repo
stringlengths
1
152
file
stringlengths
14
221
code
stringlengths
501
25k
file_length
int64
501
25k
avg_line_length
float64
20
99.5
max_line_length
int64
21
134
extension_type
stringclasses
2 values
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_tx_user_data/obj_tx_user_data.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2019-2020, Intel Corporation */ /* * obj_tx_user_data.c -- unit test for pmemobj_tx_(get/set)_user_data */ #include "unittest.h" #define LAYOUT_NAME "tx_user_data" #define USER_DATA_V1 (void *) 123456789ULL #define USER_DATA_V2 (void *) 987654321ULL /* * do_tx_set_get_user_data_nested -- do set and verify user data in a tx */ static void do_tx_set_get_user_data_nested(PMEMobjpool *pop) { TX_BEGIN(pop) { pmemobj_tx_set_user_data(USER_DATA_V1); UT_ASSERTeq(USER_DATA_V1, pmemobj_tx_get_user_data()); TX_BEGIN(pop) { UT_ASSERTeq(USER_DATA_V1, pmemobj_tx_get_user_data()); pmemobj_tx_set_user_data(USER_DATA_V2); UT_ASSERTeq(USER_DATA_V2, pmemobj_tx_get_user_data()); } TX_ONABORT { UT_ASSERT(0); } TX_END } TX_ONCOMMIT { UT_ASSERTeq(USER_DATA_V2, pmemobj_tx_get_user_data()); } TX_ONABORT { UT_ASSERT(0); } TX_END TX_BEGIN(pop) { UT_ASSERTeq(NULL, pmemobj_tx_get_user_data()); } TX_ONABORT { UT_ASSERT(0); } TX_END } /* * do_tx_set_get_user_data_abort -- do set and verify user data in a tx after * tx abort */ static void do_tx_set_get_user_data_abort(PMEMobjpool *pop) { TX_BEGIN(pop) { pmemobj_tx_set_user_data(USER_DATA_V1); UT_ASSERTeq(USER_DATA_V1, pmemobj_tx_get_user_data()); pmemobj_tx_abort(-1); } TX_ONCOMMIT { UT_ASSERT(0); } TX_ONABORT { UT_ASSERTeq(USER_DATA_V1, pmemobj_tx_get_user_data()); } TX_END TX_BEGIN(pop) { UT_ASSERTeq(NULL, pmemobj_tx_get_user_data()); } TX_ONABORT { UT_ASSERT(0); } TX_END } int main(int argc, char *argv[]) { START(argc, argv, "obj_tx_user_data"); if (argc != 2) UT_FATAL("usage: %s [file]", argv[0]); PMEMobjpool *pop; if ((pop = pmemobj_create(argv[1], LAYOUT_NAME, PMEMOBJ_MIN_POOL, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create"); do_tx_set_get_user_data_nested(pop); do_tx_set_get_user_data_abort(pop); pmemobj_close(pop); DONE(NULL); }
1,948
20.655556
77
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem_memset/pmem_memset.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2020, Intel Corporation */ /* * pmem_memset.c -- unit test for doing a memset * * usage: pmem_memset file offset length */ #include "unittest.h" #include "util_pmem.h" #include "file.h" #include "memset_common.h" typedef void *pmem_memset_fn(void *pmemdest, int c, size_t len, unsigned flags); static void * pmem_memset_persist_wrapper(void *pmemdest, int c, size_t len, unsigned flags) { (void) flags; return pmem_memset_persist(pmemdest, c, len); } static void * pmem_memset_nodrain_wrapper(void *pmemdest, int c, size_t len, unsigned flags) { (void) flags; return pmem_memset_nodrain(pmemdest, c, len); } static void do_memset_variants(int fd, char *dest, const char *file_name, size_t dest_off, size_t bytes, persist_fn p) { do_memset(fd, dest, file_name, dest_off, bytes, pmem_memset_persist_wrapper, 0, p); do_memset(fd, dest, file_name, dest_off, bytes, pmem_memset_nodrain_wrapper, 0, p); for (int i = 0; i < ARRAY_SIZE(Flags); ++i) { do_memset(fd, dest, file_name, dest_off, bytes, pmem_memset, Flags[i], p); if (Flags[i] & PMEMOBJ_F_MEM_NOFLUSH) pmem_persist(dest, bytes); } } static void do_persist_ddax(const void *ptr, size_t size) { util_persist_auto(1, ptr, size); } static void do_persist(const void *ptr, size_t size) { util_persist_auto(0, ptr, size); } int main(int argc, char *argv[]) { int fd; size_t mapped_len; char *dest; if (argc != 4) UT_FATAL("usage: %s file offset length", argv[0]); const char *thr = os_getenv("PMEM_MOVNT_THRESHOLD"); const char *avx = os_getenv("PMEM_AVX"); const char *avx512f = os_getenv("PMEM_AVX512F"); START(argc, argv, "pmem_memset %s %s %s %savx %savx512f", argv[2], argv[3], thr ? thr : "default", avx ? "" : "!", avx512f ? "" : "!"); fd = OPEN(argv[1], O_RDWR); /* open a pmem file and memory map it */ if ((dest = pmem_map_file(argv[1], 0, 0, 0, &mapped_len, NULL)) == NULL) UT_FATAL("!Could not mmap %s\n", argv[1]); size_t dest_off = strtoul(argv[2], NULL, 0); size_t bytes = strtoul(argv[3], NULL, 0); enum file_type type = util_fd_get_type(fd); if (type < 0) UT_FATAL("cannot check type of file with fd %d", fd); persist_fn p; p = type == TYPE_DEVDAX ? do_persist_ddax : do_persist; do_memset_variants(fd, dest, argv[1], dest_off, bytes, p); UT_ASSERTeq(pmem_unmap(dest, mapped_len), 0); CLOSE(fd); DONE(NULL); }
2,428
22.355769
80
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_fragmentation/obj_fragmentation.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2018, Intel Corporation */ /* * obj_fragmentation.c -- measures average heap fragmentation * * A pretty simplistic test that measures internal fragmentation of the * allocator for the given size. */ #include <stdlib.h> #include "unittest.h" #define LAYOUT_NAME "obj_fragmentation" #define OBJECT_OVERHEAD 64 /* account for the header added to each object */ #define MAX_OVERALL_OVERHEAD 0.10f /* * For the best accuracy fragmentation should be measured for one full zone * because the metadata is preallocated. For reasonable test duration a smaller * size must be used. */ #define DEFAULT_FILE_SIZE ((size_t)(1ULL << 28)) /* 256 megabytes */ int main(int argc, char *argv[]) { START(argc, argv, "obj_fragmentation"); if (argc < 3) UT_FATAL("usage: %s allocsize filename [filesize]", argv[0]); size_t file_size; if (argc == 4) file_size = ATOUL(argv[3]); else file_size = DEFAULT_FILE_SIZE; size_t alloc_size = ATOUL(argv[1]); const char *path = argv[2]; PMEMobjpool *pop = pmemobj_create(path, LAYOUT_NAME, file_size, S_IWUSR | S_IRUSR); if (pop == NULL) UT_FATAL("!pmemobj_create: %s", path); size_t allocated = 0; int err = 0; do { PMEMoid oid; err = pmemobj_alloc(pop, &oid, alloc_size, 0, NULL, NULL); if (err == 0) allocated += pmemobj_alloc_usable_size(oid) + OBJECT_OVERHEAD; } while (err == 0); float allocated_pct = ((float)allocated / file_size); float overhead_pct = 1.f - allocated_pct; UT_ASSERT(overhead_pct <= MAX_OVERALL_OVERHEAD); pmemobj_close(pop); DONE(NULL); }
1,607
23.738462
79
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_recovery/obj_recovery.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2019, Intel Corporation */ /* * obj_recovery.c -- unit test for pool recovery */ #include "unittest.h" #include "valgrind_internal.h" #if VG_PMEMCHECK_ENABLED #define VALGRIND_PMEMCHECK_END_TX VALGRIND_PMC_END_TX #else #define VALGRIND_PMEMCHECK_END_TX #endif POBJ_LAYOUT_BEGIN(recovery); POBJ_LAYOUT_ROOT(recovery, struct root); POBJ_LAYOUT_TOID(recovery, struct foo); POBJ_LAYOUT_END(recovery); #define MB (1 << 20) struct foo { int bar; }; struct root { PMEMmutex lock; TOID(struct foo) foo; char large_data[MB]; }; #define BAR_VALUE 5 int main(int argc, char *argv[]) { START(argc, argv, "obj_recovery"); /* root doesn't count */ UT_COMPILE_ERROR_ON(POBJ_LAYOUT_TYPES_NUM(recovery) != 1); if (argc != 5) UT_FATAL("usage: %s [file] [lock: y/n] " "[cmd: c/o] [type: n/f/s/l]", argv[0]); const char *path = argv[1]; PMEMobjpool *pop = NULL; int exists = argv[3][0] == 'o'; enum { TEST_NEW, TEST_FREE, TEST_SET, TEST_LARGE } type; if (argv[4][0] == 'n') type = TEST_NEW; else if (argv[4][0] == 'f') type = TEST_FREE; else if (argv[4][0] == 's') type = TEST_SET; else if (argv[4][0] == 'l') type = TEST_LARGE; else UT_FATAL("invalid type"); if (!exists) { if ((pop = pmemobj_create(path, POBJ_LAYOUT_NAME(recovery), 0, S_IWUSR | S_IRUSR)) == NULL) { UT_FATAL("failed to create pool\n"); } } else { if ((pop = pmemobj_open(path, POBJ_LAYOUT_NAME(recovery))) == NULL) { UT_FATAL("failed to open pool\n"); } } TOID(struct root) root = POBJ_ROOT(pop, struct root); int lock_type = TX_PARAM_NONE; void *lock = NULL; if (argv[2][0] == 'y') { lock_type = TX_PARAM_MUTEX; lock = &D_RW(root)->lock; } if (type == TEST_SET) { if (!exists) { TX_BEGIN_PARAM(pop, lock_type, lock) { TX_ADD(root); TOID(struct foo) f = TX_NEW(struct foo); D_RW(root)->foo = f; D_RW(f)->bar = BAR_VALUE; } TX_END TX_BEGIN_PARAM(pop, lock_type, lock) { TX_ADD_FIELD(D_RW(root)->foo, bar); D_RW(D_RW(root)->foo)->bar = BAR_VALUE * 2; /* * Even though flushes are not required inside * of a transaction, this is done here to * suppress irrelevant pmemcheck issues, because * we exit the program before the data is * flushed, while preserving any real ones. */ pmemobj_persist(pop, &D_RW(D_RW(root)->foo)->bar, sizeof(int)); /* * We also need to cleanup the transaction state * of pmemcheck. */ VALGRIND_PMEMCHECK_END_TX; exit(0); /* simulate a crash */ } TX_END } else { UT_ASSERT(D_RW(D_RW(root)->foo)->bar == BAR_VALUE); } } else if (type == TEST_LARGE) { if (!exists) { TX_BEGIN(pop) { TX_MEMSET(D_RW(root)->large_data, 0xc, MB); pmemobj_persist(pop, D_RW(root)->large_data, MB); VALGRIND_PMEMCHECK_END_TX; exit(0); } TX_END } else { UT_ASSERT(util_is_zeroed(D_RW(root)->large_data, MB)); TX_BEGIN(pop) { /* we should be able to start TX */ TX_MEMSET(D_RW(root)->large_data, 0xc, MB); pmemobj_persist(pop, D_RW(root)->large_data, MB); VALGRIND_PMEMCHECK_END_TX; pmemobj_tx_abort(0); } TX_END } } else if (type == TEST_NEW) { if (!exists) { TX_BEGIN_PARAM(pop, lock_type, lock) { TOID(struct foo) f = TX_NEW(struct foo); TX_SET(root, foo, f); pmemobj_persist(pop, &D_RW(root)->foo, sizeof(PMEMoid)); VALGRIND_PMEMCHECK_END_TX; exit(0); /* simulate a crash */ } TX_END } else { UT_ASSERT(TOID_IS_NULL(D_RW(root)->foo)); } } else { /* TEST_FREE */ if (!exists) { TX_BEGIN_PARAM(pop, lock_type, lock) { TX_ADD(root); TOID(struct foo) f = TX_NEW(struct foo); D_RW(root)->foo = f; D_RW(f)->bar = BAR_VALUE; } TX_END TX_BEGIN_PARAM(pop, lock_type, lock) { TX_ADD(root); TX_FREE(D_RW(root)->foo); D_RW(root)->foo = TOID_NULL(struct foo); pmemobj_persist(pop, &D_RW(root)->foo, sizeof(PMEMoid)); VALGRIND_PMEMCHECK_END_TX; exit(0); /* simulate a crash */ } TX_END } else { UT_ASSERT(!TOID_IS_NULL(D_RW(root)->foo)); } } UT_ASSERT(pmemobj_check(path, POBJ_LAYOUT_NAME(recovery))); pmemobj_close(pop); DONE(NULL); }
4,244
20.994819
61
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_perror/pmem2_perror.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2020, Intel Corporation */ /* * pmem2_perror.c -- pmem2_perror unittests */ #include "libpmem2.h" #include "unittest.h" #include "out.h" #include "config.h" #include "source.h" /* * test_fail_pmem2_func_simple - simply check print message when func * from pmem2 API fails */ static int test_fail_pmem2_func_simple(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_config cfg; size_t offset = (size_t)INT64_MAX + 1; /* "randomly" chosen function to be failed */ int ret = pmem2_config_set_offset(&cfg, offset); UT_ASSERTne(ret, 0); pmem2_perror("pmem2_config_set_offset"); return 0; } /* * test_fail_pmem2_func_format - check print message when func * from pmem2 API fails and ellipsis operator is used */ static int test_fail_pmem2_func_format(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_config cfg; size_t offset = (size_t)INT64_MAX + 1; /* "randomly" chosen function to be failed */ int ret = pmem2_config_set_offset(&cfg, offset); UT_ASSERTne(ret, 0); pmem2_perror("pmem2_config_set_offset %d", 123); return 0; } /* * test_fail_system_func_simple - check print message when directly called * system func fails */ static int test_fail_system_func_simple(const struct test_case *tc, int argc, char *argv[]) { /* "randomly" chosen function to be failed */ int ret = os_open("XXX", O_RDONLY); UT_ASSERTeq(ret, -1); ERR("!open"); pmem2_perror("test"); return 0; } /* * test_fail_system_func_format - check print message when directly called * system func fails and ellipsis operator is used */ static int test_fail_system_func_format(const struct test_case *tc, int argc, char *argv[]) { /* "randomly" chosen function to be failed */ int ret = os_open("XXX", O_RDONLY); UT_ASSERTeq(ret, -1); ERR("!open"); pmem2_perror("test %d", 123); return 0; } /* * test_fail_pmem2_syscall_simple - check print message when system func * fails through pmem2_source_size func */ static int test_fail_pmem2_syscall_simple(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_source src; size_t size; #ifdef _WIN32 src.type = PMEM2_SOURCE_HANDLE; src.value.handle = INVALID_HANDLE_VALUE; #else src.type = PMEM2_SOURCE_FD; src.value.fd = -1; #endif /* "randomly" chosen function to be failed */ int ret = pmem2_source_size(&src, &size); ASSERTne(ret, 0); pmem2_perror("test"); return 0; } /* * test_fail_pmem2_syscall_simple - check print message when system func * fails through pmem2_source_size func and ellipsis operator is used */ static int test_fail_pmem2_syscall_format(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_source src; size_t size; #ifdef _WIN32 src.type = PMEM2_SOURCE_HANDLE; src.value.handle = INVALID_HANDLE_VALUE; #else src.type = PMEM2_SOURCE_FD; src.value.fd = -1; #endif /* "randomly" chosen function to be failed */ int ret = pmem2_source_size(&src, &size); ASSERTne(ret, 0); pmem2_perror("test %d", 123); return 0; } /* * test_simple_err_to_errno_check - check if conversion * from pmem2 err value to errno works fine */ static int test_simple_err_to_errno_check(const struct test_case *tc, int argc, char *argv[]) { int ret_errno = pmem2_err_to_errno(PMEM2_E_NOSUPP); UT_ASSERTeq(ret_errno, ENOTSUP); ret_errno = pmem2_err_to_errno(PMEM2_E_UNKNOWN); UT_ASSERTeq(ret_errno, EINVAL); ret_errno = pmem2_err_to_errno(-ENOTSUP); UT_ASSERTeq(ret_errno, ENOTSUP); return 0; } /* * test_cases -- available test cases */ static struct test_case test_cases[] = { TEST_CASE(test_fail_pmem2_func_simple), TEST_CASE(test_fail_pmem2_func_format), TEST_CASE(test_fail_system_func_simple), TEST_CASE(test_fail_system_func_format), TEST_CASE(test_fail_pmem2_syscall_simple), TEST_CASE(test_fail_pmem2_syscall_format), TEST_CASE(test_simple_err_to_errno_check), }; #define NTESTS (sizeof(test_cases) / sizeof(test_cases[0])) int main(int argc, char **argv) { START(argc, argv, "pmem2_perror"); util_init(); out_init("pmem2_perror", "TEST_LOG_LEVEL", "TEST_LOG_FILE", 0, 0); TEST_CASE_PROCESS(argc, argv, test_cases, NTESTS); out_fini(); DONE(NULL); }
4,205
21.253968
80
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_mem_ext/pmem2_mem_ext.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2020, Intel Corporation */ /* * pmem2_mem_ext.c -- test for low level functions from libpmem2 */ #include "unittest.h" #include "file.h" #include "ut_pmem2.h" #include "valgrind_internal.h" typedef void *(*memmove_fn)(void *pmemdest, const void *src, size_t len, unsigned flags); typedef void *(*memcpy_fn)(void *pmemdest, const void *src, size_t len, unsigned flags); typedef void *(*memset_fn)(void *pmemdest, int c, size_t len, unsigned flags); static unsigned Flags[] = { 0, PMEM_F_MEM_NONTEMPORAL, PMEM_F_MEM_TEMPORAL, PMEM_F_MEM_NONTEMPORAL | PMEM_F_MEM_TEMPORAL, PMEM_F_MEM_WC, PMEM_F_MEM_WB, PMEM_F_MEM_NOFLUSH, PMEM_F_MEM_NODRAIN | PMEM_F_MEM_NOFLUSH | PMEM_F_MEM_NONTEMPORAL | PMEM_F_MEM_TEMPORAL | PMEM_F_MEM_WC | PMEM_F_MEM_WB, }; /* * do_memcpy_with_flag -- pmem2 memcpy with specified flag amd size */ static void do_memcpy_with_flag(char *addr, size_t data_size, memcpy_fn cpy_fn, int flag) { char *addr2 = addr + data_size; cpy_fn(addr2, addr, data_size, Flags[flag]); } /* * do_memmove_with_flag -- pmem2 memmove with specified flag and size */ static void do_memmove_with_flag(char *addr, size_t data_size, memmove_fn mov_fn, int flag) { char *addr2 = addr + data_size; mov_fn(addr2, addr, data_size, Flags[flag]); } /* * do_memset_with_flag -- pmem2 memset with specified flag and size */ static void do_memset_with_flag(char *addr, size_t data_size, memset_fn set_fn, int flag) { set_fn(addr, 1, data_size, Flags[flag]); if (Flags[flag] & PMEM2_F_MEM_NOFLUSH) VALGRIND_DO_PERSIST(addr, data_size); } int main(int argc, char *argv[]) { int fd; char *addr; size_t mapped_len; struct pmem2_config *cfg; struct pmem2_source *src; struct pmem2_map *map; if (argc != 5) UT_FATAL("usage: %s file type size flag", argv[0]); const char *thr = os_getenv("PMEM_MOVNT_THRESHOLD"); const char *avx = os_getenv("PMEM_AVX"); const char *avx512f = os_getenv("PMEM_AVX512F"); START(argc, argv, "pmem2_mem_ext %s %savx %savx512f", thr ? thr : "default", avx ? "" : "!", avx512f ? "" : "!"); util_init(); char type = argv[2][0]; size_t data_size = strtoul(argv[3], NULL, 0); int flag = atoi(argv[4]); UT_ASSERT(flag < ARRAY_SIZE(Flags)); fd = OPEN(argv[1], O_RDWR); UT_ASSERT(fd != -1); PMEM2_CONFIG_NEW(&cfg); PMEM2_SOURCE_FROM_FD(&src, fd); PMEM2_CONFIG_SET_GRANULARITY(cfg, PMEM2_GRANULARITY_PAGE); int ret = pmem2_map(cfg, src, &map); UT_PMEM2_EXPECT_RETURN(ret, 0); PMEM2_CONFIG_DELETE(&cfg); PMEM2_SOURCE_DELETE(&src); mapped_len = pmem2_map_get_size(map); UT_ASSERT(data_size * 2 < mapped_len); addr = pmem2_map_get_address(map); if (addr == NULL) UT_FATAL("!could not map file: %s", argv[1]); switch (type) { case 'C': { pmem2_memcpy_fn memcpy_fn = pmem2_get_memcpy_fn(map); do_memcpy_with_flag(addr, data_size, memcpy_fn, flag); break; } case 'S': { pmem2_memset_fn memset_fn = pmem2_get_memset_fn(map); do_memset_with_flag(addr, data_size, memset_fn, flag); break; } case 'M': { pmem2_memmove_fn memmove_fn = pmem2_get_memmove_fn(map); do_memmove_with_flag(addr, data_size, memmove_fn, flag); break; } default: UT_FATAL("!wrong type of test %c", type); break; } ret = pmem2_unmap(&map); UT_ASSERTeq(ret, 0); CLOSE(fd); DONE(NULL); }
3,349
22.426573
79
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/rpmemd_util/rpmemd_util_test.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2017-2018, Intel Corporation */ /* * rpmemd_util_test.c -- unit tests for rpmemd_util module */ #include "unittest.h" #include "rpmem_common.h" #include "rpmemd_log.h" #include "rpmemd_util.h" #include "util.h" /* structure to store results */ struct result { int ret; enum rpmem_persist_method persist_method; int (*persist)(const void *addr, size_t len); void *(*memcpy_persist)(void *pmemdest, const void *src, size_t len); }; /* all values to test */ static const enum rpmem_persist_method pms[] = {RPMEM_PM_GPSPM, RPMEM_PM_APM, MAX_RPMEM_PM}; static const int is_pmems[] = {0, 1}; enum mode { MODE_VALID, MODE_INVALID, MODE_MAX }; static const int ranges[2][2][2] = { [MODE_VALID] = { {0, ARRAY_SIZE(pms) - 1}, {0, ARRAY_SIZE(is_pmems)} }, [MODE_INVALID] = { {ARRAY_SIZE(pms) - 1, ARRAY_SIZE(pms)}, {0, ARRAY_SIZE(is_pmems)} } }; /* expected results */ static const struct result exp_results[3][2] = { { /* GPSPM and is_pmem == false */ {0, RPMEM_PM_GPSPM, pmem_msync, memcpy}, /* GPSPM and is_pmem == true */ {0, RPMEM_PM_GPSPM, rpmemd_pmem_persist, pmem_memcpy_persist} }, { /* APM and is_pmem == false */ {0, RPMEM_PM_GPSPM, pmem_msync, memcpy}, /* APM and is_pmem == true */ {0, RPMEM_PM_APM, rpmemd_flush_fatal, pmem_memcpy_persist} }, { /* persistency method outside of the range */ {1, 0, 0, 0}, {1, 0, 0, 0} } }; static void test_apply_pm_policy(struct result *result, int is_pmem) { if (rpmemd_apply_pm_policy(&result->persist_method, &result->persist, &result->memcpy_persist, is_pmem)) { goto err; } result->ret = 0; return; err: result->ret = 1; } #define USAGE() do {\ UT_ERR("usage: %s valid|invalid", argv[0]);\ } while (0) static void test(const int pm_range[2], const int is_pmem_range[2]) { rpmemd_log_level = RPD_LOG_NOTICE; int ret = rpmemd_log_init("rpmemd_log", NULL, 0); UT_ASSERTeq(ret, 0); struct result result; const struct result *exp_result; for (int pm_ind = pm_range[0]; pm_ind < pm_range[1]; ++pm_ind) { for (int is_pmem_ind = is_pmem_range[0]; is_pmem_ind < is_pmem_range[1]; ++is_pmem_ind) { result.persist_method = pms[pm_ind]; exp_result = &exp_results[pm_ind][is_pmem_ind]; test_apply_pm_policy(&result, is_pmems[is_pmem_ind]); UT_ASSERTeq(result.ret, exp_result->ret); if (exp_result->ret == 0) { UT_ASSERTeq(result.persist_method, exp_result->persist_method); UT_ASSERTeq(result.persist, exp_result->persist); } } } rpmemd_log_close(); } int main(int argc, char *argv[]) { START(argc, argv, "rpmemd_util"); if (argc < 2) { USAGE(); return 1; } const char *mode_str = argv[1]; enum mode mode = MODE_MAX; if (strcmp(mode_str, "valid") == 0) { mode = MODE_VALID; } else if (strcmp(mode_str, "invalid") == 0) { mode = MODE_INVALID; } else { USAGE(); return 1; } UT_ASSERTne(mode, MODE_MAX); test(ranges[mode][0], ranges[mode][1]); DONE(NULL); }
3,027
20.027778
70
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_defrag/obj_defrag.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2019, Intel Corporation */ /* * obj_defrag.c -- unit test for pmemobj_defrag */ #include "unittest.h" #include <limits.h> #define OBJECT_SIZE 100 static void defrag_basic(PMEMobjpool *pop) { int ret; PMEMoid oid1; PMEMoid oid2; PMEMoid oid3; ret = pmemobj_zalloc(pop, &oid1, OBJECT_SIZE, 0); UT_ASSERTeq(ret, 0); ret = pmemobj_zalloc(pop, &oid2, OBJECT_SIZE, 0); UT_ASSERTeq(ret, 0); ret = pmemobj_zalloc(pop, &oid3, OBJECT_SIZE, 0); UT_ASSERTeq(ret, 0); char *buff = (char *)MALLOC(OBJECT_SIZE); memset(buff, 0xc, OBJECT_SIZE); char *foop = (char *)pmemobj_direct(oid3); pmemobj_memcpy_persist(pop, foop, buff, OBJECT_SIZE); UT_ASSERT(memcmp(foop, buff, OBJECT_SIZE) == 0); pmemobj_free(&oid1); PMEMoid oid4 = oid3; PMEMoid *oids[] = {&oid2, &oid3, &oid4}; struct pobj_defrag_result result; ret = pmemobj_defrag(pop, oids, 3, &result); UT_ASSERTeq(ret, 0); UT_ASSERTeq(result.total, 2); UT_ASSERTeq(result.relocated, 2); /* the object at higher location should move into the freed oid1 pos */ foop = (char *)pmemobj_direct(oid3); UT_ASSERT(oid3.off < oid2.off); UT_ASSERTeq(oid3.off, oid4.off); UT_ASSERT(memcmp(foop, buff, OBJECT_SIZE) == 0); pmemobj_free(&oid2); pmemobj_free(&oid3); FREE(buff); } struct test_object { PMEMoid a; PMEMoid b; PMEMoid c; }; static void defrag_nested_pointers(PMEMobjpool *pop) { int ret; /* * This is done so that the oids below aren't allocated literally in the * ideal position in the heap (chunk 0, offset 0). */ #define EXTRA_ALLOCS 100 for (int i = 0; i < EXTRA_ALLOCS; ++i) { PMEMoid extra; ret = pmemobj_zalloc(pop, &extra, OBJECT_SIZE, 0); UT_ASSERTeq(ret, 0); pmemobj_free(&extra); } #undef EXTRA_ALLOCS PMEMoid oid1; PMEMoid oid2; PMEMoid oid3; ret = pmemobj_zalloc(pop, &oid1, OBJECT_SIZE, 0); UT_ASSERTeq(ret, 0); ret = pmemobj_zalloc(pop, &oid2, OBJECT_SIZE, 0); UT_ASSERTeq(ret, 0); ret = pmemobj_zalloc(pop, &oid3, OBJECT_SIZE, 0); UT_ASSERTeq(ret, 0); struct test_object *oid1p = (struct test_object *)pmemobj_direct(oid1); struct test_object *oid2p = (struct test_object *)pmemobj_direct(oid2); struct test_object *oid3p = (struct test_object *)pmemobj_direct(oid3); oid1p->a = OID_NULL; oid1p->b = oid2; oid1p->c = oid1; pmemobj_persist(pop, oid1p, sizeof(*oid1p)); oid2p->a = oid1; oid2p->b = OID_NULL; oid2p->c = oid3; pmemobj_persist(pop, oid2p, sizeof(*oid2p)); oid3p->a = oid2; oid3p->b = oid2; oid3p->c = oid1; pmemobj_persist(pop, oid3p, sizeof(*oid3p)); #define OID_PTRS 12 #define EXTRA_OID_PTRS 60 #define OIDS_ALL (EXTRA_OID_PTRS + OID_PTRS) PMEMoid **oids = (PMEMoid **)MALLOC(sizeof(PMEMoid *) * OIDS_ALL); PMEMoid *oid3pprs = (PMEMoid *)MALLOC(sizeof(PMEMoid) * EXTRA_OID_PTRS); int i; for (i = 0; i < EXTRA_OID_PTRS; ++i) { oid3pprs[i] = oid3; oids[i] = &oid3pprs[i]; } oids[i + 0] = &oid1; oids[i + 1] = &oid2; oids[i + 2] = &oid3; oids[i + 3] = &oid1p->a; oids[i + 4] = &oid1p->b; oids[i + 5] = &oid1p->c; oids[i + 6] = &oid2p->a; oids[i + 7] = &oid2p->b; oids[i + 8] = &oid2p->c; oids[i + 9] = &oid3p->a; oids[i + 10] = &oid3p->b; oids[i + 11] = &oid3p->c; struct pobj_defrag_result result; ret = pmemobj_defrag(pop, oids, OIDS_ALL, &result); UT_ASSERTeq(result.total, 3); UT_ASSERTeq(result.relocated, 3); UT_ASSERTeq(ret, 0); oid1p = (struct test_object *)pmemobj_direct(oid1); oid2p = (struct test_object *)pmemobj_direct(oid2); oid3p = (struct test_object *)pmemobj_direct(oid3); for (int i = 0; i < EXTRA_OID_PTRS; ++i) { UT_ASSERTeq(oid3pprs[i].off, oid3.off); } UT_ASSERTeq(oid1p->a.off, 0); UT_ASSERTeq(oid1p->b.off, oid2.off); UT_ASSERTeq(oid1p->c.off, oid1.off); UT_ASSERTeq(oid2p->a.off, oid1.off); UT_ASSERTeq(oid2p->b.off, 0); UT_ASSERTeq(oid2p->c.off, oid3.off); UT_ASSERTeq(oid3p->a.off, oid2.off); UT_ASSERTeq(oid3p->b.off, oid2.off); UT_ASSERTeq(oid3p->c.off, oid1.off); pmemobj_free(&oid1); pmemobj_free(&oid2); pmemobj_free(&oid3); FREE(oids); FREE(oid3pprs); } int main(int argc, char *argv[]) { START(argc, argv, "obj_defrag"); const char *path = argv[1]; PMEMobjpool *pop = NULL; pop = pmemobj_create(path, POBJ_LAYOUT_NAME(basic), PMEMOBJ_MIN_POOL * 2, S_IWUSR | S_IRUSR); if (pop == NULL) UT_FATAL("!pmemobj_create: %s", path); defrag_basic(pop); defrag_nested_pointers(pop); pmemobj_close(pop); DONE(NULL); }
4,429
22.817204
73
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_deep_flush/pmem2_deep_flush.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2020, Intel Corporation */ /* * pmem2_deep_flush.c -- unit test for pmem_deep_flush() * * usage: pmem2_deep_flush file deep_persist_size offset * * pmem2_deep_flush depending on the mapping granularity is performed using one * of the following paths: * - page: NOP * - cache: pmem2_deep_flush_dax * - byte: pmem2_persist_cpu_cache + pmem2_deep_flush_dax * * Where pmem2_deep_flush_dax: * - pmem2_get_type_from_stat is used to determine a file type * - for regular files performs pmem2_flush_file_buffers_os OR * - for Device DAX: * - is looking for Device DAX region (pmem2_get_region_id) * - is constructing the region deep flush file paths * - opens deep_flush file (os_open) * - reads deep_flush file (read) * - performs a write to it (write) * * Where pmem2_persist_cpu_cache performs: * - flush (replaced by mock_flush) AND * - drain (replaced by mock_drain) * * Additionally, for the sake of this test, the following functions are * replaced: * - pmem2_get_type_from_stat (to control perceived file type) * - pmem2_flush_file_buffers_os (for counting calls) * - pmem2_get_region_id (to prevent reading sysfs in search for non * existing Device DAXes) * or mocked: * - os_open (to prevent opening non existing * /sys/bus/nd/devices/region[0-9]+/deep_flush files) * - write (for counting writes to non-existing * /sys/bus/nd/devices/region[0-9]+/deep_flush files) * * NOTE: In normal usage the persist function precedes any call to * pmem2_deep_flush. This test aims to validate the pmem2_deep_flush * function and so the persist function is omitted. */ #include "source.h" #ifndef _WIN32 #include <sys/sysmacros.h> #endif #include "mmap.h" #include "persist.h" #include "pmem2_arch.h" #include "pmem2_utils.h" #include "region_namespace.h" #include "unittest.h" static int n_file_buffs_flushes = 0; static int n_fences = 0; static int n_flushes = 0; static int n_writes = 0; static int n_reads = 0; static enum pmem2_file_type *ftype_value; static int read_invalid = 0; static int deep_flush_not_needed = 0; #ifndef _WIN32 #define MOCK_FD 999 #define MOCK_REG_ID 888 #define MOCK_BUS_DEVICE_PATH "/sys/bus/nd/devices/region888/deep_flush" #define MOCK_DEV_ID 777UL /* * pmem2_get_region_id -- redefine libpmem2 function */ int pmem2_get_region_id(const struct pmem2_source *src, unsigned *region_id) { *region_id = MOCK_REG_ID; return 0; } /* * os_open -- os_open mock */ FUNC_MOCK(os_open, int, const char *path, int flags, ...) FUNC_MOCK_RUN_DEFAULT { if (strcmp(path, MOCK_BUS_DEVICE_PATH) == 0) return MOCK_FD; va_list ap; va_start(ap, flags); int mode = va_arg(ap, int); va_end(ap); return _FUNC_REAL(os_open)(path, flags, mode); } FUNC_MOCK_END /* * write -- write mock */ FUNC_MOCK(write, int, int fd, const void *buffer, size_t count) FUNC_MOCK_RUN_DEFAULT { UT_ASSERTeq(*(char *)buffer, '1'); UT_ASSERTeq(count, 1); UT_ASSERTeq(fd, MOCK_FD); ++n_writes; return 1; } FUNC_MOCK_END /* * read -- read mock */ FUNC_MOCK(read, int, int fd, void *buffer, size_t nbytes) FUNC_MOCK_RUN_DEFAULT { UT_ASSERTeq(nbytes, 2); UT_ASSERTeq(fd, MOCK_FD); UT_OUT("mocked read, fd %d", fd); char pattern[2] = {'1', '\n'}; int ret = sizeof(pattern); if (deep_flush_not_needed) pattern[0] = '0'; if (read_invalid) { ret = 0; goto end; } memcpy(buffer, pattern, sizeof(pattern)); end: ++n_reads; return ret; } FUNC_MOCK_END #endif /* not _WIN32 */ /* * mock_flush -- count flush calls in the test */ static void mock_flush(const void *addr, size_t len) { ++n_flushes; } /* * mock_drain -- count drain calls in the test */ static void mock_drain(void) { ++n_fences; } /* * pmem2_arch_init -- attach flush and drain functions replacements */ void pmem2_arch_init(struct pmem2_arch_info *info) { info->flush = mock_flush; info->fence = mock_drain; } /* * pmem2_map_find -- redefine libpmem2 function, redefinition is needed * for a proper compilation of the test. NOTE: this function is not used * in the test. */ struct pmem2_map * pmem2_map_find(const void *addr, size_t len) { UT_ASSERT(0); return NULL; } /* * pmem2_flush_file_buffers_os -- redefine libpmem2 function */ int pmem2_flush_file_buffers_os(struct pmem2_map *map, const void *addr, size_t len, int autorestart) { ++n_file_buffs_flushes; return 0; } /* * map_init -- fill pmem2_map in minimal scope */ static void map_init(struct pmem2_map *map) { const size_t length = 8 * MEGABYTE; map->content_length = length; /* * The test needs to allocate more memory because some test cases * validate behavior with address beyond mapping. */ map->addr = MALLOC(2 * length); #ifndef _WIN32 map->source.type = PMEM2_SOURCE_FD; /* mocked device ID for device DAX */ map->source.value.st_rdev = MOCK_DEV_ID; #else map->source.type = PMEM2_SOURCE_HANDLE; #endif ftype_value = &map->source.value.ftype; } /* * counters_check_n_reset -- check numbers of uses of deep-flushing elements * and reset them */ static void counters_check_n_reset(int msynces, int flushes, int fences, int writes, int reads) { UT_ASSERTeq(n_file_buffs_flushes, msynces); UT_ASSERTeq(n_flushes, flushes); UT_ASSERTeq(n_fences, fences); UT_ASSERTeq(n_writes, writes); UT_ASSERTeq(n_reads, reads); n_file_buffs_flushes = 0; n_flushes = 0; n_fences = 0; n_writes = 0; n_reads = 0; read_invalid = 0; deep_flush_not_needed = 0; } /* * test_deep_flush_func -- test pmem2_deep_flush for all granularity options */ static int test_deep_flush_func(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_map map; map_init(&map); *ftype_value = PMEM2_FTYPE_REG; void *addr = map.addr; size_t len = map.content_length; map.effective_granularity = PMEM2_GRANULARITY_PAGE; pmem2_set_flush_fns(&map); int ret = pmem2_deep_flush(&map, addr, len); UT_ASSERTeq(ret, 0); counters_check_n_reset(0, 0, 0, 0, 0); map.effective_granularity = PMEM2_GRANULARITY_CACHE_LINE; pmem2_set_flush_fns(&map); ret = pmem2_deep_flush(&map, addr, len); UT_ASSERTeq(ret, 0); counters_check_n_reset(1, 0, 0, 0, 0); map.effective_granularity = PMEM2_GRANULARITY_BYTE; pmem2_set_flush_fns(&map); ret = pmem2_deep_flush(&map, addr, len); UT_ASSERTeq(ret, 0); counters_check_n_reset(1, 0, 0, 0, 0); FREE(map.addr); return 0; } /* * test_deep_flush_func_devdax -- test pmem2_deep_flush with mocked DAX devices */ static int test_deep_flush_func_devdax(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_map map; map_init(&map); void *addr = map.addr; size_t len = map.content_length; *ftype_value = PMEM2_FTYPE_DEVDAX; map.effective_granularity = PMEM2_GRANULARITY_CACHE_LINE; pmem2_set_flush_fns(&map); int ret = pmem2_deep_flush(&map, addr, len); UT_ASSERTeq(ret, 0); counters_check_n_reset(0, 1, 1, 1, 1); deep_flush_not_needed = 1; ret = pmem2_deep_flush(&map, addr, len); UT_ASSERTeq(ret, 0); counters_check_n_reset(0, 1, 1, 0, 1); read_invalid = 1; ret = pmem2_deep_flush(&map, addr, len); UT_ASSERTeq(ret, 0); counters_check_n_reset(0, 1, 1, 0, 1); map.effective_granularity = PMEM2_GRANULARITY_BYTE; pmem2_set_flush_fns(&map); ret = pmem2_deep_flush(&map, addr, len); UT_ASSERTeq(ret, 0); counters_check_n_reset(0, 1, 1, 1, 1); deep_flush_not_needed = 1; ret = pmem2_deep_flush(&map, addr, len); UT_ASSERTeq(ret, 0); counters_check_n_reset(0, 1, 1, 0, 1); read_invalid = 1; ret = pmem2_deep_flush(&map, addr, len); UT_ASSERTeq(ret, 0); counters_check_n_reset(0, 1, 1, 0, 1); FREE(map.addr); return 0; } /* * test_deep_flush_range_beyond_mapping -- test pmem2_deep_flush with * the address that goes beyond mapping */ static int test_deep_flush_range_beyond_mapping(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_map map; map_init(&map); /* set address completely beyond mapping */ void *addr = (void *)((uintptr_t)map.addr + map.content_length); size_t len = map.content_length; int ret = pmem2_deep_flush(&map, addr, len); UT_ASSERTeq(ret, PMEM2_E_DEEP_FLUSH_RANGE); /* * set address in the middle of mapping, which makes range partially * beyond mapping */ addr = (void *)((uintptr_t)map.addr + map.content_length / 2); ret = pmem2_deep_flush(&map, addr, len); UT_ASSERTeq(ret, PMEM2_E_DEEP_FLUSH_RANGE); FREE(map.addr); return 0; } /* * test_cases -- available test cases */ static struct test_case test_cases[] = { TEST_CASE(test_deep_flush_func), TEST_CASE(test_deep_flush_func_devdax), TEST_CASE(test_deep_flush_range_beyond_mapping), }; #define NTESTS (sizeof(test_cases) / sizeof(test_cases[0])) int main(int argc, char *argv[]) { START(argc, argv, "pmem2_deep_flush"); pmem2_persist_init(); util_init(); TEST_CASE_PROCESS(argc, argv, test_cases, NTESTS); DONE(NULL); }
8,865
22.270341
80
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_direct/obj_direct.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2020, Intel Corporation */ /* * obj_direct.c -- unit test for pmemobj_direct() */ #include "obj.h" #include "obj_direct.h" #include "sys_util.h" #include "unittest.h" #define MAX_PATH_LEN 255 #define LAYOUT_NAME "direct" static os_mutex_t lock1; static os_mutex_t lock2; static os_cond_t sync_cond1; static os_cond_t sync_cond2; static int cond1; static int cond2; static PMEMoid thread_oid; static void * obj_direct(PMEMoid oid) { void *ptr1 = obj_direct_inline(oid); void *ptr2 = obj_direct_non_inline(oid); UT_ASSERTeq(ptr1, ptr2); return ptr1; } static void * test_worker(void *arg) { /* check before pool is closed, then let main continue */ UT_ASSERTne(obj_direct(thread_oid), NULL); util_mutex_lock(&lock1); cond1 = 1; os_cond_signal(&sync_cond1); util_mutex_unlock(&lock1); /* wait for main thread to free & close, then check */ util_mutex_lock(&lock2); while (!cond2) os_cond_wait(&sync_cond2, &lock2); util_mutex_unlock(&lock2); UT_ASSERTeq(obj_direct(thread_oid), NULL); return NULL; } int main(int argc, char *argv[]) { START(argc, argv, "obj_direct"); if (argc != 3) UT_FATAL("usage: %s [directory] [# of pools]", argv[0]); unsigned npools = ATOU(argv[2]); const char *dir = argv[1]; int r; util_mutex_init(&lock1); util_mutex_init(&lock2); util_cond_init(&sync_cond1); util_cond_init(&sync_cond2); cond1 = cond2 = 0; PMEMobjpool **pops = MALLOC(npools * sizeof(PMEMobjpool *)); UT_ASSERTne(pops, NULL); size_t length = strlen(dir) + MAX_PATH_LEN; char *path = MALLOC(length); for (unsigned i = 0; i < npools; ++i) { int ret = snprintf(path, length, "%s"OS_DIR_SEP_STR"testfile%d", dir, i); if (ret < 0 || ret >= length) UT_FATAL("snprintf: %d", ret); pops[i] = pmemobj_create(path, LAYOUT_NAME, PMEMOBJ_MIN_POOL, S_IWUSR | S_IRUSR); if (pops[i] == NULL) UT_FATAL("!pmemobj_create"); } PMEMoid *oids = MALLOC(npools * sizeof(PMEMoid)); UT_ASSERTne(oids, NULL); PMEMoid *tmpoids = MALLOC(npools * sizeof(PMEMoid)); UT_ASSERTne(tmpoids, NULL); oids[0] = OID_NULL; UT_ASSERTeq(obj_direct(oids[0]), NULL); for (unsigned i = 0; i < npools; ++i) { oids[i] = (PMEMoid) {pops[i]->uuid_lo, 0}; UT_ASSERTeq(obj_direct(oids[i]), NULL); uint64_t off = pops[i]->heap_offset; oids[i] = (PMEMoid) {pops[i]->uuid_lo, off}; UT_ASSERTeq((char *)obj_direct(oids[i]) - off, (char *)pops[i]); r = pmemobj_alloc(pops[i], &tmpoids[i], 100, 1, NULL, NULL); UT_ASSERTeq(r, 0); } r = pmemobj_alloc(pops[0], &thread_oid, 100, 2, NULL, NULL); UT_ASSERTeq(r, 0); UT_ASSERTne(obj_direct(thread_oid), NULL); os_thread_t t; THREAD_CREATE(&t, NULL, test_worker, NULL); /* wait for the worker thread to perform the first check */ util_mutex_lock(&lock1); while (!cond1) os_cond_wait(&sync_cond1, &lock1); util_mutex_unlock(&lock1); for (unsigned i = 0; i < npools; ++i) { UT_ASSERTne(obj_direct(tmpoids[i]), NULL); pmemobj_free(&tmpoids[i]); UT_ASSERTeq(obj_direct(tmpoids[i]), NULL); pmemobj_close(pops[i]); UT_ASSERTeq(obj_direct(oids[i]), NULL); } /* signal the worker that we're free and closed */ util_mutex_lock(&lock2); cond2 = 1; os_cond_signal(&sync_cond2); util_mutex_unlock(&lock2); THREAD_JOIN(&t, NULL); util_cond_destroy(&sync_cond1); util_cond_destroy(&sync_cond2); util_mutex_destroy(&lock1); util_mutex_destroy(&lock2); FREE(pops); FREE(tmpoids); FREE(oids); DONE(NULL); }
3,476
22.653061
66
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_memcheck/obj_memcheck.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2018, Intel Corporation */ #include "unittest.h" #include "valgrind_internal.h" /* * Layout definition */ POBJ_LAYOUT_BEGIN(mc); POBJ_LAYOUT_ROOT(mc, struct root); POBJ_LAYOUT_TOID(mc, struct struct1); POBJ_LAYOUT_END(mc); struct struct1 { int fld; int dyn[]; }; struct root { TOID(struct struct1) s1; TOID(struct struct1) s2; }; static void test_memcheck_bug(void) { #if VG_MEMCHECK_ENABLED volatile char tmp[100]; VALGRIND_CREATE_MEMPOOL(tmp, 0, 0); VALGRIND_MEMPOOL_ALLOC(tmp, tmp + 8, 16); VALGRIND_MEMPOOL_FREE(tmp, tmp + 8); VALGRIND_MEMPOOL_ALLOC(tmp, tmp + 8, 16); VALGRIND_MAKE_MEM_NOACCESS(tmp, 8); tmp[7] = 0x66; #endif } static void test_memcheck_bug2(void) { #if VG_MEMCHECK_ENABLED volatile char tmp[1000]; VALGRIND_CREATE_MEMPOOL(tmp, 0, 0); VALGRIND_MEMPOOL_ALLOC(tmp, tmp + 128, 128); VALGRIND_MEMPOOL_FREE(tmp, tmp + 128); VALGRIND_MEMPOOL_ALLOC(tmp, tmp + 256, 128); VALGRIND_MEMPOOL_FREE(tmp, tmp + 256); /* * This should produce warning: * Address ... is 0 bytes inside a block of size 128 bytes freed. * instead, it produces a warning: * Address ... is 0 bytes after a block of size 128 freed */ int *data = (int *)(tmp + 256); *data = 0x66; #endif } static void test_everything(const char *path) { PMEMobjpool *pop = NULL; if ((pop = pmemobj_create(path, POBJ_LAYOUT_NAME(mc), PMEMOBJ_MIN_POOL, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create: %s", path); struct root *rt = D_RW(POBJ_ROOT(pop, struct root)); POBJ_ALLOC(pop, &rt->s1, struct struct1, sizeof(struct struct1), NULL, NULL); struct struct1 *s1 = D_RW(rt->s1); struct struct1 *s2; POBJ_ALLOC(pop, &rt->s2, struct struct1, sizeof(struct struct1), NULL, NULL); s2 = D_RW(rt->s2); POBJ_FREE(&rt->s2); /* read of uninitialized variable */ if (s1->fld) UT_OUT("%d", 1); /* write to freed object */ s2->fld = 7; pmemobj_persist(pop, s2, sizeof(*s2)); POBJ_ALLOC(pop, &rt->s2, struct struct1, sizeof(struct struct1), NULL, NULL); s2 = D_RW(rt->s2); memset(s2, 0, pmemobj_alloc_usable_size(rt->s2.oid)); s2->fld = 12; /* ok */ /* invalid write */ s2->dyn[100000] = 9; /* invalid write */ s2->dyn[1000] = 9; pmemobj_persist(pop, s2, sizeof(struct struct1)); POBJ_REALLOC(pop, &rt->s2, struct struct1, sizeof(struct struct1) + 100 * sizeof(int)); s2 = D_RW(rt->s2); s2->dyn[0] = 9; /* ok */ pmemobj_persist(pop, s2, sizeof(struct struct1) + 100 * sizeof(int)); POBJ_FREE(&rt->s2); /* invalid write to REALLOCated and FREEd object */ s2->dyn[0] = 9; pmemobj_persist(pop, s2, sizeof(struct struct1) + 100 * sizeof(int)); POBJ_ALLOC(pop, &rt->s2, struct struct1, sizeof(struct struct1), NULL, NULL); POBJ_REALLOC(pop, &rt->s2, struct struct1, sizeof(struct struct1) + 30 * sizeof(int)); s2 = D_RW(rt->s2); s2->dyn[0] = 0; s2->dyn[29] = 29; pmemobj_persist(pop, s2, sizeof(struct struct1) + 30 * sizeof(int)); POBJ_FREE(&rt->s2); s2->dyn[0] = 9; pmemobj_persist(pop, s2, sizeof(struct struct1) + 30 * sizeof(int)); pmemobj_close(pop); } static void usage(const char *a) { UT_FATAL("usage: %s [m|t] file-name", a); } int main(int argc, char *argv[]) { START(argc, argv, "obj_memcheck"); /* root doesn't count */ UT_COMPILE_ERROR_ON(POBJ_LAYOUT_TYPES_NUM(mc) != 1); if (argc < 2) usage(argv[0]); if (strcmp(argv[1], "m") == 0) test_memcheck_bug(); else if (strcmp(argv[1], "t") == 0) { if (argc < 3) usage(argv[0]); test_everything(argv[2]); } else usage(argv[0]); test_memcheck_bug2(); DONE(NULL); }
3,591
20.769697
70
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_defrag_advanced/obj_defrag_advanced.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2020, Intel Corporation */ /* * obj_defrag_advanced.c -- test for libpmemobj defragmentation feature */ #include <stdio.h> #include <stdlib.h> #include <time.h> #include <stddef.h> #include <unistd.h> #include <stdlib.h> #include "rand.h" #include "vgraph.h" #include "pgraph.h" #include "os_thread.h" #include "unittest.h" struct create_params_t { uint64_t seed; rng_t rng; struct vgraph_params vparams; struct pgraph_params pparams; }; /* * graph_create -- create a graph * - generate an intermediate volatile graph representation * - use the volatile graph to allocate a persistent one */ static void graph_create(struct create_params_t *task, PMEMobjpool *pop, PMEMoid *oidp, rng_t *rngp) { struct vgraph_t *vgraph = vgraph_new(&task->vparams, rngp); pgraph_new(pop, oidp, vgraph, &task->pparams, rngp); vgraph_delete(vgraph); } /* * graph_defrag -- defragment the pool * - collect pointers to all PMEMoids * - do a sanity checks * - call pmemobj_defrag * - return # of relocated objects */ static size_t graph_defrag(PMEMobjpool *pop, PMEMoid oid) { struct pgraph_t *pgraph = (struct pgraph_t *)pmemobj_direct(oid); /* count number of oids */ unsigned oidcnt = pgraph->nodes_num; for (unsigned i = 0; i < pgraph->nodes_num; ++i) { struct pnode_t *pnode = (struct pnode_t *)pmemobj_direct (pgraph->nodes[i]); oidcnt += pnode->edges_num; } /* create array of oid pointers */ PMEMoid **oidv = (PMEMoid **)MALLOC(sizeof(PMEMoid *) * oidcnt); unsigned oidi = 0; for (unsigned i = 0; i < pgraph->nodes_num; ++i) { oidv[oidi++] = &pgraph->nodes[i]; struct pnode_t *pnode = (struct pnode_t *)pmemobj_direct (pgraph->nodes[i]); for (unsigned j = 0; j < pnode->edges_num; ++j) { oidv[oidi++] = &pnode->edges[j]; } } UT_ASSERTeq(oidi, oidcnt); /* check if all oids are valid */ for (unsigned i = 0; i < oidcnt; ++i) { void *ptr = pmemobj_direct(*oidv[i]); UT_ASSERTne(ptr, NULL); } /* check if all oids appear only once */ for (unsigned i = 0; i < oidcnt - 1; ++i) { for (unsigned j = i + 1; j < oidcnt; ++j) { UT_ASSERTne(oidv[i], oidv[j]); } } struct pobj_defrag_result result; int ret = pmemobj_defrag(pop, oidv, oidcnt, &result); UT_ASSERTeq(ret, 0); UT_ASSERTeq(result.total, pgraph->nodes_num); FREE(oidv); return result.relocated; } /* * graph_defrag_ntimes -- defragment the graph N times * - where N <= max_rounds * - it stops defrag if # of relocated objects == 0 */ static void graph_defrag_ntimes(PMEMobjpool *pop, PMEMoid oid, unsigned max_rounds) { size_t relocated; unsigned rounds = 0; do { relocated = graph_defrag(pop, oid); ++rounds; } while (relocated > 0 && rounds < max_rounds); } #define HAS_TO_EXIST (1) /* * graph_dump -- dump a graph from the pool to a text file */ static void graph_dump(PMEMoid oid, const char *path, int has_exist) { struct pgraph_t *pgraph = (struct pgraph_t *)pmemobj_direct(oid); if (has_exist) UT_ASSERTne(pgraph, NULL); if (pgraph) pgraph_print(pgraph, path); } #define FGETS_BUFF_LEN 1024 /* * dump_compare -- compare graph dumps * Test fails if the contents of dumps do not match */ static void dump_compare(const char *path1, const char *path2) { FILE *dump1 = FOPEN(path1, "r"); FILE *dump2 = FOPEN(path2, "r"); char buff1[FGETS_BUFF_LEN]; char buff2[FGETS_BUFF_LEN]; char *sret1, *sret2; do { sret1 = fgets(buff1, FGETS_BUFF_LEN, dump1); sret2 = fgets(buff2, FGETS_BUFF_LEN, dump2); /* both files have to end at the same time */ if (!sret1) { UT_ASSERTeq(sret2, NULL); FCLOSE(dump1); FCLOSE(dump2); return; } UT_ASSERTeq(sret1, buff1); UT_ASSERTeq(sret2, buff2); UT_ASSERTeq(strcmp(buff1, buff2), 0); } while (1); } /* * create_params_init -- initialize create params */ static void create_params_init(struct create_params_t *params) { params->seed = 1; /* good enough defaults - no magic here */ params->vparams.max_nodes = 50; params->vparams.max_edges = 10; params->vparams.range_nodes = 10; params->vparams.range_edges = 10; params->vparams.min_pattern_size = 8; params->vparams.max_pattern_size = 1024; params->pparams.graph_copies = 10; } /* global state */ static struct global_t { PMEMobjpool *pop; } global; /* * PMEMobj root object structure */ struct root_t { unsigned graphs_num; PMEMoid graphs[]; }; /* * root_size -- calculate a root object size */ static inline size_t root_size(unsigned graph_num, size_t min_root_size) { size_t size = sizeof(struct root_t) + sizeof(PMEMoid) * graph_num; return MAX(size, min_root_size); } #define QUERY_GRAPHS_NUM UINT_MAX static struct root_t * get_root(unsigned graphs_num, size_t min_root_size) { PMEMoid roid; struct root_t *root; if (graphs_num == QUERY_GRAPHS_NUM) { /* allocate a root object without graphs */ roid = pmemobj_root(global.pop, root_size(0, 0)); if (OID_IS_NULL(roid)) UT_FATAL("!pmemobj_root:"); root = (struct root_t *)pmemobj_direct(roid); UT_ASSERTne(root, NULL); graphs_num = root->graphs_num; } UT_ASSERT(graphs_num > 0); /* reallocate a root object with all known graphs */ roid = pmemobj_root(global.pop, root_size(graphs_num, min_root_size)); if (OID_IS_NULL(roid)) UT_FATAL("!pmemobj_root:"); root = (struct root_t *)pmemobj_direct(roid); UT_ASSERTne(root, NULL); return root; } /* * parse_nonzero -- parse non-zero unsigned */ static void parse_nonzero(unsigned *var, const char *arg) { unsigned long v = STRTOUL(arg, NULL, 10); UT_ASSERTne(v, 0); UT_ASSERT(v < UINT_MAX); *var = v; } #define GRAPH_LAYOUT POBJ_LAYOUT_NAME(graph) /* * op_pool_create -- create a pool */ static int op_pool_create(const struct test_case *tc, int argc, char *argv[]) { if (argc < 1) UT_FATAL("usage: %s <path>", tc->name); /* parse arguments */ const char *path = argv[0]; /* open a pool */ global.pop = pmemobj_create(path, GRAPH_LAYOUT, 0, S_IWUSR | S_IRUSR); if (global.pop == NULL) { UT_FATAL("!pmemobj_create: %s", path); } return 1; } /* * op_pool_close -- close the poll */ static int op_pool_close(const struct test_case *tc, int argc, char *argv[]) { pmemobj_close(global.pop); global.pop = NULL; return 0; } /* * op_graph_create -- create a graph */ static int op_graph_create(const struct test_case *tc, int argc, char *argv[]) { if (argc < 4) UT_FATAL("usage: %s <max-nodes> <max-edges> <graph-copies>" " <min-root-size>", tc->name); /* parse arguments */ struct create_params_t cparams; create_params_init(&cparams); parse_nonzero(&cparams.vparams.max_nodes, argv[0]); parse_nonzero(&cparams.vparams.max_edges, argv[1]); parse_nonzero(&cparams.pparams.graph_copies, argv[2]); size_t min_root_size = STRTOULL(argv[3], NULL, 10); struct root_t *root = get_root(1, min_root_size); randomize(cparams.seed); /* generate a single graph */ graph_create(&cparams, global.pop, &root->graphs[0], NULL); root->graphs_num = 1; pmemobj_persist(global.pop, root, root_size(1, min_root_size)); return 4; } /* * op_graph_dump -- dump the graph */ static int op_graph_dump(const struct test_case *tc, int argc, char *argv[]) { if (argc < 1) UT_FATAL("usage: %s <dump>", tc->name); /* parse arguments */ const char *dump = argv[0]; struct root_t *root = get_root(QUERY_GRAPHS_NUM, 0); UT_ASSERTeq(root->graphs_num, 1); /* dump the graph before defrag */ graph_dump(root->graphs[0], dump, HAS_TO_EXIST); return 1; } /* * op_graph_defrag -- defrag the graph */ static int op_graph_defrag(const struct test_case *tc, int argc, char *argv[]) { if (argc < 1) UT_FATAL("usage: %s <max-rounds>", tc->name); /* parse arguments */ unsigned max_rounds; parse_nonzero(&max_rounds, argv[0]); struct root_t *root = get_root(QUERY_GRAPHS_NUM, 0); UT_ASSERTeq(root->graphs_num, 1); /* do the defrag */ graph_defrag_ntimes(global.pop, root->graphs[0], max_rounds); return 1; } /* * op_dump_compare -- compare dumps */ static int op_dump_compare(const struct test_case *tc, int argc, char *argv[]) { if (argc < 2) UT_FATAL("usage: %s <dump1> <dump2>", tc->name); /* parse arguments */ const char *dump1 = argv[0]; const char *dump2 = argv[1]; dump_compare(dump1, dump2); return 2; } struct create_n_defrag_params_t { char dump1[PATH_MAX]; char dump2[PATH_MAX]; struct create_params_t cparams; PMEMobjpool *pop; PMEMoid *oidp; unsigned max_rounds; unsigned ncycles; }; /* * create_n_defrag_thread -- create and defrag graphs mutiple times */ static void * create_n_defrag_thread(void *arg) { struct create_n_defrag_params_t *params = (struct create_n_defrag_params_t *)arg; struct create_params_t *cparams = &params->cparams; for (unsigned i = 0; i < params->ncycles; ++i) { graph_create(cparams, global.pop, params->oidp, &cparams->rng); graph_dump(*params->oidp, params->dump1, HAS_TO_EXIST); graph_defrag_ntimes(params->pop, *params->oidp, params->max_rounds); graph_dump(*params->oidp, params->dump2, HAS_TO_EXIST); dump_compare(params->dump1, params->dump2); pgraph_delete(params->oidp); } return NULL; } /* * op_graph_create_n_defrag_mt -- multi-threaded graphs creation & defrag */ static int op_graph_create_n_defrag_mt(const struct test_case *tc, int argc, char *argv[]) { if (argc < 8) UT_FATAL("usage: %s <max-nodes> <max-edges> <graph-copies>" " <min-root-size> <max-defrag-rounds> <n-threads>" "<n-create-defrag-cycles> <dump-suffix>", tc->name); /* parse arguments */ struct create_params_t cparams; create_params_init(&cparams); parse_nonzero(&cparams.vparams.max_nodes, argv[0]); parse_nonzero(&cparams.vparams.max_edges, argv[1]); parse_nonzero(&cparams.pparams.graph_copies, argv[2]); size_t min_root_size = STRTOULL(argv[3], NULL, 10); unsigned max_rounds; parse_nonzero(&max_rounds, argv[4]); unsigned nthreads; parse_nonzero(&nthreads, argv[5]); unsigned ncycles; parse_nonzero(&ncycles, argv[6]); char *dump_suffix = argv[7]; struct root_t *root = get_root(nthreads, min_root_size); root->graphs_num = nthreads; pmemobj_persist(global.pop, root, sizeof(*root)); /* prepare threads params */ struct create_n_defrag_params_t *paramss = (struct create_n_defrag_params_t *)MALLOC( sizeof(*paramss) * nthreads); for (unsigned i = 0; i < nthreads; ++i) { struct create_n_defrag_params_t *params = &paramss[i]; SNPRINTF(params->dump1, PATH_MAX, "dump_1_th%u_%s.log", i, dump_suffix); SNPRINTF(params->dump2, PATH_MAX, "dump_2_th%u_%s.log", i, dump_suffix); memcpy(&params->cparams, &cparams, sizeof(cparams)); params->cparams.seed += i; randomize_r(&params->cparams.rng, params->cparams.seed); params->pop = global.pop; params->oidp = &root->graphs[i]; params->max_rounds = max_rounds; params->ncycles = ncycles; } /* spawn threads */ os_thread_t *threads = (os_thread_t *)MALLOC( sizeof(*threads) * nthreads); for (unsigned i = 0; i < nthreads; ++i) THREAD_CREATE(&threads[i], NULL, create_n_defrag_thread, &paramss[i]); /* join all threads */ void *ret = NULL; for (unsigned i = 0; i < nthreads; ++i) { THREAD_JOIN(&threads[i], &ret); UT_ASSERTeq(ret, NULL); } FREE(threads); FREE(paramss); return 8; } /* * op_pool_open -- open the pool */ static int op_pool_open(const struct test_case *tc, int argc, char *argv[]) { if (argc < 1) UT_FATAL("usage: %s <path>", tc->name); /* parse arguments */ const char *path = argv[0]; /* open a pool */ global.pop = pmemobj_open(path, GRAPH_LAYOUT); if (global.pop == NULL) UT_FATAL("!pmemobj_create: %s", path); return 1; } /* * op_graph_dump_all -- dump all graphs */ static int op_graph_dump_all(const struct test_case *tc, int argc, char *argv[]) { if (argc < 1) UT_FATAL("usage: %s <dump-prefix>", tc->name); /* parse arguments */ const char *dump_prefix = argv[0]; struct root_t *root = get_root(QUERY_GRAPHS_NUM, 0); char dump[PATH_MAX]; for (unsigned i = 0; i < root->graphs_num; ++i) { SNPRINTF(dump, PATH_MAX, "%s_%u.log", dump_prefix, i); graph_dump(root->graphs[i], dump, HAS_TO_EXIST); } return 1; } /* * ops -- available ops */ static struct test_case ops[] = { TEST_CASE(op_pool_create), TEST_CASE(op_pool_close), TEST_CASE(op_graph_create), TEST_CASE(op_graph_dump), TEST_CASE(op_graph_defrag), TEST_CASE(op_dump_compare), TEST_CASE(op_graph_create_n_defrag_mt), /* for pool validation only */ TEST_CASE(op_pool_open), TEST_CASE(op_graph_dump_all), }; #define NOPS ARRAY_SIZE(ops) #define TEST_NAME "obj_defrag_advanced" int main(int argc, char *argv[]) { START(argc, argv, TEST_NAME); TEST_CASE_PROCESS(argc, argv, ops, NOPS); DONE(NULL); }
