NULL,
0), 0, "Unexpected arenas.hchunk.2.size failure");
/* Test dalloc/decommit/purge cascade. */
purge_miblen = sizeof(purge_mib)/sizeof(size_t);
assert_d_eq(mallctlnametomib("arena.0.purge", purge_mib, &purge_miblen),
0, "Unexpected mallctlnametomib() failure");
purge_mib[1] = (size_t)arena_ind;
do_dalloc = false;
do_decommit = false;
p = mallocx(huge0 * 2, flags);
assert_ptr_not_null(p, "Unexpected mallocx() error");
did_dalloc = false;
did_decommit = false;
did_purge = false;
did_split = false;
xallocx_success_a = (xallocx(p, huge0, 0, flags) == huge0);
assert_d_eq(mallctlbymib(purge_mib, purge_miblen, NULL, NULL, NULL, 0),
0, "Unexpected arena.%u.purge error", arena_ind);
if (xallocx_success_a) {
assert_true(did_dalloc, "Expected dalloc");
assert_false(did_decommit, "Unexpected decommit");
assert_true(did_purge, "Expected purge");
}
assert_true(did_split, "Expected split");
dallocx(p, flags);
do_dalloc = true;
/* Test decommit/commit and observe split/merge. */
do_dalloc = false;
do_decommit = true;
p = mallocx(huge0 * 2, flags);
assert_ptr_not_null(p, "Unexpected mallocx() error");
did_decommit = false;
did_commit = false;
did_split = false;
did_merge = false;
xallocx_success_b = (xallocx(p, huge0, 0, flags) == huge0);
assert_d_eq(mallctlbymib(purge_mib, purge_miblen, NULL, NULL, NULL, 0),
0, "Unexpected arena.%u.purge error", arena_ind);
if (xallocx_success_b)
assert_true(did_split, "Expected split");
xallocx_success_c = (xallocx(p, huge0 * 2, 0, flags) == huge0 * 2);
assert_b_eq(did_decommit, did_commit, "Expected decommit/commit match");
if (xallocx_success_b && xallocx_success_c)
assert_true(did_merge, "Expected merge");
dallocx(p, flags);
do_dalloc = true;
do_decommit = false;
/* Test purge for partial-chunk huge allocations. */
if (huge0 * 2 > huge2) {
/*
* There are at least four size classes per doubling, so a
* successful xallocx() from size=huge2 to size=huge1 is
* guaranteed to leave trailing purgeable memory.
*/
p = mallocx(huge2, flags);
assert_ptr_not_null(p, "Unexpected mallocx() error");
did_purge = false;
assert_zu_eq(xallocx(p, huge1, 0, flags), huge1,
"Unexpected xallocx() failure");
assert_true(did_purge, "Expected purge");
dallocx(p, flags);
}
/* Test decommit for large allocations. */
do_decommit = true;
p = mallocx(large1, flags);
assert_ptr_not_null(p, "Unexpected mallocx() error");
assert_d_eq(mallctlbymib(purge_mib, purge_miblen, NULL, NULL, NULL, 0),
0, "Unexpected arena.%u.purge error", arena_ind);
did_decommit = false;
assert_zu_eq(xallocx(p, large0, 0, flags), large0,
"Unexpected xallocx() failure");
assert_d_eq(mallctlbymib(purge_mib, purge_miblen, NULL, NULL, NULL, 0),
0, "Unexpected arena.%u.purge error", arena_ind);
did_commit = false;
assert_zu_eq(xallocx(p, large1, 0, flags), large1,
"Unexpected xallocx() failure");
assert_b_eq(did_decommit, did_commit, "Expected decommit/commit match");
dallocx(p, flags);
do_decommit = false;
/* Make sure non-huge allocation succeeds. */
p = mallocx(42, flags);
assert_ptr_not_null(p, "Unexpected mallocx() error");
dallocx(p, flags);
/* Restore chunk hooks. */
assert_d_eq(mallctlbymib(hooks_mib, hooks_miblen, NULL, NULL,
(void *)&old_hooks, new_size), 0, "Unexpected chunk_hooks error");
assert_d_eq(mallctlbymib(hooks_mib, hooks_miblen, (void *)&old_hooks,
&old_size, NULL, 0), 0, "Unexpected chunk_hooks error");
assert_ptr_eq(old_hooks.alloc, orig_hooks.alloc,
"Unexpected alloc error");
assert_ptr_eq(old_hooks.dalloc, orig_hooks.dalloc,
"Unexpected dalloc error");
assert_ptr_eq(old_hooks.commit, orig_hooks.commit,
"Unexpected commit error");
assert_ptr_eq(old_hooks.decommit, orig_hooks.decommit,
"Unexpected decommit error");
assert_ptr_eq(old_hooks.purge, orig_hooks.purge,
"Unexpected purge error");
assert_ptr_eq(old_hooks.split, orig_hooks.split,
"Unexpected split error");
assert_ptr_eq(old_hooks.merge, orig_hooks.merge,
"Unexpected merge error");
}
TEST_END
int
main(void)
{
return (test(test_chunk));
}
| 9,660 | 31.749153 | 74 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/integration/aligned_alloc.c | #include "test/jemalloc_test.h"
#define CHUNK 0x400000
#define MAXALIGN (((size_t)1) << 23)
/*
* On systems which can't merge extents, tests that call this function generate
* a lot of dirty memory very quickly. Purging between cycles mitigates
* potential OOM on e.g. 32-bit Windows.
*/
static void
purge(void)
{
assert_d_eq(mallctl("arena.0.purge", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl error");
}
TEST_BEGIN(test_alignment_errors)
{
size_t alignment;
void *p;
alignment = 0;
set_errno(0);
p = aligned_alloc(alignment, 1);
assert_false(p != NULL || get_errno() != EINVAL,
"Expected error for invalid alignment %zu", alignment);
for (alignment = sizeof(size_t); alignment < MAXALIGN;
alignment <<= 1) {
set_errno(0);
p = aligned_alloc(alignment + 1, 1);
assert_false(p != NULL || get_errno() != EINVAL,
"Expected error for invalid alignment %zu",
alignment + 1);
}
}
TEST_END
TEST_BEGIN(test_oom_errors)
{
size_t alignment, size;
void *p;
#if LG_SIZEOF_PTR == 3
alignment = UINT64_C(0x8000000000000000);
size = UINT64_C(0x8000000000000000);
#else
alignment = 0x80000000LU;
size = 0x80000000LU;
#endif
set_errno(0);
p = aligned_alloc(alignment, size);
assert_false(p != NULL || get_errno() != ENOMEM,
"Expected error for aligned_alloc(%zu, %zu)",
alignment, size);
#if LG_SIZEOF_PTR == 3
alignment = UINT64_C(0x4000000000000000);
size = UINT64_C(0xc000000000000001);
#else
alignment = 0x40000000LU;
size = 0xc0000001LU;
#endif
set_errno(0);
p = aligned_alloc(alignment, size);
assert_false(p != NULL || get_errno() != ENOMEM,
"Expected error for aligned_alloc(%zu, %zu)",
alignment, size);
alignment = 0x10LU;
#if LG_SIZEOF_PTR == 3
size = UINT64_C(0xfffffffffffffff0);
#else
size = 0xfffffff0LU;
#endif
set_errno(0);
p = aligned_alloc(alignment, size);
assert_false(p != NULL || get_errno() != ENOMEM,
"Expected error for aligned_alloc(&p, %zu, %zu)",
alignment, size);
}
TEST_END
TEST_BEGIN(test_alignment_and_size)
{
#define NITER 4
size_t alignment, size, total;
unsigned i;
void *ps[NITER];
for (i = 0; i < NITER; i++)
ps[i] = NULL;
for (alignment = 8;
alignment <= MAXALIGN;
alignment <<= 1) {
total = 0;
for (size = 1;
size < 3 * alignment && size < (1U << 31);
size += (alignment >> (LG_SIZEOF_PTR-1)) - 1) {
for (i = 0; i < NITER; i++) {
ps[i] = aligned_alloc(alignment, size);
if (ps[i] == NULL) {
char buf[BUFERROR_BUF];
buferror(get_errno(), buf, sizeof(buf));
test_fail(
"Error for alignment=%zu, "
"size=%zu (%#zx): %s",
alignment, size, size, buf);
}
total += malloc_usable_size(ps[i]);
if (total >= (MAXALIGN << 1))
break;
}
for (i = 0; i < NITER; i++) {
if (ps[i] != NULL) {
free(ps[i]);
ps[i] = NULL;
}
}
}
purge();
}
#undef NITER
}
TEST_END
int
main(void)
{
return (test(
test_alignment_errors,
test_oom_errors,
test_alignment_and_size));
}
| 3,053 | 20.814286 | 79 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/integration/posix_memalign.c | #include "test/jemalloc_test.h"
#define CHUNK 0x400000
#define MAXALIGN (((size_t)1) << 23)
/*
* On systems which can't merge extents, tests that call this function generate
* a lot of dirty memory very quickly. Purging between cycles mitigates
* potential OOM on e.g. 32-bit Windows.
*/
static void
purge(void)
{
assert_d_eq(mallctl("arena.0.purge", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl error");
}
TEST_BEGIN(test_alignment_errors)
{
size_t alignment;
void *p;
for (alignment = 0; alignment < sizeof(void *); alignment++) {
assert_d_eq(posix_memalign(&p, alignment, 1), EINVAL,
"Expected error for invalid alignment %zu",
alignment);
}
for (alignment = sizeof(size_t); alignment < MAXALIGN;
alignment <<= 1) {
assert_d_ne(posix_memalign(&p, alignment + 1, 1), 0,
"Expected error for invalid alignment %zu",
alignment + 1);
}
}
TEST_END
TEST_BEGIN(test_oom_errors)
{
size_t alignment, size;
void *p;
#if LG_SIZEOF_PTR == 3
alignment = UINT64_C(0x8000000000000000);
size = UINT64_C(0x8000000000000000);
#else
alignment = 0x80000000LU;
size = 0x80000000LU;
#endif
assert_d_ne(posix_memalign(&p, alignment, size), 0,
"Expected error for posix_memalign(&p, %zu, %zu)",
alignment, size);
#if LG_SIZEOF_PTR == 3
alignment = UINT64_C(0x4000000000000000);
size = UINT64_C(0xc000000000000001);
#else
alignment = 0x40000000LU;
size = 0xc0000001LU;
#endif
assert_d_ne(posix_memalign(&p, alignment, size), 0,
"Expected error for posix_memalign(&p, %zu, %zu)",
alignment, size);
alignment = 0x10LU;
#if LG_SIZEOF_PTR == 3
size = UINT64_C(0xfffffffffffffff0);
#else
size = 0xfffffff0LU;
#endif
assert_d_ne(posix_memalign(&p, alignment, size), 0,
"Expected error for posix_memalign(&p, %zu, %zu)",
alignment, size);
}
TEST_END
TEST_BEGIN(test_alignment_and_size)
{
#define NITER 4
size_t alignment, size, total;
unsigned i;
int err;
void *ps[NITER];
for (i = 0; i < NITER; i++)
ps[i] = NULL;
for (alignment = 8;
alignment <= MAXALIGN;
alignment <<= 1) {
total = 0;
for (size = 1;
size < 3 * alignment && size < (1U << 31);
size += (alignment >> (LG_SIZEOF_PTR-1)) - 1) {
for (i = 0; i < NITER; i++) {
err = posix_memalign(&ps[i],
alignment, size);
if (err) {
char buf[BUFERROR_BUF];
buferror(get_errno(), buf, sizeof(buf));
test_fail(
"Error for alignment=%zu, "
"size=%zu (%#zx): %s",
alignment, size, size, buf);
}
total += malloc_usable_size(ps[i]);
if (total >= (MAXALIGN << 1))
break;
}
for (i = 0; i < NITER; i++) {
if (ps[i] != NULL) {
free(ps[i]);
ps[i] = NULL;
}
}
}
purge();
}
#undef NITER
}
TEST_END
int
main(void)
{
return (test(
test_alignment_errors,
test_oom_errors,
test_alignment_and_size));
}
| 2,896 | 20.619403 | 79 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/integration/overflow.c | #include "test/jemalloc_test.h"
TEST_BEGIN(test_overflow)
{
unsigned nhchunks;
size_t mib[4];
size_t sz, miblen, max_size_class;
void *p;
sz = sizeof(unsigned);
assert_d_eq(mallctl("arenas.nhchunks", (void *)&nhchunks, &sz, NULL, 0),
0, "Unexpected mallctl() error");
miblen = sizeof(mib) / sizeof(size_t);
assert_d_eq(mallctlnametomib("arenas.hchunk.0.size", mib, &miblen), 0,
"Unexpected mallctlnametomib() error");
mib[2] = nhchunks - 1;
sz = sizeof(size_t);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&max_size_class, &sz,
NULL, 0), 0, "Unexpected mallctlbymib() error");
assert_ptr_null(malloc(max_size_class + 1),
"Expected OOM due to over-sized allocation request");
assert_ptr_null(malloc(SIZE_T_MAX),
"Expected OOM due to over-sized allocation request");
assert_ptr_null(calloc(1, max_size_class + 1),
"Expected OOM due to over-sized allocation request");
assert_ptr_null(calloc(1, SIZE_T_MAX),
"Expected OOM due to over-sized allocation request");
p = malloc(1);
assert_ptr_not_null(p, "Unexpected malloc() OOM");
assert_ptr_null(realloc(p, max_size_class + 1),
"Expected OOM due to over-sized allocation request");
assert_ptr_null(realloc(p, SIZE_T_MAX),
"Expected OOM due to over-sized allocation request");
free(p);
}
TEST_END
int
main(void)
{
return (test(
test_overflow));
}
| 1,373 | 26.48 | 73 | c |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/include/test/SFMT-params.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_PARAMS_H
#define SFMT_PARAMS_H
#if !defined(MEXP)
#ifdef __GNUC__
#warning "MEXP is not defined. I assume MEXP is 19937."
#endif
#define MEXP 19937
#endif
/*-----------------
BASIC DEFINITIONS
-----------------*/
/** Mersenne Exponent. The period of the sequence
* is a multiple of 2^MEXP-1.
* #define MEXP 19937 */
/** SFMT generator has an internal state array of 128-bit integers,
* and N is its size. */
#define N (MEXP / 128 + 1)
/** N32 is the size of internal state array when regarded as an array
* of 32-bit integers.*/
#define N32 (N * 4)
/** N64 is the size of internal state array when regarded as an array
* of 64-bit integers.*/
#define N64 (N * 2)
/*----------------------
the parameters of SFMT
following definitions are in paramsXXXX.h file.
----------------------*/
/** the pick up position of the array.
#define POS1 122
*/
/** the parameter of shift left as four 32-bit registers.
#define SL1 18
*/
/** the parameter of shift left as one 128-bit register.
* The 128-bit integer is shifted by (SL2 * 8) bits.
#define SL2 1
*/
/** the parameter of shift right as four 32-bit registers.
#define SR1 11
*/
/** the parameter of shift right as one 128-bit register.
* The 128-bit integer is shifted by (SL2 * 8) bits.
#define SR2 1
*/
/** A bitmask, used in the recursion. These parameters are introduced
* to break symmetry of SIMD.
#define MSK1 0xdfffffefU
#define MSK2 0xddfecb7fU
#define MSK3 0xbffaffffU
#define MSK4 0xbffffff6U
*/
/** These definitions are part of a 128-bit period certification vector.
#define PARITY1 0x00000001U
#define PARITY2 0x00000000U
#define PARITY3 0x00000000U
#define PARITY4 0xc98e126aU
*/
#if MEXP == 607
#include "test/SFMT-params607.h"
#elif MEXP == 1279
#include "test/SFMT-params1279.h"
#elif MEXP == 2281
#include "test/SFMT-params2281.h"
#elif MEXP == 4253
#include "test/SFMT-params4253.h"
#elif MEXP == 11213
#include "test/SFMT-params11213.h"
#elif MEXP == 19937
#include "test/SFMT-params19937.h"
#elif MEXP == 44497
#include "test/SFMT-params44497.h"
#elif MEXP == 86243
#include "test/SFMT-params86243.h"
#elif MEXP == 132049
#include "test/SFMT-params132049.h"
#elif MEXP == 216091
#include "test/SFMT-params216091.h"
#else
#ifdef __GNUC__
#error "MEXP is not valid."
#undef MEXP
#else
#undef MEXP
#endif
#endif
#endif /* SFMT_PARAMS_H */
| 4,286 | 31.233083 | 79 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/include/test/SFMT-params4253.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_PARAMS4253_H
#define SFMT_PARAMS4253_H
#define POS1 17
#define SL1 20
#define SL2 1
#define SR1 7
#define SR2 1
#define MSK1 0x9f7bffffU
#define MSK2 0x9fffff5fU
#define MSK3 0x3efffffbU
#define MSK4 0xfffff7bbU
#define PARITY1 0xa8000001U
#define PARITY2 0xaf5390a3U
#define PARITY3 0xb740b3f8U
#define PARITY4 0x6c11486dU
/* PARAMETERS FOR ALTIVEC */
#if defined(__APPLE__) /* For OSX */
#define ALTI_SL1 (vector unsigned int)(SL1, SL1, SL1, SL1)
#define ALTI_SR1 (vector unsigned int)(SR1, SR1, SR1, SR1)
#define ALTI_MSK (vector unsigned int)(MSK1, MSK2, MSK3, MSK4)
#define ALTI_MSK64 \
(vector unsigned int)(MSK2, MSK1, MSK4, MSK3)
#define ALTI_SL2_PERM \
(vector unsigned char)(1,2,3,23,5,6,7,0,9,10,11,4,13,14,15,8)
#define ALTI_SL2_PERM64 \
(vector unsigned char)(1,2,3,4,5,6,7,31,9,10,11,12,13,14,15,0)
#define ALTI_SR2_PERM \
(vector unsigned char)(7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14)
#define ALTI_SR2_PERM64 \
(vector unsigned char)(15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14)
#else /* For OTHER OSs(Linux?) */
#define ALTI_SL1 {SL1, SL1, SL1, SL1}
#define ALTI_SR1 {SR1, SR1, SR1, SR1}
#define ALTI_MSK {MSK1, MSK2, MSK3, MSK4}
#define ALTI_MSK64 {MSK2, MSK1, MSK4, MSK3}
#define ALTI_SL2_PERM {1,2,3,23,5,6,7,0,9,10,11,4,13,14,15,8}
#define ALTI_SL2_PERM64 {1,2,3,4,5,6,7,31,9,10,11,12,13,14,15,0}
#define ALTI_SR2_PERM {7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14}
#define ALTI_SR2_PERM64 {15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14}
#endif /* For OSX */
#define IDSTR "SFMT-4253:17-20-1-7-1:9f7bffff-9fffff5f-3efffffb-fffff7bb"
#endif /* SFMT_PARAMS4253_H */
| 3,552 | 42.329268 | 79 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/include/test/SFMT-params607.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_PARAMS607_H
#define SFMT_PARAMS607_H
#define POS1 2
#define SL1 15
#define SL2 3
#define SR1 13
#define SR2 3
#define MSK1 0xfdff37ffU
#define MSK2 0xef7f3f7dU
#define MSK3 0xff777b7dU
#define MSK4 0x7ff7fb2fU
#define PARITY1 0x00000001U
#define PARITY2 0x00000000U
#define PARITY3 0x00000000U
#define PARITY4 0x5986f054U
/* PARAMETERS FOR ALTIVEC */
#if defined(__APPLE__) /* For OSX */
#define ALTI_SL1 (vector unsigned int)(SL1, SL1, SL1, SL1)
#define ALTI_SR1 (vector unsigned int)(SR1, SR1, SR1, SR1)
#define ALTI_MSK (vector unsigned int)(MSK1, MSK2, MSK3, MSK4)
#define ALTI_MSK64 \
(vector unsigned int)(MSK2, MSK1, MSK4, MSK3)
#define ALTI_SL2_PERM \
(vector unsigned char)(3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10)
#define ALTI_SL2_PERM64 \
(vector unsigned char)(3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2)
#define ALTI_SR2_PERM \
(vector unsigned char)(5,6,7,0,9,10,11,4,13,14,15,8,19,19,19,12)
#define ALTI_SR2_PERM64 \
(vector unsigned char)(13,14,15,0,1,2,3,4,19,19,19,8,9,10,11,12)
#else /* For OTHER OSs(Linux?) */
#define ALTI_SL1 {SL1, SL1, SL1, SL1}
#define ALTI_SR1 {SR1, SR1, SR1, SR1}
#define ALTI_MSK {MSK1, MSK2, MSK3, MSK4}
#define ALTI_MSK64 {MSK2, MSK1, MSK4, MSK3}
#define ALTI_SL2_PERM {3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10}
#define ALTI_SL2_PERM64 {3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2}
#define ALTI_SR2_PERM {5,6,7,0,9,10,11,4,13,14,15,8,19,19,19,12}
#define ALTI_SR2_PERM64 {13,14,15,0,1,2,3,4,19,19,19,8,9,10,11,12}
#endif /* For OSX */
#define IDSTR "SFMT-607:2-15-3-13-3:fdff37ff-ef7f3f7d-ff777b7d-7ff7fb2f"
#endif /* SFMT_PARAMS607_H */
| 3,558 | 42.402439 | 79 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/include/test/SFMT-params216091.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_PARAMS216091_H
#define SFMT_PARAMS216091_H
#define POS1 627
#define SL1 11
#define SL2 3
#define SR1 10
#define SR2 1
#define MSK1 0xbff7bff7U
#define MSK2 0xbfffffffU
#define MSK3 0xbffffa7fU
#define MSK4 0xffddfbfbU
#define PARITY1 0xf8000001U
#define PARITY2 0x89e80709U
#define PARITY3 0x3bd2b64bU
#define PARITY4 0x0c64b1e4U
/* PARAMETERS FOR ALTIVEC */
#if defined(__APPLE__) /* For OSX */
#define ALTI_SL1 (vector unsigned int)(SL1, SL1, SL1, SL1)
#define ALTI_SR1 (vector unsigned int)(SR1, SR1, SR1, SR1)
#define ALTI_MSK (vector unsigned int)(MSK1, MSK2, MSK3, MSK4)
#define ALTI_MSK64 \
(vector unsigned int)(MSK2, MSK1, MSK4, MSK3)
#define ALTI_SL2_PERM \
(vector unsigned char)(3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10)
#define ALTI_SL2_PERM64 \
(vector unsigned char)(3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2)
#define ALTI_SR2_PERM \
(vector unsigned char)(7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14)
#define ALTI_SR2_PERM64 \
(vector unsigned char)(15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14)
#else /* For OTHER OSs(Linux?) */
#define ALTI_SL1 {SL1, SL1, SL1, SL1}
#define ALTI_SR1 {SR1, SR1, SR1, SR1}
#define ALTI_MSK {MSK1, MSK2, MSK3, MSK4}
#define ALTI_MSK64 {MSK2, MSK1, MSK4, MSK3}
#define ALTI_SL2_PERM {3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10}
#define ALTI_SL2_PERM64 {3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2}
#define ALTI_SR2_PERM {7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14}
#define ALTI_SR2_PERM64 {15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14}
#endif /* For OSX */
#define IDSTR "SFMT-216091:627-11-3-10-1:bff7bff7-bfffffff-bffffa7f-ffddfbfb"
#endif /* SFMT_PARAMS216091_H */
| 3,566 | 42.5 | 79 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/include/test/mq.h | void mq_nanosleep(unsigned ns);
/*
* Simple templated message queue implementation that relies on only mutexes for
* synchronization (which reduces portability issues). Given the following
* setup:
*
* typedef struct mq_msg_s mq_msg_t;
* struct mq_msg_s {
* mq_msg(mq_msg_t) link;
* [message data]
* };
* mq_gen(, mq_, mq_t, mq_msg_t, link)
*
* The API is as follows:
*
* bool mq_init(mq_t *mq);
* void mq_fini(mq_t *mq);
* unsigned mq_count(mq_t *mq);
* mq_msg_t *mq_tryget(mq_t *mq);
* mq_msg_t *mq_get(mq_t *mq);
* void mq_put(mq_t *mq, mq_msg_t *msg);
*
* The message queue linkage embedded in each message is to be treated as
* externally opaque (no need to initialize or clean up externally). mq_fini()
* does not perform any cleanup of messages, since it knows nothing of their
* payloads.
*/
#define mq_msg(a_mq_msg_type) ql_elm(a_mq_msg_type)
#define mq_gen(a_attr, a_prefix, a_mq_type, a_mq_msg_type, a_field) \
typedef struct { \
mtx_t lock; \
ql_head(a_mq_msg_type) msgs; \
unsigned count; \
} a_mq_type; \
a_attr bool \
a_prefix##init(a_mq_type *mq) { \
\
if (mtx_init(&mq->lock)) \
return (true); \
ql_new(&mq->msgs); \
mq->count = 0; \
return (false); \
} \
a_attr void \
a_prefix##fini(a_mq_type *mq) \
{ \
\
mtx_fini(&mq->lock); \
} \
a_attr unsigned \
a_prefix##count(a_mq_type *mq) \
{ \
unsigned count; \
\
mtx_lock(&mq->lock); \
count = mq->count; \
mtx_unlock(&mq->lock); \
return (count); \
} \
a_attr a_mq_msg_type * \
a_prefix##tryget(a_mq_type *mq) \
{ \
a_mq_msg_type *msg; \
\
mtx_lock(&mq->lock); \
msg = ql_first(&mq->msgs); \
if (msg != NULL) { \
ql_head_remove(&mq->msgs, a_mq_msg_type, a_field); \
mq->count--; \
} \
mtx_unlock(&mq->lock); \
return (msg); \
} \
a_attr a_mq_msg_type * \
a_prefix##get(a_mq_type *mq) \
{ \
a_mq_msg_type *msg; \
unsigned ns; \
\
msg = a_prefix##tryget(mq); \
if (msg != NULL) \
return (msg); \
\
ns = 1; \
while (true) { \
mq_nanosleep(ns); \
msg = a_prefix##tryget(mq); \
if (msg != NULL) \
return (msg); \
if (ns < 1000*1000*1000) { \
/* Double sleep time, up to max 1 second. */ \
ns <<= 1; \
if (ns > 1000*1000*1000) \
ns = 1000*1000*1000; \
} \
} \
} \
a_attr void \
a_prefix##put(a_mq_type *mq, a_mq_msg_type *msg) \
{ \
\
mtx_lock(&mq->lock); \
ql_elm_new(msg, a_field); \
ql_tail_insert(&mq->msgs, msg, a_field); \
mq->count++; \
mtx_unlock(&mq->lock); \
}
| 2,902 | 25.390909 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/include/test/btalloc.h | /* btalloc() provides a mechanism for allocating via permuted backtraces. */
void *btalloc(size_t size, unsigned bits);
#define btalloc_n_proto(n) \
void *btalloc_##n(size_t size, unsigned bits);
btalloc_n_proto(0)
btalloc_n_proto(1)
#define btalloc_n_gen(n) \
void * \
btalloc_##n(size_t size, unsigned bits) \
{ \
void *p; \
\
if (bits == 0) \
p = mallocx(size, 0); \
else { \
switch (bits & 0x1U) { \
case 0: \
p = (btalloc_0(size, bits >> 1)); \
break; \
case 1: \
p = (btalloc_1(size, bits >> 1)); \
break; \
default: not_reached(); \
} \
} \
/* Intentionally sabotage tail call optimization. */ \
assert_ptr_not_null(p, "Unexpected mallocx() failure"); \
return (p); \
}
| 825 | 24.8125 | 76 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/include/test/SFMT-params1279.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_PARAMS1279_H
#define SFMT_PARAMS1279_H
#define POS1 7
#define SL1 14
#define SL2 3
#define SR1 5
#define SR2 1
#define MSK1 0xf7fefffdU
#define MSK2 0x7fefcfffU
#define MSK3 0xaff3ef3fU
#define MSK4 0xb5ffff7fU
#define PARITY1 0x00000001U
#define PARITY2 0x00000000U
#define PARITY3 0x00000000U
#define PARITY4 0x20000000U
/* PARAMETERS FOR ALTIVEC */
#if defined(__APPLE__) /* For OSX */
#define ALTI_SL1 (vector unsigned int)(SL1, SL1, SL1, SL1)
#define ALTI_SR1 (vector unsigned int)(SR1, SR1, SR1, SR1)
#define ALTI_MSK (vector unsigned int)(MSK1, MSK2, MSK3, MSK4)
#define ALTI_MSK64 \
(vector unsigned int)(MSK2, MSK1, MSK4, MSK3)
#define ALTI_SL2_PERM \
(vector unsigned char)(3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10)
#define ALTI_SL2_PERM64 \
(vector unsigned char)(3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2)
#define ALTI_SR2_PERM \
(vector unsigned char)(7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14)
#define ALTI_SR2_PERM64 \
(vector unsigned char)(15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14)
#else /* For OTHER OSs(Linux?) */
#define ALTI_SL1 {SL1, SL1, SL1, SL1}
#define ALTI_SR1 {SR1, SR1, SR1, SR1}
#define ALTI_MSK {MSK1, MSK2, MSK3, MSK4}
#define ALTI_MSK64 {MSK2, MSK1, MSK4, MSK3}
#define ALTI_SL2_PERM {3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10}
#define ALTI_SL2_PERM64 {3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2}
#define ALTI_SR2_PERM {7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14}
#define ALTI_SR2_PERM64 {15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14}
#endif /* For OSX */
#define IDSTR "SFMT-1279:7-14-3-5-1:f7fefffd-7fefcfff-aff3ef3f-b5ffff7f"
#endif /* SFMT_PARAMS1279_H */
| 3,552 | 42.329268 | 79 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/include/test/SFMT-params11213.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_PARAMS11213_H
#define SFMT_PARAMS11213_H
#define POS1 68
#define SL1 14
#define SL2 3
#define SR1 7
#define SR2 3
#define MSK1 0xeffff7fbU
#define MSK2 0xffffffefU
#define MSK3 0xdfdfbfffU
#define MSK4 0x7fffdbfdU
#define PARITY1 0x00000001U
#define PARITY2 0x00000000U
#define PARITY3 0xe8148000U
#define PARITY4 0xd0c7afa3U
/* PARAMETERS FOR ALTIVEC */
#if defined(__APPLE__) /* For OSX */
#define ALTI_SL1 (vector unsigned int)(SL1, SL1, SL1, SL1)
#define ALTI_SR1 (vector unsigned int)(SR1, SR1, SR1, SR1)
#define ALTI_MSK (vector unsigned int)(MSK1, MSK2, MSK3, MSK4)
#define ALTI_MSK64 \
(vector unsigned int)(MSK2, MSK1, MSK4, MSK3)
#define ALTI_SL2_PERM \
(vector unsigned char)(3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10)
#define ALTI_SL2_PERM64 \
(vector unsigned char)(3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2)
#define ALTI_SR2_PERM \
(vector unsigned char)(5,6,7,0,9,10,11,4,13,14,15,8,19,19,19,12)
#define ALTI_SR2_PERM64 \
(vector unsigned char)(13,14,15,0,1,2,3,4,19,19,19,8,9,10,11,12)
#else /* For OTHER OSs(Linux?) */
#define ALTI_SL1 {SL1, SL1, SL1, SL1}
#define ALTI_SR1 {SR1, SR1, SR1, SR1}
#define ALTI_MSK {MSK1, MSK2, MSK3, MSK4}
#define ALTI_MSK64 {MSK2, MSK1, MSK4, MSK3}
#define ALTI_SL2_PERM {3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10}
#define ALTI_SL2_PERM64 {3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2}
#define ALTI_SR2_PERM {5,6,7,0,9,10,11,4,13,14,15,8,19,19,19,12}
#define ALTI_SR2_PERM64 {13,14,15,0,1,2,3,4,19,19,19,8,9,10,11,12}
#endif /* For OSX */
#define IDSTR "SFMT-11213:68-14-3-7-3:effff7fb-ffffffef-dfdfbfff-7fffdbfd"
#endif /* SFMT_PARAMS11213_H */
| 3,566 | 42.5 | 79 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/include/test/SFMT-sse2.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file SFMT-sse2.h
* @brief SIMD oriented Fast Mersenne Twister(SFMT) for Intel SSE2
*
* @author Mutsuo Saito (Hiroshima University)
* @author Makoto Matsumoto (Hiroshima University)
*
* @note We assume LITTLE ENDIAN in this file
*
* Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* The new BSD License is applied to this software, see LICENSE.txt
*/
#ifndef SFMT_SSE2_H
#define SFMT_SSE2_H
/**
* This function represents the recursion formula.
* @param a a 128-bit part of the interal state array
* @param b a 128-bit part of the interal state array
* @param c a 128-bit part of the interal state array
* @param d a 128-bit part of the interal state array
* @param mask 128-bit mask
* @return output
*/
JEMALLOC_ALWAYS_INLINE __m128i mm_recursion(__m128i *a, __m128i *b,
__m128i c, __m128i d, __m128i mask) {
__m128i v, x, y, z;
x = _mm_load_si128(a);
y = _mm_srli_epi32(*b, SR1);
z = _mm_srli_si128(c, SR2);
v = _mm_slli_epi32(d, SL1);
z = _mm_xor_si128(z, x);
z = _mm_xor_si128(z, v);
x = _mm_slli_si128(x, SL2);
y = _mm_and_si128(y, mask);
z = _mm_xor_si128(z, x);
z = _mm_xor_si128(z, y);
return z;
}
/**
* This function fills the internal state array with pseudorandom
* integers.
*/
JEMALLOC_INLINE void gen_rand_all(sfmt_t *ctx) {
int i;
__m128i r, r1, r2, mask;
mask = _mm_set_epi32(MSK4, MSK3, MSK2, MSK1);
r1 = _mm_load_si128(&ctx->sfmt[N - 2].si);
r2 = _mm_load_si128(&ctx->sfmt[N - 1].si);
for (i = 0; i < N - POS1; i++) {
r = mm_recursion(&ctx->sfmt[i].si, &ctx->sfmt[i + POS1].si, r1, r2,
mask);
_mm_store_si128(&ctx->sfmt[i].si, r);
r1 = r2;
r2 = r;
}
for (; i < N; i++) {
r = mm_recursion(&ctx->sfmt[i].si, &ctx->sfmt[i + POS1 - N].si, r1, r2,
mask);
_mm_store_si128(&ctx->sfmt[i].si, r);
r1 = r2;
r2 = r;
}
}
/**
* This function fills the user-specified array with pseudorandom
* integers.
*
* @param array an 128-bit array to be filled by pseudorandom numbers.
* @param size number of 128-bit pesudorandom numbers to be generated.
*/
JEMALLOC_INLINE void gen_rand_array(sfmt_t *ctx, w128_t *array, int size) {
int i, j;
__m128i r, r1, r2, mask;
mask = _mm_set_epi32(MSK4, MSK3, MSK2, MSK1);
r1 = _mm_load_si128(&ctx->sfmt[N - 2].si);
r2 = _mm_load_si128(&ctx->sfmt[N - 1].si);
for (i = 0; i < N - POS1; i++) {
r = mm_recursion(&ctx->sfmt[i].si, &ctx->sfmt[i + POS1].si, r1, r2,
mask);
_mm_store_si128(&array[i].si, r);
r1 = r2;
r2 = r;
}
for (; i < N; i++) {
r = mm_recursion(&ctx->sfmt[i].si, &array[i + POS1 - N].si, r1, r2,
mask);
_mm_store_si128(&array[i].si, r);
r1 = r2;
r2 = r;
}
/* main loop */
for (; i < size - N; i++) {
r = mm_recursion(&array[i - N].si, &array[i + POS1 - N].si, r1, r2,
mask);
_mm_store_si128(&array[i].si, r);
r1 = r2;
r2 = r;
}
for (j = 0; j < 2 * N - size; j++) {
r = _mm_load_si128(&array[j + size - N].si);
_mm_store_si128(&ctx->sfmt[j].si, r);
}
for (; i < size; i++) {
r = mm_recursion(&array[i - N].si, &array[i + POS1 - N].si, r1, r2,
mask);
_mm_store_si128(&array[i].si, r);
_mm_store_si128(&ctx->sfmt[j++].si, r);
r1 = r2;
r2 = r;
}
}
#endif
| 5,215 | 32.012658 | 79 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/include/test/math.h | #ifndef JEMALLOC_ENABLE_INLINE
double ln_gamma(double x);
double i_gamma(double x, double p, double ln_gamma_p);
double pt_norm(double p);
double pt_chi2(double p, double df, double ln_gamma_df_2);
double pt_gamma(double p, double shape, double scale, double ln_gamma_shape);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(MATH_C_))
/*
* Compute the natural log of Gamma(x), accurate to 10 decimal places.
*
* This implementation is based on:
*
* Pike, M.C., I.D. Hill (1966) Algorithm 291: Logarithm of Gamma function
* [S14]. Communications of the ACM 9(9):684.
*/
JEMALLOC_INLINE double
ln_gamma(double x)
{
double f, z;
assert(x > 0.0);
if (x < 7.0) {
f = 1.0;
z = x;
while (z < 7.0) {
f *= z;
z += 1.0;
}
x = z;
f = -log(f);
} else
f = 0.0;
z = 1.0 / (x * x);
return (f + (x-0.5) * log(x) - x + 0.918938533204673 +
(((-0.000595238095238 * z + 0.000793650793651) * z -
0.002777777777778) * z + 0.083333333333333) / x);
}
/*
* Compute the incomplete Gamma ratio for [0..x], where p is the shape
* parameter, and ln_gamma_p is ln_gamma(p).
*
* This implementation is based on:
*
* Bhattacharjee, G.P. (1970) Algorithm AS 32: The incomplete Gamma integral.
* Applied Statistics 19:285-287.
*/
JEMALLOC_INLINE double
i_gamma(double x, double p, double ln_gamma_p)
{
double acu, factor, oflo, gin, term, rn, a, b, an, dif;
double pn[6];
unsigned i;
assert(p > 0.0);
assert(x >= 0.0);
if (x == 0.0)
return (0.0);
acu = 1.0e-10;
oflo = 1.0e30;
gin = 0.0;
factor = exp(p * log(x) - x - ln_gamma_p);
if (x <= 1.0 || x < p) {
/* Calculation by series expansion. */
gin = 1.0;
term = 1.0;
rn = p;
while (true) {
rn += 1.0;
term *= x / rn;
gin += term;
if (term <= acu) {
gin *= factor / p;
return (gin);
}
}
} else {
/* Calculation by continued fraction. */
a = 1.0 - p;
b = a + x + 1.0;
term = 0.0;
pn[0] = 1.0;
pn[1] = x;
pn[2] = x + 1.0;
pn[3] = x * b;
gin = pn[2] / pn[3];
while (true) {
a += 1.0;
b += 2.0;
term += 1.0;
an = a * term;
for (i = 0; i < 2; i++)
pn[i+4] = b * pn[i+2] - an * pn[i];
if (pn[5] != 0.0) {
rn = pn[4] / pn[5];
dif = fabs(gin - rn);
if (dif <= acu && dif <= acu * rn) {
gin = 1.0 - factor * gin;
return (gin);
}
gin = rn;
}
for (i = 0; i < 4; i++)
pn[i] = pn[i+2];
if (fabs(pn[4]) >= oflo) {
for (i = 0; i < 4; i++)
pn[i] /= oflo;
}
}
}
}
/*
* Given a value p in [0..1] of the lower tail area of the normal distribution,
* compute the limit on the definite integral from [-inf..z] that satisfies p,
* accurate to 16 decimal places.
*
* This implementation is based on:
*
* Wichura, M.J. (1988) Algorithm AS 241: The percentage points of the normal
* distribution. Applied Statistics 37(3):477-484.
*/
JEMALLOC_INLINE double
pt_norm(double p)
{
double q, r, ret;
assert(p > 0.0 && p < 1.0);
q = p - 0.5;
if (fabs(q) <= 0.425) {
/* p close to 1/2. */
r = 0.180625 - q * q;
return (q * (((((((2.5090809287301226727e3 * r +
3.3430575583588128105e4) * r + 6.7265770927008700853e4) * r
+ 4.5921953931549871457e4) * r + 1.3731693765509461125e4) *
r + 1.9715909503065514427e3) * r + 1.3314166789178437745e2)
* r + 3.3871328727963666080e0) /
(((((((5.2264952788528545610e3 * r +
2.8729085735721942674e4) * r + 3.9307895800092710610e4) * r
+ 2.1213794301586595867e4) * r + 5.3941960214247511077e3) *
r + 6.8718700749205790830e2) * r + 4.2313330701600911252e1)
* r + 1.0));
} else {
if (q < 0.0)
r = p;
else
r = 1.0 - p;
assert(r > 0.0);
r = sqrt(-log(r));
if (r <= 5.0) {
/* p neither close to 1/2 nor 0 or 1. */
r -= 1.6;
ret = ((((((((7.74545014278341407640e-4 * r +
2.27238449892691845833e-2) * r +
2.41780725177450611770e-1) * r +
1.27045825245236838258e0) * r +
3.64784832476320460504e0) * r +
5.76949722146069140550e0) * r +
4.63033784615654529590e0) * r +
1.42343711074968357734e0) /
(((((((1.05075007164441684324e-9 * r +
5.47593808499534494600e-4) * r +
1.51986665636164571966e-2)
* r + 1.48103976427480074590e-1) * r +
6.89767334985100004550e-1) * r +
1.67638483018380384940e0) * r +
2.05319162663775882187e0) * r + 1.0));
} else {
/* p near 0 or 1. */
r -= 5.0;
ret = ((((((((2.01033439929228813265e-7 * r +
2.71155556874348757815e-5) * r +
1.24266094738807843860e-3) * r +
2.65321895265761230930e-2) * r +
2.96560571828504891230e-1) * r +
1.78482653991729133580e0) * r +
5.46378491116411436990e0) * r +
6.65790464350110377720e0) /
(((((((2.04426310338993978564e-15 * r +
1.42151175831644588870e-7) * r +
1.84631831751005468180e-5) * r +
7.86869131145613259100e-4) * r +
1.48753612908506148525e-2) * r +
1.36929880922735805310e-1) * r +
5.99832206555887937690e-1)
* r + 1.0));
}
if (q < 0.0)
ret = -ret;
return (ret);
}
}
/*
* Given a value p in [0..1] of the lower tail area of the Chi^2 distribution
* with df degrees of freedom, where ln_gamma_df_2 is ln_gamma(df/2.0), compute
* the upper limit on the definite integral from [0..z] that satisfies p,
* accurate to 12 decimal places.
*
* This implementation is based on:
*
* Best, D.J., D.E. Roberts (1975) Algorithm AS 91: The percentage points of
* the Chi^2 distribution. Applied Statistics 24(3):385-388.
*
* Shea, B.L. (1991) Algorithm AS R85: A remark on AS 91: The percentage
* points of the Chi^2 distribution. Applied Statistics 40(1):233-235.
*/
JEMALLOC_INLINE double
pt_chi2(double p, double df, double ln_gamma_df_2)
{
double e, aa, xx, c, ch, a, q, p1, p2, t, x, b, s1, s2, s3, s4, s5, s6;
unsigned i;
assert(p >= 0.0 && p < 1.0);
assert(df > 0.0);
e = 5.0e-7;
aa = 0.6931471805;
xx = 0.5 * df;
c = xx - 1.0;
if (df < -1.24 * log(p)) {
/* Starting approximation for small Chi^2. */
ch = pow(p * xx * exp(ln_gamma_df_2 + xx * aa), 1.0 / xx);
if (ch - e < 0.0)
return (ch);
} else {
if (df > 0.32) {
x = pt_norm(p);
/*
* Starting approximation using Wilson and Hilferty
* estimate.
*/
p1 = 0.222222 / df;
ch = df * pow(x * sqrt(p1) + 1.0 - p1, 3.0);
/* Starting approximation for p tending to 1. */
if (ch > 2.2 * df + 6.0) {
ch = -2.0 * (log(1.0 - p) - c * log(0.5 * ch) +
ln_gamma_df_2);
}
} else {
ch = 0.4;
a = log(1.0 - p);
while (true) {
q = ch;
p1 = 1.0 + ch * (4.67 + ch);
p2 = ch * (6.73 + ch * (6.66 + ch));
t = -0.5 + (4.67 + 2.0 * ch) / p1 - (6.73 + ch
* (13.32 + 3.0 * ch)) / p2;
ch -= (1.0 - exp(a + ln_gamma_df_2 + 0.5 * ch +
c * aa) * p2 / p1) / t;
if (fabs(q / ch - 1.0) - 0.01 <= 0.0)
break;
}
}
}
for (i = 0; i < 20; i++) {
/* Calculation of seven-term Taylor series. */
q = ch;
p1 = 0.5 * ch;
if (p1 < 0.0)
return (-1.0);
p2 = p - i_gamma(p1, xx, ln_gamma_df_2);
t = p2 * exp(xx * aa + ln_gamma_df_2 + p1 - c * log(ch));
b = t / ch;
a = 0.5 * t - b * c;
s1 = (210.0 + a * (140.0 + a * (105.0 + a * (84.0 + a * (70.0 +
60.0 * a))))) / 420.0;
s2 = (420.0 + a * (735.0 + a * (966.0 + a * (1141.0 + 1278.0 *
a)))) / 2520.0;
s3 = (210.0 + a * (462.0 + a * (707.0 + 932.0 * a))) / 2520.0;
s4 = (252.0 + a * (672.0 + 1182.0 * a) + c * (294.0 + a *
(889.0 + 1740.0 * a))) / 5040.0;
s5 = (84.0 + 264.0 * a + c * (175.0 + 606.0 * a)) / 2520.0;
s6 = (120.0 + c * (346.0 + 127.0 * c)) / 5040.0;
ch += t * (1.0 + 0.5 * t * s1 - b * c * (s1 - b * (s2 - b * (s3
- b * (s4 - b * (s5 - b * s6))))));
if (fabs(q / ch - 1.0) <= e)
break;
}
return (ch);
}
/*
* Given a value p in [0..1] and Gamma distribution shape and scale parameters,
* compute the upper limit on the definite integral from [0..z] that satisfies
* p.
*/
JEMALLOC_INLINE double
pt_gamma(double p, double shape, double scale, double ln_gamma_shape)
{
return (pt_chi2(p, shape * 2.0, ln_gamma_shape) * 0.5 * scale);
}
#endif
| 8,172 | 25.195513 | 79 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/include/test/mtx.h | /*
* mtx is a slightly simplified version of malloc_mutex. This code duplication
* is unfortunate, but there are allocator bootstrapping considerations that
* would leak into the test infrastructure if malloc_mutex were used directly
* in tests.
*/
typedef struct {
#ifdef _WIN32
CRITICAL_SECTION lock;
#elif (defined(JEMALLOC_OS_UNFAIR_LOCK))
os_unfair_lock lock;
#elif (defined(JEMALLOC_OSSPIN))
OSSpinLock lock;
#else
pthread_mutex_t lock;
#endif
} mtx_t;
bool mtx_init(mtx_t *mtx);
void mtx_fini(mtx_t *mtx);
void mtx_lock(mtx_t *mtx);
void mtx_unlock(mtx_t *mtx);
| 584 | 23.375 | 79 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/include/test/SFMT-params2281.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_PARAMS2281_H
#define SFMT_PARAMS2281_H
#define POS1 12
#define SL1 19
#define SL2 1
#define SR1 5
#define SR2 1
#define MSK1 0xbff7ffbfU
#define MSK2 0xfdfffffeU
#define MSK3 0xf7ffef7fU
#define MSK4 0xf2f7cbbfU
#define PARITY1 0x00000001U
#define PARITY2 0x00000000U
#define PARITY3 0x00000000U
#define PARITY4 0x41dfa600U
/* PARAMETERS FOR ALTIVEC */
#if defined(__APPLE__) /* For OSX */
#define ALTI_SL1 (vector unsigned int)(SL1, SL1, SL1, SL1)
#define ALTI_SR1 (vector unsigned int)(SR1, SR1, SR1, SR1)
#define ALTI_MSK (vector unsigned int)(MSK1, MSK2, MSK3, MSK4)
#define ALTI_MSK64 \
(vector unsigned int)(MSK2, MSK1, MSK4, MSK3)
#define ALTI_SL2_PERM \
(vector unsigned char)(1,2,3,23,5,6,7,0,9,10,11,4,13,14,15,8)
#define ALTI_SL2_PERM64 \
(vector unsigned char)(1,2,3,4,5,6,7,31,9,10,11,12,13,14,15,0)
#define ALTI_SR2_PERM \
(vector unsigned char)(7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14)
#define ALTI_SR2_PERM64 \
(vector unsigned char)(15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14)
#else /* For OTHER OSs(Linux?) */
#define ALTI_SL1 {SL1, SL1, SL1, SL1}
#define ALTI_SR1 {SR1, SR1, SR1, SR1}
#define ALTI_MSK {MSK1, MSK2, MSK3, MSK4}
#define ALTI_MSK64 {MSK2, MSK1, MSK4, MSK3}
#define ALTI_SL2_PERM {1,2,3,23,5,6,7,0,9,10,11,4,13,14,15,8}
#define ALTI_SL2_PERM64 {1,2,3,4,5,6,7,31,9,10,11,12,13,14,15,0}
#define ALTI_SR2_PERM {7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14}
#define ALTI_SR2_PERM64 {15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14}
#endif /* For OSX */
#define IDSTR "SFMT-2281:12-19-1-5-1:bff7ffbf-fdfffffe-f7ffef7f-f2f7cbbf"
#endif /* SFMT_PARAMS2281_H */
| 3,552 | 42.329268 | 79 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/include/test/SFMT-params19937.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_PARAMS19937_H
#define SFMT_PARAMS19937_H
#define POS1 122
#define SL1 18
#define SL2 1
#define SR1 11
#define SR2 1
#define MSK1 0xdfffffefU
#define MSK2 0xddfecb7fU
#define MSK3 0xbffaffffU
#define MSK4 0xbffffff6U
#define PARITY1 0x00000001U
#define PARITY2 0x00000000U
#define PARITY3 0x00000000U
#define PARITY4 0x13c9e684U
/* PARAMETERS FOR ALTIVEC */
#if defined(__APPLE__) /* For OSX */
#define ALTI_SL1 (vector unsigned int)(SL1, SL1, SL1, SL1)
#define ALTI_SR1 (vector unsigned int)(SR1, SR1, SR1, SR1)
#define ALTI_MSK (vector unsigned int)(MSK1, MSK2, MSK3, MSK4)
#define ALTI_MSK64 \
(vector unsigned int)(MSK2, MSK1, MSK4, MSK3)
#define ALTI_SL2_PERM \
(vector unsigned char)(1,2,3,23,5,6,7,0,9,10,11,4,13,14,15,8)
#define ALTI_SL2_PERM64 \
(vector unsigned char)(1,2,3,4,5,6,7,31,9,10,11,12,13,14,15,0)
#define ALTI_SR2_PERM \
(vector unsigned char)(7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14)
#define ALTI_SR2_PERM64 \
(vector unsigned char)(15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14)
#else /* For OTHER OSs(Linux?) */
#define ALTI_SL1 {SL1, SL1, SL1, SL1}
#define ALTI_SR1 {SR1, SR1, SR1, SR1}
#define ALTI_MSK {MSK1, MSK2, MSK3, MSK4}
#define ALTI_MSK64 {MSK2, MSK1, MSK4, MSK3}
#define ALTI_SL2_PERM {1,2,3,23,5,6,7,0,9,10,11,4,13,14,15,8}
#define ALTI_SL2_PERM64 {1,2,3,4,5,6,7,31,9,10,11,12,13,14,15,0}
#define ALTI_SR2_PERM {7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14}
#define ALTI_SR2_PERM64 {15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14}
#endif /* For OSX */
#define IDSTR "SFMT-19937:122-18-1-11-1:dfffffef-ddfecb7f-bffaffff-bffffff6"
#endif /* SFMT_PARAMS19937_H */
| 3,560 | 42.426829 | 79 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/include/test/test.h | #define ASSERT_BUFSIZE 256
#define assert_cmp(t, a, b, cmp, neg_cmp, pri, ...) do { \
t a_ = (a); \
t b_ = (b); \
if (!(a_ cmp b_)) { \
char prefix[ASSERT_BUFSIZE]; \
char message[ASSERT_BUFSIZE]; \
malloc_snprintf(prefix, sizeof(prefix), \
"%s:%s:%d: Failed assertion: " \
"(%s) "#cmp" (%s) --> " \
"%"pri" "#neg_cmp" %"pri": ", \
__func__, __FILE__, __LINE__, \
#a, #b, a_, b_); \
malloc_snprintf(message, sizeof(message), __VA_ARGS__); \
p_test_fail(prefix, message); \
} \
} while (0)
#define assert_ptr_eq(a, b, ...) assert_cmp(void *, a, b, ==, \
!=, "p", __VA_ARGS__)
#define assert_ptr_ne(a, b, ...) assert_cmp(void *, a, b, !=, \
==, "p", __VA_ARGS__)
#define assert_ptr_null(a, ...) assert_cmp(void *, a, NULL, ==, \
!=, "p", __VA_ARGS__)
#define assert_ptr_not_null(a, ...) assert_cmp(void *, a, NULL, !=, \
==, "p", __VA_ARGS__)
#define assert_c_eq(a, b, ...) assert_cmp(char, a, b, ==, !=, "c", __VA_ARGS__)
#define assert_c_ne(a, b, ...) assert_cmp(char, a, b, !=, ==, "c", __VA_ARGS__)
#define assert_c_lt(a, b, ...) assert_cmp(char, a, b, <, >=, "c", __VA_ARGS__)
#define assert_c_le(a, b, ...) assert_cmp(char, a, b, <=, >, "c", __VA_ARGS__)
#define assert_c_ge(a, b, ...) assert_cmp(char, a, b, >=, <, "c", __VA_ARGS__)
#define assert_c_gt(a, b, ...) assert_cmp(char, a, b, >, <=, "c", __VA_ARGS__)
#define assert_x_eq(a, b, ...) assert_cmp(int, a, b, ==, !=, "#x", __VA_ARGS__)
#define assert_x_ne(a, b, ...) assert_cmp(int, a, b, !=, ==, "#x", __VA_ARGS__)
#define assert_x_lt(a, b, ...) assert_cmp(int, a, b, <, >=, "#x", __VA_ARGS__)
#define assert_x_le(a, b, ...) assert_cmp(int, a, b, <=, >, "#x", __VA_ARGS__)
#define assert_x_ge(a, b, ...) assert_cmp(int, a, b, >=, <, "#x", __VA_ARGS__)
#define assert_x_gt(a, b, ...) assert_cmp(int, a, b, >, <=, "#x", __VA_ARGS__)
#define assert_d_eq(a, b, ...) assert_cmp(int, a, b, ==, !=, "d", __VA_ARGS__)
#define assert_d_ne(a, b, ...) assert_cmp(int, a, b, !=, ==, "d", __VA_ARGS__)
#define assert_d_lt(a, b, ...) assert_cmp(int, a, b, <, >=, "d", __VA_ARGS__)
#define assert_d_le(a, b, ...) assert_cmp(int, a, b, <=, >, "d", __VA_ARGS__)
#define assert_d_ge(a, b, ...) assert_cmp(int, a, b, >=, <, "d", __VA_ARGS__)
#define assert_d_gt(a, b, ...) assert_cmp(int, a, b, >, <=, "d", __VA_ARGS__)
#define assert_u_eq(a, b, ...) assert_cmp(int, a, b, ==, !=, "u", __VA_ARGS__)
#define assert_u_ne(a, b, ...) assert_cmp(int, a, b, !=, ==, "u", __VA_ARGS__)
#define assert_u_lt(a, b, ...) assert_cmp(int, a, b, <, >=, "u", __VA_ARGS__)
#define assert_u_le(a, b, ...) assert_cmp(int, a, b, <=, >, "u", __VA_ARGS__)
#define assert_u_ge(a, b, ...) assert_cmp(int, a, b, >=, <, "u", __VA_ARGS__)
#define assert_u_gt(a, b, ...) assert_cmp(int, a, b, >, <=, "u", __VA_ARGS__)
#define assert_ld_eq(a, b, ...) assert_cmp(long, a, b, ==, \
!=, "ld", __VA_ARGS__)
#define assert_ld_ne(a, b, ...) assert_cmp(long, a, b, !=, \
==, "ld", __VA_ARGS__)
#define assert_ld_lt(a, b, ...) assert_cmp(long, a, b, <, \
>=, "ld", __VA_ARGS__)
#define assert_ld_le(a, b, ...) assert_cmp(long, a, b, <=, \
>, "ld", __VA_ARGS__)
#define assert_ld_ge(a, b, ...) assert_cmp(long, a, b, >=, \
<, "ld", __VA_ARGS__)
#define assert_ld_gt(a, b, ...) assert_cmp(long, a, b, >, \
<=, "ld", __VA_ARGS__)
#define assert_lu_eq(a, b, ...) assert_cmp(unsigned long, \
a, b, ==, !=, "lu", __VA_ARGS__)
#define assert_lu_ne(a, b, ...) assert_cmp(unsigned long, \
a, b, !=, ==, "lu", __VA_ARGS__)
#define assert_lu_lt(a, b, ...) assert_cmp(unsigned long, \
a, b, <, >=, "lu", __VA_ARGS__)
#define assert_lu_le(a, b, ...) assert_cmp(unsigned long, \
a, b, <=, >, "lu", __VA_ARGS__)
#define assert_lu_ge(a, b, ...) assert_cmp(unsigned long, \
a, b, >=, <, "lu", __VA_ARGS__)
#define assert_lu_gt(a, b, ...) assert_cmp(unsigned long, \
a, b, >, <=, "lu", __VA_ARGS__)
#define assert_qd_eq(a, b, ...) assert_cmp(long long, a, b, ==, \
!=, "qd", __VA_ARGS__)
#define assert_qd_ne(a, b, ...) assert_cmp(long long, a, b, !=, \
==, "qd", __VA_ARGS__)
#define assert_qd_lt(a, b, ...) assert_cmp(long long, a, b, <, \
>=, "qd", __VA_ARGS__)
#define assert_qd_le(a, b, ...) assert_cmp(long long, a, b, <=, \
>, "qd", __VA_ARGS__)
#define assert_qd_ge(a, b, ...) assert_cmp(long long, a, b, >=, \
<, "qd", __VA_ARGS__)
#define assert_qd_gt(a, b, ...) assert_cmp(long long, a, b, >, \
<=, "qd", __VA_ARGS__)
#define assert_qu_eq(a, b, ...) assert_cmp(unsigned long long, \
a, b, ==, !=, "qu", __VA_ARGS__)
#define assert_qu_ne(a, b, ...) assert_cmp(unsigned long long, \
a, b, !=, ==, "qu", __VA_ARGS__)
#define assert_qu_lt(a, b, ...) assert_cmp(unsigned long long, \
a, b, <, >=, "qu", __VA_ARGS__)
#define assert_qu_le(a, b, ...) assert_cmp(unsigned long long, \
a, b, <=, >, "qu", __VA_ARGS__)
#define assert_qu_ge(a, b, ...) assert_cmp(unsigned long long, \
a, b, >=, <, "qu", __VA_ARGS__)
#define assert_qu_gt(a, b, ...) assert_cmp(unsigned long long, \
a, b, >, <=, "qu", __VA_ARGS__)
#define assert_jd_eq(a, b, ...) assert_cmp(intmax_t, a, b, ==, \
!=, "jd", __VA_ARGS__)
#define assert_jd_ne(a, b, ...) assert_cmp(intmax_t, a, b, !=, \
==, "jd", __VA_ARGS__)
#define assert_jd_lt(a, b, ...) assert_cmp(intmax_t, a, b, <, \
>=, "jd", __VA_ARGS__)
#define assert_jd_le(a, b, ...) assert_cmp(intmax_t, a, b, <=, \
>, "jd", __VA_ARGS__)
#define assert_jd_ge(a, b, ...) assert_cmp(intmax_t, a, b, >=, \
<, "jd", __VA_ARGS__)
#define assert_jd_gt(a, b, ...) assert_cmp(intmax_t, a, b, >, \
<=, "jd", __VA_ARGS__)
#define assert_ju_eq(a, b, ...) assert_cmp(uintmax_t, a, b, ==, \
!=, "ju", __VA_ARGS__)
#define assert_ju_ne(a, b, ...) assert_cmp(uintmax_t, a, b, !=, \
==, "ju", __VA_ARGS__)
#define assert_ju_lt(a, b, ...) assert_cmp(uintmax_t, a, b, <, \
>=, "ju", __VA_ARGS__)
#define assert_ju_le(a, b, ...) assert_cmp(uintmax_t, a, b, <=, \
>, "ju", __VA_ARGS__)
#define assert_ju_ge(a, b, ...) assert_cmp(uintmax_t, a, b, >=, \
<, "ju", __VA_ARGS__)
#define assert_ju_gt(a, b, ...) assert_cmp(uintmax_t, a, b, >, \
<=, "ju", __VA_ARGS__)
#define assert_zd_eq(a, b, ...) assert_cmp(ssize_t, a, b, ==, \
!=, "zd", __VA_ARGS__)
#define assert_zd_ne(a, b, ...) assert_cmp(ssize_t, a, b, !=, \
==, "zd", __VA_ARGS__)
#define assert_zd_lt(a, b, ...) assert_cmp(ssize_t, a, b, <, \
>=, "zd", __VA_ARGS__)
#define assert_zd_le(a, b, ...) assert_cmp(ssize_t, a, b, <=, \
>, "zd", __VA_ARGS__)
#define assert_zd_ge(a, b, ...) assert_cmp(ssize_t, a, b, >=, \
<, "zd", __VA_ARGS__)
#define assert_zd_gt(a, b, ...) assert_cmp(ssize_t, a, b, >, \
<=, "zd", __VA_ARGS__)
#define assert_zu_eq(a, b, ...) assert_cmp(size_t, a, b, ==, \
!=, "zu", __VA_ARGS__)
#define assert_zu_ne(a, b, ...) assert_cmp(size_t, a, b, !=, \
==, "zu", __VA_ARGS__)
#define assert_zu_lt(a, b, ...) assert_cmp(size_t, a, b, <, \
>=, "zu", __VA_ARGS__)
#define assert_zu_le(a, b, ...) assert_cmp(size_t, a, b, <=, \
>, "zu", __VA_ARGS__)
#define assert_zu_ge(a, b, ...) assert_cmp(size_t, a, b, >=, \
<, "zu", __VA_ARGS__)
#define assert_zu_gt(a, b, ...) assert_cmp(size_t, a, b, >, \
<=, "zu", __VA_ARGS__)
#define assert_d32_eq(a, b, ...) assert_cmp(int32_t, a, b, ==, \
!=, FMTd32, __VA_ARGS__)
#define assert_d32_ne(a, b, ...) assert_cmp(int32_t, a, b, !=, \
==, FMTd32, __VA_ARGS__)
#define assert_d32_lt(a, b, ...) assert_cmp(int32_t, a, b, <, \
>=, FMTd32, __VA_ARGS__)
#define assert_d32_le(a, b, ...) assert_cmp(int32_t, a, b, <=, \
>, FMTd32, __VA_ARGS__)
#define assert_d32_ge(a, b, ...) assert_cmp(int32_t, a, b, >=, \
<, FMTd32, __VA_ARGS__)
#define assert_d32_gt(a, b, ...) assert_cmp(int32_t, a, b, >, \
<=, FMTd32, __VA_ARGS__)
#define assert_u32_eq(a, b, ...) assert_cmp(uint32_t, a, b, ==, \
!=, FMTu32, __VA_ARGS__)
#define assert_u32_ne(a, b, ...) assert_cmp(uint32_t, a, b, !=, \
==, FMTu32, __VA_ARGS__)
#define assert_u32_lt(a, b, ...) assert_cmp(uint32_t, a, b, <, \
>=, FMTu32, __VA_ARGS__)
#define assert_u32_le(a, b, ...) assert_cmp(uint32_t, a, b, <=, \
>, FMTu32, __VA_ARGS__)
#define assert_u32_ge(a, b, ...) assert_cmp(uint32_t, a, b, >=, \
<, FMTu32, __VA_ARGS__)
#define assert_u32_gt(a, b, ...) assert_cmp(uint32_t, a, b, >, \
<=, FMTu32, __VA_ARGS__)
#define assert_d64_eq(a, b, ...) assert_cmp(int64_t, a, b, ==, \
!=, FMTd64, __VA_ARGS__)
#define assert_d64_ne(a, b, ...) assert_cmp(int64_t, a, b, !=, \
==, FMTd64, __VA_ARGS__)
#define assert_d64_lt(a, b, ...) assert_cmp(int64_t, a, b, <, \
>=, FMTd64, __VA_ARGS__)
#define assert_d64_le(a, b, ...) assert_cmp(int64_t, a, b, <=, \
>, FMTd64, __VA_ARGS__)
#define assert_d64_ge(a, b, ...) assert_cmp(int64_t, a, b, >=, \
<, FMTd64, __VA_ARGS__)
#define assert_d64_gt(a, b, ...) assert_cmp(int64_t, a, b, >, \
<=, FMTd64, __VA_ARGS__)
#define assert_u64_eq(a, b, ...) assert_cmp(uint64_t, a, b, ==, \
!=, FMTu64, __VA_ARGS__)
#define assert_u64_ne(a, b, ...) assert_cmp(uint64_t, a, b, !=, \
==, FMTu64, __VA_ARGS__)
#define assert_u64_lt(a, b, ...) assert_cmp(uint64_t, a, b, <, \
>=, FMTu64, __VA_ARGS__)
#define assert_u64_le(a, b, ...) assert_cmp(uint64_t, a, b, <=, \
>, FMTu64, __VA_ARGS__)
#define assert_u64_ge(a, b, ...) assert_cmp(uint64_t, a, b, >=, \
<, FMTu64, __VA_ARGS__)
#define assert_u64_gt(a, b, ...) assert_cmp(uint64_t, a, b, >, \
<=, FMTu64, __VA_ARGS__)
#define assert_b_eq(a, b, ...) do { \
bool a_ = (a); \
bool b_ = (b); \
if (!(a_ == b_)) { \
char prefix[ASSERT_BUFSIZE]; \
char message[ASSERT_BUFSIZE]; \
malloc_snprintf(prefix, sizeof(prefix), \
"%s:%s:%d: Failed assertion: " \
"(%s) == (%s) --> %s != %s: ", \
__func__, __FILE__, __LINE__, \
#a, #b, a_ ? "true" : "false", \
b_ ? "true" : "false"); \
malloc_snprintf(message, sizeof(message), __VA_ARGS__); \
p_test_fail(prefix, message); \
} \
} while (0)
#define assert_b_ne(a, b, ...) do { \
bool a_ = (a); \
bool b_ = (b); \
if (!(a_ != b_)) { \
char prefix[ASSERT_BUFSIZE]; \
char message[ASSERT_BUFSIZE]; \
malloc_snprintf(prefix, sizeof(prefix), \
"%s:%s:%d: Failed assertion: " \
"(%s) != (%s) --> %s == %s: ", \
__func__, __FILE__, __LINE__, \
#a, #b, a_ ? "true" : "false", \
b_ ? "true" : "false"); \
malloc_snprintf(message, sizeof(message), __VA_ARGS__); \
p_test_fail(prefix, message); \
} \
} while (0)
#define assert_true(a, ...) assert_b_eq(a, true, __VA_ARGS__)
#define assert_false(a, ...) assert_b_eq(a, false, __VA_ARGS__)
#define assert_str_eq(a, b, ...) do { \
if (strcmp((a), (b))) { \
char prefix[ASSERT_BUFSIZE]; \
char message[ASSERT_BUFSIZE]; \
malloc_snprintf(prefix, sizeof(prefix), \
"%s:%s:%d: Failed assertion: " \
"(%s) same as (%s) --> " \
"\"%s\" differs from \"%s\": ", \
__func__, __FILE__, __LINE__, #a, #b, a, b); \
malloc_snprintf(message, sizeof(message), __VA_ARGS__); \
p_test_fail(prefix, message); \
} \
} while (0)
#define assert_str_ne(a, b, ...) do { \
if (!strcmp((a), (b))) { \
char prefix[ASSERT_BUFSIZE]; \
char message[ASSERT_BUFSIZE]; \
malloc_snprintf(prefix, sizeof(prefix), \
"%s:%s:%d: Failed assertion: " \
"(%s) differs from (%s) --> " \
"\"%s\" same as \"%s\": ", \
__func__, __FILE__, __LINE__, #a, #b, a, b); \
malloc_snprintf(message, sizeof(message), __VA_ARGS__); \
p_test_fail(prefix, message); \
} \
} while (0)
#define assert_not_reached(...) do { \
char prefix[ASSERT_BUFSIZE]; \
char message[ASSERT_BUFSIZE]; \
malloc_snprintf(prefix, sizeof(prefix), \
"%s:%s:%d: Unreachable code reached: ", \
__func__, __FILE__, __LINE__); \
malloc_snprintf(message, sizeof(message), __VA_ARGS__); \
p_test_fail(prefix, message); \
} while (0)
/*
* If this enum changes, corresponding changes in test/test.sh.in are also
* necessary.
*/
typedef enum {
test_status_pass = 0,
test_status_skip = 1,
test_status_fail = 2,
test_status_count = 3
} test_status_t;
typedef void (test_t)(void);
#define TEST_BEGIN(f) \
static void \
f(void) \
{ \
p_test_init(#f);
#define TEST_END \
goto label_test_end; \
label_test_end: \
p_test_fini(); \
}
#define test(...) \
p_test(__VA_ARGS__, NULL)
#define test_no_malloc_init(...) \
p_test_no_malloc_init(__VA_ARGS__, NULL)
#define test_skip_if(e) do { \
if (e) { \
test_skip("%s:%s:%d: Test skipped: (%s)", \
__func__, __FILE__, __LINE__, #e); \
goto label_test_end; \
} \
} while (0)
void test_skip(const char *format, ...) JEMALLOC_FORMAT_PRINTF(1, 2);
void test_fail(const char *format, ...) JEMALLOC_FORMAT_PRINTF(1, 2);
/* For private use by macros. */
test_status_t p_test(test_t *t, ...);
test_status_t p_test_no_malloc_init(test_t *t, ...);
void p_test_init(const char *name);
void p_test_fini(void);
void p_test_fail(const char *prefix, const char *message);
| 13,310 | 38.853293 | 79 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/include/test/SFMT.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file SFMT.h
*
* @brief SIMD oriented Fast Mersenne Twister(SFMT) pseudorandom
* number generator
*
* @author Mutsuo Saito (Hiroshima University)
* @author Makoto Matsumoto (Hiroshima University)
*
* Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* The new BSD License is applied to this software.
* see LICENSE.txt
*
* @note We assume that your system has inttypes.h. If your system
* doesn't have inttypes.h, you have to typedef uint32_t and uint64_t,
* and you have to define PRIu64 and PRIx64 in this file as follows:
* @verbatim
typedef unsigned int uint32_t
typedef unsigned long long uint64_t
#define PRIu64 "llu"
#define PRIx64 "llx"
@endverbatim
* uint32_t must be exactly 32-bit unsigned integer type (no more, no
* less), and uint64_t must be exactly 64-bit unsigned integer type.
* PRIu64 and PRIx64 are used for printf function to print 64-bit
* unsigned int and 64-bit unsigned int in hexadecimal format.
*/
#ifndef SFMT_H
#define SFMT_H
typedef struct sfmt_s sfmt_t;
uint32_t gen_rand32(sfmt_t *ctx);
uint32_t gen_rand32_range(sfmt_t *ctx, uint32_t limit);
uint64_t gen_rand64(sfmt_t *ctx);
uint64_t gen_rand64_range(sfmt_t *ctx, uint64_t limit);
void fill_array32(sfmt_t *ctx, uint32_t *array, int size);
void fill_array64(sfmt_t *ctx, uint64_t *array, int size);
sfmt_t *init_gen_rand(uint32_t seed);
sfmt_t *init_by_array(uint32_t *init_key, int key_length);
void fini_gen_rand(sfmt_t *ctx);
const char *get_idstring(void);
int get_min_array_size32(void);
int get_min_array_size64(void);
#ifndef JEMALLOC_ENABLE_INLINE
double to_real1(uint32_t v);
double genrand_real1(sfmt_t *ctx);
double to_real2(uint32_t v);
double genrand_real2(sfmt_t *ctx);
double to_real3(uint32_t v);
double genrand_real3(sfmt_t *ctx);
double to_res53(uint64_t v);
double to_res53_mix(uint32_t x, uint32_t y);
double genrand_res53(sfmt_t *ctx);
double genrand_res53_mix(sfmt_t *ctx);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(SFMT_C_))
/* These real versions are due to Isaku Wada */
/** generates a random number on [0,1]-real-interval */
JEMALLOC_INLINE double to_real1(uint32_t v)
{
return v * (1.0/4294967295.0);
/* divided by 2^32-1 */
}
/** generates a random number on [0,1]-real-interval */
JEMALLOC_INLINE double genrand_real1(sfmt_t *ctx)
{
return to_real1(gen_rand32(ctx));
}
/** generates a random number on [0,1)-real-interval */
JEMALLOC_INLINE double to_real2(uint32_t v)
{
return v * (1.0/4294967296.0);
/* divided by 2^32 */
}
/** generates a random number on [0,1)-real-interval */
JEMALLOC_INLINE double genrand_real2(sfmt_t *ctx)
{
return to_real2(gen_rand32(ctx));
}
/** generates a random number on (0,1)-real-interval */
JEMALLOC_INLINE double to_real3(uint32_t v)
{
return (((double)v) + 0.5)*(1.0/4294967296.0);
/* divided by 2^32 */
}
/** generates a random number on (0,1)-real-interval */
JEMALLOC_INLINE double genrand_real3(sfmt_t *ctx)
{
return to_real3(gen_rand32(ctx));
}
/** These real versions are due to Isaku Wada */
/** generates a random number on [0,1) with 53-bit resolution*/
JEMALLOC_INLINE double to_res53(uint64_t v)
{
return v * (1.0/18446744073709551616.0L);
}
/** generates a random number on [0,1) with 53-bit resolution from two
* 32 bit integers */
JEMALLOC_INLINE double to_res53_mix(uint32_t x, uint32_t y)
{
return to_res53(x | ((uint64_t)y << 32));
}
/** generates a random number on [0,1) with 53-bit resolution
*/
JEMALLOC_INLINE double genrand_res53(sfmt_t *ctx)
{
return to_res53(gen_rand64(ctx));
}
/** generates a random number on [0,1) with 53-bit resolution
using 32bit integer.
*/
JEMALLOC_INLINE double genrand_res53_mix(sfmt_t *ctx)
{
uint32_t x, y;
x = gen_rand32(ctx);
y = gen_rand32(ctx);
return to_res53_mix(x, y);
}
#endif
#endif
| 5,805 | 32.755814 | 79 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/include/test/SFMT-params44497.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_PARAMS44497_H
#define SFMT_PARAMS44497_H
#define POS1 330
#define SL1 5
#define SL2 3
#define SR1 9
#define SR2 3
#define MSK1 0xeffffffbU
#define MSK2 0xdfbebfffU
#define MSK3 0xbfbf7befU
#define MSK4 0x9ffd7bffU
#define PARITY1 0x00000001U
#define PARITY2 0x00000000U
#define PARITY3 0xa3ac4000U
#define PARITY4 0xecc1327aU
/* PARAMETERS FOR ALTIVEC */
#if defined(__APPLE__) /* For OSX */
#define ALTI_SL1 (vector unsigned int)(SL1, SL1, SL1, SL1)
#define ALTI_SR1 (vector unsigned int)(SR1, SR1, SR1, SR1)
#define ALTI_MSK (vector unsigned int)(MSK1, MSK2, MSK3, MSK4)
#define ALTI_MSK64 \
(vector unsigned int)(MSK2, MSK1, MSK4, MSK3)
#define ALTI_SL2_PERM \
(vector unsigned char)(3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10)
#define ALTI_SL2_PERM64 \
(vector unsigned char)(3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2)
#define ALTI_SR2_PERM \
(vector unsigned char)(5,6,7,0,9,10,11,4,13,14,15,8,19,19,19,12)
#define ALTI_SR2_PERM64 \
(vector unsigned char)(13,14,15,0,1,2,3,4,19,19,19,8,9,10,11,12)
#else /* For OTHER OSs(Linux?) */
#define ALTI_SL1 {SL1, SL1, SL1, SL1}
#define ALTI_SR1 {SR1, SR1, SR1, SR1}
#define ALTI_MSK {MSK1, MSK2, MSK3, MSK4}
#define ALTI_MSK64 {MSK2, MSK1, MSK4, MSK3}
#define ALTI_SL2_PERM {3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10}
#define ALTI_SL2_PERM64 {3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2}
#define ALTI_SR2_PERM {5,6,7,0,9,10,11,4,13,14,15,8,19,19,19,12}
#define ALTI_SR2_PERM64 {13,14,15,0,1,2,3,4,19,19,19,8,9,10,11,12}
#endif /* For OSX */
#define IDSTR "SFMT-44497:330-5-3-9-3:effffffb-dfbebfff-bfbf7bef-9ffd7bff"
#endif /* SFMT_PARAMS44497_H */
| 3,566 | 42.5 | 79 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/include/test/SFMT-alti.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file SFMT-alti.h
*
* @brief SIMD oriented Fast Mersenne Twister(SFMT)
* pseudorandom number generator
*
* @author Mutsuo Saito (Hiroshima University)
* @author Makoto Matsumoto (Hiroshima University)
*
* Copyright (C) 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* The new BSD License is applied to this software.
* see LICENSE.txt
*/
#ifndef SFMT_ALTI_H
#define SFMT_ALTI_H
/**
* This function represents the recursion formula in AltiVec and BIG ENDIAN.
* @param a a 128-bit part of the interal state array
* @param b a 128-bit part of the interal state array
* @param c a 128-bit part of the interal state array
* @param d a 128-bit part of the interal state array
* @return output
*/
JEMALLOC_ALWAYS_INLINE
vector unsigned int vec_recursion(vector unsigned int a,
vector unsigned int b,
vector unsigned int c,
vector unsigned int d) {
const vector unsigned int sl1 = ALTI_SL1;
const vector unsigned int sr1 = ALTI_SR1;
#ifdef ONLY64
const vector unsigned int mask = ALTI_MSK64;
const vector unsigned char perm_sl = ALTI_SL2_PERM64;
const vector unsigned char perm_sr = ALTI_SR2_PERM64;
#else
const vector unsigned int mask = ALTI_MSK;
const vector unsigned char perm_sl = ALTI_SL2_PERM;
const vector unsigned char perm_sr = ALTI_SR2_PERM;
#endif
vector unsigned int v, w, x, y, z;
x = vec_perm(a, (vector unsigned int)perm_sl, perm_sl);
v = a;
y = vec_sr(b, sr1);
z = vec_perm(c, (vector unsigned int)perm_sr, perm_sr);
w = vec_sl(d, sl1);
z = vec_xor(z, w);
y = vec_and(y, mask);
v = vec_xor(v, x);
z = vec_xor(z, y);
z = vec_xor(z, v);
return z;
}
/**
* This function fills the internal state array with pseudorandom
* integers.
*/
JEMALLOC_INLINE void gen_rand_all(sfmt_t *ctx) {
int i;
vector unsigned int r, r1, r2;
r1 = ctx->sfmt[N - 2].s;
r2 = ctx->sfmt[N - 1].s;
for (i = 0; i < N - POS1; i++) {
r = vec_recursion(ctx->sfmt[i].s, ctx->sfmt[i + POS1].s, r1, r2);
ctx->sfmt[i].s = r;
r1 = r2;
r2 = r;
}
for (; i < N; i++) {
r = vec_recursion(ctx->sfmt[i].s, ctx->sfmt[i + POS1 - N].s, r1, r2);
ctx->sfmt[i].s = r;
r1 = r2;
r2 = r;
}
}
/**
* This function fills the user-specified array with pseudorandom
* integers.