12,707
21.452297
79
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_defrag_advanced/pgraph.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2020, Intel Corporation */ /* * pgraph.c -- persistent graph representation */ #include <inttypes.h> #include "unittest.h" #include "vgraph.h" #include "pgraph.h" #define PATTERN 'g' /* * pnode_size -- return the entire of node size */ static size_t pnode_size(unsigned edges_num, size_t pattern_size) { size_t node_size = sizeof(struct pnode_t); node_size += sizeof(PMEMoid) * edges_num; node_size += pattern_size; return node_size; } /* * pnode_init -- initialize the node */ static void pnode_init(PMEMobjpool *pop, PMEMoid pnode_oid, struct vnode_t *vnode, PMEMoid pnodes[]) { struct pnode_t *pnode = (struct pnode_t *)pmemobj_direct(pnode_oid); pnode->node_id = vnode->node_id; pnode->size = vnode->psize; /* set edges */ pnode->edges_num = vnode->edges_num; for (unsigned i = 0; i < vnode->edges_num; ++i) pnode->edges[i] = pnodes[vnode->edges[i]]; /* initialize pattern */ pnode->pattern_size = vnode->pattern_size; void *pattern = (void *)&pnode->edges[pnode->edges_num]; pmemobj_memset(pop, pattern, PATTERN, pnode->pattern_size, PMEMOBJ_F_MEM_NOFLUSH); /* persist the whole node state */ pmemobj_persist(pop, (const void *)pnode, pnode->size); } /* * order_shuffle -- shuffle the nodes in graph */ static void order_shuffle(unsigned *order, unsigned num, rng_t *rngp) { for (unsigned i = 0; i < num; ++i) { unsigned j = rand_range(0, num, rngp); unsigned temp = order[j]; order[j] = order[i]; order[i] = temp; } } /* * order_new -- generate the sequence of the graph nodes allocation */ static unsigned * order_new(struct vgraph_t *vgraph, rng_t *rngp) { unsigned *order = (unsigned *)MALLOC(sizeof(unsigned) * vgraph->nodes_num); /* initialize id list */ for (unsigned i = 0; i < vgraph->nodes_num; ++i) order[i] = i; order_shuffle(order, vgraph->nodes_num, rngp); return order; } /* * pgraph_copy_new -- allocate a persistent copy of the volatile graph */ static PMEMoid * pgraph_copy_new(PMEMobjpool *pop, struct vgraph_t *vgraph, rng_t *rngp) { /* to be returned array of PMEMoids to raw nodes allocations */ PMEMoid *nodes = (PMEMoid *)MALLOC(sizeof(PMEMoid) * vgraph->nodes_num); /* generates random order of nodes allocation */ unsigned *order = order_new(vgraph, rngp); /* allocate the nodes in the random order */ int ret; for (unsigned i = 0; i < vgraph->nodes_num; ++i) { struct vnode_t vnode = vgraph->node[order[i]]; PMEMoid *node = &nodes[order[i]]; ret = pmemobj_alloc(pop, node, vnode.psize, 0, NULL, NULL); UT_ASSERTeq(ret, 0); } FREE(order); return nodes; } /* * pgraph_copy_delete -- free copies of the graph */ static void pgraph_copy_delete(PMEMoid *nodes, unsigned num) { for (unsigned i = 0; i < num; ++i) { if (OID_IS_NULL(nodes[i])) continue; pmemobj_free(&nodes[i]); } FREE(nodes); } /* * pgraph_size -- return the struct pgraph_t size */ static size_t pgraph_size(unsigned nodes_num) { return sizeof(struct pgraph_t) + sizeof(PMEMoid) * nodes_num; } /* * pgraph_new -- allocate a new persistent graph in such a way * that the fragmentation is as large as possible */ void pgraph_new(PMEMobjpool *pop, PMEMoid *oidp, struct vgraph_t *vgraph, struct pgraph_params *params, rng_t *rngp) { int ret = pmemobj_alloc(pop, oidp, pgraph_size(vgraph->nodes_num), 0, NULL, NULL); UT_ASSERTeq(ret, 0); struct pgraph_t *pgraph = (struct pgraph_t *)pmemobj_direct(*oidp); pgraph->nodes_num = vgraph->nodes_num; pmemobj_persist(pop, pgraph, sizeof(*pgraph)); /* calculate size of pnodes */ for (unsigned i = 0; i < vgraph->nodes_num; ++i) { struct vnode_t *vnode = &vgraph->node[i]; vnode->psize = pnode_size(vnode->edges_num, vnode->pattern_size); } /* prepare multiple copies of the nodes */ unsigned copies_num = rand_range(1, params->graph_copies, rngp); PMEMoid **copies = (PMEMoid **)MALLOC(sizeof(PMEMoid *) * copies_num); for (unsigned i = 0; i < copies_num; ++i) copies[i] = pgraph_copy_new(pop, vgraph, rngp); /* peek exactly the one copy of each node */ for (unsigned i = 0; i < pgraph->nodes_num; ++i) { unsigned copy_id = rand_range(0, copies_num, rngp); pgraph->nodes[i] = copies[copy_id][i]; copies[copy_id][i] = OID_NULL; } pmemobj_persist(pop, pgraph->nodes, sizeof(PMEMoid) * pgraph->nodes_num); /* free unused copies of the nodes */ for (unsigned i = 0; i < copies_num; ++i) pgraph_copy_delete(copies[i], vgraph->nodes_num); FREE(copies); /* initialize pnodes */ for (unsigned i = 0; i < pgraph->nodes_num; ++i) pnode_init(pop, pgraph->nodes[i], &vgraph->node[i], pgraph->nodes); } /* * pgraph_delete -- free the persistent graph */ void pgraph_delete(PMEMoid *oidp) { struct pgraph_t *pgraph = (struct pgraph_t *)pmemobj_direct(*oidp); /* free pnodes */ for (unsigned i = 0; i < pgraph->nodes_num; ++i) pmemobj_free(&pgraph->nodes[i]); pmemobj_free(oidp); } /* * pgraph_print -- print graph in human readable format */ void pgraph_print(struct pgraph_t *pgraph, const char *dump) { UT_ASSERTne(dump, NULL); FILE *out = FOPEN(dump, "w"); /* print the graph statistics */ fprintf(out, "# of nodes: %u\n", pgraph->nodes_num); uint64_t total_edges_num = 0; for (unsigned i = 0; i < pgraph->nodes_num; ++i) { PMEMoid node_oid = pgraph->nodes[i]; struct pnode_t *pnode = (struct pnode_t *)pmemobj_direct(node_oid); total_edges_num += pnode->edges_num; } fprintf(out, "Total # of edges: %" PRIu64 "\n\n", total_edges_num); /* print the graph itself */ for (unsigned i = 0; i < pgraph->nodes_num; ++i) { PMEMoid node_oid = pgraph->nodes[i]; struct pnode_t *pnode = (struct pnode_t *)pmemobj_direct(node_oid); fprintf(out, "%u:", pnode->node_id); for (unsigned j = 0; j < pnode->edges_num; ++j) { PMEMoid edge_oid = pnode->edges[j]; struct pnode_t *edge = (struct pnode_t *)pmemobj_direct(edge_oid); UT_ASSERT(edge->node_id < pgraph->nodes_num); fprintf(out, "%u, ", edge->node_id); } fprintf(out, "\n"); } FCLOSE(out); }
6,058
23.934156
73
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_defrag_advanced/vgraph.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2020, Intel Corporation */ /* * vgraph.c -- volatile graph representation */ #include <stdlib.h> #include <stdio.h> #include "rand.h" #include "unittest.h" #include "vgraph.h" /* * rand_range -- generate pseudo-random number from given interval [min, max] */ unsigned rand_range(unsigned min, unsigned max, rng_t *rngp) { if (min == max) return min; if (min > max) UT_FATAL("!rand_range"); unsigned ret; if (rngp) ret = (unsigned)rnd64_r(rngp); else ret = (unsigned)rnd64(); return ((unsigned)ret % (max - min)) + min; } /* * vnode_new -- allocate a new volatile node */ static void vnode_new(struct vnode_t *node, unsigned v, struct vgraph_params *params, rng_t *rngp) { unsigned min_edges = 1; if (params->max_edges > params->range_edges) min_edges = params->max_edges - params->range_edges; unsigned edges_num = rand_range(min_edges, params->max_edges, rngp); node->node_id = v; node->edges_num = edges_num; node->edges = (unsigned *)MALLOC(sizeof(int) * edges_num); node->pattern_size = rand_range(params->min_pattern_size, params->max_pattern_size, rngp); } /* * vnode_delete -- free a volatile node */ static void vnode_delete(struct vnode_t *node) { FREE(node->edges); } /* * vgraph_get_node -- return node in graph based on given id_node */ static struct vnode_t * vgraph_get_node(struct vgraph_t *graph, unsigned id_node) { struct vnode_t *node; node = &graph->node[id_node]; return node; } /* * vgraph_add_edges -- randomly assign destination nodes to the edges */ static void vgraph_add_edges(struct vgraph_t *graph, rng_t *rngp) { unsigned nodes_count = 0; unsigned edges_count = 0; struct vnode_t *node; for (nodes_count = 0; nodes_count < graph->nodes_num; nodes_count++) { node = vgraph_get_node(graph, nodes_count); unsigned edges_num = node->edges_num; for (edges_count = 0; edges_count < edges_num; edges_count++) { unsigned node_link = rand_range(0, graph->nodes_num, rngp); node->edges[edges_count] = node_link; } } } /* * vgraph_new -- allocate a new volatile graph */ struct vgraph_t * vgraph_new(struct vgraph_params *params, rng_t *rngp) { unsigned min_nodes = 1; if (params->max_nodes > params->range_nodes) min_nodes = params->max_nodes - params->range_nodes; unsigned nodes_num = rand_range(min_nodes, params->max_nodes, rngp); struct vgraph_t *graph = (struct vgraph_t *)MALLOC(sizeof(struct vgraph_t) + sizeof(struct vnode_t) * nodes_num); graph->nodes_num = nodes_num; for (unsigned i = 0; i < nodes_num; i++) { vnode_new(&graph->node[i], i, params, rngp); } vgraph_add_edges(graph, rngp); return graph; } /* * vgraph_delete -- free the volatile graph */ void vgraph_delete(struct vgraph_t *graph) { for (unsigned i = 0; i < graph->nodes_num; i++) vnode_delete(&graph->node[i]); FREE(graph); }
2,894
21.099237
77
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_defrag_advanced/vgraph.h
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2020, Intel Corporation */ /* * vgraph.h -- volatile graph representation */ #ifndef OBJ_DEFRAG_ADV_VGRAPH #define OBJ_DEFRAG_ADV_VGRAPH #include "rand.h" struct vgraph_params { unsigned max_nodes; /* max # of nodes per graph */ unsigned max_edges; /* max # of edges per node */ /* # of nodes is between [max_nodes - range_nodes, max_nodes] */ unsigned range_nodes; /* # of edges is between [max_edges - range_edges, max_edges] */ unsigned range_edges; unsigned min_pattern_size; unsigned max_pattern_size; }; struct vnode_t { unsigned node_id; unsigned edges_num; /* # of edges starting from this node */ unsigned *edges; /* ids of nodes the edges are pointing to */ /* the persistent node attributes */ size_t pattern_size; /* size of the pattern allocated after the node */ size_t psize; /* the total size of the node */ }; struct vgraph_t { unsigned nodes_num; struct vnode_t node[]; }; unsigned rand_range(unsigned min, unsigned max, rng_t *rngp); struct vgraph_t *vgraph_new(struct vgraph_params *params, rng_t *rngp); void vgraph_delete(struct vgraph_t *graph); #endif
1,158
23.145833
72
h
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_mem/obj_mem.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2018, Intel Corporation */ /* * obj_mem.c -- simple test for pmemobj_memcpy, pmemobj_memmove and * pmemobj_memset that verifies nothing blows up on pmemobj side. * Real consistency tests are for libpmem. */ #include "unittest.h" static unsigned Flags[] = { 0, PMEMOBJ_F_MEM_NODRAIN, PMEMOBJ_F_MEM_NONTEMPORAL, PMEMOBJ_F_MEM_TEMPORAL, PMEMOBJ_F_MEM_NONTEMPORAL | PMEMOBJ_F_MEM_TEMPORAL, PMEMOBJ_F_MEM_NONTEMPORAL | PMEMOBJ_F_MEM_NODRAIN, PMEMOBJ_F_MEM_WC, PMEMOBJ_F_MEM_WB, PMEMOBJ_F_MEM_NOFLUSH, /* all possible flags */ PMEMOBJ_F_MEM_NODRAIN | PMEMOBJ_F_MEM_NOFLUSH | PMEMOBJ_F_MEM_NONTEMPORAL | PMEMOBJ_F_MEM_TEMPORAL | PMEMOBJ_F_MEM_WC | PMEMOBJ_F_MEM_WB, }; int main(int argc, char *argv[]) { START(argc, argv, "obj_mem"); if (argc != 2) UT_FATAL("usage: %s [directory]", argv[0]); PMEMobjpool *pop = pmemobj_create(argv[1], "obj_mem", 0, S_IWUSR | S_IRUSR); if (!pop) UT_FATAL("!pmemobj_create"); struct root { char c[4096]; }; struct root *r = pmemobj_direct(pmemobj_root(pop, sizeof(struct root))); for (int i = 0; i < ARRAY_SIZE(Flags); ++i) { unsigned f = Flags[i]; pmemobj_memset(pop, &r->c[0], 0x77, 2048, f); pmemobj_memset(pop, &r->c[2048], 0xff, 2048, f); pmemobj_memcpy(pop, &r->c[2048 + 7], &r->c[0], 100, f); pmemobj_memcpy(pop, &r->c[2048 + 1024], &r->c[0] + 17, 128, f); pmemobj_memmove(pop, &r->c[125], &r->c[150], 100, f); pmemobj_memmove(pop, &r->c[350], &r->c[325], 100, f); if (f & PMEMOBJ_F_MEM_NOFLUSH) pmemobj_persist(pop, r, sizeof(*r)); } pmemobj_close(pop); DONE(NULL); }
1,644
22.84058
73
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem_valgr_simple/pmem_valgr_simple.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2016, Intel Corporation */ /* * pmem_valgr_simple.c -- simple unit test using pmemcheck * * usage: pmem_valgr_simple file */ #include "unittest.h" int main(int argc, char *argv[]) { size_t mapped_len; char *dest; int is_pmem; START(argc, argv, "pmem_valgr_simple"); if (argc != 4) UT_FATAL("usage: %s file offset length", argv[0]); int dest_off = atoi(argv[2]); size_t bytes = strtoul(argv[3], NULL, 0); dest = pmem_map_file(argv[1], 0, 0, 0, &mapped_len, &is_pmem); if (dest == NULL) UT_FATAL("!Could not mmap %s\n", argv[1]); /* these will not be made persistent */ *(int *)dest = 4; /* this will be made persistent */ uint64_t *tmp64dst = (void *)((uintptr_t)dest + 4096); *tmp64dst = 50; if (is_pmem) { pmem_persist(tmp64dst, sizeof(*tmp64dst)); } else { UT_ASSERTeq(pmem_msync(tmp64dst, sizeof(*tmp64dst)), 0); } uint16_t *tmp16dst = (void *)((uintptr_t)dest + 1024); *tmp16dst = 21; /* will appear as flushed/fenced in valgrind log */ pmem_flush(tmp16dst, sizeof(*tmp16dst)); /* shows strange behavior of memset in some cases */ memset(dest + dest_off, 0, bytes); UT_ASSERTeq(pmem_unmap(dest, mapped_len), 0); DONE(NULL); }
1,240
21.160714
63
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/libpmempool_check_version/libpmempool_check_version.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2019, Intel Corporation */ /* * libpmempool_check_version -- a unittest for libpmempool_check_version. * */ #include "unittest.h" #include "libpmempool.h" int main(int argc, char *argv[]) { START(argc, argv, "libpmempool_check_version"); UT_ASSERTne(pmempool_check_version(0, 0), NULL); UT_ASSERTne(NULL, pmempool_check_version(PMEMPOOL_MAJOR_VERSION - 1, PMEMPOOL_MINOR_VERSION)); if (PMEMPOOL_MINOR_VERSION > 0) { UT_ASSERTeq(NULL, pmempool_check_version(PMEMPOOL_MAJOR_VERSION, PMEMPOOL_MINOR_VERSION - 1)); } UT_ASSERTeq(NULL, pmempool_check_version(PMEMPOOL_MAJOR_VERSION, PMEMPOOL_MINOR_VERSION)); UT_ASSERTne(NULL, pmempool_check_version(PMEMPOOL_MAJOR_VERSION + 1, PMEMPOOL_MINOR_VERSION)); UT_ASSERTne(NULL, pmempool_check_version(PMEMPOOL_MAJOR_VERSION, PMEMPOOL_MINOR_VERSION + 1)); DONE(NULL); }
897
22.631579
73
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/win_mmap_dtor/win_mmap_dtor.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2018, Intel Corporation */ /* * win_mmap_dtor.c -- unit test for windows mmap destructor */ #include "unittest.h" #include "os.h" #include "win_mmap.h" #define KILOBYTE (1 << 10) #define MEGABYTE (1 << 20) unsigned long long Mmap_align; int main(int argc, char *argv[]) { START(argc, argv, "win_mmap_dtor"); if (argc != 2) UT_FATAL("usage: %s path", argv[0]); SYSTEM_INFO si; GetSystemInfo(&si); /* set pagesize for mmap */ Mmap_align = si.dwAllocationGranularity; const char *path = argv[1]; int fd = os_open(path, O_RDWR); UT_ASSERTne(fd, -1); /* * Input file has size equal to 2MB, but the mapping is 3MB. * In this case mmap should map whole file and reserve 1MB * of virtual address space for remaining part of the mapping. */ void *addr = mmap(NULL, 3 * MEGABYTE, PROT_READ, MAP_SHARED, fd, 0); UT_ASSERTne(addr, MAP_FAILED); MEMORY_BASIC_INFORMATION basic_info; SIZE_T bytes_returned; bytes_returned = VirtualQuery(addr, &basic_info, sizeof(basic_info)); UT_ASSERTeq(bytes_returned, sizeof(basic_info)); UT_ASSERTeq(basic_info.RegionSize, 2 * MEGABYTE); UT_ASSERTeq(basic_info.State, MEM_COMMIT); bytes_returned = VirtualQuery((char *)addr + 2 * MEGABYTE, &basic_info, sizeof(basic_info)); UT_ASSERTeq(bytes_returned, sizeof(basic_info)); UT_ASSERTeq(basic_info.RegionSize, MEGABYTE); UT_ASSERTeq(basic_info.State, MEM_RESERVE); win_mmap_fini(); bytes_returned = VirtualQuery((char *)addr + 2 * MEGABYTE, &basic_info, sizeof(basic_info)); UT_ASSERTeq(bytes_returned, sizeof(basic_info)); /* * region size can be bigger than 1MB because there was probably * free space after this mapping */ UT_ASSERTeq(basic_info.State, MEM_FREE); DONE(NULL); }
1,778
22.72
69
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem_map_file_win/mocks_windows.h
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2017, Intel Corporation */ /* * mocks_windows.h -- redefinitions of libc functions * * This file is Windows-specific. * * This file should be included (i.e. using Forced Include) by libpmem * files, when compiled for the purpose of pmem_map_file test. * It would replace default implementation with mocked functions defined * in pmem_map_file.c. * * These defines could be also passed as preprocessor definitions. */ #ifndef WRAP_REAL #define os_posix_fallocate __wrap_os_posix_fallocate #define os_ftruncate __wrap_os_ftruncate #endif
608
28
72
h
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem_map_file_win/mocks_windows.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2014-2017, Intel Corporation */ /* * mocks_windows.c -- mocked functions used in pmem_map_file.c * (Windows-specific) */ #include "unittest.h" #define MAX_LEN (4 * 1024 * 1024) /* * posix_fallocate -- interpose on libc posix_fallocate() */ FUNC_MOCK(os_posix_fallocate, int, int fd, os_off_t offset, os_off_t len) FUNC_MOCK_RUN_DEFAULT { UT_OUT("posix_fallocate: off %ju len %ju", offset, len); if (len > MAX_LEN) return ENOSPC; return _FUNC_REAL(os_posix_fallocate)(fd, offset, len); } FUNC_MOCK_END /* * ftruncate -- interpose on libc ftruncate() */ FUNC_MOCK(os_ftruncate, int, int fd, os_off_t len) FUNC_MOCK_RUN_DEFAULT { UT_OUT("ftruncate: len %ju", len); if (len > MAX_LEN) { errno = ENOSPC; return -1; } return _FUNC_REAL(os_ftruncate)(fd, len); } FUNC_MOCK_END
868
21.868421
73
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_tx_locks/obj_tx_locks.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2020, Intel Corporation */ /* * obj_tx_locks.c -- unit test for transaction locks */ #include "unittest.h" #define LAYOUT_NAME "direct" #define NUM_LOCKS 2 #define NUM_THREADS 10 #define TEST_VALUE_A 5 #define TEST_VALUE_B 10 #define TEST_VALUE_C 15 #define BEGIN_TX(pop, mutexes, rwlocks)\ TX_BEGIN_PARAM((pop), TX_PARAM_MUTEX,\ &(mutexes)[0], TX_PARAM_MUTEX, &(mutexes)[1], TX_PARAM_RWLOCK,\ &(rwlocks)[0], TX_PARAM_RWLOCK, &(rwlocks)[1], TX_PARAM_NONE) #define BEGIN_TX_OLD(pop, mutexes, rwlocks)\ TX_BEGIN_LOCK((pop), TX_LOCK_MUTEX,\ &(mutexes)[0], TX_LOCK_MUTEX, &(mutexes)[1], TX_LOCK_RWLOCK,\ &(rwlocks)[0], TX_LOCK_RWLOCK, &(rwlocks)[1], TX_LOCK_NONE) struct transaction_data { PMEMmutex mutexes[NUM_LOCKS]; PMEMrwlock rwlocks[NUM_LOCKS]; int a; int b; int c; }; static PMEMobjpool *Pop; /* * do_tx -- (internal) thread-friendly transaction */ static void * do_tx(void *arg) { struct transaction_data *data = arg; BEGIN_TX(Pop, data->mutexes, data->rwlocks) { data->a = TEST_VALUE_A; } TX_ONCOMMIT { UT_ASSERT(data->a == TEST_VALUE_A); data->b = TEST_VALUE_B; } TX_ONABORT { /* not called */ data->a = TEST_VALUE_B; } TX_FINALLY { UT_ASSERT(data->b == TEST_VALUE_B); data->c = TEST_VALUE_C; } TX_END return NULL; } /* * do_tx_old -- (internal) thread-friendly transaction, tests deprecated macros */ static void * do_tx_old(void *arg) { struct transaction_data *data = arg; BEGIN_TX_OLD(Pop, data->mutexes, data->rwlocks) { data->a = TEST_VALUE_A; } TX_ONCOMMIT { UT_ASSERT(data->a == TEST_VALUE_A); data->b = TEST_VALUE_B; } TX_ONABORT { /* not called */ data->a = TEST_VALUE_B; } TX_FINALLY { UT_ASSERT(data->b == TEST_VALUE_B); data->c = TEST_VALUE_C; } TX_END return NULL; } /* * do_aborted_tx -- (internal) thread-friendly aborted transaction */ static void * do_aborted_tx(void *arg) { struct transaction_data *data = arg; BEGIN_TX(Pop, data->mutexes, data->rwlocks) { data->a = TEST_VALUE_A; pmemobj_tx_abort(EINVAL); data->a = TEST_VALUE_B; } TX_ONCOMMIT { /* not called */ data->a = TEST_VALUE_B; } TX_ONABORT { UT_ASSERT(data->a == TEST_VALUE_A); data->b = TEST_VALUE_B; } TX_FINALLY { UT_ASSERT(data->b == TEST_VALUE_B); data->c = TEST_VALUE_C; } TX_END return NULL; } /* * do_nested_tx-- (internal) thread-friendly nested transaction */ static void * do_nested_tx(void *arg) { struct transaction_data *data = arg; BEGIN_TX(Pop, data->mutexes, data->rwlocks) { BEGIN_TX(Pop, data->mutexes, data->rwlocks) { data->a = TEST_VALUE_A; } TX_ONCOMMIT { UT_ASSERT(data->a == TEST_VALUE_A); data->b = TEST_VALUE_B; } TX_END } TX_ONCOMMIT { data->c = TEST_VALUE_C; } TX_END return NULL; } /* * do_aborted_nested_tx -- (internal) thread-friendly aborted nested transaction */ static void * do_aborted_nested_tx(void *arg) { struct transaction_data *data = arg; BEGIN_TX(Pop, data->mutexes, data->rwlocks) { data->a = TEST_VALUE_C; BEGIN_TX(Pop, data->mutexes, data->rwlocks) { data->a = TEST_VALUE_A; pmemobj_tx_abort(EINVAL); data->a = TEST_VALUE_B; } TX_ONCOMMIT { /* not called */ data->a = TEST_VALUE_C; } TX_ONABORT { UT_ASSERT(data->a == TEST_VALUE_A); data->b = TEST_VALUE_B; } TX_FINALLY { UT_ASSERT(data->b == TEST_VALUE_B); data->c = TEST_VALUE_C; } TX_END data->a = TEST_VALUE_B; } TX_ONCOMMIT { /* not called */ UT_ASSERT(data->a == TEST_VALUE_A); data->c = TEST_VALUE_C; } TX_ONABORT { UT_ASSERT(data->a == TEST_VALUE_A); UT_ASSERT(data->b == TEST_VALUE_B); UT_ASSERT(data->c == TEST_VALUE_C); data->a = TEST_VALUE_B; } TX_FINALLY { UT_ASSERT(data->a == TEST_VALUE_B); data->b = TEST_VALUE_A; } TX_END return NULL; } static void run_mt_test(void *(*worker)(void *), void *arg) { os_thread_t thread[NUM_THREADS]; for (int i = 0; i < NUM_THREADS; ++i) { THREAD_CREATE(&thread[i], NULL, worker, arg); } for (int i = 0; i < NUM_THREADS; ++i) { THREAD_JOIN(&thread[i], NULL); } } int main(int argc, char *argv[]) { START(argc, argv, "obj_tx_locks"); if (argc > 3) UT_FATAL("usage: %s <file> [m]", argv[0]); if ((Pop = pmemobj_create(argv[1], LAYOUT_NAME, PMEMOBJ_MIN_POOL, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create"); int multithread = 0; if (argc == 3) { multithread = (argv[2][0] == 'm'); if (!multithread) UT_FATAL("wrong test type supplied %c", argv[1][0]); } PMEMoid root = pmemobj_root(Pop, sizeof(struct transaction_data)); struct transaction_data *test_obj = (struct transaction_data *)pmemobj_direct(root); if (multithread) { run_mt_test(do_tx, test_obj); } else { do_tx(test_obj); do_tx(test_obj); } UT_ASSERT(test_obj->a == TEST_VALUE_A); UT_ASSERT(test_obj->b == TEST_VALUE_B); UT_ASSERT(test_obj->c == TEST_VALUE_C); if (multithread) { run_mt_test(do_aborted_tx, test_obj); } else { do_aborted_tx(test_obj); do_aborted_tx(test_obj); } UT_ASSERT(test_obj->a == TEST_VALUE_A); UT_ASSERT(test_obj->b == TEST_VALUE_B); UT_ASSERT(test_obj->c == TEST_VALUE_C); if (multithread) { run_mt_test(do_nested_tx, test_obj); } else { do_nested_tx(test_obj); do_nested_tx(test_obj); } UT_ASSERT(test_obj->a == TEST_VALUE_A); UT_ASSERT(test_obj->b == TEST_VALUE_B); UT_ASSERT(test_obj->c == TEST_VALUE_C); if (multithread) { run_mt_test(do_aborted_nested_tx, test_obj); } else { do_aborted_nested_tx(test_obj); do_aborted_nested_tx(test_obj); } UT_ASSERT(test_obj->a == TEST_VALUE_B); UT_ASSERT(test_obj->b == TEST_VALUE_A); UT_ASSERT(test_obj->c == TEST_VALUE_C); /* test that deprecated macros still work */ UT_COMPILE_ERROR_ON((int)TX_LOCK_NONE != (int)TX_PARAM_NONE); UT_COMPILE_ERROR_ON((int)TX_LOCK_MUTEX != (int)TX_PARAM_MUTEX); UT_COMPILE_ERROR_ON((int)TX_LOCK_RWLOCK != (int)TX_PARAM_RWLOCK); if (multithread) { run_mt_test(do_tx_old, test_obj); } else { do_tx_old(test_obj); do_tx_old(test_obj); } UT_ASSERT(test_obj->a == TEST_VALUE_A); UT_ASSERT(test_obj->b == TEST_VALUE_B); UT_ASSERT(test_obj->c == TEST_VALUE_C); pmemobj_close(Pop); DONE(NULL); }
6,164
21.918216
80
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/blk_recovery/blk_recovery.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2014-2019, Intel Corporation */ /* * Copyright (c) 2016, Microsoft Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * * Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * blk_recovery.c -- unit test for pmemblk recovery * * usage: blk_recovery bsize file first_lba lba * */ #include "unittest.h" #include <sys/param.h> #include "blk.h" #include "btt_layout.h" #include <endian.h> static size_t Bsize; /* * construct -- build a buffer for writing */ static void construct(unsigned char *buf) { static int ord = 1; for (int i = 0; i < Bsize; i++) buf[i] = ord; ord++; if (ord > 255) ord = 1; } /* * ident -- identify what a buffer holds */ static char * ident(unsigned char *buf) { static char descr[100]; unsigned val = *buf; for (int i = 1; i < Bsize; i++) if (buf[i] != val) { sprintf(descr, "{%u} TORN at byte %d", val, i); return descr; } sprintf(descr, "{%u}", val); return descr; } int main(int argc, char *argv[]) { START(argc, argv, "blk_recovery"); if (argc != 5 && argc != 3) UT_FATAL("usage: %s bsize file [first_lba lba]", argv[0]); Bsize = strtoul(argv[1], NULL, 0); const char *path = argv[2]; if (argc > 3) { PMEMblkpool *handle; if ((handle = pmemblk_create(path, Bsize, 0, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!%s: pmemblk_create", path); UT_OUT("%s block size %zu usable blocks %zu", argv[1], Bsize, pmemblk_nblock(handle)); /* write the first lba */ os_off_t lba = STRTOL(argv[3], NULL, 0); unsigned char *buf = MALLOC(Bsize); construct(buf); if (pmemblk_write(handle, buf, lba) < 0) UT_FATAL("!write lba %zu", lba); UT_OUT("write lba %zu: %s", lba, ident(buf)); /* reach into the layout and write-protect the map */ struct btt_info *infop = (void *)((char *)handle + roundup(sizeof(struct pmemblk), BLK_FORMAT_DATA_ALIGN)); char *mapaddr = (char *)infop + le32toh(infop->mapoff); char *flogaddr = (char *)infop + le32toh(infop->flogoff); UT_OUT("write-protecting map, length %zu", (size_t)(flogaddr - mapaddr)); MPROTECT(mapaddr, (size_t)(flogaddr - mapaddr), PROT_READ); /* map each file argument with the given map type */ lba = STRTOL(argv[4], NULL, 0); construct(buf); if (pmemblk_write(handle, buf, lba) < 0) UT_FATAL("!write lba %zu", lba); else UT_FATAL("write lba %zu: %s", lba, ident(buf)); } else { int result = pmemblk_check(path, Bsize); if (result < 0) UT_OUT("!%s: pmemblk_check", path); else if (result == 0) UT_OUT("%s: pmemblk_check: not consistent", path); else UT_OUT("%s: consistent", path); } DONE(NULL); }
4,164
26.766667
74
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/out_err_mt/out_err_mt.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2020, Intel Corporation */ /* * out_err_mt.c -- unit test for error messages */ #include <sys/types.h> #include <stdarg.h> #include <errno.h> #include "unittest.h" #include "valgrind_internal.h" #include "util.h" #define NUM_THREADS 16 static void print_errors(const char *msg) { UT_OUT("%s", msg); UT_OUT("PMEM: %s", pmem_errormsg()); UT_OUT("PMEMOBJ: %s", pmemobj_errormsg()); UT_OUT("PMEMLOG: %s", pmemlog_errormsg()); UT_OUT("PMEMBLK: %s", pmemblk_errormsg()); UT_OUT("PMEMPOOL: %s", pmempool_errormsg()); } static void check_errors(unsigned ver) { int ret; int err_need; int err_found; ret = sscanf(pmem_errormsg(), "libpmem major version mismatch (need %d, found %d)", &err_need, &err_found); UT_ASSERTeq(ret, 2); UT_ASSERTeq(err_need, ver); UT_ASSERTeq(err_found, PMEM_MAJOR_VERSION); ret = sscanf(pmemobj_errormsg(), "libpmemobj major version mismatch (need %d, found %d)", &err_need, &err_found); UT_ASSERTeq(ret, 2); UT_ASSERTeq(err_need, ver); UT_ASSERTeq(err_found, PMEMOBJ_MAJOR_VERSION); ret = sscanf(pmemlog_errormsg(), "libpmemlog major version mismatch (need %d, found %d)", &err_need, &err_found); UT_ASSERTeq(ret, 2); UT_ASSERTeq(err_need, ver); UT_ASSERTeq(err_found, PMEMLOG_MAJOR_VERSION); ret = sscanf(pmemblk_errormsg(), "libpmemblk major version mismatch (need %d, found %d)", &err_need, &err_found); UT_ASSERTeq(ret, 2); UT_ASSERTeq(err_need, ver); UT_ASSERTeq(err_found, PMEMBLK_MAJOR_VERSION); ret = sscanf(pmempool_errormsg(), "libpmempool major version mismatch (need %d, found %d)", &err_need, &err_found); UT_ASSERTeq(ret, 2); UT_ASSERTeq(err_need, ver); UT_ASSERTeq(err_found, PMEMPOOL_MAJOR_VERSION); } static void * do_test(void *arg) { unsigned ver = *(unsigned *)arg; pmem_check_version(ver, 0); pmemobj_check_version(ver, 0); pmemlog_check_version(ver, 0); pmemblk_check_version(ver, 0); pmempool_check_version(ver, 0); check_errors(ver); return NULL; } static void run_mt_test(void *(*worker)(void *)) { os_thread_t thread[NUM_THREADS]; unsigned ver[NUM_THREADS]; for (unsigned i = 0; i < NUM_THREADS; ++i) { ver[i] = 10000 + i; THREAD_CREATE(&thread[i], NULL, worker, &ver[i]); } for (unsigned i = 0; i < NUM_THREADS; ++i) { THREAD_JOIN(&thread[i], NULL); } } int main(int argc, char *argv[]) { START(argc, argv, "out_err_mt"); if (argc != 6) UT_FATAL("usage: %s file1 file2 file3 file4 dir", argv[0]); print_errors("start"); PMEMobjpool *pop = pmemobj_create(argv[1], "test", PMEMOBJ_MIN_POOL, 0666); PMEMlogpool *plp = pmemlog_create(argv[2], PMEMLOG_MIN_POOL, 0666); PMEMblkpool *pbp = pmemblk_create(argv[3], 128, PMEMBLK_MIN_POOL, 0666); util_init(); pmem_check_version(10000, 0); pmemobj_check_version(10001, 0); pmemlog_check_version(10002, 0); pmemblk_check_version(10003, 0); pmempool_check_version(10006, 0); print_errors("version check"); void *ptr = NULL; /* * We are testing library error reporting and we don't want this test * to fail under memcheck. */ VALGRIND_DO_DISABLE_ERROR_REPORTING; pmem_msync(ptr, 1); VALGRIND_DO_ENABLE_ERROR_REPORTING; print_errors("pmem_msync"); int ret; PMEMoid oid; ret = pmemobj_alloc(pop, &oid, 0, 0, NULL, NULL); UT_ASSERTeq(ret, -1); print_errors("pmemobj_alloc"); pmemlog_append(plp, NULL, PMEMLOG_MIN_POOL); print_errors("pmemlog_append"); size_t nblock = pmemblk_nblock(pbp); pmemblk_set_error(pbp, (long long)nblock + 1); print_errors("pmemblk_set_error"); run_mt_test(do_test); pmemobj_close(pop); pmemlog_close(plp); pmemblk_close(pbp); PMEMpoolcheck *ppc; struct pmempool_check_args args = {NULL, }; ppc = pmempool_check_init(&args, sizeof(args) / 2); UT_ASSERTeq(ppc, NULL); print_errors("pmempool_check_init"); DONE(NULL); }
3,840
22.278788
70
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/libpmempool_api/libpmempool_test.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016, Intel Corporation */ /* * libpmempool_test -- test of libpmempool. * */ #include <stddef.h> #include <unistd.h> #include <stdlib.h> #include <stdio.h> #include <getopt.h> #include "unittest.h" /* * Exact copy of the struct pmempool_check_args from libpmempool 1.0 provided to * test libpmempool against various pmempool_check_args structure versions. */ struct pmempool_check_args_1_0 { const char *path; const char *backup_path; enum pmempool_pool_type pool_type; int flags; }; /* * check_pool -- check given pool */ static void check_pool(struct pmempool_check_args *args, size_t args_size) { const char *status2str[] = { [PMEMPOOL_CHECK_RESULT_CONSISTENT] = "consistent", [PMEMPOOL_CHECK_RESULT_NOT_CONSISTENT] = "not consistent", [PMEMPOOL_CHECK_RESULT_REPAIRED] = "repaired", [PMEMPOOL_CHECK_RESULT_CANNOT_REPAIR] = "cannot repair", [PMEMPOOL_CHECK_RESULT_ERROR] = "fatal", }; PMEMpoolcheck *ppc = pmempool_check_init(args, args_size); if (!ppc) { char buff[UT_MAX_ERR_MSG]; ut_strerror(errno, buff, UT_MAX_ERR_MSG); UT_OUT("Error: %s", buff); return; } struct pmempool_check_status *status = NULL; while ((status = pmempool_check(ppc)) != NULL) { switch (status->type) { case PMEMPOOL_CHECK_MSG_TYPE_ERROR: UT_OUT("%s", status->str.msg); break; case PMEMPOOL_CHECK_MSG_TYPE_INFO: UT_OUT("%s", status->str.msg); break; case PMEMPOOL_CHECK_MSG_TYPE_QUESTION: UT_OUT("%s", status->str.msg); status->str.answer = "yes"; break; default: pmempool_check_end(ppc); exit(EXIT_FAILURE); } } enum pmempool_check_result ret = pmempool_check_end(ppc); UT_OUT("status = %s", status2str[ret]); } /* * print_usage -- print usage of program */ static void print_usage(char *name) { UT_OUT("Usage: %s [-t <pool_type>] [-r <repair>] [-d <dry_run>] " "[-y <always_yes>] [-f <flags>] [-a <advanced>] " "[-b <backup_path>] <pool_path>", name); } /* * set_flag -- parse the value and set the flag according to a obtained value */ static void set_flag(const char *value, int *flags, int flag) { if (atoi(value) > 0) *flags |= flag; else *flags &= ~flag; } int main(int argc, char *argv[]) { START(argc, argv, "libpmempool_test"); int opt; struct pmempool_check_args_1_0 args = { .path = NULL, .backup_path = NULL, .pool_type = PMEMPOOL_POOL_TYPE_LOG, .flags = PMEMPOOL_CHECK_FORMAT_STR | PMEMPOOL_CHECK_REPAIR | PMEMPOOL_CHECK_VERBOSE }; size_t args_size = sizeof(struct pmempool_check_args_1_0); while ((opt = getopt(argc, argv, "t:r:d:a:y:s:b:")) != -1) { switch (opt) { case 't': if (strcmp(optarg, "blk") == 0) { args.pool_type = PMEMPOOL_POOL_TYPE_BLK; } else if (strcmp(optarg, "log") == 0) { args.pool_type = PMEMPOOL_POOL_TYPE_LOG; } else if (strcmp(optarg, "obj") == 0) { args.pool_type = PMEMPOOL_POOL_TYPE_OBJ; } else if (strcmp(optarg, "btt") == 0) { args.pool_type = PMEMPOOL_POOL_TYPE_BTT; } else { args.pool_type = (uint32_t)strtoul(optarg, NULL, 0); } break; case 'r': set_flag(optarg, &args.flags, PMEMPOOL_CHECK_REPAIR); break; case 'd': set_flag(optarg, &args.flags, PMEMPOOL_CHECK_DRY_RUN); break; case 'a': set_flag(optarg, &args.flags, PMEMPOOL_CHECK_ADVANCED); break; case 'y': set_flag(optarg, &args.flags, PMEMPOOL_CHECK_ALWAYS_YES); break; case 's': args_size = strtoul(optarg, NULL, 0); break; case 'b': args.backup_path = optarg; break; default: print_usage(argv[0]); UT_FATAL("unknown option: %c", opt); } } if (optind < argc) { args.path = argv[optind]; } check_pool((struct pmempool_check_args *)&args, args_size); DONE(NULL); }
3,753
22.31677
80
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/blk_nblock/blk_nblock.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2014-2017, Intel Corporation */ /* * blk_nblock.c -- unit test for pmemblk_nblock() * * usage: blk_nblock bsize:file... * */ #include "unittest.h" int main(int argc, char *argv[]) { START(argc, argv, "blk_nblock"); if (argc < 2) UT_FATAL("usage: %s bsize:file...", argv[0]); /* map each file argument with the given map type */ for (int arg = 1; arg < argc; arg++) { char *fname; size_t bsize = strtoul(argv[arg], &fname, 0); if (*fname != ':') UT_FATAL("usage: %s bsize:file...", argv[0]); fname++; PMEMblkpool *handle; handle = pmemblk_create(fname, bsize, 0, S_IWUSR | S_IRUSR); if (handle == NULL) { UT_OUT("!%s: pmemblk_create", fname); } else { UT_OUT("%s: block size %zu usable blocks: %zu", fname, bsize, pmemblk_nblock(handle)); UT_ASSERTeq(pmemblk_bsize(handle), bsize); pmemblk_close(handle); int result = pmemblk_check(fname, bsize); if (result < 0) UT_OUT("!%s: pmemblk_check", fname); else if (result == 0) UT_OUT("%s: pmemblk_check: not consistent", fname); else { UT_ASSERTeq(pmemblk_check(fname, bsize + 1), -1); UT_ASSERTeq(pmemblk_check(fname, 0), 1); handle = pmemblk_open(fname, 0); UT_ASSERTeq(pmemblk_bsize(handle), bsize); pmemblk_close(handle); } } } DONE(NULL); }
1,358
22.431034
62
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_tx_invalid/obj_tx_invalid.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2018, Intel Corporation */ /* * obj_tx_invalid.c -- tests which transactional functions are available in * which transaction stages */ #include <stddef.h> #include "file.h" #include "unittest.h" /* * Layout definition */ POBJ_LAYOUT_BEGIN(tx_invalid); POBJ_LAYOUT_ROOT(tx_invalid, struct dummy_root); POBJ_LAYOUT_TOID(tx_invalid, struct dummy_node); POBJ_LAYOUT_END(tx_invalid); struct dummy_node { int value; }; struct dummy_root { TOID(struct dummy_node) node; }; int main(int argc, char *argv[]) { if (argc != 3) UT_FATAL("usage: %s file-name op", argv[0]); START(argc, argv, "obj_tx_invalid %s", argv[2]); /* root doesn't count */ UT_COMPILE_ERROR_ON(POBJ_LAYOUT_TYPES_NUM(tx_invalid) != 1); PMEMobjpool *pop; const char *path = argv[1]; int exists = util_file_exists(path); if (exists < 0) UT_FATAL("!util_file_exists"); if (!exists) { if ((pop = pmemobj_create(path, POBJ_LAYOUT_NAME(tx_invalid), PMEMOBJ_MIN_POOL, S_IWUSR | S_IRUSR)) == NULL) { UT_FATAL("!pmemobj_create %s", path); } } else { if ((pop = pmemobj_open(path, POBJ_LAYOUT_NAME(tx_invalid))) == NULL) { UT_FATAL("!pmemobj_open %s", path); } } PMEMoid oid = pmemobj_first(pop); if (OID_IS_NULL(oid)) { if (pmemobj_alloc(pop, &oid, 10, 1, NULL, NULL)) UT_FATAL("!pmemobj_alloc"); } else { UT_ASSERTeq(pmemobj_type_num(oid), 1); } if (strcmp(argv[2], "alloc") == 0) pmemobj_tx_alloc(10, 1); else if (strcmp(argv[2], "alloc-in-work") == 0) { TX_BEGIN(pop) { pmemobj_tx_alloc(10, 1); } TX_END } else if (strcmp(argv[2], "alloc-in-abort") == 0) { TX_BEGIN(pop) { pmemobj_tx_abort(ENOMEM); } TX_ONABORT { pmemobj_tx_alloc(10, 1); } TX_END } else if (strcmp(argv[2], "alloc-in-commit") == 0) { TX_BEGIN(pop) { } TX_ONCOMMIT { pmemobj_tx_alloc(10, 1); } TX_END } else if (strcmp(argv[2], "alloc-in-finally") == 0) { TX_BEGIN(pop) { } TX_FINALLY { pmemobj_tx_alloc(10, 1); } TX_END } else if (strcmp(argv[2], "alloc-after-tx") == 0) { TX_BEGIN(pop) { } TX_END pmemobj_tx_alloc(10, 1); } else if (strcmp(argv[2], "zalloc") == 0) pmemobj_tx_zalloc(10, 1); else if (strcmp(argv[2], "zalloc-in-work") == 0) { TX_BEGIN(pop) { pmemobj_tx_zalloc(10, 1); } TX_END } else if (strcmp(argv[2], "zalloc-in-abort") == 0) { TX_BEGIN(pop) { pmemobj_tx_abort(ENOMEM); } TX_ONABORT { pmemobj_tx_zalloc(10, 1); } TX_END } else if (strcmp(argv[2], "zalloc-in-commit") == 0) { TX_BEGIN(pop) { } TX_ONCOMMIT { pmemobj_tx_zalloc(10, 1); } TX_END } else if (strcmp(argv[2], "zalloc-in-finally") == 0) { TX_BEGIN(pop) { } TX_FINALLY { pmemobj_tx_zalloc(10, 1); } TX_END } else if (strcmp(argv[2], "zalloc-after-tx") == 0) { TX_BEGIN(pop) { } TX_END pmemobj_tx_zalloc(10, 1); } else if (strcmp(argv[2], "strdup") == 0) pmemobj_tx_strdup("aaa", 1); else if (strcmp(argv[2], "strdup-in-work") == 0) { TX_BEGIN(pop) { pmemobj_tx_strdup("aaa", 1); } TX_END } else if (strcmp(argv[2], "strdup-in-abort") == 0) { TX_BEGIN(pop) { pmemobj_tx_abort(ENOMEM); } TX_ONABORT { pmemobj_tx_strdup("aaa", 1); } TX_END } else if (strcmp(argv[2], "strdup-in-commit") == 0) { TX_BEGIN(pop) { } TX_ONCOMMIT { pmemobj_tx_strdup("aaa", 1); } TX_END } else if (strcmp(argv[2], "strdup-in-finally") == 0) { TX_BEGIN(pop) { } TX_FINALLY { pmemobj_tx_strdup("aaa", 1); } TX_END } else if (strcmp(argv[2], "strdup-after-tx") == 0) { TX_BEGIN(pop) { } TX_END pmemobj_tx_strdup("aaa", 1); } else if (strcmp(argv[2], "realloc") == 0) pmemobj_tx_realloc(oid, 10, 1); else if (strcmp(argv[2], "realloc-in-work") == 0) { TX_BEGIN(pop) { pmemobj_tx_realloc(oid, 10, 1); } TX_END } else if (strcmp(argv[2], "realloc-in-abort") == 0) { TX_BEGIN(pop) { pmemobj_tx_abort(ENOMEM); } TX_ONABORT { pmemobj_tx_realloc(oid, 10, 1); } TX_END } else if (strcmp(argv[2], "realloc-in-commit") == 0) { TX_BEGIN(pop) { } TX_ONCOMMIT { pmemobj_tx_realloc(oid, 10, 1); } TX_END } else if (strcmp(argv[2], "realloc-in-finally") == 0) { TX_BEGIN(pop) { } TX_FINALLY { pmemobj_tx_realloc(oid, 10, 1); } TX_END } else if (strcmp(argv[2], "realloc-after-tx") == 0) { TX_BEGIN(pop) { } TX_END pmemobj_tx_realloc(oid, 10, 1); } else if (strcmp(argv[2], "zrealloc") == 0) pmemobj_tx_zrealloc(oid, 10, 1); else if (strcmp(argv[2], "zrealloc-in-work") == 0) { TX_BEGIN(pop) { pmemobj_tx_zrealloc(oid, 10, 1); } TX_END } else if (strcmp(argv[2], "zrealloc-in-abort") == 0) { TX_BEGIN(pop) { pmemobj_tx_abort(ENOMEM); } TX_ONABORT { pmemobj_tx_zrealloc(oid, 10, 1); } TX_END } else if (strcmp(argv[2], "zrealloc-in-commit") == 0) { TX_BEGIN(pop) { } TX_ONCOMMIT { pmemobj_tx_zrealloc(oid, 10, 1); } TX_END } else if (strcmp(argv[2], "zrealloc-in-finally") == 0) { TX_BEGIN(pop) { } TX_FINALLY { pmemobj_tx_zrealloc(oid, 10, 1); } TX_END } else if (strcmp(argv[2], "zrealloc-after-tx") == 0) { TX_BEGIN(pop) { } TX_END pmemobj_tx_zrealloc(oid, 10, 1); } else if (strcmp(argv[2], "free") == 0) pmemobj_tx_free(oid); else if (strcmp(argv[2], "free-in-work") == 0) { TX_BEGIN(pop) { pmemobj_tx_free(oid); } TX_END } else if (strcmp(argv[2], "free-in-abort") == 0) { TX_BEGIN(pop) { pmemobj_tx_abort(ENOMEM); } TX_ONABORT { pmemobj_tx_free(oid); } TX_END } else if (strcmp(argv[2], "free-in-commit") == 0) { TX_BEGIN(pop) { } TX_ONCOMMIT { pmemobj_tx_free(oid); } TX_END } else if (strcmp(argv[2], "free-in-finally") == 0) { TX_BEGIN(pop) { } TX_FINALLY { pmemobj_tx_free(oid); } TX_END } else if (strcmp(argv[2], "free-after-tx") == 0) { TX_BEGIN(pop) { } TX_END pmemobj_tx_free(oid); } else if (strcmp(argv[2], "add_range") == 0) pmemobj_tx_add_range(oid, 0, 10); else if (strcmp(argv[2], "add_range-in-work") == 0) { TX_BEGIN(pop) { pmemobj_tx_add_range(oid, 0, 10); } TX_END } else if (strcmp(argv[2], "add_range-in-abort") == 0) { TX_BEGIN(pop) { pmemobj_tx_abort(ENOMEM); } TX_ONABORT { pmemobj_tx_add_range(oid, 0, 10); } TX_END } else if (strcmp(argv[2], "add_range-in-commit") == 0) { TX_BEGIN(pop) { } TX_ONCOMMIT { pmemobj_tx_add_range(oid, 0, 10); } TX_END } else if (strcmp(argv[2], "add_range-in-finally") == 0) { TX_BEGIN(pop) { } TX_FINALLY { pmemobj_tx_add_range(oid, 0, 10); } TX_END } else if (strcmp(argv[2], "add_range-after-tx") == 0) { TX_BEGIN(pop) { } TX_END pmemobj_tx_add_range(oid, 0, 10); } else if (strcmp(argv[2], "add_range_direct") == 0) pmemobj_tx_add_range_direct(pmemobj_direct(oid), 10); else if (strcmp(argv[2], "add_range_direct-in-work") == 0) { TX_BEGIN(pop) { pmemobj_tx_add_range_direct(pmemobj_direct(oid), 10); } TX_END } else if (strcmp(argv[2], "add_range_direct-in-abort") == 0) { TX_BEGIN(pop) { pmemobj_tx_abort(ENOMEM); } TX_ONABORT { pmemobj_tx_add_range_direct(pmemobj_direct(oid), 10); } TX_END } else if (strcmp(argv[2], "add_range_direct-in-commit") == 0) { TX_BEGIN(pop) { } TX_ONCOMMIT { pmemobj_tx_add_range_direct(pmemobj_direct(oid), 10); } TX_END } else if (strcmp(argv[2], "add_range_direct-in-finally") == 0) { TX_BEGIN(pop) { } TX_FINALLY { pmemobj_tx_add_range_direct(pmemobj_direct(oid), 10); } TX_END } else if (strcmp(argv[2], "add_range_direct-after-tx") == 0) { TX_BEGIN(pop) { } TX_END pmemobj_tx_add_range_direct(pmemobj_direct(oid), 10); } else if (strcmp(argv[2], "abort") == 0) pmemobj_tx_abort(ENOMEM); else if (strcmp(argv[2], "abort-in-work") == 0) { TX_BEGIN(pop) { pmemobj_tx_abort(ENOMEM); } TX_END } else if (strcmp(argv[2], "abort-in-abort") == 0) { TX_BEGIN(pop) { pmemobj_tx_abort(ENOMEM); } TX_ONABORT { pmemobj_tx_abort(ENOMEM); } TX_END } else if (strcmp(argv[2], "abort-in-commit") == 0) { TX_BEGIN(pop) { } TX_ONCOMMIT { pmemobj_tx_abort(ENOMEM); } TX_END } else if (strcmp(argv[2], "abort-in-finally") == 0) { TX_BEGIN(pop) { } TX_FINALLY { pmemobj_tx_abort(ENOMEM); } TX_END } else if (strcmp(argv[2], "abort-after-tx") == 0) { TX_BEGIN(pop) { } TX_END pmemobj_tx_abort(ENOMEM); } else if (strcmp(argv[2], "commit") == 0) pmemobj_tx_commit(); else if (strcmp(argv[2], "commit-in-work") == 0) { TX_BEGIN(pop) { pmemobj_tx_commit(); } TX_END } else if (strcmp(argv[2], "commit-in-abort") == 0) { TX_BEGIN(pop) { pmemobj_tx_abort(ENOMEM); } TX_ONABORT { pmemobj_tx_commit(); } TX_END } else if (strcmp(argv[2], "commit-in-commit") == 0) { TX_BEGIN(pop) { } TX_ONCOMMIT { pmemobj_tx_commit(); } TX_END } else if (strcmp(argv[2], "commit-in-finally") == 0) { TX_BEGIN(pop) { } TX_FINALLY { pmemobj_tx_commit(); } TX_END } else if (strcmp(argv[2], "commit-after-tx") == 0) { TX_BEGIN(pop) { } TX_END pmemobj_tx_commit(); } else if (strcmp(argv[2], "end") == 0) pmemobj_tx_end(); else if (strcmp(argv[2], "end-in-work") == 0) { TX_BEGIN(pop) { pmemobj_tx_end(); } TX_END } else if (strcmp(argv[2], "end-in-abort") == 0) { TX_BEGIN(pop) { pmemobj_tx_abort(ENOMEM); } TX_ONABORT { pmemobj_tx_end(); pmemobj_close(pop); exit(0); } TX_END } else if (strcmp(argv[2], "end-in-commit") == 0) { TX_BEGIN(pop) { } TX_ONCOMMIT { pmemobj_tx_end(); pmemobj_close(pop); exit(0); } TX_END } else if (strcmp(argv[2], "end-in-finally") == 0) { TX_BEGIN(pop) { } TX_FINALLY { pmemobj_tx_end(); pmemobj_close(pop); exit(0); } TX_END } else if (strcmp(argv[2], "end-after-tx") == 0) { TX_BEGIN(pop) { } TX_END pmemobj_tx_end(); } else if (strcmp(argv[2], "process") == 0) pmemobj_tx_process(); else if (strcmp(argv[2], "process-in-work") == 0) { TX_BEGIN(pop) { pmemobj_tx_process(); } TX_END } else if (strcmp(argv[2], "process-in-abort") == 0) { TX_BEGIN(pop) { pmemobj_tx_abort(ENOMEM); } TX_ONABORT { pmemobj_tx_process(); } TX_END } else if (strcmp(argv[2], "process-in-commit") == 0) { TX_BEGIN(pop) { } TX_ONCOMMIT { pmemobj_tx_process(); } TX_END } else if (strcmp(argv[2], "process-in-finally") == 0) { TX_BEGIN(pop) { } TX_FINALLY { pmemobj_tx_process(); pmemobj_tx_end(); pmemobj_close(pop); exit(0); } TX_END } else if (strcmp(argv[2], "process-after-tx") == 0) { TX_BEGIN(pop) { } TX_END pmemobj_tx_process(); } else if (strcmp(argv[2], "begin") == 0) { TX_BEGIN(pop) { } TX_END } else if (strcmp(argv[2], "begin-in-work") == 0) { TX_BEGIN(pop) { TX_BEGIN(pop) { } TX_END } TX_END } else if (strcmp(argv[2], "begin-in-abort") == 0) { TX_BEGIN(pop) { pmemobj_tx_abort(ENOMEM); } TX_ONABORT { TX_BEGIN(pop) { } TX_END } TX_END } else if (strcmp(argv[2], "begin-in-commit") == 0) { TX_BEGIN(pop) { } TX_ONCOMMIT { TX_BEGIN(pop) { } TX_END } TX_END } else if (strcmp(argv[2], "begin-in-finally") == 0) { TX_BEGIN(pop) { } TX_FINALLY { TX_BEGIN(pop) { } TX_END } TX_END } else if (strcmp(argv[2], "begin-after-tx") == 0) { TX_BEGIN(pop) { } TX_END TX_BEGIN(pop) { } TX_END } pmemobj_close(pop); DONE(NULL); }
11,213
23.809735
75
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem_has_auto_flush/mocks_posix.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2018, Intel Corporation */ /* * mocks_posix.c -- mocked functions used in pmem_has_auto_flush.c */ #include <fts.h> #include "fs.h" #include "unittest.h" #define BUS_DEVICE_PATH "/sys/bus/nd/devices" /* * open -- open mock */ FUNC_MOCK(open, int, const char *path, int flags, ...) FUNC_MOCK_RUN_DEFAULT { va_list ap; va_start(ap, flags); int mode = va_arg(ap, int); va_end(ap); if (!strstr(path, BUS_DEVICE_PATH)) return _FUNC_REAL(open)(path, flags, mode); const char *prefix = os_getenv("BUS_DEVICE_PATH"); char path2[PATH_MAX] = { 0 }; strcat(path2, prefix); strcat(path2, path + strlen(BUS_DEVICE_PATH)); return _FUNC_REAL(open)(path2, flags, mode); } FUNC_MOCK_END struct fs { FTS *ft; struct fs_entry entry; }; /* * fs_new -- creates fs traversal instance */ FUNC_MOCK(fs_new, struct fs *, const char *path) FUNC_MOCK_RUN_DEFAULT { if (!strstr(path, BUS_DEVICE_PATH)) return _FUNC_REAL(fs_new)(path); const char *prefix = os_getenv("BUS_DEVICE_PATH"); char path2[PATH_MAX] = { 0 }; strcat(path2, prefix); strcat(path2, path + strlen(BUS_DEVICE_PATH)); return _FUNC_REAL(fs_new)(path2); } FUNC_MOCK_END /* * os_stat -- os_stat mock to handle sysfs path */ FUNC_MOCK(os_stat, int, const char *path, os_stat_t *buf) FUNC_MOCK_RUN_DEFAULT { if (!strstr(path, BUS_DEVICE_PATH)) return _FUNC_REAL(os_stat)(path, buf); const char *prefix = os_getenv("BUS_DEVICE_PATH"); char path2[PATH_MAX] = { 0 }; strcat(path2, prefix); strcat(path2, path + strlen(BUS_DEVICE_PATH)); return _FUNC_REAL(os_stat)(path2, buf); } FUNC_MOCK_END
1,627
22.257143
66