*
* @param array an 128-bit array to be filled by pseudorandom numbers.
* @param size number of 128-bit pesudorandom numbers to be generated.
*/
JEMALLOC_INLINE void gen_rand_array(sfmt_t *ctx, w128_t *array, int size) {
int i, j;
vector unsigned int r, r1, r2;
r1 = ctx->sfmt[N - 2].s;
r2 = ctx->sfmt[N - 1].s;
for (i = 0; i < N - POS1; i++) {
r = vec_recursion(ctx->sfmt[i].s, ctx->sfmt[i + POS1].s, r1, r2);
array[i].s = r;
r1 = r2;
r2 = r;
}
for (; i < N; i++) {
r = vec_recursion(ctx->sfmt[i].s, array[i + POS1 - N].s, r1, r2);
array[i].s = r;
r1 = r2;
r2 = r;
}
/* main loop */
for (; i < size - N; i++) {
r = vec_recursion(array[i - N].s, array[i + POS1 - N].s, r1, r2);
array[i].s = r;
r1 = r2;
r2 = r;
}
for (j = 0; j < 2 * N - size; j++) {
ctx->sfmt[j].s = array[j + size - N].s;
}
for (; i < size; i++) {
r = vec_recursion(array[i - N].s, array[i + POS1 - N].s, r1, r2);
array[i].s = r;
ctx->sfmt[j++].s = r;
r1 = r2;
r2 = r;
}
}
#ifndef ONLY64
#if defined(__APPLE__)
#define ALTI_SWAP (vector unsigned char) \
(4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11)
#else
#define ALTI_SWAP {4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11}
#endif
/**
* This function swaps high and low 32-bit of 64-bit integers in user
* specified array.
*
* @param array an 128-bit array to be swaped.
* @param size size of 128-bit array.
*/
JEMALLOC_INLINE void swap(w128_t *array, int size) {
int i;
const vector unsigned char perm = ALTI_SWAP;
for (i = 0; i < size; i++) {
array[i].s = vec_perm(array[i].s, (vector unsigned int)perm, perm);
}
}
#endif
#endif
| 5,921 | 30.668449 | 79 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/include/test/SFMT-params86243.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_PARAMS86243_H
#define SFMT_PARAMS86243_H
#define POS1 366
#define SL1 6
#define SL2 7
#define SR1 19
#define SR2 1
#define MSK1 0xfdbffbffU
#define MSK2 0xbff7ff3fU
#define MSK3 0xfd77efffU
#define MSK4 0xbf9ff3ffU
#define PARITY1 0x00000001U
#define PARITY2 0x00000000U
#define PARITY3 0x00000000U
#define PARITY4 0xe9528d85U
/* PARAMETERS FOR ALTIVEC */
#if defined(__APPLE__) /* For OSX */
#define ALTI_SL1 (vector unsigned int)(SL1, SL1, SL1, SL1)
#define ALTI_SR1 (vector unsigned int)(SR1, SR1, SR1, SR1)
#define ALTI_MSK (vector unsigned int)(MSK1, MSK2, MSK3, MSK4)
#define ALTI_MSK64 \
(vector unsigned int)(MSK2, MSK1, MSK4, MSK3)
#define ALTI_SL2_PERM \
(vector unsigned char)(25,25,25,25,3,25,25,25,7,0,1,2,11,4,5,6)
#define ALTI_SL2_PERM64 \
(vector unsigned char)(7,25,25,25,25,25,25,25,15,0,1,2,3,4,5,6)
#define ALTI_SR2_PERM \
(vector unsigned char)(7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14)
#define ALTI_SR2_PERM64 \
(vector unsigned char)(15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14)
#else /* For OTHER OSs(Linux?) */
#define ALTI_SL1 {SL1, SL1, SL1, SL1}
#define ALTI_SR1 {SR1, SR1, SR1, SR1}
#define ALTI_MSK {MSK1, MSK2, MSK3, MSK4}
#define ALTI_MSK64 {MSK2, MSK1, MSK4, MSK3}
#define ALTI_SL2_PERM {25,25,25,25,3,25,25,25,7,0,1,2,11,4,5,6}
#define ALTI_SL2_PERM64 {7,25,25,25,25,25,25,25,15,0,1,2,3,4,5,6}
#define ALTI_SR2_PERM {7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14}
#define ALTI_SR2_PERM64 {15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14}
#endif /* For OSX */
#define IDSTR "SFMT-86243:366-6-7-19-1:fdbffbff-bff7ff3f-fd77efff-bf9ff3ff"
#endif /* SFMT_PARAMS86243_H */
| 3,564 | 42.47561 | 79 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/test/include/test/SFMT-params132049.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_PARAMS132049_H
#define SFMT_PARAMS132049_H
#define POS1 110
#define SL1 19
#define SL2 1
#define SR1 21
#define SR2 1
#define MSK1 0xffffbb5fU
#define MSK2 0xfb6ebf95U
#define MSK3 0xfffefffaU
#define MSK4 0xcff77fffU
#define PARITY1 0x00000001U
#define PARITY2 0x00000000U
#define PARITY3 0xcb520000U
#define PARITY4 0xc7e91c7dU
/* PARAMETERS FOR ALTIVEC */
#if defined(__APPLE__) /* For OSX */
#define ALTI_SL1 (vector unsigned int)(SL1, SL1, SL1, SL1)
#define ALTI_SR1 (vector unsigned int)(SR1, SR1, SR1, SR1)
#define ALTI_MSK (vector unsigned int)(MSK1, MSK2, MSK3, MSK4)
#define ALTI_MSK64 \
(vector unsigned int)(MSK2, MSK1, MSK4, MSK3)
#define ALTI_SL2_PERM \
(vector unsigned char)(1,2,3,23,5,6,7,0,9,10,11,4,13,14,15,8)
#define ALTI_SL2_PERM64 \
(vector unsigned char)(1,2,3,4,5,6,7,31,9,10,11,12,13,14,15,0)
#define ALTI_SR2_PERM \
(vector unsigned char)(7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14)
#define ALTI_SR2_PERM64 \
(vector unsigned char)(15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14)
#else /* For OTHER OSs(Linux?) */
#define ALTI_SL1 {SL1, SL1, SL1, SL1}
#define ALTI_SR1 {SR1, SR1, SR1, SR1}
#define ALTI_MSK {MSK1, MSK2, MSK3, MSK4}
#define ALTI_MSK64 {MSK2, MSK1, MSK4, MSK3}
#define ALTI_SL2_PERM {1,2,3,23,5,6,7,0,9,10,11,4,13,14,15,8}
#define ALTI_SL2_PERM64 {1,2,3,4,5,6,7,31,9,10,11,12,13,14,15,0}
#define ALTI_SR2_PERM {7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14}
#define ALTI_SR2_PERM64 {15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14}
#endif /* For OSX */
#define IDSTR "SFMT-132049:110-19-1-21-1:ffffbb5f-fb6ebf95-fffefffa-cff77fff"
#endif /* SFMT_PARAMS132049_H */
| 3,564 | 42.47561 | 79 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/msvc_compat/C99/stdint.h | // ISO C9x compliant stdint.h for Microsoft Visual Studio
// Based on ISO/IEC 9899:TC2 Committee draft (May 6, 2005) WG14/N1124
//
// Copyright (c) 2006-2008 Alexander Chemeris
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. The name of the author may be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
// EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef _MSC_VER // [
#error "Use this header only with Microsoft Visual C++ compilers!"
#endif // _MSC_VER ]
#ifndef _MSC_STDINT_H_ // [
#define _MSC_STDINT_H_
#if _MSC_VER > 1000
#pragma once
#endif
#include <limits.h>
// For Visual Studio 6 in C++ mode and for many Visual Studio versions when
// compiling for ARM we should wrap <wchar.h> include with 'extern "C++" {}'
// or compiler give many errors like this:
// error C2733: second C linkage of overloaded function 'wmemchr' not allowed
#ifdef __cplusplus
extern "C" {
#endif
# include <wchar.h>
#ifdef __cplusplus
}
#endif
// Define _W64 macros to mark types changing their size, like intptr_t.
#ifndef _W64
# if !defined(__midl) && (defined(_X86_) || defined(_M_IX86)) && _MSC_VER >= 1300
# define _W64 __w64
# else
# define _W64
# endif
#endif
// 7.18.1 Integer types
// 7.18.1.1 Exact-width integer types
// Visual Studio 6 and Embedded Visual C++ 4 doesn't
// realize that, e.g. char has the same size as __int8
// so we give up on __intX for them.
#if (_MSC_VER < 1300)
typedef signed char int8_t;
typedef signed short int16_t;
typedef signed int int32_t;
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int uint32_t;
#else
typedef signed __int8 int8_t;
typedef signed __int16 int16_t;
typedef signed __int32 int32_t;
typedef unsigned __int8 uint8_t;
typedef unsigned __int16 uint16_t;
typedef unsigned __int32 uint32_t;
#endif
typedef signed __int64 int64_t;
typedef unsigned __int64 uint64_t;
// 7.18.1.2 Minimum-width integer types
typedef int8_t int_least8_t;
typedef int16_t int_least16_t;
typedef int32_t int_least32_t;
typedef int64_t int_least64_t;
typedef uint8_t uint_least8_t;
typedef uint16_t uint_least16_t;
typedef uint32_t uint_least32_t;
typedef uint64_t uint_least64_t;
// 7.18.1.3 Fastest minimum-width integer types
typedef int8_t int_fast8_t;
typedef int16_t int_fast16_t;
typedef int32_t int_fast32_t;
typedef int64_t int_fast64_t;
typedef uint8_t uint_fast8_t;
typedef uint16_t uint_fast16_t;
typedef uint32_t uint_fast32_t;
typedef uint64_t uint_fast64_t;
// 7.18.1.4 Integer types capable of holding object pointers
#ifdef _WIN64 // [
typedef signed __int64 intptr_t;
typedef unsigned __int64 uintptr_t;
#else // _WIN64 ][
typedef _W64 signed int intptr_t;
typedef _W64 unsigned int uintptr_t;
#endif // _WIN64 ]
// 7.18.1.5 Greatest-width integer types
typedef int64_t intmax_t;
typedef uint64_t uintmax_t;
// 7.18.2 Limits of specified-width integer types
#if !defined(__cplusplus) || defined(__STDC_LIMIT_MACROS) // [ See footnote 220 at page 257 and footnote 221 at page 259
// 7.18.2.1 Limits of exact-width integer types
#define INT8_MIN ((int8_t)_I8_MIN)
#define INT8_MAX _I8_MAX
#define INT16_MIN ((int16_t)_I16_MIN)
#define INT16_MAX _I16_MAX
#define INT32_MIN ((int32_t)_I32_MIN)
#define INT32_MAX _I32_MAX
#define INT64_MIN ((int64_t)_I64_MIN)
#define INT64_MAX _I64_MAX
#define UINT8_MAX _UI8_MAX
#define UINT16_MAX _UI16_MAX
#define UINT32_MAX _UI32_MAX
#define UINT64_MAX _UI64_MAX
// 7.18.2.2 Limits of minimum-width integer types
#define INT_LEAST8_MIN INT8_MIN
#define INT_LEAST8_MAX INT8_MAX
#define INT_LEAST16_MIN INT16_MIN
#define INT_LEAST16_MAX INT16_MAX
#define INT_LEAST32_MIN INT32_MIN
#define INT_LEAST32_MAX INT32_MAX
#define INT_LEAST64_MIN INT64_MIN
#define INT_LEAST64_MAX INT64_MAX
#define UINT_LEAST8_MAX UINT8_MAX
#define UINT_LEAST16_MAX UINT16_MAX
#define UINT_LEAST32_MAX UINT32_MAX
#define UINT_LEAST64_MAX UINT64_MAX
// 7.18.2.3 Limits of fastest minimum-width integer types
#define INT_FAST8_MIN INT8_MIN
#define INT_FAST8_MAX INT8_MAX
#define INT_FAST16_MIN INT16_MIN
#define INT_FAST16_MAX INT16_MAX
#define INT_FAST32_MIN INT32_MIN
#define INT_FAST32_MAX INT32_MAX
#define INT_FAST64_MIN INT64_MIN
#define INT_FAST64_MAX INT64_MAX
#define UINT_FAST8_MAX UINT8_MAX
#define UINT_FAST16_MAX UINT16_MAX
#define UINT_FAST32_MAX UINT32_MAX
#define UINT_FAST64_MAX UINT64_MAX
// 7.18.2.4 Limits of integer types capable of holding object pointers
#ifdef _WIN64 // [
# define INTPTR_MIN INT64_MIN
# define INTPTR_MAX INT64_MAX
# define UINTPTR_MAX UINT64_MAX
#else // _WIN64 ][
# define INTPTR_MIN INT32_MIN
# define INTPTR_MAX INT32_MAX
# define UINTPTR_MAX UINT32_MAX
#endif // _WIN64 ]
// 7.18.2.5 Limits of greatest-width integer types
#define INTMAX_MIN INT64_MIN
#define INTMAX_MAX INT64_MAX
#define UINTMAX_MAX UINT64_MAX
// 7.18.3 Limits of other integer types
#ifdef _WIN64 // [
# define PTRDIFF_MIN _I64_MIN
# define PTRDIFF_MAX _I64_MAX
#else // _WIN64 ][
# define PTRDIFF_MIN _I32_MIN
# define PTRDIFF_MAX _I32_MAX
#endif // _WIN64 ]
#define SIG_ATOMIC_MIN INT_MIN
#define SIG_ATOMIC_MAX INT_MAX
#ifndef SIZE_MAX // [
# ifdef _WIN64 // [
# define SIZE_MAX _UI64_MAX
# else // _WIN64 ][
# define SIZE_MAX _UI32_MAX
# endif // _WIN64 ]
#endif // SIZE_MAX ]
// WCHAR_MIN and WCHAR_MAX are also defined in <wchar.h>
#ifndef WCHAR_MIN // [
# define WCHAR_MIN 0
#endif // WCHAR_MIN ]
#ifndef WCHAR_MAX // [
# define WCHAR_MAX _UI16_MAX
#endif // WCHAR_MAX ]
#define WINT_MIN 0
#define WINT_MAX _UI16_MAX
#endif // __STDC_LIMIT_MACROS ]
// 7.18.4 Limits of other integer types
#if !defined(__cplusplus) || defined(__STDC_CONSTANT_MACROS) // [ See footnote 224 at page 260
// 7.18.4.1 Macros for minimum-width integer constants
#define INT8_C(val) val##i8
#define INT16_C(val) val##i16
#define INT32_C(val) val##i32
#define INT64_C(val) val##i64
#define UINT8_C(val) val##ui8
#define UINT16_C(val) val##ui16
#define UINT32_C(val) val##ui32
#define UINT64_C(val) val##ui64
// 7.18.4.2 Macros for greatest-width integer constants
#define INTMAX_C INT64_C
#define UINTMAX_C UINT64_C
#endif // __STDC_CONSTANT_MACROS ]
#endif // _MSC_STDINT_H_ ]
| 7,728 | 30.165323 | 122 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/mutex.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct malloc_mutex_s malloc_mutex_t;
#ifdef _WIN32
# define MALLOC_MUTEX_INITIALIZER
#elif (defined(JEMALLOC_OS_UNFAIR_LOCK))
# define MALLOC_MUTEX_INITIALIZER \
{OS_UNFAIR_LOCK_INIT, WITNESS_INITIALIZER(WITNESS_RANK_OMIT)}
#elif (defined(JEMALLOC_OSSPIN))
# define MALLOC_MUTEX_INITIALIZER {0, WITNESS_INITIALIZER(WITNESS_RANK_OMIT)}
#elif (defined(JEMALLOC_MUTEX_INIT_CB))
# define MALLOC_MUTEX_INITIALIZER \
{PTHREAD_MUTEX_INITIALIZER, NULL, WITNESS_INITIALIZER(WITNESS_RANK_OMIT)}
#else
# if (defined(JEMALLOC_HAVE_PTHREAD_MUTEX_ADAPTIVE_NP) && \
defined(PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP))
# define MALLOC_MUTEX_TYPE PTHREAD_MUTEX_ADAPTIVE_NP
# define MALLOC_MUTEX_INITIALIZER \
{PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP, \
WITNESS_INITIALIZER(WITNESS_RANK_OMIT)}
# else
# define MALLOC_MUTEX_TYPE PTHREAD_MUTEX_DEFAULT
# define MALLOC_MUTEX_INITIALIZER \
{PTHREAD_MUTEX_INITIALIZER, WITNESS_INITIALIZER(WITNESS_RANK_OMIT)}
# endif
#endif
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
struct malloc_mutex_s {
#ifdef _WIN32
# if _WIN32_WINNT >= 0x0600
SRWLOCK lock;
# else
CRITICAL_SECTION lock;
# endif
#elif (defined(JEMALLOC_OS_UNFAIR_LOCK))
os_unfair_lock lock;
#elif (defined(JEMALLOC_OSSPIN))
OSSpinLock lock;
#elif (defined(JEMALLOC_MUTEX_INIT_CB))
pthread_mutex_t lock;
malloc_mutex_t *postponed_next;
#else
pthread_mutex_t lock;
#endif
witness_t witness;
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#ifdef JEMALLOC_LAZY_LOCK
extern bool isthreaded;
#else
# undef isthreaded /* Undo private_namespace.h definition. */
# define isthreaded true
#endif
bool malloc_mutex_init(malloc_mutex_t *mutex, const char *name,
witness_rank_t rank);
void malloc_mutex_prefork(tsdn_t *tsdn, malloc_mutex_t *mutex);
void malloc_mutex_postfork_parent(tsdn_t *tsdn, malloc_mutex_t *mutex);
void malloc_mutex_postfork_child(tsdn_t *tsdn, malloc_mutex_t *mutex);
bool malloc_mutex_boot(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
void malloc_mutex_lock(tsdn_t *tsdn, malloc_mutex_t *mutex);
void malloc_mutex_unlock(tsdn_t *tsdn, malloc_mutex_t *mutex);
void malloc_mutex_assert_owner(tsdn_t *tsdn, malloc_mutex_t *mutex);
void malloc_mutex_assert_not_owner(tsdn_t *tsdn, malloc_mutex_t *mutex);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_MUTEX_C_))
JEMALLOC_INLINE void
malloc_mutex_lock(tsdn_t *tsdn, malloc_mutex_t *mutex)
{
if (isthreaded) {
witness_assert_not_owner(tsdn, &mutex->witness);
#ifdef _WIN32
# if _WIN32_WINNT >= 0x0600
AcquireSRWLockExclusive(&mutex->lock);
# else
EnterCriticalSection(&mutex->lock);
# endif
#elif (defined(JEMALLOC_OS_UNFAIR_LOCK))
os_unfair_lock_lock(&mutex->lock);
#elif (defined(JEMALLOC_OSSPIN))
OSSpinLockLock(&mutex->lock);
#else
pthread_mutex_lock(&mutex->lock);
#endif
witness_lock(tsdn, &mutex->witness);
}
}
JEMALLOC_INLINE void
malloc_mutex_unlock(tsdn_t *tsdn, malloc_mutex_t *mutex)
{
if (isthreaded) {
witness_unlock(tsdn, &mutex->witness);
#ifdef _WIN32
# if _WIN32_WINNT >= 0x0600
ReleaseSRWLockExclusive(&mutex->lock);
# else
LeaveCriticalSection(&mutex->lock);
# endif
#elif (defined(JEMALLOC_OS_UNFAIR_LOCK))
os_unfair_lock_unlock(&mutex->lock);
#elif (defined(JEMALLOC_OSSPIN))
OSSpinLockUnlock(&mutex->lock);
#else
pthread_mutex_unlock(&mutex->lock);
#endif
}
}
JEMALLOC_INLINE void
malloc_mutex_assert_owner(tsdn_t *tsdn, malloc_mutex_t *mutex)
{
if (isthreaded)
witness_assert_owner(tsdn, &mutex->witness);
}
JEMALLOC_INLINE void
malloc_mutex_assert_not_owner(tsdn_t *tsdn, malloc_mutex_t *mutex)
{
if (isthreaded)
witness_assert_not_owner(tsdn, &mutex->witness);
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 4,264 | 27.817568 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/ctl.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct ctl_node_s ctl_node_t;
typedef struct ctl_named_node_s ctl_named_node_t;
typedef struct ctl_indexed_node_s ctl_indexed_node_t;
typedef struct ctl_arena_stats_s ctl_arena_stats_t;
typedef struct ctl_stats_s ctl_stats_t;
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
struct ctl_node_s {
bool named;
};
struct ctl_named_node_s {
struct ctl_node_s node;
const char *name;
/* If (nchildren == 0), this is a terminal node. */
unsigned nchildren;
const ctl_node_t *children;
int (*ctl)(tsd_t *, const size_t *, size_t, void *,
size_t *, void *, size_t);
};
struct ctl_indexed_node_s {
struct ctl_node_s node;
const ctl_named_node_t *(*index)(tsdn_t *, const size_t *, size_t,
size_t);
};
struct ctl_arena_stats_s {
bool initialized;
unsigned nthreads;
const char *dss;
ssize_t lg_dirty_mult;
ssize_t decay_time;
size_t pactive;
size_t pdirty;
/* The remainder are only populated if config_stats is true. */
arena_stats_t astats;
/* Aggregate stats for small size classes, based on bin stats. */
size_t allocated_small;
uint64_t nmalloc_small;
uint64_t ndalloc_small;
uint64_t nrequests_small;
malloc_bin_stats_t bstats[NBINS];
malloc_large_stats_t *lstats; /* nlclasses elements. */
malloc_huge_stats_t *hstats; /* nhclasses elements. */
};
struct ctl_stats_s {
size_t allocated;
size_t active;
size_t metadata;
size_t resident;
size_t mapped;
size_t retained;
unsigned narenas;
ctl_arena_stats_t *arenas; /* (narenas + 1) elements. */
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
int ctl_byname(tsd_t *tsd, const char *name, void *oldp, size_t *oldlenp,
void *newp, size_t newlen);
int ctl_nametomib(tsdn_t *tsdn, const char *name, size_t *mibp,
size_t *miblenp);
int ctl_bymib(tsd_t *tsd, const size_t *mib, size_t miblen, void *oldp,
size_t *oldlenp, void *newp, size_t newlen);
bool ctl_boot(void);
void ctl_prefork(tsdn_t *tsdn);
void ctl_postfork_parent(tsdn_t *tsdn);
void ctl_postfork_child(tsdn_t *tsdn);
#define xmallctl(name, oldp, oldlenp, newp, newlen) do { \
if (je_mallctl(name, oldp, oldlenp, newp, newlen) \
!= 0) { \
malloc_printf( \
"<jemalloc>: Failure in xmallctl(\"%s\", ...)\n", \
name); \
abort(); \
} \
} while (0)
#define xmallctlnametomib(name, mibp, miblenp) do { \
if (je_mallctlnametomib(name, mibp, miblenp) != 0) { \
malloc_printf("<jemalloc>: Failure in " \
"xmallctlnametomib(\"%s\", ...)\n", name); \
abort(); \
} \
} while (0)
#define xmallctlbymib(mib, miblen, oldp, oldlenp, newp, newlen) do { \
if (je_mallctlbymib(mib, miblen, oldp, oldlenp, newp, \
newlen) != 0) { \
malloc_write( \
"<jemalloc>: Failure in xmallctlbymib()\n"); \
abort(); \
} \
} while (0)
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 3,389 | 27.487395 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/ql.h | /* List definitions. */
#define ql_head(a_type) \
struct { \
a_type *qlh_first; \
}
#define ql_head_initializer(a_head) {NULL}
#define ql_elm(a_type) qr(a_type)
/* List functions. */
#define ql_new(a_head) do { \
(a_head)->qlh_first = NULL; \
} while (0)
#define ql_elm_new(a_elm, a_field) qr_new((a_elm), a_field)
#define ql_first(a_head) ((a_head)->qlh_first)
#define ql_last(a_head, a_field) \
((ql_first(a_head) != NULL) \
? qr_prev(ql_first(a_head), a_field) : NULL)
#define ql_next(a_head, a_elm, a_field) \
((ql_last(a_head, a_field) != (a_elm)) \
? qr_next((a_elm), a_field) : NULL)
#define ql_prev(a_head, a_elm, a_field) \
((ql_first(a_head) != (a_elm)) ? qr_prev((a_elm), a_field) \
: NULL)
#define ql_before_insert(a_head, a_qlelm, a_elm, a_field) do { \
qr_before_insert((a_qlelm), (a_elm), a_field); \
if (ql_first(a_head) == (a_qlelm)) { \
ql_first(a_head) = (a_elm); \
} \
} while (0)
#define ql_after_insert(a_qlelm, a_elm, a_field) \
qr_after_insert((a_qlelm), (a_elm), a_field)
#define ql_head_insert(a_head, a_elm, a_field) do { \
if (ql_first(a_head) != NULL) { \
qr_before_insert(ql_first(a_head), (a_elm), a_field); \
} \
ql_first(a_head) = (a_elm); \
} while (0)
#define ql_tail_insert(a_head, a_elm, a_field) do { \
if (ql_first(a_head) != NULL) { \
qr_before_insert(ql_first(a_head), (a_elm), a_field); \
} \
ql_first(a_head) = qr_next((a_elm), a_field); \
} while (0)
#define ql_remove(a_head, a_elm, a_field) do { \
if (ql_first(a_head) == (a_elm)) { \
ql_first(a_head) = qr_next(ql_first(a_head), a_field); \
} \
if (ql_first(a_head) != (a_elm)) { \
qr_remove((a_elm), a_field); \
} else { \
ql_first(a_head) = NULL; \
} \
} while (0)
#define ql_head_remove(a_head, a_type, a_field) do { \
a_type *t = ql_first(a_head); \
ql_remove((a_head), t, a_field); \
} while (0)
#define ql_tail_remove(a_head, a_type, a_field) do { \
a_type *t = ql_last(a_head, a_field); \
ql_remove((a_head), t, a_field); \
} while (0)
#define ql_foreach(a_var, a_head, a_field) \
qr_foreach((a_var), ql_first(a_head), a_field)
#define ql_reverse_foreach(a_var, a_head, a_field) \
qr_reverse_foreach((a_var), ql_first(a_head), a_field)
| 2,369 | 27.902439 | 65 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/nstime.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct nstime_s nstime_t;
/* Maximum supported number of seconds (~584 years). */
#define NSTIME_SEC_MAX KQU(18446744072)
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
struct nstime_s {
uint64_t ns;
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
void nstime_init(nstime_t *time, uint64_t ns);
void nstime_init2(nstime_t *time, uint64_t sec, uint64_t nsec);
uint64_t nstime_ns(const nstime_t *time);
uint64_t nstime_sec(const nstime_t *time);
uint64_t nstime_nsec(const nstime_t *time);
void nstime_copy(nstime_t *time, const nstime_t *source);
int nstime_compare(const nstime_t *a, const nstime_t *b);
void nstime_add(nstime_t *time, const nstime_t *addend);
void nstime_subtract(nstime_t *time, const nstime_t *subtrahend);
void nstime_imultiply(nstime_t *time, uint64_t multiplier);
void nstime_idivide(nstime_t *time, uint64_t divisor);
uint64_t nstime_divide(const nstime_t *time, const nstime_t *divisor);
#ifdef JEMALLOC_JET
typedef bool (nstime_monotonic_t)(void);
extern nstime_monotonic_t *nstime_monotonic;
typedef bool (nstime_update_t)(nstime_t *);
extern nstime_update_t *nstime_update;
#else
bool nstime_monotonic(void);
bool nstime_update(nstime_t *time);
#endif
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 1,738 | 34.489796 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/witness.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct witness_s witness_t;
typedef unsigned witness_rank_t;
typedef ql_head(witness_t) witness_list_t;
typedef int witness_comp_t (const witness_t *, const witness_t *);
/*
* Lock ranks. Witnesses with rank WITNESS_RANK_OMIT are completely ignored by
* the witness machinery.
*/
#define WITNESS_RANK_OMIT 0U
#define WITNESS_RANK_INIT 1U
#define WITNESS_RANK_CTL 1U
#define WITNESS_RANK_ARENAS 2U
#define WITNESS_RANK_PROF_DUMP 3U
#define WITNESS_RANK_PROF_BT2GCTX 4U
#define WITNESS_RANK_PROF_TDATAS 5U
#define WITNESS_RANK_PROF_TDATA 6U
#define WITNESS_RANK_PROF_GCTX 7U
#define WITNESS_RANK_ARENA 8U
#define WITNESS_RANK_ARENA_CHUNKS 9U
#define WITNESS_RANK_ARENA_NODE_CACHE 10
#define WITNESS_RANK_BASE 11U
#define WITNESS_RANK_LEAF 0xffffffffU
#define WITNESS_RANK_ARENA_BIN WITNESS_RANK_LEAF
#define WITNESS_RANK_ARENA_HUGE WITNESS_RANK_LEAF
#define WITNESS_RANK_DSS WITNESS_RANK_LEAF
#define WITNESS_RANK_PROF_ACTIVE WITNESS_RANK_LEAF
#define WITNESS_RANK_PROF_DUMP_SEQ WITNESS_RANK_LEAF
#define WITNESS_RANK_PROF_GDUMP WITNESS_RANK_LEAF
#define WITNESS_RANK_PROF_NEXT_THR_UID WITNESS_RANK_LEAF
#define WITNESS_RANK_PROF_THREAD_ACTIVE_INIT WITNESS_RANK_LEAF
#define WITNESS_INITIALIZER(rank) {"initializer", rank, NULL, {NULL, NULL}}
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
struct witness_s {
/* Name, used for printing lock order reversal messages. */
const char *name;
/*
* Witness rank, where 0 is lowest and UINT_MAX is highest. Witnesses
* must be acquired in order of increasing rank.
*/
witness_rank_t rank;
/*
* If two witnesses are of equal rank and they have the samp comp
* function pointer, it is called as a last attempt to differentiate
* between witnesses of equal rank.
*/
witness_comp_t *comp;
/* Linkage for thread's currently owned locks. */
ql_elm(witness_t) link;
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
void witness_init(witness_t *witness, const char *name, witness_rank_t rank,
witness_comp_t *comp);
#ifdef JEMALLOC_JET
typedef void (witness_lock_error_t)(const witness_list_t *, const witness_t *);
extern witness_lock_error_t *witness_lock_error;
#else
void witness_lock_error(const witness_list_t *witnesses,
const witness_t *witness);
#endif
#ifdef JEMALLOC_JET
typedef void (witness_owner_error_t)(const witness_t *);
extern witness_owner_error_t *witness_owner_error;
#else
void witness_owner_error(const witness_t *witness);
#endif
#ifdef JEMALLOC_JET
typedef void (witness_not_owner_error_t)(const witness_t *);
extern witness_not_owner_error_t *witness_not_owner_error;
#else
void witness_not_owner_error(const witness_t *witness);
#endif
#ifdef JEMALLOC_JET
typedef void (witness_lockless_error_t)(const witness_list_t *);
extern witness_lockless_error_t *witness_lockless_error;
#else
void witness_lockless_error(const witness_list_t *witnesses);
#endif
void witnesses_cleanup(tsd_t *tsd);
void witness_fork_cleanup(tsd_t *tsd);
void witness_prefork(tsd_t *tsd);
void witness_postfork_parent(tsd_t *tsd);
void witness_postfork_child(tsd_t *tsd);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
bool witness_owner(tsd_t *tsd, const witness_t *witness);
void witness_assert_owner(tsdn_t *tsdn, const witness_t *witness);
void witness_assert_not_owner(tsdn_t *tsdn, const witness_t *witness);
void witness_assert_lockless(tsdn_t *tsdn);
void witness_lock(tsdn_t *tsdn, witness_t *witness);
void witness_unlock(tsdn_t *tsdn, witness_t *witness);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_MUTEX_C_))
JEMALLOC_INLINE bool
witness_owner(tsd_t *tsd, const witness_t *witness)
{
witness_list_t *witnesses;
witness_t *w;
witnesses = tsd_witnessesp_get(tsd);
ql_foreach(w, witnesses, link) {
if (w == witness)
return (true);
}
return (false);
}
JEMALLOC_INLINE void
witness_assert_owner(tsdn_t *tsdn, const witness_t *witness)
{
tsd_t *tsd;
if (!config_debug)
return;
if (tsdn_null(tsdn))
return;
tsd = tsdn_tsd(tsdn);
if (witness->rank == WITNESS_RANK_OMIT)
return;
if (witness_owner(tsd, witness))
return;
witness_owner_error(witness);
}
JEMALLOC_INLINE void
witness_assert_not_owner(tsdn_t *tsdn, const witness_t *witness)
{
tsd_t *tsd;
witness_list_t *witnesses;
witness_t *w;
if (!config_debug)
return;
if (tsdn_null(tsdn))
return;
tsd = tsdn_tsd(tsdn);
if (witness->rank == WITNESS_RANK_OMIT)
return;
witnesses = tsd_witnessesp_get(tsd);
ql_foreach(w, witnesses, link) {
if (w == witness)
witness_not_owner_error(witness);
}
}
JEMALLOC_INLINE void
witness_assert_lockless(tsdn_t *tsdn)
{
tsd_t *tsd;
witness_list_t *witnesses;
witness_t *w;
if (!config_debug)
return;
if (tsdn_null(tsdn))
return;
tsd = tsdn_tsd(tsdn);
witnesses = tsd_witnessesp_get(tsd);
w = ql_last(witnesses, link);
if (w != NULL)
witness_lockless_error(witnesses);
}
JEMALLOC_INLINE void
witness_lock(tsdn_t *tsdn, witness_t *witness)
{
tsd_t *tsd;
witness_list_t *witnesses;
witness_t *w;
if (!config_debug)
return;
if (tsdn_null(tsdn))
return;
tsd = tsdn_tsd(tsdn);
if (witness->rank == WITNESS_RANK_OMIT)
return;
witness_assert_not_owner(tsdn, witness);
witnesses = tsd_witnessesp_get(tsd);
w = ql_last(witnesses, link);
if (w == NULL) {
/* No other locks; do nothing. */
} else if (tsd_witness_fork_get(tsd) && w->rank <= witness->rank) {
/* Forking, and relaxed ranking satisfied. */
} else if (w->rank > witness->rank) {
/* Not forking, rank order reversal. */
witness_lock_error(witnesses, witness);
} else if (w->rank == witness->rank && (w->comp == NULL || w->comp !=
witness->comp || w->comp(w, witness) > 0)) {
/*
* Missing/incompatible comparison function, or comparison
* function indicates rank order reversal.
*/
witness_lock_error(witnesses, witness);
}
ql_elm_new(witness, link);
ql_tail_insert(witnesses, witness, link);
}
JEMALLOC_INLINE void
witness_unlock(tsdn_t *tsdn, witness_t *witness)
{
tsd_t *tsd;
witness_list_t *witnesses;
if (!config_debug)
return;
if (tsdn_null(tsdn))
return;
tsd = tsdn_tsd(tsdn);
if (witness->rank == WITNESS_RANK_OMIT)
return;
/*
* Check whether owner before removal, rather than relying on
* witness_assert_owner() to abort, so that unit tests can test this
* function's failure mode without causing undefined behavior.
*/
if (witness_owner(tsd, witness)) {
witnesses = tsd_witnessesp_get(tsd);
ql_remove(witnesses, witness, link);
} else
witness_assert_owner(tsdn, witness);
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 7,051 | 25.411985 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/qr.h | /* Ring definitions. */
#define qr(a_type) \
struct { \
a_type *qre_next; \
a_type *qre_prev; \
}
/* Ring functions. */
#define qr_new(a_qr, a_field) do { \
(a_qr)->a_field.qre_next = (a_qr); \
(a_qr)->a_field.qre_prev = (a_qr); \
} while (0)
#define qr_next(a_qr, a_field) ((a_qr)->a_field.qre_next)
#define qr_prev(a_qr, a_field) ((a_qr)->a_field.qre_prev)
#define qr_before_insert(a_qrelm, a_qr, a_field) do { \
(a_qr)->a_field.qre_prev = (a_qrelm)->a_field.qre_prev; \
(a_qr)->a_field.qre_next = (a_qrelm); \
(a_qr)->a_field.qre_prev->a_field.qre_next = (a_qr); \
(a_qrelm)->a_field.qre_prev = (a_qr); \
} while (0)
#define qr_after_insert(a_qrelm, a_qr, a_field) \
do \
{ \
(a_qr)->a_field.qre_next = (a_qrelm)->a_field.qre_next; \
(a_qr)->a_field.qre_prev = (a_qrelm); \
(a_qr)->a_field.qre_next->a_field.qre_prev = (a_qr); \
(a_qrelm)->a_field.qre_next = (a_qr); \
} while (0)
#define qr_meld(a_qr_a, a_qr_b, a_field) do { \
void *t; \
(a_qr_a)->a_field.qre_prev->a_field.qre_next = (a_qr_b); \
(a_qr_b)->a_field.qre_prev->a_field.qre_next = (a_qr_a); \
t = (a_qr_a)->a_field.qre_prev; \
(a_qr_a)->a_field.qre_prev = (a_qr_b)->a_field.qre_prev; \
(a_qr_b)->a_field.qre_prev = t; \
} while (0)
/*
* qr_meld() and qr_split() are functionally equivalent, so there's no need to
* have two copies of the code.
*/
#define qr_split(a_qr_a, a_qr_b, a_field) \
qr_meld((a_qr_a), (a_qr_b), a_field)
#define qr_remove(a_qr, a_field) do { \
(a_qr)->a_field.qre_prev->a_field.qre_next \
= (a_qr)->a_field.qre_next; \
(a_qr)->a_field.qre_next->a_field.qre_prev \
= (a_qr)->a_field.qre_prev; \
(a_qr)->a_field.qre_next = (a_qr); \
(a_qr)->a_field.qre_prev = (a_qr); \
} while (0)
#define qr_foreach(var, a_qr, a_field) \
for ((var) = (a_qr); \
(var) != NULL; \
(var) = (((var)->a_field.qre_next != (a_qr)) \
? (var)->a_field.qre_next : NULL))
#define qr_reverse_foreach(var, a_qr, a_field) \
for ((var) = ((a_qr) != NULL) ? qr_prev(a_qr, a_field) : NULL; \
(var) != NULL; \
(var) = (((var) != (a_qr)) \
? (var)->a_field.qre_prev : NULL))
| 2,259 | 31.285714 | 78 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/spin.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct spin_s spin_t;
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
struct spin_s {
unsigned iteration;
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
void spin_init(spin_t *spin);
void spin_adaptive(spin_t *spin);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_SPIN_C_))
JEMALLOC_INLINE void
spin_init(spin_t *spin)
{
spin->iteration = 0;
}
JEMALLOC_INLINE void
spin_adaptive(spin_t *spin)
{
volatile uint64_t i;
for (i = 0; i < (KQU(1) << spin->iteration); i++)
CPU_SPINWAIT;
if (spin->iteration < 63)
spin->iteration++;
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 1,154 | 21.211538 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/smoothstep.h | /*
* This file was generated by the following command:
* sh smoothstep.sh smoother 200 24 3 15
*/
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
/*
* This header defines a precomputed table based on the smoothstep family of
* sigmoidal curves (https://en.wikipedia.org/wiki/Smoothstep) that grow from 0
* to 1 in 0 <= x <= 1. The table is stored as integer fixed point values so
* that floating point math can be avoided.