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_badblock_mocks/mocks_ndctl.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2020, Intel Corporation */ /* * mocks_ndctl.c -- mocked ndctl functions used * indirectly in pmem2_badblock_mocks.c */ #include <sys/stat.h> #include <ndctl/libndctl.h> #include "unittest.h" #include "pmem2_badblock_mocks.h" #define RESOURCE_ADDRESS 0x1000 /* any non-zero value */ #define UINT(ptr) (unsigned)((uintptr_t)ptr) /* index of bad blocks */ static unsigned i_bb; /* * ndctl_namespace_get_mode - mock ndctl_namespace_get_mode */ FUNC_MOCK(ndctl_namespace_get_mode, enum ndctl_namespace_mode, struct ndctl_namespace *ndns) FUNC_MOCK_RUN_DEFAULT { if (IS_MODE_NAMESPACE((uintptr_t)ndns)) /* namespace mode */ return NDCTL_NS_MODE_FSDAX; /* raw mode */ return NDCTL_NS_MODE_RAW; } FUNC_MOCK_END /* * ndctl_namespace_get_pfn - mock ndctl_namespace_get_pfn */ FUNC_MOCK(ndctl_namespace_get_pfn, struct ndctl_pfn *, struct ndctl_namespace *ndns) FUNC_MOCK_RUN_DEFAULT { if (IS_MODE_NAMESPACE((uintptr_t)ndns)) /* namespace mode */ return (struct ndctl_pfn *)ndns; return NULL; } FUNC_MOCK_END /* * ndctl_namespace_get_dax - mock ndctl_namespace_get_dax */ FUNC_MOCK(ndctl_namespace_get_dax, struct ndctl_dax *, struct ndctl_namespace *ndns) FUNC_MOCK_RUN_DEFAULT { if (IS_MODE_REGION((uintptr_t)ndns)) /* region mode */ return (struct ndctl_dax *)ndns; return NULL; } FUNC_MOCK_END /* * ndctl_pfn_get_resource - mock ndctl_pfn_get_resource */ FUNC_MOCK(ndctl_pfn_get_resource, unsigned long long, struct ndctl_pfn *pfn) FUNC_MOCK_RUN_DEFAULT { return RESOURCE_ADDRESS; } FUNC_MOCK_END /* * ndctl_pfn_get_size - mock ndctl_pfn_get_size */ FUNC_MOCK(ndctl_pfn_get_size, unsigned long long, struct ndctl_pfn *pfn) FUNC_MOCK_RUN_DEFAULT { return DEV_SIZE_1GB; /* 1 GiB */ } FUNC_MOCK_END /* * ndctl_dax_get_resource - mock ndctl_dax_get_resource */ FUNC_MOCK(ndctl_dax_get_resource, unsigned long long, struct ndctl_dax *dax) FUNC_MOCK_RUN_DEFAULT { return RESOURCE_ADDRESS; } FUNC_MOCK_END /* * ndctl_dax_get_size - mock ndctl_dax_get_size */ FUNC_MOCK(ndctl_dax_get_size, unsigned long long, struct ndctl_dax *dax) FUNC_MOCK_RUN_DEFAULT { return DEV_SIZE_1GB; /* 1 GiB */ } FUNC_MOCK_END /* * ndctl_namespace_get_resource - mock ndctl_namespace_get_resource */ FUNC_MOCK(ndctl_namespace_get_resource, unsigned long long, struct ndctl_namespace *ndns) FUNC_MOCK_RUN_DEFAULT { return RESOURCE_ADDRESS; } FUNC_MOCK_END /* * ndctl_namespace_get_size - mock ndctl_namespace_get_size */ FUNC_MOCK(ndctl_namespace_get_size, unsigned long long, struct ndctl_namespace *ndns) FUNC_MOCK_RUN_DEFAULT { return DEV_SIZE_1GB; /* 1 GiB */ } FUNC_MOCK_END /* * ndctl_region_get_resource - mock ndctl_region_get_resource */ FUNC_MOCK(ndctl_region_get_resource, unsigned long long, struct ndctl_region *region) FUNC_MOCK_RUN_DEFAULT { return RESOURCE_ADDRESS; } FUNC_MOCK_END /* * ndctl_region_get_bus - mock ndctl_region_get_bus */ FUNC_MOCK(ndctl_region_get_bus, struct ndctl_bus *, struct ndctl_region *region) FUNC_MOCK_RUN_DEFAULT { return (struct ndctl_bus *)region; } FUNC_MOCK_END /* * ndctl_namespace_get_first_badblock - mock ndctl_namespace_get_first_badblock */ FUNC_MOCK(ndctl_namespace_get_first_badblock, struct badblock *, struct ndctl_namespace *ndns) FUNC_MOCK_RUN_DEFAULT { i_bb = 0; return get_nth_hw_badblock(UINT(ndns), &i_bb); } FUNC_MOCK_END /* * ndctl_namespace_get_next_badblock - mock ndctl_namespace_get_next_badblock */ FUNC_MOCK(ndctl_namespace_get_next_badblock, struct badblock *, struct ndctl_namespace *ndns) FUNC_MOCK_RUN_DEFAULT { return get_nth_hw_badblock(UINT(ndns), &i_bb); } FUNC_MOCK_END /* * ndctl_region_get_first_badblock - mock ndctl_region_get_first_badblock */ FUNC_MOCK(ndctl_region_get_first_badblock, struct badblock *, struct ndctl_region *region) FUNC_MOCK_RUN_DEFAULT { i_bb = 0; return get_nth_hw_badblock(UINT(region), &i_bb); } FUNC_MOCK_END /* * ndctl_region_get_next_badblock - mock ndctl_region_get_next_badblock */ FUNC_MOCK(ndctl_region_get_next_badblock, struct badblock *, struct ndctl_region *region) FUNC_MOCK_RUN_DEFAULT { return get_nth_hw_badblock(UINT(region), &i_bb); } FUNC_MOCK_END static struct ndctl_data { uintptr_t bus; unsigned long long address; unsigned long long length; } data; /* * ndctl_bus_cmd_new_ars_cap - mock ndctl_bus_cmd_new_ars_cap */ FUNC_MOCK(ndctl_bus_cmd_new_ars_cap, struct ndctl_cmd *, struct ndctl_bus *bus, unsigned long long address, unsigned long long len) FUNC_MOCK_RUN_DEFAULT { data.bus = (uintptr_t)bus; data.address = address; data.length = len; return (struct ndctl_cmd *)&data; } FUNC_MOCK_END /* * ndctl_cmd_submit - mock ndctl_cmd_submit */ FUNC_MOCK(ndctl_cmd_submit, int, struct ndctl_cmd *cmd) FUNC_MOCK_RUN_DEFAULT { return 0; } FUNC_MOCK_END /* * ndctl_cmd_ars_cap_get_range - mock ndctl_cmd_ars_cap_get_range */ FUNC_MOCK(ndctl_cmd_ars_cap_get_range, int, struct ndctl_cmd *ars_cap, struct ndctl_range *range) FUNC_MOCK_RUN_DEFAULT { return 0; } FUNC_MOCK_END /* * ndctl_bus_cmd_new_clear_error - mock ndctl_bus_cmd_new_clear_error */ FUNC_MOCK(ndctl_bus_cmd_new_clear_error, struct ndctl_cmd *, unsigned long long address, unsigned long long len, struct ndctl_cmd *ars_cap) FUNC_MOCK_RUN_DEFAULT { return ars_cap; } FUNC_MOCK_END /* * ndctl_cmd_clear_error_get_cleared - mock ndctl_cmd_clear_error_get_cleared */ FUNC_MOCK(ndctl_cmd_clear_error_get_cleared, unsigned long long, struct ndctl_cmd *clear_err) FUNC_MOCK_RUN_DEFAULT { struct ndctl_data *pdata = (struct ndctl_data *)clear_err; UT_OUT("ndctl_clear_error(%lu, %llu, %llu)", pdata->bus, pdata->address, pdata->length); return pdata->length; } FUNC_MOCK_END /* * ndctl_cmd_unref - mock ndctl_cmd_unref */ FUNC_MOCK(ndctl_cmd_unref, void, struct ndctl_cmd *cmd) FUNC_MOCK_RUN_DEFAULT { } FUNC_MOCK_END
5,900
22.050781
79
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_badblock_mocks/pmem2_badblock_mocks.h
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2020, Intel Corporation */ /* * pmem2_badblock_mocks.h -- definitions for pmem2_badblock_mocks test */ #include "extent.h" /* fd bits 6-8: type of device */ #define FD_REG_FILE (1 << 6) /* regular file */ #define FD_CHR_DEV (2 << 6) /* character device */ #define FD_DIRECTORY (3 << 6) /* directory */ #define FD_BLK_DEV (4 << 6) /* block device */ /* fd bits 4-5: ndctl mode */ #define MODE_NO_DEVICE (1 << 4) /* did not found any matching device */ #define MODE_NAMESPACE (2 << 4) /* namespace mode */ #define MODE_REGION (3 << 4) /* region mode */ /* fd bits 0-3: number of test */ /* masks */ #define MASK_DEVICE 0b0111000000 /* bits 6-8: device mask */ #define MASK_MODE 0b0000110000 /* bits 4-5: mode mask */ #define MASK_TEST 0b0000001111 /* bits 0-3: test mask */ /* checks */ #define IS_MODE_NO_DEVICE(x) ((x & MASK_MODE) == MODE_NO_DEVICE) #define IS_MODE_NAMESPACE(x) ((x & MASK_MODE) == MODE_NAMESPACE) #define IS_MODE_REGION(x) ((x & MASK_MODE) == MODE_REGION) /* default block size: 1kB */ #define BLK_SIZE_1KB 1024 /* default size of device: 1 GiB */ #define DEV_SIZE_1GB (1024 * 1024 * 1024) struct badblock *get_nth_hw_badblock(unsigned test, unsigned *i_bb); int get_extents(int fd, struct extents **exts);
1,290
31.275
71
h
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_badblock_mocks/mocks_pmem2.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2020, Intel Corporation */ /* * mocks_pmem2.c -- mocked pmem2 functions used * indirectly in pmem2_badblock_mocks.c */ #include <ndctl/libndctl.h> #include "unittest.h" #include "out.h" #include "extent.h" #include "source.h" #include "pmem2_utils.h" #include "pmem2_badblock_mocks.h" /* * pmem2_region_namespace - mock pmem2_region_namespace */ FUNC_MOCK(pmem2_region_namespace, int, struct ndctl_ctx *ctx, const struct pmem2_source *src, struct ndctl_region **pregion, struct ndctl_namespace **pndns) FUNC_MOCK_RUN_DEFAULT { UT_ASSERTne(pregion, NULL); dev_t st_rdev = src->value.st_rdev; *pregion = (void *)st_rdev; if (pndns == NULL) return 0; UT_ASSERT(src->value.ftype == PMEM2_FTYPE_REG || src->value.ftype == PMEM2_FTYPE_DEVDAX); if (IS_MODE_NO_DEVICE(st_rdev)) { /* did not found any matching device */ *pndns = NULL; return 0; } *pndns = (void *)st_rdev; return 0; } FUNC_MOCK_END /* * pmem2_extents_create_get -- allocate extents structure and get extents * of the given file */ FUNC_MOCK(pmem2_extents_create_get, int, int fd, struct extents **exts) FUNC_MOCK_RUN_DEFAULT { return get_extents(fd, exts); } FUNC_MOCK_END
1,279
20.694915
73
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_badblock_mocks/pmem2_badblock_mocks.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2020, Intel Corporation */ /* * pmem2_badblock_mocks.c -- unit test for pmem2_badblock_*() */ #include <ndctl/libndctl.h> #include "unittest.h" #include "out.h" #include "source.h" #include "badblocks.h" #include "pmem2_badblock_mocks.h" #define BAD_BLOCKS_NUMBER 10 #define EXTENTS_NUMBER 8 #define MAX_BB_SET_STR "4" #define MAX_BB_SET 4 #define DEFAULT_BB_SET 1 #define USAGE_MSG \ "Usage: pmem2_badblock_mocks <test_case> <file_type> <mode> [bad_blocks_set]\n"\ "Possible values of arguments:\n"\ " test_case : test_basic, test_read_clear_bb \n"\ " file_type : reg_file, chr_dev\n"\ " mode : no_device, namespace, region\n"\ " bad_blocks_set : 1-"MAX_BB_SET_STR"\n\n" /* indexes of arguments */ enum args_t { ARG_TEST_CASE = 1, ARG_FILE_TYPE, ARG_MODE, ARG_BB_SET, /* it always has to be the last one */ ARG_NUMBER, /* number of arguments */ }; typedef int test_fn(struct pmem2_source *src); typedef struct badblock bad_blocks_array[BAD_BLOCKS_NUMBER]; /* HW bad blocks expressed in 512b sectors */ static bad_blocks_array hw_bad_blocks[] = { /* test #1 - no bad blocks */ { {0, 0} }, /* test #2 - 1 HW bad block */ { {1, 1}, {0, 0} }, /* test #3 - 6 HW bad blocks */ { {4, 10}, {16, 10}, {28, 2}, {32, 4}, {40, 4}, {50, 2}, {0, 0} }, /* test #4 - 7 HW bad blocks */ { {2, 4}, {8, 2}, {12, 6}, {20, 2}, {24, 10}, {38, 4}, {46, 2}, \ {0, 0} }, }; /* file's bad blocks expressed in 512b sectors */ static bad_blocks_array file_bad_blocks[] = { /* test #1 - no bad blocks */ { {0, 0} }, /* test #2 - 1 file bad block */ { {0, 2}, {0, 0} }, /* test #3 - 9 file bad blocks */ { {4, 2}, {8, 2}, {12, 2}, {16, 2}, {20, 2}, {24, 2}, {28, 2}, \ {32, 2}, {40, 2}, {0, 0} }, /* test #4 - 9 file bad blocks */ { {4, 2}, {8, 2}, {12, 2}, {16, 2}, {20, 2}, {24, 2}, {28, 2}, \ {32, 2}, {40, 2}, {0, 0} }, }; /* file's extents expressed in 512b sectors */ static struct extent files_extents[][EXTENTS_NUMBER] = { /* test #1 - no extents */ { {0, 0, 0} }, /* test #2 - 1 extent */ { {0, 0, 2}, {0, 0, 0} }, /* test #3 - 7 extents */ { {2, 2, 4}, {8, 8, 2}, {12, 12, 6}, {20, 20, 2}, {24, 24, 10}, \ {38, 38, 4}, {46, 46, 2}, {0, 0, 0} }, /* test #4 - 6 extents */ { {4, 4, 10}, {16, 16, 10}, {28, 28, 2}, {32, 32, 4}, {40, 40, 4}, \ {50, 50, 2}, {0, 0, 0} }, }; /* * map_test_to_set -- map number of a test to an index of bad blocks' set */ static inline unsigned map_test_to_set(unsigned test) { return test & MASK_TEST; } /* * get_nth_typed_badblock -- get next typed badblock */ static struct badblock * get_nth_typed_badblock(unsigned test, unsigned *i_bb, bad_blocks_array bad_blocks[]) { unsigned set = map_test_to_set(test); struct badblock *bb = &bad_blocks[set][*i_bb]; if (bb->offset == 0 && bb->len == 0) bb = NULL; /* no more bad blocks */ else (*i_bb)++; return bb; } /* * get_nth_hw_badblock -- get next HW badblock */ struct badblock * get_nth_hw_badblock(unsigned test, unsigned *i_bb) { return get_nth_typed_badblock(test, i_bb, hw_bad_blocks); } /* * get_nth_file_badblock -- get next file's badblock */ static struct badblock * get_nth_file_badblock(unsigned test, unsigned *i_bb) { return get_nth_typed_badblock(test, i_bb, file_bad_blocks); } /* * get_nth_badblock -- get next badblock */ static struct badblock * get_nth_badblock(int fd, unsigned *i_bb) { UT_ASSERT(fd >= 0); if ((fd & MASK_MODE) == MODE_NO_DEVICE) /* no matching device found */ return NULL; switch (fd & MASK_DEVICE) { case FD_REG_FILE: /* regular file */ return get_nth_file_badblock((unsigned)fd, i_bb); case FD_CHR_DEV: /* character device */ return get_nth_hw_badblock((unsigned)fd, i_bb); case FD_DIRECTORY: case FD_BLK_DEV: break; } /* no bad blocks found */ return NULL; } /* * get_extents -- get file's extents */ int get_extents(int fd, struct extents **exts) { unsigned set = map_test_to_set((unsigned)fd); *exts = ZALLOC(sizeof(struct extents)); struct extents *pexts = *exts; /* set block size */ pexts->blksize = BLK_SIZE_1KB; if ((fd & MASK_DEVICE) != FD_REG_FILE) { /* not a regular file */ return 0; } /* count extents (length > 0) */ while (files_extents[set][pexts->extents_count].length) pexts->extents_count++; /* * It will be freed internally by libpmem2 * (pmem2_badblock_context_delete) */ pexts->extents = MALLOC(pexts->extents_count * sizeof(struct extent)); for (int i = 0; i < pexts->extents_count; i++) { struct extent ext = files_extents[set][i]; uint64_t off_phy = ext.offset_physical; uint64_t off_log = ext.offset_logical; uint64_t len = ext.length; /* check alignment */ UT_ASSERTeq(SEC2B(off_phy) % pexts->blksize, 0); UT_ASSERTeq(SEC2B(off_log) % pexts->blksize, 0); UT_ASSERTeq(SEC2B(len) % pexts->blksize, 0); pexts->extents[i].offset_physical = SEC2B(off_phy); pexts->extents[i].offset_logical = SEC2B(off_log); pexts->extents[i].length = SEC2B(len); } return 0; } /* * test_basic -- basic test */ static int test_basic(struct pmem2_source *src) { UT_OUT("TEST: test_basic: 0x%x", src->value.fd); struct pmem2_badblock_context *bbctx; struct pmem2_badblock bb; int ret; ret = pmem2_badblock_context_new(src, &bbctx); if (ret) return ret; ret = pmem2_badblock_next(bbctx, &bb); pmem2_badblock_context_delete(&bbctx); return ret; } /* * test_read_clear_bb -- test reading and clearing bad blocks */ static int test_read_clear_bb(struct pmem2_source *src) { UT_OUT("TEST: test_read_clear_bb: 0x%x", src->value.fd); struct pmem2_badblock_context *bbctx; struct pmem2_badblock bb; struct badblock *bb2; unsigned i_bb; int ret; ret = pmem2_badblock_context_new(src, &bbctx); if (ret) return ret; i_bb = 0; while ((ret = pmem2_badblock_next(bbctx, &bb)) == 0) { bb2 = get_nth_badblock(src->value.fd, &i_bb); UT_ASSERTne(bb2, NULL); UT_ASSERTeq(bb.offset, SEC2B(bb2->offset)); UT_ASSERTeq(bb.length, SEC2B(bb2->len)); ret = pmem2_badblock_clear(bbctx, &bb); if (ret) goto exit_free; } bb2 = get_nth_badblock(src->value.fd, &i_bb); UT_ASSERTeq(bb2, NULL); exit_free: pmem2_badblock_context_delete(&bbctx); return ret; } static void parse_arguments(int argc, char *argv[], int *test, enum pmem2_file_type *ftype, test_fn **test_func) { if (argc < (ARG_NUMBER - 1) || argc > ARG_NUMBER) { UT_OUT(USAGE_MSG); if (argc > ARG_NUMBER) UT_FATAL("too many arguments"); else UT_FATAL("missing required argument(s)"); } char *test_case = argv[ARG_TEST_CASE]; char *file_type = argv[ARG_FILE_TYPE]; char *mode = argv[ARG_MODE]; *test = 0; *test_func = NULL; if (strcmp(test_case, "test_basic") == 0) { *test_func = test_basic; } else if (strcmp(test_case, "test_read_clear_bb") == 0) { *test_func = test_read_clear_bb; } else { UT_OUT(USAGE_MSG); UT_FATAL("wrong test case: %s", test_case); } if (strcmp(file_type, "reg_file") == 0) { *test |= FD_REG_FILE; *ftype = PMEM2_FTYPE_REG; } else if (strcmp(file_type, "chr_dev") == 0) { *test |= FD_CHR_DEV; *ftype = PMEM2_FTYPE_DEVDAX; } else { UT_OUT(USAGE_MSG); UT_FATAL("wrong file type: %s", file_type); } if (strcmp(mode, "no_device") == 0) { *test |= MODE_NO_DEVICE; } else if (strcmp(mode, "namespace") == 0) { *test |= MODE_NAMESPACE; } else if (strcmp(mode, "region") == 0) { *test |= MODE_REGION; } else { UT_OUT(USAGE_MSG); UT_FATAL("wrong mode: %s", mode); } int bad_blocks_set = (argc == 5) ? atoi(argv[ARG_BB_SET]) : DEFAULT_BB_SET; if (bad_blocks_set >= 1 && bad_blocks_set <= MAX_BB_SET) { *test |= (bad_blocks_set - 1); } else { UT_OUT(USAGE_MSG); UT_FATAL("wrong bad_blocks_set: %i", bad_blocks_set); } } int main(int argc, char *argv[]) { START(argc, argv, "pmem2_badblock_mocks"); /* sanity check of defines */ UT_ASSERTeq(atoi(MAX_BB_SET_STR), MAX_BB_SET); struct pmem2_source src; test_fn *test_func; src.type = PMEM2_SOURCE_FD; parse_arguments(argc, argv, &src.value.fd, &src.value.ftype, &test_func); src.value.st_rdev = (dev_t)src.value.fd; int result = test_func(&src); UT_ASSERTeq(result, PMEM2_E_NO_BAD_BLOCK_FOUND); DONE(NULL); }
8,239
22.815029
80
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_api/pmem2_api.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2020, Intel Corporation */ /* * pmem2_api.c -- PMEM2_API_[START|END] unittests */ #include "unittest.h" #include "ut_pmem2.h" #include "ut_pmem2_setup_integration.h" /* * map_valid -- return valid mapped pmem2_map and validate mapped memory length */ static struct pmem2_map * map_valid(struct pmem2_config *cfg, struct pmem2_source *src, size_t size) { struct pmem2_map *map = NULL; PMEM2_MAP(cfg, src, &map); UT_ASSERTeq(pmem2_map_get_size(map), size); return map; } /* * test_pmem2_api_logs -- map O_RDWR file and do pmem2_[cpy|set|move]_fns */ static int test_pmem2_api_logs(const struct test_case *tc, int argc, char *argv[]) { if (argc < 1) UT_FATAL( "usage: test_mem_move_cpy_set_with_map_private <file>"); char *file = argv[0]; int fd = OPEN(file, O_RDWR); const char *word1 = "Persistent memory..."; const char *word2 = "Nonpersistent memory"; const char *word3 = "XXXXXXXXXXXXXXXXXXXX"; struct pmem2_config *cfg; struct pmem2_source *src; PMEM2_PREPARE_CONFIG_INTEGRATION(&cfg, &src, fd, PMEM2_GRANULARITY_PAGE); size_t size = 0; PMEM2_SOURCE_SIZE(src, &size); struct pmem2_map *map = map_valid(cfg, src, size); char *addr = pmem2_map_get_address(map); pmem2_memmove_fn memmove_fn = pmem2_get_memmove_fn(map); pmem2_memcpy_fn memcpy_fn = pmem2_get_memcpy_fn(map); pmem2_memset_fn memset_fn = pmem2_get_memset_fn(map); memcpy_fn(addr, word1, strlen(word1), 0); UT_ASSERTeq(strcmp(addr, word1), 0); memmove_fn(addr, word2, strlen(word2), 0); UT_ASSERTeq(strcmp(addr, word2), 0); memset_fn(addr, 'X', strlen(word3), 0); UT_ASSERTeq(strcmp(addr, word3), 0); /* cleanup after the test */ pmem2_unmap(&map); pmem2_config_delete(&cfg); pmem2_source_delete(&src); CLOSE(fd); return 1; } /* * test_cases -- available test cases */ static struct test_case test_cases[] = { TEST_CASE(test_pmem2_api_logs), }; #define NTESTS (sizeof(test_cases) / sizeof(test_cases[0])) int main(int argc, char *argv[]) { START(argc, argv, "pmem2_api"); TEST_CASE_PROCESS(argc, argv, test_cases, NTESTS); DONE(NULL); }
2,130
22.94382
79
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/rpmemd_obc/rpmemd_obc_test_open.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2018, Intel Corporation */ /* * rpmemd_obc_test_open.c -- test cases for open request message */ #include "rpmemd_obc_test_common.h" /* * Number of cases for checking open request message. Must be kept in sync * with client_bad_msg_open function. */ #define BAD_MSG_OPEN_COUNT 11 /* * client_bad_msg_open -- check if server detects invalid open request * messages */ static void client_bad_msg_open(const char *ctarget) { char *target = STRDUP(ctarget); size_t msg_size = sizeof(OPEN_MSG) + POOL_DESC_SIZE; struct rpmem_msg_open *msg = MALLOC(msg_size); for (int i = 0; i < BAD_MSG_OPEN_COUNT; i++) { struct rpmem_ssh *ssh = clnt_connect(target); *msg = OPEN_MSG; msg->hdr.size = msg_size; memcpy(msg->pool_desc.desc, POOL_DESC, POOL_DESC_SIZE); switch (i) { case 0: msg->c.provider = 0; break; case 1: msg->c.provider = MAX_RPMEM_PROV; break; case 2: msg->pool_desc.size -= 1; break; case 3: msg->pool_desc.size += 1; break; case 4: msg->pool_desc.size = 0; msg->hdr.size = sizeof(OPEN_MSG) + msg->pool_desc.size; break; case 5: msg->pool_desc.size = 1; msg->hdr.size = sizeof(OPEN_MSG) + msg->pool_desc.size; break; case 6: msg->pool_desc.desc[0] = '\0'; break; case 7: msg->pool_desc.desc[POOL_DESC_SIZE / 2] = '\0'; break; case 8: msg->pool_desc.desc[POOL_DESC_SIZE - 1] = 'E'; break; case 9: msg->c.major = RPMEM_PROTO_MAJOR + 1; break; case 10: msg->c.minor = RPMEM_PROTO_MINOR + 1; break; default: UT_ASSERT(0); } rpmem_hton_msg_open(msg); clnt_send(ssh, msg, msg_size); clnt_wait_disconnect(ssh); clnt_close(ssh); } FREE(msg); FREE(target); } /* * client_msg_open_noresp -- send open request message and don't expect a * response */ static void client_msg_open_noresp(const char *ctarget) { char *target = STRDUP(ctarget); size_t msg_size = sizeof(OPEN_MSG) + POOL_DESC_SIZE; struct rpmem_msg_open *msg = MALLOC(msg_size); struct rpmem_ssh *ssh = clnt_connect(target); *msg = OPEN_MSG; msg->hdr.size = msg_size; memcpy(msg->pool_desc.desc, POOL_DESC, POOL_DESC_SIZE); rpmem_hton_msg_open(msg); clnt_send(ssh, msg, msg_size); clnt_wait_disconnect(ssh); clnt_close(ssh); FREE(msg); FREE(target); } /* * client_msg_open_resp -- send open request message and expect a response * with specified status. If status is 0, validate open request response * message */ static void client_msg_open_resp(const char *ctarget, int status) { char *target = STRDUP(ctarget); size_t msg_size = sizeof(OPEN_MSG) + POOL_DESC_SIZE; struct rpmem_msg_open *msg = MALLOC(msg_size); struct rpmem_msg_open_resp resp; struct rpmem_ssh *ssh = clnt_connect(target); *msg = OPEN_MSG; msg->hdr.size = msg_size; memcpy(msg->pool_desc.desc, POOL_DESC, POOL_DESC_SIZE); rpmem_hton_msg_open(msg); clnt_send(ssh, msg, msg_size); clnt_recv(ssh, &resp, sizeof(resp)); rpmem_ntoh_msg_open_resp(&resp); if (status) { UT_ASSERTeq(resp.hdr.status, (uint32_t)status); } else { UT_ASSERTeq(resp.hdr.type, RPMEM_MSG_TYPE_OPEN_RESP); UT_ASSERTeq(resp.hdr.size, sizeof(struct rpmem_msg_open_resp)); UT_ASSERTeq(resp.hdr.status, (uint32_t)status); UT_ASSERTeq(resp.ibc.port, PORT); UT_ASSERTeq(resp.ibc.rkey, RKEY); UT_ASSERTeq(resp.ibc.raddr, RADDR); UT_ASSERTeq(resp.ibc.persist_method, PERSIST_METHOD); } clnt_close(ssh); FREE(msg); FREE(target); } /* * client_open -- test case for open request message - client side */ int client_open(const struct test_case *tc, int argc, char *argv[]) { if (argc < 1) UT_FATAL("usage: %s <addr>[:<port>]", tc->name); char *target = argv[0]; set_rpmem_cmd("server_bad_msg"); client_bad_msg_open(target); set_rpmem_cmd("server_msg_noresp %d", RPMEM_MSG_TYPE_OPEN); client_msg_open_noresp(target); set_rpmem_cmd("server_msg_resp %d %d", RPMEM_MSG_TYPE_OPEN, 0); client_msg_open_resp(target, 0); set_rpmem_cmd("server_msg_resp %d %d", RPMEM_MSG_TYPE_OPEN, 1); client_msg_open_resp(target, 1); return 1; }
4,105
21.56044
74
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/rpmemd_obc/rpmemd_obc_test_create.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2018, Intel Corporation */ /* * rpmemd_obc_test_create.c -- test cases for create request message */ #include "rpmemd_obc_test_common.h" /* * Number of cases for checking create request message. Must be kept in sync * with client_bad_msg_create function. */ #define BAD_MSG_CREATE_COUNT 11 /* * client_bad_msg_create -- check if server detects invalid create request * messages */ static void client_bad_msg_create(const char *ctarget) { char *target = STRDUP(ctarget); size_t msg_size = sizeof(CREATE_MSG) + POOL_DESC_SIZE; struct rpmem_msg_create *msg = MALLOC(msg_size); for (int i = 0; i < BAD_MSG_CREATE_COUNT; i++) { struct rpmem_ssh *ssh = clnt_connect(target); *msg = CREATE_MSG; msg->hdr.size = msg_size; memcpy(msg->pool_desc.desc, POOL_DESC, POOL_DESC_SIZE); switch (i) { case 0: msg->c.provider = 0; break; case 1: msg->c.provider = MAX_RPMEM_PROV; break; case 2: msg->pool_desc.size -= 1; break; case 3: msg->pool_desc.size += 1; break; case 4: msg->pool_desc.size = 0; msg->hdr.size = sizeof(CREATE_MSG) + msg->pool_desc.size; break; case 5: msg->pool_desc.size = 1; msg->hdr.size = sizeof(CREATE_MSG) + msg->pool_desc.size; break; case 6: msg->pool_desc.desc[0] = '\0'; break; case 7: msg->pool_desc.desc[POOL_DESC_SIZE / 2] = '\0'; break; case 8: msg->pool_desc.desc[POOL_DESC_SIZE - 1] = 'E'; break; case 9: msg->c.major = RPMEM_PROTO_MAJOR + 1; break; case 10: msg->c.minor = RPMEM_PROTO_MINOR + 1; break; default: UT_ASSERT(0); } rpmem_hton_msg_create(msg); clnt_send(ssh, msg, msg_size); clnt_wait_disconnect(ssh); clnt_close(ssh); } FREE(msg); FREE(target); } /* * client_msg_create_noresp -- send create request message and don't expect * a response */ static void client_msg_create_noresp(const char *ctarget) { char *target = STRDUP(ctarget); size_t msg_size = sizeof(CREATE_MSG) + POOL_DESC_SIZE; struct rpmem_msg_create *msg = MALLOC(msg_size); struct rpmem_ssh *ssh = clnt_connect(target); *msg = CREATE_MSG; msg->hdr.size = msg_size; memcpy(msg->pool_desc.desc, POOL_DESC, POOL_DESC_SIZE); rpmem_hton_msg_create(msg); clnt_send(ssh, msg, msg_size); clnt_close(ssh); FREE(msg); FREE(target); } /* * client_msg_create_resp -- send create request message and expect a response * with specified status. If status is 0, validate create request response * message */ static void client_msg_create_resp(const char *ctarget, int status) { char *target = STRDUP(ctarget); size_t msg_size = sizeof(CREATE_MSG) + POOL_DESC_SIZE; struct rpmem_msg_create *msg = MALLOC(msg_size); struct rpmem_msg_create_resp resp; struct rpmem_ssh *ssh = clnt_connect(target); *msg = CREATE_MSG; msg->hdr.size = msg_size; memcpy(msg->pool_desc.desc, POOL_DESC, POOL_DESC_SIZE); rpmem_hton_msg_create(msg); clnt_send(ssh, msg, msg_size); clnt_recv(ssh, &resp, sizeof(resp)); rpmem_ntoh_msg_create_resp(&resp); if (status) { UT_ASSERTeq(resp.hdr.status, (uint32_t)status); } else { UT_ASSERTeq(resp.hdr.type, RPMEM_MSG_TYPE_CREATE_RESP); UT_ASSERTeq(resp.hdr.size, sizeof(struct rpmem_msg_create_resp)); UT_ASSERTeq(resp.hdr.status, (uint32_t)status); UT_ASSERTeq(resp.ibc.port, PORT); UT_ASSERTeq(resp.ibc.rkey, RKEY); UT_ASSERTeq(resp.ibc.raddr, RADDR); UT_ASSERTeq(resp.ibc.persist_method, PERSIST_METHOD); } clnt_close(ssh); FREE(msg); FREE(target); } /* * client_create -- test case for create request message - client side */ int client_create(const struct test_case *tc, int argc, char *argv[]) { if (argc < 1) UT_FATAL("usage: %s <addr>[:<port>]", tc->name); char *target = argv[0]; set_rpmem_cmd("server_bad_msg"); client_bad_msg_create(target); set_rpmem_cmd("server_msg_noresp %d", RPMEM_MSG_TYPE_CREATE); client_msg_create_noresp(target); set_rpmem_cmd("server_msg_resp %d %d", RPMEM_MSG_TYPE_CREATE, 0); client_msg_create_resp(target, 0); set_rpmem_cmd("server_msg_resp %d %d", RPMEM_MSG_TYPE_CREATE, 1); client_msg_create_resp(target, 1); return 1; }
4,165
22.016575
78
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/rpmemd_obc/rpmemd_obc_test_set_attr.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2017, Intel Corporation */ /* * rpmemd_obc_test_set_attr.c -- test cases for set attributes request message */ #include "rpmemd_obc_test_common.h" /* * client_msg_set_attr_noresp -- send set attributes request message and don't * expect a response */ static void client_msg_set_attr_noresp(const char *ctarget) { char *target = STRDUP(ctarget); size_t msg_size = sizeof(SET_ATTR_MSG); struct rpmem_msg_set_attr *msg = MALLOC(msg_size); struct rpmem_ssh *ssh = clnt_connect(target); *msg = SET_ATTR_MSG; rpmem_hton_msg_set_attr(msg); clnt_send(ssh, msg, msg_size); clnt_wait_disconnect(ssh); clnt_close(ssh); FREE(msg); FREE(target); } /* * client_msg_set_attr_resp -- send set attributes request message and expect * a response with specified status. If status is 0, validate set attributes * request response message */ static void client_msg_set_attr_resp(const char *ctarget, int status) { char *target = STRDUP(ctarget); size_t msg_size = sizeof(SET_ATTR_MSG); struct rpmem_msg_set_attr *msg = MALLOC(msg_size); struct rpmem_msg_set_attr_resp resp; struct rpmem_ssh *ssh = clnt_connect(target); *msg = SET_ATTR_MSG; rpmem_hton_msg_set_attr(msg); clnt_send(ssh, msg, msg_size); clnt_recv(ssh, &resp, sizeof(resp)); rpmem_ntoh_msg_set_attr_resp(&resp); if (status) { UT_ASSERTeq(resp.hdr.status, (uint32_t)status); } else { UT_ASSERTeq(resp.hdr.type, RPMEM_MSG_TYPE_SET_ATTR_RESP); UT_ASSERTeq(resp.hdr.size, sizeof(struct rpmem_msg_set_attr_resp)); UT_ASSERTeq(resp.hdr.status, (uint32_t)status); } clnt_close(ssh); FREE(msg); FREE(target); } /* * client_set_attr -- test case for set attributes request message - client * side */ int client_set_attr(const struct test_case *tc, int argc, char *argv[]) { if (argc < 1) UT_FATAL("usage: %s <addr>[:<port>]", tc->name); char *target = argv[0]; set_rpmem_cmd("server_msg_noresp %d", RPMEM_MSG_TYPE_SET_ATTR); client_msg_set_attr_noresp(target); set_rpmem_cmd("server_msg_resp %d %d", RPMEM_MSG_TYPE_SET_ATTR, 0); client_msg_set_attr_resp(target, 0); set_rpmem_cmd("server_msg_resp %d %d", RPMEM_MSG_TYPE_SET_ATTR, 1); client_msg_set_attr_resp(target, 1); return 1; }
2,255
22.5
78
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/rpmemd_obc/rpmemd_obc_test_close.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016, Intel Corporation */ /* * rpmemd_obc_test_close.c -- test cases for close request message */ #include "rpmemd_obc_test_common.h" /* * client_msg_close_noresp -- send close request message and don't expect a * response */ static void client_msg_close_noresp(const char *ctarget) { char *target = STRDUP(ctarget); struct rpmem_msg_close msg = CLOSE_MSG; rpmem_hton_msg_close(&msg); struct rpmem_ssh *ssh = clnt_connect(target); clnt_send(ssh, &msg, sizeof(msg)); clnt_wait_disconnect(ssh); clnt_close(ssh); FREE(target); } /* * client_msg_close_resp -- send close request message and expect a response * with specified status. If status is 0, validate close request response * message */ static void client_msg_close_resp(const char *ctarget, int status) { char *target = STRDUP(ctarget); struct rpmem_msg_close msg = CLOSE_MSG; rpmem_hton_msg_close(&msg); struct rpmem_msg_close_resp resp; struct rpmem_ssh *ssh = clnt_connect(target); clnt_send(ssh, &msg, sizeof(msg)); clnt_recv(ssh, &resp, sizeof(resp)); rpmem_ntoh_msg_close_resp(&resp); if (status) UT_ASSERTeq(resp.hdr.status, (uint32_t)status); clnt_close(ssh); FREE(target); } /* * client_close -- test case for close request message - client side */ int client_close(const struct test_case *tc, int argc, char *argv[]) { if (argc < 1) UT_FATAL("usage: %s <addr>[:<port>]", tc->name); char *target = argv[0]; set_rpmem_cmd("server_msg_noresp %d", RPMEM_MSG_TYPE_CLOSE); client_msg_close_noresp(target); set_rpmem_cmd("server_msg_resp %d %d", RPMEM_MSG_TYPE_CLOSE, 0); client_msg_close_resp(target, 0); set_rpmem_cmd("server_msg_resp %d %d", RPMEM_MSG_TYPE_CLOSE, 1); client_msg_close_resp(target, 1); return 1; }
1,791
21.683544
76
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/rpmemd_obc/rpmemd_obc_test_common.h
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2018, Intel Corporation */ /* * rpmemd_obc_test_common.h -- common declarations for rpmemd_obc test */ #include "unittest.h" #include "librpmem.h" #include "rpmem_proto.h" #include "rpmem_common.h" #include "rpmem_ssh.h" #include "rpmem_util.h" #include "rpmemd_log.h" #include "rpmemd_obc.h" #define PORT 1234 #define RKEY 0x0123456789abcdef #define RADDR 0xfedcba9876543210 #define PERSIST_METHOD RPMEM_PM_APM #define POOL_ATTR_INIT {\ .signature = "<RPMEM>",\ .major = 1,\ .compat_features = 2,\ .incompat_features = 3,\ .ro_compat_features = 4,\ .poolset_uuid = "POOLSET_UUID0123",\ .uuid = "UUID0123456789AB",\ .next_uuid = "NEXT_UUID0123456",\ .prev_uuid = "PREV_UUID0123456",\ .user_flags = "USER_FLAGS012345",\ } #define POOL_ATTR_ALT {\ .signature = "<ALT>",\ .major = 5,\ .compat_features = 6,\ .incompat_features = 7,\ .ro_compat_features = 8,\ .poolset_uuid = "UUID_POOLSET_ALT",\ .uuid = "ALT_UUIDCDEFFEDC",\ .next_uuid = "456UUID_NEXT_ALT",\ .prev_uuid = "UUID012_ALT_PREV",\ .user_flags = "012345USER_FLAGS",\ } #define POOL_SIZE 0x0001234567abcdef #define NLANES 0x123 #define NLANES_RESP 16 #define PROVIDER RPMEM_PROV_LIBFABRIC_SOCKETS #define POOL_DESC "pool.set" #define BUFF_SIZE 8192 static const char pool_desc[] = POOL_DESC; #define POOL_DESC_SIZE (sizeof(pool_desc) / sizeof(pool_desc[0])) struct rpmem_ssh *clnt_connect(char *target); void clnt_wait_disconnect(struct rpmem_ssh *ssh); void clnt_send(struct rpmem_ssh *ssh, const void *buff, size_t len); void clnt_recv(struct rpmem_ssh *ssh, void *buff, size_t len); void clnt_close(struct rpmem_ssh *ssh); enum conn_wait_close { CONN_CLOSE, CONN_WAIT_CLOSE, }; void set_rpmem_cmd(const char *fmt, ...); extern struct rpmemd_obc_requests REQ_CB; struct req_cb_arg { int resp; unsigned long long types; int force_ret; int ret; int status; }; static const struct rpmem_msg_hdr MSG_HDR = { .type = RPMEM_MSG_TYPE_CLOSE, .size = sizeof(struct rpmem_msg_hdr), }; static const struct rpmem_msg_create CREATE_MSG = { .hdr = { .type = RPMEM_MSG_TYPE_CREATE, .size = sizeof(struct rpmem_msg_create), }, .c = { .major = RPMEM_PROTO_MAJOR, .minor = RPMEM_PROTO_MINOR, .pool_size = POOL_SIZE, .nlanes = NLANES, .provider = PROVIDER, .buff_size = BUFF_SIZE, }, .pool_attr = POOL_ATTR_INIT, .pool_desc = { .size = POOL_DESC_SIZE, }, }; static const struct rpmem_msg_open OPEN_MSG = { .hdr = { .type = RPMEM_MSG_TYPE_OPEN, .size = sizeof(struct rpmem_msg_open), }, .c = { .major = RPMEM_PROTO_MAJOR, .minor = RPMEM_PROTO_MINOR, .pool_size = POOL_SIZE, .nlanes = NLANES, .provider = PROVIDER, .buff_size = BUFF_SIZE, }, .pool_desc = { .size = POOL_DESC_SIZE, }, }; static const struct rpmem_msg_close CLOSE_MSG = { .hdr = { .type = RPMEM_MSG_TYPE_CLOSE, .size = sizeof(struct rpmem_msg_close), }, }; static const struct rpmem_msg_set_attr SET_ATTR_MSG = { .hdr = { .type = RPMEM_MSG_TYPE_SET_ATTR, .size = sizeof(struct rpmem_msg_set_attr), }, .pool_attr = POOL_ATTR_ALT, }; TEST_CASE_DECLARE(server_accept_sim); TEST_CASE_DECLARE(server_accept_sim_fork); TEST_CASE_DECLARE(client_accept_sim); TEST_CASE_DECLARE(server_accept_seq); TEST_CASE_DECLARE(server_accept_seq_fork); TEST_CASE_DECLARE(client_accept_seq); TEST_CASE_DECLARE(client_bad_msg_hdr); TEST_CASE_DECLARE(server_bad_msg); TEST_CASE_DECLARE(server_msg_noresp); TEST_CASE_DECLARE(server_msg_resp); TEST_CASE_DECLARE(client_econnreset); TEST_CASE_DECLARE(server_econnreset); TEST_CASE_DECLARE(client_create); TEST_CASE_DECLARE(server_open); TEST_CASE_DECLARE(client_close); TEST_CASE_DECLARE(server_close); TEST_CASE_DECLARE(client_open); TEST_CASE_DECLARE(client_set_attr);
3,791
23
70
h
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/ctl_prefault/ctl_prefault.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2018, Intel Corporation */ /* * ctl_prefault.c -- tests for the ctl entry points: prefault */ #include <stdlib.h> #include <string.h> #include <sys/resource.h> #include "unittest.h" #define OBJ_STR "obj" #define BLK_STR "blk" #define LOG_STR "log" #define BSIZE 20 #define LAYOUT "obj_ctl_prefault" #ifdef __FreeBSD__ typedef char vec_t; #else typedef unsigned char vec_t; #endif typedef int (*fun)(void *, const char *, void *); /* * prefault_fun -- function ctl_get/set testing */ static void prefault_fun(int prefault, fun get_func, fun set_func) { int ret; int arg; int arg_read; if (prefault == 1) { /* prefault at open */ arg_read = -1; ret = get_func(NULL, "prefault.at_open", &arg_read); UT_ASSERTeq(ret, 0); UT_ASSERTeq(arg_read, 0); arg = 1; ret = set_func(NULL, "prefault.at_open", &arg); UT_ASSERTeq(ret, 0); UT_ASSERTeq(arg, 1); arg_read = -1; ret = get_func(NULL, "prefault.at_open", &arg_read); UT_ASSERTeq(ret, 0); UT_ASSERTeq(arg_read, 1); } else if (prefault == 2) { /* prefault at create */ arg_read = -1; ret = get_func(NULL, "prefault.at_create", &arg_read); UT_ASSERTeq(ret, 0); UT_ASSERTeq(arg_read, 0); arg = 1; ret = set_func(NULL, "prefault.at_create", &arg); UT_ASSERTeq(ret, 0); UT_ASSERTeq(arg, 1); arg_read = -1; ret = get_func(NULL, "prefault.at_create", &arg_read); UT_ASSERTeq(ret, 0); UT_ASSERTeq(arg_read, 1); } } /* * count_resident_pages -- count resident_pages */ static size_t count_resident_pages(void *pool, size_t length) { size_t arr_len = (length + Ut_pagesize - 1) / Ut_pagesize; vec_t *vec = MALLOC(sizeof(*vec) * arr_len); int ret = mincore(pool, length, vec); UT_ASSERTeq(ret, 0); size_t resident_pages = 0; for (size_t i = 0; i < arr_len; ++i) resident_pages += vec[i] & 0x1; FREE(vec); return resident_pages; } /* * test_obj -- open/create PMEMobjpool */ static void test_obj(const char *path, int open) { PMEMobjpool *pop; if (open) { if ((pop = pmemobj_open(path, LAYOUT)) == NULL) UT_FATAL("!pmemobj_open: %s", path); } else { if ((pop = pmemobj_create(path, LAYOUT, PMEMOBJ_MIN_POOL, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create: %s", path); } size_t resident_pages = count_resident_pages(pop, PMEMOBJ_MIN_POOL); pmemobj_close(pop); UT_OUT("%ld", resident_pages); } /* * test_blk -- open/create PMEMblkpool */ static void test_blk(const char *path, int open) { PMEMblkpool *pbp; if (open) { if ((pbp = pmemblk_open(path, BSIZE)) == NULL) UT_FATAL("!pmemblk_open: %s", path); } else { if ((pbp = pmemblk_create(path, BSIZE, PMEMBLK_MIN_POOL, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemblk_create: %s", path); } size_t resident_pages = count_resident_pages(pbp, PMEMBLK_MIN_POOL); pmemblk_close(pbp); UT_OUT("%ld", resident_pages); } /* * test_log -- open/create PMEMlogpool */ static void test_log(const char *path, int open) { PMEMlogpool *plp; /* * To test prefaulting, pool must have size at least equal to 2 pages. * If 2MB huge pages are used this is at least 4MB. */ size_t pool_size = 2 * PMEMLOG_MIN_POOL; if (open) { if ((plp = pmemlog_open(path)) == NULL) UT_FATAL("!pmemlog_open: %s", path); } else { if ((plp = pmemlog_create(path, pool_size, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemlog_create: %s", path); } size_t resident_pages = count_resident_pages(plp, pool_size); pmemlog_close(plp); UT_OUT("%ld", resident_pages); } #define USAGE() do {\ UT_FATAL("usage: %s file-name type(obj/blk/log) prefault(0/1/2) "\ "open(0/1)", argv[0]);\ } while (0) int main(int argc, char *argv[]) { START(argc, argv, "ctl_prefault"); if (argc != 5) USAGE(); char *type = argv[1]; const char *path = argv[2]; int prefault = atoi(argv[3]); int open = atoi(argv[4]); if (strcmp(type, OBJ_STR) == 0) { prefault_fun(prefault, (fun)pmemobj_ctl_get, (fun)pmemobj_ctl_set); test_obj(path, open); } else if (strcmp(type, BLK_STR) == 0) { prefault_fun(prefault, (fun)pmemblk_ctl_get, (fun)pmemblk_ctl_set); test_blk(path, open); } else if (strcmp(type, LOG_STR) == 0) { prefault_fun(prefault, (fun)pmemlog_ctl_get, (fun)pmemlog_ctl_set); test_log(path, open); } else USAGE(); DONE(NULL); }
4,326
20.527363
71
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_memcpy/memcpy_common.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2020, Intel Corporation */ /* * memcpy_common.c -- common part for tests doing a persistent memcpy */ #include "unittest.h" #include "memcpy_common.h" #include "valgrind_internal.h" /* * do_memcpy: Worker function for memcpy * * Always work within the boundary of bytes. Fill in 1/2 of the src * memory with the pattern we want to write. This allows us to check * that we did not overwrite anything we were not supposed to in the * dest. Use the non pmem version of the memset/memcpy commands * so as not to introduce any possible side affects. */ void do_memcpy(int fd, char *dest, int dest_off, char *src, int src_off, size_t bytes, size_t mapped_len, const char *file_name, memcpy_fn fn, unsigned flags, persist_fn persist) { void *ret; char *buf = MALLOC(bytes); memset(buf, 0, bytes); memset(dest, 0, bytes); persist(dest, bytes); memset(src, 0, bytes); persist(src, bytes); memset(src, 0x5A, bytes / 4); persist(src, bytes / 4); memset(src + bytes / 4, 0x46, bytes / 4); persist(src + bytes / 4, bytes / 4); /* dest == src */ ret = fn(dest + dest_off, dest + dest_off, bytes / 2, flags); UT_ASSERTeq(ret, dest + dest_off); UT_ASSERTeq(*(char *)(dest + dest_off), 0); /* len == 0 */ ret = fn(dest + dest_off, src, 0, flags); UT_ASSERTeq(ret, dest + dest_off); UT_ASSERTeq(*(char *)(dest + dest_off), 0); ret = fn(dest + dest_off, src + src_off, bytes / 2, flags); if (flags & PMEM2_F_MEM_NOFLUSH) VALGRIND_DO_PERSIST((dest + dest_off), bytes / 2); UT_ASSERTeq(ret, dest + dest_off); /* memcmp will validate that what I expect in memory. */ if (memcmp(src + src_off, dest + dest_off, bytes / 2)) UT_FATAL("%s: first %zu bytes do not match", file_name, bytes / 2); /* Now validate the contents of the file */ LSEEK(fd, (os_off_t)(dest_off + (int)(mapped_len / 2)), SEEK_SET); if (READ(fd, buf, bytes / 2) == bytes / 2) { if (memcmp(src + src_off, buf, bytes / 2)) UT_FATAL("%s: first %zu bytes do not match", file_name, bytes / 2); } FREE(buf); } unsigned Flags[] = { 0, PMEM_F_MEM_NODRAIN, PMEM_F_MEM_NONTEMPORAL, PMEM_F_MEM_TEMPORAL, PMEM_F_MEM_NONTEMPORAL | PMEM_F_MEM_TEMPORAL, PMEM_F_MEM_NONTEMPORAL | PMEM_F_MEM_NODRAIN, PMEM_F_MEM_WC, PMEM_F_MEM_WB, PMEM_F_MEM_NOFLUSH, /* all possible flags */ PMEM_F_MEM_NODRAIN | PMEM_F_MEM_NOFLUSH | PMEM_F_MEM_NONTEMPORAL | PMEM_F_MEM_TEMPORAL | PMEM_F_MEM_WC | PMEM_F_MEM_WB, };
2,491
27.643678
73
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_memcpy/memcpy_common.h
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2020, Intel Corporation */ /* * memcpy_common.h -- header file for common memcpy utilities */ #ifndef MEMCPY_COMMON_H #define MEMCPY_COMMON_H 1 #include "unittest.h" #include "file.h" typedef void *(*memcpy_fn)(void *pmemdest, const void *src, size_t len, unsigned flags); typedef void (*persist_fn)(const void *ptr, size_t len); extern unsigned Flags[10]; void do_memcpy(int fd, char *dest, int dest_off, char *src, int src_off, size_t bytes, size_t mapped_len, const char *file_name, memcpy_fn fn, unsigned flags, persist_fn p); #endif
611
23.48
73
h
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_memcpy/pmem2_memcpy.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2020, Intel Corporation */ /* * pmem2_memcpy.c -- test for doing a memcpy from libpmem2 * * usage: pmem2_memcpy file destoff srcoff length * */ #include "unittest.h" #include "file.h" #include "ut_pmem2.h" #include "memcpy_common.h" /* * do_memcpy_variants -- do_memcpy wrapper that tests multiple variants * of memcpy functions */ static void do_memcpy_variants(int fd, char *dest, int dest_off, char *src, int src_off, size_t bytes, size_t mapped_len, const char *file_name, persist_fn p, memcpy_fn fn) { for (int i = 0; i < ARRAY_SIZE(Flags); ++i) { do_memcpy(fd, dest, dest_off, src, src_off, bytes, mapped_len, file_name, fn, Flags[i], p); } } int main(int argc, char *argv[]) { int fd; char *dest; char *src; char *src_orig; size_t mapped_len; struct pmem2_config *cfg; struct pmem2_source *psrc; struct pmem2_map *map; if (argc != 5) UT_FATAL("usage: %s file destoff srcoff length", argv[0]); const char *thr = os_getenv("PMEM_MOVNT_THRESHOLD"); const char *avx = os_getenv("PMEM_AVX"); const char *avx512f = os_getenv("PMEM_AVX512F"); START(argc, argv, "pmem2_memcpy %s %s %s %s %savx %savx512f", argv[2], argv[3], argv[4], thr ? thr : "default", avx ? "" : "!", avx512f ? "" : "!"); util_init(); fd = OPEN(argv[1], O_RDWR); UT_ASSERT(fd != -1); int dest_off = atoi(argv[2]); int src_off = atoi(argv[3]); size_t bytes = strtoul(argv[4], NULL, 0); PMEM2_CONFIG_NEW(&cfg); PMEM2_SOURCE_FROM_FD(&psrc, fd); PMEM2_CONFIG_SET_GRANULARITY(cfg, PMEM2_GRANULARITY_PAGE); int ret = pmem2_map(cfg, psrc, &map); UT_PMEM2_EXPECT_RETURN(ret, 0); PMEM2_CONFIG_DELETE(&cfg); /* src > dst */ mapped_len = pmem2_map_get_size(map); dest = pmem2_map_get_address(map); if (dest == NULL) UT_FATAL("!could not map file: %s", argv[1]); src_orig = src = dest + mapped_len / 2; UT_ASSERT(src > dest); pmem2_persist_fn persist = pmem2_get_persist_fn(map); memset(dest, 0, (2 * bytes)); persist(dest, 2 * bytes); memset(src, 0, (2 * bytes)); persist(src, 2 * bytes); pmem2_memcpy_fn memcpy_fn = pmem2_get_memcpy_fn(map); do_memcpy_variants(fd, dest, dest_off, src, src_off, bytes, 0, argv[1], persist, memcpy_fn); src = dest; dest = src_orig; if (dest <= src) UT_FATAL("cannot map files in memory order"); do_memcpy_variants(fd, dest, dest_off, src, src_off, bytes, mapped_len, argv[1], persist, memcpy_fn); ret = pmem2_unmap(&map); UT_ASSERTeq(ret, 0); CLOSE(fd); DONE(NULL); }
2,527
22.849057
76
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/util_is_zeroed/util_is_zeroed.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2018, Intel Corporation */ /* * util_is_zeroed.c -- unit test for util_is_zeroed */ #include "unittest.h" #include "util.h" int main(int argc, char *argv[]) { START(argc, argv, "util_is_zeroed"); util_init(); char bigbuf[3000]; memset(bigbuf + 0, 0x11, 1000); memset(bigbuf + 1000, 0x0, 1000); memset(bigbuf + 2000, 0xff, 1000); UT_ASSERTeq(util_is_zeroed(bigbuf, 1000), 0); UT_ASSERTeq(util_is_zeroed(bigbuf + 1000, 1000), 1); UT_ASSERTeq(util_is_zeroed(bigbuf + 2000, 1000), 0); UT_ASSERTeq(util_is_zeroed(bigbuf, 0), 1); UT_ASSERTeq(util_is_zeroed(bigbuf + 999, 1000), 0); UT_ASSERTeq(util_is_zeroed(bigbuf + 1000, 1001), 0); UT_ASSERTeq(util_is_zeroed(bigbuf + 1001, 1000), 0); char *buf = bigbuf + 1000; buf[0] = 1; UT_ASSERTeq(util_is_zeroed(buf, 1000), 0); memset(buf, 0, 1000); buf[1] = 1; UT_ASSERTeq(util_is_zeroed(buf, 1000), 0); memset(buf, 0, 1000); buf[239] = 1; UT_ASSERTeq(util_is_zeroed(buf, 1000), 0); memset(buf, 0, 1000); buf[999] = 1; UT_ASSERTeq(util_is_zeroed(buf, 1000), 0); memset(buf, 0, 1000); buf[1000] = 1; UT_ASSERTeq(util_is_zeroed(buf, 1000), 1); DONE(NULL); }
1,196
20.763636
53
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem_map_file/mocks_windows.h
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2017, Intel Corporation */ /* * mocks_windows.h -- redefinitions of libc functions * * This file is Windows-specific. * * This file should be included (i.e. using Forced Include) by libpmem * files, when compiled for the purpose of pmem_map_file test. * It would replace default implementation with mocked functions defined * in pmem_map_file.c. * * These defines could be also passed as preprocessor definitions. */ #ifndef WRAP_REAL #define os_posix_fallocate __wrap_os_posix_fallocate #define os_ftruncate __wrap_os_ftruncate #endif
608
28
72
h
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem_map_file/mocks_windows.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2014-2017, Intel Corporation */ /* * mocks_windows.c -- mocked functions used in pmem_map_file.c * (Windows-specific) */ #include "unittest.h" #define MAX_LEN (4 * 1024 * 1024) /* * posix_fallocate -- interpose on libc posix_fallocate() */ FUNC_MOCK(os_posix_fallocate, int, int fd, os_off_t offset, os_off_t len) FUNC_MOCK_RUN_DEFAULT { UT_OUT("posix_fallocate: off %ju len %ju", offset, len); if (len > MAX_LEN) return ENOSPC; return _FUNC_REAL(os_posix_fallocate)(fd, offset, len); } FUNC_MOCK_END /* * ftruncate -- interpose on libc ftruncate() */ FUNC_MOCK(os_ftruncate, int, int fd, os_off_t len) FUNC_MOCK_RUN_DEFAULT { UT_OUT("ftruncate: len %ju", len); if (len > MAX_LEN) { errno = ENOSPC; return -1; } return _FUNC_REAL(os_ftruncate)(fd, len); } FUNC_MOCK_END
868
21.868421
73
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_heap/obj_heap.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2020, Intel Corporation */ /* * obj_heap.c -- unit test for heap * * operations are: 't', 'b', 'r', 'c', 'h', 'a', 'n', 's' * t: do test_heap, test_recycler * b: do fault_injection in function container_new_ravl * r: do fault_injection in function recycler_new * c: do fault_injection in function container_new_seglists * h: do fault_injection in function heap_boot * a: do fault_injection in function alloc_class_new * n: do fault_injection in function alloc_class_collection_new * s: do fault_injection in function stats_new */ #include "libpmemobj.h" #include "palloc.h" #include "heap.h" #include "recycler.h" #include "obj.h" #include "unittest.h" #include "util.h" #include "container_ravl.h" #include "container_seglists.h" #include "container.h" #include "alloc_class.h" #include "valgrind_internal.h" #include "set.h" #define MOCK_POOL_SIZE PMEMOBJ_MIN_POOL #define MAX_BLOCKS 3 struct mock_pop { PMEMobjpool p; void *heap; }; static int obj_heap_persist(void *ctx, const void *ptr, size_t sz, unsigned flags) { UT_ASSERTeq(pmem_msync(ptr, sz), 0); return 0; } static int obj_heap_flush(void *ctx, const void *ptr, size_t sz, unsigned flags) { UT_ASSERTeq(pmem_msync(ptr, sz), 0); return 0; } static void obj_heap_drain(void *ctx) { } static void * obj_heap_memset(void *ctx, void *ptr, int c, size_t sz, unsigned flags) { memset(ptr, c, sz); UT_ASSERTeq(pmem_msync(ptr, sz), 0); return ptr; } static void init_run_with_score(struct heap_layout *l, uint32_t chunk_id, int score) { l->zone0.chunk_headers[chunk_id].size_idx = 1; l->zone0.chunk_headers[chunk_id].type = CHUNK_TYPE_RUN; l->zone0.chunk_headers[chunk_id].flags = 0; struct chunk_run *run = (struct chunk_run *) &l->zone0.chunks[chunk_id]; VALGRIND_DO_MAKE_MEM_UNDEFINED(run, sizeof(*run)); run->hdr.alignment = 0; run->hdr.block_size = 1024; memset(run->content, 0xFF, RUN_DEFAULT_BITMAP_SIZE); UT_ASSERTeq(score % 64, 0); score /= 64; uint64_t *bitmap = (uint64_t *)run->content; for (; score >= 0; --score) { bitmap[score] = 0; } } static void init_run_with_max_block(struct heap_layout *l, uint32_t chunk_id) { l->zone0.chunk_headers[chunk_id].size_idx = 1; l->zone0.chunk_headers[chunk_id].type = CHUNK_TYPE_RUN; l->zone0.chunk_headers[chunk_id].flags = 0; struct chunk_run *run = (struct chunk_run *) &l->zone0.chunks[chunk_id]; VALGRIND_DO_MAKE_MEM_UNDEFINED(run, sizeof(*run)); uint64_t *bitmap = (uint64_t *)run->content; run->hdr.block_size = 1024; run->hdr.alignment = 0; memset(bitmap, 0xFF, RUN_DEFAULT_BITMAP_SIZE); /* the biggest block is 10 bits */ bitmap[3] = 0b1000001110111000111111110000111111000000000011111111110000000011; } static void test_container(struct block_container *bc, struct palloc_heap *heap) { UT_ASSERTne(bc, NULL); struct memory_block a = {1, 0, 1, 4}; struct memory_block b = {1, 0, 2, 8}; struct memory_block c = {1, 0, 3, 16}; struct memory_block d = {1, 0, 5, 32}; init_run_with_score(heap->layout, 1, 128); memblock_rebuild_state(heap, &a); memblock_rebuild_state(heap, &b); memblock_rebuild_state(heap, &c); memblock_rebuild_state(heap, &d); int ret; ret = bc->c_ops->insert(bc, &a); UT_ASSERTeq(ret, 0); ret = bc->c_ops->insert(bc, &b); UT_ASSERTeq(ret, 0); ret = bc->c_ops->insert(bc, &c); UT_ASSERTeq(ret, 0); ret = bc->c_ops->insert(bc, &d); UT_ASSERTeq(ret, 0); struct memory_block invalid_ret = {0, 0, 6, 0}; ret = bc->c_ops->get_rm_bestfit(bc, &invalid_ret); UT_ASSERTeq(ret, ENOMEM); struct memory_block b_ret = {0, 0, 2, 0}; ret = bc->c_ops->get_rm_bestfit(bc, &b_ret); UT_ASSERTeq(ret, 0); UT_ASSERTeq(b_ret.chunk_id, b.chunk_id); struct memory_block a_ret = {0, 0, 1, 0}; ret = bc->c_ops->get_rm_bestfit(bc, &a_ret); UT_ASSERTeq(ret, 0); UT_ASSERTeq(a_ret.chunk_id, a.chunk_id); struct memory_block c_ret = {0, 0, 3, 0}; ret = bc->c_ops->get_rm_bestfit(bc, &c_ret); UT_ASSERTeq(ret, 0); UT_ASSERTeq(c_ret.chunk_id, c.chunk_id); struct memory_block d_ret = {0, 0, 4, 0}; /* less one than target */ ret = bc->c_ops->get_rm_bestfit(bc, &d_ret); UT_ASSERTeq(ret, 0); UT_ASSERTeq(d_ret.chunk_id, d.chunk_id); ret = bc->c_ops->get_rm_bestfit(bc, &c_ret); UT_ASSERTeq(ret, ENOMEM); ret = bc->c_ops->insert(bc, &a); UT_ASSERTeq(ret, 0); ret = bc->c_ops->insert(bc, &b); UT_ASSERTeq(ret, 0); ret = bc->c_ops->insert(bc, &c); UT_ASSERTeq(ret, 0); bc->c_ops->rm_all(bc); ret = bc->c_ops->is_empty(bc); UT_ASSERTeq(ret, 1); ret = bc->c_ops->get_rm_bestfit(bc, &c_ret); UT_ASSERTeq(ret, ENOMEM); bc->c_ops->destroy(bc); } static void do_fault_injection_new_ravl() { if (!pmemobj_fault_injection_enabled()) return; pmemobj_inject_fault_at(PMEM_MALLOC, 1, "container_new_ravl"); struct block_container *bc = container_new_ravl(NULL); UT_ASSERTeq(bc, NULL); UT_ASSERTeq(errno, ENOMEM); } static void do_fault_injection_new_seglists() { if (!pmemobj_fault_injection_enabled()) return; pmemobj_inject_fault_at(PMEM_MALLOC, 1, "container_new_seglists"); struct block_container *bc = container_new_seglists(NULL); UT_ASSERTeq(bc, NULL); UT_ASSERTeq(errno, ENOMEM); } static void do_fault_injection_heap_boot() { if (!pmemobj_fault_injection_enabled()) return; struct mock_pop *mpop = MMAP_ANON_ALIGNED(MOCK_POOL_SIZE, Ut_mmap_align); PMEMobjpool *pop = &mpop->p; pop->p_ops.persist = obj_heap_persist; uint64_t heap_size = MOCK_POOL_SIZE - sizeof(PMEMobjpool); struct pmem_ops *p_ops = &pop->p_ops; pmemobj_inject_fault_at(PMEM_MALLOC, 1, "heap_boot"); int r = heap_boot(NULL, NULL, heap_size, &pop->heap_size, NULL, p_ops, NULL, NULL); UT_ASSERTne(r, 0); UT_ASSERTeq(errno, ENOMEM); } static void do_fault_injection_recycler() { if (!pmemobj_fault_injection_enabled()) return; pmemobj_inject_fault_at(PMEM_MALLOC, 1, "recycler_new"); size_t active_arenas = 1; struct recycler *r = recycler_new(NULL, 0, &active_arenas); UT_ASSERTeq(r, NULL); UT_ASSERTeq(errno, ENOMEM); } static void do_fault_injection_class_new(int i) { if (!pmemobj_fault_injection_enabled()) return; pmemobj_inject_fault_at(PMEM_MALLOC, i, "alloc_class_new"); struct alloc_class_collection *c = alloc_class_collection_new(); UT_ASSERTeq(c, NULL); UT_ASSERTeq(errno, ENOMEM); } static void do_fault_injection_class_collection_new() { if (!pmemobj_fault_injection_enabled()) return; pmemobj_inject_fault_at(PMEM_MALLOC, 1, "alloc_class_collection_new"); struct alloc_class_collection *c = alloc_class_collection_new(); UT_ASSERTeq(c, NULL); UT_ASSERTeq(errno, ENOMEM); } static void do_fault_injection_stats() { if (!pmemobj_fault_injection_enabled()) return; pmemobj_inject_fault_at(PMEM_MALLOC, 1, "stats_new"); struct stats *s = stats_new(NULL); UT_ASSERTeq(s, NULL); UT_ASSERTeq(errno, ENOMEM); } static void test_heap(void) { struct mock_pop *mpop = MMAP_ANON_ALIGNED(MOCK_POOL_SIZE, Ut_mmap_align); PMEMobjpool *pop = &mpop->p; memset(pop, 0, MOCK_POOL_SIZE); pop->heap_offset = (uint64_t)((uint64_t)&mpop->heap - (uint64_t)mpop); pop->p_ops.persist = obj_heap_persist; pop->p_ops.flush = obj_heap_flush; pop->p_ops.drain = obj_heap_drain; pop->p_ops.memset = obj_heap_memset; pop->p_ops.base = pop; pop->set = MALLOC(sizeof(*(pop->set))); pop->set->options = 0; pop->set->directory_based = 0; struct stats *s = stats_new(pop); UT_ASSERTne(s, NULL); void *heap_start = (char *)pop + pop->heap_offset; uint64_t heap_size = MOCK_POOL_SIZE - sizeof(PMEMobjpool); struct palloc_heap *heap = &pop->heap; struct pmem_ops *p_ops = &pop->p_ops; UT_ASSERT(heap_check(heap_start, heap_size) != 0); UT_ASSERT(heap_init(heap_start, heap_size, &pop->heap_size, p_ops) == 0); UT_ASSERT(heap_boot(heap, heap_start, heap_size, &pop->heap_size, pop, p_ops, s, pop->set) == 0); UT_ASSERT(heap_buckets_init(heap) == 0); UT_ASSERT(pop->heap.rt != NULL); test_container((struct block_container *)container_new_ravl(heap), heap); test_container((struct block_container *)container_new_seglists(heap), heap); struct alloc_class *c_small = heap_get_best_class(heap, 1); struct alloc_class *c_big = heap_get_best_class(heap, 2048); UT_ASSERT(c_small->unit_size < c_big->unit_size); /* new small buckets should be empty */ UT_ASSERT(c_big->type == CLASS_RUN); struct memory_block blocks[MAX_BLOCKS] = { {0, 0, 1, 0}, {0, 0, 1, 0}, {0, 0, 1, 0} }; struct bucket *b_def = heap_bucket_acquire(heap, DEFAULT_ALLOC_CLASS_ID, HEAP_ARENA_PER_THREAD); for (int i = 0; i < MAX_BLOCKS; ++i) { heap_get_bestfit_block(heap, b_def, &blocks[i]); UT_ASSERT(blocks[i].block_off == 0); } heap_bucket_release(heap, b_def); struct memory_block old_run = {0, 0, 1, 0}; struct memory_block new_run = {0, 0, 0, 0}; struct alloc_class *c_run = heap_get_best_class(heap, 1024); struct bucket *b_run = heap_bucket_acquire(heap, c_run->id, HEAP_ARENA_PER_THREAD); /* * Allocate blocks from a run until one run is exhausted. */ UT_ASSERTne(heap_get_bestfit_block(heap, b_run, &old_run), ENOMEM); do { new_run.chunk_id = 0; new_run.block_off = 0; new_run.size_idx = 1; UT_ASSERTne(heap_get_bestfit_block(heap, b_run, &new_run), ENOMEM); UT_ASSERTne(new_run.size_idx, 0); } while (old_run.block_off != new_run.block_off); heap_bucket_release(heap, b_run); stats_delete(pop, s); UT_ASSERT(heap_check(heap_start, heap_size) == 0); heap_cleanup(heap); UT_ASSERT(heap->rt == NULL); FREE(pop->set); MUNMAP_ANON_ALIGNED(mpop, MOCK_POOL_SIZE); } /* * test_heap_with_size -- tests scenarios with not-nicely aligned sizes */ static void test_heap_with_size() { /* * To trigger bug with incorrect metadata alignment we need to * use a size that uses exactly the size used in bugged zone size * calculations. */ size_t size = PMEMOBJ_MIN_POOL + sizeof(struct zone_header) + sizeof(struct chunk_header) * MAX_CHUNK + sizeof(PMEMobjpool); struct mock_pop *mpop = MMAP_ANON_ALIGNED(size, Ut_mmap_align); PMEMobjpool *pop = &mpop->p; memset(pop, 0, size); pop->heap_offset = (uint64_t)((uint64_t)&mpop->heap - (uint64_t)mpop); pop->p_ops.persist = obj_heap_persist; pop->p_ops.flush = obj_heap_flush; pop->p_ops.drain = obj_heap_drain; pop->p_ops.memset = obj_heap_memset; pop->p_ops.base = pop; pop->set = MALLOC(sizeof(*(pop->set))); pop->set->options = 0; pop->set->directory_based = 0; void *heap_start = (char *)pop + pop->heap_offset; uint64_t heap_size = size - sizeof(PMEMobjpool); struct palloc_heap *heap = &pop->heap; struct pmem_ops *p_ops = &pop->p_ops; UT_ASSERT(heap_check(heap_start, heap_size) != 0); UT_ASSERT(heap_init(heap_start, heap_size, &pop->heap_size, p_ops) == 0); UT_ASSERT(heap_boot(heap, heap_start, heap_size, &pop->heap_size, pop, p_ops, NULL, pop->set) == 0); UT_ASSERT(heap_buckets_init(heap) == 0); UT_ASSERT(pop->heap.rt != NULL); struct bucket *b_def = heap_bucket_acquire(heap, DEFAULT_ALLOC_CLASS_ID, HEAP_ARENA_PER_THREAD); struct memory_block mb; mb.size_idx = 1; while (heap_get_bestfit_block(heap, b_def, &mb) == 0) ; /* mb should now be the last chunk in the heap */ char *ptr = mb.m_ops->get_real_data(&mb); size_t s = mb.m_ops->get_real_size(&mb); /* last chunk should be within the heap and accessible */ UT_ASSERT((size_t)ptr + s <= (size_t)mpop + size); VALGRIND_DO_MAKE_MEM_DEFINED(ptr, s); memset(ptr, 0xc, s); heap_bucket_release(heap, b_def); UT_ASSERT(heap_check(heap_start, heap_size) == 0); heap_cleanup(heap); UT_ASSERT(heap->rt == NULL); FREE(pop->set); MUNMAP_ANON_ALIGNED(mpop, size); } static void test_recycler(void) { struct mock_pop *mpop = MMAP_ANON_ALIGNED(MOCK_POOL_SIZE, Ut_mmap_align); PMEMobjpool *pop = &mpop->p; memset(pop, 0, MOCK_POOL_SIZE); pop->heap_offset = (uint64_t)((uint64_t)&mpop->heap - (uint64_t)mpop); pop->p_ops.persist = obj_heap_persist; pop->p_ops.flush = obj_heap_flush; pop->p_ops.drain = obj_heap_drain; pop->p_ops.memset = obj_heap_memset; pop->p_ops.base = pop; pop->set = MALLOC(sizeof(*(pop->set))); pop->set->options = 0; pop->set->directory_based = 0; void *heap_start = (char *)pop + pop->heap_offset; uint64_t heap_size = MOCK_POOL_SIZE - sizeof(PMEMobjpool); struct palloc_heap *heap = &pop->heap; struct pmem_ops *p_ops = &pop->p_ops; struct stats *s = stats_new(pop); UT_ASSERTne(s, NULL); UT_ASSERT(heap_check(heap_start, heap_size) != 0); UT_ASSERT(heap_init(heap_start, heap_size, &pop->heap_size, p_ops) == 0); UT_ASSERT(heap_boot(heap, heap_start, heap_size, &pop->heap_size, pop, p_ops, s, pop->set) == 0); UT_ASSERT(heap_buckets_init(heap) == 0); UT_ASSERT(pop->heap.rt != NULL); /* trigger heap bucket populate */ struct memory_block m = MEMORY_BLOCK_NONE; m.size_idx = 1; struct bucket *b = heap_bucket_acquire(heap, DEFAULT_ALLOC_CLASS_ID, HEAP_ARENA_PER_THREAD); UT_ASSERT(heap_get_bestfit_block(heap, b, &m) == 0); heap_bucket_release(heap, b); int ret; size_t active_arenas = 1; struct recycler *r = recycler_new(&pop->heap, 10000 /* never recalc */, &active_arenas); UT_ASSERTne(r, NULL); init_run_with_score(pop->heap.layout, 0, 64); init_run_with_score(pop->heap.layout, 1, 128); init_run_with_score(pop->heap.layout, 15, 0); struct memory_block mrun = {0, 0, 1, 0}; struct memory_block mrun2 = {1, 0, 1, 0}; memblock_rebuild_state(&pop->heap, &mrun); memblock_rebuild_state(&pop->heap, &mrun2); ret = recycler_put(r, &mrun, recycler_element_new(&pop->heap, &mrun)); UT_ASSERTeq(ret, 0); ret = recycler_put(r, &mrun2, recycler_element_new(&pop->heap, &mrun2)); UT_ASSERTeq(ret, 0); struct memory_block mrun_ret = MEMORY_BLOCK_NONE; mrun_ret.size_idx = 1; struct memory_block mrun2_ret = MEMORY_BLOCK_NONE; mrun2_ret.size_idx = 1; ret = recycler_get(r, &mrun_ret); UT_ASSERTeq(ret, 0); ret = recycler_get(r, &mrun2_ret); UT_ASSERTeq(ret, 0); UT_ASSERTeq(mrun2.chunk_id, mrun2_ret.chunk_id); UT_ASSERTeq(mrun.chunk_id, mrun_ret.chunk_id); init_run_with_score(pop->heap.layout, 7, 64); init_run_with_score(pop->heap.layout, 2, 128); init_run_with_score(pop->heap.layout, 5, 192); init_run_with_score(pop->heap.layout, 10, 256); mrun.chunk_id = 7; mrun2.chunk_id = 2; struct memory_block mrun3 = {5, 0, 1, 0}; struct memory_block mrun4 = {10, 0, 1, 0}; memblock_rebuild_state(&pop->heap, &mrun3); memblock_rebuild_state(&pop->heap, &mrun4); mrun_ret.size_idx = 1; mrun2_ret.size_idx = 1; struct memory_block mrun3_ret = MEMORY_BLOCK_NONE; mrun3_ret.size_idx = 1; struct memory_block mrun4_ret = MEMORY_BLOCK_NONE; mrun4_ret.size_idx = 1; ret = recycler_put(r, &mrun, recycler_element_new(&pop->heap, &mrun)); UT_ASSERTeq(ret, 0); ret = recycler_put(r, &mrun2, recycler_element_new(&pop->heap, &mrun2)); UT_ASSERTeq(ret, 0); ret = recycler_put(r, &mrun3, recycler_element_new(&pop->heap, &mrun3)); UT_ASSERTeq(ret, 0); ret = recycler_put(r, &mrun4, recycler_element_new(&pop->heap, &mrun4)); UT_ASSERTeq(ret, 0); ret = recycler_get(r, &mrun_ret); UT_ASSERTeq(ret, 0); ret = recycler_get(r, &mrun2_ret); UT_ASSERTeq(ret, 0); ret = recycler_get(r, &mrun3_ret); UT_ASSERTeq(ret, 0); ret = recycler_get(r, &mrun4_ret); UT_ASSERTeq(ret, 0); UT_ASSERTeq(mrun.chunk_id, mrun_ret.chunk_id); UT_ASSERTeq(mrun2.chunk_id, mrun2_ret.chunk_id); UT_ASSERTeq(mrun3.chunk_id, mrun3_ret.chunk_id); UT_ASSERTeq(mrun4.chunk_id, mrun4_ret.chunk_id); init_run_with_max_block(pop->heap.layout, 1); struct memory_block mrun5 = {1, 0, 1, 0}; memblock_rebuild_state(&pop->heap, &mrun5); ret = recycler_put(r, &mrun5, recycler_element_new(&pop->heap, &mrun5)); UT_ASSERTeq(ret, 0); struct memory_block mrun5_ret = MEMORY_BLOCK_NONE; mrun5_ret.size_idx = 11; ret = recycler_get(r, &mrun5_ret); UT_ASSERTeq(ret, ENOMEM); mrun5_ret = MEMORY_BLOCK_NONE; mrun5_ret.size_idx = 10; ret = recycler_get(r, &mrun5_ret); UT_ASSERTeq(ret, 0); recycler_delete(r); stats_delete(pop, s); heap_cleanup(heap); UT_ASSERT(heap->rt == NULL); FREE(pop->set); MUNMAP_ANON_ALIGNED(mpop, MOCK_POOL_SIZE); } int main(int argc, char *argv[]) { START(argc, argv, "obj_heap"); if (argc < 2) UT_FATAL("usage: %s path <t|b|r|c|h|a|n|s>", argv[0]); switch (argv[1][0]) { case 't': test_heap(); test_heap_with_size(); test_recycler(); break; case 'b': do_fault_injection_new_ravl(); break; case 'r': do_fault_injection_recycler(); break; case 'c': do_fault_injection_new_seglists(); break; case 'h': do_fault_injection_heap_boot(); break; case 'a': /* first call alloc_class_new */ do_fault_injection_class_new(1); /* second call alloc_class_new */ do_fault_injection_class_new(2); break; case 'n': do_fault_injection_class_collection_new(); break; case 's': do_fault_injection_stats(); break; default: UT_FATAL("unknown operation"); } DONE(NULL); }
16,917
25.027692
72
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_movnt_align/movnt_align_common.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2020, Intel Corporation */ /* * movnt_align_common.c -- common part for tests doing a persistent movnt align */ #include "unittest.h" #include "movnt_align_common.h" char *Src; char *Dst; char *Scratch; /* * check_memmove -- invoke check function with pmem_memmove_persist */ void check_memmove(size_t doff, size_t soff, size_t len, pmem_memmove_fn fn, unsigned flags) { memset(Dst + doff, 1, len); memset(Src + soff, 0, len); fn(Dst + doff, Src + soff, len, flags); if (memcmp(Dst + doff, Src + soff, len)) UT_FATAL("memcpy/memmove failed"); } /* * check_memmove -- invoke check function with pmem_memcpy_persist */ void check_memcpy(size_t doff, size_t soff, size_t len, pmem_memcpy_fn fn, unsigned flags) { memset(Dst, 2, N_BYTES); memset(Src, 3, N_BYTES); memset(Scratch, 2, N_BYTES); memset(Dst + doff, 1, len); memset(Src + soff, 0, len); memcpy(Scratch + doff, Src + soff, len); fn(Dst + doff, Src + soff, len, flags); if (memcmp(Dst, Scratch, N_BYTES)) UT_FATAL("memcpy/memmove failed"); } /* * check_memset -- check pmem_memset_no_drain function */ void check_memset(size_t off, size_t len, pmem_memset_fn fn, unsigned flags) { memset(Scratch, 2, N_BYTES); memset(Scratch + off, 1, len); memset(Dst, 2, N_BYTES); fn(Dst + off, 1, len, flags); if (memcmp(Dst, Scratch, N_BYTES)) UT_FATAL("memset failed"); } unsigned Flags[] = { 0, PMEM_F_MEM_NODRAIN, PMEM_F_MEM_NONTEMPORAL, PMEM_F_MEM_TEMPORAL, PMEM_F_MEM_NONTEMPORAL | PMEM_F_MEM_TEMPORAL, PMEM_F_MEM_NONTEMPORAL | PMEM_F_MEM_NODRAIN, PMEM_F_MEM_WC, PMEM_F_MEM_WB, PMEM_F_MEM_NOFLUSH, /* all possible flags */ PMEM_F_MEM_NODRAIN | PMEM_F_MEM_NOFLUSH | PMEM_F_MEM_NONTEMPORAL | PMEM_F_MEM_TEMPORAL | PMEM_F_MEM_WC | PMEM_F_MEM_WB, };
1,830
21.060241
79
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_movnt_align/pmem2_movnt_align.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2020, Intel Corporation */ /* * pmem2_movnt_align.c -- test for functions with non-temporal stores * * usage: pmem2_movnt_align file [C|F|B|S] * * C - pmem2_memcpy() * B - pmem2_memmove() in backward direction * F - pmem2_memmove() in forward direction * S - pmem2_memset() */ #include <stdio.h> #include <string.h> #include <unistd.h> #include "libpmem2.h" #include "unittest.h" #include "movnt_align_common.h" #include "ut_pmem2.h" static pmem2_memset_fn memset_fn; static pmem2_memcpy_fn memcpy_fn; static pmem2_memmove_fn memmove_fn; static void check_memmove_variants(size_t doff, size_t soff, size_t len) { for (int i = 0; i < ARRAY_SIZE(Flags); ++i) check_memmove(doff, soff, len, memmove_fn, Flags[i]); } static void check_memcpy_variants(size_t doff, size_t soff, size_t len) { for (int i = 0; i < ARRAY_SIZE(Flags); ++i) check_memcpy(doff, soff, len, memcpy_fn, Flags[i]); } static void check_memset_variants(size_t off, size_t len) { for (int i = 0; i < ARRAY_SIZE(Flags); ++i) check_memset(off, len, memset_fn, Flags[i]); } int main(int argc, char *argv[]) { if (argc != 3) UT_FATAL("usage: %s file type", argv[0]); struct pmem2_config *cfg; struct pmem2_source *src; struct pmem2_map *map; int fd; char type = argv[2][0]; const char *thr = os_getenv("PMEM_MOVNT_THRESHOLD"); const char *avx = os_getenv("PMEM_AVX"); const char *avx512f = os_getenv("PMEM_AVX512F"); START(argc, argv, "pmem2_movnt_align %c %s %savx %savx512f", type, thr ? thr : "default", avx ? "" : "!", avx512f ? "" : "!"); fd = OPEN(argv[1], O_RDWR); PMEM2_CONFIG_NEW(&cfg); PMEM2_SOURCE_FROM_FD(&src, fd); PMEM2_CONFIG_SET_GRANULARITY(cfg, PMEM2_GRANULARITY_PAGE); int ret = pmem2_map(cfg, src, &map); UT_PMEM2_EXPECT_RETURN(ret, 0); PMEM2_CONFIG_DELETE(&cfg); memset_fn = pmem2_get_memset_fn(map); memcpy_fn = pmem2_get_memcpy_fn(map); memmove_fn = pmem2_get_memmove_fn(map); ret = pmem2_unmap(&map); UT_ASSERTeq(ret, 0); CLOSE(fd); size_t page_size = Ut_pagesize; size_t s; switch (type) { case 'C': /* memcpy */ /* mmap with guard pages */ Src = MMAP_ANON_ALIGNED(N_BYTES, 0); Dst = MMAP_ANON_ALIGNED(N_BYTES, 0); if (Src == NULL || Dst == NULL) UT_FATAL("!mmap"); Scratch = MALLOC(N_BYTES); /* check memcpy with 0 size */ check_memcpy_variants(0, 0, 0); /* check memcpy with unaligned size */ for (s = 0; s < CACHELINE_SIZE; s++) check_memcpy_variants(0, 0, N_BYTES - s); /* check memcpy with unaligned begin */ for (s = 0; s < CACHELINE_SIZE; s++) check_memcpy_variants(s, 0, N_BYTES - s); /* check memcpy with unaligned begin and end */ for (s = 0; s < CACHELINE_SIZE; s++) check_memcpy_variants(s, s, N_BYTES - 2 * s); MUNMAP_ANON_ALIGNED(Src, N_BYTES); MUNMAP_ANON_ALIGNED(Dst, N_BYTES); FREE(Scratch); break; case 'B': /* memmove backward */ /* mmap with guard pages */ Src = MMAP_ANON_ALIGNED(2 * N_BYTES - page_size, 0); Dst = Src + N_BYTES - page_size; if (Src == NULL) UT_FATAL("!mmap"); /* check memmove in backward direction with 0 size */ check_memmove_variants(0, 0, 0); /* check memmove in backward direction with unaligned size */ for (s = 0; s < CACHELINE_SIZE; s++) check_memmove_variants(0, 0, N_BYTES - s); /* check memmove in backward direction with unaligned begin */ for (s = 0; s < CACHELINE_SIZE; s++) check_memmove_variants(s, 0, N_BYTES - s); /* * check memmove in backward direction with unaligned begin * and end */ for (s = 0; s < CACHELINE_SIZE; s++) check_memmove_variants(s, s, N_BYTES - 2 * s); MUNMAP_ANON_ALIGNED(Src, 2 * N_BYTES - page_size); break; case 'F': /* memmove forward */ /* mmap with guard pages */ Dst = MMAP_ANON_ALIGNED(2 * N_BYTES - page_size, 0); Src = Dst + N_BYTES - page_size; if (Src == NULL) UT_FATAL("!mmap"); /* check memmove in forward direction with 0 size */ check_memmove_variants(0, 0, 0); /* check memmove in forward direction with unaligned size */ for (s = 0; s < CACHELINE_SIZE; s++) check_memmove_variants(0, 0, N_BYTES - s); /* check memmove in forward direction with unaligned begin */ for (s = 0; s < CACHELINE_SIZE; s++) check_memmove_variants(s, 0, N_BYTES - s); /* * check memmove in forward direction with unaligned begin * and end */ for (s = 0; s < CACHELINE_SIZE; s++) check_memmove_variants(s, s, N_BYTES - 2 * s); MUNMAP_ANON_ALIGNED(Dst, 2 * N_BYTES - page_size); break; case 'S': /* memset */ /* mmap with guard pages */ Dst = MMAP_ANON_ALIGNED(N_BYTES, 0); if (Dst == NULL) UT_FATAL("!mmap"); Scratch = MALLOC(N_BYTES); /* check memset with 0 size */ check_memset_variants(0, 0); /* check memset with unaligned size */ for (s = 0; s < CACHELINE_SIZE; s++) check_memset_variants(0, N_BYTES - s); /* check memset with unaligned begin */ for (s = 0; s < CACHELINE_SIZE; s++) check_memset_variants(s, N_BYTES - s); /* check memset with unaligned begin and end */ for (s = 0; s < CACHELINE_SIZE; s++) check_memset_variants(s, N_BYTES - 2 * s); MUNMAP_ANON_ALIGNED(Dst, N_BYTES); FREE(Scratch); break; default: UT_FATAL("!wrong type of test"); break; } DONE(NULL); }
5,283
24.042654
69
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_movnt_align/movnt_align_common.h
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2020, Intel Corporation */ /* * movnt_align_common.h -- header file for common movnt_align test utilities */ #ifndef MOVNT_ALIGN_COMMON_H #define MOVNT_ALIGN_COMMON_H 1 #include "unittest.h" #include "file.h" #define N_BYTES (Ut_pagesize * 2) extern char *Src; extern char *Dst; extern char *Scratch; extern unsigned Flags[10]; typedef void *(*mem_fn)(void *, const void *, size_t); typedef void *pmem_memcpy_fn(void *pmemdest, const void *src, size_t len, unsigned flags); typedef void *pmem_memmove_fn(void *pmemdest, const void *src, size_t len, unsigned flags); typedef void *pmem_memset_fn(void *pmemdest, int c, size_t len, unsigned flags); void check_memmove(size_t doff, size_t soff, size_t len, pmem_memmove_fn fn, unsigned flags); void check_memcpy(size_t doff, size_t soff, size_t len, pmem_memcpy_fn fn, unsigned flags); void check_memset(size_t off, size_t len, pmem_memset_fn fn, unsigned flags); #endif
989
26.5
80
h
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem_memmove/pmem_memmove.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2020, Intel Corporation */ /* * pmem_memmove.c -- unit test for doing a memmove * * usage: * pmem_memmove file b:length [d:{offset}] [s:offset] [o:{1|2} S:{overlap}] * */ #include "unittest.h" #include "util_pmem.h" #include "file.h" #include "memmove_common.h" typedef void *pmem_memmove_fn(void *pmemdest, const void *src, size_t len, unsigned flags); static void * pmem_memmove_persist_wrapper(void *pmemdest, const void *src, size_t len, unsigned flags) { (void) flags; return pmem_memmove_persist(pmemdest, src, len); } static void * pmem_memmove_nodrain_wrapper(void *pmemdest, const void *src, size_t len, unsigned flags) { (void) flags; return pmem_memmove_nodrain(pmemdest, src, len); } static void do_persist_ddax(const void *ptr, size_t size) { util_persist_auto(1, ptr, size); } static void do_persist(const void *ptr, size_t size) { util_persist_auto(0, ptr, size); } /* * swap_mappings - given to mmapped regions swap them. * * Try swapping src and dest by unmapping src, mapping a new dest with * the original src address as a hint. If successful, unmap original dest. * Map a new src with the original dest as a hint. * In the event of an error caller must unmap all passed in mappings. */ static void swap_mappings(char **dest, char **src, size_t size, int fd) { char *d = *dest; char *s = *src; char *ts; char *td; MUNMAP(*src, size); /* mmap destination using src addr as hint */ td = MMAP(s, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); MUNMAP(*dest, size); *dest = td; /* mmap src using original destination addr as a hint */ ts = MMAP(d, size, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); *src = ts; } static void do_memmove_variants(char *dst, char *src, const char *file_name, size_t dest_off, size_t src_off, size_t bytes, persist_fn p) { do_memmove(dst, src, file_name, dest_off, src_off, bytes, pmem_memmove_persist_wrapper, 0, p); do_memmove(dst, src, file_name, dest_off, src_off, bytes, pmem_memmove_nodrain_wrapper, 0, p); for (int i = 0; i < ARRAY_SIZE(Flags); ++i) { do_memmove(dst, src, file_name, dest_off, src_off, bytes, pmem_memmove, Flags[i], p); } } int main(int argc, char *argv[]) { int fd; char *dst; char *src; size_t dst_off = 0; size_t src_off = 0; size_t bytes = 0; int who = 0; size_t mapped_len; const char *thr = os_getenv("PMEM_MOVNT_THRESHOLD"); const char *avx = os_getenv("PMEM_AVX"); const char *avx512f = os_getenv("PMEM_AVX512F"); START(argc, argv, "pmem_memmove %s %s %s %s %savx %savx512f", argc > 2 ? argv[2] : "null", argc > 3 ? argv[3] : "null", argc > 4 ? argv[4] : "null", thr ? thr : "default", avx ? "" : "!", avx512f ? "" : "!"); fd = OPEN(argv[1], O_RDWR); enum file_type type = util_fd_get_type(fd); if (type < 0) UT_FATAL("cannot check type of file %s", argv[1]); persist_fn p; p = type == TYPE_DEVDAX ? do_persist_ddax : do_persist; if (argc < 3) USAGE(); for (int arg = 2; arg < argc; arg++) { if (strchr("dsbo", argv[arg][0]) == NULL || argv[arg][1] != ':') UT_FATAL("op must be d: or s: or b: or o:"); size_t val = STRTOUL(&argv[arg][2], NULL, 0); switch (argv[arg][0]) { case 'd': if (val <= 0) UT_FATAL("bad offset (%lu) with d: option", val); dst_off = val; break; case 's': if (val <= 0) UT_FATAL("bad offset (%lu) with s: option", val); src_off = val; break; case 'b': if (val <= 0) UT_FATAL("bad length (%lu) with b: option", val); bytes = val; break; case 'o': if (val != 1 && val != 0) UT_FATAL("bad val (%lu) with o: option", val); who = (int)val; break; } } if (who == 0) { /* src > dest */ dst = pmem_map_file(argv[1], 0, 0, 0, &mapped_len, NULL); if (dst == NULL) UT_FATAL("!could not mmap dest file %s", argv[1]); src = MMAP(dst + mapped_len, mapped_len, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); /* * Its very unlikely that src would not be > dest. pmem_map_file * chooses the first unused address >= 1TB, large * enough to hold the give range, and 1GB aligned. Log * the error if the mapped addresses cannot be swapped * but allow the test to continue. */ if (src <= dst) { swap_mappings(&dst, &src, mapped_len, fd); if (src <= dst) UT_FATAL("cannot map files in memory order"); } do_memmove_variants(dst, src, argv[1], dst_off, src_off, bytes, p); /* dest > src */ swap_mappings(&dst, &src, mapped_len, fd); if (dst <= src) UT_FATAL("cannot map files in memory order"); do_memmove_variants(dst, src, argv[1], dst_off, src_off, bytes, p); int ret = pmem_unmap(dst, mapped_len); UT_ASSERTeq(ret, 0); MUNMAP(src, mapped_len); } else { /* use the same buffer for source and destination */ dst = pmem_map_file(argv[1], 0, 0, 0, &mapped_len, NULL); if (dst == NULL) UT_FATAL("!Could not mmap %s: \n", argv[1]); memset(dst, 0, bytes); p(dst, bytes); do_memmove_variants(dst, dst, argv[1], dst_off, src_off, bytes, p); int ret = pmem_unmap(dst, mapped_len); UT_ASSERTeq(ret, 0); } CLOSE(fd); DONE(NULL); }
5,226
22.334821
75
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_ctl_heap_size/obj_ctl_heap_size.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2017, Intel Corporation */ /* * obj_ctl_heap_size.c -- tests for the ctl entry points: heap.size.* */ #include "unittest.h" #define LAYOUT "obj_ctl_heap_size" #define CUSTOM_GRANULARITY ((1 << 20) * 10) #define OBJ_SIZE 1024 int main(int argc, char *argv[]) { START(argc, argv, "obj_ctl_heap_size"); if (argc != 3) UT_FATAL("usage: %s poolset [w|x]", argv[0]); const char *path = argv[1]; char t = argv[2][0]; PMEMobjpool *pop; if ((pop = pmemobj_open(path, LAYOUT)) == NULL) UT_FATAL("!pmemobj_open: %s", path); int ret = 0; size_t disable_granularity = 0; ret = pmemobj_ctl_set(pop, "heap.size.granularity", &disable_granularity); UT_ASSERTeq(ret, 0); /* allocate until OOM */ while (pmemobj_alloc(pop, NULL, OBJ_SIZE, 0, NULL, NULL) == 0) ; if (t == 'x') { ssize_t extend_size = CUSTOM_GRANULARITY; ret = pmemobj_ctl_exec(pop, "heap.size.extend", &extend_size); UT_ASSERTeq(ret, 0); } else if (t == 'w') { ssize_t new_granularity = CUSTOM_GRANULARITY; ret = pmemobj_ctl_set(pop, "heap.size.granularity", &new_granularity); UT_ASSERTeq(ret, 0); ssize_t curr_granularity; ret = pmemobj_ctl_get(pop, "heap.size.granularity", &curr_granularity); UT_ASSERTeq(ret, 0); UT_ASSERTeq(new_granularity, curr_granularity); } else { UT_ASSERT(0); } /* should succeed */ ret = pmemobj_alloc(pop, NULL, OBJ_SIZE, 0, NULL, NULL); UT_ASSERTeq(ret, 0); pmemobj_close(pop); DONE(NULL); }
1,500
21.402985
69
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_basic_integration/obj_basic_integration.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2020, Intel Corporation */ /* * obj_basic_integration.c -- Basic integration tests * */ #include <stddef.h> #include "unittest.h" #include "obj.h" #define TEST_STR "abcdefgh" #define TEST_STR_LEN 8 #define TEST_VALUE 5 /* * Layout definition */ POBJ_LAYOUT_BEGIN(basic); POBJ_LAYOUT_ROOT(basic, struct dummy_root); POBJ_LAYOUT_TOID(basic, struct dummy_node); POBJ_LAYOUT_TOID(basic, struct dummy_node_c); POBJ_LAYOUT_END(basic); struct dummy_node { int value; char teststr[TEST_STR_LEN]; POBJ_LIST_ENTRY(struct dummy_node) plist; POBJ_LIST_ENTRY(struct dummy_node) plist_m; }; struct dummy_node_c { int value; char teststr[TEST_STR_LEN]; POBJ_LIST_ENTRY(struct dummy_node) plist; POBJ_LIST_ENTRY(struct dummy_node) plist_m; }; struct dummy_root { int value; PMEMmutex lock; TOID(struct dummy_node) node; POBJ_LIST_HEAD(dummy_list, struct dummy_node) dummies; POBJ_LIST_HEAD(moved_list, struct dummy_node) moved; }; static int dummy_node_constructor(PMEMobjpool *pop, void *ptr, void *arg) { struct dummy_node *n = (struct dummy_node *)ptr; int *test_val = (int *)arg; n->value = *test_val; pmemobj_persist(pop, &n->value, sizeof(n->value)); return 0; } static void test_alloc_api(PMEMobjpool *pop) { TOID(struct dummy_node) node_zeroed; TOID(struct dummy_node_c) node_constructed; POBJ_ZNEW(pop, &node_zeroed, struct dummy_node); UT_ASSERT_rt(OID_INSTANCEOF(node_zeroed.oid, struct dummy_node)); int *test_val = (int *)MALLOC(sizeof(*test_val)); *test_val = TEST_VALUE; POBJ_NEW(pop, &node_constructed, struct dummy_node_c, dummy_node_constructor, test_val); FREE(test_val); TOID(struct dummy_node) iter; POBJ_FOREACH_TYPE(pop, iter) { UT_ASSERTeq(D_RO(iter)->value, 0); } TOID(struct dummy_node_c) iter_c; POBJ_FOREACH_TYPE(pop, iter_c) { UT_ASSERTeq(D_RO(iter_c)->value, TEST_VALUE); } PMEMoid oid_iter; int nodes_count = 0; POBJ_FOREACH(pop, oid_iter) { nodes_count++; } UT_ASSERTne(nodes_count, 0); POBJ_FREE(&node_zeroed); POBJ_FREE(&node_constructed); nodes_count = 0; POBJ_FOREACH(pop, oid_iter) { nodes_count++; } UT_ASSERTeq(nodes_count, 0); int val = 10; POBJ_ALLOC(pop, &node_constructed, struct dummy_node_c, sizeof(struct dummy_node_c), dummy_node_constructor, &val); POBJ_REALLOC(pop, &node_constructed, struct dummy_node_c, sizeof(struct dummy_node_c) + 1000); UT_ASSERTeq(pmemobj_type_num(node_constructed.oid), TOID_TYPE_NUM(struct dummy_node_c)); POBJ_ZREALLOC(pop, &node_constructed, struct dummy_node_c, sizeof(struct dummy_node_c) + 2000); UT_ASSERTeq(pmemobj_type_num(node_constructed.oid), TOID_TYPE_NUM(struct dummy_node_c)); POBJ_FREE(&node_constructed); POBJ_ZALLOC(pop, &node_zeroed, struct dummy_node, sizeof(struct dummy_node)); POBJ_FREE(&node_zeroed); PMEMoid oid = OID_NULL; POBJ_FREE(&oid); int err = 0; err = pmemobj_alloc(pop, NULL, SIZE_MAX, 0, NULL, NULL); UT_ASSERTeq(err, -1); UT_ASSERTeq(errno, ENOMEM); err = pmemobj_zalloc(pop, NULL, SIZE_MAX, 0); UT_ASSERTeq(err, -1); UT_ASSERTeq(errno, ENOMEM); err = pmemobj_alloc(pop, NULL, PMEMOBJ_MAX_ALLOC_SIZE + 1, 0, NULL, NULL); UT_ASSERTeq(err, -1); UT_ASSERTeq(errno, ENOMEM); err = pmemobj_zalloc(pop, NULL, PMEMOBJ_MAX_ALLOC_SIZE + 1, 0); UT_ASSERTeq(err, -1); UT_ASSERTeq(errno, ENOMEM); } static void test_realloc_api(PMEMobjpool *pop) { PMEMoid oid = OID_NULL; int ret; ret = pmemobj_alloc(pop, &oid, 128, 0, NULL, NULL); UT_ASSERTeq(ret, 0); UT_ASSERT(!OID_IS_NULL(oid)); UT_OUT("alloc: %u, size: %zu", 128, pmemobj_alloc_usable_size(oid)); /* grow */ ret = pmemobj_realloc(pop, &oid, 655360, 0); UT_ASSERTeq(ret, 0); UT_ASSERT(!OID_IS_NULL(oid)); UT_OUT("realloc: %u => %u, size: %zu", 128, 655360, pmemobj_alloc_usable_size(oid)); /* shrink */ ret = pmemobj_realloc(pop, &oid, 1, 0); UT_ASSERTeq(ret, 0); UT_ASSERT(!OID_IS_NULL(oid)); UT_OUT("realloc: %u => %u, size: %zu", 655360, 1, pmemobj_alloc_usable_size(oid)); /* free */ ret = pmemobj_realloc(pop, &oid, 0, 0); UT_ASSERTeq(ret, 0); UT_ASSERT(OID_IS_NULL(oid)); UT_OUT("free"); /* alloc */ ret = pmemobj_realloc(pop, &oid, 777, 0); UT_ASSERTeq(ret, 0); UT_ASSERT(!OID_IS_NULL(oid)); UT_OUT("realloc: %u => %u, size: %zu", 0, 777, pmemobj_alloc_usable_size(oid)); /* shrink */ ret = pmemobj_realloc(pop, &oid, 1, 0); UT_ASSERTeq(ret, 0); UT_ASSERT(!OID_IS_NULL(oid)); UT_OUT("realloc: %u => %u, size: %zu", 777, 1, pmemobj_alloc_usable_size(oid)); pmemobj_free(&oid); UT_ASSERT(OID_IS_NULL(oid)); UT_ASSERTeq(pmemobj_alloc_usable_size(oid), 0); UT_OUT("free"); /* alloc */ ret = pmemobj_realloc(pop, &oid, 1, 0); UT_ASSERTeq(ret, 0); UT_ASSERT(!OID_IS_NULL(oid)); UT_OUT("realloc: %u => %u, size: %zu", 0, 1, pmemobj_alloc_usable_size(oid)); /* do nothing */ ret = pmemobj_realloc(pop, &oid, 1, 0); UT_ASSERTeq(ret, 0); UT_ASSERT(!OID_IS_NULL(oid)); UT_OUT("realloc: %u => %u, size: %zu", 1, 1, pmemobj_alloc_usable_size(oid)); pmemobj_free(&oid); UT_ASSERT(OID_IS_NULL(oid)); UT_OUT("free"); /* do nothing */ ret = pmemobj_realloc(pop, &oid, 0, 0); UT_ASSERTeq(ret, 0); UT_ASSERT(OID_IS_NULL(oid)); /* alloc */ ret = pmemobj_realloc(pop, &oid, 1, 0); UT_ASSERTeq(ret, 0); UT_ASSERT(!OID_IS_NULL(oid)); /* grow beyond reasonable size */ ret = pmemobj_realloc(pop, &oid, SIZE_MAX, 0); UT_ASSERTeq(ret, -1); UT_ASSERTeq(errno, ENOMEM); ret = pmemobj_realloc(pop, &oid, PMEMOBJ_MAX_ALLOC_SIZE + 1, 0); UT_ASSERTeq(ret, -1); UT_ASSERTeq(errno, ENOMEM); pmemobj_free(&oid); UT_ASSERT(OID_IS_NULL(oid)); } static void test_list_api(PMEMobjpool *pop) { TOID(struct dummy_root) root; root = POBJ_ROOT(pop, struct dummy_root); int nodes_count = 0; UT_ASSERTeq(pmemobj_type_num(root.oid), POBJ_ROOT_TYPE_NUM); UT_COMPILE_ERROR_ON(TOID_TYPE_NUM_OF(root) != POBJ_ROOT_TYPE_NUM); TOID(struct dummy_node) first; TOID(struct dummy_node) iter; POBJ_LIST_FOREACH_REVERSE(iter, &D_RO(root)->dummies, plist) { UT_OUT("POBJ_LIST_FOREACH_REVERSE: dummy_node %d", D_RO(iter)->value); nodes_count++; } UT_ASSERTeq(nodes_count, 0); int test_val = TEST_VALUE; PMEMoid ret; /* should fail */ ret = POBJ_LIST_INSERT_NEW_HEAD(pop, &D_RW(root)->dummies, plist, SIZE_MAX, dummy_node_constructor, &test_val); UT_ASSERTeq(errno, ENOMEM); UT_ASSERT(OID_IS_NULL(ret)); errno = 0; ret = POBJ_LIST_INSERT_NEW_HEAD(pop, &D_RW(root)->dummies, plist, PMEMOBJ_MAX_ALLOC_SIZE + 1, dummy_node_constructor, &test_val); UT_ASSERTeq(errno, ENOMEM); UT_ASSERT(OID_IS_NULL(ret)); POBJ_LIST_INSERT_NEW_HEAD(pop, &D_RW(root)->dummies, plist, sizeof(struct dummy_node), dummy_node_constructor, &test_val); test_val++; POBJ_LIST_INSERT_NEW_TAIL(pop, &D_RW(root)->dummies, plist, sizeof(struct dummy_node), dummy_node_constructor, &test_val); TOID(struct dummy_node) inserted = POBJ_LIST_FIRST(&D_RW(root)->dummies); UT_ASSERTeq(pmemobj_type_num(inserted.oid), TOID_TYPE_NUM(struct dummy_node)); TOID(struct dummy_node) node; POBJ_ZNEW(pop, &node, struct dummy_node); POBJ_LIST_INSERT_HEAD(pop, &D_RW(root)->dummies, node, plist); nodes_count = 0; POBJ_LIST_FOREACH(iter, &D_RO(root)->dummies, plist) { UT_OUT("POBJ_LIST_FOREACH: dummy_node %d", D_RO(iter)->value); nodes_count++; } UT_ASSERTeq(nodes_count, 3); /* now do the same, but w/o using FOREACH macro */ nodes_count = 0; first = POBJ_LIST_FIRST(&D_RO(root)->dummies); iter = first; do { UT_OUT("POBJ_LIST_NEXT: dummy_node %d", D_RO(iter)->value); nodes_count++; iter = POBJ_LIST_NEXT(iter, plist); } while (!TOID_EQUALS(iter, first)); UT_ASSERTeq(nodes_count, 3); POBJ_LIST_MOVE_ELEMENT_HEAD(pop, &D_RW(root)->dummies, &D_RW(root)->moved, node, plist, plist_m); UT_ASSERTeq(POBJ_LIST_EMPTY(&D_RW(root)->moved), 0); POBJ_LIST_MOVE_ELEMENT_HEAD(pop, &D_RW(root)->moved, &D_RW(root)->dummies, node, plist_m, plist); POBJ_LIST_MOVE_ELEMENT_TAIL(pop, &D_RW(root)->dummies, &D_RW(root)->moved, node, plist, plist_m); UT_ASSERTeq(POBJ_LIST_EMPTY(&D_RW(root)->moved), 0); POBJ_LIST_MOVE_ELEMENT_TAIL(pop, &D_RW(root)->moved, &D_RW(root)->dummies, node, plist_m, plist); POBJ_LIST_REMOVE(pop, &D_RW(root)->dummies, node, plist); POBJ_LIST_INSERT_TAIL(pop, &D_RW(root)->dummies, node, plist); POBJ_LIST_REMOVE_FREE(pop, &D_RW(root)->dummies, node, plist); nodes_count = 0; POBJ_LIST_FOREACH_REVERSE(iter, &D_RO(root)->dummies, plist) { UT_OUT("POBJ_LIST_FOREACH_REVERSE: dummy_node %d", D_RO(iter)->value); nodes_count++; } UT_ASSERTeq(nodes_count, 2); /* now do the same, but w/o using FOREACH macro */ nodes_count = 0; first = POBJ_LIST_FIRST(&D_RO(root)->dummies); iter = first; do { UT_OUT("POBJ_LIST_PREV: dummy_node %d", D_RO(iter)->value); nodes_count++; iter = POBJ_LIST_PREV(iter, plist); } while (!TOID_EQUALS(iter, first)); UT_ASSERTeq(nodes_count, 2); test_val++; POBJ_LIST_INSERT_NEW_AFTER(pop, &D_RW(root)->dummies, POBJ_LIST_FIRST(&D_RO(root)->dummies), plist, sizeof(struct dummy_node), dummy_node_constructor, &test_val); test_val++; POBJ_LIST_INSERT_NEW_BEFORE(pop, &D_RW(root)->dummies, POBJ_LIST_LAST(&D_RO(root)->dummies, plist), plist, sizeof(struct dummy_node), dummy_node_constructor, &test_val); nodes_count = 0; POBJ_LIST_FOREACH_REVERSE(iter, &D_RO(root)->dummies, plist) { UT_OUT("POBJ_LIST_FOREACH_REVERSE: dummy_node %d", D_RO(iter)->value); nodes_count++; } UT_ASSERTeq(nodes_count, 4); /* now do the same, but w/o using FOREACH macro */ nodes_count = 0; first = POBJ_LIST_LAST(&D_RO(root)->dummies, plist); iter = first; do { UT_OUT("POBJ_LIST_PREV: dummy_node %d", D_RO(iter)->value); nodes_count++; iter = POBJ_LIST_PREV(iter, plist); } while (!TOID_EQUALS(iter, first)); UT_ASSERTeq(nodes_count, 4); } static void test_tx_api(PMEMobjpool *pop) { TOID(struct dummy_root) root; TOID_ASSIGN(root, pmemobj_root(pop, sizeof(struct dummy_root))); int *vstate = NULL; /* volatile state */ TX_BEGIN_PARAM(pop, TX_PARAM_MUTEX, &D_RW(root)->lock) { vstate = (int *)MALLOC(sizeof(*vstate)); *vstate = TEST_VALUE; TX_ADD(root); D_RW(root)->value = *vstate; TOID_ASSIGN(D_RW(root)->node, OID_NULL); } TX_FINALLY { FREE(vstate); vstate = NULL; } TX_END UT_ASSERTeq(vstate, NULL); UT_ASSERTeq(D_RW(root)->value, TEST_VALUE); TX_BEGIN_PARAM(pop, TX_PARAM_MUTEX, &D_RW(root)->lock) { TX_ADD(root); D_RW(root)->node = TX_ALLOC(struct dummy_node, SIZE_MAX); UT_ASSERT(0); /* should not get to this point */ } TX_ONABORT { UT_ASSERT(TOID_IS_NULL(D_RO(root)->node)); UT_ASSERTeq(errno, ENOMEM); } TX_END errno = 0; TX_BEGIN_PARAM(pop, TX_PARAM_MUTEX, &D_RW(root)->lock) { D_RW(root)->node = TX_ZALLOC(struct dummy_node, SIZE_MAX); UT_ASSERT(0); /* should not get to this point */ } TX_ONABORT { UT_ASSERT(TOID_IS_NULL(D_RO(root)->node)); UT_ASSERTeq(errno, ENOMEM); } TX_END errno = 0; TX_BEGIN_PARAM(pop, TX_PARAM_MUTEX, &D_RW(root)->lock) { D_RW(root)->node = TX_XALLOC(struct dummy_node, SIZE_MAX, POBJ_XALLOC_ZERO); UT_ASSERT(0); /* should not get to this point */ } TX_ONABORT { UT_ASSERT(TOID_IS_NULL(D_RO(root)->node)); UT_ASSERTeq(errno, ENOMEM); } TX_END errno = 0; TX_BEGIN_LOCK(pop, TX_PARAM_MUTEX, &D_RW(root)->lock) { D_RW(root)->node = TX_ALLOC(struct dummy_node, PMEMOBJ_MAX_ALLOC_SIZE + 1); UT_ASSERT(0); /* should not get to this point */ } TX_ONABORT { UT_ASSERT(TOID_IS_NULL(D_RO(root)->node)); UT_ASSERTeq(errno, ENOMEM); } TX_END errno = 0; TX_BEGIN_PARAM(pop, TX_PARAM_MUTEX, &D_RW(root)->lock) { D_RW(root)->node = TX_ZALLOC(struct dummy_node, PMEMOBJ_MAX_ALLOC_SIZE + 1); UT_ASSERT(0); /* should not get to this point */ } TX_ONABORT { UT_ASSERT(TOID_IS_NULL(D_RO(root)->node)); UT_ASSERTeq(errno, ENOMEM); } TX_END errno = 0; TX_BEGIN_PARAM(pop, TX_PARAM_MUTEX, &D_RW(root)->lock) { TX_ADD(root); D_RW(root)->node = TX_ZNEW(struct dummy_node); D_RW(root)->node = TX_REALLOC(D_RO(root)->node, SIZE_MAX); UT_ASSERT(0); /* should not get to this point */ } TX_ONABORT { UT_ASSERTeq(errno, ENOMEM); } TX_END UT_ASSERT(TOID_IS_NULL(D_RO(root)->node)); errno = 0; TX_BEGIN_PARAM(pop, TX_PARAM_MUTEX, &D_RW(root)->lock) { TX_ADD(root); D_RW(root)->node = TX_ZNEW(struct dummy_node); D_RW(root)->node = TX_REALLOC(D_RO(root)->node, PMEMOBJ_MAX_ALLOC_SIZE + 1); UT_ASSERT(0); /* should not get to this point */ } TX_ONABORT { UT_ASSERTeq(errno, ENOMEM); } TX_END UT_ASSERT(TOID_IS_NULL(D_RO(root)->node)); errno = 0; TX_BEGIN_PARAM(pop, TX_PARAM_MUTEX, &D_RW(root)->lock) { TX_ADD(root); D_RW(root)->node = TX_ZNEW(struct dummy_node); TX_MEMSET(D_RW(D_RW(root)->node)->teststr, 'a', TEST_STR_LEN); TX_MEMCPY(D_RW(D_RW(root)->node)->teststr, TEST_STR, TEST_STR_LEN); TX_SET(D_RW(root)->node, value, TEST_VALUE); } TX_END UT_ASSERTeq(D_RW(D_RW(root)->node)->value, TEST_VALUE); UT_ASSERT(strncmp(D_RW(D_RW(root)->node)->teststr, TEST_STR, TEST_STR_LEN) == 0); TX_BEGIN_PARAM(pop, TX_PARAM_MUTEX, &D_RW(root)->lock) { TX_ADD(root); UT_ASSERT(!TOID_IS_NULL(D_RW(root)->node)); TX_FREE(D_RW(root)->node); D_RW(root)->node = TOID_NULL(struct dummy_node); TOID_ASSIGN(D_RW(root)->node, OID_NULL); } TX_END errno = 0; TX_BEGIN(pop) { TX_BEGIN(NULL) { } TX_ONCOMMIT { UT_ASSERT(0); } TX_END UT_ASSERT(errno == EFAULT); } TX_END errno = 0; TX_BEGIN(pop) { TX_BEGIN((PMEMobjpool *)(uintptr_t)7) { } TX_ONCOMMIT { UT_ASSERT(0); } TX_END UT_ASSERT(errno == EINVAL); } TX_END UT_OUT("%s", pmemobj_errormsg()); TX_BEGIN(pop) { pmemobj_tx_abort(ECANCELED); } TX_END UT_OUT("%s", pmemobj_errormsg()); } static void test_action_api(PMEMobjpool *pop) { struct pobj_action act[2]; uint64_t dest_value = 0; PMEMoid oid = pmemobj_reserve(pop, &act[0], 1, 1); pmemobj_set_value(pop, &act[1], &dest_value, 1); pmemobj_publish(pop, act, 2); UT_ASSERTeq(dest_value, 1); pmemobj_free(&oid); UT_ASSERT(OID_IS_NULL(oid)); oid = pmemobj_reserve(pop, &act[0], 1, 1); TX_BEGIN(pop) { pmemobj_tx_publish(act, 1); } TX_ONABORT { UT_ASSERT(0); } TX_END pmemobj_free(&oid); UT_ASSERT(OID_IS_NULL(oid)); dest_value = 0; oid = pmemobj_reserve(pop, &act[0], 1, 1); pmemobj_set_value(pop, &act[1], &dest_value, 1); pmemobj_cancel(pop, act, 2); UT_ASSERTeq(dest_value, 0); TOID(struct dummy_node) n = POBJ_RESERVE_NEW(pop, struct dummy_node, &act[0]); TOID(struct dummy_node_c) c = POBJ_RESERVE_ALLOC(pop, struct dummy_node_c, sizeof(struct dummy_node_c), &act[1]); pmemobj_publish(pop, act, 2); /* valgrind would warn in case they were not allocated */ D_RW(n)->value = 1; D_RW(c)->value = 1; pmemobj_persist(pop, D_RW(n), sizeof(struct dummy_node)); pmemobj_persist(pop, D_RW(c), sizeof(struct dummy_node_c)); } static void test_offsetof(void) { TOID(struct dummy_root) r; TOID(struct dummy_node) n; UT_COMPILE_ERROR_ON(TOID_OFFSETOF(r, value) != offsetof(struct dummy_root, value)); UT_COMPILE_ERROR_ON(TOID_OFFSETOF(r, lock) != offsetof(struct dummy_root, lock)); UT_COMPILE_ERROR_ON(TOID_OFFSETOF(r, node) != offsetof(struct dummy_root, node)); UT_COMPILE_ERROR_ON(TOID_OFFSETOF(r, dummies) != offsetof(struct dummy_root, dummies)); UT_COMPILE_ERROR_ON(TOID_OFFSETOF(r, moved) != offsetof(struct dummy_root, moved)); UT_COMPILE_ERROR_ON(TOID_OFFSETOF(n, value) != offsetof(struct dummy_node, value)); UT_COMPILE_ERROR_ON(TOID_OFFSETOF(n, teststr) != offsetof(struct dummy_node, teststr)); UT_COMPILE_ERROR_ON(TOID_OFFSETOF(n, plist) != offsetof(struct dummy_node, plist)); UT_COMPILE_ERROR_ON(TOID_OFFSETOF(n, plist_m) != offsetof(struct dummy_node, plist_m)); } static void test_layout(void) { /* get number of declared types when there are no types declared */ POBJ_LAYOUT_BEGIN(mylayout); POBJ_LAYOUT_END(mylayout); size_t number_of_declared_types = POBJ_LAYOUT_TYPES_NUM(mylayout); UT_ASSERTeq(number_of_declared_types, 0); } static void test_root_size(PMEMobjpool *pop) { UT_ASSERTeq(pmemobj_root_size(pop), 0); size_t alloc_size = sizeof(struct dummy_root); pmemobj_root(pop, alloc_size); UT_ASSERTeq(pmemobj_root_size(pop), sizeof(struct dummy_root)); } int main(int argc, char *argv[]) { START(argc, argv, "obj_basic_integration"); /* root doesn't count */ UT_COMPILE_ERROR_ON(POBJ_LAYOUT_TYPES_NUM(basic) != 2); if (argc < 2 || argc > 3) UT_FATAL("usage: %s file-name [inject_fault]", argv[0]); const char *path = argv[1]; const char *opt = argv[2]; PMEMobjpool *pop = NULL; if ((pop = pmemobj_create(path, POBJ_LAYOUT_NAME(basic), 0, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create: %s", path); test_root_size(pop); test_alloc_api(pop); test_realloc_api(pop); test_list_api(pop); test_tx_api(pop); test_action_api(pop); test_offsetof(); test_layout(); pmemobj_close(pop); /* fault injection */ if (argc == 3 && strcmp(opt, "inject_fault") == 0) { if (pmemobj_fault_injection_enabled()) { pmemobj_inject_fault_at(PMEM_MALLOC, 1, "heap_check_remote"); pop = pmemobj_open(path, POBJ_LAYOUT_NAME(basic)); UT_ASSERTeq(pop, NULL); UT_ASSERTeq(errno, ENOMEM); } } if ((pop = pmemobj_open(path, POBJ_LAYOUT_NAME(basic))) == NULL) UT_FATAL("!pmemobj_open: %s", path); /* second open should fail, checks file locking */ if ((pmemobj_open(path, POBJ_LAYOUT_NAME(basic))) != NULL) UT_FATAL("!pmemobj_open: %s", path); pmemobj_close(pop); int result = pmemobj_check(path, POBJ_LAYOUT_NAME(basic)); if (result < 0) UT_OUT("!%s: pmemobj_check", path); else if (result == 0) UT_OUT("%s: pmemobj_check: not consistent", path); DONE(NULL); }
17,784
25.154412
68
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_pmemcheck/obj_pmemcheck.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2018, Intel Corporation */ #include "unittest.h" #include "valgrind_internal.h" struct foo { PMEMmutex bar; }; static void test_mutex_pmem_mapping_register(PMEMobjpool *pop) { PMEMoid foo; int ret = pmemobj_alloc(pop, &foo, sizeof(struct foo), 0, NULL, NULL); UT_ASSERTeq(ret, 0); UT_ASSERT(!OID_IS_NULL(foo)); struct foo *foop = pmemobj_direct(foo); ret = pmemobj_mutex_lock(pop, &foop->bar); /* foo->bar has been removed from pmem mappings collection */ VALGRIND_PRINT_PMEM_MAPPINGS; UT_ASSERTeq(ret, 0); ret = pmemobj_mutex_unlock(pop, &foop->bar); UT_ASSERTeq(ret, 0); pmemobj_free(&foo); /* the entire foo object has been re-registered as pmem mapping */ VALGRIND_PRINT_PMEM_MAPPINGS; } int main(int argc, char *argv[]) { START(argc, argv, "obj_pmemcheck"); if (argc != 2) UT_FATAL("usage: %s [file]", argv[0]); PMEMobjpool *pop; if ((pop = pmemobj_create(argv[1], "pmemcheck", PMEMOBJ_MIN_POOL, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create"); test_mutex_pmem_mapping_register(pop); pmemobj_close(pop); DONE(NULL); }
1,127
21.56
71
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmreorder_simple/pmreorder_simple.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2018, Intel Corporation */ /* * pmreorder_simple.c -- a simple unit test for store reordering * * usage: pmreorder_simple g|b|c|m file * g - write data in a consistent manner * b - write data in a possibly inconsistent manner * c - check data consistency * m - write data to the pool in a consistent way, * but at the beginning logs some inconsistent values * * See README file for more details. */ #include "unittest.h" #include "util.h" #include "valgrind_internal.h" /* * The struct three_field is inconsistent if flag is set and the fields have * different values. */ struct three_field { int first_field; int second_field; int third_field; int flag; }; /* * write_consistent -- (internal) write data in a consistent manner */ static void write_consistent(struct three_field *structp) { structp->first_field = 1; structp->second_field = 1; structp->third_field = 1; pmem_persist(&structp->first_field, sizeof(int) * 3); structp->flag = 1; pmem_persist(&structp->flag, sizeof(structp->flag)); } /* * write_inconsistent -- (internal) write data in an inconsistent manner. */ static void write_inconsistent(struct three_field *structp) { structp->flag = 1; structp->first_field = 1; structp->second_field = 1; structp->third_field = 1; pmem_persist(structp, sizeof(*structp)); } /* * check_consistency -- (internal) check struct three_field consistency */ static int check_consistency(struct three_field *structp) { int consistent = 0; if (structp->flag) consistent = (structp->first_field != structp->second_field) || (structp->first_field != structp->third_field); return consistent; } int main(int argc, char *argv[]) { START(argc, argv, "pmreorder_simple"); util_init(); if ((argc != 3) || (strchr("gbcm", argv[1][0]) == NULL) || argv[1][1] != '\0') UT_FATAL("usage: %s g|b|c|m file", argv[0]); int fd = OPEN(argv[2], O_RDWR); size_t size; /* mmap and register in valgrind pmemcheck */ void *map = pmem_map_file(argv[2], 0, 0, 0, &size, NULL); UT_ASSERTne(map, NULL); struct three_field *structp = map; char opt = argv[1][0]; /* clear the struct to get a consistent start state for writing */ if (strchr("gb", opt)) pmem_memset_persist(structp, 0, sizeof(*structp)); else if (strchr("m", opt)) { /* set test values to log an inconsistent start state */ pmem_memset_persist(&structp->flag, 1, sizeof(int)); pmem_memset_persist(&structp->first_field, 0, sizeof(int) * 2); pmem_memset_persist(&structp->third_field, 1, sizeof(int)); /* clear the struct to get back a consistent start state */ pmem_memset_persist(structp, 0, sizeof(*structp)); } /* verify that DEFAULT_REORDER restores default engine */ VALGRIND_EMIT_LOG("PMREORDER_MARKER_CHANGE.BEGIN"); switch (opt) { case 'g': write_consistent(structp); break; case 'b': write_inconsistent(structp); break; case 'm': write_consistent(structp); break; case 'c': return check_consistency(structp); default: UT_FATAL("Unrecognized option %c", opt); } VALGRIND_EMIT_LOG("PMREORDER_MARKER_CHANGE.END"); /* check if undefined marker will not cause an issue */ VALGRIND_EMIT_LOG("PMREORDER_MARKER_UNDEFINED.BEGIN"); VALGRIND_EMIT_LOG("PMREORDER_MARKER_UNDEFINED.END"); CLOSE(fd); DONE(NULL); }
3,335
24.082707
76
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/remote_obj_basic/remote_obj_basic.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016, Intel Corporation */ /* * remote_obj_basic.c -- unit test for remote tests support * * usage: remote_obj_basic <create|open> <poolset-file> */ #include "unittest.h" #define LAYOUT_NAME "remote_obj_basic" int main(int argc, char *argv[]) { PMEMobjpool *pop; START(argc, argv, "remote_obj_basic"); if (argc != 3) UT_FATAL("usage: %s <create|open> <poolset-file>", argv[0]); const char *mode = argv[1]; const char *file = argv[2]; if (strcmp(mode, "create") == 0) { if ((pop = pmemobj_create(file, LAYOUT_NAME, 0, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create: %s", file); else UT_OUT("The pool set %s has been created", file); } else if (strcmp(mode, "open") == 0) { if ((pop = pmemobj_open(file, LAYOUT_NAME)) == NULL) UT_FATAL("!pmemobj_open: %s", file); else UT_OUT("The pool set %s has been opened", file); } else { UT_FATAL("wrong mode: %s\n", argv[1]); } pmemobj_close(pop); DONE(NULL); }
1,019
20.25
62
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_ctl_debug/obj_ctl_debug.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2018, Intel Corporation */ /* * obj_ctl_debug.c -- tests for the ctl debug namesapce entry points */ #include "unittest.h" #include "../../libpmemobj/obj.h" #define LAYOUT "obj_ctl_debug" #define BUFFER_SIZE 128 #define ALLOC_PATTERN 0xAC static void test_alloc_pattern(PMEMobjpool *pop) { int ret; int pattern; PMEMoid oid; /* check default pattern */ ret = pmemobj_ctl_get(pop, "debug.heap.alloc_pattern", &pattern); UT_ASSERTeq(ret, 0); UT_ASSERTeq(pattern, PALLOC_CTL_DEBUG_NO_PATTERN); /* check set pattern */ pattern = ALLOC_PATTERN; ret = pmemobj_ctl_set(pop, "debug.heap.alloc_pattern", &pattern); UT_ASSERTeq(ret, 0); UT_ASSERTeq(pop->heap.alloc_pattern, pattern); /* check alloc with pattern */ ret = pmemobj_alloc(pop, &oid, BUFFER_SIZE, 0, NULL, NULL); UT_ASSERTeq(ret, 0); char *buff = pmemobj_direct(oid); int i; for (i = 0; i < BUFFER_SIZE; i++) /* should trigger memcheck error: read uninitialized values */ UT_ASSERTeq(*(buff + i), (char)pattern); pmemobj_free(&oid); } int main(int argc, char *argv[]) { START(argc, argv, "obj_ctl_debug"); if (argc < 2) UT_FATAL("usage: %s filename", argv[0]); const char *path = argv[1]; PMEMobjpool *pop; if ((pop = pmemobj_create(path, LAYOUT, PMEMOBJ_MIN_POOL, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_open: %s", path); test_alloc_pattern(pop); pmemobj_close(pop); DONE(NULL); }
1,452
20.367647
68