*
* 3 2
* smoothstep(x) = -2x + 3x
*
* 5 4 3
* smootherstep(x) = 6x - 15x + 10x
*
* 7 6 5 4
* smootheststep(x) = -20x + 70x - 84x + 35x
*/
#define SMOOTHSTEP_VARIANT "smoother"
#define SMOOTHSTEP_NSTEPS 200
#define SMOOTHSTEP_BFP 24
#define SMOOTHSTEP \
/* STEP(step, h, x, y) */ \
STEP( 1, UINT64_C(0x0000000000000014), 0.005, 0.000001240643750) \
STEP( 2, UINT64_C(0x00000000000000a5), 0.010, 0.000009850600000) \
STEP( 3, UINT64_C(0x0000000000000229), 0.015, 0.000032995181250) \
STEP( 4, UINT64_C(0x0000000000000516), 0.020, 0.000077619200000) \
STEP( 5, UINT64_C(0x00000000000009dc), 0.025, 0.000150449218750) \
STEP( 6, UINT64_C(0x00000000000010e8), 0.030, 0.000257995800000) \
STEP( 7, UINT64_C(0x0000000000001aa4), 0.035, 0.000406555756250) \
STEP( 8, UINT64_C(0x0000000000002777), 0.040, 0.000602214400000) \
STEP( 9, UINT64_C(0x00000000000037c2), 0.045, 0.000850847793750) \
STEP( 10, UINT64_C(0x0000000000004be6), 0.050, 0.001158125000000) \
STEP( 11, UINT64_C(0x000000000000643c), 0.055, 0.001529510331250) \
STEP( 12, UINT64_C(0x000000000000811f), 0.060, 0.001970265600000) \
STEP( 13, UINT64_C(0x000000000000a2e2), 0.065, 0.002485452368750) \
STEP( 14, UINT64_C(0x000000000000c9d8), 0.070, 0.003079934200000) \
STEP( 15, UINT64_C(0x000000000000f64f), 0.075, 0.003758378906250) \
STEP( 16, UINT64_C(0x0000000000012891), 0.080, 0.004525260800000) \
STEP( 17, UINT64_C(0x00000000000160e7), 0.085, 0.005384862943750) \
STEP( 18, UINT64_C(0x0000000000019f95), 0.090, 0.006341279400000) \
STEP( 19, UINT64_C(0x000000000001e4dc), 0.095, 0.007398417481250) \
STEP( 20, UINT64_C(0x00000000000230fc), 0.100, 0.008560000000000) \
STEP( 21, UINT64_C(0x0000000000028430), 0.105, 0.009829567518750) \
STEP( 22, UINT64_C(0x000000000002deb0), 0.110, 0.011210480600000) \
STEP( 23, UINT64_C(0x00000000000340b1), 0.115, 0.012705922056250) \
STEP( 24, UINT64_C(0x000000000003aa67), 0.120, 0.014318899200000) \
STEP( 25, UINT64_C(0x0000000000041c00), 0.125, 0.016052246093750) \
STEP( 26, UINT64_C(0x00000000000495a8), 0.130, 0.017908625800000) \
STEP( 27, UINT64_C(0x000000000005178b), 0.135, 0.019890532631250) \
STEP( 28, UINT64_C(0x000000000005a1cf), 0.140, 0.022000294400000) \
STEP( 29, UINT64_C(0x0000000000063498), 0.145, 0.024240074668750) \
STEP( 30, UINT64_C(0x000000000006d009), 0.150, 0.026611875000000) \
STEP( 31, UINT64_C(0x000000000007743f), 0.155, 0.029117537206250) \
STEP( 32, UINT64_C(0x0000000000082157), 0.160, 0.031758745600000) \
STEP( 33, UINT64_C(0x000000000008d76b), 0.165, 0.034537029243750) \
STEP( 34, UINT64_C(0x0000000000099691), 0.170, 0.037453764200000) \
STEP( 35, UINT64_C(0x00000000000a5edf), 0.175, 0.040510175781250) \
STEP( 36, UINT64_C(0x00000000000b3067), 0.180, 0.043707340800000) \
STEP( 37, UINT64_C(0x00000000000c0b38), 0.185, 0.047046189818750) \
STEP( 38, UINT64_C(0x00000000000cef5e), 0.190, 0.050527509400000) \
STEP( 39, UINT64_C(0x00000000000ddce6), 0.195, 0.054151944356250) \
STEP( 40, UINT64_C(0x00000000000ed3d8), 0.200, 0.057920000000000) \
STEP( 41, UINT64_C(0x00000000000fd439), 0.205, 0.061832044393750) \
STEP( 42, UINT64_C(0x000000000010de0e), 0.210, 0.065888310600000) \
STEP( 43, UINT64_C(0x000000000011f158), 0.215, 0.070088898931250) \
STEP( 44, UINT64_C(0x0000000000130e17), 0.220, 0.074433779200000) \
STEP( 45, UINT64_C(0x0000000000143448), 0.225, 0.078922792968750) \
STEP( 46, UINT64_C(0x00000000001563e7), 0.230, 0.083555655800000) \
STEP( 47, UINT64_C(0x0000000000169cec), 0.235, 0.088331959506250) \
STEP( 48, UINT64_C(0x000000000017df4f), 0.240, 0.093251174400000) \
STEP( 49, UINT64_C(0x0000000000192b04), 0.245, 0.098312651543750) \
STEP( 50, UINT64_C(0x00000000001a8000), 0.250, 0.103515625000000) \
STEP( 51, UINT64_C(0x00000000001bde32), 0.255, 0.108859214081250) \
STEP( 52, UINT64_C(0x00000000001d458b), 0.260, 0.114342425600000) \
STEP( 53, UINT64_C(0x00000000001eb5f8), 0.265, 0.119964156118750) \
STEP( 54, UINT64_C(0x0000000000202f65), 0.270, 0.125723194200000) \
STEP( 55, UINT64_C(0x000000000021b1bb), 0.275, 0.131618222656250) \
STEP( 56, UINT64_C(0x0000000000233ce3), 0.280, 0.137647820800000) \
STEP( 57, UINT64_C(0x000000000024d0c3), 0.285, 0.143810466693750) \
STEP( 58, UINT64_C(0x0000000000266d40), 0.290, 0.150104539400000) \
STEP( 59, UINT64_C(0x000000000028123d), 0.295, 0.156528321231250) \
STEP( 60, UINT64_C(0x000000000029bf9c), 0.300, 0.163080000000000) \
STEP( 61, UINT64_C(0x00000000002b753d), 0.305, 0.169757671268750) \
STEP( 62, UINT64_C(0x00000000002d32fe), 0.310, 0.176559340600000) \
STEP( 63, UINT64_C(0x00000000002ef8bc), 0.315, 0.183482925806250) \
STEP( 64, UINT64_C(0x000000000030c654), 0.320, 0.190526259200000) \
STEP( 65, UINT64_C(0x0000000000329b9f), 0.325, 0.197687089843750) \
STEP( 66, UINT64_C(0x0000000000347875), 0.330, 0.204963085800000) \
STEP( 67, UINT64_C(0x0000000000365cb0), 0.335, 0.212351836381250) \
STEP( 68, UINT64_C(0x0000000000384825), 0.340, 0.219850854400000) \
STEP( 69, UINT64_C(0x00000000003a3aa8), 0.345, 0.227457578418750) \
STEP( 70, UINT64_C(0x00000000003c340f), 0.350, 0.235169375000000) \
STEP( 71, UINT64_C(0x00000000003e342b), 0.355, 0.242983540956250) \
STEP( 72, UINT64_C(0x0000000000403ace), 0.360, 0.250897305600000) \
STEP( 73, UINT64_C(0x00000000004247c8), 0.365, 0.258907832993750) \
STEP( 74, UINT64_C(0x0000000000445ae9), 0.370, 0.267012224200000) \
STEP( 75, UINT64_C(0x0000000000467400), 0.375, 0.275207519531250) \
STEP( 76, UINT64_C(0x00000000004892d8), 0.380, 0.283490700800000) \
STEP( 77, UINT64_C(0x00000000004ab740), 0.385, 0.291858693568750) \
STEP( 78, UINT64_C(0x00000000004ce102), 0.390, 0.300308369400000) \
STEP( 79, UINT64_C(0x00000000004f0fe9), 0.395, 0.308836548106250) \
STEP( 80, UINT64_C(0x00000000005143bf), 0.400, 0.317440000000000) \
STEP( 81, UINT64_C(0x0000000000537c4d), 0.405, 0.326115448143750) \
STEP( 82, UINT64_C(0x000000000055b95b), 0.410, 0.334859570600000) \
STEP( 83, UINT64_C(0x000000000057fab1), 0.415, 0.343669002681250) \
STEP( 84, UINT64_C(0x00000000005a4015), 0.420, 0.352540339200000) \
STEP( 85, UINT64_C(0x00000000005c894e), 0.425, 0.361470136718750) \
STEP( 86, UINT64_C(0x00000000005ed622), 0.430, 0.370454915800000) \
STEP( 87, UINT64_C(0x0000000000612655), 0.435, 0.379491163256250) \
STEP( 88, UINT64_C(0x00000000006379ac), 0.440, 0.388575334400000) \
STEP( 89, UINT64_C(0x000000000065cfeb), 0.445, 0.397703855293750) \
STEP( 90, UINT64_C(0x00000000006828d6), 0.450, 0.406873125000000) \
STEP( 91, UINT64_C(0x00000000006a842f), 0.455, 0.416079517831250) \
STEP( 92, UINT64_C(0x00000000006ce1bb), 0.460, 0.425319385600000) \
STEP( 93, UINT64_C(0x00000000006f413a), 0.465, 0.434589059868750) \
STEP( 94, UINT64_C(0x000000000071a270), 0.470, 0.443884854200000) \
STEP( 95, UINT64_C(0x000000000074051d), 0.475, 0.453203066406250) \
STEP( 96, UINT64_C(0x0000000000766905), 0.480, 0.462539980800000) \
STEP( 97, UINT64_C(0x000000000078cde7), 0.485, 0.471891870443750) \
STEP( 98, UINT64_C(0x00000000007b3387), 0.490, 0.481254999400000) \
STEP( 99, UINT64_C(0x00000000007d99a4), 0.495, 0.490625624981250) \
STEP( 100, UINT64_C(0x0000000000800000), 0.500, 0.500000000000000) \
STEP( 101, UINT64_C(0x000000000082665b), 0.505, 0.509374375018750) \
STEP( 102, UINT64_C(0x000000000084cc78), 0.510, 0.518745000600000) \
STEP( 103, UINT64_C(0x0000000000873218), 0.515, 0.528108129556250) \
STEP( 104, UINT64_C(0x00000000008996fa), 0.520, 0.537460019200000) \
STEP( 105, UINT64_C(0x00000000008bfae2), 0.525, 0.546796933593750) \
STEP( 106, UINT64_C(0x00000000008e5d8f), 0.530, 0.556115145800000) \
STEP( 107, UINT64_C(0x000000000090bec5), 0.535, 0.565410940131250) \
STEP( 108, UINT64_C(0x0000000000931e44), 0.540, 0.574680614400000) \
STEP( 109, UINT64_C(0x0000000000957bd0), 0.545, 0.583920482168750) \
STEP( 110, UINT64_C(0x000000000097d729), 0.550, 0.593126875000000) \
STEP( 111, UINT64_C(0x00000000009a3014), 0.555, 0.602296144706250) \
STEP( 112, UINT64_C(0x00000000009c8653), 0.560, 0.611424665600000) \
STEP( 113, UINT64_C(0x00000000009ed9aa), 0.565, 0.620508836743750) \
STEP( 114, UINT64_C(0x0000000000a129dd), 0.570, 0.629545084200000) \
STEP( 115, UINT64_C(0x0000000000a376b1), 0.575, 0.638529863281250) \
STEP( 116, UINT64_C(0x0000000000a5bfea), 0.580, 0.647459660800000) \
STEP( 117, UINT64_C(0x0000000000a8054e), 0.585, 0.656330997318750) \
STEP( 118, UINT64_C(0x0000000000aa46a4), 0.590, 0.665140429400000) \
STEP( 119, UINT64_C(0x0000000000ac83b2), 0.595, 0.673884551856250) \
STEP( 120, UINT64_C(0x0000000000aebc40), 0.600, 0.682560000000000) \
STEP( 121, UINT64_C(0x0000000000b0f016), 0.605, 0.691163451893750) \
STEP( 122, UINT64_C(0x0000000000b31efd), 0.610, 0.699691630600000) \
STEP( 123, UINT64_C(0x0000000000b548bf), 0.615, 0.708141306431250) \
STEP( 124, UINT64_C(0x0000000000b76d27), 0.620, 0.716509299200000) \
STEP( 125, UINT64_C(0x0000000000b98c00), 0.625, 0.724792480468750) \
STEP( 126, UINT64_C(0x0000000000bba516), 0.630, 0.732987775800000) \
STEP( 127, UINT64_C(0x0000000000bdb837), 0.635, 0.741092167006250) \
STEP( 128, UINT64_C(0x0000000000bfc531), 0.640, 0.749102694400000) \
STEP( 129, UINT64_C(0x0000000000c1cbd4), 0.645, 0.757016459043750) \
STEP( 130, UINT64_C(0x0000000000c3cbf0), 0.650, 0.764830625000000) \
STEP( 131, UINT64_C(0x0000000000c5c557), 0.655, 0.772542421581250) \
STEP( 132, UINT64_C(0x0000000000c7b7da), 0.660, 0.780149145600000) \
STEP( 133, UINT64_C(0x0000000000c9a34f), 0.665, 0.787648163618750) \
STEP( 134, UINT64_C(0x0000000000cb878a), 0.670, 0.795036914200000) \
STEP( 135, UINT64_C(0x0000000000cd6460), 0.675, 0.802312910156250) \
STEP( 136, UINT64_C(0x0000000000cf39ab), 0.680, 0.809473740800000) \
STEP( 137, UINT64_C(0x0000000000d10743), 0.685, 0.816517074193750) \
STEP( 138, UINT64_C(0x0000000000d2cd01), 0.690, 0.823440659400000) \
STEP( 139, UINT64_C(0x0000000000d48ac2), 0.695, 0.830242328731250) \
STEP( 140, UINT64_C(0x0000000000d64063), 0.700, 0.836920000000000) \
STEP( 141, UINT64_C(0x0000000000d7edc2), 0.705, 0.843471678768750) \
STEP( 142, UINT64_C(0x0000000000d992bf), 0.710, 0.849895460600000) \
STEP( 143, UINT64_C(0x0000000000db2f3c), 0.715, 0.856189533306250) \
STEP( 144, UINT64_C(0x0000000000dcc31c), 0.720, 0.862352179200000) \
STEP( 145, UINT64_C(0x0000000000de4e44), 0.725, 0.868381777343750) \
STEP( 146, UINT64_C(0x0000000000dfd09a), 0.730, 0.874276805800000) \
STEP( 147, UINT64_C(0x0000000000e14a07), 0.735, 0.880035843881250) \
STEP( 148, UINT64_C(0x0000000000e2ba74), 0.740, 0.885657574400000) \
STEP( 149, UINT64_C(0x0000000000e421cd), 0.745, 0.891140785918750) \
STEP( 150, UINT64_C(0x0000000000e58000), 0.750, 0.896484375000000) \
STEP( 151, UINT64_C(0x0000000000e6d4fb), 0.755, 0.901687348456250) \
STEP( 152, UINT64_C(0x0000000000e820b0), 0.760, 0.906748825600000) \
STEP( 153, UINT64_C(0x0000000000e96313), 0.765, 0.911668040493750) \
STEP( 154, UINT64_C(0x0000000000ea9c18), 0.770, 0.916444344200000) \
STEP( 155, UINT64_C(0x0000000000ebcbb7), 0.775, 0.921077207031250) \
STEP( 156, UINT64_C(0x0000000000ecf1e8), 0.780, 0.925566220800000) \
STEP( 157, UINT64_C(0x0000000000ee0ea7), 0.785, 0.929911101068750) \
STEP( 158, UINT64_C(0x0000000000ef21f1), 0.790, 0.934111689400000) \
STEP( 159, UINT64_C(0x0000000000f02bc6), 0.795, 0.938167955606250) \
STEP( 160, UINT64_C(0x0000000000f12c27), 0.800, 0.942080000000000) \
STEP( 161, UINT64_C(0x0000000000f22319), 0.805, 0.945848055643750) \
STEP( 162, UINT64_C(0x0000000000f310a1), 0.810, 0.949472490600000) \
STEP( 163, UINT64_C(0x0000000000f3f4c7), 0.815, 0.952953810181250) \
STEP( 164, UINT64_C(0x0000000000f4cf98), 0.820, 0.956292659200000) \
STEP( 165, UINT64_C(0x0000000000f5a120), 0.825, 0.959489824218750) \
STEP( 166, UINT64_C(0x0000000000f6696e), 0.830, 0.962546235800000) \
STEP( 167, UINT64_C(0x0000000000f72894), 0.835, 0.965462970756250) \
STEP( 168, UINT64_C(0x0000000000f7dea8), 0.840, 0.968241254400000) \
STEP( 169, UINT64_C(0x0000000000f88bc0), 0.845, 0.970882462793750) \
STEP( 170, UINT64_C(0x0000000000f92ff6), 0.850, 0.973388125000000) \
STEP( 171, UINT64_C(0x0000000000f9cb67), 0.855, 0.975759925331250) \
STEP( 172, UINT64_C(0x0000000000fa5e30), 0.860, 0.977999705600000) \
STEP( 173, UINT64_C(0x0000000000fae874), 0.865, 0.980109467368750) \
STEP( 174, UINT64_C(0x0000000000fb6a57), 0.870, 0.982091374200000) \
STEP( 175, UINT64_C(0x0000000000fbe400), 0.875, 0.983947753906250) \
STEP( 176, UINT64_C(0x0000000000fc5598), 0.880, 0.985681100800000) \
STEP( 177, UINT64_C(0x0000000000fcbf4e), 0.885, 0.987294077943750) \
STEP( 178, UINT64_C(0x0000000000fd214f), 0.890, 0.988789519400000) \
STEP( 179, UINT64_C(0x0000000000fd7bcf), 0.895, 0.990170432481250) \
STEP( 180, UINT64_C(0x0000000000fdcf03), 0.900, 0.991440000000000) \
STEP( 181, UINT64_C(0x0000000000fe1b23), 0.905, 0.992601582518750) \
STEP( 182, UINT64_C(0x0000000000fe606a), 0.910, 0.993658720600000) \
STEP( 183, UINT64_C(0x0000000000fe9f18), 0.915, 0.994615137056250) \
STEP( 184, UINT64_C(0x0000000000fed76e), 0.920, 0.995474739200000) \
STEP( 185, UINT64_C(0x0000000000ff09b0), 0.925, 0.996241621093750) \
STEP( 186, UINT64_C(0x0000000000ff3627), 0.930, 0.996920065800000) \
STEP( 187, UINT64_C(0x0000000000ff5d1d), 0.935, 0.997514547631250) \
STEP( 188, UINT64_C(0x0000000000ff7ee0), 0.940, 0.998029734400000) \
STEP( 189, UINT64_C(0x0000000000ff9bc3), 0.945, 0.998470489668750) \
STEP( 190, UINT64_C(0x0000000000ffb419), 0.950, 0.998841875000000) \
STEP( 191, UINT64_C(0x0000000000ffc83d), 0.955, 0.999149152206250) \
STEP( 192, UINT64_C(0x0000000000ffd888), 0.960, 0.999397785600000) \
STEP( 193, UINT64_C(0x0000000000ffe55b), 0.965, 0.999593444243750) \
STEP( 194, UINT64_C(0x0000000000ffef17), 0.970, 0.999742004200000) \
STEP( 195, UINT64_C(0x0000000000fff623), 0.975, 0.999849550781250) \
STEP( 196, UINT64_C(0x0000000000fffae9), 0.980, 0.999922380800000) \
STEP( 197, UINT64_C(0x0000000000fffdd6), 0.985, 0.999967004818750) \
STEP( 198, UINT64_C(0x0000000000ffff5a), 0.990, 0.999990149400000) \
STEP( 199, UINT64_C(0x0000000000ffffeb), 0.995, 0.999998759356250) \
STEP( 200, UINT64_C(0x0000000001000000), 1.000, 1.000000000000000) \
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 16,061 | 64.02834 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/chunk_mmap.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
void *chunk_alloc_mmap(void *new_addr, size_t size, size_t alignment,
bool *zero, bool *commit);
bool chunk_dalloc_mmap(void *chunk, size_t size);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 789 | 34.909091 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/chunk.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
/*
* Size and alignment of memory chunks that are allocated by the OS's virtual
* memory system.
*/
#define LG_CHUNK_DEFAULT 21
/* Return the chunk address for allocation address a. */
#define CHUNK_ADDR2BASE(a) \
((void *)((uintptr_t)(a) & ~chunksize_mask))
/* Return the chunk offset of address a. */
#define CHUNK_ADDR2OFFSET(a) \
((size_t)((uintptr_t)(a) & chunksize_mask))
/* Return the smallest chunk multiple that is >= s. */
#define CHUNK_CEILING(s) \
(((s) + chunksize_mask) & ~chunksize_mask)
#define CHUNK_HOOKS_INITIALIZER { \
NULL, \
NULL, \
NULL, \
NULL, \
NULL, \
NULL, \
NULL \
}
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
extern size_t opt_lg_chunk;
extern const char *opt_dss;
extern rtree_t chunks_rtree;
extern size_t chunksize;
extern size_t chunksize_mask; /* (chunksize - 1). */
extern size_t chunk_npages;
extern const chunk_hooks_t chunk_hooks_default;
chunk_hooks_t chunk_hooks_get(tsdn_t *tsdn, arena_t *arena);
chunk_hooks_t chunk_hooks_set(tsdn_t *tsdn, arena_t *arena,
const chunk_hooks_t *chunk_hooks);
bool chunk_register(tsdn_t *tsdn, const void *chunk,
const extent_node_t *node);
void chunk_deregister(const void *chunk, const extent_node_t *node);
void *chunk_alloc_base(size_t size);
void *chunk_alloc_cache(tsdn_t *tsdn, arena_t *arena,
chunk_hooks_t *chunk_hooks, void *new_addr, size_t size, size_t alignment,
size_t *sn, bool *zero, bool *commit, bool dalloc_node);
void *chunk_alloc_wrapper(tsdn_t *tsdn, arena_t *arena,
chunk_hooks_t *chunk_hooks, void *new_addr, size_t size, size_t alignment,
size_t *sn, bool *zero, bool *commit);
void chunk_dalloc_cache(tsdn_t *tsdn, arena_t *arena,
chunk_hooks_t *chunk_hooks, void *chunk, size_t size, size_t sn,
bool committed);
void chunk_dalloc_wrapper(tsdn_t *tsdn, arena_t *arena,
chunk_hooks_t *chunk_hooks, void *chunk, size_t size, size_t sn,
bool zeroed, bool committed);
bool chunk_purge_wrapper(tsdn_t *tsdn, arena_t *arena,
chunk_hooks_t *chunk_hooks, void *chunk, size_t size, size_t offset,
size_t length);
bool chunk_boot(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
extent_node_t *chunk_lookup(const void *chunk, bool dependent);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_CHUNK_C_))
JEMALLOC_INLINE extent_node_t *
chunk_lookup(const void *ptr, bool dependent)
{
return (rtree_get(&chunks_rtree, (uintptr_t)ptr, dependent));
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
#include "jemalloc/internal/chunk_dss.h"
#include "jemalloc/internal/chunk_mmap.h"
| 3,196 | 31.622449 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/ckh.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct ckh_s ckh_t;
typedef struct ckhc_s ckhc_t;
/* Typedefs to allow easy function pointer passing. */
typedef void ckh_hash_t (const void *, size_t[2]);
typedef bool ckh_keycomp_t (const void *, const void *);
/* Maintain counters used to get an idea of performance. */
/* #define CKH_COUNT */
/* Print counter values in ckh_delete() (requires CKH_COUNT). */
/* #define CKH_VERBOSE */
/*
* There are 2^LG_CKH_BUCKET_CELLS cells in each hash table bucket. Try to fit
* one bucket per L1 cache line.
*/
#define LG_CKH_BUCKET_CELLS (LG_CACHELINE - LG_SIZEOF_PTR - 1)
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
/* Hash table cell. */
struct ckhc_s {
const void *key;
const void *data;
};
struct ckh_s {
#ifdef CKH_COUNT
/* Counters used to get an idea of performance. */
uint64_t ngrows;
uint64_t nshrinks;
uint64_t nshrinkfails;
uint64_t ninserts;
uint64_t nrelocs;
#endif
/* Used for pseudo-random number generation. */
uint64_t prng_state;
/* Total number of items. */
size_t count;
/*
* Minimum and current number of hash table buckets. There are
* 2^LG_CKH_BUCKET_CELLS cells per bucket.
*/
unsigned lg_minbuckets;
unsigned lg_curbuckets;
/* Hash and comparison functions. */
ckh_hash_t *hash;
ckh_keycomp_t *keycomp;
/* Hash table with 2^lg_curbuckets buckets. */
ckhc_t *tab;
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
bool ckh_new(tsd_t *tsd, ckh_t *ckh, size_t minitems, ckh_hash_t *hash,
ckh_keycomp_t *keycomp);
void ckh_delete(tsd_t *tsd, ckh_t *ckh);
size_t ckh_count(ckh_t *ckh);
bool ckh_iter(ckh_t *ckh, size_t *tabind, void **key, void **data);
bool ckh_insert(tsd_t *tsd, ckh_t *ckh, const void *key, const void *data);
bool ckh_remove(tsd_t *tsd, ckh_t *ckh, const void *searchkey, void **key,
void **data);
bool ckh_search(ckh_t *ckh, const void *searchkey, void **key, void **data);
void ckh_string_hash(const void *key, size_t r_hash[2]);
bool ckh_string_keycomp(const void *k1, const void *k2);
void ckh_pointer_hash(const void *key, size_t r_hash[2]);
bool ckh_pointer_keycomp(const void *k1, const void *k2);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 2,648 | 29.448276 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/rtree.h | /*
* This radix tree implementation is tailored to the singular purpose of
* associating metadata with chunks that are currently owned by jemalloc.
*
*******************************************************************************
*/
#ifdef JEMALLOC_H_TYPES
typedef struct rtree_node_elm_s rtree_node_elm_t;
typedef struct rtree_level_s rtree_level_t;
typedef struct rtree_s rtree_t;
/*
* RTREE_BITS_PER_LEVEL must be a power of two that is no larger than the
* machine address width.
*/
#define LG_RTREE_BITS_PER_LEVEL 4
#define RTREE_BITS_PER_LEVEL (1U << LG_RTREE_BITS_PER_LEVEL)
/* Maximum rtree height. */
#define RTREE_HEIGHT_MAX \
((1U << (LG_SIZEOF_PTR+3)) / RTREE_BITS_PER_LEVEL)
/* Used for two-stage lock-free node initialization. */
#define RTREE_NODE_INITIALIZING ((rtree_node_elm_t *)0x1)
/*
* The node allocation callback function's argument is the number of contiguous
* rtree_node_elm_t structures to allocate, and the resulting memory must be
* zeroed.
*/
typedef rtree_node_elm_t *(rtree_node_alloc_t)(size_t);
typedef void (rtree_node_dalloc_t)(rtree_node_elm_t *);
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
struct rtree_node_elm_s {
union {
void *pun;
rtree_node_elm_t *child;
extent_node_t *val;
};
};
struct rtree_level_s {
/*
* A non-NULL subtree points to a subtree rooted along the hypothetical
* path to the leaf node corresponding to key 0. Depending on what keys
* have been used to store to the tree, an arbitrary combination of
* subtree pointers may remain NULL.
*
* Suppose keys comprise 48 bits, and LG_RTREE_BITS_PER_LEVEL is 4.
* This results in a 3-level tree, and the leftmost leaf can be directly
* accessed via subtrees[2], the subtree prefixed by 0x0000 (excluding
* 0x00000000) can be accessed via subtrees[1], and the remainder of the
* tree can be accessed via subtrees[0].
*
* levels[0] : [<unused> | 0x0001******** | 0x0002******** | ...]
*
* levels[1] : [<unused> | 0x00000001**** | 0x00000002**** | ... ]
*
* levels[2] : [val(0x000000000000) | val(0x000000000001) | ...]
*
* This has practical implications on x64, which currently uses only the
* lower 47 bits of virtual address space in userland, thus leaving
* subtrees[0] unused and avoiding a level of tree traversal.
*/
union {
void *subtree_pun;
rtree_node_elm_t *subtree;
};
/* Number of key bits distinguished by this level. */
unsigned bits;
/*
* Cumulative number of key bits distinguished by traversing to
* corresponding tree level.
*/
unsigned cumbits;
};
struct rtree_s {
rtree_node_alloc_t *alloc;
rtree_node_dalloc_t *dalloc;
unsigned height;
/*
* Precomputed table used to convert from the number of leading 0 key
* bits to which subtree level to start at.
*/
unsigned start_level[RTREE_HEIGHT_MAX];
rtree_level_t levels[RTREE_HEIGHT_MAX];
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
bool rtree_new(rtree_t *rtree, unsigned bits, rtree_node_alloc_t *alloc,
rtree_node_dalloc_t *dalloc);
void rtree_delete(rtree_t *rtree);
rtree_node_elm_t *rtree_subtree_read_hard(rtree_t *rtree,
unsigned level);
rtree_node_elm_t *rtree_child_read_hard(rtree_t *rtree,
rtree_node_elm_t *elm, unsigned level);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
unsigned rtree_start_level(rtree_t *rtree, uintptr_t key);
uintptr_t rtree_subkey(rtree_t *rtree, uintptr_t key, unsigned level);
bool rtree_node_valid(rtree_node_elm_t *node);
rtree_node_elm_t *rtree_child_tryread(rtree_node_elm_t *elm,
bool dependent);
rtree_node_elm_t *rtree_child_read(rtree_t *rtree, rtree_node_elm_t *elm,
unsigned level, bool dependent);
extent_node_t *rtree_val_read(rtree_t *rtree, rtree_node_elm_t *elm,
bool dependent);
void rtree_val_write(rtree_t *rtree, rtree_node_elm_t *elm,
const extent_node_t *val);
rtree_node_elm_t *rtree_subtree_tryread(rtree_t *rtree, unsigned level,
bool dependent);
rtree_node_elm_t *rtree_subtree_read(rtree_t *rtree, unsigned level,
bool dependent);
extent_node_t *rtree_get(rtree_t *rtree, uintptr_t key, bool dependent);
bool rtree_set(rtree_t *rtree, uintptr_t key, const extent_node_t *val);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_RTREE_C_))
JEMALLOC_ALWAYS_INLINE unsigned
rtree_start_level(rtree_t *rtree, uintptr_t key)
{
unsigned start_level;
if (unlikely(key == 0))
return (rtree->height - 1);
start_level = rtree->start_level[lg_floor(key) >>
LG_RTREE_BITS_PER_LEVEL];
assert(start_level < rtree->height);
return (start_level);
}
JEMALLOC_ALWAYS_INLINE uintptr_t
rtree_subkey(rtree_t *rtree, uintptr_t key, unsigned level)
{
return ((key >> ((ZU(1) << (LG_SIZEOF_PTR+3)) -
rtree->levels[level].cumbits)) & ((ZU(1) <<
rtree->levels[level].bits) - 1));
}
JEMALLOC_ALWAYS_INLINE bool
rtree_node_valid(rtree_node_elm_t *node)
{
return ((uintptr_t)node > (uintptr_t)RTREE_NODE_INITIALIZING);
}
JEMALLOC_ALWAYS_INLINE rtree_node_elm_t *
rtree_child_tryread(rtree_node_elm_t *elm, bool dependent)
{
rtree_node_elm_t *child;
/* Double-checked read (first read may be stale. */
child = elm->child;
if (!dependent && !rtree_node_valid(child))
child = atomic_read_p(&elm->pun);
assert(!dependent || child != NULL);
return (child);
}
JEMALLOC_ALWAYS_INLINE rtree_node_elm_t *
rtree_child_read(rtree_t *rtree, rtree_node_elm_t *elm, unsigned level,
bool dependent)
{
rtree_node_elm_t *child;
child = rtree_child_tryread(elm, dependent);
if (!dependent && unlikely(!rtree_node_valid(child)))
child = rtree_child_read_hard(rtree, elm, level);
assert(!dependent || child != NULL);
return (child);
}
JEMALLOC_ALWAYS_INLINE extent_node_t *
rtree_val_read(rtree_t *rtree, rtree_node_elm_t *elm, bool dependent)
{
if (dependent) {
/*
* Reading a val on behalf of a pointer to a valid allocation is
* guaranteed to be a clean read even without synchronization,
* because the rtree update became visible in memory before the
* pointer came into existence.
*/
return (elm->val);
} else {
/*
* An arbitrary read, e.g. on behalf of ivsalloc(), may not be
* dependent on a previous rtree write, which means a stale read
* could result if synchronization were omitted here.
*/
return (atomic_read_p(&elm->pun));
}
}
JEMALLOC_INLINE void
rtree_val_write(rtree_t *rtree, rtree_node_elm_t *elm, const extent_node_t *val)
{
atomic_write_p(&elm->pun, val);
}
JEMALLOC_ALWAYS_INLINE rtree_node_elm_t *
rtree_subtree_tryread(rtree_t *rtree, unsigned level, bool dependent)
{
rtree_node_elm_t *subtree;
/* Double-checked read (first read may be stale. */
subtree = rtree->levels[level].subtree;
if (!dependent && unlikely(!rtree_node_valid(subtree)))
subtree = atomic_read_p(&rtree->levels[level].subtree_pun);
assert(!dependent || subtree != NULL);
return (subtree);
}
JEMALLOC_ALWAYS_INLINE rtree_node_elm_t *
rtree_subtree_read(rtree_t *rtree, unsigned level, bool dependent)
{
rtree_node_elm_t *subtree;
subtree = rtree_subtree_tryread(rtree, level, dependent);
if (!dependent && unlikely(!rtree_node_valid(subtree)))
subtree = rtree_subtree_read_hard(rtree, level);
assert(!dependent || subtree != NULL);
return (subtree);
}
JEMALLOC_ALWAYS_INLINE extent_node_t *
rtree_get(rtree_t *rtree, uintptr_t key, bool dependent)
{
uintptr_t subkey;
unsigned start_level;
rtree_node_elm_t *node;
start_level = rtree_start_level(rtree, key);
node = rtree_subtree_tryread(rtree, start_level, dependent);
#define RTREE_GET_BIAS (RTREE_HEIGHT_MAX - rtree->height)
switch (start_level + RTREE_GET_BIAS) {
#define RTREE_GET_SUBTREE(level) \
case level: \
assert(level < (RTREE_HEIGHT_MAX-1)); \
if (!dependent && unlikely(!rtree_node_valid(node))) \
return (NULL); \
subkey = rtree_subkey(rtree, key, level - \
RTREE_GET_BIAS); \
node = rtree_child_tryread(&node[subkey], dependent); \
/* Fall through. */
#define RTREE_GET_LEAF(level) \
case level: \
assert(level == (RTREE_HEIGHT_MAX-1)); \
if (!dependent && unlikely(!rtree_node_valid(node))) \
return (NULL); \
subkey = rtree_subkey(rtree, key, level - \
RTREE_GET_BIAS); \
/* \
* node is a leaf, so it contains values rather than \
* child pointers. \
*/ \
return (rtree_val_read(rtree, &node[subkey], \
dependent));
#if RTREE_HEIGHT_MAX > 1
RTREE_GET_SUBTREE(0)
#endif
#if RTREE_HEIGHT_MAX > 2
RTREE_GET_SUBTREE(1)
#endif
#if RTREE_HEIGHT_MAX > 3
RTREE_GET_SUBTREE(2)
#endif
#if RTREE_HEIGHT_MAX > 4
RTREE_GET_SUBTREE(3)
#endif
#if RTREE_HEIGHT_MAX > 5
RTREE_GET_SUBTREE(4)
#endif
#if RTREE_HEIGHT_MAX > 6
RTREE_GET_SUBTREE(5)
#endif
#if RTREE_HEIGHT_MAX > 7
RTREE_GET_SUBTREE(6)
#endif
#if RTREE_HEIGHT_MAX > 8
RTREE_GET_SUBTREE(7)
#endif
#if RTREE_HEIGHT_MAX > 9
RTREE_GET_SUBTREE(8)
#endif
#if RTREE_HEIGHT_MAX > 10
RTREE_GET_SUBTREE(9)
#endif
#if RTREE_HEIGHT_MAX > 11
RTREE_GET_SUBTREE(10)
#endif
#if RTREE_HEIGHT_MAX > 12
RTREE_GET_SUBTREE(11)
#endif
#if RTREE_HEIGHT_MAX > 13
RTREE_GET_SUBTREE(12)
#endif
#if RTREE_HEIGHT_MAX > 14
RTREE_GET_SUBTREE(13)
#endif
#if RTREE_HEIGHT_MAX > 15
RTREE_GET_SUBTREE(14)
#endif
#if RTREE_HEIGHT_MAX > 16
# error Unsupported RTREE_HEIGHT_MAX
#endif
RTREE_GET_LEAF(RTREE_HEIGHT_MAX-1)
#undef RTREE_GET_SUBTREE
#undef RTREE_GET_LEAF
default: not_reached();
}
#undef RTREE_GET_BIAS
not_reached();
}
JEMALLOC_INLINE bool
rtree_set(rtree_t *rtree, uintptr_t key, const extent_node_t *val)
{
uintptr_t subkey;
unsigned i, start_level;
rtree_node_elm_t *node, *child;
start_level = rtree_start_level(rtree, key);
node = rtree_subtree_read(rtree, start_level, false);
if (node == NULL)
return (true);
for (i = start_level; /**/; i++, node = child) {
subkey = rtree_subkey(rtree, key, i);
if (i == rtree->height - 1) {
/*
* node is a leaf, so it contains values rather than
* child pointers.
*/
rtree_val_write(rtree, &node[subkey], val);
return (false);
}
assert(i + 1 < rtree->height);
child = rtree_child_read(rtree, &node[subkey], i, false);
if (child == NULL)
return (true);
}
not_reached();
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 10,608 | 27.907357 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/stats.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct tcache_bin_stats_s tcache_bin_stats_t;
typedef struct malloc_bin_stats_s malloc_bin_stats_t;
typedef struct malloc_large_stats_s malloc_large_stats_t;
typedef struct malloc_huge_stats_s malloc_huge_stats_t;
typedef struct arena_stats_s arena_stats_t;
typedef struct chunk_stats_s chunk_stats_t;
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
struct tcache_bin_stats_s {
/*
* Number of allocation requests that corresponded to the size of this
* bin.
*/
uint64_t nrequests;
};
struct malloc_bin_stats_s {
/*
* Total number of allocation/deallocation requests served directly by
* the bin. Note that tcache may allocate an object, then recycle it
* many times, resulting many increments to nrequests, but only one
* each to nmalloc and ndalloc.
*/
uint64_t nmalloc;
uint64_t ndalloc;
/*
* Number of allocation requests that correspond to the size of this
* bin. This includes requests served by tcache, though tcache only
* periodically merges into this counter.
*/
uint64_t nrequests;
/*
* Current number of regions of this size class, including regions
* currently cached by tcache.
*/
size_t curregs;
/* Number of tcache fills from this bin. */
uint64_t nfills;
/* Number of tcache flushes to this bin. */
uint64_t nflushes;
/* Total number of runs created for this bin's size class. */
uint64_t nruns;
/*
* Total number of runs reused by extracting them from the runs tree for
* this bin's size class.
*/
uint64_t reruns;
/* Current number of runs in this bin. */
size_t curruns;
};
struct malloc_large_stats_s {
/*
* Total number of allocation/deallocation requests served directly by
* the arena. Note that tcache may allocate an object, then recycle it
* many times, resulting many increments to nrequests, but only one
* each to nmalloc and ndalloc.
*/
uint64_t nmalloc;
uint64_t ndalloc;
/*
* Number of allocation requests that correspond to this size class.
* This includes requests served by tcache, though tcache only
* periodically merges into this counter.
*/
uint64_t nrequests;
/*
* Current number of runs of this size class, including runs currently
* cached by tcache.
*/
size_t curruns;
};
struct malloc_huge_stats_s {
/*
* Total number of allocation/deallocation requests served directly by
* the arena.