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_list_macro/obj_list_macro.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2019, Intel Corporation */ /* * obj_list_macro.c -- unit tests for list module */ #include <stddef.h> #include "libpmemobj.h" #include "unittest.h" TOID_DECLARE(struct item, 0); TOID_DECLARE(struct list, 1); struct item { int id; POBJ_LIST_ENTRY(struct item) next; }; struct list { POBJ_LIST_HEAD(listhead, struct item) head; }; /* global lists */ static TOID(struct list) List; static TOID(struct list) List_sec; #define LAYOUT_NAME "list_macros" /* usage macros */ #define FATAL_USAGE()\ UT_FATAL("usage: obj_list_macro <file> [PRnifr]") #define FATAL_USAGE_PRINT()\ UT_FATAL("usage: obj_list_macro <file> P:<list>") #define FATAL_USAGE_PRINT_REVERSE()\ UT_FATAL("usage: obj_list_macro <file> R:<list>") #define FATAL_USAGE_INSERT()\ UT_FATAL("usage: obj_list_macro <file> i:<where>:<num>[:<id>]") #define FATAL_USAGE_INSERT_NEW()\ UT_FATAL("usage: obj_list_macro <file> n:<where>:<num>[:<id>]") #define FATAL_USAGE_REMOVE_FREE()\ UT_FATAL("usage: obj_list_macro <file> f:<list>:<num>") #define FATAL_USAGE_REMOVE()\ UT_FATAL("usage: obj_list_macro <file> r:<list>:<num>") #define FATAL_USAGE_MOVE()\ UT_FATAL("usage: obj_list_macro <file> m:<num>:<where>:<num>") /* * get_item_list -- get nth item from list */ static TOID(struct item) get_item_list(TOID(struct list) list, int n) { TOID(struct item) item; if (n >= 0) { POBJ_LIST_FOREACH(item, &D_RO(list)->head, next) { if (n == 0) return item; n--; } } else { POBJ_LIST_FOREACH_REVERSE(item, &D_RO(list)->head, next) { n++; if (n == 0) return item; } } return TOID_NULL(struct item); } /* * do_print -- print list elements in normal order */ static void do_print(PMEMobjpool *pop, const char *arg) { int L; /* which list */ if (sscanf(arg, "P:%d", &L) != 1) FATAL_USAGE_PRINT(); TOID(struct item) item; if (L == 1) { UT_OUT("list:"); POBJ_LIST_FOREACH(item, &D_RW(List)->head, next) { UT_OUT("id = %d", D_RO(item)->id); } } else if (L == 2) { UT_OUT("list sec:"); POBJ_LIST_FOREACH(item, &D_RW(List_sec)->head, next) { UT_OUT("id = %d", D_RO(item)->id); } } else { FATAL_USAGE_PRINT(); } } /* * do_print_reverse -- print list elements in reverse order */ static void do_print_reverse(PMEMobjpool *pop, const char *arg) { int L; /* which list */ if (sscanf(arg, "R:%d", &L) != 1) FATAL_USAGE_PRINT_REVERSE(); TOID(struct item) item; if (L == 1) { UT_OUT("list reverse:"); POBJ_LIST_FOREACH_REVERSE(item, &D_RW(List)->head, next) { UT_OUT("id = %d", D_RO(item)->id); } } else if (L == 2) { UT_OUT("list sec reverse:"); POBJ_LIST_FOREACH_REVERSE(item, &D_RW(List_sec)->head, next) { UT_OUT("id = %d", D_RO(item)->id); } } else { FATAL_USAGE_PRINT_REVERSE(); } } /* * item_constructor -- constructor which sets the item's id to * new value */ static int item_constructor(PMEMobjpool *pop, void *ptr, void *arg) { int id = *(int *)arg; struct item *item = (struct item *)ptr; item->id = id; UT_OUT("constructor(id = %d)", id); return 0; } /* * do_insert_new -- insert new element to list */ static void do_insert_new(PMEMobjpool *pop, const char *arg) { int n; /* which element on List */ int before; int id; int ret = sscanf(arg, "n:%d:%d:%d", &before, &n, &id); if (ret != 3 && ret != 2) FATAL_USAGE_INSERT_NEW(); int ptr = (ret == 3) ? id : 0; TOID(struct item) item; if (POBJ_LIST_EMPTY(&D_RW(List)->head)) { POBJ_LIST_INSERT_NEW_HEAD(pop, &D_RW(List)->head, next, sizeof(struct item), item_constructor, &ptr); if (POBJ_LIST_EMPTY(&D_RW(List)->head)) UT_FATAL("POBJ_LIST_INSERT_NEW_HEAD"); } else { item = get_item_list(List, n); UT_ASSERT(!TOID_IS_NULL(item)); if (!before) { POBJ_LIST_INSERT_NEW_AFTER(pop, &D_RW(List)->head, item, next, sizeof(struct item), item_constructor, &ptr); if (TOID_IS_NULL(POBJ_LIST_NEXT(item, next))) UT_FATAL("POBJ_LIST_INSERT_NEW_AFTER"); } else { POBJ_LIST_INSERT_NEW_BEFORE(pop, &D_RW(List)->head, item, next, sizeof(struct item), item_constructor, &ptr); if (TOID_IS_NULL(POBJ_LIST_PREV(item, next))) UT_FATAL("POBJ_LIST_INSERT_NEW_BEFORE"); } } } /* * do_insert -- insert element to list */ static void do_insert(PMEMobjpool *pop, const char *arg) { int n; /* which element on List */ int before; int id; int ret = sscanf(arg, "i:%d:%d:%d", &before, &n, &id); if (ret != 3 && ret != 2) FATAL_USAGE_INSERT(); int ptr = (ret == 3) ? id : 0; TOID(struct item) item; POBJ_NEW(pop, &item, struct item, item_constructor, &ptr); UT_ASSERT(!TOID_IS_NULL(item)); errno = 0; if (POBJ_LIST_EMPTY(&D_RW(List)->head)) { ret = POBJ_LIST_INSERT_HEAD(pop, &D_RW(List)->head, item, next); if (ret) { UT_ASSERTeq(ret, -1); UT_ASSERTne(errno, 0); UT_FATAL("POBJ_LIST_INSERT_HEAD"); } if (POBJ_LIST_EMPTY(&D_RW(List)->head)) UT_FATAL("POBJ_LIST_INSERT_HEAD"); } else { TOID(struct item) elm = get_item_list(List, n); UT_ASSERT(!TOID_IS_NULL(elm)); if (!before) { ret = POBJ_LIST_INSERT_AFTER(pop, &D_RW(List)->head, elm, item, next); if (ret) { UT_ASSERTeq(ret, -1); UT_ASSERTne(errno, 0); UT_FATAL("POBJ_LIST_INSERT_AFTER"); } if (!TOID_EQUALS(item, POBJ_LIST_NEXT(elm, next))) UT_FATAL("POBJ_LIST_INSERT_AFTER"); } else { ret = POBJ_LIST_INSERT_BEFORE(pop, &D_RW(List)->head, elm, item, next); if (ret) { UT_ASSERTeq(ret, -1); UT_ASSERTne(errno, 0); UT_FATAL("POBJ_LIST_INSERT_BEFORE"); } if (!TOID_EQUALS(item, POBJ_LIST_PREV(elm, next))) UT_FATAL("POBJ_LIST_INSERT_BEFORE"); } } } /* * do_remove_free -- remove and free element from list */ static void do_remove_free(PMEMobjpool *pop, const char *arg) { int L; /* which list */ int n; /* which element */ if (sscanf(arg, "f:%d:%d", &L, &n) != 2) FATAL_USAGE_REMOVE_FREE(); TOID(struct item) item; TOID(struct list) tmp_list; if (L == 1) tmp_list = List; else if (L == 2) tmp_list = List_sec; else FATAL_USAGE_REMOVE_FREE(); if (POBJ_LIST_EMPTY(&D_RW(tmp_list)->head)) return; item = get_item_list(tmp_list, n); UT_ASSERT(!TOID_IS_NULL(item)); errno = 0; int ret = POBJ_LIST_REMOVE_FREE(pop, &D_RW(tmp_list)->head, item, next); if (ret) { UT_ASSERTeq(ret, -1); UT_ASSERTne(errno, 0); UT_FATAL("POBJ_LIST_REMOVE_FREE"); } } /* * do_remove -- remove element from list */ static void do_remove(PMEMobjpool *pop, const char *arg) { int L; /* which list */ int n; /* which element */ if (sscanf(arg, "r:%d:%d", &L, &n) != 2) FATAL_USAGE_REMOVE(); TOID(struct item) item; TOID(struct list) tmp_list; if (L == 1) tmp_list = List; else if (L == 2) tmp_list = List_sec; else FATAL_USAGE_REMOVE_FREE(); if (POBJ_LIST_EMPTY(&D_RW(tmp_list)->head)) return; item = get_item_list(tmp_list, n); UT_ASSERT(!TOID_IS_NULL(item)); errno = 0; int ret = POBJ_LIST_REMOVE(pop, &D_RW(tmp_list)->head, item, next); if (ret) { UT_ASSERTeq(ret, -1); UT_ASSERTne(errno, 0); UT_FATAL("POBJ_LIST_REMOVE"); } POBJ_FREE(&item); } /* * do_move -- move element from one list to another */ static void do_move(PMEMobjpool *pop, const char *arg) { int n; int d; int before; if (sscanf(arg, "m:%d:%d:%d", &n, &before, &d) != 3) FATAL_USAGE_MOVE(); int ret; errno = 0; if (POBJ_LIST_EMPTY(&D_RW(List)->head)) return; if (POBJ_LIST_EMPTY(&D_RW(List_sec)->head)) { ret = POBJ_LIST_MOVE_ELEMENT_HEAD(pop, &D_RW(List)->head, &D_RW(List_sec)->head, get_item_list(List, n), next, next); if (ret) { UT_ASSERTeq(ret, -1); UT_ASSERTne(errno, 0); UT_FATAL("POBJ_LIST_MOVE_ELEMENT_HEAD"); } } else { if (before) { ret = POBJ_LIST_MOVE_ELEMENT_BEFORE(pop, &D_RW(List)->head, &D_RW(List_sec)->head, get_item_list(List_sec, d), get_item_list(List, n), next, next); if (ret) { UT_ASSERTeq(ret, -1); UT_ASSERTne(errno, 0); UT_FATAL("POBJ_LIST_MOVE_ELEMENT_BEFORE"); } } else { ret = POBJ_LIST_MOVE_ELEMENT_AFTER(pop, &D_RW(List)->head, &D_RW(List_sec)->head, get_item_list(List_sec, d), get_item_list(List, n), next, next); if (ret) { UT_ASSERTeq(ret, -1); UT_ASSERTne(errno, 0); UT_FATAL("POBJ_LIST_MOVE_ELEMENT_AFTER"); } } } } /* * do_cleanup -- de-initialization function */ static void do_cleanup(PMEMobjpool *pop, TOID(struct list) list) { int ret; errno = 0; while (!POBJ_LIST_EMPTY(&D_RW(list)->head)) { TOID(struct item) tmp = POBJ_LIST_FIRST(&D_RW(list)->head); ret = POBJ_LIST_REMOVE_FREE(pop, &D_RW(list)->head, tmp, next); UT_ASSERTeq(errno, 0); UT_ASSERTeq(ret, 0); } POBJ_FREE(&list); } int main(int argc, char *argv[]) { START(argc, argv, "obj_list_macro"); if (argc < 2) FATAL_USAGE(); const char *path = argv[1]; PMEMobjpool *pop; if ((pop = pmemobj_create(path, LAYOUT_NAME, PMEMOBJ_MIN_POOL, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create"); POBJ_ZNEW(pop, &List, struct list); POBJ_ZNEW(pop, &List_sec, struct list); int i; for (i = 2; i < argc; i++) { switch (argv[i][0]) { case 'P': do_print(pop, argv[i]); break; case 'R': do_print_reverse(pop, argv[i]); break; case 'n': do_insert_new(pop, argv[i]); break; case 'i': do_insert(pop, argv[i]); break; case 'f': do_remove_free(pop, argv[i]); break; case 'r': do_remove(pop, argv[i]); break; case 'm': do_move(pop, argv[i]); break; default: FATAL_USAGE(); } } do_cleanup(pop, List); do_cleanup(pop, List_sec); pmemobj_close(pop); DONE(NULL); }
9,625
21.756501
68
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_critnib_mt/obj_critnib_mt.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2018-2020, Intel Corporation */ /* * obj_critnib_mt.c -- multithreaded unit test for critnib */ #include <errno.h> #include "critnib.h" #include "rand.h" #include "os_thread.h" #include "unittest.h" #include "util.h" #include "valgrind_internal.h" #define NITER_FAST 200000000 #define NITER_MID 20000000 #define NITER_SLOW 2000000 #define MAXTHREADS 4096 static int nthreads; /* number of threads */ static int nrthreads; /* in mixed tests, read threads */ static int nwthreads; /* ... and write threads */ static uint64_t rnd_thid_r64(rng_t *seedp, uint16_t thid) { /* * Stick arg (thread index) onto bits 16..31, to make it impossible for * two worker threads to write the same value, while keeping both ends * pseudo-random. */ uint64_t r = rnd64_r(seedp); r &= ~0xffff0000ULL; r |= ((uint64_t)thid) << 16; return r; } static uint64_t helgrind_count(uint64_t x) { /* Convert total number of ops to per-thread. */ x /= (unsigned)nthreads; /* * Reduce iteration count when running on foogrind, by a factor of 64. * Multiple instances of foogrind cause exponential slowdown, so handle * that as well (not that it's very useful for us...). */ return x >> (6 * On_valgrind); } /* 1024 random numbers, shared between threads. */ static uint64_t the1024[1024]; static struct critnib *c; #define K 0xdeadbeefcafebabe static void * thread_read1(void *arg) { uint64_t niter = helgrind_count(NITER_FAST); for (uint64_t count = 0; count < niter; count++) UT_ASSERTeq(critnib_get(c, K), (void *)K); return NULL; } static void * thread_read1024(void *arg) { uint64_t niter = helgrind_count(NITER_FAST); for (uint64_t count = 0; count < niter; count++) { uint64_t v = the1024[count % ARRAY_SIZE(the1024)]; UT_ASSERTeq(critnib_get(c, v), (void *)v); } return NULL; } static void * thread_write1024(void *arg) { rng_t rng; randomize_r(&rng, (uintptr_t)arg); uint64_t w1024[1024]; for (int i = 0; i < ARRAY_SIZE(w1024); i++) w1024[i] = rnd_thid_r64(&rng, (uint16_t)(uintptr_t)arg); uint64_t niter = helgrind_count(NITER_SLOW); for (uint64_t count = 0; count < niter; count++) { uint64_t v = w1024[count % ARRAY_SIZE(w1024)]; critnib_insert(c, v, (void *)v); uint64_t r = (uint64_t)critnib_remove(c, v); UT_ASSERTeq(v, r); } return NULL; } static void * thread_read_write_remove(void *arg) { rng_t rng; randomize_r(&rng, (uintptr_t)arg); uint64_t niter = helgrind_count(NITER_SLOW); for (uint64_t count = 0; count < niter; count++) { uint64_t r, v = rnd_thid_r64(&rng, (uint16_t)(uintptr_t)arg); critnib_insert(c, v, (void *)v); r = (uint64_t)critnib_get(c, v); UT_ASSERTeq(r, v); r = (uint64_t)critnib_remove(c, v); UT_ASSERTeq(r, v); } return NULL; } /* * Reverse bits in a number: 1234 -> 4321 (swap _bit_ endianness). * * Doing this on successive numbers produces a van der Corput sequence, * which covers the space nicely (relevant for <= tests). */ static uint64_t revbits(uint64_t x) { uint64_t y = 0; uint64_t a = 1; uint64_t b = 0x8000000000000000; for (; b; a <<= 1, b >>= 1) { if (x & a) y |= b; } return y; } static void * thread_le1(void *arg) { uint64_t niter = helgrind_count(NITER_MID); for (uint64_t count = 0; count < niter; count++) { uint64_t y = revbits(count); if (y < K) UT_ASSERTeq(critnib_find_le(c, y), NULL); else UT_ASSERTeq(critnib_find_le(c, y), (void *)K); } return NULL; } static void * thread_le1024(void *arg) { uint64_t niter = helgrind_count(NITER_MID); for (uint64_t count = 0; count < niter; count++) { uint64_t y = revbits(count); critnib_find_le(c, y); } return NULL; } typedef void *(*thread_func_t)(void *); /* * Before starting the threads, we add "fixed_preload" of static values * (K and 1), or "random_preload" of random numbers. Can't have both. */ static void test(int fixed_preload, int random_preload, thread_func_t rthread, thread_func_t wthread) { c = critnib_new(); if (fixed_preload >= 1) critnib_insert(c, K, (void *)K); if (fixed_preload >= 2) critnib_insert(c, 1, (void *)1); for (int i = 0; i < random_preload; i++) critnib_insert(c, the1024[i], (void *)the1024[i]); os_thread_t th[MAXTHREADS], wr[MAXTHREADS]; int ntr = wthread ? nrthreads : nthreads; int ntw = wthread ? nwthreads : 0; for (int i = 0; i < ntr; i++) THREAD_CREATE(&th[i], 0, rthread, (void *)(uint64_t)i); for (int i = 0; i < ntw; i++) THREAD_CREATE(&wr[i], 0, wthread, (void *)(uint64_t)i); /* The threads work here... */ for (int i = 0; i < ntr; i++) { void *retval; THREAD_JOIN(&th[i], &retval); } for (int i = 0; i < ntw; i++) { void *retval; THREAD_JOIN(&wr[i], &retval); } critnib_delete(c); } int main(int argc, char *argv[]) { START(argc, argv, "obj_critnib_mt"); util_init(); randomize(1); /* use a fixed reproducible seed */ for (int i = 0; i < ARRAY_SIZE(the1024); i++) the1024[i] = rnd64(); nthreads = sysconf(_SC_NPROCESSORS_ONLN); if (nthreads > MAXTHREADS) nthreads = MAXTHREADS; if (!nthreads) nthreads = 8; nwthreads = nthreads / 2; if (!nwthreads) nwthreads = 1; nrthreads = nthreads - nwthreads; if (!nrthreads) nrthreads = 1; test(1, 0, thread_read1, thread_write1024); test(0, 1024, thread_read1024, thread_write1024); test(0, 0, thread_read_write_remove, NULL); test(1, 0, thread_le1, NULL); test(0, 1024, thread_le1024, NULL); DONE(NULL); }
5,467
20.527559
72
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_ctl_arenas/obj_ctl_arenas.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2019-2020, Intel Corporation */ /* * obj_ctl_arenas.c -- tests for the ctl entry points * usage: * obj_ctl_arenas <file> n - test for heap.narenas.total * * obj_ctl_arenas <file> s - test for heap.arena.[idx].size * and heap.thread.arena_id (RW) * * obj_ctl_arenas <file> c - test for heap.arena.create, * heap.arena.[idx].automatic and heap.narenas.automatic * obj_ctl_arenas <file> a - mt test for heap.arena.create * and heap.thread.arena_id * * obj_ctl_arenas <file> f - test for POBJ_ARENA_ID flag, * * obj_ctl_arenas <file> q - test for POBJ_ARENA_ID with * non-exists arena id * * obj_ctl_arenas <file> m - test for heap.narenas.max (RW) */ #include <sched.h> #include "sys_util.h" #include "unittest.h" #include "util.h" #define CHUNKSIZE ((size_t)1024 * 256) /* 256 kilobytes */ #define LAYOUT "obj_ctl_arenas" #define CTL_QUERY_LEN 256 #define NTHREAD 2 #define NTHREAD_ARENA 32 #define NOBJECT_THREAD 64 #define ALLOC_CLASS_ARENA 2 #define NTHREADX 16 #define NARENAS 16 #define DEFAULT_ARENAS_MAX (1 << 10) static os_mutex_t lock; static os_cond_t cond; static PMEMobjpool *pop; static int nth; static struct pobj_alloc_class_desc alloc_class[] = { { .header_type = POBJ_HEADER_NONE, .unit_size = 128, .units_per_block = 1000, .alignment = 0 }, { .header_type = POBJ_HEADER_NONE, .unit_size = 1024, .units_per_block = 1000, .alignment = 0 }, { .header_type = POBJ_HEADER_NONE, .unit_size = 111, .units_per_block = CHUNKSIZE / 111, .alignment = 0 }, }; struct arena_alloc { unsigned arena; PMEMoid oid; }; static struct arena_alloc ref; static void check_arena_size(unsigned arena_id, unsigned class_id) { int ret; size_t arena_size; char arena_idx_size[CTL_QUERY_LEN]; SNPRINTF(arena_idx_size, CTL_QUERY_LEN, "heap.arena.%u.size", arena_id); ret = pmemobj_ctl_get(pop, arena_idx_size, &arena_size); UT_ASSERTeq(ret, 0); size_t test = ALIGN_UP(alloc_class[class_id].unit_size * alloc_class[class_id].units_per_block, CHUNKSIZE); UT_ASSERTeq(test, arena_size); } static void create_alloc_class(void) { int ret; ret = pmemobj_ctl_set(pop, "heap.alloc_class.128.desc", &alloc_class[0]); UT_ASSERTeq(ret, 0); ret = pmemobj_ctl_set(pop, "heap.alloc_class.129.desc", &alloc_class[1]); UT_ASSERTeq(ret, 0); } static void * worker_arenas_size(void *arg) { int ret = -1; int idx = (int)(intptr_t)arg; int off_idx = idx + 128; unsigned arena_id; unsigned arena_id_new; ret = pmemobj_ctl_exec(pop, "heap.arena.create", &arena_id_new); UT_ASSERTeq(ret, 0); UT_ASSERT(arena_id_new >= 1); ret = pmemobj_ctl_set(pop, "heap.thread.arena_id", &arena_id_new); UT_ASSERTeq(ret, 0); ret = pmemobj_xalloc(pop, NULL, alloc_class[idx].unit_size, 0, POBJ_CLASS_ID(off_idx), NULL, NULL); UT_ASSERTeq(ret, 0); /* we need to test 2 arenas so 2 threads are needed here */ util_mutex_lock(&lock); nth++; if (nth == NTHREAD) os_cond_broadcast(&cond); else while (nth < NTHREAD) os_cond_wait(&cond, &lock); util_mutex_unlock(&lock); ret = pmemobj_ctl_get(pop, "heap.thread.arena_id", &arena_id); UT_ASSERTeq(ret, 0); UT_ASSERTeq(arena_id_new, arena_id); check_arena_size(arena_id, (unsigned)idx); return NULL; } static void * worker_arenas_flag(void *arg) { int ret; unsigned arenas[NARENAS]; for (unsigned i = 0; i < NARENAS; ++i) { ret = pmemobj_ctl_exec(pop, "heap.arena.create", &arenas[i]); UT_ASSERTeq(ret, 0); } /* * Tests POBJ_ARENA_ID with pmemobj_xalloc. * All object are frees after pthread join. */ for (unsigned i = 0; i < 2; i++) { ret = pmemobj_xalloc(pop, NULL, alloc_class[i].unit_size, 0, POBJ_CLASS_ID(i + 128) | \ POBJ_ARENA_ID(arenas[i]), NULL, NULL); UT_ASSERTeq(ret, 0); check_arena_size(arenas[i], i); } /* test POBJ_ARENA_ID with pmemobj_xreserve */ struct pobj_action act; PMEMoid oid = pmemobj_xreserve(pop, &act, alloc_class[0].unit_size, 1, POBJ_CLASS_ID(128) | POBJ_ARENA_ID(arenas[2])); pmemobj_publish(pop, &act, 1); pmemobj_free(&oid); UT_ASSERT(OID_IS_NULL(oid)); /* test POBJ_ARENA_ID with pmemobj_tx_xalloc */ TX_BEGIN(pop) { pmemobj_tx_xalloc(alloc_class[1].unit_size, 0, POBJ_CLASS_ID(129) | POBJ_ARENA_ID(arenas[3])); } TX_END check_arena_size(arenas[3], 1); return NULL; } static void * worker_arena_threads(void *arg) { int ret = -1; struct arena_alloc *ref = (struct arena_alloc *)arg; unsigned arena_id; ret = pmemobj_ctl_get(pop, "heap.thread.arena_id", &arena_id); UT_ASSERTeq(ret, 0); UT_ASSERT(arena_id != 0); ret = pmemobj_ctl_set(pop, "heap.thread.arena_id", &ref->arena); UT_ASSERTeq(ret, 0); PMEMoid oid[NOBJECT_THREAD]; unsigned d; for (int i = 0; i < NOBJECT_THREAD; i++) { ret = pmemobj_xalloc(pop, &oid[i], alloc_class[ALLOC_CLASS_ARENA].unit_size, 0, POBJ_CLASS_ID(ALLOC_CLASS_ARENA + 128), NULL, NULL); UT_ASSERTeq(ret, 0); d = labs((long)ref->oid.off - (long)oid[i].off); /* objects are in the same block as the first one */ ASSERT(d <= alloc_class[ALLOC_CLASS_ARENA].unit_size * (alloc_class[ALLOC_CLASS_ARENA].units_per_block - 1)); } for (int i = 0; i < NOBJECT_THREAD; i++) pmemobj_free(&oid[i]); return NULL; } static void worker_arena_ref_obj(struct arena_alloc *ref) { int ret = -1; ret = pmemobj_ctl_set(pop, "heap.thread.arena_id", &ref->arena); UT_ASSERTeq(ret, 0); ret = pmemobj_xalloc(pop, &ref->oid, alloc_class[ALLOC_CLASS_ARENA].unit_size, 0, POBJ_CLASS_ID(ALLOC_CLASS_ARENA + 128), NULL, NULL); UT_ASSERTeq(ret, 0); } int main(int argc, char *argv[]) { START(argc, argv, "obj_ctl_arenas"); if (argc != 3) UT_FATAL("usage: %s poolset [n|s|c|f|q|m|a]", argv[0]); const char *path = argv[1]; char t = argv[2][0]; if ((pop = pmemobj_create(path, LAYOUT, PMEMOBJ_MIN_POOL * 20, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_open: %s", path); int ret = 0; if (t == 'n') { unsigned narenas = 0; ret = pmemobj_ctl_get(pop, "heap.narenas.total", &narenas); UT_ASSERTeq(ret, 0); UT_ASSERTne(narenas, 0); } else if (t == 's') { os_thread_t threads[NTHREAD]; util_mutex_init(&lock); util_cond_init(&cond); create_alloc_class(); for (int i = 0; i < NTHREAD; i++) THREAD_CREATE(&threads[i], NULL, worker_arenas_size, (void *)(intptr_t)i); for (int i = 0; i < NTHREAD; i++) THREAD_JOIN(&threads[i], NULL); PMEMoid oid, oid2; POBJ_FOREACH_SAFE(pop, oid, oid2) pmemobj_free(&oid); util_mutex_destroy(&lock); util_cond_destroy(&cond); } else if (t == 'c') { char arena_idx_auto[CTL_QUERY_LEN]; unsigned narenas_b = 0; unsigned narenas_a = 0; unsigned narenas_n = 4; unsigned arena_id; unsigned all_auto; int automatic; ret = pmemobj_ctl_get(pop, "heap.narenas.total", &narenas_b); UT_ASSERTeq(ret, 0); /* all arenas created at the start should be set to auto */ for (unsigned i = 1; i <= narenas_b; i++) { SNPRINTF(arena_idx_auto, CTL_QUERY_LEN, "heap.arena.%u.automatic", i); ret = pmemobj_ctl_get(pop, arena_idx_auto, &automatic); UT_ASSERTeq(ret, 0); UT_ASSERTeq(automatic, 1); } ret = pmemobj_ctl_get(pop, "heap.narenas.automatic", &all_auto); UT_ASSERTeq(ret, 0); UT_ASSERTeq(narenas_b, all_auto); /* all arenas created by user should not be auto */ for (unsigned i = 1; i <= narenas_n; i++) { ret = pmemobj_ctl_exec(pop, "heap.arena.create", &arena_id); UT_ASSERTeq(ret, 0); UT_ASSERTeq(arena_id, narenas_b + i); SNPRINTF(arena_idx_auto, CTL_QUERY_LEN, "heap.arena.%u.automatic", arena_id); ret = pmemobj_ctl_get(pop, arena_idx_auto, &automatic); UT_ASSERTeq(automatic, 0); /* * after creation, number of auto * arenas should be the same */ ret = pmemobj_ctl_get(pop, "heap.narenas.automatic", &all_auto); UT_ASSERTeq(ret, 0); UT_ASSERTeq(narenas_b + i - 1, all_auto); /* change the state of created arena to auto */ int activate = 1; ret = pmemobj_ctl_set(pop, arena_idx_auto, &activate); UT_ASSERTeq(ret, 0); ret = pmemobj_ctl_get(pop, arena_idx_auto, &automatic); UT_ASSERTeq(ret, 0); UT_ASSERTeq(automatic, 1); /* number of auto arenas should increase */ ret = pmemobj_ctl_get(pop, "heap.narenas.automatic", &all_auto); UT_ASSERTeq(ret, 0); UT_ASSERTeq(narenas_b + i, all_auto); } ret = pmemobj_ctl_get(pop, "heap.narenas.total", &narenas_a); UT_ASSERTeq(ret, 0); UT_ASSERTeq(narenas_b + narenas_n, narenas_a); /* at least one automatic arena must exist */ for (unsigned i = 1; i <= narenas_a; i++) { SNPRINTF(arena_idx_auto, CTL_QUERY_LEN, "heap.arena.%u.automatic", i); automatic = 0; if (i < narenas_a) { ret = pmemobj_ctl_set(pop, arena_idx_auto, &automatic); UT_ASSERTeq(ret, 0); } else { /* * last auto arena - * cannot change the state to 0... */ ret = pmemobj_ctl_set(pop, arena_idx_auto, &automatic); UT_ASSERTeq(ret, -1); /* ...but can change (overwrite) to 1 */ automatic = 1; ret = pmemobj_ctl_set(pop, arena_idx_auto, &automatic); UT_ASSERTeq(ret, 0); } } } else if (t == 'a') { int ret; unsigned arena_id_new; char alloc_class_idx_desc[CTL_QUERY_LEN]; ret = pmemobj_ctl_exec(pop, "heap.arena.create", &arena_id_new); UT_ASSERTeq(ret, 0); UT_ASSERT(arena_id_new >= 1); SNPRINTF(alloc_class_idx_desc, CTL_QUERY_LEN, "heap.alloc_class.%d.desc", ALLOC_CLASS_ARENA + 128); ret = pmemobj_ctl_set(pop, alloc_class_idx_desc, &alloc_class[ALLOC_CLASS_ARENA]); UT_ASSERTeq(ret, 0); ref.arena = arena_id_new; worker_arena_ref_obj(&ref); os_thread_t threads[NTHREAD_ARENA]; for (int i = 0; i < NTHREAD_ARENA; i++) { THREAD_CREATE(&threads[i], NULL, worker_arena_threads, &ref); } for (int i = 0; i < NTHREAD_ARENA; i++) THREAD_JOIN(&threads[i], NULL); } else if (t == 'f') { os_thread_t threads[NTHREADX]; create_alloc_class(); for (int i = 0; i < NTHREADX; i++) THREAD_CREATE(&threads[i], NULL, worker_arenas_flag, NULL); for (int i = 0; i < NTHREADX; i++) THREAD_JOIN(&threads[i], NULL); PMEMoid oid, oid2; POBJ_FOREACH_SAFE(pop, oid, oid2) pmemobj_free(&oid); } else if (t == 'q') { unsigned total; ret = pmemobj_ctl_get(pop, "heap.narenas.total", &total); UT_ASSERTeq(ret, 0); ret = pmemobj_xalloc(pop, NULL, alloc_class[0].unit_size, 0, POBJ_ARENA_ID(total), NULL, NULL); UT_ASSERTne(ret, 0); } else if (t == 'm') { unsigned max; unsigned new_max; ret = pmemobj_ctl_get(pop, "heap.narenas.max", &max); UT_ASSERTeq(ret, 0); UT_ASSERTeq(DEFAULT_ARENAS_MAX, max); /* size should not decrease */ new_max = DEFAULT_ARENAS_MAX - 1; ret = pmemobj_ctl_set(pop, "heap.narenas.max", &new_max); UT_ASSERTne(ret, 0); ret = pmemobj_ctl_get(pop, "heap.narenas.max", &max); UT_ASSERTeq(ret, 0); UT_ASSERTeq(DEFAULT_ARENAS_MAX, max); /* size should increase */ new_max = DEFAULT_ARENAS_MAX + 1; ret = pmemobj_ctl_set(pop, "heap.narenas.max", &new_max); UT_ASSERTeq(ret, 0); ret = pmemobj_ctl_get(pop, "heap.narenas.max", &max); UT_ASSERTeq(ret, 0); UT_ASSERTeq(DEFAULT_ARENAS_MAX + 1, max); } else { UT_ASSERT(0); } pmemobj_close(pop); DONE(NULL); }
11,314
23.651416
66
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/win_poolset_unmap/win_poolset_unmap.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2018, Intel Corporation */ /* * win_poolset_unmap.c -- test for windows mmap destructor. * * It checks whether all mappings are properly unmpapped and memory is properly * unreserved when auto growing pool is used. */ #include "unittest.h" #include "os.h" #include "libpmemobj.h" #define KILOBYTE (1 << 10) #define MEGABYTE (1 << 20) #define LAYOUT_NAME "poolset_unmap" int main(int argc, char *argv[]) { START(argc, argv, "win_poolset_unmap"); if (argc != 2) UT_FATAL("usage: %s path", argv[0]); PMEMobjpool *pop; if ((pop = pmemobj_create(argv[1], LAYOUT_NAME, 0, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create"); MEMORY_BASIC_INFORMATION basic_info; SIZE_T bytes_returned; SIZE_T offset = 0; bytes_returned = VirtualQuery(pop, &basic_info, sizeof(basic_info)); /* * When opening pool, we try to remove all permissions on header. * If this action fails VirtualQuery will return one region with * size 8MB. If it succeeds, RegionSize will be equal to 4KB due * to different header and rest of the mapping permissions. */ if (basic_info.RegionSize == 4 * KILOBYTE) { /* header */ UT_ASSERTeq(bytes_returned, sizeof(basic_info)); UT_ASSERTeq(basic_info.State, MEM_COMMIT); offset += basic_info.RegionSize; /* first part */ bytes_returned = VirtualQuery((char *)pop + offset, &basic_info, sizeof(basic_info)); UT_ASSERTeq(bytes_returned, sizeof(basic_info)); UT_ASSERTeq(basic_info.RegionSize, 8 * MEGABYTE - 4 * KILOBYTE); UT_ASSERTeq(basic_info.State, MEM_COMMIT); } else { /* first part with header */ UT_ASSERTeq(bytes_returned, sizeof(basic_info)); UT_ASSERTeq(basic_info.RegionSize, 8 * MEGABYTE); UT_ASSERTeq(basic_info.State, MEM_COMMIT); } offset += basic_info.RegionSize; /* reservation after first part */ bytes_returned = VirtualQuery((char *)pop + offset, &basic_info, sizeof(basic_info)); UT_ASSERTeq(bytes_returned, sizeof(basic_info)); UT_ASSERTeq(basic_info.RegionSize, (50 - 8) * MEGABYTE); UT_ASSERTeq(basic_info.State, MEM_RESERVE); DONE(NULL); }
2,117
25.810127
79
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_compat/pmem2_compat.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2019, Intel Corporation */ /* * pmem2_compat.c -- compatibility test for libpmem vs libpmem2 */ #include "unittest.h" int main(int argc, char *argv[]) { UT_COMPILE_ERROR_ON(PMEM_F_MEM_NODRAIN != PMEM2_F_MEM_NODRAIN); UT_COMPILE_ERROR_ON(PMEM_F_MEM_NONTEMPORAL != PMEM2_F_MEM_NONTEMPORAL); UT_COMPILE_ERROR_ON(PMEM_F_MEM_TEMPORAL != PMEM2_F_MEM_TEMPORAL); UT_COMPILE_ERROR_ON(PMEM_F_MEM_WC != PMEM2_F_MEM_WC); UT_COMPILE_ERROR_ON(PMEM_F_MEM_WB != PMEM2_F_MEM_WB); UT_COMPILE_ERROR_ON(PMEM_F_MEM_NOFLUSH != PMEM2_F_MEM_NOFLUSH); return 0; }
606
26.590909
72
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_tx_strdup/obj_tx_strdup.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2020, Intel Corporation */ /* * obj_tx_strdup.c -- unit test for pmemobj_tx_strdup */ #include <sys/param.h> #include <string.h> #include <wchar.h> #include "unittest.h" #define LAYOUT_NAME "tx_strdup" TOID_DECLARE(char, 0); TOID_DECLARE(wchar_t, 1); enum type_number { TYPE_NO_TX, TYPE_WCS_NO_TX, TYPE_COMMIT, TYPE_WCS_COMMIT, TYPE_ABORT, TYPE_WCS_ABORT, TYPE_FREE_COMMIT, TYPE_WCS_FREE_COMMIT, TYPE_FREE_ABORT, TYPE_WCS_FREE_ABORT, TYPE_COMMIT_NESTED1, TYPE_WCS_COMMIT_NESTED1, TYPE_COMMIT_NESTED2, TYPE_WCS_COMMIT_NESTED2, TYPE_ABORT_NESTED1, TYPE_WCS_ABORT_NESTED1, TYPE_ABORT_NESTED2, TYPE_WCS_ABORT_NESTED2, TYPE_ABORT_AFTER_NESTED1, TYPE_WCS_ABORT_AFTER_NESTED1, TYPE_ABORT_AFTER_NESTED2, TYPE_WCS_ABORT_AFTER_NESTED2, TYPE_NOFLUSH, TYPE_WCS_NOFLUSH, }; #define TEST_STR_1 "Test string 1" #define TEST_STR_2 "Test string 2" #define TEST_WCS_1 L"Test string 3" #define TEST_WCS_2 L"Test string 4" #define MAX_FUNC 2 typedef void (*fn_tx_strdup)(TOID(char) *str, const char *s, unsigned type_num); typedef void (*fn_tx_wcsdup)(TOID(wchar_t) *wcs, const wchar_t *s, unsigned type_num); static unsigned counter; /* * tx_strdup -- duplicate a string using pmemobj_tx_strdup */ static void tx_strdup(TOID(char) *str, const char *s, unsigned type_num) { TOID_ASSIGN(*str, pmemobj_tx_strdup(s, type_num)); } /* * tx_wcsdup -- duplicate a string using pmemobj_tx_wcsdup */ static void tx_wcsdup(TOID(wchar_t) *wcs, const wchar_t *s, unsigned type_num) { TOID_ASSIGN(*wcs, pmemobj_tx_wcsdup(s, type_num)); } /* * tx_strdup_macro -- duplicate a string using macro */ static void tx_strdup_macro(TOID(char) *str, const char *s, unsigned type_num) { TOID_ASSIGN(*str, TX_STRDUP(s, type_num)); } /* * tx_wcsdup_macro -- duplicate a wide character string using macro */ static void tx_wcsdup_macro(TOID(wchar_t) *wcs, const wchar_t *s, unsigned type_num) { TOID_ASSIGN(*wcs, TX_WCSDUP(s, type_num)); } static fn_tx_strdup do_tx_strdup[MAX_FUNC] = {tx_strdup, tx_strdup_macro}; static fn_tx_wcsdup do_tx_wcsdup[MAX_FUNC] = {tx_wcsdup, tx_wcsdup_macro}; /* * do_tx_strdup_commit -- duplicate a string and commit the transaction */ static void do_tx_strdup_commit(PMEMobjpool *pop) { TOID(char) str; TOID(wchar_t) wcs; TX_BEGIN(pop) { do_tx_strdup[counter](&str, TEST_STR_1, TYPE_COMMIT); do_tx_wcsdup[counter](&wcs, TEST_WCS_1, TYPE_WCS_COMMIT); UT_ASSERT(!TOID_IS_NULL(str)); UT_ASSERT(!TOID_IS_NULL(wcs)); } TX_ONABORT { UT_ASSERT(0); } TX_END TOID_ASSIGN(str, POBJ_FIRST_TYPE_NUM(pop, TYPE_COMMIT)); TOID_ASSIGN(wcs, POBJ_FIRST_TYPE_NUM(pop, TYPE_WCS_COMMIT)); UT_ASSERT(!TOID_IS_NULL(str)); UT_ASSERTeq(strcmp(TEST_STR_1, D_RO(str)), 0); UT_ASSERTeq(wcscmp(TEST_WCS_1, D_RO(wcs)), 0); } /* * do_tx_strdup_abort -- duplicate a string and abort the transaction */ static void do_tx_strdup_abort(PMEMobjpool *pop) { TOID(char) str; TOID(wchar_t) wcs; TX_BEGIN(pop) { do_tx_strdup[counter](&str, TEST_STR_1, TYPE_ABORT); do_tx_wcsdup[counter](&wcs, TEST_WCS_1, TYPE_WCS_ABORT); UT_ASSERT(!TOID_IS_NULL(str)); UT_ASSERT(!TOID_IS_NULL(wcs)); pmemobj_tx_abort(-1); } TX_ONCOMMIT { UT_ASSERT(0); } TX_END TOID_ASSIGN(str, POBJ_FIRST_TYPE_NUM(pop, TYPE_ABORT)); TOID_ASSIGN(wcs, POBJ_FIRST_TYPE_NUM(pop, TYPE_WCS_ABORT)); UT_ASSERT(TOID_IS_NULL(str)); UT_ASSERT(TOID_IS_NULL(wcs)); } /* * do_tx_strdup_null -- duplicate a NULL string to trigger tx abort */ static void do_tx_strdup_null(PMEMobjpool *pop) { TOID(char) str; TOID(wchar_t) wcs; TX_BEGIN(pop) { do_tx_strdup[counter](&str, NULL, TYPE_ABORT); do_tx_wcsdup[counter](&wcs, NULL, TYPE_WCS_ABORT); UT_ASSERT(0); /* should not get to this point */ } TX_ONCOMMIT { UT_ASSERT(0); } TX_END TOID_ASSIGN(str, POBJ_FIRST_TYPE_NUM(pop, TYPE_ABORT)); TOID_ASSIGN(wcs, POBJ_FIRST_TYPE_NUM(pop, TYPE_WCS_ABORT)); UT_ASSERT(TOID_IS_NULL(str)); UT_ASSERT(TOID_IS_NULL(wcs)); TX_BEGIN(pop) { pmemobj_tx_xstrdup(NULL, TYPE_ABORT, POBJ_XALLOC_NO_ABORT); } TX_ONCOMMIT { UT_ASSERTeq(errno, EINVAL); } TX_ONABORT { UT_ASSERT(0); } TX_END TX_BEGIN(pop) { pmemobj_tx_set_failure_behavior(POBJ_TX_FAILURE_RETURN); pmemobj_tx_strdup(NULL, TYPE_ABORT); } TX_ONCOMMIT { UT_ASSERTeq(errno, EINVAL); } TX_ONABORT { UT_ASSERT(0); } TX_END TX_BEGIN(pop) { pmemobj_tx_set_failure_behavior(POBJ_TX_FAILURE_RETURN); pmemobj_tx_xstrdup(NULL, TYPE_ABORT, 0); } TX_ONCOMMIT { UT_ASSERTeq(errno, EINVAL); } TX_ONABORT { UT_ASSERT(0); } TX_END } /* * do_tx_strdup_free_commit -- duplicate a string, free and commit the * transaction */ static void do_tx_strdup_free_commit(PMEMobjpool *pop) { TOID(char) str; TOID(wchar_t) wcs; TX_BEGIN(pop) { do_tx_strdup[counter](&str, TEST_STR_1, TYPE_FREE_COMMIT); do_tx_wcsdup[counter](&wcs, TEST_WCS_1, TYPE_WCS_FREE_COMMIT); UT_ASSERT(!TOID_IS_NULL(str)); UT_ASSERT(!TOID_IS_NULL(wcs)); int ret = pmemobj_tx_free(str.oid); UT_ASSERTeq(ret, 0); ret = pmemobj_tx_free(wcs.oid); UT_ASSERTeq(ret, 0); } TX_ONABORT { UT_ASSERT(0); } TX_END TOID_ASSIGN(str, POBJ_FIRST_TYPE_NUM(pop, TYPE_FREE_COMMIT)); TOID_ASSIGN(wcs, POBJ_FIRST_TYPE_NUM(pop, TYPE_WCS_FREE_COMMIT)); UT_ASSERT(TOID_IS_NULL(str)); UT_ASSERT(TOID_IS_NULL(wcs)); } /* * do_tx_strdup_free_abort -- duplicate a string, free and abort the * transaction */ static void do_tx_strdup_free_abort(PMEMobjpool *pop) { TOID(char) str; TOID(wchar_t) wcs; TX_BEGIN(pop) { do_tx_strdup[counter](&str, TEST_STR_1, TYPE_FREE_ABORT); do_tx_wcsdup[counter](&wcs, TEST_WCS_1, TYPE_WCS_FREE_ABORT); UT_ASSERT(!TOID_IS_NULL(str)); UT_ASSERT(!TOID_IS_NULL(wcs)); int ret = pmemobj_tx_free(str.oid); UT_ASSERTeq(ret, 0); ret = pmemobj_tx_free(wcs.oid); UT_ASSERTeq(ret, 0); pmemobj_tx_abort(-1); } TX_ONCOMMIT { UT_ASSERT(0); } TX_END TOID_ASSIGN(str, POBJ_FIRST_TYPE_NUM(pop, TYPE_FREE_ABORT)); TOID_ASSIGN(wcs, POBJ_FIRST_TYPE_NUM(pop, TYPE_WCS_FREE_ABORT)); UT_ASSERT(TOID_IS_NULL(str)); UT_ASSERT(TOID_IS_NULL(wcs)); } /* * do_tx_strdup_commit_nested -- duplicate two string suing nested * transaction and commit the transaction */ static void do_tx_strdup_commit_nested(PMEMobjpool *pop) { TOID(char) str1; TOID(char) str2; TOID(wchar_t) wcs1; TOID(wchar_t) wcs2; TX_BEGIN(pop) { do_tx_strdup[counter](&str1, TEST_STR_1, TYPE_COMMIT_NESTED1); do_tx_wcsdup[counter](&wcs1, TEST_WCS_1, TYPE_WCS_COMMIT_NESTED1); UT_ASSERT(!TOID_IS_NULL(str1)); UT_ASSERT(!TOID_IS_NULL(wcs1)); TX_BEGIN(pop) { do_tx_strdup[counter](&str2, TEST_STR_2, TYPE_COMMIT_NESTED2); do_tx_wcsdup[counter](&wcs2, TEST_WCS_2, TYPE_WCS_COMMIT_NESTED2); UT_ASSERT(!TOID_IS_NULL(str2)); UT_ASSERT(!TOID_IS_NULL(wcs2)); } TX_ONABORT { UT_ASSERT(0); } TX_END } TX_ONABORT { UT_ASSERT(0); } TX_END TOID_ASSIGN(str1, POBJ_FIRST_TYPE_NUM(pop, TYPE_COMMIT_NESTED1)); TOID_ASSIGN(wcs1, POBJ_FIRST_TYPE_NUM(pop, TYPE_WCS_COMMIT_NESTED1)); UT_ASSERT(!TOID_IS_NULL(str1)); UT_ASSERT(!TOID_IS_NULL(wcs1)); UT_ASSERTeq(strcmp(TEST_STR_1, D_RO(str1)), 0); UT_ASSERTeq(wcscmp(TEST_WCS_1, D_RO(wcs1)), 0); TOID_ASSIGN(str2, POBJ_FIRST_TYPE_NUM(pop, TYPE_COMMIT_NESTED2)); TOID_ASSIGN(wcs2, POBJ_FIRST_TYPE_NUM(pop, TYPE_WCS_COMMIT_NESTED2)); UT_ASSERT(!TOID_IS_NULL(str2)); UT_ASSERT(!TOID_IS_NULL(wcs2)); UT_ASSERTeq(strcmp(TEST_STR_2, D_RO(str2)), 0); UT_ASSERTeq(wcscmp(TEST_WCS_2, D_RO(wcs2)), 0); } /* * do_tx_strdup_commit_abort -- duplicate two string suing nested * transaction and abort the transaction */ static void do_tx_strdup_abort_nested(PMEMobjpool *pop) { TOID(char) str1; TOID(char) str2; TOID(wchar_t) wcs1; TOID(wchar_t) wcs2; TX_BEGIN(pop) { do_tx_strdup[counter](&str1, TEST_STR_1, TYPE_ABORT_NESTED1); do_tx_wcsdup[counter](&wcs1, TEST_WCS_1, TYPE_WCS_ABORT_NESTED1); UT_ASSERT(!TOID_IS_NULL(str1)); UT_ASSERT(!TOID_IS_NULL(wcs1)); TX_BEGIN(pop) { do_tx_strdup[counter](&str2, TEST_STR_2, TYPE_ABORT_NESTED2); do_tx_wcsdup[counter](&wcs2, TEST_WCS_2, TYPE_WCS_ABORT_NESTED2); UT_ASSERT(!TOID_IS_NULL(str2)); UT_ASSERT(!TOID_IS_NULL(wcs2)); pmemobj_tx_abort(-1); } TX_ONCOMMIT { UT_ASSERT(0); } TX_END } TX_ONCOMMIT { UT_ASSERT(0); } TX_END TOID_ASSIGN(str1, POBJ_FIRST_TYPE_NUM(pop, TYPE_ABORT_NESTED1)); TOID_ASSIGN(wcs1, POBJ_FIRST_TYPE_NUM(pop, TYPE_WCS_ABORT_NESTED1)); UT_ASSERT(TOID_IS_NULL(str1)); UT_ASSERT(TOID_IS_NULL(wcs1)); TOID_ASSIGN(str2, POBJ_FIRST_TYPE_NUM(pop, TYPE_ABORT_NESTED2)); TOID_ASSIGN(wcs2, POBJ_FIRST_TYPE_NUM(pop, TYPE_WCS_ABORT_NESTED2)); UT_ASSERT(TOID_IS_NULL(str2)); UT_ASSERT(TOID_IS_NULL(wcs2)); } /* * do_tx_strdup_commit_abort -- duplicate two string suing nested * transaction and abort after the nested transaction */ static void do_tx_strdup_abort_after_nested(PMEMobjpool *pop) { TOID(char) str1; TOID(char) str2; TOID(wchar_t) wcs1; TOID(wchar_t) wcs2; TX_BEGIN(pop) { do_tx_strdup[counter](&str1, TEST_STR_1, TYPE_ABORT_AFTER_NESTED1); do_tx_wcsdup[counter](&wcs1, TEST_WCS_1, TYPE_WCS_ABORT_AFTER_NESTED1); UT_ASSERT(!TOID_IS_NULL(str1)); UT_ASSERT(!TOID_IS_NULL(wcs1)); TX_BEGIN(pop) { do_tx_strdup[counter](&str2, TEST_STR_2, TYPE_ABORT_AFTER_NESTED2); do_tx_wcsdup[counter](&wcs2, TEST_WCS_2, TYPE_WCS_ABORT_AFTER_NESTED2); UT_ASSERT(!TOID_IS_NULL(str2)); UT_ASSERT(!TOID_IS_NULL(wcs2)); } TX_ONABORT { UT_ASSERT(0); } TX_END pmemobj_tx_abort(-1); } TX_ONCOMMIT { UT_ASSERT(0); } TX_END TOID_ASSIGN(str1, POBJ_FIRST_TYPE_NUM(pop, TYPE_ABORT_AFTER_NESTED1)); TOID_ASSIGN(wcs1, POBJ_FIRST_TYPE_NUM(pop, TYPE_WCS_ABORT_AFTER_NESTED1)); UT_ASSERT(TOID_IS_NULL(str1)); UT_ASSERT(TOID_IS_NULL(wcs1)); TOID_ASSIGN(str2, POBJ_FIRST_TYPE_NUM(pop, TYPE_ABORT_AFTER_NESTED2)); TOID_ASSIGN(wcs2, POBJ_FIRST_TYPE_NUM(pop, TYPE_WCS_ABORT_AFTER_NESTED2)); UT_ASSERT(TOID_IS_NULL(str2)); UT_ASSERT(TOID_IS_NULL(wcs2)); } /* * do_tx_strdup_noflush -- allocates zeroed object */ static void do_tx_strdup_noflush(PMEMobjpool *pop) { TX_BEGIN(pop) { errno = 0; pmemobj_tx_xstrdup(TEST_STR_1, TYPE_NOFLUSH, POBJ_XALLOC_NO_FLUSH); pmemobj_tx_xwcsdup(TEST_WCS_1, TYPE_WCS_NOFLUSH, POBJ_XALLOC_NO_FLUSH); } TX_ONCOMMIT { UT_ASSERTeq(errno, 0); } TX_ONABORT { UT_ASSERT(0); } TX_END } int main(int argc, char *argv[]) { START(argc, argv, "obj_tx_strdup"); if (argc != 2) UT_FATAL("usage: %s [file]", argv[0]); PMEMobjpool *pop; if ((pop = pmemobj_create(argv[1], LAYOUT_NAME, PMEMOBJ_MIN_POOL, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create"); for (counter = 0; counter < MAX_FUNC; counter++) { do_tx_strdup_commit(pop); do_tx_strdup_abort(pop); do_tx_strdup_null(pop); do_tx_strdup_free_commit(pop); do_tx_strdup_free_abort(pop); do_tx_strdup_commit_nested(pop); do_tx_strdup_abort_nested(pop); do_tx_strdup_abort_after_nested(pop); } do_tx_strdup_noflush(pop); pmemobj_close(pop); DONE(NULL); }
11,087
24.315068
74
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_tx_realloc/obj_tx_realloc.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2019, Intel Corporation */ /* * obj_tx_realloc.c -- unit test for pmemobj_tx_realloc and pmemobj_tx_zrealloc */ #include <sys/param.h> #include <string.h> #include "unittest.h" #include "util.h" #define LAYOUT_NAME "tx_realloc" #define TEST_VALUE_1 1 #define OBJ_SIZE 1024 enum type_number { TYPE_NO_TX, TYPE_COMMIT, TYPE_ABORT, TYPE_TYPE, TYPE_COMMIT_ZERO, TYPE_COMMIT_ZERO_MACRO, TYPE_ABORT_ZERO, TYPE_ABORT_ZERO_MACRO, TYPE_COMMIT_ALLOC, TYPE_ABORT_ALLOC, TYPE_ABORT_HUGE, TYPE_ABORT_ZERO_HUGE, TYPE_ABORT_ZERO_HUGE_MACRO, TYPE_FREE, }; struct object { size_t value; char data[OBJ_SIZE - sizeof(size_t)]; }; TOID_DECLARE(struct object, 0); struct object_macro { size_t value; char data[OBJ_SIZE - sizeof(size_t)]; }; TOID_DECLARE(struct object_macro, TYPE_COMMIT_ZERO_MACRO); /* * do_tx_alloc -- do tx allocation with specified type number */ static PMEMoid do_tx_alloc(PMEMobjpool *pop, unsigned type_num, size_t value) { TOID(struct object) obj; TOID_ASSIGN(obj, OID_NULL); TX_BEGIN(pop) { TOID_ASSIGN(obj, pmemobj_tx_alloc( sizeof(struct object), type_num)); if (!TOID_IS_NULL(obj)) { D_RW(obj)->value = value; } } TX_ONABORT { UT_ASSERT(0); } TX_END return obj.oid; } /* * do_tx_realloc_commit -- reallocate an object and commit the transaction */ static void do_tx_realloc_commit(PMEMobjpool *pop) { TOID(struct object) obj; TOID_ASSIGN(obj, do_tx_alloc(pop, TYPE_COMMIT, TEST_VALUE_1)); size_t new_size = 2 * pmemobj_alloc_usable_size(obj.oid); TX_BEGIN(pop) { TOID_ASSIGN(obj, pmemobj_tx_realloc(obj.oid, new_size, TYPE_COMMIT)); UT_ASSERT(!TOID_IS_NULL(obj)); UT_ASSERT(pmemobj_alloc_usable_size(obj.oid) >= new_size); } TX_ONABORT { UT_ASSERT(0); } TX_END TOID_ASSIGN(obj, POBJ_FIRST_TYPE_NUM(pop, TYPE_COMMIT)); UT_ASSERT(!TOID_IS_NULL(obj)); UT_ASSERTeq(D_RO(obj)->value, TEST_VALUE_1); UT_ASSERT(pmemobj_alloc_usable_size(obj.oid) >= new_size); TOID_ASSIGN(obj, POBJ_NEXT_TYPE_NUM(obj.oid)); UT_ASSERT(TOID_IS_NULL(obj)); } /* * do_tx_realloc_abort -- reallocate an object and commit the transaction */ static void do_tx_realloc_abort(PMEMobjpool *pop) { TOID(struct object) obj; TOID_ASSIGN(obj, do_tx_alloc(pop, TYPE_ABORT, TEST_VALUE_1)); size_t new_size = 2 * pmemobj_alloc_usable_size(obj.oid); TX_BEGIN(pop) { TOID_ASSIGN(obj, pmemobj_tx_realloc(obj.oid, new_size, TYPE_ABORT)); UT_ASSERT(!TOID_IS_NULL(obj)); UT_ASSERT(pmemobj_alloc_usable_size(obj.oid) >= new_size); pmemobj_tx_abort(-1); } TX_ONCOMMIT { UT_ASSERT(0); } TX_END TOID_ASSIGN(obj, POBJ_FIRST_TYPE_NUM(pop, TYPE_ABORT)); UT_ASSERT(!TOID_IS_NULL(obj)); UT_ASSERTeq(D_RO(obj)->value, TEST_VALUE_1); UT_ASSERT(pmemobj_alloc_usable_size(obj.oid) < new_size); TOID_ASSIGN(obj, POBJ_NEXT_TYPE_NUM(obj.oid)); UT_ASSERT(TOID_IS_NULL(obj)); } /* * do_tx_realloc_huge -- reallocate an object to a huge size to trigger tx abort */ static void do_tx_realloc_huge(PMEMobjpool *pop) { TOID(struct object) obj; TOID_ASSIGN(obj, do_tx_alloc(pop, TYPE_ABORT_HUGE, TEST_VALUE_1)); size_t new_size = PMEMOBJ_MAX_ALLOC_SIZE + 1; TX_BEGIN(pop) { TOID_ASSIGN(obj, pmemobj_tx_realloc(obj.oid, new_size, TYPE_ABORT_HUGE)); UT_ASSERT(0); /* should not get to this point */ } TX_ONCOMMIT { UT_ASSERT(0); } TX_END TOID_ASSIGN(obj, POBJ_FIRST_TYPE_NUM(pop, TYPE_ABORT_HUGE)); UT_ASSERT(!TOID_IS_NULL(obj)); UT_ASSERTeq(D_RO(obj)->value, TEST_VALUE_1); UT_ASSERT(pmemobj_alloc_usable_size(obj.oid) < new_size); TOID_ASSIGN(obj, POBJ_NEXT_TYPE_NUM(obj.oid)); UT_ASSERT(TOID_IS_NULL(obj)); } /* * do_tx_zrealloc_commit_macro -- reallocate an object, zero it and commit * the transaction using macro */ static void do_tx_zrealloc_commit_macro(PMEMobjpool *pop) { TOID(struct object_macro) obj; TOID_ASSIGN(obj, do_tx_alloc(pop, TYPE_COMMIT_ZERO_MACRO, TEST_VALUE_1)); size_t old_size = pmemobj_alloc_usable_size(obj.oid); size_t new_size = 2 * old_size; TX_BEGIN(pop) { obj = TX_ZREALLOC(obj, new_size); UT_ASSERT(!TOID_IS_NULL(obj)); UT_ASSERT(pmemobj_alloc_usable_size(obj.oid) >= new_size); void *new_ptr = (void *)((uintptr_t)D_RW(obj) + old_size); UT_ASSERT(util_is_zeroed(new_ptr, new_size - old_size)); } TX_ONABORT { UT_ASSERT(0); } TX_END TOID_ASSIGN(obj, POBJ_FIRST_TYPE_NUM(pop, TYPE_COMMIT_ZERO_MACRO)); UT_ASSERT(!TOID_IS_NULL(obj)); UT_ASSERTeq(D_RO(obj)->value, TEST_VALUE_1); UT_ASSERT(pmemobj_alloc_usable_size(obj.oid) >= new_size); void *new_ptr = (void *)((uintptr_t)D_RW(obj) + old_size); UT_ASSERT(util_is_zeroed(new_ptr, new_size - old_size)); TOID_ASSIGN(obj, POBJ_NEXT_TYPE_NUM(obj.oid)); UT_ASSERT(TOID_IS_NULL(obj)); } /* * do_tx_zrealloc_commit -- reallocate an object, zero it and commit * the transaction */ static void do_tx_zrealloc_commit(PMEMobjpool *pop) { TOID(struct object) obj; TOID_ASSIGN(obj, do_tx_alloc(pop, TYPE_COMMIT_ZERO, TEST_VALUE_1)); size_t old_size = pmemobj_alloc_usable_size(obj.oid); size_t new_size = 2 * old_size; TX_BEGIN(pop) { TOID_ASSIGN(obj, pmemobj_tx_zrealloc(obj.oid, new_size, TYPE_COMMIT_ZERO)); UT_ASSERT(!TOID_IS_NULL(obj)); UT_ASSERT(pmemobj_alloc_usable_size(obj.oid) >= new_size); void *new_ptr = (void *)((uintptr_t)D_RW(obj) + old_size); UT_ASSERT(util_is_zeroed(new_ptr, new_size - old_size)); } TX_ONABORT { UT_ASSERT(0); } TX_END TOID_ASSIGN(obj, POBJ_FIRST_TYPE_NUM(pop, TYPE_COMMIT_ZERO)); UT_ASSERT(!TOID_IS_NULL(obj)); UT_ASSERTeq(D_RO(obj)->value, TEST_VALUE_1); UT_ASSERT(pmemobj_alloc_usable_size(obj.oid) >= new_size); void *new_ptr = (void *)((uintptr_t)D_RW(obj) + old_size); UT_ASSERT(util_is_zeroed(new_ptr, new_size - old_size)); TOID_ASSIGN(obj, POBJ_NEXT_TYPE_NUM(obj.oid)); UT_ASSERT(TOID_IS_NULL(obj)); } /* * do_tx_realloc_abort_macro -- reallocate an object, zero it and commit the * transaction using macro */ static void do_tx_zrealloc_abort_macro(PMEMobjpool *pop) { TOID(struct object) obj; TOID_ASSIGN(obj, do_tx_alloc(pop, TYPE_ABORT_ZERO_MACRO, TEST_VALUE_1)); size_t old_size = pmemobj_alloc_usable_size(obj.oid); size_t new_size = 2 * old_size; TX_BEGIN(pop) { obj = TX_ZREALLOC(obj, new_size); UT_ASSERT(!TOID_IS_NULL(obj)); UT_ASSERT(pmemobj_alloc_usable_size(obj.oid) >= new_size); void *new_ptr = (void *)((uintptr_t)D_RW(obj) + old_size); UT_ASSERT(util_is_zeroed(new_ptr, new_size - old_size)); pmemobj_tx_abort(-1); } TX_ONCOMMIT { UT_ASSERT(0); } TX_END TOID_ASSIGN(obj, POBJ_FIRST_TYPE_NUM(pop, TYPE_ABORT_ZERO_MACRO)); UT_ASSERT(!TOID_IS_NULL(obj)); UT_ASSERTeq(D_RO(obj)->value, TEST_VALUE_1); UT_ASSERT(pmemobj_alloc_usable_size(obj.oid) < new_size); TOID_ASSIGN(obj, POBJ_NEXT_TYPE_NUM(obj.oid)); UT_ASSERT(TOID_IS_NULL(obj)); } /* * do_tx_realloc_abort -- reallocate an object and commit the transaction */ static void do_tx_zrealloc_abort(PMEMobjpool *pop) { TOID(struct object) obj; TOID_ASSIGN(obj, do_tx_alloc(pop, TYPE_ABORT_ZERO, TEST_VALUE_1)); size_t old_size = pmemobj_alloc_usable_size(obj.oid); size_t new_size = 2 * old_size; TX_BEGIN(pop) { TOID_ASSIGN(obj, pmemobj_tx_zrealloc(obj.oid, new_size, TYPE_ABORT_ZERO)); UT_ASSERT(!TOID_IS_NULL(obj)); UT_ASSERT(pmemobj_alloc_usable_size(obj.oid) >= new_size); void *new_ptr = (void *)((uintptr_t)D_RW(obj) + old_size); UT_ASSERT(util_is_zeroed(new_ptr, new_size - old_size)); pmemobj_tx_abort(-1); } TX_ONCOMMIT { UT_ASSERT(0); } TX_END TOID_ASSIGN(obj, POBJ_FIRST_TYPE_NUM(pop, TYPE_ABORT_ZERO)); UT_ASSERT(!TOID_IS_NULL(obj)); UT_ASSERTeq(D_RO(obj)->value, TEST_VALUE_1); UT_ASSERT(pmemobj_alloc_usable_size(obj.oid) < new_size); TOID_ASSIGN(obj, POBJ_NEXT_TYPE_NUM(obj.oid)); UT_ASSERT(TOID_IS_NULL(obj)); } /* * do_tx_realloc_huge_macro -- reallocate an object to a huge size to trigger * tx abort and zero it using macro */ static void do_tx_zrealloc_huge_macro(PMEMobjpool *pop) { TOID(struct object) obj; TOID_ASSIGN(obj, do_tx_alloc(pop, TYPE_ABORT_ZERO_HUGE_MACRO, TEST_VALUE_1)); size_t old_size = pmemobj_alloc_usable_size(obj.oid); size_t new_size = 2 * old_size; TX_BEGIN(pop) { obj = TX_ZREALLOC(obj, PMEMOBJ_MAX_ALLOC_SIZE + 1); UT_ASSERT(0); /* should not get to this point */ } TX_ONCOMMIT { UT_ASSERT(0); } TX_END TOID_ASSIGN(obj, POBJ_FIRST_TYPE_NUM(pop, TYPE_ABORT_ZERO_HUGE_MACRO)); UT_ASSERT(!TOID_IS_NULL(obj)); UT_ASSERTeq(D_RO(obj)->value, TEST_VALUE_1); UT_ASSERT(pmemobj_alloc_usable_size(obj.oid) < new_size); TOID_ASSIGN(obj, POBJ_NEXT_TYPE_NUM(obj.oid)); UT_ASSERT(TOID_IS_NULL(obj)); } /* * do_tx_realloc_huge -- reallocate an object to a huge size to trigger tx abort */ static void do_tx_zrealloc_huge(PMEMobjpool *pop) { TOID(struct object) obj; TOID_ASSIGN(obj, do_tx_alloc(pop, TYPE_ABORT_ZERO_HUGE, TEST_VALUE_1)); size_t old_size = pmemobj_alloc_usable_size(obj.oid); size_t new_size = 2 * old_size; TX_BEGIN(pop) { TOID_ASSIGN(obj, pmemobj_tx_zrealloc(obj.oid, PMEMOBJ_MAX_ALLOC_SIZE + 1, TYPE_ABORT_ZERO_HUGE)); UT_ASSERT(0); /* should not get to this point */ } TX_ONCOMMIT { UT_ASSERT(0); } TX_END TOID_ASSIGN(obj, POBJ_FIRST_TYPE_NUM(pop, TYPE_ABORT_ZERO_HUGE)); UT_ASSERT(!TOID_IS_NULL(obj)); UT_ASSERTeq(D_RO(obj)->value, TEST_VALUE_1); UT_ASSERT(pmemobj_alloc_usable_size(obj.oid) < new_size); TOID_ASSIGN(obj, POBJ_NEXT_TYPE_NUM(obj.oid)); UT_ASSERT(TOID_IS_NULL(obj)); } /* * do_tx_realloc_alloc_commit -- reallocate an allocated object * and commit the transaction */ static void do_tx_realloc_alloc_commit(PMEMobjpool *pop) { TOID(struct object) obj; size_t new_size = 0; TX_BEGIN(pop) { TOID_ASSIGN(obj, do_tx_alloc(pop, TYPE_COMMIT_ALLOC, TEST_VALUE_1)); UT_ASSERT(!TOID_IS_NULL(obj)); new_size = 2 * pmemobj_alloc_usable_size(obj.oid); TOID_ASSIGN(obj, pmemobj_tx_realloc(obj.oid, new_size, TYPE_COMMIT_ALLOC)); UT_ASSERT(!TOID_IS_NULL(obj)); UT_ASSERT(pmemobj_alloc_usable_size(obj.oid) >= new_size); } TX_ONABORT { UT_ASSERT(0); } TX_END TOID_ASSIGN(obj, POBJ_FIRST_TYPE_NUM(pop, TYPE_COMMIT_ALLOC)); UT_ASSERT(!TOID_IS_NULL(obj)); UT_ASSERTeq(D_RO(obj)->value, TEST_VALUE_1); UT_ASSERT(pmemobj_alloc_usable_size(obj.oid) >= new_size); TOID_ASSIGN(obj, POBJ_NEXT_TYPE_NUM(obj.oid)); UT_ASSERT(TOID_IS_NULL(obj)); } /* * do_tx_realloc_alloc_abort -- reallocate an allocated object * and commit the transaction */ static void do_tx_realloc_alloc_abort(PMEMobjpool *pop) { TOID(struct object) obj; size_t new_size = 0; TX_BEGIN(pop) { TOID_ASSIGN(obj, do_tx_alloc(pop, TYPE_ABORT_ALLOC, TEST_VALUE_1)); UT_ASSERT(!TOID_IS_NULL(obj)); new_size = 2 * pmemobj_alloc_usable_size(obj.oid); TOID_ASSIGN(obj, pmemobj_tx_realloc(obj.oid, new_size, TYPE_ABORT_ALLOC)); UT_ASSERT(!TOID_IS_NULL(obj)); UT_ASSERT(pmemobj_alloc_usable_size(obj.oid) >= new_size); pmemobj_tx_abort(-1); } TX_ONCOMMIT { UT_ASSERT(0); } TX_END TOID_ASSIGN(obj, POBJ_FIRST_TYPE_NUM(pop, TYPE_ABORT_ALLOC)); UT_ASSERT(TOID_IS_NULL(obj)); } /* * do_tx_root_realloc -- retrieve root inside of transaction */ static void do_tx_root_realloc(PMEMobjpool *pop) { TX_BEGIN(pop) { PMEMoid root = pmemobj_root(pop, sizeof(struct object)); UT_ASSERT(!OID_IS_NULL(root)); UT_ASSERT(util_is_zeroed(pmemobj_direct(root), sizeof(struct object))); UT_ASSERTeq(sizeof(struct object), pmemobj_root_size(pop)); root = pmemobj_root(pop, 2 * sizeof(struct object)); UT_ASSERT(!OID_IS_NULL(root)); UT_ASSERT(util_is_zeroed(pmemobj_direct(root), 2 * sizeof(struct object))); UT_ASSERTeq(2 * sizeof(struct object), pmemobj_root_size(pop)); } TX_ONABORT { UT_ASSERT(0); } TX_END } /* * do_tx_realloc_free -- reallocate an allocated object * and commit the transaction */ static void do_tx_realloc_free(PMEMobjpool *pop) { TOID(struct object) obj; TOID_ASSIGN(obj, do_tx_alloc(pop, TYPE_FREE, TEST_VALUE_1)); TX_BEGIN(pop) { TOID_ASSIGN(obj, pmemobj_tx_realloc(obj.oid, 0, TYPE_COMMIT)); } TX_ONABORT { UT_ASSERT(0); } TX_END TOID_ASSIGN(obj, POBJ_FIRST_TYPE_NUM(pop, TYPE_FREE)); UT_ASSERT(TOID_IS_NULL(obj)); } int main(int argc, char *argv[]) { START(argc, argv, "obj_tx_realloc"); if (argc != 2) UT_FATAL("usage: %s [file]", argv[0]); PMEMobjpool *pop; if ((pop = pmemobj_create(argv[1], LAYOUT_NAME, 0, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create"); do_tx_root_realloc(pop); do_tx_realloc_commit(pop); do_tx_realloc_abort(pop); do_tx_realloc_huge(pop); do_tx_zrealloc_commit(pop); do_tx_zrealloc_commit_macro(pop); do_tx_zrealloc_abort(pop); do_tx_zrealloc_abort_macro(pop); do_tx_zrealloc_huge(pop); do_tx_zrealloc_huge_macro(pop); do_tx_realloc_alloc_commit(pop); do_tx_realloc_alloc_abort(pop); do_tx_realloc_free(pop); pmemobj_close(pop); DONE(NULL); }
12,874
25.767152
80
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_tx_lock/obj_tx_lock.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2020, Intel Corporation */ /* * obj_tx_lock.c -- unit test for pmemobj_tx_lock() */ #include "unittest.h" #include "libpmemobj.h" #include "obj.h" #define LAYOUT_NAME "obj_tx_lock" #define NUM_LOCKS 2 struct transaction_data { PMEMmutex mutexes[NUM_LOCKS]; PMEMrwlock rwlocks[NUM_LOCKS]; }; static PMEMobjpool *Pop; #define DO_LOCK(mtx, rwlock)\ pmemobj_tx_lock(TX_PARAM_MUTEX, &(mtx)[0]);\ pmemobj_tx_lock(TX_PARAM_MUTEX, &(mtx)[1]);\ pmemobj_tx_lock(TX_PARAM_RWLOCK, &(rwlock)[0]);\ pmemobj_tx_lock(TX_PARAM_RWLOCK, &(rwlock)[1]) #define IS_UNLOCKED(pop, mtx, rwlock)\ ret = 0;\ ret += pmemobj_mutex_trylock((pop), &(mtx)[0]);\ ret += pmemobj_mutex_trylock((pop), &(mtx)[1]);\ ret += pmemobj_rwlock_trywrlock((pop), &(rwlock)[0]);\ ret += pmemobj_rwlock_trywrlock((pop), &(rwlock)[1]);\ UT_ASSERTeq(ret, 0);\ pmemobj_mutex_unlock((pop), &(mtx)[0]);\ pmemobj_mutex_unlock((pop), &(mtx)[1]);\ pmemobj_rwlock_unlock((pop), &(rwlock)[0]);\ pmemobj_rwlock_unlock((pop), &(rwlock)[1]) #define IS_LOCKED(pop, mtx, rwlock)\ ret = pmemobj_mutex_trylock((pop), &(mtx)[0]);\ UT_ASSERT(ret != 0);\ ret = pmemobj_mutex_trylock((pop), &(mtx)[1]);\ UT_ASSERT(ret != 0);\ ret = pmemobj_rwlock_trywrlock((pop), &(rwlock)[0]);\ UT_ASSERT(ret != 0);\ ret = pmemobj_rwlock_trywrlock((pop), &(rwlock)[1]);\ UT_ASSERT(ret != 0) /* * do_tx_add_locks -- (internal) transaction where locks are added after * transaction begins */ static void * do_tx_add_locks(struct transaction_data *data) { int ret; IS_UNLOCKED(Pop, data->mutexes, data->rwlocks); TX_BEGIN(Pop) { DO_LOCK(data->mutexes, data->rwlocks); IS_LOCKED(Pop, data->mutexes, data->rwlocks); } TX_ONABORT { /* not called */ UT_ASSERT(0); } TX_END IS_UNLOCKED(Pop, data->mutexes, data->rwlocks); return NULL; } /* * do_tx_add_locks_nested -- (internal) transaction where locks * are added after nested transaction begins */ static void * do_tx_add_locks_nested(struct transaction_data *data) { int ret; TX_BEGIN(Pop) { IS_UNLOCKED(Pop, data->mutexes, data->rwlocks); TX_BEGIN(Pop) { DO_LOCK(data->mutexes, data->rwlocks); IS_LOCKED(Pop, data->mutexes, data->rwlocks); } TX_END IS_LOCKED(Pop, data->mutexes, data->rwlocks); } TX_ONABORT { UT_ASSERT(0); } TX_END IS_UNLOCKED(Pop, data->mutexes, data->rwlocks); return NULL; } /* * do_tx_add_locks_nested_all -- (internal) transaction where all locks * are added in both transactions after transaction begins */ static void * do_tx_add_locks_nested_all(struct transaction_data *data) { int ret; TX_BEGIN(Pop) { IS_UNLOCKED(Pop, data->mutexes, data->rwlocks); DO_LOCK(data->mutexes, data->rwlocks); IS_LOCKED(Pop, data->mutexes, data->rwlocks); TX_BEGIN(Pop) { IS_LOCKED(Pop, data->mutexes, data->rwlocks); DO_LOCK(data->mutexes, data->rwlocks); IS_LOCKED(Pop, data->mutexes, data->rwlocks); } TX_END IS_LOCKED(Pop, data->mutexes, data->rwlocks); } TX_ONABORT { UT_ASSERT(0); } TX_END IS_UNLOCKED(Pop, data->mutexes, data->rwlocks); return NULL; } /* * do_tx_add_taken_lock -- (internal) verify that failed tx_lock doesn't add * the lock to transaction */ static void * do_tx_add_taken_lock(struct transaction_data *data) { /* wrlocks on Windows don't detect self-deadlocks */ #ifdef _WIN32 (void) data; #else UT_ASSERTeq(pmemobj_rwlock_wrlock(Pop, &data->rwlocks[0]), 0); TX_BEGIN(Pop) { UT_ASSERTne(pmemobj_tx_lock(TX_PARAM_RWLOCK, &data->rwlocks[0]), 0); } TX_END UT_ASSERTne(pmemobj_rwlock_trywrlock(Pop, &data->rwlocks[0]), 0); UT_ASSERTeq(pmemobj_rwlock_unlock(Pop, &data->rwlocks[0]), 0); #endif return NULL; } /* * do_tx_lock_fail -- call pmemobj_tx_lock with POBJ_TX_NO_ABORT flag * and taken lock */ static void * do_tx_lock_fail(struct transaction_data *data) { /* wrlocks on Windows don't detect self-deadlocks */ #ifdef _WIN32 (void) data; #else UT_ASSERTeq(pmemobj_rwlock_wrlock(Pop, &data->rwlocks[0]), 0); int ret = 0; /* return errno and abort transaction */ TX_BEGIN(Pop) { pmemobj_tx_xlock(TX_PARAM_RWLOCK, &data->rwlocks[0], 0); } TX_ONABORT { UT_ASSERTne(errno, 0); UT_ASSERTeq(pmemobj_rwlock_unlock(Pop, &data->rwlocks[0]), 0); } TX_ONCOMMIT { UT_ASSERT(0); } TX_END /* return ret without abort transaction */ UT_ASSERTeq(pmemobj_rwlock_wrlock(Pop, &data->rwlocks[0]), 0); TX_BEGIN(Pop) { ret = pmemobj_tx_xlock(TX_PARAM_RWLOCK, &data->rwlocks[0], POBJ_XLOCK_NO_ABORT); } TX_ONCOMMIT { UT_ASSERTne(ret, 0); UT_ASSERTeq(pmemobj_rwlock_unlock(Pop, &data->rwlocks[0]), 0); } TX_ONABORT { UT_ASSERT(0); } TX_END /* return ret without abort transaction */ UT_ASSERTeq(pmemobj_rwlock_wrlock(Pop, &data->rwlocks[0]), 0); TX_BEGIN(Pop) { pmemobj_tx_set_failure_behavior(POBJ_TX_FAILURE_RETURN); ret = pmemobj_tx_lock(TX_PARAM_RWLOCK, &data->rwlocks[0]); } TX_ONCOMMIT { UT_ASSERTne(ret, 0); UT_ASSERTeq(pmemobj_rwlock_unlock(Pop, &data->rwlocks[0]), 0); } TX_ONABORT { UT_ASSERT(0); } TX_END /* return ret without abort transaction */ UT_ASSERTeq(pmemobj_rwlock_wrlock(Pop, &data->rwlocks[0]), 0); TX_BEGIN(Pop) { pmemobj_tx_set_failure_behavior(POBJ_TX_FAILURE_RETURN); ret = pmemobj_tx_xlock(TX_PARAM_RWLOCK, &data->rwlocks[0], 0); } TX_ONCOMMIT { UT_ASSERTne(ret, 0); UT_ASSERTeq(pmemobj_rwlock_unlock(Pop, &data->rwlocks[0]), 0); } TX_ONABORT { UT_ASSERT(0); } TX_END #endif return NULL; } static void do_fault_injection(struct transaction_data *data) { if (!pmemobj_fault_injection_enabled()) return; pmemobj_inject_fault_at(PMEM_MALLOC, 1, "add_to_tx_and_lock"); int ret; IS_UNLOCKED(Pop, data->mutexes, data->rwlocks); TX_BEGIN(Pop) { int err = pmemobj_tx_lock(TX_PARAM_MUTEX, &data->mutexes[0]); if (err) pmemobj_tx_abort(err); } TX_ONCOMMIT { UT_ASSERT(0); } TX_ONABORT { UT_ASSERTeq(errno, ENOMEM); } TX_END } int main(int argc, char *argv[]) { START(argc, argv, "obj_tx_lock"); if (argc < 3) UT_FATAL("usage: %s <file> [l|n|a|t|f|w]", argv[0]); if ((Pop = pmemobj_create(argv[1], LAYOUT_NAME, PMEMOBJ_MIN_POOL, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create"); PMEMoid root = pmemobj_root(Pop, sizeof(struct transaction_data)); struct transaction_data *test_obj = (struct transaction_data *)pmemobj_direct(root); /* go through all arguments one by one */ for (int arg = 2; arg < argc; arg++) { /* Scan the character of each argument. */ if (strchr("lnatfw", argv[arg][0]) == NULL || argv[arg][1] != '\0') UT_FATAL("op must be l or n or a or t or f or w"); switch (argv[arg][0]) { case 'l': do_tx_add_locks(test_obj); break; case 'n': do_tx_add_locks_nested(test_obj); break; case 'a': do_tx_add_locks_nested_all(test_obj); break; case 't': do_tx_add_taken_lock(test_obj); break; case 'f': do_fault_injection(test_obj); break; case 'w': do_tx_lock_fail(test_obj); break; } } pmemobj_close(Pop); DONE(NULL); }
7,003
24.75
76
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_memops/obj_memops.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2018-2020, Intel Corporation */ /* * obj_memops.c -- basic memory operations tests * */ #include <stddef.h> #include "obj.h" #include "memops.h" #include "ulog.h" #include "unittest.h" #define TEST_ENTRIES 256 #define TEST_VALUES TEST_ENTRIES enum fail_types { FAIL_NONE, FAIL_CHECKSUM, FAIL_MODIFY_NEXT, FAIL_MODIFY_VALUE, }; struct test_object { struct ULOG(TEST_ENTRIES) redo; struct ULOG(TEST_ENTRIES) undo; uint64_t values[TEST_VALUES]; }; static void clear_test_values(struct test_object *object) { memset(object->values, 0, sizeof(uint64_t) * TEST_VALUES); } static int redo_log_constructor(void *ctx, void *ptr, size_t usable_size, void *arg) { PMEMobjpool *pop = ctx; const struct pmem_ops *p_ops = &pop->p_ops; size_t capacity = ALIGN_DOWN(usable_size - sizeof(struct ulog), CACHELINE_SIZE); ulog_construct(OBJ_PTR_TO_OFF(ctx, ptr), capacity, *(uint64_t *)arg, 1, 0, p_ops); return 0; } static int pmalloc_redo_extend(void *base, uint64_t *redo, uint64_t gen_num) { size_t s = SIZEOF_ALIGNED_ULOG(TEST_ENTRIES); return pmalloc_construct(base, redo, s, redo_log_constructor, &gen_num, 0, OBJ_INTERNAL_OBJECT_MASK, 0); } static void test_free_entry(void *base, uint64_t *next) { /* noop for fake ulog entries */ } static void test_set_entries(PMEMobjpool *pop, struct operation_context *ctx, struct test_object *object, size_t nentries, enum fail_types fail, enum operation_log_type type) { operation_start(ctx); UT_ASSERT(nentries <= ARRAY_SIZE(object->values)); for (size_t i = 0; i < nentries; ++i) { operation_add_typed_entry(ctx, &object->values[i], i + 1, ULOG_OPERATION_SET, type); } operation_reserve(ctx, nentries * 16); if (fail != FAIL_NONE) { operation_cancel(ctx); switch (fail) { case FAIL_CHECKSUM: object->redo.checksum += 1; break; case FAIL_MODIFY_NEXT: pmalloc_redo_extend(pop, &object->redo.next, 0); break; case FAIL_MODIFY_VALUE: object->redo.data[16] += 8; break; default: UT_ASSERT(0); } ulog_recover((struct ulog *)&object->redo, OBJ_OFF_IS_VALID_FROM_CTX, &pop->p_ops); for (size_t i = 0; i < nentries; ++i) UT_ASSERTeq(object->values[i], 0); } else { operation_process(ctx); operation_finish(ctx, 0); for (size_t i = 0; i < nentries; ++i) UT_ASSERTeq(object->values[i], i + 1); } } static void test_merge_op(struct operation_context *ctx, struct test_object *object) { operation_start(ctx); operation_add_typed_entry(ctx, &object->values[0], 0b10, ULOG_OPERATION_OR, LOG_PERSISTENT); operation_add_typed_entry(ctx, &object->values[0], 0b01, ULOG_OPERATION_OR, LOG_PERSISTENT); operation_add_typed_entry(ctx, &object->values[0], 0b00, ULOG_OPERATION_AND, LOG_PERSISTENT); operation_add_typed_entry(ctx, &object->values[0], 0b01, ULOG_OPERATION_OR, LOG_PERSISTENT); operation_process(ctx); operation_finish(ctx, 0); UT_ASSERTeq(object->values[0], 0b01); } static void test_same_twice(struct operation_context *ctx, struct test_object *object) { operation_start(ctx); operation_add_typed_entry(ctx, &object->values[0], 5, ULOG_OPERATION_SET, LOG_PERSISTENT); operation_add_typed_entry(ctx, &object->values[0], 10, ULOG_OPERATION_SET, LOG_PERSISTENT); operation_process(ctx); UT_ASSERTeq(object->values[0], 10); operation_cancel(ctx); } static void test_redo(PMEMobjpool *pop, struct test_object *object) { struct operation_context *ctx = operation_new( (struct ulog *)&object->redo, TEST_ENTRIES, pmalloc_redo_extend, (ulog_free_fn)pfree, &pop->p_ops, LOG_TYPE_REDO); /* * Keep this test first. * It tests a situation where the number of objects being added * is equal to the capacity of the log. */ test_set_entries(pop, ctx, object, TEST_ENTRIES - 1, FAIL_NONE, LOG_PERSISTENT); clear_test_values(object); test_set_entries(pop, ctx, object, 100, FAIL_NONE, LOG_TRANSIENT); clear_test_values(object); test_set_entries(pop, ctx, object, 10, FAIL_NONE, LOG_PERSISTENT); clear_test_values(object); test_merge_op(ctx, object); clear_test_values(object); test_set_entries(pop, ctx, object, 100, FAIL_NONE, LOG_PERSISTENT); clear_test_values(object); test_set_entries(pop, ctx, object, 100, FAIL_CHECKSUM, LOG_PERSISTENT); clear_test_values(object); test_set_entries(pop, ctx, object, 10, FAIL_CHECKSUM, LOG_PERSISTENT); clear_test_values(object); test_set_entries(pop, ctx, object, 100, FAIL_MODIFY_VALUE, LOG_PERSISTENT); clear_test_values(object); test_set_entries(pop, ctx, object, 10, FAIL_MODIFY_VALUE, LOG_PERSISTENT); clear_test_values(object); test_same_twice(ctx, object); clear_test_values(object); operation_delete(ctx); /* * Verify that rebuilding redo_next works. This requires that * object->redo->next is != 0 - to achieve that, this test must * be preceded by a test that fails to finish the ulog's operation. */ ctx = operation_new( (struct ulog *)&object->redo, TEST_ENTRIES, NULL, test_free_entry, &pop->p_ops, LOG_TYPE_REDO); test_set_entries(pop, ctx, object, 100, 0, LOG_PERSISTENT); clear_test_values(object); /* FAIL_MODIFY_NEXT tests can only happen after redo_next test */ test_set_entries(pop, ctx, object, 100, FAIL_MODIFY_NEXT, LOG_PERSISTENT); clear_test_values(object); test_set_entries(pop, ctx, object, 10, FAIL_MODIFY_NEXT, LOG_PERSISTENT); clear_test_values(object); operation_delete(ctx); } static void test_undo_small_single_copy(struct operation_context *ctx, struct test_object *object) { operation_start(ctx); object->values[0] = 1; object->values[1] = 2; operation_add_buffer(ctx, &object->values, &object->values, sizeof(*object->values) * 2, ULOG_OPERATION_BUF_CPY); object->values[0] = 2; object->values[1] = 1; operation_process(ctx); operation_finish(ctx, ULOG_INC_FIRST_GEN_NUM); operation_start(ctx); UT_ASSERTeq(object->values[0], 1); UT_ASSERTeq(object->values[1], 2); object->values[0] = 2; object->values[1] = 1; operation_process(ctx); UT_ASSERTeq(object->values[0], 2); UT_ASSERTeq(object->values[1], 1); operation_finish(ctx, ULOG_INC_FIRST_GEN_NUM); } static void test_undo_small_single_set(struct operation_context *ctx, struct test_object *object) { operation_start(ctx); object->values[0] = 1; object->values[1] = 2; int c = 0; operation_add_buffer(ctx, &object->values, &c, sizeof(*object->values) * 2, ULOG_OPERATION_BUF_SET); operation_process(ctx); UT_ASSERTeq(object->values[0], 0); UT_ASSERTeq(object->values[1], 0); operation_finish(ctx, ULOG_INC_FIRST_GEN_NUM); } static void test_undo_small_multiple_set(struct operation_context *ctx, struct test_object *object) { operation_start(ctx); object->values[0] = 1; object->values[1] = 2; int c = 0; operation_add_buffer(ctx, &object->values[0], &c, sizeof(*object->values), ULOG_OPERATION_BUF_SET); operation_add_buffer(ctx, &object->values[1], &c, sizeof(*object->values), ULOG_OPERATION_BUF_SET); operation_process(ctx); UT_ASSERTeq(object->values[0], 0); UT_ASSERTeq(object->values[1], 0); operation_finish(ctx, ULOG_INC_FIRST_GEN_NUM); } static void test_undo_large_single_copy(struct operation_context *ctx, struct test_object *object) { operation_start(ctx); for (uint64_t i = 0; i < TEST_VALUES; ++i) object->values[i] = i + 1; operation_add_buffer(ctx, &object->values, &object->values, sizeof(object->values), ULOG_OPERATION_BUF_CPY); for (uint64_t i = 0; i < TEST_VALUES; ++i) object->values[i] = i + 2; operation_process(ctx); for (uint64_t i = 0; i < TEST_VALUES; ++i) UT_ASSERTeq(object->values[i], i + 1); operation_finish(ctx, ULOG_INC_FIRST_GEN_NUM); } static void test_undo_checksum_mismatch(PMEMobjpool *pop, struct operation_context *ctx, struct test_object *object, struct ulog *log) { operation_start(ctx); for (uint64_t i = 0; i < 20; ++i) object->values[i] = i + 1; operation_add_buffer(ctx, &object->values, &object->values, sizeof(*object->values) * 20, ULOG_OPERATION_BUF_CPY); for (uint64_t i = 0; i < 20; ++i) object->values[i] = i + 2; pmemobj_persist(pop, &object->values, sizeof(*object->values) * 20); log->data[100] += 1; /* corrupt the log somewhere */ pmemobj_persist(pop, &log->data[100], sizeof(log->data[100])); operation_process(ctx); /* the log shouldn't get applied */ for (uint64_t i = 0; i < 20; ++i) UT_ASSERTeq(object->values[i], i + 2); operation_finish(ctx, ULOG_INC_FIRST_GEN_NUM); } static void test_undo_large_copy(PMEMobjpool *pop, struct operation_context *ctx, struct test_object *object) { operation_start(ctx); for (uint64_t i = 0; i < TEST_VALUES; ++i) object->values[i] = i + 1; operation_add_buffer(ctx, &object->values, &object->values, sizeof(object->values), ULOG_OPERATION_BUF_CPY); for (uint64_t i = 0; i < TEST_VALUES; ++i) object->values[i] = i + 2; operation_process(ctx); for (uint64_t i = 0; i < TEST_VALUES; ++i) UT_ASSERTeq(object->values[i], i + 1); operation_finish(ctx, ULOG_INC_FIRST_GEN_NUM); for (uint64_t i = 0; i < TEST_VALUES; ++i) object->values[i] = i + 3; operation_start(ctx); operation_add_buffer(ctx, &object->values, &object->values, sizeof(*object->values) * 26, ULOG_OPERATION_BUF_CPY); for (uint64_t i = 0; i < TEST_VALUES; ++i) object->values[i] = i + 4; pmemobj_persist(pop, &object->values, sizeof(object->values)); operation_process(ctx); for (uint64_t i = 0; i < 26; ++i) UT_ASSERTeq(object->values[i], i + 3); for (uint64_t i = 26; i < TEST_VALUES; ++i) UT_ASSERTeq(object->values[i], i + 4); operation_finish(ctx, ULOG_INC_FIRST_GEN_NUM); } static int test_undo_foreach(struct ulog_entry_base *e, void *arg, const struct pmem_ops *p_ops) { size_t *nentries = arg; ++(*nentries); return 0; } /* * drain_empty -- drain for pmem_ops */ static void drain_empty(void *ctx) { /* do nothing */ } /* * persist_empty -- persist for pmem_ops */ static int persist_empty(void *ctx, const void *addr, size_t len, unsigned flags) { return 0; } /* * flush_empty -- flush for pmem_ops */ static int flush_empty(void *ctx, const void *addr, size_t len, unsigned flags) { return 0; } /* * memcpy_libc -- memcpy for pmem_ops */ static void * memcpy_libc(void *ctx, void *dest, const void *src, size_t len, unsigned flags) { return memcpy(dest, src, len); } /* * memset_libc -- memset for pmem_ops */ static void * memset_libc(void *ctx, void *ptr, int c, size_t sz, unsigned flags) { return memset(ptr, c, sz); } /* * test_undo_log_reuse -- test for correct reuse of log space */ static void test_undo_log_reuse() { #define ULOG_SIZE 1024 struct pmem_ops ops = { .persist = persist_empty, .flush = flush_empty, .drain = drain_empty, .memcpy = memcpy_libc, .memmove = NULL, .memset = memset_libc, .base = NULL, }; struct ULOG(ULOG_SIZE) *first = util_aligned_malloc(CACHELINE_SIZE, SIZEOF_ULOG(ULOG_SIZE)); struct ULOG(ULOG_SIZE) *second = util_aligned_malloc(CACHELINE_SIZE, SIZEOF_ULOG(ULOG_SIZE)); ulog_construct((uint64_t)(first), ULOG_SIZE, 0, 0, 0, &ops); ulog_construct((uint64_t)(second), ULOG_SIZE, 0, 0, 0, &ops); first->next = (uint64_t)(second); struct operation_context *ctx = operation_new( (struct ulog *)first, ULOG_SIZE, NULL, test_free_entry, &ops, LOG_TYPE_UNDO); size_t nentries = 0; ulog_foreach_entry((struct ulog *)first, test_undo_foreach, &nentries, &ops,NULL); UT_ASSERTeq(nentries, 0); /* first, let's populate the log with some valid entries */ size_t entry_size = (ULOG_SIZE / 2) - sizeof(struct ulog_entry_buf); size_t total_entries = ((ULOG_SIZE * 2) / entry_size); char *data = MALLOC(entry_size); memset(data, 0xc, entry_size); /* fill it with something */ for (size_t i = 0; i < total_entries; ++i) { operation_add_buffer(ctx, (void *)0x123, data, entry_size, ULOG_OPERATION_BUF_CPY); nentries = 0; ulog_foreach_entry((struct ulog *)first, test_undo_foreach, &nentries, &ops,NULL); UT_ASSERTeq(nentries, i + 1); } operation_init(ctx); /* initialize a new operation */ /* let's overwrite old entries and see if they are no longer visible */ for (size_t i = 0; i < total_entries; ++i) { operation_add_buffer(ctx, (void *)0x123, data, entry_size, ULOG_OPERATION_BUF_CPY); nentries = 0; ulog_foreach_entry((struct ulog *)first, test_undo_foreach, &nentries, &ops,NULL); UT_ASSERTeq(nentries, i + 1); } FREE(data); operation_delete(ctx); util_aligned_free(first); util_aligned_free(second); #undef ULOG_SIZE } /* * test_undo_log_reuse -- test for correct reuse of log space */ static void test_redo_cleanup_same_size(PMEMobjpool *pop, struct test_object *object) { #define ULOG_SIZE 1024 struct operation_context *ctx = operation_new( (struct ulog *)&object->redo, TEST_ENTRIES, pmalloc_redo_extend, (ulog_free_fn)pfree, &pop->p_ops, LOG_TYPE_REDO); int ret = pmalloc(pop, &object->redo.next, ULOG_SIZE, 0, 0); UT_ASSERTeq(ret, 0); /* undo logs are clobbered at the end, which shrinks their size */ size_t capacity = ulog_capacity((struct ulog *)&object->undo, TEST_ENTRIES, &pop->p_ops); /* builtin log + one next */ UT_ASSERTeq(capacity, TEST_ENTRIES * 2 + CACHELINE_SIZE); operation_start(ctx); /* initialize a new operation */ struct pobj_action act; pmemobj_reserve(pop, &act, ULOG_SIZE, 0); palloc_publish(&pop->heap, &act, 1, ctx); operation_delete(ctx); #undef ULOG_SIZE } static void test_undo(PMEMobjpool *pop, struct test_object *object) { struct operation_context *ctx = operation_new( (struct ulog *)&object->undo, TEST_ENTRIES, pmalloc_redo_extend, (ulog_free_fn)pfree, &pop->p_ops, LOG_TYPE_UNDO); test_undo_small_single_copy(ctx, object); test_undo_small_single_set(ctx, object); test_undo_small_multiple_set(ctx, object); test_undo_large_single_copy(ctx, object); test_undo_large_copy(pop, ctx, object); test_undo_checksum_mismatch(pop, ctx, object, (struct ulog *)&object->undo); /* undo logs are clobbered at the end, which shrinks their size */ size_t capacity = ulog_capacity((struct ulog *)&object->undo, TEST_ENTRIES, &pop->p_ops); /* builtin log + one next */ UT_ASSERTeq(capacity, TEST_ENTRIES * 2 + CACHELINE_SIZE); operation_delete(ctx); } int main(int argc, char *argv[]) { START(argc, argv, "obj_memops"); if (argc != 2) UT_FATAL("usage: %s file-name", argv[0]); const char *path = argv[1]; PMEMobjpool *pop = NULL; if ((pop = pmemobj_create(path, "obj_memops", PMEMOBJ_MIN_POOL * 10, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create: %s", path); /* * The ulog API requires cacheline alignment. A cacheline aligned new * new allocator is created here to properly test the ulog api. * A aligned object can then be allocated using pmemobj_xalloc. */ struct pobj_alloc_class_desc new_ac = { .unit_size = sizeof(struct test_object), .alignment = CACHELINE_SIZE, .units_per_block = 1, .header_type = POBJ_HEADER_NONE, }; if (pmemobj_ctl_set(pop, "heap.alloc_class.new.desc", &new_ac) == -1) UT_FATAL("Failed to set allocation class"); PMEMoid pobject; if (pmemobj_xalloc(pop, &pobject, sizeof(struct test_object), 0, POBJ_CLASS_ID(new_ac.class_id), NULL, NULL) == -1) UT_FATAL("Failed to allocate object"); struct test_object *object = pmemobj_direct(pobject); UT_ASSERTne(object, NULL); ulog_construct(OBJ_PTR_TO_OFF(pop, &object->undo), TEST_ENTRIES, 0, 0, 0, &pop->p_ops); ulog_construct(OBJ_PTR_TO_OFF(pop, &object->redo), TEST_ENTRIES, 0, 0, 0, &pop->p_ops); test_redo(pop, object); test_undo(pop, object); test_redo_cleanup_same_size(pop, object); test_undo_log_reuse(); pmemobj_close(pop); DONE(NULL); } #ifdef _MSC_VER /* * Since libpmemobj is linked statically, we need to invoke its ctor/dtor. */ MSVC_CONSTR(libpmemobj_init) MSVC_DESTR(libpmemobj_fini) #endif
15,904
23.319572
79
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_strdup/obj_strdup.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2019, Intel Corporation */ /* * obj_strdup.c -- unit test for pmemobj_strdup */ #include <sys/param.h> #include <string.h> #include <wchar.h> #include "unittest.h" #include "libpmemobj.h" #define LAYOUT_NAME "strdup" TOID_DECLARE(char, 0); TOID_DECLARE(wchar_t, 1); enum type_number { TYPE_SIMPLE, TYPE_NULL, TYPE_SIMPLE_ALLOC, TYPE_SIMPLE_ALLOC_1, TYPE_SIMPLE_ALLOC_2, TYPE_NULL_ALLOC, TYPE_NULL_ALLOC_1, }; #define TEST_STR_1 "Test string 1" #define TEST_STR_2 "Test string 2" #define TEST_WCS_1 L"Test string 3" #define TEST_WCS_2 L"Test string 4" #define TEST_STR_EMPTY "" #define TEST_WCS_EMPTY L"" /* * do_strdup -- duplicate a string to not allocated toid using pmemobj_strdup */ static void do_strdup(PMEMobjpool *pop) { TOID(char) str = TOID_NULL(char); TOID(wchar_t) wcs = TOID_NULL(wchar_t); pmemobj_strdup(pop, &str.oid, TEST_STR_1, TYPE_SIMPLE); pmemobj_wcsdup(pop, &wcs.oid, TEST_WCS_1, TYPE_SIMPLE); UT_ASSERT(!TOID_IS_NULL(str)); UT_ASSERT(!TOID_IS_NULL(wcs)); UT_ASSERTeq(strcmp(D_RO(str), TEST_STR_1), 0); UT_ASSERTeq(wcscmp(D_RO(wcs), TEST_WCS_1), 0); } /* * do_strdup_null -- duplicate a NULL string to not allocated toid */ static void do_strdup_null(PMEMobjpool *pop) { TOID(char) str = TOID_NULL(char); TOID(wchar_t) wcs = TOID_NULL(wchar_t); pmemobj_strdup(pop, &str.oid, NULL, TYPE_NULL); pmemobj_wcsdup(pop, &wcs.oid, NULL, TYPE_NULL); UT_ASSERT(TOID_IS_NULL(str)); UT_ASSERT(TOID_IS_NULL(wcs)); } /* * do_alloc -- allocate toid and duplicate a string */ static TOID(char) do_alloc(PMEMobjpool *pop, const char *s, unsigned type_num) { TOID(char) str; POBJ_ZNEW(pop, &str, char); pmemobj_strdup(pop, &str.oid, s, type_num); UT_ASSERT(!TOID_IS_NULL(str)); UT_ASSERTeq(strcmp(D_RO(str), s), 0); return str; } /* * do_wcs_alloc -- allocate toid and duplicate a wide character string */ static TOID(wchar_t) do_wcs_alloc(PMEMobjpool *pop, const wchar_t *s, unsigned type_num) { TOID(wchar_t) str; POBJ_ZNEW(pop, &str, wchar_t); pmemobj_wcsdup(pop, &str.oid, s, type_num); UT_ASSERT(!TOID_IS_NULL(str)); UT_ASSERTeq(wcscmp(D_RO(str), s), 0); return str; } /* * do_strdup_alloc -- duplicate a string to allocated toid */ static void do_strdup_alloc(PMEMobjpool *pop) { TOID(char) str1 = do_alloc(pop, TEST_STR_1, TYPE_SIMPLE_ALLOC_1); TOID(wchar_t) wcs1 = do_wcs_alloc(pop, TEST_WCS_1, TYPE_SIMPLE_ALLOC_1); TOID(char) str2 = do_alloc(pop, TEST_STR_2, TYPE_SIMPLE_ALLOC_2); TOID(wchar_t) wcs2 = do_wcs_alloc(pop, TEST_WCS_2, TYPE_SIMPLE_ALLOC_2); pmemobj_strdup(pop, &str1.oid, D_RO(str2), TYPE_SIMPLE_ALLOC); pmemobj_wcsdup(pop, &wcs1.oid, D_RO(wcs2), TYPE_SIMPLE_ALLOC); UT_ASSERTeq(strcmp(D_RO(str1), D_RO(str2)), 0); UT_ASSERTeq(wcscmp(D_RO(wcs1), D_RO(wcs2)), 0); } /* * do_strdup_null_alloc -- duplicate a NULL string to allocated toid */ static void do_strdup_null_alloc(PMEMobjpool *pop) { TOID(char) str1 = do_alloc(pop, TEST_STR_1, TYPE_NULL_ALLOC_1); TOID(wchar_t) wcs1 = do_wcs_alloc(pop, TEST_WCS_1, TYPE_NULL_ALLOC_1); TOID(char) str2 = TOID_NULL(char); TOID(wchar_t) wcs2 = TOID_NULL(wchar_t); pmemobj_strdup(pop, &str1.oid, D_RO(str2), TYPE_NULL_ALLOC); pmemobj_wcsdup(pop, &wcs1.oid, D_RO(wcs2), TYPE_NULL_ALLOC); UT_ASSERT(!TOID_IS_NULL(str1)); UT_ASSERT(!TOID_IS_NULL(wcs1)); } /* * do_strdup_uint64_range -- duplicate string with * type number equal to range of unsigned long long int */ static void do_strdup_uint64_range(PMEMobjpool *pop) { TOID(char) str1; TOID(char) str2 = do_alloc(pop, TEST_STR_2, TYPE_SIMPLE_ALLOC_1); TOID(char) str3; TOID(char) str4 = do_alloc(pop, TEST_STR_2, TYPE_SIMPLE_ALLOC_1); pmemobj_strdup(pop, &str1.oid, D_RO(str2), UINT64_MAX); pmemobj_strdup(pop, &str3.oid, D_RO(str4), UINT64_MAX - 1); UT_ASSERTeq(strcmp(D_RO(str1), D_RO(str2)), 0); UT_ASSERTeq(strcmp(D_RO(str3), D_RO(str4)), 0); } /* * do_strdup_alloc_empty_string -- duplicate string to internal container * associated with type number equal to range of unsigned long long int * and unsigned long long int - 1 */ static void do_strdup_alloc_empty_string(PMEMobjpool *pop) { TOID(char) str1 = do_alloc(pop, TEST_STR_1, TYPE_SIMPLE_ALLOC_1); TOID(wchar_t) wcs1 = do_wcs_alloc(pop, TEST_WCS_1, TYPE_SIMPLE_ALLOC_1); pmemobj_strdup(pop, &str1.oid, TEST_STR_EMPTY, TYPE_SIMPLE_ALLOC); pmemobj_wcsdup(pop, &wcs1.oid, TEST_WCS_EMPTY, TYPE_SIMPLE_ALLOC); UT_ASSERTeq(strcmp(D_RO(str1), TEST_STR_EMPTY), 0); UT_ASSERTeq(wcscmp(D_RO(wcs1), TEST_WCS_EMPTY), 0); } int main(int argc, char *argv[]) { START(argc, argv, "obj_strdup"); if (argc != 2) UT_FATAL("usage: %s [file]", argv[0]); PMEMobjpool *pop; if ((pop = pmemobj_create(argv[1], LAYOUT_NAME, PMEMOBJ_MIN_POOL, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create"); do_strdup(pop); do_strdup_null(pop); do_strdup_alloc(pop); do_strdup_null_alloc(pop); do_strdup_uint64_range(pop); do_strdup_alloc_empty_string(pop); pmemobj_close(pop); DONE(NULL); }
5,017
26.571429
77
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem_is_pmem/pmem_is_pmem.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2014-2020, Intel Corporation */ /* * Copyright (c) 2016, Microsoft Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * * Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * pmem_is_pmem.c -- unit test for pmem_is_pmem() * * usage: pmem_is_pmem file [env] */ #include "unittest.h" #define NTHREAD 16 static void *Addr; static size_t Size; /* * worker -- the work each thread performs */ static void * worker(void *arg) { int *ret = (int *)arg; *ret = pmem_is_pmem(Addr, Size); return NULL; } int main(int argc, char *argv[]) { START(argc, argv, "pmem_is_pmem"); if (argc < 2 || argc > 3) UT_FATAL("usage: %s file [env]", argv[0]); if (argc == 3) UT_ASSERTeq(os_setenv("PMEM_IS_PMEM_FORCE", argv[2], 1), 0); Addr = pmem_map_file(argv[1], 0, 0, 0, &Size, NULL); UT_ASSERTne(Addr, NULL); os_thread_t threads[NTHREAD]; int ret[NTHREAD]; /* kick off NTHREAD threads */ for (int i = 0; i < NTHREAD; i++) THREAD_CREATE(&threads[i], NULL, worker, &ret[i]); /* wait for all the threads to complete */ for (int i = 0; i < NTHREAD; i++) THREAD_JOIN(&threads[i], NULL); /* verify that all the threads return the same value */ for (int i = 1; i < NTHREAD; i++) UT_ASSERTeq(ret[0], ret[i]); UT_OUT("threads.is_pmem(Addr, Size): %d", ret[0]); UT_ASSERTeq(os_unsetenv("PMEM_IS_PMEM_FORCE"), 0); UT_OUT("is_pmem(Addr, Size): %d", pmem_is_pmem(Addr, Size)); /* zero-sized region is not pmem */ UT_OUT("is_pmem(Addr, 0): %d", pmem_is_pmem(Addr, 0)); UT_OUT("is_pmem(Addr + Size / 2, 0): %d", pmem_is_pmem((char *)Addr + Size / 2, 0)); UT_OUT("is_pmem(Addr + Size, 0): %d", pmem_is_pmem((char *)Addr + Size, 0)); DONE(NULL); }
3,216
30.23301
74
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/rpmem_obc_int/rpmem_obc_int.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2019, Intel Corporation */ /* * rpmem_obc_int.c -- integration test for rpmem_obc and rpmemd_obc modules */ #include "unittest.h" #include "pmemcommon.h" #include "librpmem.h" #include "rpmem.h" #include "rpmem_proto.h" #include "rpmem_common.h" #include "rpmem_util.h" #include "rpmem_obc.h" #include "rpmemd_obc.h" #include "rpmemd_log.h" #include "os.h" #define POOL_SIZE 1024 #define NLANES 32 #define NLANES_RESP 16 #define PROVIDER RPMEM_PROV_LIBFABRIC_SOCKETS #define POOL_DESC "pool_desc" #define RKEY 0xabababababababab #define RADDR 0x0101010101010101 #define PORT 1234 #define PERSIST_METHOD RPMEM_PM_GPSPM #define RESP_ATTR_INIT {\ .port = PORT,\ .rkey = RKEY,\ .raddr = RADDR,\ .persist_method = PERSIST_METHOD,\ .nlanes = NLANES_RESP,\ } #define REQ_ATTR_INIT {\ .pool_size = POOL_SIZE,\ .nlanes = NLANES,\ .provider = PROVIDER,\ .pool_desc = POOL_DESC,\ } #define POOL_ATTR_INIT {\ .signature = "<RPMEM>",\ .major = 1,\ .compat_features = 2,\ .incompat_features = 3,\ .ro_compat_features = 4,\ .poolset_uuid = "POOLSET_UUID0123",\ .uuid = "UUID0123456789AB",\ .next_uuid = "NEXT_UUID0123456",\ .prev_uuid = "PREV_UUID0123456",\ .user_flags = "USER_FLAGS012345",\ } #define POOL_ATTR_ALT {\ .signature = "<ALT>",\ .major = 5,\ .compat_features = 6,\ .incompat_features = 7,\ .ro_compat_features = 8,\ .poolset_uuid = "UUID_POOLSET_ALT",\ .uuid = "ALT_UUIDCDEFFEDC",\ .next_uuid = "456UUID_NEXT_ALT",\ .prev_uuid = "UUID012_ALT_PREV",\ .user_flags = "012345USER_FLAGS",\ } TEST_CASE_DECLARE(client_create); TEST_CASE_DECLARE(client_open); TEST_CASE_DECLARE(client_set_attr); TEST_CASE_DECLARE(server); /* * client_create -- perform create request */ int client_create(const struct test_case *tc, int argc, char *argv[]) { if (argc < 1) UT_FATAL("usage: %s <addr>[:<port>]", tc->name); char *target = argv[0]; int ret; struct rpmem_obc *rpc; struct rpmem_target_info *info; struct rpmem_req_attr req = REQ_ATTR_INIT; struct rpmem_pool_attr pool_attr = POOL_ATTR_INIT; struct rpmem_resp_attr ex_res = RESP_ATTR_INIT; struct rpmem_resp_attr res; info = rpmem_target_parse(target); UT_ASSERTne(info, NULL); rpc = rpmem_obc_init(); UT_ASSERTne(rpc, NULL); ret = rpmem_obc_connect(rpc, info); UT_ASSERTeq(ret, 0); rpmem_target_free(info); ret = rpmem_obc_monitor(rpc, 1); UT_ASSERTeq(ret, 1); ret = rpmem_obc_create(rpc, &req, &res, &pool_attr); UT_ASSERTeq(ret, 0); UT_ASSERTeq(ex_res.port, res.port); UT_ASSERTeq(ex_res.rkey, res.rkey); UT_ASSERTeq(ex_res.raddr, res.raddr); UT_ASSERTeq(ex_res.persist_method, res.persist_method); UT_ASSERTeq(ex_res.nlanes, res.nlanes); ret = rpmem_obc_monitor(rpc, 1); UT_ASSERTeq(ret, 1); ret = rpmem_obc_close(rpc, 0); UT_ASSERTeq(ret, 0); ret = rpmem_obc_disconnect(rpc); UT_ASSERTeq(ret, 0); rpmem_obc_fini(rpc); return 1; } /* * client_open -- perform open request */ int client_open(const struct test_case *tc, int argc, char *argv[]) { if (argc < 1) UT_FATAL("usage: %s <addr>[:<port>]", tc->name); char *target = argv[0]; int ret; struct rpmem_obc *rpc; struct rpmem_target_info *info; struct rpmem_req_attr req = REQ_ATTR_INIT; struct rpmem_pool_attr ex_pool_attr = POOL_ATTR_INIT; struct rpmem_pool_attr pool_attr; struct rpmem_resp_attr ex_res = RESP_ATTR_INIT; struct rpmem_resp_attr res; info = rpmem_target_parse(target); UT_ASSERTne(info, NULL); rpc = rpmem_obc_init(); UT_ASSERTne(rpc, NULL); ret = rpmem_obc_connect(rpc, info); UT_ASSERTeq(ret, 0); rpmem_target_free(info); ret = rpmem_obc_monitor(rpc, 1); UT_ASSERTeq(ret, 1); ret = rpmem_obc_open(rpc, &req, &res, &pool_attr); UT_ASSERTeq(ret, 0); UT_ASSERTeq(ex_res.port, res.port); UT_ASSERTeq(ex_res.rkey, res.rkey); UT_ASSERTeq(ex_res.raddr, res.raddr); UT_ASSERTeq(ex_res.persist_method, res.persist_method); UT_ASSERTeq(ex_res.nlanes, res.nlanes); UT_ASSERTeq(memcmp(&ex_pool_attr, &pool_attr, sizeof(ex_pool_attr)), 0); ret = rpmem_obc_monitor(rpc, 1); UT_ASSERTeq(ret, 1); ret = rpmem_obc_close(rpc, 0); UT_ASSERTeq(ret, 0); ret = rpmem_obc_disconnect(rpc); UT_ASSERTeq(ret, 0); rpmem_obc_fini(rpc); return 1; } /* * client_set_attr -- perform set attributes request */ int client_set_attr(const struct test_case *tc, int argc, char *argv[]) { if (argc < 1) UT_FATAL("usage: %s <addr>[:<port>]", tc->name); char *target = argv[0]; int ret; struct rpmem_obc *rpc; struct rpmem_target_info *info; const struct rpmem_pool_attr pool_attr = POOL_ATTR_ALT; info = rpmem_target_parse(target); UT_ASSERTne(info, NULL); rpc = rpmem_obc_init(); UT_ASSERTne(rpc, NULL); ret = rpmem_obc_connect(rpc, info); UT_ASSERTeq(ret, 0); rpmem_target_free(info); ret = rpmem_obc_monitor(rpc, 1); UT_ASSERTeq(ret, 1); ret = rpmem_obc_set_attr(rpc, &pool_attr); UT_ASSERTeq(ret, 0); ret = rpmem_obc_monitor(rpc, 1); UT_ASSERTeq(ret, 1); ret = rpmem_obc_close(rpc, 0); UT_ASSERTeq(ret, 0); ret = rpmem_obc_disconnect(rpc); UT_ASSERTeq(ret, 0); rpmem_obc_fini(rpc); return 1; } /* * req_arg -- request callbacks argument */ struct req_arg { struct rpmem_resp_attr resp; struct rpmem_pool_attr pool_attr; int closing; }; /* * req_create -- process create request */ static int req_create(struct rpmemd_obc *obc, void *arg, const struct rpmem_req_attr *req, const struct rpmem_pool_attr *pool_attr) { struct rpmem_req_attr ex_req = REQ_ATTR_INIT; struct rpmem_pool_attr ex_pool_attr = POOL_ATTR_INIT; UT_ASSERTne(arg, NULL); UT_ASSERTeq(ex_req.provider, req->provider); UT_ASSERTeq(ex_req.pool_size, req->pool_size); UT_ASSERTeq(ex_req.nlanes, req->nlanes); UT_ASSERTeq(strcmp(ex_req.pool_desc, req->pool_desc), 0); UT_ASSERTeq(memcmp(&ex_pool_attr, pool_attr, sizeof(ex_pool_attr)), 0); struct req_arg *args = arg; return rpmemd_obc_create_resp(obc, 0, &args->resp); } /* * req_open -- process open request */ static int req_open(struct rpmemd_obc *obc, void *arg, const struct rpmem_req_attr *req) { struct rpmem_req_attr ex_req = REQ_ATTR_INIT; UT_ASSERTne(arg, NULL); UT_ASSERTeq(ex_req.provider, req->provider); UT_ASSERTeq(ex_req.pool_size, req->pool_size); UT_ASSERTeq(ex_req.nlanes, req->nlanes); UT_ASSERTeq(strcmp(ex_req.pool_desc, req->pool_desc), 0); struct req_arg *args = arg; return rpmemd_obc_open_resp(obc, 0, &args->resp, &args->pool_attr); } /* * req_set_attr -- process set attributes request */ static int req_set_attr(struct rpmemd_obc *obc, void *arg, const struct rpmem_pool_attr *pool_attr) { struct rpmem_pool_attr ex_pool_attr = POOL_ATTR_ALT; UT_ASSERTne(arg, NULL); UT_ASSERTeq(memcmp(&ex_pool_attr, pool_attr, sizeof(ex_pool_attr)), 0); return rpmemd_obc_set_attr_resp(obc, 0); } /* * req_close -- process close request */ static int req_close(struct rpmemd_obc *obc, void *arg, int flags) { UT_ASSERTne(arg, NULL); struct req_arg *args = arg; args->closing = 1; return rpmemd_obc_close_resp(obc, 0); } /* * REQ -- server request callbacks */ static struct rpmemd_obc_requests REQ = { .create = req_create, .open = req_open, .close = req_close, .set_attr = req_set_attr, }; /* * server -- run server and process clients requests */ int server(const struct test_case *tc, int argc, char *argv[]) { int ret; struct req_arg arg = { .resp = RESP_ATTR_INIT, .pool_attr = POOL_ATTR_INIT, .closing = 0, }; struct rpmemd_obc *obc; obc = rpmemd_obc_init(0, 1); UT_ASSERTne(obc, NULL); ret = rpmemd_obc_status(obc, 0); UT_ASSERTeq(ret, 0); while (1) { ret = rpmemd_obc_process(obc, &REQ, &arg); if (arg.closing) { break; } else { UT_ASSERTeq(ret, 0); } } ret = rpmemd_obc_process(obc, &REQ, &arg); UT_ASSERTeq(ret, 1); rpmemd_obc_fini(obc); return 0; } /* * test_cases -- available test cases */ static struct test_case test_cases[] = { TEST_CASE(server), TEST_CASE(client_create), TEST_CASE(client_open), TEST_CASE(client_set_attr), }; #define NTESTS (sizeof(test_cases) / sizeof(test_cases[0])) int main(int argc, char *argv[]) { START(argc, argv, "rpmem_obc"); common_init("rpmem_fip", "RPMEM_LOG_LEVEL", "RPMEM_LOG_FILE", 0, 0); rpmemd_log_init("rpmemd", os_getenv("RPMEMD_LOG_FILE"), 0); rpmemd_log_level = rpmemd_log_level_from_str( os_getenv("RPMEMD_LOG_LEVEL")); rpmem_util_cmds_init(); TEST_CASE_PROCESS(argc, argv, test_cases, NTESTS); rpmem_util_cmds_fini(); common_fini(); rpmemd_log_close(); DONE(NULL); }
8,537
20.780612
75
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/mmap_fixed/mmap_fixed.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2019, Intel Corporation */ /* * mmap_fixed.c -- test memory mapping with MAP_FIXED for various lengths * * This test is intended to be used for testing Windows implementation * of memory mapping routines - mmap(), munmap(), msync() and mprotect(). * Those functions should provide the same functionality as their Linux * counterparts, at least with respect to the features that are used * in PMDK libraries. * * Known issues and differences between Linux and Windows implementation * are described in src/common/mmap_windows.c. */ #include "unittest.h" #include <sys/mman.h> #define ALIGN(size) ((size) & ~(Ut_mmap_align - 1)) /* * test_mmap_fixed -- test fixed mappings */ static void test_mmap_fixed(const char *name1, const char *name2, size_t len1, size_t len2) { size_t len1_aligned = ALIGN(len1); size_t len2_aligned = ALIGN(len2); UT_OUT("len: %zu (%zu) + %zu (%zu) = %zu", len1, len1_aligned, len2, len2_aligned, len1_aligned + len2_aligned); int fd1 = OPEN(name1, O_CREAT|O_RDWR, S_IWUSR|S_IRUSR); int fd2 = OPEN(name2, O_CREAT|O_RDWR, S_IWUSR|S_IRUSR); POSIX_FALLOCATE(fd1, 0, (os_off_t)len1); POSIX_FALLOCATE(fd2, 0, (os_off_t)len2); char *ptr1 = mmap(NULL, len1_aligned + len2_aligned, PROT_READ|PROT_WRITE, MAP_SHARED, fd1, 0); UT_ASSERTne(ptr1, MAP_FAILED); UT_OUT("ptr1: %p, ptr2: %p", ptr1, ptr1 + len1_aligned); char *ptr2 = mmap(ptr1 + len1_aligned, len2_aligned, PROT_READ|PROT_WRITE, MAP_FIXED|MAP_SHARED, fd2, 0); UT_ASSERTne(ptr2, MAP_FAILED); UT_ASSERTeq(ptr2, ptr1 + len1_aligned); UT_ASSERTne(munmap(ptr1, len1_aligned), -1); UT_ASSERTne(munmap(ptr2, len2_aligned), -1); CLOSE(fd1); CLOSE(fd2); UNLINK(name1); UNLINK(name2); } int main(int argc, char *argv[]) { START(argc, argv, "mmap_fixed"); if (argc < 4) UT_FATAL("usage: %s dirname len1 len2 ...", argv[0]); size_t *lengths = MALLOC(sizeof(size_t) * (size_t)argc - 2); UT_ASSERTne(lengths, NULL); size_t appendix_length = 20; /* a file name length */ char *name1 = MALLOC(strlen(argv[1]) + appendix_length); char *name2 = MALLOC(strlen(argv[1]) + appendix_length); sprintf(name1, "%s\\testfile1", argv[1]); sprintf(name2, "%s\\testfile2", argv[1]); for (int i = 0; i < argc - 2; i++) lengths[i] = ATOULL(argv[i + 2]); for (int i = 0; i < argc - 2; i++) for (int j = 0; j < argc - 2; j++) test_mmap_fixed(name1, name2, lengths[i], lengths[j]); FREE(name1); FREE(name2); FREE(lengths); DONE(NULL); }
2,522
26.129032
79
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_movnt/pmem2_movnt.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2020, Intel Corporation */ /* * pmem2_movnt.c -- test for MOVNT threshold * * usage: pmem2_movnt */ #include "unittest.h" #include "ut_pmem2.h" int main(int argc, char *argv[]) { int fd; char *dst; char *src; struct pmem2_config *cfg; struct pmem2_source *psrc; struct pmem2_map *map; if (argc != 2) UT_FATAL("usage: %s file", argv[0]); const char *thr = os_getenv("PMEM_MOVNT_THRESHOLD"); const char *avx = os_getenv("PMEM_AVX"); const char *avx512f = os_getenv("PMEM_AVX512F"); START(argc, argv, "pmem2_movnt %s %savx %savx512f", thr ? thr : "default", avx ? "" : "!", avx512f ? "" : "!"); fd = OPEN(argv[1], O_RDWR); PMEM2_CONFIG_NEW(&cfg); PMEM2_SOURCE_FROM_FD(&psrc, fd); PMEM2_CONFIG_SET_GRANULARITY(cfg, PMEM2_GRANULARITY_PAGE); int ret = pmem2_map(cfg, psrc, &map); UT_PMEM2_EXPECT_RETURN(ret, 0); PMEM2_CONFIG_DELETE(&cfg); src = MEMALIGN(64, 8192); dst = MEMALIGN(64, 8192); memset(src, 0x88, 8192); memset(dst, 0, 8192); pmem2_memset_fn memset_fn = pmem2_get_memset_fn(map); pmem2_memcpy_fn memcpy_fn = pmem2_get_memcpy_fn(map); pmem2_memmove_fn memmove_fn = pmem2_get_memmove_fn(map); for (size_t size = 1; size <= 4096; size *= 2) { memset(dst, 0, 4096); memcpy_fn(dst, src, size, PMEM2_F_MEM_NODRAIN); UT_ASSERTeq(memcmp(src, dst, size), 0); UT_ASSERTeq(dst[size], 0); } for (size_t size = 1; size <= 4096; size *= 2) { memset(dst, 0, 4096); memmove_fn(dst, src, size, PMEM2_F_MEM_NODRAIN); UT_ASSERTeq(memcmp(src, dst, size), 0); UT_ASSERTeq(dst[size], 0); } for (size_t size = 1; size <= 4096; size *= 2) { memset(dst, 0, 4096); memset_fn(dst, 0x77, size, PMEM2_F_MEM_NODRAIN); UT_ASSERTeq(dst[0], 0x77); UT_ASSERTeq(dst[size - 1], 0x77); UT_ASSERTeq(dst[size], 0); } ALIGNED_FREE(dst); ALIGNED_FREE(src); ret = pmem2_unmap(&map); UT_ASSERTeq(ret, 0); CLOSE(fd); DONE(NULL); }
1,945
21.113636
59
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_memmove/pmem2_memmove.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2020, Intel Corporation */ /* * pmem2_memmove.c -- test for doing a memmove * * usage: * pmem2_memmove file b:length [d:{offset}] [s:offset] [o:{1|2} S:{overlap}] * */ #include "unittest.h" #include "ut_pmem2.h" #include "file.h" #include "memmove_common.h" static void do_memmove_variants(char *dst, char *src, const char *file_name, size_t dest_off, size_t src_off, size_t bytes, persist_fn p, memmove_fn fn) { for (int i = 0; i < ARRAY_SIZE(Flags); ++i) { do_memmove(dst, src, file_name, dest_off, src_off, bytes, fn, Flags[i], p); } } int main(int argc, char *argv[]) { int fd; char *dst; char *src; char *src_orig; size_t dst_off = 0; size_t src_off = 0; size_t bytes = 0; int who = 0; size_t mapped_len; struct pmem2_config *cfg; struct pmem2_source *psrc; struct pmem2_map *map; const char *thr = os_getenv("PMEM_MOVNT_THRESHOLD"); const char *avx = os_getenv("PMEM_AVX"); const char *avx512f = os_getenv("PMEM_AVX512F"); START(argc, argv, "pmem2_memmove %s %s %s %s %savx %savx512f", argc > 2 ? argv[2] : "null", argc > 3 ? argv[3] : "null", argc > 4 ? argv[4] : "null", thr ? thr : "default", avx ? "" : "!", avx512f ? "" : "!"); fd = OPEN(argv[1], O_RDWR); if (argc < 3) USAGE(); PMEM2_CONFIG_NEW(&cfg); PMEM2_SOURCE_FROM_FD(&psrc, fd); PMEM2_CONFIG_SET_GRANULARITY(cfg, PMEM2_GRANULARITY_PAGE); int ret = pmem2_map(cfg, psrc, &map); UT_PMEM2_EXPECT_RETURN(ret, 0); PMEM2_CONFIG_DELETE(&cfg); pmem2_persist_fn persist = pmem2_get_persist_fn(map); mapped_len = pmem2_map_get_size(map); dst = pmem2_map_get_address(map); if (dst == NULL) UT_FATAL("!could not map file: %s", argv[1]); pmem2_memmove_fn memmove_fn = pmem2_get_memmove_fn(map); for (int arg = 2; arg < argc; arg++) { if (strchr("dsbo", argv[arg][0]) == NULL || argv[arg][1] != ':') UT_FATAL("op must be d: or s: or b: or o:"); size_t val = STRTOUL(&argv[arg][2], NULL, 0); switch (argv[arg][0]) { case 'd': if (val <= 0) UT_FATAL("bad offset (%lu) with d: option", val); dst_off = val; break; case 's': if (val <= 0) UT_FATAL("bad offset (%lu) with s: option", val); src_off = val; break; case 'b': if (val <= 0) UT_FATAL("bad length (%lu) with b: option", val); bytes = val; break; case 'o': if (val != 1 && val != 0) UT_FATAL("bad val (%lu) with o: option", val); who = (int)val; break; } } if (who == 0) { src_orig = src = dst + mapped_len / 2; UT_ASSERT(src > dst); do_memmove_variants(dst, src, argv[1], dst_off, src_off, bytes, persist, memmove_fn); /* dest > src */ src = dst; dst = src_orig; if (dst <= src) UT_FATAL("cannot map files in memory order"); do_memmove_variants(dst, src, argv[1], dst_off, src_off, bytes, persist, memmove_fn); } else { /* use the same buffer for source and destination */ memset(dst, 0, bytes); persist(dst, bytes); do_memmove_variants(dst, dst, argv[1], dst_off, src_off, bytes, persist, memmove_fn); } ret = pmem2_unmap(&map); UT_ASSERTeq(ret, 0); CLOSE(fd); DONE(NULL); }
3,184
20.52027
76
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_memmove/memmove_common.h
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2020, Intel Corporation */ /* * memmove_common.h -- header file for common memmove_common test utilities */ #ifndef MEMMOVE_COMMON_H #define MEMMOVE_COMMON_H 1 #include "unittest.h" #include "file.h" extern unsigned Flags[10]; #define USAGE() do { UT_FATAL("usage: %s file b:length [d:{offset}] "\ "[s:{offset}] [o:{0|1}]", argv[0]); } while (0) typedef void *(*memmove_fn)(void *pmemdest, const void *src, size_t len, unsigned flags); typedef void (*persist_fn)(const void *ptr, size_t len); void do_memmove(char *dst, char *src, const char *file_name, size_t dest_off, size_t src_off, size_t bytes, memmove_fn fn, unsigned flags, persist_fn p); void verify_contents(const char *file_name, int test, const char *buf1, const char *buf2, size_t len); #endif
832
25.870968
75
h
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_memmove/memmove_common.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2020, Intel Corporation */ /* * memmove_common.c -- common part for tests doing a persistent memmove */ #include "unittest.h" #include "memmove_common.h" /* * verify_contents -- verify that buffers match, if they don't - print contents * of both and abort the test */ void verify_contents(const char *file_name, int test, const char *buf1, const char *buf2, size_t len) { if (memcmp(buf1, buf2, len) == 0) return; for (size_t i = 0; i < len; ++i) UT_ERR("%04zu 0x%02x 0x%02x %s", i, (uint8_t)buf1[i], (uint8_t)buf2[i], buf1[i] != buf2[i] ? "!!!" : ""); UT_FATAL("%s %d: %zu bytes do not match with memcmp", file_name, test, len); } /* * do_memmove: Worker function for memmove. * * Always work within the boundary of bytes. Fill in 1/2 of the src * memory with the pattern we want to write. This allows us to check * that we did not overwrite anything we were not supposed to in the * dest. Use the non pmem version of the memset/memcpy commands * so as not to introduce any possible side affects. */ void do_memmove(char *dst, char *src, const char *file_name, size_t dest_off, size_t src_off, size_t bytes, memmove_fn fn, unsigned flags, persist_fn persist) { void *ret; char *srcshadow = MALLOC(dest_off + src_off + bytes); char *dstshadow = srcshadow; if (src != dst) dstshadow = MALLOC(dest_off + src_off + bytes); char old; memset(src, 0x11, bytes); memset(dst, 0x22, bytes); memset(src, 0x33, bytes / 4); memset(src + bytes / 4, 0x44, bytes / 4); persist(src, bytes); persist(dst, bytes); memcpy(srcshadow, src, bytes); memcpy(dstshadow, dst, bytes); /* TEST 1, dest == src */ old = *(char *)(dst + dest_off); ret = fn(dst + dest_off, dst + dest_off, bytes / 2, flags); UT_ASSERTeq(ret, dst + dest_off); UT_ASSERTeq(*(char *)(dst + dest_off), old); /* do the same using regular memmove and verify that buffers match */ memmove(dstshadow + dest_off, dstshadow + dest_off, bytes / 2); verify_contents(file_name, 0, dstshadow, dst, bytes); verify_contents(file_name, 1, srcshadow, src, bytes); /* TEST 2, len == 0 */ old = *(char *)(dst + dest_off); ret = fn(dst + dest_off, src + src_off, 0, flags); UT_ASSERTeq(ret, dst + dest_off); UT_ASSERTeq(*(char *)(dst + dest_off), old); /* do the same using regular memmove and verify that buffers match */ memmove(dstshadow + dest_off, srcshadow + src_off, 0); verify_contents(file_name, 2, dstshadow, dst, bytes); verify_contents(file_name, 3, srcshadow, src, bytes); /* TEST 3, len == bytes / 2 */ ret = fn(dst + dest_off, src + src_off, bytes / 2, flags); UT_ASSERTeq(ret, dst + dest_off); if (flags & PMEM_F_MEM_NOFLUSH) /* for pmemcheck */ persist(dst + dest_off, bytes / 2); /* do the same using regular memmove and verify that buffers match */ memmove(dstshadow + dest_off, srcshadow + src_off, bytes / 2); verify_contents(file_name, 4, dstshadow, dst, bytes); verify_contents(file_name, 5, srcshadow, src, bytes); FREE(srcshadow); if (dstshadow != srcshadow) FREE(dstshadow); } unsigned Flags[] = { 0, PMEM_F_MEM_NODRAIN, PMEM_F_MEM_NONTEMPORAL, PMEM_F_MEM_TEMPORAL, PMEM_F_MEM_NONTEMPORAL | PMEM_F_MEM_TEMPORAL, PMEM_F_MEM_NONTEMPORAL | PMEM_F_MEM_NODRAIN, PMEM_F_MEM_WC, PMEM_F_MEM_WB, PMEM_F_MEM_NOFLUSH, /* all possible flags */ PMEM_F_MEM_NODRAIN | PMEM_F_MEM_NOFLUSH | PMEM_F_MEM_NONTEMPORAL | PMEM_F_MEM_TEMPORAL | PMEM_F_MEM_WC | PMEM_F_MEM_WB, };
3,503
28.694915
79
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_zones/obj_zones.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2020, Intel Corporation */ /* * obj_zones.c -- allocates from a very large pool (exceeding 1 zone) * */ #include <stddef.h> #include <page_size.h> #include "unittest.h" #define LAYOUT_NAME "obj_zones" #define ALLOC_SIZE ((8191 * (256 * 1024)) - 16) /* must evenly divide a zone */ /* * test_create -- allocate all possible objects and log the number. It should * exceed what would be possible on a single zone. * Additionally, free one object so that we can later check that it can be * allocated after the next open. */ static void test_create(const char *path) { PMEMobjpool *pop = NULL; if ((pop = pmemobj_create(path, LAYOUT_NAME, 0, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create: %s", path); PMEMoid oid; int n = 0; while (1) { if (pmemobj_alloc(pop, &oid, ALLOC_SIZE, 0, NULL, NULL) != 0) break; n++; } UT_OUT("allocated: %d", n); pmemobj_free(&oid); pmemobj_close(pop); } /* * test_open -- in the open test we should be able to allocate exactly * one object. */ static void test_open(const char *path) { PMEMobjpool *pop; if ((pop = pmemobj_open(path, LAYOUT_NAME)) == NULL) UT_FATAL("!pmemobj_open: %s", path); int ret = pmemobj_alloc(pop, NULL, ALLOC_SIZE, 0, NULL, NULL); UT_ASSERTeq(ret, 0); ret = pmemobj_alloc(pop, NULL, ALLOC_SIZE, 0, NULL, NULL); UT_ASSERTne(ret, 0); pmemobj_close(pop); } /* * test_malloc_free -- test if alloc until OOM/free/alloc until OOM sequence * produces the same number of allocations for the second alloc loop. */ static void test_malloc_free(const char *path) { PMEMobjpool *pop = NULL; if ((pop = pmemobj_create(path, LAYOUT_NAME, 0, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create: %s", path); size_t alloc_size = PMEM_PAGESIZE * 32; size_t max_allocs = 1000000; PMEMoid *oid = MALLOC(sizeof(PMEMoid) * max_allocs); size_t n = 0; while (1) { if (pmemobj_alloc(pop, &oid[n], alloc_size, 0, NULL, NULL) != 0) break; n++; UT_ASSERTne(n, max_allocs); } size_t first_run_allocated = n; for (size_t i = 0; i < n; ++i) { pmemobj_free(&oid[i]); } n = 0; while (1) { if (pmemobj_alloc(pop, &oid[n], alloc_size, 0, NULL, NULL) != 0) break; n++; } UT_ASSERTeq(first_run_allocated, n); pmemobj_close(pop); FREE(oid); } int main(int argc, char *argv[]) { START(argc, argv, "obj_zones"); if (argc != 3) UT_FATAL("usage: %s file-name [open|create]", argv[0]); const char *path = argv[1]; char op = argv[2][0]; if (op == 'c') test_create(path); else if (op == 'o') test_open(path); else if (op == 'f') test_malloc_free(path); else UT_FATAL("invalid operation"); DONE(NULL); }
2,706
20.148438
79
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_tx_locks_abort/obj_tx_locks_abort.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2018, Intel Corporation */ /* * obj_tx_locks_nested.c -- unit test for transaction locks */ #include "unittest.h" #define LAYOUT_NAME "locks" TOID_DECLARE_ROOT(struct root_obj); TOID_DECLARE(struct obj, 1); struct root_obj { PMEMmutex lock; TOID(struct obj) head; }; struct obj { int data; PMEMmutex lock; TOID(struct obj) next; }; /* * do_nested_tx-- (internal) nested transaction */ static void do_nested_tx(PMEMobjpool *pop, TOID(struct obj) o, int value) { TX_BEGIN_PARAM(pop, TX_PARAM_MUTEX, &D_RW(o)->lock, TX_PARAM_NONE) { TX_ADD(o); D_RW(o)->data = value; if (!TOID_IS_NULL(D_RO(o)->next)) { /* * Add the object to undo log, while the mutex * it contains is not locked. */ TX_ADD(D_RO(o)->next); do_nested_tx(pop, D_RO(o)->next, value); } } TX_END; } /* * do_aborted_nested_tx -- (internal) aborted nested transaction */ static void do_aborted_nested_tx(PMEMobjpool *pop, TOID(struct obj) oid, int value) { TOID(struct obj) o = oid; TX_BEGIN_PARAM(pop, TX_PARAM_MUTEX, &D_RW(o)->lock, TX_PARAM_NONE) { TX_ADD(o); D_RW(o)->data = value; if (!TOID_IS_NULL(D_RO(o)->next)) { /* * Add the object to undo log, while the mutex * it contains is not locked. */ TX_ADD(D_RO(o)->next); do_nested_tx(pop, D_RO(o)->next, value); } pmemobj_tx_abort(EINVAL); } TX_FINALLY { o = oid; while (!TOID_IS_NULL(o)) { if (pmemobj_mutex_trylock(pop, &D_RW(o)->lock)) { UT_OUT("trylock failed"); } else { UT_OUT("trylock succeeded"); pmemobj_mutex_unlock(pop, &D_RW(o)->lock); } o = D_RO(o)->next; } } TX_END; } /* * do_check -- (internal) print 'data' value of each object on the list */ static void do_check(TOID(struct obj) o) { while (!TOID_IS_NULL(o)) { UT_OUT("data = %d", D_RO(o)->data); o = D_RO(o)->next; } } int main(int argc, char *argv[]) { PMEMobjpool *pop; START(argc, argv, "obj_tx_locks_abort"); if (argc > 3) UT_FATAL("usage: %s <file>", argv[0]); pop = pmemobj_create(argv[1], LAYOUT_NAME, PMEMOBJ_MIN_POOL * 4, S_IWUSR | S_IRUSR); if (pop == NULL) UT_FATAL("!pmemobj_create"); TOID(struct root_obj) root = POBJ_ROOT(pop, struct root_obj); TX_BEGIN_PARAM(pop, TX_PARAM_MUTEX, &D_RW(root)->lock) { TX_ADD(root); D_RW(root)->head = TX_ZNEW(struct obj); TOID(struct obj) o; o = D_RW(root)->head; D_RW(o)->data = 100; pmemobj_mutex_zero(pop, &D_RW(o)->lock); for (int i = 0; i < 3; i++) { D_RW(o)->next = TX_ZNEW(struct obj); o = D_RO(o)->next; D_RW(o)->data = 101 + i; pmemobj_mutex_zero(pop, &D_RW(o)->lock); } TOID_ASSIGN(D_RW(o)->next, OID_NULL); } TX_END; UT_OUT("initial state"); do_check(D_RO(root)->head); UT_OUT("nested tx"); do_nested_tx(pop, D_RW(root)->head, 200); do_check(D_RO(root)->head); UT_OUT("aborted nested tx"); do_aborted_nested_tx(pop, D_RW(root)->head, 300); do_check(D_RO(root)->head); pmemobj_close(pop); DONE(NULL); }