*/
uint64_t nmalloc;
uint64_t ndalloc;
/* Current number of (multi-)chunk allocations of this size class. */
size_t curhchunks;
};
struct arena_stats_s {
/* Number of bytes currently mapped. */
size_t mapped;
/*
* Number of bytes currently retained as a side effect of munmap() being
* disabled/bypassed. Retained bytes are technically mapped (though
* always decommitted or purged), but they are excluded from the mapped
* statistic (above).
*/
size_t retained;
/*
* Total number of purge sweeps, total number of madvise calls made,
* and total pages purged in order to keep dirty unused memory under
* control.
*/
uint64_t npurge;
uint64_t nmadvise;
uint64_t purged;
/*
* Number of bytes currently mapped purely for metadata purposes, and
* number of bytes currently allocated for internal metadata.
*/
size_t metadata_mapped;
size_t metadata_allocated; /* Protected via atomic_*_z(). */
/* Per-size-category statistics. */
size_t allocated_large;
uint64_t nmalloc_large;
uint64_t ndalloc_large;
uint64_t nrequests_large;
size_t allocated_huge;
uint64_t nmalloc_huge;
uint64_t ndalloc_huge;
/* One element for each large size class. */
malloc_large_stats_t *lstats;
/* One element for each huge size class. */
malloc_huge_stats_t *hstats;
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
extern bool opt_stats_print;
extern size_t stats_cactive;
void stats_print(void (*write)(void *, const char *), void *cbopaque,
const char *opts);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
size_t stats_cactive_get(void);
void stats_cactive_add(size_t size);
void stats_cactive_sub(size_t size);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_STATS_C_))
JEMALLOC_INLINE size_t
stats_cactive_get(void)
{
return (atomic_read_z(&stats_cactive));
}
JEMALLOC_INLINE void
stats_cactive_add(size_t size)
{
assert(size > 0);
assert((size & chunksize_mask) == 0);
atomic_add_z(&stats_cactive, size);
}
JEMALLOC_INLINE void
stats_cactive_sub(size_t size)
{
assert(size > 0);
assert((size & chunksize_mask) == 0);
atomic_sub_z(&stats_cactive, size);
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 5,028 | 24.39899 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/util.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#ifdef _WIN32
# ifdef _WIN64
# define FMT64_PREFIX "ll"
# define FMTPTR_PREFIX "ll"
# else
# define FMT64_PREFIX "ll"
# define FMTPTR_PREFIX ""
# endif
# define FMTd32 "d"
# define FMTu32 "u"
# define FMTx32 "x"
# define FMTd64 FMT64_PREFIX "d"
# define FMTu64 FMT64_PREFIX "u"
# define FMTx64 FMT64_PREFIX "x"
# define FMTdPTR FMTPTR_PREFIX "d"
# define FMTuPTR FMTPTR_PREFIX "u"
# define FMTxPTR FMTPTR_PREFIX "x"
#else
# include <inttypes.h>
# define FMTd32 PRId32
# define FMTu32 PRIu32
# define FMTx32 PRIx32
# define FMTd64 PRId64
# define FMTu64 PRIu64
# define FMTx64 PRIx64
# define FMTdPTR PRIdPTR
# define FMTuPTR PRIuPTR
# define FMTxPTR PRIxPTR
#endif
/* Size of stack-allocated buffer passed to buferror(). */
#define BUFERROR_BUF 64
/*
* Size of stack-allocated buffer used by malloc_{,v,vc}printf(). This must be
* large enough for all possible uses within jemalloc.
*/
#define MALLOC_PRINTF_BUFSIZE 4096
/* Junk fill patterns. */
#ifndef JEMALLOC_ALLOC_JUNK
# define JEMALLOC_ALLOC_JUNK ((uint8_t)0xa5)
#endif
#ifndef JEMALLOC_FREE_JUNK
# define JEMALLOC_FREE_JUNK ((uint8_t)0x5a)
#endif
/*
* Wrap a cpp argument that contains commas such that it isn't broken up into
* multiple arguments.
*/
#define JEMALLOC_ARG_CONCAT(...) __VA_ARGS__
/*
* Silence compiler warnings due to uninitialized values. This is used
* wherever the compiler fails to recognize that the variable is never used
* uninitialized.
*/
#ifdef JEMALLOC_CC_SILENCE
# define JEMALLOC_CC_SILENCE_INIT(v) = v
#else
# define JEMALLOC_CC_SILENCE_INIT(v)
#endif
#ifdef __GNUC__
# define likely(x) __builtin_expect(!!(x), 1)
# define unlikely(x) __builtin_expect(!!(x), 0)
#else
# define likely(x) !!(x)
# define unlikely(x) !!(x)
#endif
#if !defined(JEMALLOC_INTERNAL_UNREACHABLE)
# error JEMALLOC_INTERNAL_UNREACHABLE should have been defined by configure
#endif
#define unreachable() JEMALLOC_INTERNAL_UNREACHABLE()
#include "jemalloc/internal/assert.h"
/* Use to assert a particular configuration, e.g., cassert(config_debug). */
#define cassert(c) do { \
if (unlikely(!(c))) \
not_reached(); \
} while (0)
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
int buferror(int err, char *buf, size_t buflen);
uintmax_t malloc_strtoumax(const char *restrict nptr,
char **restrict endptr, int base);
void malloc_write(const char *s);
/*
* malloc_vsnprintf() supports a subset of snprintf(3) that avoids floating
* point math.
*/
size_t malloc_vsnprintf(char *str, size_t size, const char *format,
va_list ap);
size_t malloc_snprintf(char *str, size_t size, const char *format, ...)
JEMALLOC_FORMAT_PRINTF(3, 4);
void malloc_vcprintf(void (*write_cb)(void *, const char *), void *cbopaque,
const char *format, va_list ap);
void malloc_cprintf(void (*write)(void *, const char *), void *cbopaque,
const char *format, ...) JEMALLOC_FORMAT_PRINTF(3, 4);
void malloc_printf(const char *format, ...) JEMALLOC_FORMAT_PRINTF(1, 2);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
unsigned ffs_llu(unsigned long long bitmap);
unsigned ffs_lu(unsigned long bitmap);
unsigned ffs_u(unsigned bitmap);
unsigned ffs_zu(size_t bitmap);
unsigned ffs_u64(uint64_t bitmap);
unsigned ffs_u32(uint32_t bitmap);
uint64_t pow2_ceil_u64(uint64_t x);
uint32_t pow2_ceil_u32(uint32_t x);
size_t pow2_ceil_zu(size_t x);
unsigned lg_floor(size_t x);
void set_errno(int errnum);
int get_errno(void);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_UTIL_C_))
/* Sanity check. */
#if !defined(JEMALLOC_INTERNAL_FFSLL) || !defined(JEMALLOC_INTERNAL_FFSL) \
|| !defined(JEMALLOC_INTERNAL_FFS)
# error JEMALLOC_INTERNAL_FFS{,L,LL} should have been defined by configure
#endif
JEMALLOC_ALWAYS_INLINE unsigned
ffs_llu(unsigned long long bitmap)
{
return (JEMALLOC_INTERNAL_FFSLL(bitmap));
}
JEMALLOC_ALWAYS_INLINE unsigned
ffs_lu(unsigned long bitmap)
{
return (JEMALLOC_INTERNAL_FFSL(bitmap));
}
JEMALLOC_ALWAYS_INLINE unsigned
ffs_u(unsigned bitmap)
{
return (JEMALLOC_INTERNAL_FFS(bitmap));
}
JEMALLOC_ALWAYS_INLINE unsigned
ffs_zu(size_t bitmap)
{
#if LG_SIZEOF_PTR == LG_SIZEOF_INT
return (ffs_u(bitmap));
#elif LG_SIZEOF_PTR == LG_SIZEOF_LONG
return (ffs_lu(bitmap));
#elif LG_SIZEOF_PTR == LG_SIZEOF_LONG_LONG
return (ffs_llu(bitmap));
#else
#error No implementation for size_t ffs()
#endif
}
JEMALLOC_ALWAYS_INLINE unsigned
ffs_u64(uint64_t bitmap)
{
#if LG_SIZEOF_LONG == 3
return (ffs_lu(bitmap));
#elif LG_SIZEOF_LONG_LONG == 3
return (ffs_llu(bitmap));
#else
#error No implementation for 64-bit ffs()
#endif
}
JEMALLOC_ALWAYS_INLINE unsigned
ffs_u32(uint32_t bitmap)
{
#if LG_SIZEOF_INT == 2
return (ffs_u(bitmap));
#else
#error No implementation for 32-bit ffs()
#endif
return (ffs_u(bitmap));
}
JEMALLOC_INLINE uint64_t
pow2_ceil_u64(uint64_t x)
{
x--;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
x |= x >> 32;
x++;
return (x);
}
JEMALLOC_INLINE uint32_t
pow2_ceil_u32(uint32_t x)
{
x--;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
x++;
return (x);
}
/* Compute the smallest power of 2 that is >= x. */
JEMALLOC_INLINE size_t
pow2_ceil_zu(size_t x)
{
#if (LG_SIZEOF_PTR == 3)
return (pow2_ceil_u64(x));
#else
return (pow2_ceil_u32(x));
#endif
}
#if (defined(__i386__) || defined(__amd64__) || defined(__x86_64__))
JEMALLOC_INLINE unsigned
lg_floor(size_t x)
{
size_t ret;
assert(x != 0);
asm ("bsr %1, %0"
: "=r"(ret) // Outputs.
: "r"(x) // Inputs.
);
assert(ret < UINT_MAX);
return ((unsigned)ret);
}
#elif (defined(_MSC_VER))
JEMALLOC_INLINE unsigned
lg_floor(size_t x)
{
unsigned long ret;
assert(x != 0);
#if (LG_SIZEOF_PTR == 3)
_BitScanReverse64(&ret, x);
#elif (LG_SIZEOF_PTR == 2)
_BitScanReverse(&ret, x);
#else
# error "Unsupported type size for lg_floor()"
#endif
assert(ret < UINT_MAX);
return ((unsigned)ret);
}
#elif (defined(JEMALLOC_HAVE_BUILTIN_CLZ))
JEMALLOC_INLINE unsigned
lg_floor(size_t x)
{
assert(x != 0);
#if (LG_SIZEOF_PTR == LG_SIZEOF_INT)
return (((8 << LG_SIZEOF_PTR) - 1) - __builtin_clz(x));
#elif (LG_SIZEOF_PTR == LG_SIZEOF_LONG)
return (((8 << LG_SIZEOF_PTR) - 1) - __builtin_clzl(x));
#else
# error "Unsupported type size for lg_floor()"
#endif
}
#else
JEMALLOC_INLINE unsigned
lg_floor(size_t x)
{
assert(x != 0);
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
#if (LG_SIZEOF_PTR == 3)
x |= (x >> 32);
#endif
if (x == SIZE_T_MAX)
return ((8 << LG_SIZEOF_PTR) - 1);
x++;
return (ffs_zu(x) - 2);
}
#endif
/* Set error code. */
JEMALLOC_INLINE void
set_errno(int errnum)
{
#ifdef _WIN32
SetLastError(errnum);
#else
errno = errnum;
#endif
}
/* Get last error code. */
JEMALLOC_INLINE int
get_errno(void)
{
#ifdef _WIN32
return (GetLastError());
#else
return (errno);
#endif
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 7,458 | 20.746356 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/tcache.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct tcache_bin_info_s tcache_bin_info_t;
typedef struct tcache_bin_s tcache_bin_t;
typedef struct tcache_s tcache_t;
typedef struct tcaches_s tcaches_t;
/*
* tcache pointers close to NULL are used to encode state information that is
* used for two purposes: preventing thread caching on a per thread basis and
* cleaning up during thread shutdown.
*/
#define TCACHE_STATE_DISABLED ((tcache_t *)(uintptr_t)1)
#define TCACHE_STATE_REINCARNATED ((tcache_t *)(uintptr_t)2)
#define TCACHE_STATE_PURGATORY ((tcache_t *)(uintptr_t)3)
#define TCACHE_STATE_MAX TCACHE_STATE_PURGATORY
/*
* Absolute minimum number of cache slots for each small bin.
*/
#define TCACHE_NSLOTS_SMALL_MIN 20
/*
* Absolute maximum number of cache slots for each small bin in the thread
* cache. This is an additional constraint beyond that imposed as: twice the
* number of regions per run for this size class.
*
* This constant must be an even number.
*/
#define TCACHE_NSLOTS_SMALL_MAX 200
/* Number of cache slots for large size classes. */
#define TCACHE_NSLOTS_LARGE 20
/* (1U << opt_lg_tcache_max) is used to compute tcache_maxclass. */
#define LG_TCACHE_MAXCLASS_DEFAULT 15
/*
* TCACHE_GC_SWEEP is the approximate number of allocation events between
* full GC sweeps. Integer rounding may cause the actual number to be
* slightly higher, since GC is performed incrementally.
*/
#define TCACHE_GC_SWEEP 8192
/* Number of tcache allocation/deallocation events between incremental GCs. */
#define TCACHE_GC_INCR \
((TCACHE_GC_SWEEP / NBINS) + ((TCACHE_GC_SWEEP / NBINS == 0) ? 0 : 1))
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
typedef enum {
tcache_enabled_false = 0, /* Enable cast to/from bool. */
tcache_enabled_true = 1,
tcache_enabled_default = 2
} tcache_enabled_t;
/*
* Read-only information associated with each element of tcache_t's tbins array
* is stored separately, mainly to reduce memory usage.
*/
struct tcache_bin_info_s {
unsigned ncached_max; /* Upper limit on ncached. */
};
struct tcache_bin_s {
tcache_bin_stats_t tstats;
int low_water; /* Min # cached since last GC. */
unsigned lg_fill_div; /* Fill (ncached_max >> lg_fill_div). */
unsigned ncached; /* # of cached objects. */
/*
* To make use of adjacent cacheline prefetch, the items in the avail
* stack goes to higher address for newer allocations. avail points
* just above the available space, which means that
* avail[-ncached, ... -1] are available items and the lowest item will
* be allocated first.
*/
void **avail; /* Stack of available objects. */
};
struct tcache_s {
ql_elm(tcache_t) link; /* Used for aggregating stats. */
uint64_t prof_accumbytes;/* Cleared after arena_prof_accum(). */
ticker_t gc_ticker; /* Drives incremental GC. */
szind_t next_gc_bin; /* Next bin to GC. */
tcache_bin_t tbins[1]; /* Dynamically sized. */
/*
* The pointer stacks associated with tbins follow as a contiguous
* array. During tcache initialization, the avail pointer in each
* element of tbins is initialized to point to the proper offset within
* this array.
*/
};
/* Linkage for list of available (previously used) explicit tcache IDs. */
struct tcaches_s {
union {
tcache_t *tcache;
tcaches_t *next;
};
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
extern bool opt_tcache;
extern ssize_t opt_lg_tcache_max;
extern tcache_bin_info_t *tcache_bin_info;
/*
* Number of tcache bins. There are NBINS small-object bins, plus 0 or more
* large-object bins.
*/
extern unsigned nhbins;
/* Maximum cached size class. */
extern size_t tcache_maxclass;
/*
* Explicit tcaches, managed via the tcache.{create,flush,destroy} mallctls and
* usable via the MALLOCX_TCACHE() flag. The automatic per thread tcaches are
* completely disjoint from this data structure. tcaches starts off as a sparse
* array, so it has no physical memory footprint until individual pages are
* touched. This allows the entire array to be allocated the first time an
* explicit tcache is created without a disproportionate impact on memory usage.
*/
extern tcaches_t *tcaches;
size_t tcache_salloc(tsdn_t *tsdn, const void *ptr);
void tcache_event_hard(tsd_t *tsd, tcache_t *tcache);
void *tcache_alloc_small_hard(tsdn_t *tsdn, arena_t *arena, tcache_t *tcache,
tcache_bin_t *tbin, szind_t binind, bool *tcache_success);
void tcache_bin_flush_small(tsd_t *tsd, tcache_t *tcache, tcache_bin_t *tbin,
szind_t binind, unsigned rem);
void tcache_bin_flush_large(tsd_t *tsd, tcache_bin_t *tbin, szind_t binind,
unsigned rem, tcache_t *tcache);
void tcache_arena_reassociate(tsdn_t *tsdn, tcache_t *tcache,
arena_t *oldarena, arena_t *newarena);
tcache_t *tcache_get_hard(tsd_t *tsd);
tcache_t *tcache_create(tsdn_t *tsdn, arena_t *arena);
void tcache_cleanup(tsd_t *tsd);
void tcache_enabled_cleanup(tsd_t *tsd);
void tcache_stats_merge(tsdn_t *tsdn, tcache_t *tcache, arena_t *arena);
bool tcaches_create(tsd_t *tsd, unsigned *r_ind);
void tcaches_flush(tsd_t *tsd, unsigned ind);
void tcaches_destroy(tsd_t *tsd, unsigned ind);
bool tcache_boot(tsdn_t *tsdn);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
void tcache_event(tsd_t *tsd, tcache_t *tcache);
void tcache_flush(void);
bool tcache_enabled_get(void);
tcache_t *tcache_get(tsd_t *tsd, bool create);
void tcache_enabled_set(bool enabled);
void *tcache_alloc_easy(tcache_bin_t *tbin, bool *tcache_success);
void *tcache_alloc_small(tsd_t *tsd, arena_t *arena, tcache_t *tcache,
size_t size, szind_t ind, bool zero, bool slow_path);
void *tcache_alloc_large(tsd_t *tsd, arena_t *arena, tcache_t *tcache,
size_t size, szind_t ind, bool zero, bool slow_path);
void tcache_dalloc_small(tsd_t *tsd, tcache_t *tcache, void *ptr,
szind_t binind, bool slow_path);
void tcache_dalloc_large(tsd_t *tsd, tcache_t *tcache, void *ptr,
size_t size, bool slow_path);
tcache_t *tcaches_get(tsd_t *tsd, unsigned ind);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_TCACHE_C_))
JEMALLOC_INLINE void
tcache_flush(void)
{
tsd_t *tsd;
cassert(config_tcache);
tsd = tsd_fetch();
tcache_cleanup(tsd);
}
JEMALLOC_INLINE bool
tcache_enabled_get(void)
{
tsd_t *tsd;
tcache_enabled_t tcache_enabled;
cassert(config_tcache);
tsd = tsd_fetch();
tcache_enabled = tsd_tcache_enabled_get(tsd);
if (tcache_enabled == tcache_enabled_default) {
tcache_enabled = (tcache_enabled_t)opt_tcache;
tsd_tcache_enabled_set(tsd, tcache_enabled);
}
return ((bool)tcache_enabled);
}
JEMALLOC_INLINE void
tcache_enabled_set(bool enabled)
{
tsd_t *tsd;
tcache_enabled_t tcache_enabled;
cassert(config_tcache);
tsd = tsd_fetch();
tcache_enabled = (tcache_enabled_t)enabled;
tsd_tcache_enabled_set(tsd, tcache_enabled);
if (!enabled)
tcache_cleanup(tsd);
}
JEMALLOC_ALWAYS_INLINE tcache_t *
tcache_get(tsd_t *tsd, bool create)
{
tcache_t *tcache;
if (!config_tcache)
return (NULL);
tcache = tsd_tcache_get(tsd);
if (!create)
return (tcache);
if (unlikely(tcache == NULL) && tsd_nominal(tsd)) {
tcache = tcache_get_hard(tsd);
tsd_tcache_set(tsd, tcache);
}
return (tcache);
}
JEMALLOC_ALWAYS_INLINE void
tcache_event(tsd_t *tsd, tcache_t *tcache)
{
if (TCACHE_GC_INCR == 0)
return;
if (unlikely(ticker_tick(&tcache->gc_ticker)))
tcache_event_hard(tsd, tcache);
}
JEMALLOC_ALWAYS_INLINE void *
tcache_alloc_easy(tcache_bin_t *tbin, bool *tcache_success)
{
void *ret;
if (unlikely(tbin->ncached == 0)) {
tbin->low_water = -1;
*tcache_success = false;
return (NULL);
}
/*
* tcache_success (instead of ret) should be checked upon the return of
* this function. We avoid checking (ret == NULL) because there is
* never a null stored on the avail stack (which is unknown to the
* compiler), and eagerly checking ret would cause pipeline stall
* (waiting for the cacheline).
*/
*tcache_success = true;
ret = *(tbin->avail - tbin->ncached);
tbin->ncached--;
if (unlikely((int)tbin->ncached < tbin->low_water))
tbin->low_water = tbin->ncached;
return (ret);
}
JEMALLOC_ALWAYS_INLINE void *
tcache_alloc_small(tsd_t *tsd, arena_t *arena, tcache_t *tcache, size_t size,
szind_t binind, bool zero, bool slow_path)
{
void *ret;
tcache_bin_t *tbin;
bool tcache_success;
size_t usize JEMALLOC_CC_SILENCE_INIT(0);
assert(binind < NBINS);
tbin = &tcache->tbins[binind];
ret = tcache_alloc_easy(tbin, &tcache_success);
assert(tcache_success == (ret != NULL));
if (unlikely(!tcache_success)) {
bool tcache_hard_success;
arena = arena_choose(tsd, arena);
if (unlikely(arena == NULL))
return (NULL);
ret = tcache_alloc_small_hard(tsd_tsdn(tsd), arena, tcache,
tbin, binind, &tcache_hard_success);
if (tcache_hard_success == false)
return (NULL);
}
assert(ret);
/*
* Only compute usize if required. The checks in the following if
* statement are all static.
*/
if (config_prof || (slow_path && config_fill) || unlikely(zero)) {
usize = index2size(binind);
assert(tcache_salloc(tsd_tsdn(tsd), ret) == usize);
}
if (likely(!zero)) {
if (slow_path && config_fill) {
if (unlikely(opt_junk_alloc)) {
arena_alloc_junk_small(ret,
&arena_bin_info[binind], false);
} else if (unlikely(opt_zero))
memset(ret, 0, usize);
}
} else {
if (slow_path && config_fill && unlikely(opt_junk_alloc)) {
arena_alloc_junk_small(ret, &arena_bin_info[binind],
true);
}
memset(ret, 0, usize);
}
if (config_stats)
tbin->tstats.nrequests++;
if (config_prof)
tcache->prof_accumbytes += usize;
tcache_event(tsd, tcache);
return (ret);
}
JEMALLOC_ALWAYS_INLINE void *
tcache_alloc_large(tsd_t *tsd, arena_t *arena, tcache_t *tcache, size_t size,
szind_t binind, bool zero, bool slow_path)
{
void *ret;
tcache_bin_t *tbin;
bool tcache_success;
assert(binind < nhbins);
tbin = &tcache->tbins[binind];
ret = tcache_alloc_easy(tbin, &tcache_success);
assert(tcache_success == (ret != NULL));
if (unlikely(!tcache_success)) {
/*
* Only allocate one large object at a time, because it's quite
* expensive to create one and not use it.
*/
arena = arena_choose(tsd, arena);
if (unlikely(arena == NULL))
return (NULL);
ret = arena_malloc_large(tsd_tsdn(tsd), arena, binind, zero);
if (ret == NULL)
return (NULL);
} else {
size_t usize JEMALLOC_CC_SILENCE_INIT(0);
/* Only compute usize on demand */
if (config_prof || (slow_path && config_fill) ||
unlikely(zero)) {
usize = index2size(binind);
assert(usize <= tcache_maxclass);
}
if (config_prof && usize == LARGE_MINCLASS) {
arena_chunk_t *chunk =
(arena_chunk_t *)CHUNK_ADDR2BASE(ret);
size_t pageind = (((uintptr_t)ret - (uintptr_t)chunk) >>
LG_PAGE);
arena_mapbits_large_binind_set(chunk, pageind,
BININD_INVALID);
}
if (likely(!zero)) {
if (slow_path && config_fill) {
if (unlikely(opt_junk_alloc)) {
memset(ret, JEMALLOC_ALLOC_JUNK,
usize);
} else if (unlikely(opt_zero))
memset(ret, 0, usize);
}
} else
memset(ret, 0, usize);
if (config_stats)
tbin->tstats.nrequests++;
if (config_prof)
tcache->prof_accumbytes += usize;
}
tcache_event(tsd, tcache);
return (ret);
}
JEMALLOC_ALWAYS_INLINE void
tcache_dalloc_small(tsd_t *tsd, tcache_t *tcache, void *ptr, szind_t binind,
bool slow_path)
{
tcache_bin_t *tbin;
tcache_bin_info_t *tbin_info;
assert(tcache_salloc(tsd_tsdn(tsd), ptr) <= SMALL_MAXCLASS);
if (slow_path && config_fill && unlikely(opt_junk_free))
arena_dalloc_junk_small(ptr, &arena_bin_info[binind]);
tbin = &tcache->tbins[binind];
tbin_info = &tcache_bin_info[binind];
if (unlikely(tbin->ncached == tbin_info->ncached_max)) {
tcache_bin_flush_small(tsd, tcache, tbin, binind,
(tbin_info->ncached_max >> 1));
}
assert(tbin->ncached < tbin_info->ncached_max);
tbin->ncached++;
*(tbin->avail - tbin->ncached) = ptr;
tcache_event(tsd, tcache);
}
JEMALLOC_ALWAYS_INLINE void
tcache_dalloc_large(tsd_t *tsd, tcache_t *tcache, void *ptr, size_t size,
bool slow_path)
{
szind_t binind;
tcache_bin_t *tbin;
tcache_bin_info_t *tbin_info;
assert((size & PAGE_MASK) == 0);
assert(tcache_salloc(tsd_tsdn(tsd), ptr) > SMALL_MAXCLASS);
assert(tcache_salloc(tsd_tsdn(tsd), ptr) <= tcache_maxclass);
binind = size2index(size);
if (slow_path && config_fill && unlikely(opt_junk_free))
arena_dalloc_junk_large(ptr, size);
tbin = &tcache->tbins[binind];
tbin_info = &tcache_bin_info[binind];
if (unlikely(tbin->ncached == tbin_info->ncached_max)) {
tcache_bin_flush_large(tsd, tbin, binind,
(tbin_info->ncached_max >> 1), tcache);
}
assert(tbin->ncached < tbin_info->ncached_max);
tbin->ncached++;
*(tbin->avail - tbin->ncached) = ptr;
tcache_event(tsd, tcache);
}
JEMALLOC_ALWAYS_INLINE tcache_t *
tcaches_get(tsd_t *tsd, unsigned ind)
{
tcaches_t *elm = &tcaches[ind];
if (unlikely(elm->tcache == NULL)) {
elm->tcache = tcache_create(tsd_tsdn(tsd), arena_choose(tsd,
NULL));
}
return (elm->tcache);
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 13,576 | 27.887234 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/base.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
void *base_alloc(tsdn_t *tsdn, size_t size);
void base_stats_get(tsdn_t *tsdn, size_t *allocated, size_t *resident,
size_t *mapped);
bool base_boot(void);
void base_prefork(tsdn_t *tsdn);
void base_postfork_parent(tsdn_t *tsdn);
void base_postfork_child(tsdn_t *tsdn);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 911 | 34.076923 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/bitmap.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
/* Maximum bitmap bit count is 2^LG_BITMAP_MAXBITS. */
#define LG_BITMAP_MAXBITS LG_RUN_MAXREGS
#define BITMAP_MAXBITS (ZU(1) << LG_BITMAP_MAXBITS)
typedef struct bitmap_level_s bitmap_level_t;
typedef struct bitmap_info_s bitmap_info_t;
typedef unsigned long bitmap_t;
#define LG_SIZEOF_BITMAP LG_SIZEOF_LONG
/* Number of bits per group. */
#define LG_BITMAP_GROUP_NBITS (LG_SIZEOF_BITMAP + 3)
#define BITMAP_GROUP_NBITS (ZU(1) << LG_BITMAP_GROUP_NBITS)
#define BITMAP_GROUP_NBITS_MASK (BITMAP_GROUP_NBITS-1)
/*
* Do some analysis on how big the bitmap is before we use a tree. For a brute
* force linear search, if we would have to call ffs_lu() more than 2^3 times,
* use a tree instead.
*/
#if LG_BITMAP_MAXBITS - LG_BITMAP_GROUP_NBITS > 3
# define USE_TREE
#endif
/* Number of groups required to store a given number of bits. */
#define BITMAP_BITS2GROUPS(nbits) \
((nbits + BITMAP_GROUP_NBITS_MASK) >> LG_BITMAP_GROUP_NBITS)
/*
* Number of groups required at a particular level for a given number of bits.
*/
#define BITMAP_GROUPS_L0(nbits) \
BITMAP_BITS2GROUPS(nbits)
#define BITMAP_GROUPS_L1(nbits) \
BITMAP_BITS2GROUPS(BITMAP_BITS2GROUPS(nbits))
#define BITMAP_GROUPS_L2(nbits) \
BITMAP_BITS2GROUPS(BITMAP_BITS2GROUPS(BITMAP_BITS2GROUPS((nbits))))
#define BITMAP_GROUPS_L3(nbits) \
BITMAP_BITS2GROUPS(BITMAP_BITS2GROUPS(BITMAP_BITS2GROUPS( \
BITMAP_BITS2GROUPS((nbits)))))
/*
* Assuming the number of levels, number of groups required for a given number
* of bits.
*/
#define BITMAP_GROUPS_1_LEVEL(nbits) \
BITMAP_GROUPS_L0(nbits)
#define BITMAP_GROUPS_2_LEVEL(nbits) \
(BITMAP_GROUPS_1_LEVEL(nbits) + BITMAP_GROUPS_L1(nbits))
#define BITMAP_GROUPS_3_LEVEL(nbits) \
(BITMAP_GROUPS_2_LEVEL(nbits) + BITMAP_GROUPS_L2(nbits))
#define BITMAP_GROUPS_4_LEVEL(nbits) \
(BITMAP_GROUPS_3_LEVEL(nbits) + BITMAP_GROUPS_L3(nbits))
/*
* Maximum number of groups required to support LG_BITMAP_MAXBITS.
*/
#ifdef USE_TREE
#if LG_BITMAP_MAXBITS <= LG_BITMAP_GROUP_NBITS
# define BITMAP_GROUPS_MAX BITMAP_GROUPS_1_LEVEL(BITMAP_MAXBITS)
#elif LG_BITMAP_MAXBITS <= LG_BITMAP_GROUP_NBITS * 2
# define BITMAP_GROUPS_MAX BITMAP_GROUPS_2_LEVEL(BITMAP_MAXBITS)
#elif LG_BITMAP_MAXBITS <= LG_BITMAP_GROUP_NBITS * 3
# define BITMAP_GROUPS_MAX BITMAP_GROUPS_3_LEVEL(BITMAP_MAXBITS)
#elif LG_BITMAP_MAXBITS <= LG_BITMAP_GROUP_NBITS * 4
# define BITMAP_GROUPS_MAX BITMAP_GROUPS_4_LEVEL(BITMAP_MAXBITS)
#else
# error "Unsupported bitmap size"
#endif
/* Maximum number of levels possible. */
#define BITMAP_MAX_LEVELS \
(LG_BITMAP_MAXBITS / LG_SIZEOF_BITMAP) \
+ !!(LG_BITMAP_MAXBITS % LG_SIZEOF_BITMAP)
#else /* USE_TREE */
#define BITMAP_GROUPS_MAX BITMAP_BITS2GROUPS(BITMAP_MAXBITS)
#endif /* USE_TREE */
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
struct bitmap_level_s {
/* Offset of this level's groups within the array of groups. */
size_t group_offset;
};
struct bitmap_info_s {
/* Logical number of bits in bitmap (stored at bottom level). */
size_t nbits;
#ifdef USE_TREE
/* Number of levels necessary for nbits. */
unsigned nlevels;
/*
* Only the first (nlevels+1) elements are used, and levels are ordered
* bottom to top (e.g. the bottom level is stored in levels[0]).
*/
bitmap_level_t levels[BITMAP_MAX_LEVELS+1];
#else /* USE_TREE */
/* Number of groups necessary for nbits. */
size_t ngroups;
#endif /* USE_TREE */
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
void bitmap_info_init(bitmap_info_t *binfo, size_t nbits);
void bitmap_init(bitmap_t *bitmap, const bitmap_info_t *binfo);
size_t bitmap_size(const bitmap_info_t *binfo);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
bool bitmap_full(bitmap_t *bitmap, const bitmap_info_t *binfo);
bool bitmap_get(bitmap_t *bitmap, const bitmap_info_t *binfo, size_t bit);
void bitmap_set(bitmap_t *bitmap, const bitmap_info_t *binfo, size_t bit);
size_t bitmap_sfu(bitmap_t *bitmap, const bitmap_info_t *binfo);
void bitmap_unset(bitmap_t *bitmap, const bitmap_info_t *binfo, size_t bit);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_BITMAP_C_))
JEMALLOC_INLINE bool
bitmap_full(bitmap_t *bitmap, const bitmap_info_t *binfo)
{
#ifdef USE_TREE
size_t rgoff = binfo->levels[binfo->nlevels].group_offset - 1;
bitmap_t rg = bitmap[rgoff];
/* The bitmap is full iff the root group is 0. */
return (rg == 0);
#else
size_t i;
for (i = 0; i < binfo->ngroups; i++) {
if (bitmap[i] != 0)
return (false);
}
return (true);
#endif
}
JEMALLOC_INLINE bool
bitmap_get(bitmap_t *bitmap, const bitmap_info_t *binfo, size_t bit)
{
size_t goff;
bitmap_t g;
assert(bit < binfo->nbits);
goff = bit >> LG_BITMAP_GROUP_NBITS;
g = bitmap[goff];
return (!(g & (ZU(1) << (bit & BITMAP_GROUP_NBITS_MASK))));
}
JEMALLOC_INLINE void
bitmap_set(bitmap_t *bitmap, const bitmap_info_t *binfo, size_t bit)
{
size_t goff;
bitmap_t *gp;
bitmap_t g;
assert(bit < binfo->nbits);
assert(!bitmap_get(bitmap, binfo, bit));
goff = bit >> LG_BITMAP_GROUP_NBITS;
gp = &bitmap[goff];
g = *gp;
assert(g & (ZU(1) << (bit & BITMAP_GROUP_NBITS_MASK)));
g ^= ZU(1) << (bit & BITMAP_GROUP_NBITS_MASK);
*gp = g;
assert(bitmap_get(bitmap, binfo, bit));
#ifdef USE_TREE
/* Propagate group state transitions up the tree. */
if (g == 0) {
unsigned i;
for (i = 1; i < binfo->nlevels; i++) {
bit = goff;
goff = bit >> LG_BITMAP_GROUP_NBITS;
gp = &bitmap[binfo->levels[i].group_offset + goff];
g = *gp;
assert(g & (ZU(1) << (bit & BITMAP_GROUP_NBITS_MASK)));
g ^= ZU(1) << (bit & BITMAP_GROUP_NBITS_MASK);
*gp = g;
if (g != 0)
break;
}
}
#endif
}
/* sfu: set first unset. */
JEMALLOC_INLINE size_t
bitmap_sfu(bitmap_t *bitmap, const bitmap_info_t *binfo)
{
size_t bit;
bitmap_t g;
unsigned i;
assert(!bitmap_full(bitmap, binfo));
#ifdef USE_TREE
i = binfo->nlevels - 1;
g = bitmap[binfo->levels[i].group_offset];
bit = ffs_lu(g) - 1;
while (i > 0) {
i--;
g = bitmap[binfo->levels[i].group_offset + bit];
bit = (bit << LG_BITMAP_GROUP_NBITS) + (ffs_lu(g) - 1);
}
#else
i = 0;
g = bitmap[0];
while ((bit = ffs_lu(g)) == 0) {
i++;
g = bitmap[i];
}
bit = (i << LG_BITMAP_GROUP_NBITS) + (bit - 1);
#endif
bitmap_set(bitmap, binfo, bit);
return (bit);
}
JEMALLOC_INLINE void
bitmap_unset(bitmap_t *bitmap, const bitmap_info_t *binfo, size_t bit)
{
size_t goff;
bitmap_t *gp;
bitmap_t g;
UNUSED bool propagate;
assert(bit < binfo->nbits);
assert(bitmap_get(bitmap, binfo, bit));
goff = bit >> LG_BITMAP_GROUP_NBITS;
gp = &bitmap[goff];
g = *gp;
propagate = (g == 0);
assert((g & (ZU(1) << (bit & BITMAP_GROUP_NBITS_MASK))) == 0);
g ^= ZU(1) << (bit & BITMAP_GROUP_NBITS_MASK);
*gp = g;
assert(!bitmap_get(bitmap, binfo, bit));
#ifdef USE_TREE
/* Propagate group state transitions up the tree. */
if (propagate) {
unsigned i;
for (i = 1; i < binfo->nlevels; i++) {
bit = goff;
goff = bit >> LG_BITMAP_GROUP_NBITS;
gp = &bitmap[binfo->levels[i].group_offset + goff];
g = *gp;
propagate = (g == 0);
assert((g & (ZU(1) << (bit & BITMAP_GROUP_NBITS_MASK)))
== 0);
g ^= ZU(1) << (bit & BITMAP_GROUP_NBITS_MASK);
*gp = g;
if (!propagate)
break;
}
}
#endif /* USE_TREE */
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 7,819 | 27.436364 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/ticker.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct ticker_s ticker_t;
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
struct ticker_s {
int32_t tick;
int32_t nticks;
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
void ticker_init(ticker_t *ticker, int32_t nticks);
void ticker_copy(ticker_t *ticker, const ticker_t *other);
int32_t ticker_read(const ticker_t *ticker);
bool ticker_ticks(ticker_t *ticker, int32_t nticks);
bool ticker_tick(ticker_t *ticker);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_TICKER_C_))
JEMALLOC_INLINE void
ticker_init(ticker_t *ticker, int32_t nticks)
{
ticker->tick = nticks;
ticker->nticks = nticks;
}
JEMALLOC_INLINE void
ticker_copy(ticker_t *ticker, const ticker_t *other)
{
*ticker = *other;
}
JEMALLOC_INLINE int32_t
ticker_read(const ticker_t *ticker)
{
return (ticker->tick);
}
JEMALLOC_INLINE bool
ticker_ticks(ticker_t *ticker, int32_t nticks)
{
if (unlikely(ticker->tick < nticks)) {
ticker->tick = ticker->nticks;
return (true);
}
ticker->tick -= nticks;
return(false);
}
JEMALLOC_INLINE bool
ticker_tick(ticker_t *ticker)
{
return (ticker_ticks(ticker, 1));
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 1,698 | 21.355263 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/prng.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
/*
* Simple linear congruential pseudo-random number generator:
*
* prng(y) = (a*x + c) % m
*
* where the following constants ensure maximal period:
*
* a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
* c == Odd number (relatively prime to 2^n).
* m == 2^32
*
* See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
*
* This choice of m has the disadvantage that the quality of the bits is
* proportional to bit position. For example, the lowest bit has a cycle of 2,
* the next has a cycle of 4, etc. For this reason, we prefer to use the upper
* bits.