2,994
20.392857
71
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_persist_valgrind/pmem2_persist_valgrind.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2020, Intel Corporation */ /* * pmem2_persist_valgrind.c -- pmem2_persist_valgrind tests */ #include "out.h" #include "unittest.h" #include "ut_pmem2_utils.h" #define DATA "XXXXXXXX" #define STRIDE_SIZE 4096 /* * test_ctx -- essential parameters used by test */ struct test_ctx { int fd; struct pmem2_map *map; }; /* * test_init -- prepare resources required for testing */ static int test_init(const struct test_case *tc, int argc, char *argv[], struct test_ctx *ctx) { if (argc < 1) UT_FATAL("usage: %s <file>", tc->name); char *file = argv[0]; ctx->fd = OPEN(file, O_RDWR); struct pmem2_source *src; int ret = pmem2_source_from_fd(&src, ctx->fd); UT_PMEM2_EXPECT_RETURN(ret, 0); struct pmem2_config *cfg; /* fill pmem2_config in minimal scope */ ret = pmem2_config_new(&cfg); UT_PMEM2_EXPECT_RETURN(ret, 0); ret = pmem2_config_set_required_store_granularity( cfg, PMEM2_GRANULARITY_PAGE); UT_PMEM2_EXPECT_RETURN(ret, 0); /* execute pmem2_map and validate the result */ ret = pmem2_map(cfg, src, &ctx->map); UT_PMEM2_EXPECT_RETURN(ret, 0); UT_ASSERTne(ctx->map, NULL); size_t size; UT_ASSERTeq(pmem2_source_size(src, &size), 0); UT_ASSERTeq(pmem2_map_get_size(ctx->map), size); pmem2_config_delete(&cfg); /* the function returns the number of consumed arguments */ return 1; } /* * test_fini -- cleanup the test resources */ static void test_fini(struct test_ctx *ctx) { pmem2_unmap(&ctx->map); CLOSE(ctx->fd); } /* * data_write -- write the data in mapped memory */ static void data_write(void *addr, size_t size, size_t stride) { for (size_t offset = 0; offset + sizeof(DATA) <= size; offset += stride) { memcpy((void *)((uintptr_t)addr + offset), DATA, sizeof(DATA)); } } /* * data_persist -- persist data in a range of mapped memory with defined stride */ static void data_persist(struct pmem2_map *map, size_t len, size_t stride) { size_t map_size = pmem2_map_get_size(map); char *addr = pmem2_map_get_address(map); pmem2_persist_fn p_func = pmem2_get_persist_fn(map); for (size_t offset = 0; offset + len <= map_size; offset += stride) { p_func(addr + offset, len); } } /* * test_persist_continuous_range -- persist continuous data in a range of * the persistent memory */ static int test_persist_continuous_range(const struct test_case *tc, int argc, char *argv[]) { struct test_ctx ctx = {0}; int ret = test_init(tc, argc, argv, &ctx); char *addr = pmem2_map_get_address(ctx.map); size_t map_size = pmem2_map_get_size(ctx.map); data_write(addr, map_size, sizeof(DATA) /* stride */); data_persist(ctx.map, map_size, map_size /* stride */); test_fini(&ctx); return ret; } /* * test_persist_discontinuous_range -- persist discontinuous data in a range of * the persistent memory */ static int test_persist_discontinuous_range(const struct test_case *tc, int argc, char *argv[]) { struct test_ctx ctx = {0}; int ret = test_init(tc, argc, argv, &ctx); char *addr = pmem2_map_get_address(ctx.map); size_t map_size = pmem2_map_get_size(ctx.map); data_write(addr, map_size, STRIDE_SIZE); data_persist(ctx.map, sizeof(DATA), STRIDE_SIZE); test_fini(&ctx); return ret; } /* * test_persist_discontinuous_range_partially -- persist part of discontinuous * data in a range of persistent memory */ static int test_persist_discontinuous_range_partially(const struct test_case *tc, int argc, char *argv[]) { struct test_ctx ctx = {0}; int ret = test_init(tc, argc, argv, &ctx); char *addr = pmem2_map_get_address(ctx.map); size_t map_size = pmem2_map_get_size(ctx.map); data_write(addr, map_size, STRIDE_SIZE); /* persist only a half of the writes */ data_persist(ctx.map, sizeof(DATA), 2 * STRIDE_SIZE); test_fini(&ctx); return ret; } /* * test_persist_nonpmem_data -- persist data in a range of the memory mapped * by mmap() */ static int test_persist_nonpmem_data(const struct test_case *tc, int argc, char *argv[]) { struct test_ctx ctx = {0}; /* pmem2_map is needed to get persist function */ int ret = test_init(tc, argc, argv, &ctx); size_t size = pmem2_map_get_size(ctx.map); int flags = MAP_SHARED; int proto = PROT_READ | PROT_WRITE; char *addr; addr = mmap(NULL, size, proto, flags, ctx.fd, 0); data_write(addr, size, sizeof(DATA) /* stride */); pmem2_persist_fn p_func = pmem2_get_persist_fn(ctx.map); p_func(addr, size); munmap(addr, size); test_fini(&ctx); return ret; } /* * test_cases -- available test cases */ static struct test_case test_cases[] = { TEST_CASE(test_persist_continuous_range), TEST_CASE(test_persist_discontinuous_range), TEST_CASE(test_persist_discontinuous_range_partially), TEST_CASE(test_persist_nonpmem_data), }; #define NTESTS (sizeof(test_cases) / sizeof(test_cases[0])) int main(int argc, char *argv[]) { START(argc, argv, "pmem2_persist_valgrind"); out_init("pmem2_persist_valgrind", "TEST_LOG_LEVEL", "TEST_LOG_FILE", 0, 0); TEST_CASE_PROCESS(argc, argv, test_cases, NTESTS); out_fini(); DONE(NULL); }
5,072
22.37788
80
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_ctl_alloc_class/obj_ctl_alloc_class.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2017-2018, Intel Corporation */ /* * obj_ctl_alloc_class.c -- tests for the ctl entry points: heap.alloc_class */ #include <sys/resource.h> #include "unittest.h" #define LAYOUT "obj_ctl_alloc_class" static void basic(const char *path) { PMEMobjpool *pop; if ((pop = pmemobj_create(path, LAYOUT, PMEMOBJ_MIN_POOL * 20, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create: %s", path); int ret; PMEMoid oid; size_t usable_size; struct pobj_alloc_class_desc alloc_class_128; alloc_class_128.header_type = POBJ_HEADER_NONE; alloc_class_128.unit_size = 128; alloc_class_128.units_per_block = 1000; alloc_class_128.alignment = 0; ret = pmemobj_ctl_set(pop, "heap.alloc_class.128.desc", &alloc_class_128); UT_ASSERTeq(ret, 0); struct pobj_alloc_class_desc alloc_class_129; alloc_class_129.header_type = POBJ_HEADER_COMPACT; alloc_class_129.unit_size = 1024; alloc_class_129.units_per_block = 1000; alloc_class_129.alignment = 0; ret = pmemobj_ctl_set(pop, "heap.alloc_class.129.desc", &alloc_class_129); UT_ASSERTeq(ret, 0); struct pobj_alloc_class_desc alloc_class_128_r; ret = pmemobj_ctl_get(pop, "heap.alloc_class.128.desc", &alloc_class_128_r); UT_ASSERTeq(ret, 0); UT_ASSERTeq(alloc_class_128.header_type, alloc_class_128_r.header_type); UT_ASSERTeq(alloc_class_128.unit_size, alloc_class_128_r.unit_size); UT_ASSERT(alloc_class_128.units_per_block <= alloc_class_128_r.units_per_block); /* * One unit from alloc class 128 - 128 bytes unit size, minimal headers. */ ret = pmemobj_xalloc(pop, &oid, 128, 0, POBJ_CLASS_ID(128), NULL, NULL); UT_ASSERTeq(ret, 0); usable_size = pmemobj_alloc_usable_size(oid); UT_ASSERTeq(usable_size, 128); pmemobj_free(&oid); /* * Reserve as above. */ struct pobj_action act; oid = pmemobj_xreserve(pop, &act, 128, 0, POBJ_CLASS_ID(128)); UT_ASSERT(!OID_IS_NULL(oid)); usable_size = pmemobj_alloc_usable_size(oid); UT_ASSERTeq(usable_size, 128); pmemobj_cancel(pop, &act, 1); /* * One unit from alloc class 128 - 128 bytes unit size, minimal headers, * but request size 1 byte. */ ret = pmemobj_xalloc(pop, &oid, 1, 0, POBJ_CLASS_ID(128), NULL, NULL); UT_ASSERTeq(ret, 0); usable_size = pmemobj_alloc_usable_size(oid); UT_ASSERTeq(usable_size, 128); pmemobj_free(&oid); /* * Two units from alloc class 129 - * 1024 bytes unit size, compact headers. */ ret = pmemobj_xalloc(pop, &oid, 1024 + 1, 0, POBJ_CLASS_ID(129), NULL, NULL); UT_ASSERTeq(ret, 0); usable_size = pmemobj_alloc_usable_size(oid); UT_ASSERTeq(usable_size, (1024 * 2) - 16); /* 2 units minus hdr */ pmemobj_free(&oid); /* * 64 units from alloc class 129 * - 1024 bytes unit size, compact headers. */ ret = pmemobj_xalloc(pop, &oid, (1024 * 64) - 16, 0, POBJ_CLASS_ID(129), NULL, NULL); UT_ASSERTeq(ret, 0); usable_size = pmemobj_alloc_usable_size(oid); UT_ASSERTeq(usable_size, (1024 * 64) - 16); pmemobj_free(&oid); /* * 65 units from alloc class 129 - * 1024 bytes unit size, compact headers. * Should fail, as it would require two bitmap modifications. */ ret = pmemobj_xalloc(pop, &oid, 1024 * 64 + 1, 0, POBJ_CLASS_ID(129), NULL, NULL); UT_ASSERTeq(ret, -1); /* * Nonexistent alloc class. */ ret = pmemobj_xalloc(pop, &oid, 1, 0, POBJ_CLASS_ID(130), NULL, NULL); UT_ASSERTeq(ret, -1); struct pobj_alloc_class_desc alloc_class_new; alloc_class_new.header_type = POBJ_HEADER_NONE; alloc_class_new.unit_size = 777; alloc_class_new.units_per_block = 200; alloc_class_new.class_id = 0; alloc_class_new.alignment = 0; ret = pmemobj_ctl_set(pop, "heap.alloc_class.new.desc", &alloc_class_new); UT_ASSERTeq(ret, 0); struct pobj_alloc_class_desc alloc_class_fail; alloc_class_fail.header_type = POBJ_HEADER_NONE; alloc_class_fail.unit_size = 777; alloc_class_fail.units_per_block = 200; alloc_class_fail.class_id = 0; alloc_class_fail.alignment = 0; ret = pmemobj_ctl_set(pop, "heap.alloc_class.new.desc", &alloc_class_fail); UT_ASSERTeq(ret, -1); ret = pmemobj_ctl_set(pop, "heap.alloc_class.200.desc", &alloc_class_fail); UT_ASSERTeq(ret, -1); ret = pmemobj_xalloc(pop, &oid, 1, 0, POBJ_CLASS_ID(alloc_class_new.class_id), NULL, NULL); UT_ASSERTeq(ret, 0); usable_size = pmemobj_alloc_usable_size(oid); UT_ASSERTeq(usable_size, 777); struct pobj_alloc_class_desc alloc_class_new_huge; alloc_class_new_huge.header_type = POBJ_HEADER_NONE; alloc_class_new_huge.unit_size = (2 << 23); alloc_class_new_huge.units_per_block = 1; alloc_class_new_huge.class_id = 0; alloc_class_new_huge.alignment = 0; ret = pmemobj_ctl_set(pop, "heap.alloc_class.new.desc", &alloc_class_new_huge); UT_ASSERTeq(ret, 0); ret = pmemobj_xalloc(pop, &oid, 1, 0, POBJ_CLASS_ID(alloc_class_new_huge.class_id), NULL, NULL); UT_ASSERTeq(ret, 0); usable_size = pmemobj_alloc_usable_size(oid); UT_ASSERTeq(usable_size, (2 << 23)); struct pobj_alloc_class_desc alloc_class_new_max; alloc_class_new_max.header_type = POBJ_HEADER_COMPACT; alloc_class_new_max.unit_size = PMEMOBJ_MAX_ALLOC_SIZE; alloc_class_new_max.units_per_block = 1024; alloc_class_new_max.class_id = 0; alloc_class_new_max.alignment = 0; ret = pmemobj_ctl_set(pop, "heap.alloc_class.new.desc", &alloc_class_new_max); UT_ASSERTeq(ret, 0); ret = pmemobj_xalloc(pop, &oid, 1, 0, POBJ_CLASS_ID(alloc_class_new_max.class_id), NULL, NULL); UT_ASSERTne(ret, 0); struct pobj_alloc_class_desc alloc_class_new_loop; alloc_class_new_loop.header_type = POBJ_HEADER_COMPACT; alloc_class_new_loop.unit_size = 16384; alloc_class_new_loop.units_per_block = 63; alloc_class_new_loop.class_id = 0; alloc_class_new_loop.alignment = 0; ret = pmemobj_ctl_set(pop, "heap.alloc_class.new.desc", &alloc_class_new_loop); UT_ASSERTeq(ret, 0); size_t s = (63 * 16384) - 16; ret = pmemobj_xalloc(pop, &oid, s + 1, 0, POBJ_CLASS_ID(alloc_class_new_loop.class_id), NULL, NULL); UT_ASSERTne(ret, 0); struct pobj_alloc_class_desc alloc_class_tiny; alloc_class_tiny.header_type = POBJ_HEADER_NONE; alloc_class_tiny.unit_size = 7; alloc_class_tiny.units_per_block = 1; alloc_class_tiny.class_id = 0; alloc_class_tiny.alignment = 0; ret = pmemobj_ctl_set(pop, "heap.alloc_class.new.desc", &alloc_class_tiny); UT_ASSERTeq(ret, 0); UT_ASSERT(alloc_class_tiny.units_per_block > 1); for (int i = 0; i < 1000; ++i) { ret = pmemobj_xalloc(pop, &oid, 7, 0, POBJ_CLASS_ID(alloc_class_tiny.class_id), NULL, NULL); UT_ASSERTeq(ret, 0); } pmemobj_close(pop); } static void many(const char *path) { PMEMobjpool *pop; if ((pop = pmemobj_create(path, LAYOUT, PMEMOBJ_MIN_POOL, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create: %s", path); unsigned nunits = UINT16_MAX + 1; struct pobj_alloc_class_desc alloc_class_tiny; alloc_class_tiny.header_type = POBJ_HEADER_NONE; alloc_class_tiny.unit_size = 8; alloc_class_tiny.units_per_block = nunits; alloc_class_tiny.class_id = 0; alloc_class_tiny.alignment = 0; int ret = pmemobj_ctl_set(pop, "heap.alloc_class.new.desc", &alloc_class_tiny); UT_ASSERTeq(ret, 0); PMEMoid oid; uint64_t *counterp = NULL; for (size_t i = 0; i < nunits; ++i) { pmemobj_xalloc(pop, &oid, 8, 0, POBJ_CLASS_ID(alloc_class_tiny.class_id), NULL, NULL); counterp = pmemobj_direct(oid); (*counterp)++; /* * This works only because this is a fresh pool in a new file * and so the counter must be initially zero. * This might have to be fixed if that ever changes. */ UT_ASSERTeq(*counterp, 1); } pmemobj_close(pop); } int main(int argc, char *argv[]) { START(argc, argv, "obj_ctl_alloc_class"); if (argc != 3) UT_FATAL("usage: %s file-name b|m", argv[0]); const char *path = argv[1]; if (argv[2][0] == 'b') basic(path); else if (argv[2][0] == 'm') many(path); DONE(NULL); }
7,857
26.865248
76
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/traces_pmem/traces_pmem.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2014-2018, Intel Corporation */ /* * traces_pmem.c -- unit test traces for libraries pmem */ #include "unittest.h" int main(int argc, char *argv[]) { START(argc, argv, "traces_pmem"); UT_ASSERT(!pmem_check_version(PMEM_MAJOR_VERSION, PMEM_MINOR_VERSION)); UT_ASSERT(!pmemblk_check_version(PMEMBLK_MAJOR_VERSION, PMEMBLK_MINOR_VERSION)); UT_ASSERT(!pmemlog_check_version(PMEMLOG_MAJOR_VERSION, PMEMLOG_MINOR_VERSION)); UT_ASSERT(!pmemobj_check_version(PMEMOBJ_MAJOR_VERSION, PMEMOBJ_MINOR_VERSION)); DONE(NULL); }
596
21.961538
56
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_debug/obj_debug.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2017, Intel Corporation */ /* * obj_debug.c -- unit test for debug features * * usage: obj_debug file operation [op_index]:... * * operations are 'f' or 'l' or 'r' or 'a' or 'n' or 's' * */ #include <stddef.h> #include <stdlib.h> #include <sys/param.h> #include "unittest.h" #include "libpmemobj.h" #define LAYOUT_NAME "layout_obj_debug" TOID_DECLARE_ROOT(struct root); TOID_DECLARE(struct tobj, 0); TOID_DECLARE(struct int3_s, 1); struct root { POBJ_LIST_HEAD(listhead, struct tobj) lhead, lhead2; uint32_t val; }; struct tobj { POBJ_LIST_ENTRY(struct tobj) next; }; struct int3_s { uint32_t i1; uint32_t i2; uint32_t i3; }; typedef void (*func)(PMEMobjpool *pop, void *sync, void *cond); static void test_FOREACH(const char *path) { PMEMobjpool *pop = NULL; PMEMoid varoid, nvaroid; TOID(struct root) root; TOID(struct tobj) var, nvar; #define COMMANDS_FOREACH()\ do {\ POBJ_FOREACH(pop, varoid) {}\ POBJ_FOREACH_SAFE(pop, varoid, nvaroid) {}\ POBJ_FOREACH_TYPE(pop, var) {}\ POBJ_FOREACH_SAFE_TYPE(pop, var, nvar) {}\ POBJ_LIST_FOREACH(var, &D_RW(root)->lhead, next) {}\ POBJ_LIST_FOREACH_REVERSE(var, &D_RW(root)->lhead, next) {}\ } while (0) if ((pop = pmemobj_create(path, LAYOUT_NAME, PMEMOBJ_MIN_POOL, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create: %s", path); TOID_ASSIGN(root, pmemobj_root(pop, sizeof(struct root))); POBJ_LIST_INSERT_NEW_HEAD(pop, &D_RW(root)->lhead, next, sizeof(struct tobj), NULL, NULL); COMMANDS_FOREACH(); TX_BEGIN(pop) { COMMANDS_FOREACH(); } TX_ONABORT { UT_ASSERT(0); } TX_END COMMANDS_FOREACH(); pmemobj_close(pop); } static void test_lists(const char *path) { PMEMobjpool *pop = NULL; TOID(struct root) root; TOID(struct tobj) elm; #define COMMANDS_LISTS()\ do {\ POBJ_LIST_INSERT_NEW_HEAD(pop, &D_RW(root)->lhead, next,\ sizeof(struct tobj), NULL, NULL);\ POBJ_NEW(pop, &elm, struct tobj, NULL, NULL);\ POBJ_LIST_INSERT_AFTER(pop, &D_RW(root)->lhead,\ POBJ_LIST_FIRST(&D_RW(root)->lhead), elm, next);\ POBJ_LIST_MOVE_ELEMENT_HEAD(pop, &D_RW(root)->lhead,\ &D_RW(root)->lhead2, elm, next, next);\ POBJ_LIST_REMOVE(pop, &D_RW(root)->lhead2, elm, next);\ POBJ_FREE(&elm);\ } while (0) if ((pop = pmemobj_create(path, LAYOUT_NAME, PMEMOBJ_MIN_POOL, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create: %s", path); TOID_ASSIGN(root, pmemobj_root(pop, sizeof(struct root))); COMMANDS_LISTS(); TX_BEGIN(pop) { COMMANDS_LISTS(); } TX_ONABORT { UT_ASSERT(0); } TX_END COMMANDS_LISTS(); pmemobj_close(pop); } static int int3_constructor(PMEMobjpool *pop, void *ptr, void *arg) { struct int3_s *args = (struct int3_s *)arg; struct int3_s *val = (struct int3_s *)ptr; val->i1 = args->i1; val->i2 = args->i2; val->i3 = args->i3; pmemobj_persist(pop, val, sizeof(*val)); return 0; } static void test_alloc_construct(const char *path) { PMEMobjpool *pop = NULL; if ((pop = pmemobj_create(path, LAYOUT_NAME, PMEMOBJ_MIN_POOL, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create: %s", path); TX_BEGIN(pop) { struct int3_s args = { 1, 2, 3 }; PMEMoid allocation; pmemobj_alloc(pop, &allocation, sizeof(allocation), 1, int3_constructor, &args); } TX_ONABORT { UT_ASSERT(0); } TX_END pmemobj_close(pop); } static void test_double_free(const char *path) { PMEMobjpool *pop = NULL; if ((pop = pmemobj_create(path, LAYOUT_NAME, PMEMOBJ_MIN_POOL, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create: %s", path); PMEMoid oid, oid2; int err = pmemobj_zalloc(pop, &oid, 100, 0); UT_ASSERTeq(err, 0); UT_ASSERT(!OID_IS_NULL(oid)); oid2 = oid; pmemobj_free(&oid); pmemobj_free(&oid2); } static int test_constr(PMEMobjpool *pop, void *ptr, void *arg) { PMEMoid oid; pmemobj_alloc(pop, &oid, 1, 1, test_constr, NULL); return 0; } static void test_alloc_in_constructor(const char *path) { PMEMobjpool *pop = NULL; if ((pop = pmemobj_create(path, LAYOUT_NAME, PMEMOBJ_MIN_POOL, S_IWUSR | S_IRUSR)) == NULL) UT_FATAL("!pmemobj_create: %s", path); PMEMoid oid; pmemobj_alloc(pop, &oid, 1, 1, test_constr, NULL); } static void test_mutex_lock(PMEMobjpool *pop, void *sync, void *cond) { pmemobj_mutex_lock(pop, (PMEMmutex *)sync); } static void test_mutex_unlock(PMEMobjpool *pop, void *sync, void *cond) { pmemobj_mutex_unlock(pop, (PMEMmutex *)sync); } static void test_mutex_trylock(PMEMobjpool *pop, void *sync, void *cond) { pmemobj_mutex_trylock(pop, (PMEMmutex *)sync); } static void test_mutex_timedlock(PMEMobjpool *pop, void *sync, void *cond) { pmemobj_mutex_timedlock(pop, (PMEMmutex *)sync, NULL); } static void test_mutex_zero(PMEMobjpool *pop, void *sync, void *cond) { pmemobj_mutex_zero(pop, (PMEMmutex *)sync); } static void test_rwlock_rdlock(PMEMobjpool *pop, void *sync, void *cond) { pmemobj_rwlock_rdlock(pop, (PMEMrwlock *)sync); } static void test_rwlock_wrlock(PMEMobjpool *pop, void *sync, void *cond) { pmemobj_rwlock_wrlock(pop, (PMEMrwlock *)sync); } static void test_rwlock_timedrdlock(PMEMobjpool *pop, void *sync, void *cond) { pmemobj_rwlock_timedrdlock(pop, (PMEMrwlock *)sync, NULL); } static void test_rwlock_timedwrlock(PMEMobjpool *pop, void *sync, void *cond) { pmemobj_rwlock_timedwrlock(pop, (PMEMrwlock *)sync, NULL); } static void test_rwlock_tryrdlock(PMEMobjpool *pop, void *sync, void *cond) { pmemobj_rwlock_tryrdlock(pop, (PMEMrwlock *)sync); } static void test_rwlock_trywrlock(PMEMobjpool *pop, void *sync, void *cond) { pmemobj_rwlock_trywrlock(pop, (PMEMrwlock *)sync); } static void test_rwlock_unlock(PMEMobjpool *pop, void *sync, void *cond) { pmemobj_rwlock_unlock(pop, (PMEMrwlock *)sync); } static void test_rwlock_zero(PMEMobjpool *pop, void *sync, void *cond) { pmemobj_rwlock_zero(pop, (PMEMrwlock *)sync); } static void test_cond_wait(PMEMobjpool *pop, void *sync, void *cond) { pmemobj_cond_wait(pop, (PMEMcond *)cond, (PMEMmutex *)sync); } static void test_cond_signal(PMEMobjpool *pop, void *sync, void *cond) { pmemobj_cond_signal(pop, (PMEMcond *)cond); } static void test_cond_broadcast(PMEMobjpool *pop, void *sync, void *cond) { pmemobj_cond_broadcast(pop, (PMEMcond *)cond); } static void test_cond_timedwait(PMEMobjpool *pop, void *sync, void *cond) { pmemobj_cond_timedwait(pop, (PMEMcond *)cond, (PMEMmutex *)sync, NULL); } static void test_cond_zero(PMEMobjpool *pop, void *sync, void *cond) { pmemobj_cond_zero(pop, (PMEMcond *)cond); } static void test_sync_pop_check(unsigned long op_index) { PMEMobjpool *pop = (PMEMobjpool *)(uintptr_t)0x1; func to_test[] = { test_mutex_lock, test_mutex_unlock, test_mutex_trylock, test_mutex_timedlock, test_mutex_zero, test_rwlock_rdlock, test_rwlock_wrlock, test_rwlock_timedrdlock, test_rwlock_timedwrlock, test_rwlock_tryrdlock, test_rwlock_trywrlock, test_rwlock_unlock, test_rwlock_zero, test_cond_wait, test_cond_signal, test_cond_broadcast, test_cond_timedwait, test_cond_zero }; if (op_index >= (sizeof(to_test) / sizeof(to_test[0]))) UT_FATAL("Invalid op_index provided"); PMEMmutex stack_sync; PMEMcond stack_cond; to_test[op_index](pop, &stack_sync, &stack_cond); } int main(int argc, char *argv[]) { START(argc, argv, "obj_debug"); if (argc < 3) UT_FATAL("usage: %s file-name op:f|l|r|a|s [op_index]", argv[0]); const char *path = argv[1]; if (strchr("flrapns", argv[2][0]) == NULL || argv[2][1] != '\0') UT_FATAL("op must be f or l or r or a or p or n or s"); unsigned long op_index; char *tailptr; switch (argv[2][0]) { case 'f': test_FOREACH(path); break; case 'l': test_lists(path); break; case 'a': test_alloc_construct(path); break; case 'p': test_double_free(path); break; case 'n': test_alloc_in_constructor(path); break; case 's': if (argc != 4) UT_FATAL("Provide an op_index with option s"); op_index = strtoul(argv[3], &tailptr, 10); if (tailptr[0] != '\0') UT_FATAL("Wrong op_index format"); test_sync_pop_check(op_index); break; } DONE(NULL); }
8,098
20.771505
72
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem2_config/pmem2_config.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2019-2020, Intel Corporation */ /* * pmem_config.c -- pmem2_config unittests */ #include "fault_injection.h" #include "unittest.h" #include "ut_pmem2.h" #include "config.h" #include "out.h" #include "source.h" /* * test_cfg_create_and_delete_valid - test pmem2_config allocation */ static int test_cfg_create_and_delete_valid(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_config *cfg; int ret = pmem2_config_new(&cfg); UT_PMEM2_EXPECT_RETURN(ret, 0); UT_ASSERTne(cfg, NULL); ret = pmem2_config_delete(&cfg); UT_PMEM2_EXPECT_RETURN(ret, 0); UT_ASSERTeq(cfg, NULL); return 0; } /* * test_cfg_alloc_enomem - test pmem2_config allocation with error injection */ static int test_alloc_cfg_enomem(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_config *cfg; if (!core_fault_injection_enabled()) { return 0; } core_inject_fault_at(PMEM_MALLOC, 1, "pmem2_malloc"); int ret = pmem2_config_new(&cfg); UT_PMEM2_EXPECT_RETURN(ret, -ENOMEM); UT_ASSERTeq(cfg, NULL); return 0; } /* * test_delete_null_config - test pmem2_delete on NULL config */ static int test_delete_null_config(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_config *cfg = NULL; /* should not crash */ int ret = pmem2_config_delete(&cfg); UT_PMEM2_EXPECT_RETURN(ret, 0); UT_ASSERTeq(cfg, NULL); return 0; } /* * test_config_set_granularity_valid - check valid granularity values */ static int test_config_set_granularity_valid(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_config cfg; pmem2_config_init(&cfg); /* check default granularity */ enum pmem2_granularity g = (enum pmem2_granularity)PMEM2_GRANULARITY_INVALID; UT_ASSERTeq(cfg.requested_max_granularity, g); /* change default granularity */ int ret = -1; g = PMEM2_GRANULARITY_BYTE; ret = pmem2_config_set_required_store_granularity(&cfg, g); UT_ASSERTeq(cfg.requested_max_granularity, g); UT_PMEM2_EXPECT_RETURN(ret, 0); /* set granularity once more */ ret = -1; g = PMEM2_GRANULARITY_PAGE; ret = pmem2_config_set_required_store_granularity(&cfg, g); UT_ASSERTeq(cfg.requested_max_granularity, g); UT_PMEM2_EXPECT_RETURN(ret, 0); return 0; } /* * test_config_set_granularity_invalid - check invalid granularity values */ static int test_config_set_granularity_invalid(const struct test_case *tc, int argc, char *argv[]) { /* pass invalid granularity */ int ret = 0; enum pmem2_granularity g_inval = 999; struct pmem2_config cfg; pmem2_config_init(&cfg); ret = pmem2_config_set_required_store_granularity(&cfg, g_inval); UT_PMEM2_EXPECT_RETURN(ret, PMEM2_E_GRANULARITY_NOT_SUPPORTED); return 0; } /* * test_set_offset_too_large - setting offset which is too large */ static int test_set_offset_too_large(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_config cfg; /* let's try to set the offset which is too large */ size_t offset = (size_t)INT64_MAX + 1; int ret = pmem2_config_set_offset(&cfg, offset); UT_PMEM2_EXPECT_RETURN(ret, PMEM2_E_OFFSET_OUT_OF_RANGE); return 0; } /* * test_set_offset_success - setting a valid offset */ static int test_set_offset_success(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_config cfg; /* let's try to successfully set the offset */ size_t offset = Ut_mmap_align; int ret = pmem2_config_set_offset(&cfg, offset); UT_ASSERTeq(ret, 0); UT_ASSERTeq(cfg.offset, offset); return 0; } /* * test_set_length_success - setting a valid length */ static int test_set_length_success(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_config cfg; /* let's try to successfully set the length, can be any length */ size_t length = Ut_mmap_align; int ret = pmem2_config_set_length(&cfg, length); UT_ASSERTeq(ret, 0); UT_ASSERTeq(cfg.length, length); return 0; } /* * test_set_offset_max - setting maximum possible offset */ static int test_set_offset_max(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_config cfg; /* let's try to successfully set maximum possible offset */ size_t offset = (INT64_MAX / Ut_mmap_align) * Ut_mmap_align; int ret = pmem2_config_set_offset(&cfg, offset); UT_ASSERTeq(ret, 0); return 0; } /* * test_set_sharing_valid - setting valid sharing */ static int test_set_sharing_valid(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_config cfg; pmem2_config_init(&cfg); /* check sharing default value */ UT_ASSERTeq(cfg.sharing, PMEM2_SHARED); int ret = pmem2_config_set_sharing(&cfg, PMEM2_PRIVATE); UT_ASSERTeq(ret, 0); UT_ASSERTeq(cfg.sharing, PMEM2_PRIVATE); return 0; } /* * test_set_sharing_invalid - setting invalid sharing */ static int test_set_sharing_invalid(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_config cfg; unsigned invalid_sharing = 777; int ret = pmem2_config_set_sharing(&cfg, invalid_sharing); UT_ASSERTeq(ret, PMEM2_E_INVALID_SHARING_VALUE); return 0; } /* * test_validate_unaligned_addr - setting unaligned addr and validating it */ static int test_validate_unaligned_addr(const struct test_case *tc, int argc, char *argv[]) { if (argc < 1) UT_FATAL("usage: test_validate_unaligned_addr <file>"); /* needed for source alignment */ char *file = argv[0]; int fd = OPEN(file, O_RDWR); struct pmem2_source *src; PMEM2_SOURCE_FROM_FD(&src, fd); struct pmem2_config cfg; pmem2_config_init(&cfg); /* let's set addr which is unaligned */ cfg.addr = (char *)1; int ret = pmem2_config_validate_addr_alignment(&cfg, src); UT_PMEM2_EXPECT_RETURN(ret, PMEM2_E_ADDRESS_UNALIGNED); PMEM2_SOURCE_DELETE(&src); CLOSE(fd); return 1; } /* * test_set_wrong_addr_req_type - setting wrong addr request type */ static int test_set_wrong_addr_req_type(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_config cfg; pmem2_config_init(&cfg); /* "randomly" chosen invalid addr request type */ enum pmem2_address_request_type request_type = 999; int ret = pmem2_config_set_address(&cfg, NULL, request_type); UT_PMEM2_EXPECT_RETURN(ret, PMEM2_E_INVALID_ADDRESS_REQUEST_TYPE); return 0; } /* * test_null_addr_noreplace - setting null addr when request type * PMEM2_ADDRESS_FIXED_NOREPLACE is used */ static int test_null_addr_noreplace(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_config cfg; pmem2_config_init(&cfg); int ret = pmem2_config_set_address( &cfg, NULL, PMEM2_ADDRESS_FIXED_NOREPLACE); UT_PMEM2_EXPECT_RETURN(ret, PMEM2_E_ADDRESS_NULL); return 0; } /* * test_clear_address - using pmem2_config_clear_address func */ static int test_clear_address(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_config cfg; pmem2_config_init(&cfg); /* "randomly" chosen value of address and addr request type */ void *addr = (void *)(1024 * 1024); int ret = pmem2_config_set_address( &cfg, addr, PMEM2_ADDRESS_FIXED_NOREPLACE); UT_ASSERTeq(ret, 0); UT_ASSERTne(cfg.addr, NULL); UT_ASSERTne(cfg.addr_request, PMEM2_ADDRESS_ANY); pmem2_config_clear_address(&cfg); UT_ASSERTeq(cfg.addr, NULL); UT_ASSERTeq(cfg.addr_request, PMEM2_ADDRESS_ANY); return 0; } /* * test_set_valid_prot_flag -- set valid protection flag */ static int test_set_valid_prot_flag(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_config cfg; pmem2_config_init(&cfg); int ret = pmem2_config_set_protection(&cfg, PMEM2_PROT_READ); UT_ASSERTeq(ret, 0); ret = pmem2_config_set_protection(&cfg, PMEM2_PROT_WRITE); UT_ASSERTeq(ret, 0); ret = pmem2_config_set_protection(&cfg, PMEM2_PROT_EXEC); UT_ASSERTeq(ret, 0); ret = pmem2_config_set_protection(&cfg, PMEM2_PROT_NONE); UT_ASSERTeq(ret, 0); ret = pmem2_config_set_protection(&cfg, PMEM2_PROT_WRITE | PMEM2_PROT_READ | PMEM2_PROT_EXEC); UT_ASSERTeq(ret, 0); return 0; } /* * test_set_invalid_prot_flag -- set invalid protection flag */ static int test_set_invalid_prot_flag(const struct test_case *tc, int argc, char *argv[]) { struct pmem2_config cfg; pmem2_config_init(&cfg); int ret = pmem2_config_set_protection(&cfg, PROT_WRITE); UT_PMEM2_EXPECT_RETURN(ret, PMEM2_E_INVALID_PROT_FLAG); UT_ASSERTeq(cfg.protection_flag, PMEM2_PROT_READ | PMEM2_PROT_WRITE); return 0; } /* * test_cases -- available test cases */ static struct test_case test_cases[] = { TEST_CASE(test_cfg_create_and_delete_valid), TEST_CASE(test_alloc_cfg_enomem), TEST_CASE(test_delete_null_config), TEST_CASE(test_config_set_granularity_valid), TEST_CASE(test_config_set_granularity_invalid), TEST_CASE(test_set_offset_too_large), TEST_CASE(test_set_offset_success), TEST_CASE(test_set_length_success), TEST_CASE(test_set_offset_max), TEST_CASE(test_set_sharing_valid), TEST_CASE(test_set_sharing_invalid), TEST_CASE(test_validate_unaligned_addr), TEST_CASE(test_set_wrong_addr_req_type), TEST_CASE(test_null_addr_noreplace), TEST_CASE(test_clear_address), TEST_CASE(test_set_valid_prot_flag), TEST_CASE(test_set_invalid_prot_flag), }; #define NTESTS (sizeof(test_cases) / sizeof(test_cases[0])) int main(int argc, char **argv) { START(argc, argv, "pmem2_config"); util_init(); out_init("pmem2_config", "TEST_LOG_LEVEL", "TEST_LOG_FILE", 0, 0); TEST_CASE_PROCESS(argc, argv, test_cases, NTESTS); out_fini(); DONE(NULL); }
9,397
22.792405
77
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/pmem_map_file_trunc/pmem_map_file_trunc.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2019, Intel Corporation */ /* * pmem_map_file_trunc.c -- test for mapping specially crafted files, * which used to confuse Windows libc to truncate it by 1 byte * * See https://github.com/pmem/pmdk/pull/3728 for full description. * * usage: pmem_map_file_trunc file */ #include "unittest.h" #define EXPECTED_SIZE (4 * 1024) /* * so called "Ctrl-Z" or EOF character * https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/fopen-wfopen */ #define FILL_CHAR 0x1a int main(int argc, char *argv[]) { START(argc, argv, "pmem_map_file_trunc"); if (argc < 2) UT_FATAL("not enough args"); size_t mapped; int ispmem; char *p; os_stat_t st; p = pmem_map_file(argv[1], EXPECTED_SIZE, PMEM_FILE_CREATE, 0644, &mapped, &ispmem); UT_ASSERT(p); UT_ASSERTeq(mapped, EXPECTED_SIZE); p[EXPECTED_SIZE - 1] = FILL_CHAR; pmem_persist(&p[EXPECTED_SIZE - 1], 1); pmem_unmap(p, EXPECTED_SIZE); STAT(argv[1], &st); UT_ASSERTeq(st.st_size, EXPECTED_SIZE); p = pmem_map_file(argv[1], 0, 0, 0644, &mapped, &ispmem); UT_ASSERT(p); UT_ASSERTeq(mapped, EXPECTED_SIZE); UT_ASSERTeq(p[EXPECTED_SIZE - 1], FILL_CHAR); pmem_unmap(p, EXPECTED_SIZE); STAT(argv[1], &st); UT_ASSERTeq(st.st_size, EXPECTED_SIZE); DONE(NULL); }
1,302
20.716667
80
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/util_ravl/util_ravl.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2018-2020, Intel Corporation */ /* * util_ravl.c -- unit test for ravl tree */ #include <stdint.h> #include <stdlib.h> #include "ravl.h" #include "util.h" #include "unittest.h" #include "fault_injection.h" static int cmpkey(const void *lhs, const void *rhs) { intptr_t l = (intptr_t)lhs; intptr_t r = (intptr_t)rhs; return (int)(l - r); } static void test_misc(void) { struct ravl *r = ravl_new(cmpkey); struct ravl_node *n = NULL; ravl_insert(r, (void *)3); ravl_insert(r, (void *)6); ravl_insert(r, (void *)1); ravl_insert(r, (void *)7); ravl_insert(r, (void *)9); ravl_insert(r, (void *)5); ravl_insert(r, (void *)8); ravl_insert(r, (void *)2); ravl_insert(r, (void *)4); ravl_insert(r, (void *)10); n = ravl_find(r, (void *)11, RAVL_PREDICATE_EQUAL); UT_ASSERTeq(n, NULL); n = ravl_find(r, (void *)10, RAVL_PREDICATE_GREATER); UT_ASSERTeq(n, NULL); n = ravl_find(r, (void *)11, RAVL_PREDICATE_GREATER); UT_ASSERTeq(n, NULL); n = ravl_find(r, (void *)11, RAVL_PREDICATE_GREATER | RAVL_PREDICATE_EQUAL); UT_ASSERTeq(n, NULL); n = ravl_find(r, (void *)1, RAVL_PREDICATE_LESS); UT_ASSERTeq(n, NULL); n = ravl_find(r, (void *)0, RAVL_PREDICATE_LESS_EQUAL); UT_ASSERTeq(n, NULL); n = ravl_find(r, (void *)9, RAVL_PREDICATE_GREATER); UT_ASSERTne(n, NULL); UT_ASSERTeq(ravl_data(n), (void *)10); n = ravl_find(r, (void *)9, RAVL_PREDICATE_LESS); UT_ASSERTne(n, NULL); UT_ASSERTeq(ravl_data(n), (void *)8); n = ravl_find(r, (void *)9, RAVL_PREDICATE_GREATER | RAVL_PREDICATE_EQUAL); UT_ASSERTne(n, NULL); UT_ASSERTeq(ravl_data(n), (void *)9); n = ravl_find(r, (void *)9, RAVL_PREDICATE_LESS | RAVL_PREDICATE_EQUAL); UT_ASSERTne(n, NULL); UT_ASSERTeq(ravl_data(n), (void *)9); n = ravl_find(r, (void *)100, RAVL_PREDICATE_LESS); UT_ASSERTne(n, NULL); UT_ASSERTeq(ravl_data(n), (void *)10); n = ravl_find(r, (void *)0, RAVL_PREDICATE_GREATER); UT_ASSERTne(n, NULL); UT_ASSERTeq(ravl_data(n), (void *)1); n = ravl_find(r, (void *)3, RAVL_PREDICATE_EQUAL); UT_ASSERTne(n, NULL); ravl_remove(r, n); n = ravl_find(r, (void *)10, RAVL_PREDICATE_EQUAL); UT_ASSERTne(n, NULL); ravl_remove(r, n); n = ravl_find(r, (void *)6, RAVL_PREDICATE_EQUAL); UT_ASSERTne(n, NULL); ravl_remove(r, n); n = ravl_find(r, (void *)9, RAVL_PREDICATE_EQUAL); UT_ASSERTne(n, NULL); ravl_remove(r, n); n = ravl_find(r, (void *)7, RAVL_PREDICATE_EQUAL); UT_ASSERTne(n, NULL); ravl_remove(r, n); n = ravl_find(r, (void *)1, RAVL_PREDICATE_EQUAL); UT_ASSERTne(n, NULL); ravl_remove(r, n); n = ravl_find(r, (void *)5, RAVL_PREDICATE_EQUAL); UT_ASSERTne(n, NULL); ravl_remove(r, n); n = ravl_find(r, (void *)8, RAVL_PREDICATE_EQUAL); UT_ASSERTne(n, NULL); ravl_remove(r, n); n = ravl_find(r, (void *)2, RAVL_PREDICATE_EQUAL); UT_ASSERTne(n, NULL); ravl_remove(r, n); n = ravl_find(r, (void *)4, RAVL_PREDICATE_EQUAL); UT_ASSERTne(n, NULL); ravl_remove(r, n); ravl_delete(r); } static void test_predicate(void) { struct ravl *r = ravl_new(cmpkey); struct ravl_node *n = NULL; ravl_insert(r, (void *)10); ravl_insert(r, (void *)5); ravl_insert(r, (void *)7); n = ravl_find(r, (void *)6, RAVL_PREDICATE_GREATER); UT_ASSERTne(n, NULL); UT_ASSERTeq(ravl_data(n), (void *)7); n = ravl_find(r, (void *)6, RAVL_PREDICATE_LESS); UT_ASSERTne(n, NULL); UT_ASSERTeq(ravl_data(n), (void *)5); ravl_delete(r); } static void test_stress(void) { struct ravl *r = ravl_new(cmpkey); for (int i = 0; i < 1000000; ++i) { ravl_insert(r, (void *)(uintptr_t)rand()); } ravl_delete(r); } struct foo { int a; int b; int c; }; static int cmpfoo(const void *lhs, const void *rhs) { const struct foo *l = lhs; const struct foo *r = rhs; return ((l->a + l->b + l->c) - (r->a + r->b + r->c)); } static void test_emplace(void) { struct ravl *r = ravl_new_sized(cmpfoo, sizeof(struct foo)); struct foo a = {1, 2, 3}; struct foo b = {2, 3, 4}; struct foo z = {0, 0, 0}; ravl_emplace_copy(r, &a); ravl_emplace_copy(r, &b); struct ravl_node *n = ravl_find(r, &z, RAVL_PREDICATE_GREATER); struct foo *fn = ravl_data(n); UT_ASSERTeq(fn->a, a.a); UT_ASSERTeq(fn->b, a.b); UT_ASSERTeq(fn->c, a.c); ravl_remove(r, n); n = ravl_find(r, &z, RAVL_PREDICATE_GREATER); fn = ravl_data(n); UT_ASSERTeq(fn->a, b.a); UT_ASSERTeq(fn->b, b.b); UT_ASSERTeq(fn->c, b.c); ravl_remove(r, n); ravl_delete(r); } static void test_fault_injection_ravl_sized() { if (!core_fault_injection_enabled()) return; core_inject_fault_at(PMEM_MALLOC, 1, "ravl_new_sized"); struct ravl *r = ravl_new_sized(NULL, 0); UT_ASSERTeq(r, NULL); UT_ASSERTeq(errno, ENOMEM); } static void test_fault_injection_ravl_node() { if (!core_fault_injection_enabled()) return; struct foo a = {1, 2, 3}; struct ravl *r = ravl_new_sized(cmpfoo, sizeof(struct foo)); UT_ASSERTne(r, NULL); core_inject_fault_at(PMEM_MALLOC, 1, "ravl_new_node"); int ret = ravl_emplace_copy(r, &a); UT_ASSERTne(ret, 0); UT_ASSERTeq(errno, ENOMEM); } int main(int argc, char *argv[]) { START(argc, argv, "util_ravl"); test_predicate(); test_misc(); test_stress(); test_emplace(); test_fault_injection_ravl_sized(); test_fault_injection_ravl_node(); DONE(NULL); }
5,271
20.34413
64
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_sync/mocks_windows.h
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2017, Intel Corporation */ /* * Copyright (c) 2016, Microsoft Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * * Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * mocks_windows.h -- redefinitions of pthread functions * * This file is Windows-specific. * * This file should be included (i.e. using Forced Include) by libpmemobj * files, when compiled for the purpose of obj_sync test. * It would replace default implementation with mocked functions defined * in obj_sync.c. * * These defines could be also passed as preprocessor definitions. */ #ifndef WRAP_REAL #define os_mutex_init __wrap_os_mutex_init #define os_rwlock_init __wrap_os_rwlock_init #define os_cond_init __wrap_os_cond_init #endif
2,265
41.754717
74
h
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_sync/obj_sync.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2020, Intel Corporation */ /* * obj_sync.c -- unit test for PMEM-resident locks */ #include "obj.h" #include "sync.h" #include "unittest.h" #include "sys_util.h" #include "util.h" #include "os.h" #define MAX_THREAD_NUM 200 #define DATA_SIZE 128 #define LOCKED_MUTEX 1 #define NANO_PER_ONE 1000000000LL #define TIMEOUT (NANO_PER_ONE / 1000LL) #define WORKER_RUNS 10 #define MAX_OPENS 5 #define FATAL_USAGE() UT_FATAL("usage: obj_sync [mrc] <num_threads> <runs>\n") /* posix thread worker typedef */ typedef void *(*worker)(void *); /* the mock pmemobj pool */ static PMEMobjpool Mock_pop; /* the tested object containing persistent synchronization primitives */ static struct mock_obj { PMEMmutex mutex; PMEMmutex mutex_locked; PMEMcond cond; PMEMrwlock rwlock; int check_data; uint8_t data[DATA_SIZE]; } *Test_obj; PMEMobjpool * pmemobj_pool_by_ptr(const void *arg) { return &Mock_pop; } /* * mock_open_pool -- (internal) simulate pool opening */ static void mock_open_pool(PMEMobjpool *pop) { util_fetch_and_add64(&pop->run_id, 2); } /* * mutex_write_worker -- (internal) write data with mutex */ static void * mutex_write_worker(void *arg) { for (unsigned run = 0; run < WORKER_RUNS; run++) { if (pmemobj_mutex_lock(&Mock_pop, &Test_obj->mutex)) { UT_ERR("pmemobj_mutex_lock"); return NULL; } memset(Test_obj->data, (int)(uintptr_t)arg, DATA_SIZE); if (pmemobj_mutex_unlock(&Mock_pop, &Test_obj->mutex)) UT_ERR("pmemobj_mutex_unlock"); } return NULL; } /* * mutex_check_worker -- (internal) check consistency with mutex */ static void * mutex_check_worker(void *arg) { for (unsigned run = 0; run < WORKER_RUNS; run++) { if (pmemobj_mutex_lock(&Mock_pop, &Test_obj->mutex)) { UT_ERR("pmemobj_mutex_lock"); return NULL; } uint8_t val = Test_obj->data[0]; for (int i = 1; i < DATA_SIZE; i++) UT_ASSERTeq(Test_obj->data[i], val); memset(Test_obj->data, 0, DATA_SIZE); if (pmemobj_mutex_unlock(&Mock_pop, &Test_obj->mutex)) UT_ERR("pmemobj_mutex_unlock"); } return NULL; } /* * cond_write_worker -- (internal) write data with cond variable */ static void * cond_write_worker(void *arg) { for (unsigned run = 0; run < WORKER_RUNS; run++) { if (pmemobj_mutex_lock(&Mock_pop, &Test_obj->mutex)) return NULL; memset(Test_obj->data, (int)(uintptr_t)arg, DATA_SIZE); Test_obj->check_data = 1; if (pmemobj_cond_signal(&Mock_pop, &Test_obj->cond)) UT_ERR("pmemobj_cond_signal"); pmemobj_mutex_unlock(&Mock_pop, &Test_obj->mutex); } return NULL; } /* * cond_check_worker -- (internal) check consistency with cond variable */ static void * cond_check_worker(void *arg) { for (unsigned run = 0; run < WORKER_RUNS; run++) { if (pmemobj_mutex_lock(&Mock_pop, &Test_obj->mutex)) return NULL; while (Test_obj->check_data != 1) { if (pmemobj_cond_wait(&Mock_pop, &Test_obj->cond, &Test_obj->mutex)) UT_ERR("pmemobj_cond_wait"); } uint8_t val = Test_obj->data[0]; for (int i = 1; i < DATA_SIZE; i++) UT_ASSERTeq(Test_obj->data[i], val); memset(Test_obj->data, 0, DATA_SIZE); pmemobj_mutex_unlock(&Mock_pop, &Test_obj->mutex); } return NULL; } /* * rwlock_write_worker -- (internal) write data with rwlock */ static void * rwlock_write_worker(void *arg) { for (unsigned run = 0; run < WORKER_RUNS; run++) { if (pmemobj_rwlock_wrlock(&Mock_pop, &Test_obj->rwlock)) { UT_ERR("pmemobj_rwlock_wrlock"); return NULL; } memset(Test_obj->data, (int)(uintptr_t)arg, DATA_SIZE); if (pmemobj_rwlock_unlock(&Mock_pop, &Test_obj->rwlock)) UT_ERR("pmemobj_rwlock_unlock"); } return NULL; } /* * rwlock_check_worker -- (internal) check consistency with rwlock */ static void * rwlock_check_worker(void *arg) { for (unsigned run = 0; run < WORKER_RUNS; run++) { if (pmemobj_rwlock_rdlock(&Mock_pop, &Test_obj->rwlock)) { UT_ERR("pmemobj_rwlock_rdlock"); return NULL; } uint8_t val = Test_obj->data[0]; for (int i = 1; i < DATA_SIZE; i++) UT_ASSERTeq(Test_obj->data[i], val); if (pmemobj_rwlock_unlock(&Mock_pop, &Test_obj->rwlock)) UT_ERR("pmemobj_rwlock_unlock"); } return NULL; } /* * timed_write_worker -- (internal) intentionally doing nothing */ static void * timed_write_worker(void *arg) { return NULL; } /* * timed_check_worker -- (internal) check consistency with mutex */ static void * timed_check_worker(void *arg) { for (unsigned run = 0; run < WORKER_RUNS; run++) { int mutex_id = (int)(uintptr_t)arg % 2; PMEMmutex *mtx = mutex_id == LOCKED_MUTEX ? &Test_obj->mutex_locked : &Test_obj->mutex; struct timespec t1, t2, abs_time; os_clock_gettime(CLOCK_REALTIME, &t1); abs_time = t1; abs_time.tv_nsec += TIMEOUT; if (abs_time.tv_nsec >= NANO_PER_ONE) { abs_time.tv_sec++; abs_time.tv_nsec -= NANO_PER_ONE; } int ret = pmemobj_mutex_timedlock(&Mock_pop, mtx, &abs_time); os_clock_gettime(CLOCK_REALTIME, &t2); if (mutex_id == LOCKED_MUTEX) { UT_ASSERTeq(ret, ETIMEDOUT); uint64_t diff = (uint64_t)((t2.tv_sec - t1.tv_sec) * NANO_PER_ONE + t2.tv_nsec - t1.tv_nsec); UT_ASSERT(diff >= TIMEOUT); return NULL; } if (ret == 0) { UT_ASSERTne(mutex_id, LOCKED_MUTEX); pmemobj_mutex_unlock(&Mock_pop, mtx); } else if (ret == ETIMEDOUT) { uint64_t diff = (uint64_t)((t2.tv_sec - t1.tv_sec) * NANO_PER_ONE + t2.tv_nsec - t1.tv_nsec); UT_ASSERT(diff >= TIMEOUT); } else { errno = ret; UT_ERR("!pmemobj_mutex_timedlock"); } } return NULL; } /* * cleanup -- (internal) clean up after each run */ static void cleanup(char test_type) { switch (test_type) { case 'm': util_mutex_destroy(&((PMEMmutex_internal *) &(Test_obj->mutex))->PMEMmutex_lock); break; case 'r': util_rwlock_destroy(&((PMEMrwlock_internal *) &(Test_obj->rwlock))->PMEMrwlock_lock); break; case 'c': util_mutex_destroy(&((PMEMmutex_internal *) &(Test_obj->mutex))->PMEMmutex_lock); util_cond_destroy(&((PMEMcond_internal *) &(Test_obj->cond))->PMEMcond_cond); break; case 't': util_mutex_destroy(&((PMEMmutex_internal *) &(Test_obj->mutex))->PMEMmutex_lock); util_mutex_destroy(&((PMEMmutex_internal *) &(Test_obj->mutex_locked))->PMEMmutex_lock); break; default: FATAL_USAGE(); } } static int obj_sync_persist(void *ctx, const void *ptr, size_t sz, unsigned flags) { /* no-op */ return 0; } int main(int argc, char *argv[]) { START(argc, argv, "obj_sync"); util_init(); if (argc < 4) FATAL_USAGE(); worker writer; worker checker; char test_type = argv[1][0]; switch (test_type) { case 'm': writer = mutex_write_worker; checker = mutex_check_worker; break; case 'r': writer = rwlock_write_worker; checker = rwlock_check_worker; break; case 'c': writer = cond_write_worker; checker = cond_check_worker; break; case 't': writer = timed_write_worker; checker = timed_check_worker; break; default: FATAL_USAGE(); } unsigned long num_threads = strtoul(argv[2], NULL, 10); if (num_threads > MAX_THREAD_NUM) UT_FATAL("Do not use more than %d threads.\n", MAX_THREAD_NUM); unsigned long opens = strtoul(argv[3], NULL, 10); if (opens > MAX_OPENS) UT_FATAL("Do not use more than %d runs.\n", MAX_OPENS); os_thread_t *write_threads = (os_thread_t *)MALLOC(num_threads * sizeof(os_thread_t)); os_thread_t *check_threads = (os_thread_t *)MALLOC(num_threads * sizeof(os_thread_t)); /* first pool open */ mock_open_pool(&Mock_pop); Mock_pop.p_ops.persist = obj_sync_persist; Mock_pop.p_ops.base = &Mock_pop; Test_obj = (struct mock_obj *)MALLOC(sizeof(struct mock_obj)); /* zero-initialize the test object */ pmemobj_mutex_zero(&Mock_pop, &Test_obj->mutex); pmemobj_mutex_zero(&Mock_pop, &Test_obj->mutex_locked); pmemobj_cond_zero(&Mock_pop, &Test_obj->cond); pmemobj_rwlock_zero(&Mock_pop, &Test_obj->rwlock); Test_obj->check_data = 0; memset(&Test_obj->data, 0, DATA_SIZE); for (unsigned long run = 0; run < opens; run++) { if (test_type == 't') { pmemobj_mutex_lock(&Mock_pop, &Test_obj->mutex_locked); } for (unsigned i = 0; i < num_threads; i++) { THREAD_CREATE(&write_threads[i], NULL, writer, (void *)(uintptr_t)i); THREAD_CREATE(&check_threads[i], NULL, checker, (void *)(uintptr_t)i); } for (unsigned i = 0; i < num_threads; i++) { THREAD_JOIN(&write_threads[i], NULL); THREAD_JOIN(&check_threads[i], NULL); } if (test_type == 't') { pmemobj_mutex_unlock(&Mock_pop, &Test_obj->mutex_locked); } /* up the run_id counter and cleanup */ mock_open_pool(&Mock_pop); cleanup(test_type); } FREE(check_threads); FREE(write_threads); FREE(Test_obj); DONE(NULL); }
8,776
21.97644
78
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_sync/mocks_posix.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2018, Intel Corporation */ /* * mocks_posix.c -- redefinitions of lock functions (Posix implementation) */ #include <pthread.h> #include "util.h" #include "os.h" #include "unittest.h" FUNC_MOCK(pthread_mutex_init, int, pthread_mutex_t *__restrict mutex, const pthread_mutexattr_t *__restrict attr) FUNC_MOCK_RUN_RET_DEFAULT_REAL(pthread_mutex_init, mutex, attr) FUNC_MOCK_RUN(1) { return -1; } FUNC_MOCK_END FUNC_MOCK(pthread_rwlock_init, int, pthread_rwlock_t *__restrict rwlock, const pthread_rwlockattr_t *__restrict attr) FUNC_MOCK_RUN_RET_DEFAULT_REAL(pthread_rwlock_init, rwlock, attr) FUNC_MOCK_RUN(1) { return -1; } FUNC_MOCK_END FUNC_MOCK(pthread_cond_init, int, pthread_cond_t *__restrict cond, const pthread_condattr_t *__restrict attr) FUNC_MOCK_RUN_RET_DEFAULT_REAL(pthread_cond_init, cond, attr) FUNC_MOCK_RUN(1) { return -1; } FUNC_MOCK_END
950
22.775
74
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/out_err_mt_win/out_err_mt_win.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2020, Intel Corporation */ /* * out_err_mt_win.c -- unit test for error messages */ #include <sys/types.h> #include <stdarg.h> #include <errno.h> #include "unittest.h" #include "valgrind_internal.h" #include "util.h" #define NUM_THREADS 16 static void print_errors(const wchar_t *msg) { UT_OUT("%S", msg); UT_OUT("PMEM: %S", pmem_errormsgW()); UT_OUT("PMEMOBJ: %S", pmemobj_errormsgW()); UT_OUT("PMEMLOG: %S", pmemlog_errormsgW()); UT_OUT("PMEMBLK: %S", pmemblk_errormsgW()); UT_OUT("PMEMPOOL: %S", pmempool_errormsgW()); } static void check_errors(int ver) { int ret; int err_need; int err_found; ret = swscanf(pmem_errormsgW(), L"libpmem major version mismatch (need %d, found %d)", &err_need, &err_found); UT_ASSERTeq(ret, 2); UT_ASSERTeq(err_need, ver); UT_ASSERTeq(err_found, PMEM_MAJOR_VERSION); ret = swscanf(pmemobj_errormsgW(), L"libpmemobj major version mismatch (need %d, found %d)", &err_need, &err_found); UT_ASSERTeq(ret, 2); UT_ASSERTeq(err_need, ver); UT_ASSERTeq(err_found, PMEMOBJ_MAJOR_VERSION); ret = swscanf(pmemlog_errormsgW(), L"libpmemlog major version mismatch (need %d, found %d)", &err_need, &err_found); UT_ASSERTeq(ret, 2); UT_ASSERTeq(err_need, ver); UT_ASSERTeq(err_found, PMEMLOG_MAJOR_VERSION); ret = swscanf(pmemblk_errormsgW(), L"libpmemblk major version mismatch (need %d, found %d)", &err_need, &err_found); UT_ASSERTeq(ret, 2); UT_ASSERTeq(err_need, ver); UT_ASSERTeq(err_found, PMEMBLK_MAJOR_VERSION); ret = swscanf(pmempool_errormsgW(), L"libpmempool major version mismatch (need %d, found %d)", &err_need, &err_found); UT_ASSERTeq(ret, 2); UT_ASSERTeq(err_need, ver); UT_ASSERTeq(err_found, PMEMPOOL_MAJOR_VERSION); } static void * do_test(void *arg) { int ver = *(int *)arg; pmem_check_version(ver, 0); pmemobj_check_version(ver, 0); pmemlog_check_version(ver, 0); pmemblk_check_version(ver, 0); pmempool_check_version(ver, 0); check_errors(ver); return NULL; } static void run_mt_test(void *(*worker)(void *)) { os_thread_t thread[NUM_THREADS]; int ver[NUM_THREADS]; for (int i = 0; i < NUM_THREADS; ++i) { ver[i] = 10000 + i; THREAD_CREATE(&thread[i], NULL, worker, &ver[i]); } for (int i = 0; i < NUM_THREADS; ++i) { THREAD_JOIN(&thread[i], NULL); } } int wmain(int argc, wchar_t *argv[]) { STARTW(argc, argv, "out_err_mt_win"); if (argc != 6) UT_FATAL("usage: %S file1 file2 file3 file4 dir", argv[0]); print_errors(L"start"); PMEMobjpool *pop = pmemobj_createW(argv[1], L"test", PMEMOBJ_MIN_POOL, 0666); PMEMlogpool *plp = pmemlog_createW(argv[2], PMEMLOG_MIN_POOL, 0666); PMEMblkpool *pbp = pmemblk_createW(argv[3], 128, PMEMBLK_MIN_POOL, 0666); util_init(); pmem_check_version(10000, 0); pmemobj_check_version(10001, 0); pmemlog_check_version(10002, 0); pmemblk_check_version(10003, 0); pmempool_check_version(10006, 0); print_errors(L"version check"); void *ptr = NULL; /* * We are testing library error reporting and we don't want this test * to fail under memcheck. */ VALGRIND_DO_DISABLE_ERROR_REPORTING; pmem_msync(ptr, 1); VALGRIND_DO_ENABLE_ERROR_REPORTING; print_errors(L"pmem_msync"); int ret; PMEMoid oid; ret = pmemobj_alloc(pop, &oid, 0, 0, NULL, NULL); UT_ASSERTeq(ret, -1); print_errors(L"pmemobj_alloc"); pmemlog_append(plp, NULL, PMEMLOG_MIN_POOL); print_errors(L"pmemlog_append"); size_t nblock = pmemblk_nblock(pbp); pmemblk_set_error(pbp, nblock + 1); print_errors(L"pmemblk_set_error"); run_mt_test(do_test); pmemobj_close(pop); pmemlog_close(plp); pmemblk_close(pbp); PMEMpoolcheck *ppc; struct pmempool_check_args args = {0, }; ppc = pmempool_check_init(&args, sizeof(args) / 2); UT_ASSERTeq(ppc, NULL); print_errors(L"pmempool_check_init"); DONEW(NULL); }
3,844
22.30303
70