*/
#define PRNG_A_32 UINT32_C(1103515241)
#define PRNG_C_32 UINT32_C(12347)
#define PRNG_A_64 UINT64_C(6364136223846793005)
#define PRNG_C_64 UINT64_C(1442695040888963407)
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
uint32_t prng_state_next_u32(uint32_t state);
uint64_t prng_state_next_u64(uint64_t state);
size_t prng_state_next_zu(size_t state);
uint32_t prng_lg_range_u32(uint32_t *state, unsigned lg_range,
bool atomic);
uint64_t prng_lg_range_u64(uint64_t *state, unsigned lg_range);
size_t prng_lg_range_zu(size_t *state, unsigned lg_range, bool atomic);
uint32_t prng_range_u32(uint32_t *state, uint32_t range, bool atomic);
uint64_t prng_range_u64(uint64_t *state, uint64_t range);
size_t prng_range_zu(size_t *state, size_t range, bool atomic);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_PRNG_C_))
JEMALLOC_ALWAYS_INLINE uint32_t
prng_state_next_u32(uint32_t state)
{
return ((state * PRNG_A_32) + PRNG_C_32);
}
JEMALLOC_ALWAYS_INLINE uint64_t
prng_state_next_u64(uint64_t state)
{
return ((state * PRNG_A_64) + PRNG_C_64);
}
JEMALLOC_ALWAYS_INLINE size_t
prng_state_next_zu(size_t state)
{
#if LG_SIZEOF_PTR == 2
return ((state * PRNG_A_32) + PRNG_C_32);
#elif LG_SIZEOF_PTR == 3
return ((state * PRNG_A_64) + PRNG_C_64);
#else
#error Unsupported pointer size
#endif
}
JEMALLOC_ALWAYS_INLINE uint32_t
prng_lg_range_u32(uint32_t *state, unsigned lg_range, bool atomic)
{
uint32_t ret, state1;
assert(lg_range > 0);
assert(lg_range <= 32);
if (atomic) {
uint32_t state0;
do {
state0 = atomic_read_uint32(state);
state1 = prng_state_next_u32(state0);
} while (atomic_cas_uint32(state, state0, state1));
} else {
state1 = prng_state_next_u32(*state);
*state = state1;
}
ret = state1 >> (32 - lg_range);
return (ret);
}
/* 64-bit atomic operations cannot be supported on all relevant platforms. */
JEMALLOC_ALWAYS_INLINE uint64_t
prng_lg_range_u64(uint64_t *state, unsigned lg_range)
{
uint64_t ret, state1;
assert(lg_range > 0);
assert(lg_range <= 64);
state1 = prng_state_next_u64(*state);
*state = state1;
ret = state1 >> (64 - lg_range);
return (ret);
}
JEMALLOC_ALWAYS_INLINE size_t
prng_lg_range_zu(size_t *state, unsigned lg_range, bool atomic)
{
size_t ret, state1;
assert(lg_range > 0);
assert(lg_range <= ZU(1) << (3 + LG_SIZEOF_PTR));
if (atomic) {
size_t state0;
do {
state0 = atomic_read_z(state);
state1 = prng_state_next_zu(state0);
} while (atomic_cas_z(state, state0, state1));
} else {
state1 = prng_state_next_zu(*state);
*state = state1;
}
ret = state1 >> ((ZU(1) << (3 + LG_SIZEOF_PTR)) - lg_range);
return (ret);
}
JEMALLOC_ALWAYS_INLINE uint32_t
prng_range_u32(uint32_t *state, uint32_t range, bool atomic)
{
uint32_t ret;
unsigned lg_range;
assert(range > 1);
/* Compute the ceiling of lg(range). */
lg_range = ffs_u32(pow2_ceil_u32(range)) - 1;
/* Generate a result in [0..range) via repeated trial. */
do {
ret = prng_lg_range_u32(state, lg_range, atomic);
} while (ret >= range);
return (ret);
}
JEMALLOC_ALWAYS_INLINE uint64_t
prng_range_u64(uint64_t *state, uint64_t range)
{
uint64_t ret;
unsigned lg_range;
assert(range > 1);
/* Compute the ceiling of lg(range). */
lg_range = ffs_u64(pow2_ceil_u64(range)) - 1;
/* Generate a result in [0..range) via repeated trial. */
do {
ret = prng_lg_range_u64(state, lg_range);
} while (ret >= range);
return (ret);
}
JEMALLOC_ALWAYS_INLINE size_t
prng_range_zu(size_t *state, size_t range, bool atomic)
{
size_t ret;
unsigned lg_range;
assert(range > 1);
/* Compute the ceiling of lg(range). */
lg_range = ffs_u64(pow2_ceil_u64(range)) - 1;
/* Generate a result in [0..range) via repeated trial. */
do {
ret = prng_lg_range_zu(state, lg_range, atomic);
} while (ret >= range);
return (ret);
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 5,087 | 23.461538 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/ph.h | /*
* A Pairing Heap implementation.
*
* "The Pairing Heap: A New Form of Self-Adjusting Heap"
* https://www.cs.cmu.edu/~sleator/papers/pairing-heaps.pdf
*
* With auxiliary twopass list, described in a follow on paper.
*
* "Pairing Heaps: Experiments and Analysis"
* http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.2988&rep=rep1&type=pdf
*
*******************************************************************************
*/
#ifndef PH_H_
#define PH_H_
/* Node structure. */
#define phn(a_type) \
struct { \
a_type *phn_prev; \
a_type *phn_next; \
a_type *phn_lchild; \
}
/* Root structure. */
#define ph(a_type) \
struct { \
a_type *ph_root; \
}
/* Internal utility macros. */
#define phn_lchild_get(a_type, a_field, a_phn) \
(a_phn->a_field.phn_lchild)
#define phn_lchild_set(a_type, a_field, a_phn, a_lchild) do { \
a_phn->a_field.phn_lchild = a_lchild; \
} while (0)
#define phn_next_get(a_type, a_field, a_phn) \
(a_phn->a_field.phn_next)
#define phn_prev_set(a_type, a_field, a_phn, a_prev) do { \
a_phn->a_field.phn_prev = a_prev; \
} while (0)
#define phn_prev_get(a_type, a_field, a_phn) \
(a_phn->a_field.phn_prev)
#define phn_next_set(a_type, a_field, a_phn, a_next) do { \
a_phn->a_field.phn_next = a_next; \
} while (0)
#define phn_merge_ordered(a_type, a_field, a_phn0, a_phn1, a_cmp) do { \
a_type *phn0child; \
\
assert(a_phn0 != NULL); \
assert(a_phn1 != NULL); \
assert(a_cmp(a_phn0, a_phn1) <= 0); \
\
phn_prev_set(a_type, a_field, a_phn1, a_phn0); \
phn0child = phn_lchild_get(a_type, a_field, a_phn0); \
phn_next_set(a_type, a_field, a_phn1, phn0child); \
if (phn0child != NULL) \
phn_prev_set(a_type, a_field, phn0child, a_phn1); \
phn_lchild_set(a_type, a_field, a_phn0, a_phn1); \
} while (0)
#define phn_merge(a_type, a_field, a_phn0, a_phn1, a_cmp, r_phn) do { \
if (a_phn0 == NULL) \
r_phn = a_phn1; \
else if (a_phn1 == NULL) \
r_phn = a_phn0; \
else if (a_cmp(a_phn0, a_phn1) < 0) { \
phn_merge_ordered(a_type, a_field, a_phn0, a_phn1, \
a_cmp); \
r_phn = a_phn0; \
} else { \
phn_merge_ordered(a_type, a_field, a_phn1, a_phn0, \
a_cmp); \
r_phn = a_phn1; \
} \
} while (0)
#define ph_merge_siblings(a_type, a_field, a_phn, a_cmp, r_phn) do { \
a_type *head = NULL; \
a_type *tail = NULL; \
a_type *phn0 = a_phn; \
a_type *phn1 = phn_next_get(a_type, a_field, phn0); \
\
/* \
* Multipass merge, wherein the first two elements of a FIFO \
* are repeatedly merged, and each result is appended to the \
* singly linked FIFO, until the FIFO contains only a single \
* element. We start with a sibling list but no reference to \
* its tail, so we do a single pass over the sibling list to \
* populate the FIFO. \
*/ \
if (phn1 != NULL) { \
a_type *phnrest = phn_next_get(a_type, a_field, phn1); \
if (phnrest != NULL) \
phn_prev_set(a_type, a_field, phnrest, NULL); \
phn_prev_set(a_type, a_field, phn0, NULL); \
phn_next_set(a_type, a_field, phn0, NULL); \
phn_prev_set(a_type, a_field, phn1, NULL); \
phn_next_set(a_type, a_field, phn1, NULL); \
phn_merge(a_type, a_field, phn0, phn1, a_cmp, phn0); \
head = tail = phn0; \
phn0 = phnrest; \
while (phn0 != NULL) { \
phn1 = phn_next_get(a_type, a_field, phn0); \
if (phn1 != NULL) { \
phnrest = phn_next_get(a_type, a_field, \
phn1); \
if (phnrest != NULL) { \
phn_prev_set(a_type, a_field, \
phnrest, NULL); \
} \
phn_prev_set(a_type, a_field, phn0, \
NULL); \
phn_next_set(a_type, a_field, phn0, \
NULL); \
phn_prev_set(a_type, a_field, phn1, \
NULL); \
phn_next_set(a_type, a_field, phn1, \
NULL); \
phn_merge(a_type, a_field, phn0, phn1, \
a_cmp, phn0); \
phn_next_set(a_type, a_field, tail, \
phn0); \
tail = phn0; \
phn0 = phnrest; \
} else { \
phn_next_set(a_type, a_field, tail, \
phn0); \
tail = phn0; \
phn0 = NULL; \
} \
} \
phn0 = head; \
phn1 = phn_next_get(a_type, a_field, phn0); \
if (phn1 != NULL) { \
while (true) { \
head = phn_next_get(a_type, a_field, \
phn1); \
assert(phn_prev_get(a_type, a_field, \
phn0) == NULL); \
phn_next_set(a_type, a_field, phn0, \
NULL); \
assert(phn_prev_get(a_type, a_field, \
phn1) == NULL); \
phn_next_set(a_type, a_field, phn1, \
NULL); \
phn_merge(a_type, a_field, phn0, phn1, \
a_cmp, phn0); \
if (head == NULL) \
break; \
phn_next_set(a_type, a_field, tail, \
phn0); \
tail = phn0; \
phn0 = head; \
phn1 = phn_next_get(a_type, a_field, \
phn0); \
} \
} \
} \
r_phn = phn0; \
} while (0)
#define ph_merge_aux(a_type, a_field, a_ph, a_cmp) do { \
a_type *phn = phn_next_get(a_type, a_field, a_ph->ph_root); \
if (phn != NULL) { \
phn_prev_set(a_type, a_field, a_ph->ph_root, NULL); \
phn_next_set(a_type, a_field, a_ph->ph_root, NULL); \
phn_prev_set(a_type, a_field, phn, NULL); \
ph_merge_siblings(a_type, a_field, phn, a_cmp, phn); \
assert(phn_next_get(a_type, a_field, phn) == NULL); \
phn_merge(a_type, a_field, a_ph->ph_root, phn, a_cmp, \
a_ph->ph_root); \
} \
} while (0)
#define ph_merge_children(a_type, a_field, a_phn, a_cmp, r_phn) do { \
a_type *lchild = phn_lchild_get(a_type, a_field, a_phn); \
if (lchild == NULL) \
r_phn = NULL; \
else { \
ph_merge_siblings(a_type, a_field, lchild, a_cmp, \
r_phn); \
} \
} while (0)
/*
* The ph_proto() macro generates function prototypes that correspond to the
* functions generated by an equivalently parameterized call to ph_gen().
*/
#define ph_proto(a_attr, a_prefix, a_ph_type, a_type) \
a_attr void a_prefix##new(a_ph_type *ph); \
a_attr bool a_prefix##empty(a_ph_type *ph); \
a_attr a_type *a_prefix##first(a_ph_type *ph); \
a_attr void a_prefix##insert(a_ph_type *ph, a_type *phn); \
a_attr a_type *a_prefix##remove_first(a_ph_type *ph); \
a_attr void a_prefix##remove(a_ph_type *ph, a_type *phn);
/*
* The ph_gen() macro generates a type-specific pairing heap implementation,
* based on the above cpp macros.
*/
#define ph_gen(a_attr, a_prefix, a_ph_type, a_type, a_field, a_cmp) \
a_attr void \
a_prefix##new(a_ph_type *ph) \
{ \
\
memset(ph, 0, sizeof(ph(a_type))); \
} \
a_attr bool \
a_prefix##empty(a_ph_type *ph) \
{ \
\
return (ph->ph_root == NULL); \
} \
a_attr a_type * \
a_prefix##first(a_ph_type *ph) \
{ \
\
if (ph->ph_root == NULL) \
return (NULL); \
ph_merge_aux(a_type, a_field, ph, a_cmp); \
return (ph->ph_root); \
} \
a_attr void \
a_prefix##insert(a_ph_type *ph, a_type *phn) \
{ \
\
memset(&phn->a_field, 0, sizeof(phn(a_type))); \
\
/* \
* Treat the root as an aux list during insertion, and lazily \
* merge during a_prefix##remove_first(). For elements that \
* are inserted, then removed via a_prefix##remove() before the \
* aux list is ever processed, this makes insert/remove \
* constant-time, whereas eager merging would make insert \
* O(log n). \
*/ \
if (ph->ph_root == NULL) \
ph->ph_root = phn; \
else { \
phn_next_set(a_type, a_field, phn, phn_next_get(a_type, \
a_field, ph->ph_root)); \
if (phn_next_get(a_type, a_field, ph->ph_root) != \
NULL) { \
phn_prev_set(a_type, a_field, \
phn_next_get(a_type, a_field, ph->ph_root), \
phn); \
} \
phn_prev_set(a_type, a_field, phn, ph->ph_root); \
phn_next_set(a_type, a_field, ph->ph_root, phn); \
} \
} \
a_attr a_type * \
a_prefix##remove_first(a_ph_type *ph) \
{ \
a_type *ret; \
\
if (ph->ph_root == NULL) \
return (NULL); \
ph_merge_aux(a_type, a_field, ph, a_cmp); \
\
ret = ph->ph_root; \
\
ph_merge_children(a_type, a_field, ph->ph_root, a_cmp, \
ph->ph_root); \
\
return (ret); \
} \
a_attr void \
a_prefix##remove(a_ph_type *ph, a_type *phn) \
{ \
a_type *replace, *parent; \
\
/* \
* We can delete from aux list without merging it, but we need \
* to merge if we are dealing with the root node. \
*/ \
if (ph->ph_root == phn) { \
ph_merge_aux(a_type, a_field, ph, a_cmp); \
if (ph->ph_root == phn) { \
ph_merge_children(a_type, a_field, ph->ph_root, \
a_cmp, ph->ph_root); \
return; \
} \
} \
\
/* Get parent (if phn is leftmost child) before mutating. */ \
if ((parent = phn_prev_get(a_type, a_field, phn)) != NULL) { \
if (phn_lchild_get(a_type, a_field, parent) != phn) \
parent = NULL; \
} \
/* Find a possible replacement node, and link to parent. */ \
ph_merge_children(a_type, a_field, phn, a_cmp, replace); \
/* Set next/prev for sibling linked list. */ \
if (replace != NULL) { \
if (parent != NULL) { \
phn_prev_set(a_type, a_field, replace, parent); \
phn_lchild_set(a_type, a_field, parent, \
replace); \
} else { \
phn_prev_set(a_type, a_field, replace, \
phn_prev_get(a_type, a_field, phn)); \
if (phn_prev_get(a_type, a_field, phn) != \
NULL) { \
phn_next_set(a_type, a_field, \
phn_prev_get(a_type, a_field, phn), \
replace); \
} \
} \
phn_next_set(a_type, a_field, replace, \
phn_next_get(a_type, a_field, phn)); \
if (phn_next_get(a_type, a_field, phn) != NULL) { \
phn_prev_set(a_type, a_field, \
phn_next_get(a_type, a_field, phn), \
replace); \
} \
} else { \
if (parent != NULL) { \
a_type *next = phn_next_get(a_type, a_field, \
phn); \
phn_lchild_set(a_type, a_field, parent, next); \
if (next != NULL) { \
phn_prev_set(a_type, a_field, next, \
parent); \
} \
} else { \
assert(phn_prev_get(a_type, a_field, phn) != \
NULL); \
phn_next_set(a_type, a_field, \
phn_prev_get(a_type, a_field, phn), \
phn_next_get(a_type, a_field, phn)); \
} \
if (phn_next_get(a_type, a_field, phn) != NULL) { \
phn_prev_set(a_type, a_field, \
phn_next_get(a_type, a_field, phn), \
phn_prev_get(a_type, a_field, phn)); \
} \
} \
}
#endif /* PH_H_ */
| 10,965 | 30.693642 | 86 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/huge.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
void *huge_malloc(tsdn_t *tsdn, arena_t *arena, size_t usize, bool zero);
void *huge_palloc(tsdn_t *tsdn, arena_t *arena, size_t usize,
size_t alignment, bool zero);
bool huge_ralloc_no_move(tsdn_t *tsdn, void *ptr, size_t oldsize,
size_t usize_min, size_t usize_max, bool zero);
void *huge_ralloc(tsd_t *tsd, arena_t *arena, void *ptr, size_t oldsize,
size_t usize, size_t alignment, bool zero, tcache_t *tcache);
#ifdef JEMALLOC_JET
typedef void (huge_dalloc_junk_t)(void *, size_t);
extern huge_dalloc_junk_t *huge_dalloc_junk;
#endif
void huge_dalloc(tsdn_t *tsdn, void *ptr);
arena_t *huge_aalloc(const void *ptr);
size_t huge_salloc(tsdn_t *tsdn, const void *ptr);
prof_tctx_t *huge_prof_tctx_get(tsdn_t *tsdn, const void *ptr);
void huge_prof_tctx_set(tsdn_t *tsdn, const void *ptr, prof_tctx_t *tctx);
void huge_prof_tctx_reset(tsdn_t *tsdn, const void *ptr);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 1,518 | 41.194444 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/assert.h | /*
* Define a custom assert() in order to reduce the chances of deadlock during
* assertion failure.
*/
#ifndef assert
#define assert(e) do { \
if (unlikely(config_debug && !(e))) { \
malloc_printf( \
"<jemalloc>: %s:%d: Failed assertion: \"%s\"\n", \
__FILE__, __LINE__, #e); \
abort(); \
} \
} while (0)
#endif
#ifndef not_reached
#define not_reached() do { \
if (config_debug) { \
malloc_printf( \
"<jemalloc>: %s:%d: Unreachable code reached\n", \
__FILE__, __LINE__); \
abort(); \
} \
unreachable(); \
} while (0)
#endif
#ifndef not_implemented
#define not_implemented() do { \
if (config_debug) { \
malloc_printf("<jemalloc>: %s:%d: Not implemented\n", \
__FILE__, __LINE__); \
abort(); \
} \
} while (0)
#endif
#ifndef assert_not_implemented
#define assert_not_implemented(e) do { \
if (unlikely(config_debug && !(e))) \
not_implemented(); \
} while (0)
#endif
| 1,029 | 21.391304 | 77 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/atomic.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#define atomic_read_uint64(p) atomic_add_uint64(p, 0)
#define atomic_read_uint32(p) atomic_add_uint32(p, 0)
#define atomic_read_p(p) atomic_add_p(p, NULL)
#define atomic_read_z(p) atomic_add_z(p, 0)
#define atomic_read_u(p) atomic_add_u(p, 0)
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
/*
* All arithmetic functions return the arithmetic result of the atomic
* operation. Some atomic operation APIs return the value prior to mutation, in
* which case the following functions must redundantly compute the result so
* that it can be returned. These functions are normally inlined, so the extra
* operations can be optimized away if the return values aren't used by the
* callers.
*
* <t> atomic_read_<t>(<t> *p) { return (*p); }
* <t> atomic_add_<t>(<t> *p, <t> x) { return (*p += x); }
* <t> atomic_sub_<t>(<t> *p, <t> x) { return (*p -= x); }
* bool atomic_cas_<t>(<t> *p, <t> c, <t> s)
* {
* if (*p != c)
* return (true);
* *p = s;
* return (false);
* }
* void atomic_write_<t>(<t> *p, <t> x) { *p = x; }
*/
#ifndef JEMALLOC_ENABLE_INLINE
uint64_t atomic_add_uint64(uint64_t *p, uint64_t x);
uint64_t atomic_sub_uint64(uint64_t *p, uint64_t x);
bool atomic_cas_uint64(uint64_t *p, uint64_t c, uint64_t s);
void atomic_write_uint64(uint64_t *p, uint64_t x);
uint32_t atomic_add_uint32(uint32_t *p, uint32_t x);
uint32_t atomic_sub_uint32(uint32_t *p, uint32_t x);
bool atomic_cas_uint32(uint32_t *p, uint32_t c, uint32_t s);
void atomic_write_uint32(uint32_t *p, uint32_t x);
void *atomic_add_p(void **p, void *x);
void *atomic_sub_p(void **p, void *x);
bool atomic_cas_p(void **p, void *c, void *s);
void atomic_write_p(void **p, const void *x);
size_t atomic_add_z(size_t *p, size_t x);
size_t atomic_sub_z(size_t *p, size_t x);
bool atomic_cas_z(size_t *p, size_t c, size_t s);
void atomic_write_z(size_t *p, size_t x);
unsigned atomic_add_u(unsigned *p, unsigned x);
unsigned atomic_sub_u(unsigned *p, unsigned x);
bool atomic_cas_u(unsigned *p, unsigned c, unsigned s);
void atomic_write_u(unsigned *p, unsigned x);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_ATOMIC_C_))
/******************************************************************************/
/* 64-bit operations. */
#if (LG_SIZEOF_PTR == 3 || LG_SIZEOF_INT == 3)
# if (defined(__amd64__) || defined(__x86_64__))
JEMALLOC_INLINE uint64_t
atomic_add_uint64(uint64_t *p, uint64_t x)
{
uint64_t t = x;
asm volatile (
"lock; xaddq %0, %1;"
: "+r" (t), "=m" (*p) /* Outputs. */
: "m" (*p) /* Inputs. */
);
return (t + x);
}
JEMALLOC_INLINE uint64_t
atomic_sub_uint64(uint64_t *p, uint64_t x)
{
uint64_t t;
x = (uint64_t)(-(int64_t)x);
t = x;
asm volatile (
"lock; xaddq %0, %1;"
: "+r" (t), "=m" (*p) /* Outputs. */
: "m" (*p) /* Inputs. */
);
return (t + x);
}
JEMALLOC_INLINE bool
atomic_cas_uint64(uint64_t *p, uint64_t c, uint64_t s)
{
uint8_t success;
asm volatile (
"lock; cmpxchgq %4, %0;"
"sete %1;"
: "=m" (*p), "=a" (success) /* Outputs. */
: "m" (*p), "a" (c), "r" (s) /* Inputs. */
: "memory" /* Clobbers. */
);
return (!(bool)success);
}
JEMALLOC_INLINE void
atomic_write_uint64(uint64_t *p, uint64_t x)
{
asm volatile (
"xchgq %1, %0;" /* Lock is implied by xchgq. */
: "=m" (*p), "+r" (x) /* Outputs. */
: "m" (*p) /* Inputs. */
: "memory" /* Clobbers. */
);
}
# elif (defined(JEMALLOC_C11ATOMICS))
JEMALLOC_INLINE uint64_t
atomic_add_uint64(uint64_t *p, uint64_t x)
{
volatile atomic_uint_least64_t *a = (volatile atomic_uint_least64_t *)p;
return (atomic_fetch_add(a, x) + x);
}
JEMALLOC_INLINE uint64_t
atomic_sub_uint64(uint64_t *p, uint64_t x)
{
volatile atomic_uint_least64_t *a = (volatile atomic_uint_least64_t *)p;
return (atomic_fetch_sub(a, x) - x);
}
JEMALLOC_INLINE bool
atomic_cas_uint64(uint64_t *p, uint64_t c, uint64_t s)
{
volatile atomic_uint_least64_t *a = (volatile atomic_uint_least64_t *)p;
return (!atomic_compare_exchange_strong(a, &c, s));
}
JEMALLOC_INLINE void
atomic_write_uint64(uint64_t *p, uint64_t x)
{
volatile atomic_uint_least64_t *a = (volatile atomic_uint_least64_t *)p;
atomic_store(a, x);
}
# elif (defined(JEMALLOC_ATOMIC9))
JEMALLOC_INLINE uint64_t
atomic_add_uint64(uint64_t *p, uint64_t x)
{
/*
* atomic_fetchadd_64() doesn't exist, but we only ever use this
* function on LP64 systems, so atomic_fetchadd_long() will do.
*/
assert(sizeof(uint64_t) == sizeof(unsigned long));
return (atomic_fetchadd_long(p, (unsigned long)x) + x);
}
JEMALLOC_INLINE uint64_t
atomic_sub_uint64(uint64_t *p, uint64_t x)
{
assert(sizeof(uint64_t) == sizeof(unsigned long));
return (atomic_fetchadd_long(p, (unsigned long)(-(long)x)) - x);
}
JEMALLOC_INLINE bool
atomic_cas_uint64(uint64_t *p, uint64_t c, uint64_t s)
{
assert(sizeof(uint64_t) == sizeof(unsigned long));
return (!atomic_cmpset_long(p, (unsigned long)c, (unsigned long)s));
}
JEMALLOC_INLINE void
atomic_write_uint64(uint64_t *p, uint64_t x)
{
assert(sizeof(uint64_t) == sizeof(unsigned long));
atomic_store_rel_long(p, x);
}
# elif (defined(JEMALLOC_OSATOMIC))
JEMALLOC_INLINE uint64_t
atomic_add_uint64(uint64_t *p, uint64_t x)
{
return (OSAtomicAdd64((int64_t)x, (int64_t *)p));
}
JEMALLOC_INLINE uint64_t
atomic_sub_uint64(uint64_t *p, uint64_t x)
{
return (OSAtomicAdd64(-((int64_t)x), (int64_t *)p));
}
JEMALLOC_INLINE bool
atomic_cas_uint64(uint64_t *p, uint64_t c, uint64_t s)
{
return (!OSAtomicCompareAndSwap64(c, s, (int64_t *)p));
}
JEMALLOC_INLINE void
atomic_write_uint64(uint64_t *p, uint64_t x)
{
uint64_t o;
/*The documented OSAtomic*() API does not expose an atomic exchange. */
do {
o = atomic_read_uint64(p);
} while (atomic_cas_uint64(p, o, x));
}
# elif (defined(_MSC_VER))
JEMALLOC_INLINE uint64_t
atomic_add_uint64(uint64_t *p, uint64_t x)
{
return (InterlockedExchangeAdd64(p, x) + x);
}
JEMALLOC_INLINE uint64_t
atomic_sub_uint64(uint64_t *p, uint64_t x)
{
return (InterlockedExchangeAdd64(p, -((int64_t)x)) - x);
}
JEMALLOC_INLINE bool
atomic_cas_uint64(uint64_t *p, uint64_t c, uint64_t s)
{
uint64_t o;
o = InterlockedCompareExchange64(p, s, c);
return (o != c);
}
JEMALLOC_INLINE void
atomic_write_uint64(uint64_t *p, uint64_t x)
{
InterlockedExchange64(p, x);
}
# elif (defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8) || \
defined(JE_FORCE_SYNC_COMPARE_AND_SWAP_8))
JEMALLOC_INLINE uint64_t
atomic_add_uint64(uint64_t *p, uint64_t x)
{
return (__sync_add_and_fetch(p, x));
}
JEMALLOC_INLINE uint64_t
atomic_sub_uint64(uint64_t *p, uint64_t x)
{
return (__sync_sub_and_fetch(p, x));
}
JEMALLOC_INLINE bool
atomic_cas_uint64(uint64_t *p, uint64_t c, uint64_t s)
{
return (!__sync_bool_compare_and_swap(p, c, s));
}
JEMALLOC_INLINE void
atomic_write_uint64(uint64_t *p, uint64_t x)
{
__sync_lock_test_and_set(p, x);
}
# else
# error "Missing implementation for 64-bit atomic operations"
# endif
#endif
/******************************************************************************/
/* 32-bit operations. */
#if (defined(__i386__) || defined(__amd64__) || defined(__x86_64__))
JEMALLOC_INLINE uint32_t
atomic_add_uint32(uint32_t *p, uint32_t x)
{
uint32_t t = x;
asm volatile (
"lock; xaddl %0, %1;"
: "+r" (t), "=m" (*p) /* Outputs. */
: "m" (*p) /* Inputs. */
);
return (t + x);
}
JEMALLOC_INLINE uint32_t
atomic_sub_uint32(uint32_t *p, uint32_t x)
{
uint32_t t;
x = (uint32_t)(-(int32_t)x);
t = x;
asm volatile (
"lock; xaddl %0, %1;"
: "+r" (t), "=m" (*p) /* Outputs. */
: "m" (*p) /* Inputs. */
);
return (t + x);
}
JEMALLOC_INLINE bool
atomic_cas_uint32(uint32_t *p, uint32_t c, uint32_t s)
{
uint8_t success;
asm volatile (
"lock; cmpxchgl %4, %0;"
"sete %1;"
: "=m" (*p), "=a" (success) /* Outputs. */
: "m" (*p), "a" (c), "r" (s) /* Inputs. */
: "memory"
);
return (!(bool)success);
}
JEMALLOC_INLINE void
atomic_write_uint32(uint32_t *p, uint32_t x)
{
asm volatile (
"xchgl %1, %0;" /* Lock is implied by xchgl. */
: "=m" (*p), "+r" (x) /* Outputs. */
: "m" (*p) /* Inputs. */
: "memory" /* Clobbers. */
);
}
# elif (defined(JEMALLOC_C11ATOMICS))
JEMALLOC_INLINE uint32_t
atomic_add_uint32(uint32_t *p, uint32_t x)
{
volatile atomic_uint_least32_t *a = (volatile atomic_uint_least32_t *)p;
return (atomic_fetch_add(a, x) + x);
}
JEMALLOC_INLINE uint32_t
atomic_sub_uint32(uint32_t *p, uint32_t x)
{
volatile atomic_uint_least32_t *a = (volatile atomic_uint_least32_t *)p;
return (atomic_fetch_sub(a, x) - x);
}
JEMALLOC_INLINE bool
atomic_cas_uint32(uint32_t *p, uint32_t c, uint32_t s)
{
volatile atomic_uint_least32_t *a = (volatile atomic_uint_least32_t *)p;
return (!atomic_compare_exchange_strong(a, &c, s));
}
JEMALLOC_INLINE void
atomic_write_uint32(uint32_t *p, uint32_t x)
{
volatile atomic_uint_least32_t *a = (volatile atomic_uint_least32_t *)p;
atomic_store(a, x);
}
#elif (defined(JEMALLOC_ATOMIC9))
JEMALLOC_INLINE uint32_t
atomic_add_uint32(uint32_t *p, uint32_t x)
{
return (atomic_fetchadd_32(p, x) + x);
}
JEMALLOC_INLINE uint32_t
atomic_sub_uint32(uint32_t *p, uint32_t x)
{
return (atomic_fetchadd_32(p, (uint32_t)(-(int32_t)x)) - x);
}
JEMALLOC_INLINE bool
atomic_cas_uint32(uint32_t *p, uint32_t c, uint32_t s)
{
return (!atomic_cmpset_32(p, c, s));
}
JEMALLOC_INLINE void
atomic_write_uint32(uint32_t *p, uint32_t x)
{
atomic_store_rel_32(p, x);
}
#elif (defined(JEMALLOC_OSATOMIC))
JEMALLOC_INLINE uint32_t
atomic_add_uint32(uint32_t *p, uint32_t x)
{
return (OSAtomicAdd32((int32_t)x, (int32_t *)p));
}
JEMALLOC_INLINE uint32_t
atomic_sub_uint32(uint32_t *p, uint32_t x)
{
return (OSAtomicAdd32(-((int32_t)x), (int32_t *)p));
}
JEMALLOC_INLINE bool
atomic_cas_uint32(uint32_t *p, uint32_t c, uint32_t s)
{
return (!OSAtomicCompareAndSwap32(c, s, (int32_t *)p));
}
JEMALLOC_INLINE void
atomic_write_uint32(uint32_t *p, uint32_t x)
{
uint32_t o;
/*The documented OSAtomic*() API does not expose an atomic exchange. */
do {
o = atomic_read_uint32(p);
} while (atomic_cas_uint32(p, o, x));
}
#elif (defined(_MSC_VER))
JEMALLOC_INLINE uint32_t
atomic_add_uint32(uint32_t *p, uint32_t x)
{
return (InterlockedExchangeAdd(p, x) + x);
}
JEMALLOC_INLINE uint32_t
atomic_sub_uint32(uint32_t *p, uint32_t x)
{
return (InterlockedExchangeAdd(p, -((int32_t)x)) - x);
}
JEMALLOC_INLINE bool
atomic_cas_uint32(uint32_t *p, uint32_t c, uint32_t s)
{
uint32_t o;
o = InterlockedCompareExchange(p, s, c);
return (o != c);
}
JEMALLOC_INLINE void
atomic_write_uint32(uint32_t *p, uint32_t x)
{
InterlockedExchange(p, x);
}
#elif (defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4) || \
defined(JE_FORCE_SYNC_COMPARE_AND_SWAP_4))
JEMALLOC_INLINE uint32_t
atomic_add_uint32(uint32_t *p, uint32_t x)
{
return (__sync_add_and_fetch(p, x));
}
JEMALLOC_INLINE uint32_t
atomic_sub_uint32(uint32_t *p, uint32_t x)
{
return (__sync_sub_and_fetch(p, x));
}
JEMALLOC_INLINE bool
atomic_cas_uint32(uint32_t *p, uint32_t c, uint32_t s)
{
return (!__sync_bool_compare_and_swap(p, c, s));
}
JEMALLOC_INLINE void
atomic_write_uint32(uint32_t *p, uint32_t x)
{
__sync_lock_test_and_set(p, x);
}
#else
# error "Missing implementation for 32-bit atomic operations"
#endif
/******************************************************************************/
/* Pointer operations. */
JEMALLOC_INLINE void *
atomic_add_p(void **p, void *x)
{
#if (LG_SIZEOF_PTR == 3)
return ((void *)atomic_add_uint64((uint64_t *)p, (uint64_t)x));
#elif (LG_SIZEOF_PTR == 2)
return ((void *)atomic_add_uint32((uint32_t *)p, (uint32_t)x));
#endif
}
JEMALLOC_INLINE void *
atomic_sub_p(void **p, void *x)
{
#if (LG_SIZEOF_PTR == 3)
return ((void *)atomic_add_uint64((uint64_t *)p,
(uint64_t)-((int64_t)x)));
#elif (LG_SIZEOF_PTR == 2)
return ((void *)atomic_add_uint32((uint32_t *)p,
(uint32_t)-((int32_t)x)));
#endif
}
JEMALLOC_INLINE bool
atomic_cas_p(void **p, void *c, void *s)
{
#if (LG_SIZEOF_PTR == 3)
return (atomic_cas_uint64((uint64_t *)p, (uint64_t)c, (uint64_t)s));
#elif (LG_SIZEOF_PTR == 2)
return (atomic_cas_uint32((uint32_t *)p, (uint32_t)c, (uint32_t)s));
#endif
}
JEMALLOC_INLINE void
atomic_write_p(void **p, const void *x)
{
#if (LG_SIZEOF_PTR == 3)
atomic_write_uint64((uint64_t *)p, (uint64_t)x);
#elif (LG_SIZEOF_PTR == 2)
atomic_write_uint32((uint32_t *)p, (uint32_t)x);
#endif
}
/******************************************************************************/
/* size_t operations. */
JEMALLOC_INLINE size_t
atomic_add_z(size_t *p, size_t x)
{
#if (LG_SIZEOF_PTR == 3)
return ((size_t)atomic_add_uint64((uint64_t *)p, (uint64_t)x));
#elif (LG_SIZEOF_PTR == 2)
return ((size_t)atomic_add_uint32((uint32_t *)p, (uint32_t)x));
#endif
}
JEMALLOC_INLINE size_t
atomic_sub_z(size_t *p, size_t x)
{
#if (LG_SIZEOF_PTR == 3)
return ((size_t)atomic_add_uint64((uint64_t *)p,
(uint64_t)-((int64_t)x)));
#elif (LG_SIZEOF_PTR == 2)
return ((size_t)atomic_add_uint32((uint32_t *)p,
(uint32_t)-((int32_t)x)));
#endif
}
JEMALLOC_INLINE bool
atomic_cas_z(size_t *p, size_t c, size_t s)
{
#if (LG_SIZEOF_PTR == 3)
return (atomic_cas_uint64((uint64_t *)p, (uint64_t)c, (uint64_t)s));
#elif (LG_SIZEOF_PTR == 2)
return (atomic_cas_uint32((uint32_t *)p, (uint32_t)c, (uint32_t)s));
#endif
}
JEMALLOC_INLINE void
atomic_write_z(size_t *p, size_t x)
{
#if (LG_SIZEOF_PTR == 3)
atomic_write_uint64((uint64_t *)p, (uint64_t)x);
#elif (LG_SIZEOF_PTR == 2)
atomic_write_uint32((uint32_t *)p, (uint32_t)x);
#endif
}
/******************************************************************************/
/* unsigned operations. */
JEMALLOC_INLINE unsigned
atomic_add_u(unsigned *p, unsigned x)
{
#if (LG_SIZEOF_INT == 3)
return ((unsigned)atomic_add_uint64((uint64_t *)p, (uint64_t)x));
#elif (LG_SIZEOF_INT == 2)
return ((unsigned)atomic_add_uint32((uint32_t *)p, (uint32_t)x));
#endif
}
JEMALLOC_INLINE unsigned
atomic_sub_u(unsigned *p, unsigned x)
{
#if (LG_SIZEOF_INT == 3)
return ((unsigned)atomic_add_uint64((uint64_t *)p,
(uint64_t)-((int64_t)x)));
#elif (LG_SIZEOF_INT == 2)
return ((unsigned)atomic_add_uint32((uint32_t *)p,
(uint32_t)-((int32_t)x)));
#endif
}
JEMALLOC_INLINE bool
atomic_cas_u(unsigned *p, unsigned c, unsigned s)
{
#if (LG_SIZEOF_INT == 3)
return (atomic_cas_uint64((uint64_t *)p, (uint64_t)c, (uint64_t)s));
#elif (LG_SIZEOF_INT == 2)
return (atomic_cas_uint32((uint32_t *)p, (uint32_t)c, (uint32_t)s));
#endif
}
JEMALLOC_INLINE void
atomic_write_u(unsigned *p, unsigned x)
{
#if (LG_SIZEOF_INT == 3)
atomic_write_uint64((uint64_t *)p, (uint64_t)x);
#elif (LG_SIZEOF_INT == 2)
atomic_write_uint32((uint32_t *)p, (uint32_t)x);
#endif
}
/******************************************************************************/
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 15,441 | 22.684049 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_decls.h | #ifndef JEMALLOC_INTERNAL_DECLS_H
#define JEMALLOC_INTERNAL_DECLS_H
#include <math.h>
#ifdef _WIN32
# include <windows.h>
# include "msvc_compat/windows_extra.h"
#else
# include <sys/param.h>
# include <sys/mman.h>
# if !defined(__pnacl__) && !defined(__native_client__)
# include <sys/syscall.h>
# if !defined(SYS_write) && defined(__NR_write)
# define SYS_write __NR_write
# endif
# include <sys/uio.h>
# endif
# include <pthread.h>
# ifdef JEMALLOC_OS_UNFAIR_LOCK
# include <os/lock.h>
# endif
# ifdef JEMALLOC_GLIBC_MALLOC_HOOK
# include <sched.h>
# endif
# include <errno.h>
# include <sys/time.h>
# include <time.h>
# ifdef JEMALLOC_HAVE_MACH_ABSOLUTE_TIME
# include <mach/mach_time.h>
# endif
#endif
#include <sys/types.h>
#include <limits.h>
#ifndef SIZE_T_MAX
# define SIZE_T_MAX SIZE_MAX
#endif
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stddef.h>
#ifndef offsetof
# define offsetof(type, member) ((size_t)&(((type *)NULL)->member))
#endif
#include <string.h>
#include <strings.h>
#include <ctype.h>
#ifdef _MSC_VER
# include <io.h>
typedef intptr_t ssize_t;
# define PATH_MAX 1024
# define STDERR_FILENO 2
# define __func__ __FUNCTION__
# ifdef JEMALLOC_HAS_RESTRICT
# define restrict __restrict
# endif
/* Disable warnings about deprecated system functions. */
# pragma warning(disable: 4996)
#if _MSC_VER < 1800
static int
isblank(int c)
{
return (c == '\t' || c == ' ');
}
#endif
#else
# include <unistd.h>
#endif
#include <fcntl.h>
#endif /* JEMALLOC_INTERNAL_H */
| 1,608 | 20.171053 | 68 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/mb.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
void mb_write(void);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_MB_C_))
#ifdef __i386__
/*
* According to the Intel Architecture Software Developer's Manual, current
* processors execute instructions in order from the perspective of other
* processors in a multiprocessor system, but 1) Intel reserves the right to
* change that, and 2) the compiler's optimizer could re-order instructions if
* there weren't some form of barrier. Therefore, even if running on an
* architecture that does not need memory barriers (everything through at least
* i686), an "optimizer barrier" is necessary.
*/
JEMALLOC_INLINE void
mb_write(void)
{
# if 0
/* This is a true memory barrier. */
asm volatile ("pusha;"
"xor %%eax,%%eax;"
"cpuid;"
"popa;"
: /* Outputs. */
: /* Inputs. */
: "memory" /* Clobbers. */
);
# else
/*
* This is hopefully enough to keep the compiler from reordering
* instructions around this one.
*/
asm volatile ("nop;"
: /* Outputs. */
: /* Inputs. */
: "memory" /* Clobbers. */
);
# endif
}
#elif (defined(__amd64__) || defined(__x86_64__))
JEMALLOC_INLINE void
mb_write(void)
{
asm volatile ("sfence"
: /* Outputs. */
: /* Inputs. */
: "memory" /* Clobbers. */
);
}
#elif defined(__powerpc__)
JEMALLOC_INLINE void
mb_write(void)
{
asm volatile ("eieio"
: /* Outputs. */
: /* Inputs. */
: "memory" /* Clobbers. */
);
}
#elif defined(__sparc64__)
JEMALLOC_INLINE void
mb_write(void)
{
asm volatile ("membar #StoreStore"
: /* Outputs. */
: /* Inputs. */
: "memory" /* Clobbers. */
);
}
#elif defined(__tile__)
JEMALLOC_INLINE void
mb_write(void)
{
__sync_synchronize();
}
#else
/*
* This is much slower than a simple memory barrier, but the semantics of mutex
* unlock make this work.
*/
JEMALLOC_INLINE void
mb_write(void)
{
malloc_mutex_t mtx;
malloc_mutex_init(&mtx, "mb", WITNESS_RANK_OMIT);
malloc_mutex_lock(TSDN_NULL, &mtx);
malloc_mutex_unlock(TSDN_NULL, &mtx);
}
#endif
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 2,738 | 22.612069 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/quarantine.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct quarantine_obj_s quarantine_obj_t;
typedef struct quarantine_s quarantine_t;
/* Default per thread quarantine size if valgrind is enabled. */
#define JEMALLOC_VALGRIND_QUARANTINE_DEFAULT (ZU(1) << 24)
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
struct quarantine_obj_s {
void *ptr;
size_t usize;
};
struct quarantine_s {
size_t curbytes;
size_t curobjs;
size_t first;
#define LG_MAXOBJS_INIT 10
size_t lg_maxobjs;
quarantine_obj_t objs[1]; /* Dynamically sized ring buffer. */
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
void quarantine_alloc_hook_work(tsd_t *tsd);
void quarantine(tsd_t *tsd, void *ptr);
void quarantine_cleanup(tsd_t *tsd);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
void quarantine_alloc_hook(void);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_QUARANTINE_C_))
JEMALLOC_ALWAYS_INLINE void
quarantine_alloc_hook(void)
{
tsd_t *tsd;
assert(config_fill && opt_quarantine);
tsd = tsd_fetch();
if (tsd_quarantine_get(tsd) == NULL)
quarantine_alloc_hook_work(tsd);
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 1,593 | 25.131148 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/valgrind.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#ifdef JEMALLOC_VALGRIND
#include <valgrind/valgrind.h>
/*
* The size that is reported to Valgrind must be consistent through a chain of
* malloc..realloc..realloc calls. Request size isn't recorded anywhere in
* jemalloc, so it is critical that all callers of these macros provide usize
* rather than request size. As a result, buffer overflow detection is
* technically weakened for the standard API, though it is generally accepted
* practice to consider any extra bytes reported by malloc_usable_size() as
* usable space.
*/
#define JEMALLOC_VALGRIND_MAKE_MEM_NOACCESS(ptr, usize) do { \
if (unlikely(in_valgrind)) \
valgrind_make_mem_noaccess(ptr, usize); \
} while (0)
#define JEMALLOC_VALGRIND_MAKE_MEM_UNDEFINED(ptr, usize) do { \
if (unlikely(in_valgrind)) \
valgrind_make_mem_undefined(ptr, usize); \
} while (0)
#define JEMALLOC_VALGRIND_MAKE_MEM_DEFINED(ptr, usize) do { \
if (unlikely(in_valgrind)) \
valgrind_make_mem_defined(ptr, usize); \
} while (0)
/*
* The VALGRIND_MALLOCLIKE_BLOCK() and VALGRIND_RESIZEINPLACE_BLOCK() macro
* calls must be embedded in macros rather than in functions so that when
* Valgrind reports errors, there are no extra stack frames in the backtraces.
*/
#define JEMALLOC_VALGRIND_MALLOC(cond, tsdn, ptr, usize, zero) do { \
if (unlikely(in_valgrind && cond)) { \
VALGRIND_MALLOCLIKE_BLOCK(ptr, usize, p2rz(tsdn, ptr), \
zero); \
} \
} while (0)
#define JEMALLOC_VALGRIND_REALLOC_MOVED_no(ptr, old_ptr) \
(false)
#define JEMALLOC_VALGRIND_REALLOC_MOVED_maybe(ptr, old_ptr) \
((ptr) != (old_ptr))
#define JEMALLOC_VALGRIND_REALLOC_PTR_NULL_no(ptr) \
(false)
#define JEMALLOC_VALGRIND_REALLOC_PTR_NULL_maybe(ptr) \
(ptr == NULL)
#define JEMALLOC_VALGRIND_REALLOC_OLD_PTR_NULL_no(old_ptr) \
(false)
#define JEMALLOC_VALGRIND_REALLOC_OLD_PTR_NULL_maybe(old_ptr) \
(old_ptr == NULL)
#define JEMALLOC_VALGRIND_REALLOC(moved, tsdn, ptr, usize, ptr_null, \
old_ptr, old_usize, old_rzsize, old_ptr_null, zero) do { \
if (unlikely(in_valgrind)) { \
size_t rzsize = p2rz(tsdn, ptr); \
\
if (!JEMALLOC_VALGRIND_REALLOC_MOVED_##moved(ptr, \
old_ptr)) { \
VALGRIND_RESIZEINPLACE_BLOCK(ptr, old_usize, \
usize, rzsize); \
if (zero && old_usize < usize) { \
valgrind_make_mem_defined( \
(void *)((uintptr_t)ptr + \
old_usize), usize - old_usize); \
} \
} else { \
if (!JEMALLOC_VALGRIND_REALLOC_OLD_PTR_NULL_## \
old_ptr_null(old_ptr)) { \
valgrind_freelike_block(old_ptr, \
old_rzsize); \
} \
if (!JEMALLOC_VALGRIND_REALLOC_PTR_NULL_## \
ptr_null(ptr)) { \
size_t copy_size = (old_usize < usize) \
? old_usize : usize; \
size_t tail_size = usize - copy_size; \
VALGRIND_MALLOCLIKE_BLOCK(ptr, usize, \
rzsize, false); \
if (copy_size > 0) { \
valgrind_make_mem_defined(ptr, \
copy_size); \
} \
if (zero && tail_size > 0) { \
valgrind_make_mem_defined( \
(void *)((uintptr_t)ptr + \
copy_size), tail_size); \
} \
} \
} \
} \
} while (0)
#define JEMALLOC_VALGRIND_FREE(ptr, rzsize) do { \
if (unlikely(in_valgrind)) \
valgrind_freelike_block(ptr, rzsize); \
} while (0)
#else
#define RUNNING_ON_VALGRIND ((unsigned)0)
#define JEMALLOC_VALGRIND_MAKE_MEM_NOACCESS(ptr, usize) do {} while (0)
#define JEMALLOC_VALGRIND_MAKE_MEM_UNDEFINED(ptr, usize) do {} while (0)
#define JEMALLOC_VALGRIND_MAKE_MEM_DEFINED(ptr, usize) do {} while (0)
#define JEMALLOC_VALGRIND_MALLOC(cond, tsdn, ptr, usize, zero) do {} while (0)
#define JEMALLOC_VALGRIND_REALLOC(maybe_moved, tsdn, ptr, usize, \
ptr_maybe_null, old_ptr, old_usize, old_rzsize, old_ptr_maybe_null, \
zero) do {} while (0)
#define JEMALLOC_VALGRIND_FREE(ptr, rzsize) do {} while (0)
#endif
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#ifdef JEMALLOC_VALGRIND
void valgrind_make_mem_noaccess(void *ptr, size_t usize);
void valgrind_make_mem_undefined(void *ptr, size_t usize);
void valgrind_make_mem_defined(void *ptr, size_t usize);
void valgrind_freelike_block(void *ptr, size_t usize);
#endif
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 4,841 | 36.534884 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/extent.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct extent_node_s extent_node_t;
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
/* Tree of extents. Use accessor functions for en_* fields. */
struct extent_node_s {
/* Arena from which this extent came, if any. */
arena_t *en_arena;
/* Pointer to the extent that this tree node is responsible for. */
void *en_addr;
/* Total region size. */
size_t en_size;
/*
* Serial number (potentially non-unique).
*
* In principle serial numbers can wrap around on 32-bit systems if
* JEMALLOC_MUNMAP is defined, but as long as comparison functions fall
* back on address comparison for equal serial numbers, stable (if
* imperfect) ordering is maintained.
*
* Serial numbers may not be unique even in the absence of wrap-around,
* e.g. when splitting an extent and assigning the same serial number to
* both resulting adjacent extents.
*/
size_t en_sn;
/*
* The zeroed flag is used by chunk recycling code to track whether
* memory is zero-filled.
*/
bool en_zeroed;
/*
* True if physical memory is committed to the extent, whether
* explicitly or implicitly as on a system that overcommits and
* satisfies physical memory needs on demand via soft page faults.
*/
bool en_committed;
/*
* The achunk flag is used to validate that huge allocation lookups
* don't return arena chunks.
*/
bool en_achunk;
/* Profile counters, used for huge objects. */
prof_tctx_t *en_prof_tctx;
/* Linkage for arena's runs_dirty and chunks_cache rings. */
arena_runs_dirty_link_t rd;
qr(extent_node_t) cc_link;
union {
/* Linkage for the size/sn/address-ordered tree. */
rb_node(extent_node_t) szsnad_link;
/* Linkage for arena's achunks, huge, and node_cache lists. */
ql_elm(extent_node_t) ql_link;
};
/* Linkage for the address-ordered tree. */
rb_node(extent_node_t) ad_link;
};
typedef rb_tree(extent_node_t) extent_tree_t;
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
rb_proto(, extent_tree_szsnad_, extent_tree_t, extent_node_t)
rb_proto(, extent_tree_ad_, extent_tree_t, extent_node_t)
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
arena_t *extent_node_arena_get(const extent_node_t *node);
void *extent_node_addr_get(const extent_node_t *node);
size_t extent_node_size_get(const extent_node_t *node);
size_t extent_node_sn_get(const extent_node_t *node);
bool extent_node_zeroed_get(const extent_node_t *node);
bool extent_node_committed_get(const extent_node_t *node);
bool extent_node_achunk_get(const extent_node_t *node);
prof_tctx_t *extent_node_prof_tctx_get(const extent_node_t *node);
void extent_node_arena_set(extent_node_t *node, arena_t *arena);
void extent_node_addr_set(extent_node_t *node, void *addr);
void extent_node_size_set(extent_node_t *node, size_t size);
void extent_node_sn_set(extent_node_t *node, size_t sn);
void extent_node_zeroed_set(extent_node_t *node, bool zeroed);
void extent_node_committed_set(extent_node_t *node, bool committed);
void extent_node_achunk_set(extent_node_t *node, bool achunk);
void extent_node_prof_tctx_set(extent_node_t *node, prof_tctx_t *tctx);
void extent_node_init(extent_node_t *node, arena_t *arena, void *addr,
size_t size, size_t sn, bool zeroed, bool committed);
void extent_node_dirty_linkage_init(extent_node_t *node);
void extent_node_dirty_insert(extent_node_t *node,
arena_runs_dirty_link_t *runs_dirty, extent_node_t *chunks_dirty);
void extent_node_dirty_remove(extent_node_t *node);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_EXTENT_C_))
JEMALLOC_INLINE arena_t *
extent_node_arena_get(const extent_node_t *node)
{
return (node->en_arena);
}
JEMALLOC_INLINE void *
extent_node_addr_get(const extent_node_t *node)
{
return (node->en_addr);
}
JEMALLOC_INLINE size_t
extent_node_size_get(const extent_node_t *node)
{
return (node->en_size);
}
JEMALLOC_INLINE size_t
extent_node_sn_get(const extent_node_t *node)
{
return (node->en_sn);
}
JEMALLOC_INLINE bool
extent_node_zeroed_get(const extent_node_t *node)
{
return (node->en_zeroed);
}
JEMALLOC_INLINE bool
extent_node_committed_get(const extent_node_t *node)
{
assert(!node->en_achunk);
return (node->en_committed);
}
JEMALLOC_INLINE bool
extent_node_achunk_get(const extent_node_t *node)
{
return (node->en_achunk);
}
JEMALLOC_INLINE prof_tctx_t *
extent_node_prof_tctx_get(const extent_node_t *node)
{
return (node->en_prof_tctx);
}
JEMALLOC_INLINE void
extent_node_arena_set(extent_node_t *node, arena_t *arena)
{
node->en_arena = arena;
}
JEMALLOC_INLINE void
extent_node_addr_set(extent_node_t *node, void *addr)
{
node->en_addr = addr;
}
JEMALLOC_INLINE void
extent_node_size_set(extent_node_t *node, size_t size)
{
node->en_size = size;
}
JEMALLOC_INLINE void
extent_node_sn_set(extent_node_t *node, size_t sn)
{
node->en_sn = sn;
}
JEMALLOC_INLINE void
extent_node_zeroed_set(extent_node_t *node, bool zeroed)
{
node->en_zeroed = zeroed;
}
JEMALLOC_INLINE void
extent_node_committed_set(extent_node_t *node, bool committed)
{
node->en_committed = committed;
}
JEMALLOC_INLINE void
extent_node_achunk_set(extent_node_t *node, bool achunk)
{
node->en_achunk = achunk;
}
JEMALLOC_INLINE void
extent_node_prof_tctx_set(extent_node_t *node, prof_tctx_t *tctx)
{
node->en_prof_tctx = tctx;
}
JEMALLOC_INLINE void
extent_node_init(extent_node_t *node, arena_t *arena, void *addr, size_t size,
size_t sn, bool zeroed, bool committed)
{
extent_node_arena_set(node, arena);
extent_node_addr_set(node, addr);
extent_node_size_set(node, size);
extent_node_sn_set(node, sn);
extent_node_zeroed_set(node, zeroed);
extent_node_committed_set(node, committed);
extent_node_achunk_set(node, false);
if (config_prof)
extent_node_prof_tctx_set(node, NULL);
}
JEMALLOC_INLINE void
extent_node_dirty_linkage_init(extent_node_t *node)
{
qr_new(&node->rd, rd_link);
qr_new(node, cc_link);
}
JEMALLOC_INLINE void
extent_node_dirty_insert(extent_node_t *node,
arena_runs_dirty_link_t *runs_dirty, extent_node_t *chunks_dirty)
{
qr_meld(runs_dirty, &node->rd, rd_link);
qr_meld(chunks_dirty, node, cc_link);
}
JEMALLOC_INLINE void
extent_node_dirty_remove(extent_node_t *node)
{
qr_remove(&node->rd, rd_link);
qr_remove(node, cc_link);
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 6,787 | 24.04797 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/chunk_dss.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef enum {
dss_prec_disabled = 0,
dss_prec_primary = 1,
dss_prec_secondary = 2,
dss_prec_limit = 3
} dss_prec_t;
#define DSS_PREC_DEFAULT dss_prec_secondary
#define DSS_DEFAULT "secondary"
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
extern const char *dss_prec_names[];
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
dss_prec_t chunk_dss_prec_get(void);
bool chunk_dss_prec_set(dss_prec_t dss_prec);
void *chunk_alloc_dss(tsdn_t *tsdn, arena_t *arena, void *new_addr,
size_t size, size_t alignment, bool *zero, bool *commit);
bool chunk_in_dss(void *chunk);
bool chunk_dss_mergeable(void *chunk_a, void *chunk_b);
void chunk_dss_boot(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 1,211 | 30.894737 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_macros.h | /*
* JEMALLOC_ALWAYS_INLINE and JEMALLOC_INLINE are used within header files for
* functions that are static inline functions if inlining is enabled, and
* single-definition library-private functions if inlining is disabled.
*
* JEMALLOC_ALWAYS_INLINE_C and JEMALLOC_INLINE_C are for use in .c files, in
* which case the denoted functions are always static, regardless of whether
* inlining is enabled.
*/
#if defined(JEMALLOC_DEBUG) || defined(JEMALLOC_CODE_COVERAGE)
/* Disable inlining to make debugging/profiling easier. */
# define JEMALLOC_ALWAYS_INLINE
# define JEMALLOC_ALWAYS_INLINE_C static
# define JEMALLOC_INLINE
# define JEMALLOC_INLINE_C static
# define inline
#else
# define JEMALLOC_ENABLE_INLINE
# ifdef JEMALLOC_HAVE_ATTR
# define JEMALLOC_ALWAYS_INLINE \
static inline JEMALLOC_ATTR(unused) JEMALLOC_ATTR(always_inline)
# define JEMALLOC_ALWAYS_INLINE_C \
static inline JEMALLOC_ATTR(always_inline)
# else
# define JEMALLOC_ALWAYS_INLINE static inline
# define JEMALLOC_ALWAYS_INLINE_C static inline
# endif
# define JEMALLOC_INLINE static inline
# define JEMALLOC_INLINE_C static inline
# ifdef _MSC_VER
# define inline _inline
# endif
#endif
#ifdef JEMALLOC_CC_SILENCE
# define UNUSED JEMALLOC_ATTR(unused)
#else
# define UNUSED
#endif
#define ZU(z) ((size_t)z)
#define ZI(z) ((ssize_t)z)
#define QU(q) ((uint64_t)q)
#define QI(q) ((int64_t)q)
#define KZU(z) ZU(z##ULL)
#define KZI(z) ZI(z##LL)
#define KQU(q) QU(q##ULL)
#define KQI(q) QI(q##LL)
#ifndef __DECONST
# define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
#endif
#ifndef JEMALLOC_HAS_RESTRICT
# define restrict
#endif
| 1,669 | 27.793103 | 78 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/pages.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
void *pages_map(void *addr, size_t size, bool *commit);
void pages_unmap(void *addr, size_t size);
void *pages_trim(void *addr, size_t alloc_size, size_t leadsize,
size_t size, bool *commit);
bool pages_commit(void *addr, size_t size);
bool pages_decommit(void *addr, size_t size);
bool pages_purge(void *addr, size_t size);
bool pages_huge(void *addr, size_t size);
bool pages_nohuge(void *addr, size_t size);
void pages_boot(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 1,077 | 34.933333 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/prof.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct prof_bt_s prof_bt_t;
typedef struct prof_cnt_s prof_cnt_t;
typedef struct prof_tctx_s prof_tctx_t;
typedef struct prof_gctx_s prof_gctx_t;
typedef struct prof_tdata_s prof_tdata_t;
/* Option defaults. */
#ifdef JEMALLOC_PROF
# define PROF_PREFIX_DEFAULT "jeprof"
#else
# define PROF_PREFIX_DEFAULT ""
#endif
#define LG_PROF_SAMPLE_DEFAULT 19
#define LG_PROF_INTERVAL_DEFAULT -1
/*
* Hard limit on stack backtrace depth. The version of prof_backtrace() that
* is based on __builtin_return_address() necessarily has a hard-coded number
* of backtrace frame handlers, and should be kept in sync with this setting.
*/
#define PROF_BT_MAX 128
/* Initial hash table size. */
#define PROF_CKH_MINITEMS 64
/* Size of memory buffer to use when writing dump files. */
#define PROF_DUMP_BUFSIZE 65536
/* Size of stack-allocated buffer used by prof_printf(). */
#define PROF_PRINTF_BUFSIZE 128
/*
* Number of mutexes shared among all gctx's. No space is allocated for these
* unless profiling is enabled, so it's okay to over-provision.
*/
#define PROF_NCTX_LOCKS 1024
/*
* Number of mutexes shared among all tdata's. No space is allocated for these
* unless profiling is enabled, so it's okay to over-provision.
*/
#define PROF_NTDATA_LOCKS 256
/*
* prof_tdata pointers close to NULL are used to encode state information that
* is used for cleaning up during thread shutdown.
*/
#define PROF_TDATA_STATE_REINCARNATED ((prof_tdata_t *)(uintptr_t)1)
#define PROF_TDATA_STATE_PURGATORY ((prof_tdata_t *)(uintptr_t)2)
#define PROF_TDATA_STATE_MAX PROF_TDATA_STATE_PURGATORY
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
struct prof_bt_s {
/* Backtrace, stored as len program counters. */
void **vec;
unsigned len;
};
#ifdef JEMALLOC_PROF_LIBGCC
/* Data structure passed to libgcc _Unwind_Backtrace() callback functions. */
typedef struct {
prof_bt_t *bt;
unsigned max;
} prof_unwind_data_t;
#endif
struct prof_cnt_s {
/* Profiling counters. */
uint64_t curobjs;
uint64_t curbytes;
uint64_t accumobjs;
uint64_t accumbytes;
};
typedef enum {
prof_tctx_state_initializing,
prof_tctx_state_nominal,
prof_tctx_state_dumping,
prof_tctx_state_purgatory /* Dumper must finish destroying. */
} prof_tctx_state_t;
struct prof_tctx_s {
/* Thread data for thread that performed the allocation. */
prof_tdata_t *tdata;
/*
* Copy of tdata->thr_{uid,discrim}, necessary because tdata may be
* defunct during teardown.
*/
uint64_t thr_uid;
uint64_t thr_discrim;
/* Profiling counters, protected by tdata->lock. */
prof_cnt_t cnts;
/* Associated global context. */
prof_gctx_t *gctx;
/*
* UID that distinguishes multiple tctx's created by the same thread,
* but coexisting in gctx->tctxs. There are two ways that such
* coexistence can occur:
* - A dumper thread can cause a tctx to be retained in the purgatory
* state.
* - Although a single "producer" thread must create all tctx's which
* share the same thr_uid, multiple "consumers" can each concurrently
* execute portions of prof_tctx_destroy(). prof_tctx_destroy() only
* gets called once each time cnts.cur{objs,bytes} drop to 0, but this
* threshold can be hit again before the first consumer finishes
* executing prof_tctx_destroy().
*/
uint64_t tctx_uid;
/* Linkage into gctx's tctxs. */
rb_node(prof_tctx_t) tctx_link;
/*
* True during prof_alloc_prep()..prof_malloc_sample_object(), prevents
* sample vs destroy race.
*/
bool prepared;
/* Current dump-related state, protected by gctx->lock. */
prof_tctx_state_t state;
/*
* Copy of cnts snapshotted during early dump phase, protected by
* dump_mtx.
*/
prof_cnt_t dump_cnts;
};
typedef rb_tree(prof_tctx_t) prof_tctx_tree_t;
struct prof_gctx_s {
/* Protects nlimbo, cnt_summed, and tctxs. */
malloc_mutex_t *lock;
/*
* Number of threads that currently cause this gctx to be in a state of
* limbo due to one of:
* - Initializing this gctx.
* - Initializing per thread counters associated with this gctx.
* - Preparing to destroy this gctx.
* - Dumping a heap profile that includes this gctx.
* nlimbo must be 1 (single destroyer) in order to safely destroy the
* gctx.
*/
unsigned nlimbo;
/*
* Tree of profile counters, one for each thread that has allocated in
* this context.
*/
prof_tctx_tree_t tctxs;
/* Linkage for tree of contexts to be dumped. */
rb_node(prof_gctx_t) dump_link;
/* Temporary storage for summation during dump. */
prof_cnt_t cnt_summed;
/* Associated backtrace. */
prof_bt_t bt;
/* Backtrace vector, variable size, referred to by bt. */
void *vec[1];
};
typedef rb_tree(prof_gctx_t) prof_gctx_tree_t;
struct prof_tdata_s {
malloc_mutex_t *lock;
/* Monotonically increasing unique thread identifier. */
uint64_t thr_uid;
/*
* Monotonically increasing discriminator among tdata structures
* associated with the same thr_uid.
*/
uint64_t thr_discrim;
/* Included in heap profile dumps if non-NULL. */
char *thread_name;
bool attached;
bool expired;
rb_node(prof_tdata_t) tdata_link;
/*
* Counter used to initialize prof_tctx_t's tctx_uid. No locking is
* necessary when incrementing this field, because only one thread ever
* does so.
*/
uint64_t tctx_uid_next;
/*
* Hash of (prof_bt_t *)-->(prof_tctx_t *). Each thread tracks
* backtraces for which it has non-zero allocation/deallocation counters
* associated with thread-specific prof_tctx_t objects. Other threads
* may write to prof_tctx_t contents when freeing associated objects.
*/
ckh_t bt2tctx;
/* Sampling state. */
uint64_t prng_state;
uint64_t bytes_until_sample;
/* State used to avoid dumping while operating on prof internals. */
bool enq;
bool enq_idump;
bool enq_gdump;
/*
* Set to true during an early dump phase for tdata's which are
* currently being dumped. New threads' tdata's have this initialized
* to false so that they aren't accidentally included in later dump
* phases.
*/
bool dumping;
/*
* True if profiling is active for this tdata's thread
* (thread.prof.active mallctl).
*/
bool active;
/* Temporary storage for summation during dump. */
prof_cnt_t cnt_summed;
/* Backtrace vector, used for calls to prof_backtrace(). */
void *vec[PROF_BT_MAX];
};
typedef rb_tree(prof_tdata_t) prof_tdata_tree_t;
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
extern bool opt_prof;
extern bool opt_prof_active;
extern bool opt_prof_thread_active_init;
extern size_t opt_lg_prof_sample; /* Mean bytes between samples. */
extern ssize_t opt_lg_prof_interval; /* lg(prof_interval). */
extern bool opt_prof_gdump; /* High-water memory dumping. */
extern bool opt_prof_final; /* Final profile dumping. */
extern bool opt_prof_leak; /* Dump leak summary at exit. */
extern bool opt_prof_accum; /* Report cumulative bytes. */
extern char opt_prof_prefix[
/* Minimize memory bloat for non-prof builds. */
#ifdef JEMALLOC_PROF
PATH_MAX +
#endif
1];
/* Accessed via prof_active_[gs]et{_unlocked,}(). */
extern bool prof_active;
/* Accessed via prof_gdump_[gs]et{_unlocked,}(). */
extern bool prof_gdump_val;
/*
* Profile dump interval, measured in bytes allocated. Each arena triggers a
* profile dump when it reaches this threshold. The effect is that the
* interval between profile dumps averages prof_interval, though the actual
* interval between dumps will tend to be sporadic, and the interval will be a
* maximum of approximately (prof_interval * narenas).
*/
extern uint64_t prof_interval;
/*
* Initialized as opt_lg_prof_sample, and potentially modified during profiling
* resets.
*/
extern size_t lg_prof_sample;
void prof_alloc_rollback(tsd_t *tsd, prof_tctx_t *tctx, bool updated);
void prof_malloc_sample_object(tsdn_t *tsdn, const void *ptr, size_t usize,
prof_tctx_t *tctx);
void prof_free_sampled_object(tsd_t *tsd, size_t usize, prof_tctx_t *tctx);
void bt_init(prof_bt_t *bt, void **vec);
void prof_backtrace(prof_bt_t *bt);
prof_tctx_t *prof_lookup(tsd_t *tsd, prof_bt_t *bt);
#ifdef JEMALLOC_JET
size_t prof_tdata_count(void);
size_t prof_bt_count(void);
const prof_cnt_t *prof_cnt_all(void);
typedef int (prof_dump_open_t)(bool, const char *);
extern prof_dump_open_t *prof_dump_open;
typedef bool (prof_dump_header_t)(tsdn_t *, bool, const prof_cnt_t *);
extern prof_dump_header_t *prof_dump_header;
#endif
void prof_idump(tsdn_t *tsdn);
bool prof_mdump(tsd_t *tsd, const char *filename);
void prof_gdump(tsdn_t *tsdn);
prof_tdata_t *prof_tdata_init(tsd_t *tsd);
prof_tdata_t *prof_tdata_reinit(tsd_t *tsd, prof_tdata_t *tdata);
void prof_reset(tsd_t *tsd, size_t lg_sample);
void prof_tdata_cleanup(tsd_t *tsd);
bool prof_active_get(tsdn_t *tsdn);
bool prof_active_set(tsdn_t *tsdn, bool active);
const char *prof_thread_name_get(tsd_t *tsd);
int prof_thread_name_set(tsd_t *tsd, const char *thread_name);
bool prof_thread_active_get(tsd_t *tsd);
bool prof_thread_active_set(tsd_t *tsd, bool active);
bool prof_thread_active_init_get(tsdn_t *tsdn);
bool prof_thread_active_init_set(tsdn_t *tsdn, bool active_init);
bool prof_gdump_get(tsdn_t *tsdn);
bool prof_gdump_set(tsdn_t *tsdn, bool active);
void prof_boot0(void);
void prof_boot1(void);
bool prof_boot2(tsd_t *tsd);
void prof_prefork0(tsdn_t *tsdn);
void prof_prefork1(tsdn_t *tsdn);
void prof_postfork_parent(tsdn_t *tsdn);
void prof_postfork_child(tsdn_t *tsdn);
void prof_sample_threshold_update(prof_tdata_t *tdata);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
bool prof_active_get_unlocked(void);
bool prof_gdump_get_unlocked(void);
prof_tdata_t *prof_tdata_get(tsd_t *tsd, bool create);
prof_tctx_t *prof_tctx_get(tsdn_t *tsdn, const void *ptr);
void prof_tctx_set(tsdn_t *tsdn, const void *ptr, size_t usize,
prof_tctx_t *tctx);
void prof_tctx_reset(tsdn_t *tsdn, const void *ptr, size_t usize,
const void *old_ptr, prof_tctx_t *tctx);
bool prof_sample_accum_update(tsd_t *tsd, size_t usize, bool commit,
prof_tdata_t **tdata_out);
prof_tctx_t *prof_alloc_prep(tsd_t *tsd, size_t usize, bool prof_active,
bool update);
void prof_malloc(tsdn_t *tsdn, const void *ptr, size_t usize,
prof_tctx_t *tctx);
void prof_realloc(tsd_t *tsd, const void *ptr, size_t usize,
prof_tctx_t *tctx, bool prof_active, bool updated, const void *old_ptr,
size_t old_usize, prof_tctx_t *old_tctx);
void prof_free(tsd_t *tsd, const void *ptr, size_t usize);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_PROF_C_))
JEMALLOC_ALWAYS_INLINE bool
prof_active_get_unlocked(void)
{
/*
* Even if opt_prof is true, sampling can be temporarily disabled by
* setting prof_active to false. No locking is used when reading
* prof_active in the fast path, so there are no guarantees regarding
* how long it will take for all threads to notice state changes.
*/
return (prof_active);
}
JEMALLOC_ALWAYS_INLINE bool
prof_gdump_get_unlocked(void)
{
/*
* No locking is used when reading prof_gdump_val in the fast path, so
* there are no guarantees regarding how long it will take for all
* threads to notice state changes.
*/
return (prof_gdump_val);
}
JEMALLOC_ALWAYS_INLINE prof_tdata_t *
prof_tdata_get(tsd_t *tsd, bool create)
{
prof_tdata_t *tdata;
cassert(config_prof);
tdata = tsd_prof_tdata_get(tsd);
if (create) {
if (unlikely(tdata == NULL)) {
if (tsd_nominal(tsd)) {
tdata = prof_tdata_init(tsd);
tsd_prof_tdata_set(tsd, tdata);
}
} else if (unlikely(tdata->expired)) {
tdata = prof_tdata_reinit(tsd, tdata);
tsd_prof_tdata_set(tsd, tdata);
}
assert(tdata == NULL || tdata->attached);
}
return (tdata);
}
JEMALLOC_ALWAYS_INLINE prof_tctx_t *
prof_tctx_get(tsdn_t *tsdn, const void *ptr)
{
cassert(config_prof);
assert(ptr != NULL);
return (arena_prof_tctx_get(tsdn, ptr));
}
JEMALLOC_ALWAYS_INLINE void
prof_tctx_set(tsdn_t *tsdn, const void *ptr, size_t usize, prof_tctx_t *tctx)
{
cassert(config_prof);
assert(ptr != NULL);
arena_prof_tctx_set(tsdn, ptr, usize, tctx);
}
JEMALLOC_ALWAYS_INLINE void
prof_tctx_reset(tsdn_t *tsdn, const void *ptr, size_t usize, const void *old_ptr,
prof_tctx_t *old_tctx)
{
cassert(config_prof);
assert(ptr != NULL);
arena_prof_tctx_reset(tsdn, ptr, usize, old_ptr, old_tctx);
}
JEMALLOC_ALWAYS_INLINE bool
prof_sample_accum_update(tsd_t *tsd, size_t usize, bool update,
prof_tdata_t **tdata_out)
{
prof_tdata_t *tdata;
cassert(config_prof);
tdata = prof_tdata_get(tsd, true);
if (unlikely((uintptr_t)tdata <= (uintptr_t)PROF_TDATA_STATE_MAX))
tdata = NULL;
if (tdata_out != NULL)
*tdata_out = tdata;
if (unlikely(tdata == NULL))
return (true);
if (likely(tdata->bytes_until_sample >= usize)) {
if (update)
tdata->bytes_until_sample -= usize;
return (true);
} else {
/* Compute new sample threshold. */
if (update)
prof_sample_threshold_update(tdata);
return (!tdata->active);
}
}
JEMALLOC_ALWAYS_INLINE prof_tctx_t *
prof_alloc_prep(tsd_t *tsd, size_t usize, bool prof_active, bool update)
{
prof_tctx_t *ret;
prof_tdata_t *tdata;
prof_bt_t bt;
assert(usize == s2u(usize));
if (!prof_active || likely(prof_sample_accum_update(tsd, usize, update,
&tdata)))
ret = (prof_tctx_t *)(uintptr_t)1U;
else {
bt_init(&bt, tdata->vec);
prof_backtrace(&bt);
ret = prof_lookup(tsd, &bt);
}
return (ret);
}
JEMALLOC_ALWAYS_INLINE void
prof_malloc(tsdn_t *tsdn, const void *ptr, size_t usize, prof_tctx_t *tctx)
{
cassert(config_prof);
assert(ptr != NULL);
assert(usize == isalloc(tsdn, ptr, true));
if (unlikely((uintptr_t)tctx > (uintptr_t)1U))
prof_malloc_sample_object(tsdn, ptr, usize, tctx);
else
prof_tctx_set(tsdn, ptr, usize, (prof_tctx_t *)(uintptr_t)1U);
}
JEMALLOC_ALWAYS_INLINE void
prof_realloc(tsd_t *tsd, const void *ptr, size_t usize, prof_tctx_t *tctx,
bool prof_active, bool updated, const void *old_ptr, size_t old_usize,
prof_tctx_t *old_tctx)
{
bool sampled, old_sampled;
cassert(config_prof);
assert(ptr != NULL || (uintptr_t)tctx <= (uintptr_t)1U);
if (prof_active && !updated && ptr != NULL) {
assert(usize == isalloc(tsd_tsdn(tsd), ptr, true));
if (prof_sample_accum_update(tsd, usize, true, NULL)) {
/*
* Don't sample. The usize passed to prof_alloc_prep()
* was larger than what actually got allocated, so a
* backtrace was captured for this allocation, even
* though its actual usize was insufficient to cross the
* sample threshold.
*/
prof_alloc_rollback(tsd, tctx, true);
tctx = (prof_tctx_t *)(uintptr_t)1U;
}
}
sampled = ((uintptr_t)tctx > (uintptr_t)1U);
old_sampled = ((uintptr_t)old_tctx > (uintptr_t)1U);
if (unlikely(sampled))
prof_malloc_sample_object(tsd_tsdn(tsd), ptr, usize, tctx);
else
prof_tctx_reset(tsd_tsdn(tsd), ptr, usize, old_ptr, old_tctx);
if (unlikely(old_sampled))
prof_free_sampled_object(tsd, old_usize, old_tctx);
}
JEMALLOC_ALWAYS_INLINE void
prof_free(tsd_t *tsd, const void *ptr, size_t usize)
{
prof_tctx_t *tctx = prof_tctx_get(tsd_tsdn(tsd), ptr);
cassert(config_prof);
assert(usize == isalloc(tsd_tsdn(tsd), ptr, true));
if (unlikely((uintptr_t)tctx > (uintptr_t)1U))
prof_free_sampled_object(tsd, usize, tctx);
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 15,844 | 27.914234 | 81 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/hash.h | /*
* The following hash function is based on MurmurHash3, placed into the public
* domain by Austin Appleby. See https://github.com/aappleby/smhasher for
* details.
*/
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
uint32_t hash_x86_32(const void *key, int len, uint32_t seed);
void hash_x86_128(const void *key, const int len, uint32_t seed,
uint64_t r_out[2]);
void hash_x64_128(const void *key, const int len, const uint32_t seed,
uint64_t r_out[2]);
void hash(const void *key, size_t len, const uint32_t seed,
size_t r_hash[2]);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_HASH_C_))
/******************************************************************************/
/* Internal implementation. */
JEMALLOC_INLINE uint32_t
hash_rotl_32(uint32_t x, int8_t r)
{
return ((x << r) | (x >> (32 - r)));
}
JEMALLOC_INLINE uint64_t
hash_rotl_64(uint64_t x, int8_t r)
{
return ((x << r) | (x >> (64 - r)));
}
JEMALLOC_INLINE uint32_t
hash_get_block_32(const uint32_t *p, int i)
{
/* Handle unaligned read. */
if (unlikely((uintptr_t)p & (sizeof(uint32_t)-1)) != 0) {
uint32_t ret;
memcpy(&ret, (uint8_t *)(p + i), sizeof(uint32_t));
return (ret);
}
return (p[i]);
}
JEMALLOC_INLINE uint64_t
hash_get_block_64(const uint64_t *p, int i)
{
/* Handle unaligned read. */
if (unlikely((uintptr_t)p & (sizeof(uint64_t)-1)) != 0) {
uint64_t ret;
memcpy(&ret, (uint8_t *)(p + i), sizeof(uint64_t));
return (ret);
}
return (p[i]);
}
JEMALLOC_INLINE uint32_t
hash_fmix_32(uint32_t h)
{
h ^= h >> 16;
h *= 0x85ebca6b;
h ^= h >> 13;
h *= 0xc2b2ae35;
h ^= h >> 16;
return (h);
}
JEMALLOC_INLINE uint64_t
hash_fmix_64(uint64_t k)
{
k ^= k >> 33;
k *= KQU(0xff51afd7ed558ccd);
k ^= k >> 33;
k *= KQU(0xc4ceb9fe1a85ec53);
k ^= k >> 33;
return (k);
}
JEMALLOC_INLINE uint32_t
hash_x86_32(const void *key, int len, uint32_t seed)
{
const uint8_t *data = (const uint8_t *) key;
const int nblocks = len / 4;
uint32_t h1 = seed;
const uint32_t c1 = 0xcc9e2d51;
const uint32_t c2 = 0x1b873593;
/* body */
{
const uint32_t *blocks = (const uint32_t *) (data + nblocks*4);
int i;
for (i = -nblocks; i; i++) {
uint32_t k1 = hash_get_block_32(blocks, i);
k1 *= c1;
k1 = hash_rotl_32(k1, 15);
k1 *= c2;
h1 ^= k1;
h1 = hash_rotl_32(h1, 13);
h1 = h1*5 + 0xe6546b64;
}
}
/* tail */
{
const uint8_t *tail = (const uint8_t *) (data + nblocks*4);
uint32_t k1 = 0;
switch (len & 3) {
case 3: k1 ^= tail[2] << 16;
case 2: k1 ^= tail[1] << 8;
case 1: k1 ^= tail[0]; k1 *= c1; k1 = hash_rotl_32(k1, 15);
k1 *= c2; h1 ^= k1;
}
}
/* finalization */
h1 ^= len;
h1 = hash_fmix_32(h1);
return (h1);
}
UNUSED JEMALLOC_INLINE void
hash_x86_128(const void *key, const int len, uint32_t seed,
uint64_t r_out[2])
{
const uint8_t * data = (const uint8_t *) key;
const int nblocks = len / 16;
uint32_t h1 = seed;
uint32_t h2 = seed;
uint32_t h3 = seed;
uint32_t h4 = seed;
const uint32_t c1 = 0x239b961b;
const uint32_t c2 = 0xab0e9789;
const uint32_t c3 = 0x38b34ae5;
const uint32_t c4 = 0xa1e38b93;
/* body */
{
const uint32_t *blocks = (const uint32_t *) (data + nblocks*16);
int i;
for (i = -nblocks; i; i++) {
uint32_t k1 = hash_get_block_32(blocks, i*4 + 0);
uint32_t k2 = hash_get_block_32(blocks, i*4 + 1);
uint32_t k3 = hash_get_block_32(blocks, i*4 + 2);
uint32_t k4 = hash_get_block_32(blocks, i*4 + 3);
k1 *= c1; k1 = hash_rotl_32(k1, 15); k1 *= c2; h1 ^= k1;
h1 = hash_rotl_32(h1, 19); h1 += h2;
h1 = h1*5 + 0x561ccd1b;
k2 *= c2; k2 = hash_rotl_32(k2, 16); k2 *= c3; h2 ^= k2;
h2 = hash_rotl_32(h2, 17); h2 += h3;
h2 = h2*5 + 0x0bcaa747;
k3 *= c3; k3 = hash_rotl_32(k3, 17); k3 *= c4; h3 ^= k3;
h3 = hash_rotl_32(h3, 15); h3 += h4;
h3 = h3*5 + 0x96cd1c35;
k4 *= c4; k4 = hash_rotl_32(k4, 18); k4 *= c1; h4 ^= k4;
h4 = hash_rotl_32(h4, 13); h4 += h1;
h4 = h4*5 + 0x32ac3b17;
}
}
/* tail */
{
const uint8_t *tail = (const uint8_t *) (data + nblocks*16);
uint32_t k1 = 0;
uint32_t k2 = 0;
uint32_t k3 = 0;
uint32_t k4 = 0;
switch (len & 15) {
case 15: k4 ^= tail[14] << 16;
case 14: k4 ^= tail[13] << 8;
case 13: k4 ^= tail[12] << 0;
k4 *= c4; k4 = hash_rotl_32(k4, 18); k4 *= c1; h4 ^= k4;
case 12: k3 ^= tail[11] << 24;
case 11: k3 ^= tail[10] << 16;
case 10: k3 ^= tail[ 9] << 8;
case 9: k3 ^= tail[ 8] << 0;
k3 *= c3; k3 = hash_rotl_32(k3, 17); k3 *= c4; h3 ^= k3;
case 8: k2 ^= tail[ 7] << 24;
case 7: k2 ^= tail[ 6] << 16;
case 6: k2 ^= tail[ 5] << 8;
case 5: k2 ^= tail[ 4] << 0;
k2 *= c2; k2 = hash_rotl_32(k2, 16); k2 *= c3; h2 ^= k2;
case 4: k1 ^= tail[ 3] << 24;
case 3: k1 ^= tail[ 2] << 16;
case 2: k1 ^= tail[ 1] << 8;
case 1: k1 ^= tail[ 0] << 0;
k1 *= c1; k1 = hash_rotl_32(k1, 15); k1 *= c2; h1 ^= k1;
}
}
/* finalization */
h1 ^= len; h2 ^= len; h3 ^= len; h4 ^= len;
h1 += h2; h1 += h3; h1 += h4;
h2 += h1; h3 += h1; h4 += h1;
h1 = hash_fmix_32(h1);
h2 = hash_fmix_32(h2);
h3 = hash_fmix_32(h3);
h4 = hash_fmix_32(h4);
h1 += h2; h1 += h3; h1 += h4;
h2 += h1; h3 += h1; h4 += h1;
r_out[0] = (((uint64_t) h2) << 32) | h1;
r_out[1] = (((uint64_t) h4) << 32) | h3;
}
UNUSED JEMALLOC_INLINE void
hash_x64_128(const void *key, const int len, const uint32_t seed,
uint64_t r_out[2])
{
const uint8_t *data = (const uint8_t *) key;
const int nblocks = len / 16;
uint64_t h1 = seed;
uint64_t h2 = seed;
const uint64_t c1 = KQU(0x87c37b91114253d5);
const uint64_t c2 = KQU(0x4cf5ad432745937f);
/* body */
{
const uint64_t *blocks = (const uint64_t *) (data);
int i;
for (i = 0; i < nblocks; i++) {
uint64_t k1 = hash_get_block_64(blocks, i*2 + 0);
uint64_t k2 = hash_get_block_64(blocks, i*2 + 1);
k1 *= c1; k1 = hash_rotl_64(k1, 31); k1 *= c2; h1 ^= k1;
h1 = hash_rotl_64(h1, 27); h1 += h2;
h1 = h1*5 + 0x52dce729;
k2 *= c2; k2 = hash_rotl_64(k2, 33); k2 *= c1; h2 ^= k2;
h2 = hash_rotl_64(h2, 31); h2 += h1;
h2 = h2*5 + 0x38495ab5;
}
}
/* tail */
{
const uint8_t *tail = (const uint8_t*)(data + nblocks*16);
uint64_t k1 = 0;
uint64_t k2 = 0;
switch (len & 15) {
case 15: k2 ^= ((uint64_t)(tail[14])) << 48;
case 14: k2 ^= ((uint64_t)(tail[13])) << 40;
case 13: k2 ^= ((uint64_t)(tail[12])) << 32;
case 12: k2 ^= ((uint64_t)(tail[11])) << 24;
case 11: k2 ^= ((uint64_t)(tail[10])) << 16;
case 10: k2 ^= ((uint64_t)(tail[ 9])) << 8;
case 9: k2 ^= ((uint64_t)(tail[ 8])) << 0;
k2 *= c2; k2 = hash_rotl_64(k2, 33); k2 *= c1; h2 ^= k2;
case 8: k1 ^= ((uint64_t)(tail[ 7])) << 56;
case 7: k1 ^= ((uint64_t)(tail[ 6])) << 48;
case 6: k1 ^= ((uint64_t)(tail[ 5])) << 40;
case 5: k1 ^= ((uint64_t)(tail[ 4])) << 32;
case 4: k1 ^= ((uint64_t)(tail[ 3])) << 24;
case 3: k1 ^= ((uint64_t)(tail[ 2])) << 16;
case 2: k1 ^= ((uint64_t)(tail[ 1])) << 8;
case 1: k1 ^= ((uint64_t)(tail[ 0])) << 0;
k1 *= c1; k1 = hash_rotl_64(k1, 31); k1 *= c2; h1 ^= k1;
}
}
/* finalization */
h1 ^= len; h2 ^= len;
h1 += h2;
h2 += h1;
h1 = hash_fmix_64(h1);
h2 = hash_fmix_64(h2);
h1 += h2;
h2 += h1;
r_out[0] = h1;
r_out[1] = h2;
}
/******************************************************************************/
/* API. */
JEMALLOC_INLINE void
hash(const void *key, size_t len, const uint32_t seed, size_t r_hash[2])
{
assert(len <= INT_MAX); /* Unfortunate implementation limitation. */
#if (LG_SIZEOF_PTR == 3 && !defined(JEMALLOC_BIG_ENDIAN))
hash_x64_128(key, (int)len, seed, (uint64_t *)r_hash);
#else
{
uint64_t hashes[2];
hash_x86_128(key, (int)len, seed, hashes);
r_hash[0] = (size_t)hashes[0];
r_hash[1] = (size_t)hashes[1];
}
#endif
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 8,394 | 22.449721 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/jemalloc/include/jemalloc/internal/tsd.h | /******************************************************************************/
#ifdef JEMALLOC_H_TYPES
/* Maximum number of malloc_tsd users with cleanup functions. */
#define MALLOC_TSD_CLEANUPS_MAX 2
typedef bool (*malloc_tsd_cleanup_t)(void);
#if (!defined(JEMALLOC_MALLOC_THREAD_CLEANUP) && !defined(JEMALLOC_TLS) && \
!defined(_WIN32))
typedef struct tsd_init_block_s tsd_init_block_t;
typedef struct tsd_init_head_s tsd_init_head_t;
#endif
typedef struct tsd_s tsd_t;
typedef struct tsdn_s tsdn_t;
#define TSDN_NULL ((tsdn_t *)0)
typedef enum {
tsd_state_uninitialized,
tsd_state_nominal,
tsd_state_purgatory,
tsd_state_reincarnated
} tsd_state_t;
/*
* TLS/TSD-agnostic macro-based implementation of thread-specific data. There
* are five macros that support (at least) three use cases: file-private,
* library-private, and library-private inlined. Following is an example
* library-private tsd variable:
*
* In example.h:
* typedef struct {
* int x;
* int y;
* } example_t;
* #define EX_INITIALIZER JEMALLOC_CONCAT({0, 0})
* malloc_tsd_types(example_, example_t)
* malloc_tsd_protos(, example_, example_t)
* malloc_tsd_externs(example_, example_t)
* In example.c:
* malloc_tsd_data(, example_, example_t, EX_INITIALIZER)
* malloc_tsd_funcs(, example_, example_t, EX_INITIALIZER,
* example_tsd_cleanup)
*
* The result is a set of generated functions, e.g.:
*
* bool example_tsd_boot(void) {...}
* bool example_tsd_booted_get(void) {...}
* example_t *example_tsd_get(bool init) {...}
* void example_tsd_set(example_t *val) {...}
*
* Note that all of the functions deal in terms of (a_type *) rather than
* (a_type) so that it is possible to support non-pointer types (unlike
* pthreads TSD). example_tsd_cleanup() is passed an (a_type *) pointer that is
* cast to (void *). This means that the cleanup function needs to cast the
* function argument to (a_type *), then dereference the resulting pointer to
* access fields, e.g.
*
* void
* example_tsd_cleanup(void *arg)
* {
* example_t *example = (example_t *)arg;
*
* example->x = 42;
* [...]
* if ([want the cleanup function to be called again])
* example_tsd_set(example);
* }
*
* If example_tsd_set() is called within example_tsd_cleanup(), it will be
* called again. This is similar to how pthreads TSD destruction works, except
* that pthreads only calls the cleanup function again if the value was set to
* non-NULL.
*/
/* malloc_tsd_types(). */
#ifdef JEMALLOC_MALLOC_THREAD_CLEANUP
#define malloc_tsd_types(a_name, a_type)
#elif (defined(JEMALLOC_TLS))
#define malloc_tsd_types(a_name, a_type)
#elif (defined(_WIN32))
#define malloc_tsd_types(a_name, a_type) \
typedef struct { \
bool initialized; \
a_type val; \
} a_name##tsd_wrapper_t;
#else
#define malloc_tsd_types(a_name, a_type) \
typedef struct { \
bool initialized; \
a_type val; \
} a_name##tsd_wrapper_t;
#endif
/* malloc_tsd_protos(). */
#define malloc_tsd_protos(a_attr, a_name, a_type) \
a_attr bool \
a_name##tsd_boot0(void); \
a_attr void \
a_name##tsd_boot1(void); \
a_attr bool \
a_name##tsd_boot(void); \
a_attr bool \
a_name##tsd_booted_get(void); \
a_attr a_type * \
a_name##tsd_get(bool init); \
a_attr void \
a_name##tsd_set(a_type *val);
/* malloc_tsd_externs(). */
#ifdef JEMALLOC_MALLOC_THREAD_CLEANUP
#define malloc_tsd_externs(a_name, a_type) \
extern __thread a_type a_name##tsd_tls; \
extern __thread bool a_name##tsd_initialized; \
extern bool a_name##tsd_booted;
#elif (defined(JEMALLOC_TLS))
#define malloc_tsd_externs(a_name, a_type) \
extern __thread a_type a_name##tsd_tls; \
extern pthread_key_t a_name##tsd_tsd; \
extern bool a_name##tsd_booted;
#elif (defined(_WIN32))
#define malloc_tsd_externs(a_name, a_type) \
extern DWORD a_name##tsd_tsd; \
extern a_name##tsd_wrapper_t a_name##tsd_boot_wrapper; \
extern bool a_name##tsd_booted;
#else
#define malloc_tsd_externs(a_name, a_type) \
extern pthread_key_t a_name##tsd_tsd; \
extern tsd_init_head_t a_name##tsd_init_head; \
extern a_name##tsd_wrapper_t a_name##tsd_boot_wrapper; \
extern bool a_name##tsd_booted;
#endif
/* malloc_tsd_data(). */
#ifdef JEMALLOC_MALLOC_THREAD_CLEANUP
#define malloc_tsd_data(a_attr, a_name, a_type, a_initializer) \
a_attr __thread a_type JEMALLOC_TLS_MODEL \
a_name##tsd_tls = a_initializer; \
a_attr __thread bool JEMALLOC_TLS_MODEL \
a_name##tsd_initialized = false; \
a_attr bool a_name##tsd_booted = false;
#elif (defined(JEMALLOC_TLS))
#define malloc_tsd_data(a_attr, a_name, a_type, a_initializer) \
a_attr __thread a_type JEMALLOC_TLS_MODEL \
a_name##tsd_tls = a_initializer; \
a_attr pthread_key_t a_name##tsd_tsd; \
a_attr bool a_name##tsd_booted = false;
#elif (defined(_WIN32))
#define malloc_tsd_data(a_attr, a_name, a_type, a_initializer) \
a_attr DWORD a_name##tsd_tsd; \
a_attr a_name##tsd_wrapper_t a_name##tsd_boot_wrapper = { \
false, \
a_initializer \
}; \
a_attr bool a_name##tsd_booted = false;
#else
#define malloc_tsd_data(a_attr, a_name, a_type, a_initializer) \
a_attr pthread_key_t a_name##tsd_tsd; \
a_attr tsd_init_head_t a_name##tsd_init_head = { \
ql_head_initializer(blocks), \
MALLOC_MUTEX_INITIALIZER \
}; \
a_attr a_name##tsd_wrapper_t a_name##tsd_boot_wrapper = { \
false, \
a_initializer \
}; \
a_attr bool a_name##tsd_booted = false;
#endif
/* malloc_tsd_funcs(). */
#ifdef JEMALLOC_MALLOC_THREAD_CLEANUP
#define malloc_tsd_funcs(a_attr, a_name, a_type, a_initializer, \
a_cleanup) \
/* Initialization/cleanup. */ \
a_attr bool \
a_name##tsd_cleanup_wrapper(void) \
{ \
\
if (a_name##tsd_initialized) { \
a_name##tsd_initialized = false; \
a_cleanup(&a_name##tsd_tls); \
} \
return (a_name##tsd_initialized); \
} \
a_attr bool \
a_name##tsd_boot0(void) \
{ \
\
if (a_cleanup != malloc_tsd_no_cleanup) { \
malloc_tsd_cleanup_register( \
&a_name##tsd_cleanup_wrapper); \
} \
a_name##tsd_booted = true; \
return (false); \
} \
a_attr void \
a_name##tsd_boot1(void) \
{ \
\
/* Do nothing. */ \
} \
a_attr bool \
a_name##tsd_boot(void) \
{ \
\
return (a_name##tsd_boot0()); \
} \
a_attr bool \
a_name##tsd_booted_get(void) \
{ \
\
return (a_name##tsd_booted); \
} \
a_attr bool \
a_name##tsd_get_allocates(void) \
{ \
\
return (false); \
} \
/* Get/set. */ \
a_attr a_type * \
a_name##tsd_get(bool init) \
{ \
\
assert(a_name##tsd_booted); \
return (&a_name##tsd_tls); \
} \
a_attr void \
a_name##tsd_set(a_type *val) \
{ \
\
assert(a_name##tsd_booted); \
a_name##tsd_tls = (*val); \
if (a_cleanup != malloc_tsd_no_cleanup) \
a_name##tsd_initialized = true; \
}
#elif (defined(JEMALLOC_TLS))
#define malloc_tsd_funcs(a_attr, a_name, a_type, a_initializer, \
a_cleanup) \
/* Initialization/cleanup. */ \
a_attr bool \
a_name##tsd_boot0(void) \
{ \
\
if (a_cleanup != malloc_tsd_no_cleanup) { \
if (pthread_key_create(&a_name##tsd_tsd, a_cleanup) != \
0) \
return (true); \
} \
a_name##tsd_booted = true; \
return (false); \
} \
a_attr void \
a_name##tsd_boot1(void) \
{ \
\
/* Do nothing. */ \
} \
a_attr bool \
a_name##tsd_boot(void) \
{ \
\
return (a_name##tsd_boot0()); \
} \
a_attr bool \
a_name##tsd_booted_get(void) \
{ \
\
return (a_name##tsd_booted); \
} \
a_attr bool \
a_name##tsd_get_allocates(void) \
{ \
\
return (false); \
} \
/* Get/set. */ \
a_attr a_type * \
a_name##tsd_get(bool init) \
{ \
\
assert(a_name##tsd_booted); \
return (&a_name##tsd_tls); \
} \
a_attr void \
a_name##tsd_set(a_type *val) \
{ \
\
assert(a_name##tsd_booted); \
a_name##tsd_tls = (*val); \
if (a_cleanup != malloc_tsd_no_cleanup) { \
if (pthread_setspecific(a_name##tsd_tsd, \
(void *)(&a_name##tsd_tls))) { \
malloc_write("<jemalloc>: Error" \
" setting TSD for "#a_name"\n"); \
if (opt_abort) \
abort(); \
} \
} \
}
#elif (defined(_WIN32))
#define malloc_tsd_funcs(a_attr, a_name, a_type, a_initializer, \
a_cleanup) \
/* Initialization/cleanup. */ \
a_attr bool \
a_name##tsd_cleanup_wrapper(void) \
{ \
DWORD error = GetLastError(); \
a_name##tsd_wrapper_t *wrapper = (a_name##tsd_wrapper_t *) \
TlsGetValue(a_name##tsd_tsd); \
SetLastError(error); \
\
if (wrapper == NULL) \
return (false); \
if (a_cleanup != malloc_tsd_no_cleanup && \
wrapper->initialized) { \
wrapper->initialized = false; \
a_cleanup(&wrapper->val); \
if (wrapper->initialized) { \
/* Trigger another cleanup round. */ \
return (true); \
} \
} \
malloc_tsd_dalloc(wrapper); \
return (false); \
} \
a_attr void \
a_name##tsd_wrapper_set(a_name##tsd_wrapper_t *wrapper) \
{ \
\
if (!TlsSetValue(a_name##tsd_tsd, (void *)wrapper)) { \
malloc_write("<jemalloc>: Error setting" \
" TSD for "#a_name"\n"); \
abort(); \
} \
} \
a_attr a_name##tsd_wrapper_t * \
a_name##tsd_wrapper_get(bool init) \
{ \
DWORD error = GetLastError(); \
a_name##tsd_wrapper_t *wrapper = (a_name##tsd_wrapper_t *) \
TlsGetValue(a_name##tsd_tsd); \
SetLastError(error); \
\
if (init && unlikely(wrapper == NULL)) { \
wrapper = (a_name##tsd_wrapper_t *) \
malloc_tsd_malloc(sizeof(a_name##tsd_wrapper_t)); \
if (wrapper == NULL) { \
malloc_write("<jemalloc>: Error allocating" \
" TSD for "#a_name"\n"); \
abort(); \
} else { \
wrapper->initialized = false; \
wrapper->val = a_initializer; \
} \
a_name##tsd_wrapper_set(wrapper); \
} \
return (wrapper); \
} \
a_attr bool \
a_name##tsd_boot0(void) \
{ \
\
a_name##tsd_tsd = TlsAlloc(); \
if (a_name##tsd_tsd == TLS_OUT_OF_INDEXES) \
return (true); \
if (a_cleanup != malloc_tsd_no_cleanup) { \
malloc_tsd_cleanup_register( \
&a_name##tsd_cleanup_wrapper); \
} \
a_name##tsd_wrapper_set(&a_name##tsd_boot_wrapper); \
a_name##tsd_booted = true; \
return (false); \
} \
a_attr void \
a_name##tsd_boot1(void) \
{ \
a_name##tsd_wrapper_t *wrapper; \
wrapper = (a_name##tsd_wrapper_t *) \
malloc_tsd_malloc(sizeof(a_name##tsd_wrapper_t)); \
if (wrapper == NULL) { \
malloc_write("<jemalloc>: Error allocating" \
" TSD for "#a_name"\n"); \
abort(); \
} \
memcpy(wrapper, &a_name##tsd_boot_wrapper, \
sizeof(a_name##tsd_wrapper_t)); \
a_name##tsd_wrapper_set(wrapper); \
} \
a_attr bool \
a_name##tsd_boot(void) \
{ \
\
if (a_name##tsd_boot0()) \
return (true); \
a_name##tsd_boot1(); \
return (false); \
} \
a_attr bool \
a_name##tsd_booted_get(void) \
{ \
\
return (a_name##tsd_booted); \
} \
a_attr bool \
a_name##tsd_get_allocates(void) \
{ \
\
return (true); \
} \
/* Get/set. */ \
a_attr a_type * \
a_name##tsd_get(bool init) \
{ \
a_name##tsd_wrapper_t *wrapper; \
\
assert(a_name##tsd_booted); \
wrapper = a_name##tsd_wrapper_get(init); \
if (a_name##tsd_get_allocates() && !init && wrapper == NULL) \
return (NULL); \
return (&wrapper->val); \
} \
a_attr void \
a_name##tsd_set(a_type *val) \
{ \
a_name##tsd_wrapper_t *wrapper; \
\
assert(a_name##tsd_booted); \
wrapper = a_name##tsd_wrapper_get(true); \
wrapper->val = *(val); \
if (a_cleanup != malloc_tsd_no_cleanup) \
wrapper->initialized = true; \
}
#else
#define malloc_tsd_funcs(a_attr, a_name, a_type, a_initializer, \
a_cleanup) \
/* Initialization/cleanup. */ \
a_attr void \
a_name##tsd_cleanup_wrapper(void *arg) \
{ \
a_name##tsd_wrapper_t *wrapper = (a_name##tsd_wrapper_t *)arg; \
\
if (a_cleanup != malloc_tsd_no_cleanup && \
wrapper->initialized) { \
wrapper->initialized = false; \
a_cleanup(&wrapper->val); \
if (wrapper->initialized) { \
/* Trigger another cleanup round. */ \
if (pthread_setspecific(a_name##tsd_tsd, \
(void *)wrapper)) { \
malloc_write("<jemalloc>: Error" \
" setting TSD for "#a_name"\n"); \
if (opt_abort) \
abort(); \
} \
return; \
} \
} \
malloc_tsd_dalloc(wrapper); \
} \
a_attr void \
a_name##tsd_wrapper_set(a_name##tsd_wrapper_t *wrapper) \
{ \
\
if (pthread_setspecific(a_name##tsd_tsd, \
(void *)wrapper)) { \
malloc_write("<jemalloc>: Error setting" \
" TSD for "#a_name"\n"); \
abort(); \
} \
} \
a_attr a_name##tsd_wrapper_t * \
a_name##tsd_wrapper_get(bool init) \
{ \
a_name##tsd_wrapper_t *wrapper = (a_name##tsd_wrapper_t *) \
pthread_getspecific(a_name##tsd_tsd); \
\
if (init && unlikely(wrapper == NULL)) { \
tsd_init_block_t block; \
wrapper = tsd_init_check_recursion( \
&a_name##tsd_init_head, &block); \
if (wrapper) \
return (wrapper); \
wrapper = (a_name##tsd_wrapper_t *) \
malloc_tsd_malloc(sizeof(a_name##tsd_wrapper_t)); \
block.data = wrapper; \
if (wrapper == NULL) { \
malloc_write("<jemalloc>: Error allocating" \
" TSD for "#a_name"\n"); \
abort(); \
} else { \
wrapper->initialized = false; \
wrapper->val = a_initializer; \
} \
a_name##tsd_wrapper_set(wrapper); \
tsd_init_finish(&a_name##tsd_init_head, &block); \
} \
return (wrapper); \
} \
a_attr bool \
a_name##tsd_boot0(void) \
{ \
\
if (pthread_key_create(&a_name##tsd_tsd, \
a_name##tsd_cleanup_wrapper) != 0) \
return (true); \
a_name##tsd_wrapper_set(&a_name##tsd_boot_wrapper); \
a_name##tsd_booted = true; \
return (false); \
} \
a_attr void \
a_name##tsd_boot1(void) \
{ \
a_name##tsd_wrapper_t *wrapper; \
wrapper = (a_name##tsd_wrapper_t *) \
malloc_tsd_malloc(sizeof(a_name##tsd_wrapper_t)); \
if (wrapper == NULL) { \
malloc_write("<jemalloc>: Error allocating" \
" TSD for "#a_name"\n"); \
abort(); \
} \
memcpy(wrapper, &a_name##tsd_boot_wrapper, \
sizeof(a_name##tsd_wrapper_t)); \
a_name##tsd_wrapper_set(wrapper); \
} \
a_attr bool \
a_name##tsd_boot(void) \
{ \
\
if (a_name##tsd_boot0()) \
return (true); \
a_name##tsd_boot1(); \
return (false); \
} \
a_attr bool \
a_name##tsd_booted_get(void) \
{ \
\
return (a_name##tsd_booted); \
} \
a_attr bool \
a_name##tsd_get_allocates(void) \
{ \
\
return (true); \
} \
/* Get/set. */ \
a_attr a_type * \
a_name##tsd_get(bool init) \
{ \
a_name##tsd_wrapper_t *wrapper; \
\
assert(a_name##tsd_booted); \
wrapper = a_name##tsd_wrapper_get(init); \
if (a_name##tsd_get_allocates() && !init && wrapper == NULL) \
return (NULL); \
return (&wrapper->val); \
} \
a_attr void \
a_name##tsd_set(a_type *val) \
{ \
a_name##tsd_wrapper_t *wrapper; \
\
assert(a_name##tsd_booted); \
wrapper = a_name##tsd_wrapper_get(true); \
wrapper->val = *(val); \
if (a_cleanup != malloc_tsd_no_cleanup) \
wrapper->initialized = true; \
}
#endif
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#if (!defined(JEMALLOC_MALLOC_THREAD_CLEANUP) && !defined(JEMALLOC_TLS) && \
!defined(_WIN32))
struct tsd_init_block_s {
ql_elm(tsd_init_block_t) link;
pthread_t thread;
void *data;
};
struct tsd_init_head_s {
ql_head(tsd_init_block_t) blocks;
malloc_mutex_t lock;
};
#endif
#define MALLOC_TSD \
/* O(name, type) */ \
O(tcache, tcache_t *) \
O(thread_allocated, uint64_t) \
O(thread_deallocated, uint64_t) \
O(prof_tdata, prof_tdata_t *) \
O(iarena, arena_t *) \
O(arena, arena_t *) \
O(arenas_tdata, arena_tdata_t *) \
O(narenas_tdata, unsigned) \
O(arenas_tdata_bypass, bool) \
O(tcache_enabled, tcache_enabled_t) \
O(quarantine, quarantine_t *) \
O(witnesses, witness_list_t) \
O(witness_fork, bool) \
#define TSD_INITIALIZER { \
tsd_state_uninitialized, \
NULL, \
0, \
0, \
NULL, \
NULL, \
NULL, \
NULL, \
0, \
false, \
tcache_enabled_default, \
NULL, \
ql_head_initializer(witnesses), \
false \
}
struct tsd_s {
tsd_state_t state;
#define O(n, t) \
t n;
MALLOC_TSD
#undef O
};
/*
* Wrapper around tsd_t that makes it possible to avoid implicit conversion
* between tsd_t and tsdn_t, where tsdn_t is "nullable" and has to be
* explicitly converted to tsd_t, which is non-nullable.
*/
struct tsdn_s {
tsd_t tsd;
};
static const tsd_t tsd_initializer = TSD_INITIALIZER;
malloc_tsd_types(, tsd_t)
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
void *malloc_tsd_malloc(size_t size);
void malloc_tsd_dalloc(void *wrapper);
void malloc_tsd_no_cleanup(void *arg);
void malloc_tsd_cleanup_register(bool (*f)(void));
tsd_t *malloc_tsd_boot0(void);
void malloc_tsd_boot1(void);
#if (!defined(JEMALLOC_MALLOC_THREAD_CLEANUP) && !defined(JEMALLOC_TLS) && \
!defined(_WIN32))
void *tsd_init_check_recursion(tsd_init_head_t *head,
tsd_init_block_t *block);
void tsd_init_finish(tsd_init_head_t *head, tsd_init_block_t *block);
#endif
void tsd_cleanup(void *arg);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
malloc_tsd_protos(JEMALLOC_ATTR(unused), , tsd_t)
tsd_t *tsd_fetch_impl(bool init);
tsd_t *tsd_fetch(void);
tsdn_t *tsd_tsdn(tsd_t *tsd);
bool tsd_nominal(tsd_t *tsd);
#define O(n, t) \
t *tsd_##n##p_get(tsd_t *tsd); \
t tsd_##n##_get(tsd_t *tsd); \
void tsd_##n##_set(tsd_t *tsd, t n);
MALLOC_TSD
#undef O
tsdn_t *tsdn_fetch(void);
bool tsdn_null(const tsdn_t *tsdn);
tsd_t *tsdn_tsd(tsdn_t *tsdn);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_TSD_C_))
malloc_tsd_externs(, tsd_t)
malloc_tsd_funcs(JEMALLOC_ALWAYS_INLINE, , tsd_t, tsd_initializer, tsd_cleanup)
JEMALLOC_ALWAYS_INLINE tsd_t *
tsd_fetch_impl(bool init)
{
tsd_t *tsd = tsd_get(init);
if (!init && tsd_get_allocates() && tsd == NULL)
return (NULL);
assert(tsd != NULL);
if (unlikely(tsd->state != tsd_state_nominal)) {
if (tsd->state == tsd_state_uninitialized) {
tsd->state = tsd_state_nominal;
/* Trigger cleanup handler registration. */
tsd_set(tsd);
} else if (tsd->state == tsd_state_purgatory) {
tsd->state = tsd_state_reincarnated;
tsd_set(tsd);
} else
assert(tsd->state == tsd_state_reincarnated);
}
return (tsd);
}
JEMALLOC_ALWAYS_INLINE tsd_t *
tsd_fetch(void)
{
return (tsd_fetch_impl(true));
}
JEMALLOC_ALWAYS_INLINE tsdn_t *
tsd_tsdn(tsd_t *tsd)
{
return ((tsdn_t *)tsd);
}
JEMALLOC_INLINE bool
tsd_nominal(tsd_t *tsd)
{
return (tsd->state == tsd_state_nominal);
}
#define O(n, t) \
JEMALLOC_ALWAYS_INLINE t * \
tsd_##n##p_get(tsd_t *tsd) \
{ \
\
return (&tsd->n); \
} \
\
JEMALLOC_ALWAYS_INLINE t \
tsd_##n##_get(tsd_t *tsd) \
{ \
\
return (*tsd_##n##p_get(tsd)); \
} \
\
JEMALLOC_ALWAYS_INLINE void \
tsd_##n##_set(tsd_t *tsd, t n) \
{ \
\
assert(tsd->state == tsd_state_nominal); \
tsd->n = n; \
}
MALLOC_TSD
#undef O
JEMALLOC_ALWAYS_INLINE tsdn_t *
tsdn_fetch(void)
{
if (!tsd_booted_get())
return (NULL);
return (tsd_tsdn(tsd_fetch_impl(false)));
}
JEMALLOC_ALWAYS_INLINE bool
tsdn_null(const tsdn_t *tsdn)
{
return (tsdn == NULL);
}
JEMALLOC_ALWAYS_INLINE tsd_t *
tsdn_tsd(tsdn_t *tsdn)
{
assert(!tsdn_null(tsdn));
return (&tsdn->tsd);
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
| 21,743 | 26.593909 | 80 | h |
null | NearPMSW-main/nearpm/shadow/redis-NDP-sd/deps/geohash-int/geohash_helper.c | /*
* Copyright (c) 2013-2014, yinqiwen <[email protected]>
* Copyright (c) 2014, Matt Stancliff <[email protected]>.
* Copyright (c) 2015-2016, Salvatore Sanfilippo <[email protected]>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/* This is a C++ to C conversion from the ardb project.
* This file started out as:
* https://github.com/yinqiwen/ardb/blob/d42503/src/geo/geohash_helper.cpp
*/
#include "geohash_helper.h"
#include <math.h>
#define D_R (M_PI / 180.0)
#define R_MAJOR 6378137.0
#define R_MINOR 6356752.3142
#define RATIO (R_MINOR / R_MAJOR)
#define ECCENT (sqrt(1.0 - (RATIO *RATIO)))
#define COM (0.5 * ECCENT)
/// @brief The usual PI/180 constant
const double DEG_TO_RAD = 0.017453292519943295769236907684886;
/// @brief Earth's quatratic mean radius for WGS-84
const double EARTH_RADIUS_IN_METERS = 6372797.560856;
const double MERCATOR_MAX = 20037726.37;
const double MERCATOR_MIN = -20037726.37;
static inline double deg_rad(double ang) { return ang * D_R; }
static inline double rad_deg(double ang) { return ang / D_R; }
/* This function is used in order to estimate the step (bits precision)
* of the 9 search area boxes during radius queries. */
uint8_t geohashEstimateStepsByRadius(double range_meters, double lat) {
if (range_meters == 0) return 26;
int step = 1;
while (range_meters < MERCATOR_MAX) {
range_meters *= 2;
step++;
}
step -= 2; /* Make sure range is included in most of the base cases. */
/* Wider range torwards the poles... Note: it is possible to do better
* than this approximation by computing the distance between meridians
* at this latitude, but this does the trick for now. */
if (lat > 66 || lat < -66) {
step--;
if (lat > 80 || lat < -80) step--;
}
/* Frame to valid range. */
if (step < 1) step = 1;
if (step > 26) step = 26;
return step;
}
/* Return the bounding box of the search area centered at latitude,longitude
* having a radius of radius_meter. bounds[0] - bounds[2] is the minimum
* and maxium longitude, while bounds[1] - bounds[3] is the minimum and
* maximum latitude. */
int geohashBoundingBox(double longitude, double latitude, double radius_meters,
double *bounds) {
if (!bounds) return 0;
bounds[0] = longitude - rad_deg(radius_meters/EARTH_RADIUS_IN_METERS/cos(deg_rad(latitude)));
bounds[2] = longitude + rad_deg(radius_meters/EARTH_RADIUS_IN_METERS/cos(deg_rad(latitude)));
bounds[1] = latitude - rad_deg(radius_meters/EARTH_RADIUS_IN_METERS);
bounds[3] = latitude + rad_deg(radius_meters/EARTH_RADIUS_IN_METERS);
return 1;
}
/* Return a set of areas (center + 8) that are able to cover a range query
* for the specified position and radius. */
GeoHashRadius geohashGetAreasByRadius(double longitude, double latitude, double radius_meters) {
GeoHashRange long_range, lat_range;
GeoHashRadius radius;
GeoHashBits hash;
GeoHashNeighbors neighbors;
GeoHashArea area;
double min_lon, max_lon, min_lat, max_lat;
double bounds[4];
int steps;
geohashBoundingBox(longitude, latitude, radius_meters, bounds);
min_lon = bounds[0];
min_lat = bounds[1];
max_lon = bounds[2];
max_lat = bounds[3];
steps = geohashEstimateStepsByRadius(radius_meters,latitude);
geohashGetCoordRange(&long_range,&lat_range);
geohashEncode(&long_range,&lat_range,longitude,latitude,steps,&hash);
geohashNeighbors(&hash,&neighbors);
geohashDecode(long_range,lat_range,hash,&area);
/* Check if the step is enough at the limits of the covered area.
* Sometimes when the search area is near an edge of the
* area, the estimated step is not small enough, since one of the
* north / south / west / east square is too near to the search area
* to cover everything. */
int decrease_step = 0;
{
GeoHashArea north, south, east, west;
geohashDecode(long_range, lat_range, neighbors.north, &north);
geohashDecode(long_range, lat_range, neighbors.south, &south);
geohashDecode(long_range, lat_range, neighbors.east, &east);
geohashDecode(long_range, lat_range, neighbors.west, &west);
if (geohashGetDistance(longitude,latitude,longitude,north.latitude.max)
< radius_meters) decrease_step = 1;
if (geohashGetDistance(longitude,latitude,longitude,south.latitude.min)
< radius_meters) decrease_step = 1;
if (geohashGetDistance(longitude,latitude,east.longitude.max,latitude)
< radius_meters) decrease_step = 1;
if (geohashGetDistance(longitude,latitude,west.longitude.min,latitude)
< radius_meters) decrease_step = 1;
}
if (steps > 1 && decrease_step) {
steps--;
geohashEncode(&long_range,&lat_range,longitude,latitude,steps,&hash);
geohashNeighbors(&hash,&neighbors);
geohashDecode(long_range,lat_range,hash,&area);
}
/* Exclude the search areas that are useless. */
if (area.latitude.min < min_lat) {
GZERO(neighbors.south);
GZERO(neighbors.south_west);
GZERO(neighbors.south_east);
}
if (area.latitude.max > max_lat) {
GZERO(neighbors.north);
GZERO(neighbors.north_east);
GZERO(neighbors.north_west);
}
if (area.longitude.min < min_lon) {
GZERO(neighbors.west);
GZERO(neighbors.south_west);
GZERO(neighbors.north_west);
}
if (area.longitude.max > max_lon) {
GZERO(neighbors.east);
GZERO(neighbors.south_east);
GZERO(neighbors.north_east);
}
radius.hash = hash;
radius.neighbors = neighbors;
radius.area = area;
return radius;
}
GeoHashRadius geohashGetAreasByRadiusWGS84(double longitude, double latitude,
double radius_meters) {
return geohashGetAreasByRadius(longitude, latitude, radius_meters);
}
GeoHashFix52Bits geohashAlign52Bits(const GeoHashBits hash) {
uint64_t bits = hash.bits;
bits <<= (52 - hash.step * 2);
return bits;
}
/* Calculate distance using haversin great circle distance formula. */
double geohashGetDistance(double lon1d, double lat1d, double lon2d, double lat2d) {
double lat1r, lon1r, lat2r, lon2r, u, v;
lat1r = deg_rad(lat1d);
lon1r = deg_rad(lon1d);
lat2r = deg_rad(lat2d);
lon2r = deg_rad(lon2d);
u = sin((lat2r - lat1r) / 2);
v = sin((lon2r - lon1r) / 2);
return 2.0 * EARTH_RADIUS_IN_METERS *
asin(sqrt(u * u + cos(lat1r) * cos(lat2r) * v * v));
}
int geohashGetDistanceIfInRadius(double x1, double y1,
double x2, double y2, double radius,
double *distance) {
*distance = geohashGetDistance(x1, y1, x2, y2);
if (*distance > radius) return 0;
return 1;
}
int geohashGetDistanceIfInRadiusWGS84(double x1, double y1, double x2,
double y2, double radius,
double *distance) {
return geohashGetDistanceIfInRadius(x1, y1, x2, y2, radius, distance);
}
| 8,623 | 38.559633 | 97 | c |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.