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/test/obj_oid_thread/obj_oid_thread.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2015-2020, Intel Corporation */ /* * obj_oid_thread.c -- unit test for the reverse direct operation */ #include "unittest.h" #include "lane.h" #include "obj.h" #include "sys_util.h" #define MAX_PATH_LEN 255 #define LAYOUT_NAME "direct" static os_mutex_t lock; static os_cond_t cond; static int flag = 1; static PMEMoid thread_oid; /* * test_worker -- (internal) test worker thread */ static void * test_worker(void *arg) { util_mutex_lock(&lock); /* before pool is closed */ void *direct = pmemobj_direct(thread_oid); UT_ASSERT(OID_EQUALS(thread_oid, pmemobj_oid(direct))); flag = 0; os_cond_signal(&cond); util_mutex_unlock(&lock); util_mutex_lock(&lock); while (flag == 0) os_cond_wait(&cond, &lock); /* after pool is closed */ UT_ASSERT(OID_IS_NULL(pmemobj_oid(direct))); util_mutex_unlock(&lock); return NULL; } int main(int argc, char *argv[]) { START(argc, argv, "obj_oid_thread"); if (argc != 3) UT_FATAL("usage: %s [directory] [# of pools]", argv[0]); util_mutex_init(&lock); util_cond_init(&cond); unsigned npools = ATOU(argv[2]); const char *dir = argv[1]; int r; PMEMobjpool **pops = MALLOC(npools * sizeof(PMEMoid *)); size_t length = strlen(dir) + MAX_PATH_LEN; char *path = MALLOC(length); for (unsigned i = 0; i < npools; ++i) { int ret = snprintf(path, length, "%s"OS_DIR_SEP_STR"testfile%d", dir, i); if (ret < 0 || ret >= length) UT_FATAL("snprintf: %d", ret); pops[i] = pmemobj_create(path, LAYOUT_NAME, PMEMOBJ_MIN_POOL, S_IWUSR | S_IRUSR); if (pops[i] == NULL) UT_FATAL("!pmemobj_create"); } /* Address outside the pmemobj pool */ void *allocated_memory = MALLOC(sizeof(int)); UT_ASSERT(OID_IS_NULL(pmemobj_oid(allocated_memory))); PMEMoid *oids = MALLOC(npools * sizeof(PMEMoid)); PMEMoid *tmpoids = MALLOC(npools * sizeof(PMEMoid)); UT_ASSERT(OID_IS_NULL(pmemobj_oid(NULL))); oids[0] = OID_NULL; for (unsigned i = 0; i < npools; ++i) { uint64_t off = pops[i]->heap_offset; oids[i] = (PMEMoid) {pops[i]->uuid_lo, off}; UT_ASSERT(OID_EQUALS(oids[i], pmemobj_oid(pmemobj_direct(oids[i])))); r = pmemobj_alloc(pops[i], &tmpoids[i], 100, 1, NULL, NULL); UT_ASSERTeq(r, 0); UT_ASSERT(OID_EQUALS(tmpoids[i], pmemobj_oid(pmemobj_direct(tmpoids[i])))); } r = pmemobj_alloc(pops[0], &thread_oid, 100, 2, NULL, NULL); UT_ASSERTeq(r, 0); UT_ASSERT(!OID_IS_NULL(pmemobj_oid(pmemobj_direct(thread_oid)))); util_mutex_lock(&lock); os_thread_t t; THREAD_CREATE(&t, NULL, test_worker, NULL); /* wait for the thread to perform the first direct */ while (flag != 0) os_cond_wait(&cond, &lock); for (unsigned i = 0; i < npools; ++i) { pmemobj_free(&tmpoids[i]); UT_ASSERT(OID_IS_NULL(pmemobj_oid( pmemobj_direct(tmpoids[i])))); pmemobj_close(pops[i]); UT_ASSERT(OID_IS_NULL(pmemobj_oid( pmemobj_direct(oids[i])))); } /* signal the waiting thread */ flag = 1; os_cond_signal(&cond); util_mutex_unlock(&lock); THREAD_JOIN(&t, NULL); FREE(path); FREE(tmpoids); FREE(oids); FREE(pops); FREE(allocated_memory); util_mutex_destroy(&lock); util_cond_destroy(&cond); DONE(NULL); }
3,186
21.602837
66
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/rpmem_common/rpmem_fip_common.h
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2019, Intel Corporation */ /* * rpmem_fip_common.h -- common definitions for librpmem and rpmemd */ #ifndef RPMEM_FIP_COMMON_H #define RPMEM_FIP_COMMON_H 1 #include <string.h> #include <netinet/in.h> #include <rdma/fabric.h> #include <rdma/fi_cm.h> #include <rdma/fi_rma.h> #ifdef __cplusplus extern "C" { #endif #define RPMEM_FIVERSION FI_VERSION(1, 4) #define RPMEM_FIP_CQ_WAIT_MS 100 #define min(a, b) ((a) < (b) ? (a) : (b)) #define max(a, b) ((a) > (b) ? (a) : (b)) /* * rpmem_fip_node -- client or server node type */ enum rpmem_fip_node { RPMEM_FIP_NODE_CLIENT, RPMEM_FIP_NODE_SERVER, MAX_RPMEM_FIP_NODE, }; /* * rpmem_fip_probe -- list of providers */ struct rpmem_fip_probe { unsigned providers; size_t max_wq_size[MAX_RPMEM_PROV]; }; /* * rpmem_fip_probe -- returns true if specified provider is available */ static inline int rpmem_fip_probe(struct rpmem_fip_probe probe, enum rpmem_provider provider) { return (probe.providers & (1U << provider)) != 0; } /* * rpmem_fip_probe_any -- returns true if any provider is available */ static inline int rpmem_fip_probe_any(struct rpmem_fip_probe probe) { return probe.providers != 0; } int rpmem_fip_probe_get(const char *target, struct rpmem_fip_probe *probe); struct fi_info *rpmem_fip_get_hints(enum rpmem_provider provider); int rpmem_fip_read_eq_check(struct fid_eq *eq, struct fi_eq_cm_entry *entry, uint32_t exp_event, fid_t exp_fid, int timeout); int rpmem_fip_read_eq(struct fid_eq *eq, struct fi_eq_cm_entry *entry, uint32_t *event, int timeout); size_t rpmem_fip_cq_size(enum rpmem_persist_method pm, enum rpmem_fip_node node); size_t rpmem_fip_wq_size(enum rpmem_persist_method pm, enum rpmem_fip_node node); size_t rpmem_fip_rx_size(enum rpmem_persist_method pm, enum rpmem_fip_node node); size_t rpmem_fip_max_nlanes(struct fi_info *fi); void rpmem_fip_print_info(struct fi_info *fi); #ifdef __cplusplus } #endif #endif
1,992
21.144444
76
h
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/rpmem_common/rpmem_fip_common.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2019, Intel Corporation */ /* * rpmem_common.c -- common definitions for librpmem and rpmemd */ #include <stdint.h> #include <stdlib.h> #include <string.h> #include <stddef.h> #include <errno.h> #include "rpmem_common.h" #include "rpmem_fip_common.h" #include "rpmem_proto.h" #include "rpmem_common_log.h" #include "valgrind_internal.h" #include <rdma/fi_errno.h> /* * rpmem_fip_get_hints -- return fabric interface information hints */ struct fi_info * rpmem_fip_get_hints(enum rpmem_provider provider) { RPMEMC_ASSERT(provider < MAX_RPMEM_PROV); struct fi_info *hints = fi_allocinfo(); if (!hints) { RPMEMC_LOG(ERR, "!fi_allocinfo"); return NULL; } /* connection-oriented endpoint */ hints->ep_attr->type = FI_EP_MSG; /* * Basic memory registration mode indicates that MR attributes * (rkey, lkey) are selected by provider. */ hints->domain_attr->mr_mode = FI_MR_BASIC; /* * FI_THREAD_SAFE indicates MT applications can access any * resources through interface without any restrictions */ hints->domain_attr->threading = FI_THREAD_SAFE; /* * FI_MSG - SEND and RECV * FI_RMA - WRITE and READ */ hints->caps = FI_MSG | FI_RMA; /* must register locally accessed buffers */ hints->mode = FI_CONTEXT | FI_LOCAL_MR | FI_RX_CQ_DATA; /* READ-after-WRITE and SEND-after-WRITE message ordering required */ hints->tx_attr->msg_order = FI_ORDER_RAW | FI_ORDER_SAW; hints->addr_format = FI_SOCKADDR; if (provider != RPMEM_PROV_UNKNOWN) { const char *prov_name = rpmem_provider_to_str(provider); RPMEMC_ASSERT(prov_name != NULL); hints->fabric_attr->prov_name = strdup(prov_name); if (!hints->fabric_attr->prov_name) { RPMEMC_LOG(ERR, "!strdup(provider)"); goto err_strdup; } } return hints; err_strdup: fi_freeinfo(hints); return NULL; } /* * rpmem_fip_probe_get -- return list of available providers */ int rpmem_fip_probe_get(const char *target, struct rpmem_fip_probe *probe) { struct fi_info *hints = rpmem_fip_get_hints(RPMEM_PROV_UNKNOWN); if (!hints) return -1; int ret; struct fi_info *fi; ret = fi_getinfo(RPMEM_FIVERSION, target, NULL, 0, hints, &fi); if (ret) { goto err_getinfo; } if (probe) { memset(probe, 0, sizeof(*probe)); struct fi_info *prov = fi; while (prov) { enum rpmem_provider p = rpmem_provider_from_str( prov->fabric_attr->prov_name); if (p == RPMEM_PROV_UNKNOWN) { prov = prov->next; continue; } probe->providers |= (1U << p); probe->max_wq_size[p] = prov->tx_attr->size; prov = prov->next; } } fi_freeinfo(fi); err_getinfo: fi_freeinfo(hints); return ret; } /* * rpmem_fip_read_eq -- read event queue entry with specified timeout */ int rpmem_fip_read_eq(struct fid_eq *eq, struct fi_eq_cm_entry *entry, uint32_t *event, int timeout) { int ret; ssize_t sret; struct fi_eq_err_entry err; sret = fi_eq_sread(eq, event, entry, sizeof(*entry), timeout, 0); VALGRIND_DO_MAKE_MEM_DEFINED(&sret, sizeof(sret)); if (timeout != -1 && (sret == -FI_ETIMEDOUT || sret == -FI_EAGAIN)) { errno = ETIMEDOUT; return 1; } if (sret < 0 || (size_t)sret != sizeof(*entry)) { if (sret < 0) ret = (int)sret; else ret = -1; sret = fi_eq_readerr(eq, &err, 0); if (sret < 0) { errno = EIO; RPMEMC_LOG(ERR, "error reading from event queue: " "cannot read error from event queue: %s", fi_strerror((int)sret)); } else if (sret > 0) { RPMEMC_ASSERT(sret == sizeof(err)); errno = -err.prov_errno; RPMEMC_LOG(ERR, "error reading from event queue: %s", fi_eq_strerror(eq, err.prov_errno, NULL, NULL, 0)); } return ret; } return 0; } /* * rpmem_fip_read_eq -- read event queue entry and expect specified event * and fid * * Returns: * 1 - timeout * 0 - success * otherwise - error */ int rpmem_fip_read_eq_check(struct fid_eq *eq, struct fi_eq_cm_entry *entry, uint32_t exp_event, fid_t exp_fid, int timeout) { uint32_t event; int ret = rpmem_fip_read_eq(eq, entry, &event, timeout); if (ret) return ret; if (event != exp_event || entry->fid != exp_fid) { errno = EIO; RPMEMC_LOG(ERR, "unexpected event received (%u) " "expected (%u)%s", event, exp_event, entry->fid != exp_fid ? " invalid endpoint" : ""); return -1; } return 0; } /* * rpmem_fip_lane_attr -- lane attributes * * This structure describes how many SQ, RQ and CQ entries are * required for a single lane. * * NOTE: * - WRITE, READ and SEND requests are placed in SQ, * - RECV requests are placed in RQ. */ struct rpmem_fip_lane_attr { size_t n_per_sq; /* number of entries per lane in send queue */ size_t n_per_rq; /* number of entries per lane in receive queue */ size_t n_per_cq; /* number of entries per lane in completion queue */ }; /* queues size required by remote persist operation methods */ static const struct rpmem_fip_lane_attr rpmem_fip_lane_attrs[MAX_RPMEM_FIP_NODE][MAX_RPMEM_PM] = { [RPMEM_FIP_NODE_CLIENT][RPMEM_PM_GPSPM] = { .n_per_sq = 2, /* WRITE + SEND */ .n_per_rq = 1, /* RECV */ .n_per_cq = 3, }, [RPMEM_FIP_NODE_CLIENT][RPMEM_PM_APM] = { /* WRITE + READ for persist, WRITE + SEND for deep persist */ .n_per_sq = 2, /* WRITE + SEND */ .n_per_rq = 1, /* RECV */ .n_per_cq = 3, }, [RPMEM_FIP_NODE_SERVER][RPMEM_PM_GPSPM] = { .n_per_sq = 1, /* SEND */ .n_per_rq = 1, /* RECV */ .n_per_cq = 3, }, [RPMEM_FIP_NODE_SERVER][RPMEM_PM_APM] = { .n_per_sq = 1, /* SEND */ .n_per_rq = 1, /* RECV */ .n_per_cq = 3, }, }; /* * rpmem_fip_cq_size -- returns completion queue size based on * persist method and node type */ size_t rpmem_fip_cq_size(enum rpmem_persist_method pm, enum rpmem_fip_node node) { RPMEMC_ASSERT(pm < MAX_RPMEM_PM); RPMEMC_ASSERT(node < MAX_RPMEM_FIP_NODE); const struct rpmem_fip_lane_attr *attr = &rpmem_fip_lane_attrs[node][pm]; return attr->n_per_cq ? : 1; } /* * rpmem_fip_wq_size -- returns submission queue (transmit queue) size based * on persist method and node type */ size_t rpmem_fip_wq_size(enum rpmem_persist_method pm, enum rpmem_fip_node node) { RPMEMC_ASSERT(pm < MAX_RPMEM_PM); RPMEMC_ASSERT(node < MAX_RPMEM_FIP_NODE); const struct rpmem_fip_lane_attr *attr = &rpmem_fip_lane_attrs[node][pm]; return attr->n_per_sq ? : 1; } /* * rpmem_fip_rx_size -- returns receive queue size based * on persist method and node type */ size_t rpmem_fip_rx_size(enum rpmem_persist_method pm, enum rpmem_fip_node node) { RPMEMC_ASSERT(pm < MAX_RPMEM_PM); RPMEMC_ASSERT(node < MAX_RPMEM_FIP_NODE); const struct rpmem_fip_lane_attr *attr = &rpmem_fip_lane_attrs[node][pm]; return attr->n_per_rq ? : 1; } /* * rpmem_fip_max_nlanes -- returns maximum number of lanes */ size_t rpmem_fip_max_nlanes(struct fi_info *fi) { return min(min(fi->domain_attr->tx_ctx_cnt, fi->domain_attr->rx_ctx_cnt), fi->domain_attr->cq_cnt); } /* * rpmem_fip_print_info -- print some useful info about fabric interface */ void rpmem_fip_print_info(struct fi_info *fi) { RPMEMC_LOG(INFO, "libfabric version: %s", fi_tostr(fi, FI_TYPE_VERSION)); char *str = fi_tostr(fi, FI_TYPE_INFO); char *buff = strdup(str); if (!buff) { RPMEMC_LOG(ERR, "!allocating string buffer for " "libfabric interface information"); return; } RPMEMC_LOG(INFO, "libfabric interface info:"); char *nl; char *last = buff; while (last != NULL) { nl = strchr(last, '\n'); if (nl) { *nl = '\0'; nl++; } RPMEMC_LOG(INFO, "%s", last); last = nl; } free(buff); }
7,550
21.675676
76
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/rpmem_common/rpmem_common_log.h
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016, Intel Corporation */ /* * rpmem_common_log.h -- common log macros for librpmem and rpmemd */ #if defined(RPMEMC_LOG_RPMEM) && defined(RPMEMC_LOG_RPMEMD) #error Both RPMEMC_LOG_RPMEM and RPMEMC_LOG_RPMEMD defined #elif !defined(RPMEMC_LOG_RPMEM) && !defined(RPMEMC_LOG_RPMEMD) #define RPMEMC_LOG(level, fmt, args...) do {} while (0) #define RPMEMC_DBG(level, fmt, args...) do {} while (0) #define RPMEMC_FATAL(fmt, args...) do {} while (0) #define RPMEMC_ASSERT(cond) do {} while (0) #elif defined(RPMEMC_LOG_RPMEM) #include "out.h" #include "rpmem_util.h" #define RPMEMC_LOG(level, fmt, args...) RPMEM_LOG(level, fmt, ## args) #define RPMEMC_DBG(level, fmt, args...) RPMEM_DBG(fmt, ## args) #define RPMEMC_FATAL(fmt, args...) RPMEM_FATAL(fmt, ## args) #define RPMEMC_ASSERT(cond) RPMEM_ASSERT(cond) #else #include "rpmemd_log.h" #define RPMEMC_LOG(level, fmt, args...) RPMEMD_LOG(level, fmt, ## args) #define RPMEMC_DBG(level, fmt, args...) RPMEMD_DBG(fmt, ## args) #define RPMEMC_FATAL(fmt, args...) RPMEMD_FATAL(fmt, ## args) #define RPMEMC_ASSERT(cond) RPMEMD_ASSERT(cond) #endif
1,160
28.769231
71
h
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/rpmem_common/rpmem_common.h
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2019, Intel Corporation */ /* * rpmem_common.h -- common definitions for librpmem and rpmemd */ #ifndef RPMEM_COMMON_H #define RPMEM_COMMON_H 1 /* * Values for SO_KEEPALIVE socket option */ #define RPMEM_CMD_ENV "RPMEM_CMD" #define RPMEM_SSH_ENV "RPMEM_SSH" #define RPMEM_DEF_CMD "rpmemd" #define RPMEM_DEF_SSH "ssh" #define RPMEM_PROV_SOCKET_ENV "RPMEM_ENABLE_SOCKETS" #define RPMEM_PROV_VERBS_ENV "RPMEM_ENABLE_VERBS" #define RPMEM_MAX_NLANES_ENV "RPMEM_MAX_NLANES" #define RPMEM_WQ_SIZE_ENV "RPMEM_WORK_QUEUE_SIZE" #define RPMEM_ACCEPT_TIMEOUT 30000 #define RPMEM_CONNECT_TIMEOUT 30000 #define RPMEM_MONITOR_TIMEOUT 1000 #include <stdint.h> #include <sys/socket.h> #include <netdb.h> #ifdef __cplusplus extern "C" { #endif /* * rpmem_err -- error codes */ enum rpmem_err { RPMEM_SUCCESS = 0, RPMEM_ERR_BADPROTO = 1, RPMEM_ERR_BADNAME = 2, RPMEM_ERR_BADSIZE = 3, RPMEM_ERR_BADNLANES = 4, RPMEM_ERR_BADPROVIDER = 5, RPMEM_ERR_FATAL = 6, RPMEM_ERR_FATAL_CONN = 7, RPMEM_ERR_BUSY = 8, RPMEM_ERR_EXISTS = 9, RPMEM_ERR_PROVNOSUP = 10, RPMEM_ERR_NOEXIST = 11, RPMEM_ERR_NOACCESS = 12, RPMEM_ERR_POOL_CFG = 13, MAX_RPMEM_ERR, }; /* * rpmem_persist_method -- remote persist operation method */ enum rpmem_persist_method { RPMEM_PM_GPSPM = 1, /* General Purpose Server Persistency Method */ RPMEM_PM_APM = 2, /* Appliance Persistency Method */ MAX_RPMEM_PM, }; const char *rpmem_persist_method_to_str(enum rpmem_persist_method pm); /* * rpmem_provider -- supported providers */ enum rpmem_provider { RPMEM_PROV_UNKNOWN = 0, RPMEM_PROV_LIBFABRIC_VERBS = 1, RPMEM_PROV_LIBFABRIC_SOCKETS = 2, MAX_RPMEM_PROV, }; enum rpmem_provider rpmem_provider_from_str(const char *str); const char *rpmem_provider_to_str(enum rpmem_provider provider); /* * rpmem_req_attr -- arguments for open/create request */ struct rpmem_req_attr { size_t pool_size; unsigned nlanes; size_t buff_size; enum rpmem_provider provider; const char *pool_desc; }; /* * rpmem_resp_attr -- return arguments from open/create request */ struct rpmem_resp_attr { unsigned short port; uint64_t rkey; uint64_t raddr; unsigned nlanes; enum rpmem_persist_method persist_method; }; #define RPMEM_HAS_USER 0x1 #define RPMEM_HAS_SERVICE 0x2 #define RPMEM_FLAGS_USE_IPV4 0x4 #define RPMEM_MAX_USER (32 + 1) /* see useradd(8) + 1 for '\0' */ #define RPMEM_MAX_NODE (255 + 1) /* see gethostname(2) + 1 for '\0' */ #define RPMEM_MAX_SERVICE (NI_MAXSERV + 1) /* + 1 for '\0' */ #define RPMEM_HDR_SIZE 4096 #define RPMEM_CLOSE_FLAGS_REMOVE 0x1 #define RPMEM_DEF_BUFF_SIZE 8192 struct rpmem_target_info { char user[RPMEM_MAX_USER]; char node[RPMEM_MAX_NODE]; char service[RPMEM_MAX_SERVICE]; unsigned flags; }; extern unsigned Rpmem_max_nlanes; extern unsigned Rpmem_wq_size; extern int Rpmem_fork_unsafe; int rpmem_b64_write(int sockfd, const void *buf, size_t len, int flags); int rpmem_b64_read(int sockfd, void *buf, size_t len, int flags); const char *rpmem_get_ip_str(const struct sockaddr *addr); struct rpmem_target_info *rpmem_target_parse(const char *target); void rpmem_target_free(struct rpmem_target_info *info); int rpmem_xwrite(int fd, const void *buf, size_t len, int flags); int rpmem_xread(int fd, void *buf, size_t len, int flags); char *rpmem_get_ssh_conn_addr(void); #ifdef __cplusplus } #endif #endif
3,404
23.321429
72
h
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/rpmem_common/rpmem_proto.h
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2019, Intel Corporation */ /* * rpmem_proto.h -- rpmem protocol definitions */ #ifndef RPMEM_PROTO_H #define RPMEM_PROTO_H 1 #include <stdint.h> #include <endian.h> #include "librpmem.h" #ifdef __cplusplus extern "C" { #endif #define PACKED __attribute__((packed)) #define RPMEM_PROTO "tcp" #define RPMEM_PROTO_MAJOR 0 #define RPMEM_PROTO_MINOR 1 #define RPMEM_SIG_SIZE 8 #define RPMEM_UUID_SIZE 16 #define RPMEM_PROV_SIZE 32 #define RPMEM_USER_SIZE 16 /* * rpmem_msg_type -- type of messages */ enum rpmem_msg_type { RPMEM_MSG_TYPE_CREATE = 1, /* create request */ RPMEM_MSG_TYPE_CREATE_RESP = 2, /* create request response */ RPMEM_MSG_TYPE_OPEN = 3, /* open request */ RPMEM_MSG_TYPE_OPEN_RESP = 4, /* open request response */ RPMEM_MSG_TYPE_CLOSE = 5, /* close request */ RPMEM_MSG_TYPE_CLOSE_RESP = 6, /* close request response */ RPMEM_MSG_TYPE_SET_ATTR = 7, /* set attributes request */ /* set attributes request response */ RPMEM_MSG_TYPE_SET_ATTR_RESP = 8, MAX_RPMEM_MSG_TYPE, }; /* * rpmem_pool_attr_packed -- a packed version */ struct rpmem_pool_attr_packed { char signature[RPMEM_POOL_HDR_SIG_LEN]; /* pool signature */ uint32_t major; /* format major version number */ uint32_t compat_features; /* mask: compatible "may" features */ uint32_t incompat_features; /* mask: "must support" features */ uint32_t ro_compat_features; /* mask: force RO if unsupported */ unsigned char poolset_uuid[RPMEM_POOL_HDR_UUID_LEN]; /* pool uuid */ unsigned char uuid[RPMEM_POOL_HDR_UUID_LEN]; /* first part uuid */ unsigned char next_uuid[RPMEM_POOL_HDR_UUID_LEN]; /* next pool uuid */ unsigned char prev_uuid[RPMEM_POOL_HDR_UUID_LEN]; /* prev pool uuid */ unsigned char user_flags[RPMEM_POOL_USER_FLAGS_LEN]; /* user flags */ } PACKED; /* * rpmem_msg_ibc_attr -- in-band connection attributes * * Used by create request response and open request response. * Contains essential information to proceed with in-band connection * initialization. */ struct rpmem_msg_ibc_attr { uint32_t port; /* RDMA connection port */ uint32_t persist_method; /* persist method */ uint64_t rkey; /* remote key */ uint64_t raddr; /* remote address */ uint32_t nlanes; /* number of lanes */ } PACKED; /* * rpmem_msg_pool_desc -- remote pool descriptor */ struct rpmem_msg_pool_desc { uint32_t size; /* size of pool descriptor */ uint8_t desc[0]; /* pool descriptor, null-terminated string */ } PACKED; /* * rpmem_msg_hdr -- message header which consists of type and size of message * * The type must be one of the rpmem_msg_type values. */ struct rpmem_msg_hdr { uint32_t type; /* type of message */ uint64_t size; /* size of message */ uint8_t body[0]; } PACKED; /* * rpmem_msg_hdr_resp -- message response header which consists of type, size * and status. * * The type must be one of the rpmem_msg_type values. */ struct rpmem_msg_hdr_resp { uint32_t status; /* response status */ uint32_t type; /* type of message */ uint64_t size; /* size of message */ } PACKED; /* * rpmem_msg_common -- common fields for open/create messages */ struct rpmem_msg_common { uint16_t major; /* protocol version major number */ uint16_t minor; /* protocol version minor number */ uint64_t pool_size; /* minimum required size of a pool */ uint32_t nlanes; /* number of lanes used by initiator */ uint32_t provider; /* provider */ uint64_t buff_size; /* buffer size for inline persist */ } PACKED; /* * rpmem_msg_create -- create request message * * The type of message must be set to RPMEM_MSG_TYPE_CREATE. * The size of message must be set to * sizeof(struct rpmem_msg_create) + pool_desc_size */ struct rpmem_msg_create { struct rpmem_msg_hdr hdr; /* message header */ struct rpmem_msg_common c; struct rpmem_pool_attr_packed pool_attr; /* pool attributes */ struct rpmem_msg_pool_desc pool_desc; /* pool descriptor */ } PACKED; /* * rpmem_msg_create_resp -- create request response message * * The type of message must be set to RPMEM_MSG_TYPE_CREATE_RESP. * The size of message must be set to sizeof(struct rpmem_msg_create_resp). */ struct rpmem_msg_create_resp { struct rpmem_msg_hdr_resp hdr; /* message header */ struct rpmem_msg_ibc_attr ibc; /* in-band connection attributes */ } PACKED; /* * rpmem_msg_open -- open request message * * The type of message must be set to RPMEM_MSG_TYPE_OPEN. * The size of message must be set to * sizeof(struct rpmem_msg_open) + pool_desc_size */ struct rpmem_msg_open { struct rpmem_msg_hdr hdr; /* message header */ struct rpmem_msg_common c; struct rpmem_msg_pool_desc pool_desc; /* pool descriptor */ } PACKED; /* * rpmem_msg_open_resp -- open request response message * * The type of message must be set to RPMEM_MSG_TYPE_OPEN_RESP. * The size of message must be set to sizeof(struct rpmem_msg_open_resp) */ struct rpmem_msg_open_resp { struct rpmem_msg_hdr_resp hdr; /* message header */ struct rpmem_msg_ibc_attr ibc; /* in-band connection attributes */ struct rpmem_pool_attr_packed pool_attr; /* pool attributes */ } PACKED; /* * rpmem_msg_close -- close request message * * The type of message must be set to RPMEM_MSG_TYPE_CLOSE * The size of message must be set to sizeof(struct rpmem_msg_close) */ struct rpmem_msg_close { struct rpmem_msg_hdr hdr; /* message header */ uint32_t flags; /* flags */ } PACKED; /* * rpmem_msg_close_resp -- close request response message * * The type of message must be set to RPMEM_MSG_TYPE_CLOSE_RESP * The size of message must be set to sizeof(struct rpmem_msg_close_resp) */ struct rpmem_msg_close_resp { struct rpmem_msg_hdr_resp hdr; /* message header */ /* no more fields */ } PACKED; #define RPMEM_FLUSH_WRITE 0U /* flush / persist using RDMA WRITE */ #define RPMEM_DEEP_PERSIST 1U /* deep persist operation */ #define RPMEM_PERSIST_SEND 2U /* persist using RDMA SEND */ #define RPMEM_COMPLETION 4U /* schedule command with a completion */ /* the two least significant bits are reserved for mode of persist */ #define RPMEM_FLUSH_PERSIST_MASK 0x3U #define RPMEM_PERSIST_MAX 2U /* maximum valid persist value */ /* * rpmem_msg_persist -- remote persist message */ struct rpmem_msg_persist { uint32_t flags; /* lane flags */ uint32_t lane; /* lane identifier */ uint64_t addr; /* remote memory address */ uint64_t size; /* remote memory size */ uint8_t data[]; }; /* * rpmem_msg_persist_resp -- remote persist response message */ struct rpmem_msg_persist_resp { uint32_t flags; /* lane flags */ uint32_t lane; /* lane identifier */ }; /* * rpmem_msg_set_attr -- set attributes request message * * The type of message must be set to RPMEM_MSG_TYPE_SET_ATTR. * The size of message must be set to sizeof(struct rpmem_msg_set_attr) */ struct rpmem_msg_set_attr { struct rpmem_msg_hdr hdr; /* message header */ struct rpmem_pool_attr_packed pool_attr; /* pool attributes */ } PACKED; /* * rpmem_msg_set_attr_resp -- set attributes request response message * * The type of message must be set to RPMEM_MSG_TYPE_SET_ATTR_RESP. * The size of message must be set to sizeof(struct rpmem_msg_set_attr_resp). */ struct rpmem_msg_set_attr_resp { struct rpmem_msg_hdr_resp hdr; /* message header */ } PACKED; /* * XXX Begin: Suppress gcc conversion warnings for FreeBSD be*toh macros. */ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" /* * rpmem_ntoh_msg_ibc_attr -- convert rpmem_msg_ibc attr to host byte order */ static inline void rpmem_ntoh_msg_ibc_attr(struct rpmem_msg_ibc_attr *ibc) { ibc->port = be32toh(ibc->port); ibc->persist_method = be32toh(ibc->persist_method); ibc->rkey = be64toh(ibc->rkey); ibc->raddr = be64toh(ibc->raddr); } /* * rpmem_ntoh_msg_pool_desc -- convert rpmem_msg_pool_desc to host byte order */ static inline void rpmem_ntoh_msg_pool_desc(struct rpmem_msg_pool_desc *pool_desc) { pool_desc->size = be32toh(pool_desc->size); } /* * rpmem_ntoh_pool_attr -- convert rpmem_pool_attr to host byte order */ static inline void rpmem_ntoh_pool_attr(struct rpmem_pool_attr_packed *attr) { attr->major = be32toh(attr->major); attr->ro_compat_features = be32toh(attr->ro_compat_features); attr->incompat_features = be32toh(attr->incompat_features); attr->compat_features = be32toh(attr->compat_features); } /* * rpmem_ntoh_msg_hdr -- convert rpmem_msg_hdr to host byte order */ static inline void rpmem_ntoh_msg_hdr(struct rpmem_msg_hdr *hdrp) { hdrp->type = be32toh(hdrp->type); hdrp->size = be64toh(hdrp->size); } /* * rpmem_hton_msg_hdr -- convert rpmem_msg_hdr to network byte order */ static inline void rpmem_hton_msg_hdr(struct rpmem_msg_hdr *hdrp) { rpmem_ntoh_msg_hdr(hdrp); } /* * rpmem_ntoh_msg_hdr_resp -- convert rpmem_msg_hdr_resp to host byte order */ static inline void rpmem_ntoh_msg_hdr_resp(struct rpmem_msg_hdr_resp *hdrp) { hdrp->status = be32toh(hdrp->status); hdrp->type = be32toh(hdrp->type); hdrp->size = be64toh(hdrp->size); } /* * rpmem_hton_msg_hdr_resp -- convert rpmem_msg_hdr_resp to network byte order */ static inline void rpmem_hton_msg_hdr_resp(struct rpmem_msg_hdr_resp *hdrp) { rpmem_ntoh_msg_hdr_resp(hdrp); } /* * rpmem_ntoh_msg_common -- convert rpmem_msg_common to host byte order */ static inline void rpmem_ntoh_msg_common(struct rpmem_msg_common *msg) { msg->major = be16toh(msg->major); msg->minor = be16toh(msg->minor); msg->pool_size = be64toh(msg->pool_size); msg->nlanes = be32toh(msg->nlanes); msg->provider = be32toh(msg->provider); msg->buff_size = be64toh(msg->buff_size); } /* * rpmem_hton_msg_common -- convert rpmem_msg_common to network byte order */ static inline void rpmem_hton_msg_common(struct rpmem_msg_common *msg) { rpmem_ntoh_msg_common(msg); } /* * rpmem_ntoh_msg_create -- convert rpmem_msg_create to host byte order */ static inline void rpmem_ntoh_msg_create(struct rpmem_msg_create *msg) { rpmem_ntoh_msg_hdr(&msg->hdr); rpmem_ntoh_msg_common(&msg->c); rpmem_ntoh_pool_attr(&msg->pool_attr); rpmem_ntoh_msg_pool_desc(&msg->pool_desc); } /* * rpmem_hton_msg_create -- convert rpmem_msg_create to network byte order */ static inline void rpmem_hton_msg_create(struct rpmem_msg_create *msg) { rpmem_ntoh_msg_create(msg); } /* * rpmem_ntoh_msg_create_resp -- convert rpmem_msg_create_resp to host byte * order */ static inline void rpmem_ntoh_msg_create_resp(struct rpmem_msg_create_resp *msg) { rpmem_ntoh_msg_hdr_resp(&msg->hdr); rpmem_ntoh_msg_ibc_attr(&msg->ibc); } /* * rpmem_hton_msg_create_resp -- convert rpmem_msg_create_resp to network byte * order */ static inline void rpmem_hton_msg_create_resp(struct rpmem_msg_create_resp *msg) { rpmem_ntoh_msg_create_resp(msg); } /* * rpmem_ntoh_msg_open -- convert rpmem_msg_open to host byte order */ static inline void rpmem_ntoh_msg_open(struct rpmem_msg_open *msg) { rpmem_ntoh_msg_hdr(&msg->hdr); rpmem_ntoh_msg_common(&msg->c); rpmem_ntoh_msg_pool_desc(&msg->pool_desc); } /* * XXX End: Suppress gcc conversion warnings for FreeBSD be*toh macros */ #pragma GCC diagnostic pop /* * rpmem_hton_msg_open -- convert rpmem_msg_open to network byte order */ static inline void rpmem_hton_msg_open(struct rpmem_msg_open *msg) { rpmem_ntoh_msg_open(msg); } /* * rpmem_ntoh_msg_open_resp -- convert rpmem_msg_open_resp to host byte order */ static inline void rpmem_ntoh_msg_open_resp(struct rpmem_msg_open_resp *msg) { rpmem_ntoh_msg_hdr_resp(&msg->hdr); rpmem_ntoh_msg_ibc_attr(&msg->ibc); rpmem_ntoh_pool_attr(&msg->pool_attr); } /* * rpmem_hton_msg_open_resp -- convert rpmem_msg_open_resp to network byte order */ static inline void rpmem_hton_msg_open_resp(struct rpmem_msg_open_resp *msg) { rpmem_ntoh_msg_open_resp(msg); } /* * rpmem_ntoh_msg_set_attr -- convert rpmem_msg_set_attr to host byte order */ static inline void rpmem_ntoh_msg_set_attr(struct rpmem_msg_set_attr *msg) { rpmem_ntoh_msg_hdr(&msg->hdr); rpmem_ntoh_pool_attr(&msg->pool_attr); } /* * rpmem_hton_msg_set_attr -- convert rpmem_msg_set_attr to network byte order */ static inline void rpmem_hton_msg_set_attr(struct rpmem_msg_set_attr *msg) { rpmem_ntoh_msg_set_attr(msg); } /* * rpmem_ntoh_msg_set_attr_resp -- convert rpmem_msg_set_attr_resp to host byte * order */ static inline void rpmem_ntoh_msg_set_attr_resp(struct rpmem_msg_set_attr_resp *msg) { rpmem_ntoh_msg_hdr_resp(&msg->hdr); } /* * rpmem_hton_msg_set_attr_resp -- convert rpmem_msg_set_attr_resp to network * byte order */ static inline void rpmem_hton_msg_set_attr_resp(struct rpmem_msg_set_attr_resp *msg) { rpmem_hton_msg_hdr_resp(&msg->hdr); } /* * rpmem_ntoh_msg_close -- convert rpmem_msg_close to host byte order */ static inline void rpmem_ntoh_msg_close(struct rpmem_msg_close *msg) { rpmem_ntoh_msg_hdr(&msg->hdr); } /* * rpmem_hton_msg_close -- convert rpmem_msg_close to network byte order */ static inline void rpmem_hton_msg_close(struct rpmem_msg_close *msg) { rpmem_ntoh_msg_close(msg); } /* * rpmem_ntoh_msg_close_resp -- convert rpmem_msg_close_resp to host byte order */ static inline void rpmem_ntoh_msg_close_resp(struct rpmem_msg_close_resp *msg) { rpmem_ntoh_msg_hdr_resp(&msg->hdr); } /* * rpmem_hton_msg_close_resp -- convert rpmem_msg_close_resp to network byte * order */ static inline void rpmem_hton_msg_close_resp(struct rpmem_msg_close_resp *msg) { rpmem_ntoh_msg_close_resp(msg); } /* * pack_rpmem_pool_attr -- copy pool attributes to a packed structure */ static inline void pack_rpmem_pool_attr(const struct rpmem_pool_attr *src, struct rpmem_pool_attr_packed *dst) { memcpy(dst->signature, src->signature, sizeof(src->signature)); dst->major = src->major; dst->compat_features = src->compat_features; dst->incompat_features = src->incompat_features; dst->ro_compat_features = src->ro_compat_features; memcpy(dst->poolset_uuid, src->poolset_uuid, sizeof(dst->poolset_uuid)); memcpy(dst->uuid, src->uuid, sizeof(dst->uuid)); memcpy(dst->next_uuid, src->next_uuid, sizeof(dst->next_uuid)); memcpy(dst->prev_uuid, src->prev_uuid, sizeof(dst->prev_uuid)); memcpy(dst->user_flags, src->user_flags, sizeof(dst->user_flags)); } /* * unpack_rpmem_pool_attr -- copy pool attributes to an unpacked structure */ static inline void unpack_rpmem_pool_attr(const struct rpmem_pool_attr_packed *src, struct rpmem_pool_attr *dst) { memcpy(dst->signature, src->signature, sizeof(src->signature)); dst->major = src->major; dst->compat_features = src->compat_features; dst->incompat_features = src->incompat_features; dst->ro_compat_features = src->ro_compat_features; memcpy(dst->poolset_uuid, src->poolset_uuid, sizeof(dst->poolset_uuid)); memcpy(dst->uuid, src->uuid, sizeof(dst->uuid)); memcpy(dst->next_uuid, src->next_uuid, sizeof(dst->next_uuid)); memcpy(dst->prev_uuid, src->prev_uuid, sizeof(dst->prev_uuid)); memcpy(dst->user_flags, src->user_flags, sizeof(dst->user_flags)); } #ifdef __cplusplus } #endif #endif
15,016
26.503663
80
h
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/rpmem_common/rpmem_fip_lane.h
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2017, Intel Corporation */ /* * rpmem_fip_lane.h -- rpmem fabric provider lane definition */ #include <sched.h> #include <stdint.h> #include "sys_util.h" /* * rpmem_fip_lane -- basic lane structure * * This structure consist of a synchronization object and a return value. * It is possible to wait on the lane for specified event. The event can be * signalled by another thread which can pass the return value if required. * * The sync variable can store up to 64 different events, each event on * separate bit. */ struct rpmem_fip_lane { os_spinlock_t lock; int ret; uint64_t sync; }; /* * rpmem_fip_lane_init -- initialize basic lane structure */ static inline int rpmem_fip_lane_init(struct rpmem_fip_lane *lanep) { lanep->ret = 0; lanep->sync = 0; return util_spin_init(&lanep->lock, PTHREAD_PROCESS_PRIVATE); } /* * rpmem_fip_lane_fini -- deinitialize basic lane structure */ static inline void rpmem_fip_lane_fini(struct rpmem_fip_lane *lanep) { util_spin_destroy(&lanep->lock); } /* * rpmem_fip_lane_busy -- return true if lane has pending events */ static inline int rpmem_fip_lane_busy(struct rpmem_fip_lane *lanep) { util_spin_lock(&lanep->lock); int ret = lanep->sync != 0; util_spin_unlock(&lanep->lock); return ret; } /* * rpmem_fip_lane_begin -- begin waiting for specified event(s) */ static inline void rpmem_fip_lane_begin(struct rpmem_fip_lane *lanep, uint64_t sig) { util_spin_lock(&lanep->lock); lanep->ret = 0; lanep->sync |= sig; util_spin_unlock(&lanep->lock); } static inline int rpmem_fip_lane_is_busy(struct rpmem_fip_lane *lanep, uint64_t sig) { util_spin_lock(&lanep->lock); int ret = (lanep->sync & sig) != 0; util_spin_unlock(&lanep->lock); return ret; } static inline int rpmem_fip_lane_ret(struct rpmem_fip_lane *lanep) { util_spin_lock(&lanep->lock); int ret = lanep->ret; util_spin_unlock(&lanep->lock); return ret; } /* * rpmem_fip_lane_wait -- wait for specified event(s) */ static inline int rpmem_fip_lane_wait(struct rpmem_fip_lane *lanep, uint64_t sig) { while (rpmem_fip_lane_is_busy(lanep, sig)) sched_yield(); return rpmem_fip_lane_ret(lanep); } /* * rpmem_fip_lane_signal -- signal lane about specified event */ static inline void rpmem_fip_lane_signal(struct rpmem_fip_lane *lanep, uint64_t sig) { util_spin_lock(&lanep->lock); lanep->sync &= ~sig; util_spin_unlock(&lanep->lock); } /* * rpmem_fip_lane_signal -- signal lane about specified event and store * return value */ static inline void rpmem_fip_lane_sigret(struct rpmem_fip_lane *lanep, uint64_t sig, int ret) { util_spin_lock(&lanep->lock); lanep->ret = ret; lanep->sync &= ~sig; util_spin_unlock(&lanep->lock); }
2,754
20.523438
75
h
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/rpmem_common/rpmem_fip_msg.h
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2018, Intel Corporation */ /* * rpmem_fip_msg.h -- simple wrappers for fi_rma(3) and fi_msg(3) functions */ #ifndef RPMEM_FIP_MSG_H #define RPMEM_FIP_MSG_H 1 #include <rdma/fi_rma.h> #ifdef __cplusplus extern "C" { #endif /* * rpmem_fip_rma -- helper struct for RMA operation */ struct rpmem_fip_rma { struct fi_msg_rma msg; /* message structure */ struct iovec msg_iov; /* IO vector buffer */ struct fi_rma_iov rma_iov; /* RMA IO vector buffer */ void *desc; /* local memory descriptor */ uint64_t flags; /* RMA operation flags */ }; /* * rpmem_fip_msg -- helper struct for MSG operation */ struct rpmem_fip_msg { struct fi_msg msg; /* message structure */ struct iovec iov; /* IO vector buffer */ void *desc; /* local memory descriptor */ uint64_t flags; /* MSG operation flags */ }; /* * rpmem_fip_rma_init -- initialize RMA helper struct */ static inline void rpmem_fip_rma_init(struct rpmem_fip_rma *rma, void *desc, fi_addr_t addr, uint64_t rkey, void *context, uint64_t flags) { memset(rma, 0, sizeof(*rma)); rma->desc = desc; rma->flags = flags; rma->rma_iov.key = rkey; rma->msg.context = context; rma->msg.addr = addr; rma->msg.desc = &rma->desc; rma->msg.rma_iov = &rma->rma_iov; rma->msg.rma_iov_count = 1; rma->msg.msg_iov = &rma->msg_iov; rma->msg.iov_count = 1; } /* * rpmem_fip_msg_init -- initialize MSG helper struct */ static inline void rpmem_fip_msg_init(struct rpmem_fip_msg *msg, void *desc, fi_addr_t addr, void *context, void *buff, size_t len, uint64_t flags) { memset(msg, 0, sizeof(*msg)); msg->desc = desc; msg->flags = flags; msg->iov.iov_base = buff; msg->iov.iov_len = len; msg->msg.context = context; msg->msg.addr = addr; msg->msg.desc = &msg->desc; msg->msg.msg_iov = &msg->iov; msg->msg.iov_count = 1; } /* * rpmem_fip_writemsg -- wrapper for fi_writemsg */ static inline int rpmem_fip_writemsg(struct fid_ep *ep, struct rpmem_fip_rma *rma, const void *buff, size_t len, uint64_t addr) { rma->rma_iov.addr = addr; rma->rma_iov.len = len; rma->msg_iov.iov_base = (void *)buff; rma->msg_iov.iov_len = len; return (int)fi_writemsg(ep, &rma->msg, rma->flags); } /* * rpmem_fip_readmsg -- wrapper for fi_readmsg */ static inline int rpmem_fip_readmsg(struct fid_ep *ep, struct rpmem_fip_rma *rma, void *buff, size_t len, uint64_t addr) { rma->rma_iov.addr = addr; rma->rma_iov.len = len; rma->msg_iov.iov_base = buff; rma->msg_iov.iov_len = len; return (int)fi_readmsg(ep, &rma->msg, rma->flags); } /* * rpmem_fip_sendmsg -- wrapper for fi_sendmsg */ static inline int rpmem_fip_sendmsg(struct fid_ep *ep, struct rpmem_fip_msg *msg, size_t len) { msg->iov.iov_len = len; return (int)fi_sendmsg(ep, &msg->msg, msg->flags); } /* * rpmem_fip_recvmsg -- wrapper for fi_recvmsg */ static inline int rpmem_fip_recvmsg(struct fid_ep *ep, struct rpmem_fip_msg *msg) { return (int)fi_recvmsg(ep, &msg->msg, msg->flags); } /* * rpmem_fip_msg_get_pmsg -- returns message buffer as a persist message */ static inline struct rpmem_msg_persist * rpmem_fip_msg_get_pmsg(struct rpmem_fip_msg *msg) { return (struct rpmem_msg_persist *)msg->iov.iov_base; } /* * rpmem_fip_msg_get_pres -- returns message buffer as a persist response */ static inline struct rpmem_msg_persist_resp * rpmem_fip_msg_get_pres(struct rpmem_fip_msg *msg) { return (struct rpmem_msg_persist_resp *)msg->iov.iov_base; } #ifdef __cplusplus } #endif #endif
3,494
22.77551
75
h
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/libpmempool/libpmempool.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2018, Intel Corporation */ /* * libpmempool.c -- entry points for libpmempool */ #include <stdlib.h> #include <stdint.h> #include <errno.h> #include <sys/param.h> #include "pmemcommon.h" #include "libpmempool.h" #include "pmempool.h" #include "pool.h" #include "check.h" #ifdef USE_RPMEM #include "rpmem_common.h" #include "rpmem_util.h" #endif #ifdef _WIN32 #define ANSWER_BUFFSIZE 256 #endif /* * libpmempool_init -- load-time initialization for libpmempool * * Called automatically by the run-time loader. */ ATTR_CONSTRUCTOR void libpmempool_init(void) { common_init(PMEMPOOL_LOG_PREFIX, PMEMPOOL_LOG_LEVEL_VAR, PMEMPOOL_LOG_FILE_VAR, PMEMPOOL_MAJOR_VERSION, PMEMPOOL_MINOR_VERSION); LOG(3, NULL); #ifdef USE_RPMEM util_remote_init(); rpmem_util_cmds_init(); #endif } /* * libpmempool_fini -- libpmempool cleanup routine * * Called automatically when the process terminates. */ ATTR_DESTRUCTOR void libpmempool_fini(void) { LOG(3, NULL); #ifdef USE_RPMEM util_remote_unload(); util_remote_fini(); rpmem_util_cmds_fini(); #endif common_fini(); } /* * pmempool_check_versionU -- see if library meets application version * requirements */ #ifndef _WIN32 static inline #endif const char * pmempool_check_versionU(unsigned major_required, unsigned minor_required) { LOG(3, "major_required %u minor_required %u", major_required, minor_required); if (major_required != PMEMPOOL_MAJOR_VERSION) { ERR("libpmempool major version mismatch (need %u, found %u)", major_required, PMEMPOOL_MAJOR_VERSION); return out_get_errormsg(); } if (minor_required > PMEMPOOL_MINOR_VERSION) { ERR("libpmempool minor version mismatch (need %u, found %u)", minor_required, PMEMPOOL_MINOR_VERSION); return out_get_errormsg(); } return NULL; } #ifndef _WIN32 /* * pmempool_check_version -- see if lib meets application version requirements */ const char * pmempool_check_version(unsigned major_required, unsigned minor_required) { return pmempool_check_versionU(major_required, minor_required); } #else /* * pmempool_check_versionW -- see if library meets application version * requirements as widechar */ const wchar_t * pmempool_check_versionW(unsigned major_required, unsigned minor_required) { if (pmempool_check_versionU(major_required, minor_required) != NULL) return out_get_errormsgW(); else return NULL; } #endif /* * pmempool_errormsgU -- return last error message */ #ifndef _WIN32 static inline #endif const char * pmempool_errormsgU(void) { return out_get_errormsg(); } #ifndef _WIN32 /* * pmempool_errormsg -- return last error message */ const char * pmempool_errormsg(void) { return pmempool_errormsgU(); } #else /* * pmempool_errormsgW -- return last error message as widechar */ const wchar_t * pmempool_errormsgW(void) { return out_get_errormsgW(); } #endif /* * pmempool_ppc_set_default -- (internal) set default values of check context */ static void pmempool_ppc_set_default(PMEMpoolcheck *ppc) { /* all other fields should be zeroed */ const PMEMpoolcheck ppc_default = { .args = { .pool_type = PMEMPOOL_POOL_TYPE_DETECT, }, .result = CHECK_RESULT_CONSISTENT, }; *ppc = ppc_default; } /* * pmempool_check_initU -- initialize check context */ #ifndef _WIN32 static inline #endif PMEMpoolcheck * pmempool_check_initU(struct pmempool_check_argsU *args, size_t args_size) { LOG(3, "path %s backup_path %s pool_type %u flags %x", args->path, args->backup_path, args->pool_type, args->flags); /* * Currently one size of args structure is supported. The version of the * pmempool_check_args structure can be distinguished based on provided * args_size. */ if (args_size < sizeof(struct pmempool_check_args)) { ERR("provided args_size is not supported"); errno = EINVAL; return NULL; } /* * Dry run does not allow to made changes possibly performed during * repair. Advanced allow to perform more complex repairs. Questions * are ask only if repairs are made. So dry run, advanced and always_yes * can be set only if repair is set. */ if (util_flag_isclr(args->flags, PMEMPOOL_CHECK_REPAIR) && util_flag_isset(args->flags, PMEMPOOL_CHECK_DRY_RUN | PMEMPOOL_CHECK_ADVANCED | PMEMPOOL_CHECK_ALWAYS_YES)) { ERR("dry_run, advanced and always_yes are applicable only if " "repair is set"); errno = EINVAL; return NULL; } /* * dry run does not modify anything so performing backup is redundant */ if (util_flag_isset(args->flags, PMEMPOOL_CHECK_DRY_RUN) && args->backup_path != NULL) { ERR("dry run does not allow one to perform backup"); errno = EINVAL; return NULL; } /* * libpmempool uses str format of communication so it must be set */ if (util_flag_isclr(args->flags, PMEMPOOL_CHECK_FORMAT_STR)) { ERR("PMEMPOOL_CHECK_FORMAT_STR flag must be set"); errno = EINVAL; return NULL; } PMEMpoolcheck *ppc = calloc(1, sizeof(*ppc)); if (ppc == NULL) { ERR("!calloc"); return NULL; } pmempool_ppc_set_default(ppc); memcpy(&ppc->args, args, sizeof(ppc->args)); ppc->path = strdup(args->path); if (!ppc->path) { ERR("!strdup"); goto error_path_malloc; } ppc->args.path = ppc->path; if (args->backup_path != NULL) { ppc->backup_path = strdup(args->backup_path); if (!ppc->backup_path) { ERR("!strdup"); goto error_backup_path_malloc; } ppc->args.backup_path = ppc->backup_path; } if (check_init(ppc) != 0) goto error_check_init; return ppc; error_check_init: /* in case errno not set by any of the used functions set its value */ if (errno == 0) errno = EINVAL; free(ppc->backup_path); error_backup_path_malloc: free(ppc->path); error_path_malloc: free(ppc); return NULL; } #ifndef _WIN32 /* * pmempool_check_init -- initialize check context */ PMEMpoolcheck * pmempool_check_init(struct pmempool_check_args *args, size_t args_size) { return pmempool_check_initU(args, args_size); } #else /* * pmempool_check_initW -- initialize check context as widechar */ PMEMpoolcheck * pmempool_check_initW(struct pmempool_check_argsW *args, size_t args_size) { char *upath = util_toUTF8(args->path); if (upath == NULL) return NULL; char *ubackup_path = NULL; if (args->backup_path != NULL) { ubackup_path = util_toUTF8(args->backup_path); if (ubackup_path == NULL) { util_free_UTF8(upath); return NULL; } } struct pmempool_check_argsU uargs = { .path = upath, .backup_path = ubackup_path, .pool_type = args->pool_type, .flags = args->flags }; PMEMpoolcheck *ret = pmempool_check_initU(&uargs, args_size); util_free_UTF8(ubackup_path); util_free_UTF8(upath); return ret; } #endif /* * pmempool_checkU -- continue check till produce status to consume for caller */ #ifndef _WIN32 static inline #endif struct pmempool_check_statusU * pmempool_checkU(PMEMpoolcheck *ppc) { LOG(3, NULL); ASSERTne(ppc, NULL); struct check_status *result; do { result = check_step(ppc); if (check_is_end(ppc->data) && result == NULL) return NULL; } while (result == NULL); return check_status_get(result); } #ifndef _WIN32 /* * pmempool_check -- continue check till produce status to consume for caller */ struct pmempool_check_status * pmempool_check(PMEMpoolcheck *ppc) { return pmempool_checkU(ppc); } #else /* * pmempool_checkW -- continue check till produce status to consume for caller */ struct pmempool_check_statusW * pmempool_checkW(PMEMpoolcheck *ppc) { LOG(3, NULL); ASSERTne(ppc, NULL); /* check the cache and convert msg and answer */ char buf[ANSWER_BUFFSIZE]; memset(buf, 0, ANSWER_BUFFSIZE); convert_status_cache(ppc, buf, ANSWER_BUFFSIZE); struct check_status *uresult; do { uresult = check_step(ppc); if (check_is_end(ppc->data) && uresult == NULL) return NULL; } while (uresult == NULL); struct pmempool_check_statusU *uret_res = check_status_get(uresult); const wchar_t *wmsg = util_toUTF16(uret_res->str.msg); if (wmsg == NULL) FATAL("!malloc"); struct pmempool_check_statusW *wret_res = (struct pmempool_check_statusW *)uret_res; /* pointer to old message is freed in next check step */ wret_res->str.msg = wmsg; return wret_res; } #endif /* * pmempool_check_end -- end check and release check context */ enum pmempool_check_result pmempool_check_end(PMEMpoolcheck *ppc) { LOG(3, NULL); const enum check_result result = ppc->result; const unsigned sync_required = ppc->sync_required; check_fini(ppc); free(ppc->path); free(ppc->backup_path); free(ppc); if (sync_required) { switch (result) { case CHECK_RESULT_CONSISTENT: case CHECK_RESULT_REPAIRED: return PMEMPOOL_CHECK_RESULT_SYNC_REQ; default: /* other results require fixing prior to sync */ ; } } switch (result) { case CHECK_RESULT_CONSISTENT: return PMEMPOOL_CHECK_RESULT_CONSISTENT; case CHECK_RESULT_NOT_CONSISTENT: return PMEMPOOL_CHECK_RESULT_NOT_CONSISTENT; case CHECK_RESULT_REPAIRED: return PMEMPOOL_CHECK_RESULT_REPAIRED; case CHECK_RESULT_CANNOT_REPAIR: return PMEMPOOL_CHECK_RESULT_CANNOT_REPAIR; default: return PMEMPOOL_CHECK_RESULT_ERROR; } }
9,142
20.873206
78
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/libpmempool/replica.h
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2020, Intel Corporation */ /* * replica.h -- module for synchronizing and transforming poolset */ #ifndef REPLICA_H #define REPLICA_H #include "libpmempool.h" #include "pool.h" #include "badblocks.h" #ifdef __cplusplus extern "C" { #endif #define UNDEF_REPLICA UINT_MAX #define UNDEF_PART UINT_MAX /* * A part marked as broken does not exist or is damaged so that * it cannot be opened and has to be recreated. */ #define IS_BROKEN (1U << 0) /* * A replica marked as inconsistent exists but has inconsistent metadata * (e.g. inconsistent parts or replicas linkage) */ #define IS_INCONSISTENT (1U << 1) /* * A part or replica marked in this way has bad blocks inside. */ #define HAS_BAD_BLOCKS (1U << 2) /* * A part marked in this way has bad blocks in the header */ #define HAS_CORRUPTED_HEADER (1U << 3) /* * A flag which can be passed to sync_replica() to indicate that the function is * called by pmempool_transform */ #define IS_TRANSFORMED (1U << 10) /* * Number of lanes utilized when working with remote replicas */ #define REMOTE_NLANES 1 /* * Helping structures for storing part's health status */ struct part_health_status { unsigned flags; struct badblocks bbs; /* structure with bad blocks */ char *recovery_file_name; /* name of bad block recovery file */ int recovery_file_exists; /* bad block recovery file exists */ }; /* * Helping structures for storing replica and poolset's health status */ struct replica_health_status { unsigned nparts; unsigned nhdrs; /* a flag for the replica */ unsigned flags; /* effective size of a pool, valid only for healthy replica */ size_t pool_size; /* flags for each part */ struct part_health_status part[]; }; struct poolset_health_status { unsigned nreplicas; /* a flag for the poolset */ unsigned flags; /* health statuses for each replica */ struct replica_health_status *replica[]; }; /* get index of the (r)th replica health status */ static inline unsigned REP_HEALTHidx(struct poolset_health_status *set, unsigned r) { ASSERTne(set->nreplicas, 0); return (set->nreplicas + r) % set->nreplicas; } /* get index of the (r + 1)th replica health status */ static inline unsigned REPN_HEALTHidx(struct poolset_health_status *set, unsigned r) { ASSERTne(set->nreplicas, 0); return (set->nreplicas + r + 1) % set->nreplicas; } /* get (p)th part health status */ static inline unsigned PART_HEALTHidx(struct replica_health_status *rep, unsigned p) { ASSERTne(rep->nparts, 0); return (rep->nparts + p) % rep->nparts; } /* get (r)th replica health status */ static inline struct replica_health_status * REP_HEALTH(struct poolset_health_status *set, unsigned r) { return set->replica[REP_HEALTHidx(set, r)]; } /* get (p)th part health status */ static inline unsigned PART_HEALTH(struct replica_health_status *rep, unsigned p) { return rep->part[PART_HEALTHidx(rep, p)].flags; } uint64_t replica_get_part_offset(struct pool_set *set, unsigned repn, unsigned partn); void replica_align_badblock_offset_length(size_t *offset, size_t *length, struct pool_set *set_in, unsigned repn, unsigned partn); size_t replica_get_part_data_len(struct pool_set *set_in, unsigned repn, unsigned partn); uint64_t replica_get_part_data_offset(struct pool_set *set_in, unsigned repn, unsigned part); /* * is_dry_run -- (internal) check whether only verification mode is enabled */ static inline bool is_dry_run(unsigned flags) { /* * PMEMPOOL_SYNC_DRY_RUN and PMEMPOOL_TRANSFORM_DRY_RUN * have to have the same value in order to use this common function. */ ASSERT_COMPILE_ERROR_ON(PMEMPOOL_SYNC_DRY_RUN != PMEMPOOL_TRANSFORM_DRY_RUN); return flags & PMEMPOOL_SYNC_DRY_RUN; } /* * fix_bad_blocks -- (internal) fix bad blocks - it causes reading or creating * bad blocks recovery files * (depending on if they exist or not) */ static inline bool fix_bad_blocks(unsigned flags) { return flags & PMEMPOOL_SYNC_FIX_BAD_BLOCKS; } int replica_remove_all_recovery_files(struct poolset_health_status *set_hs); int replica_remove_part(struct pool_set *set, unsigned repn, unsigned partn, int fix_bad_blocks); int replica_create_poolset_health_status(struct pool_set *set, struct poolset_health_status **set_hsp); void replica_free_poolset_health_status(struct poolset_health_status *set_s); int replica_check_poolset_health(struct pool_set *set, struct poolset_health_status **set_hs, int called_from_sync, unsigned flags); int replica_is_part_broken(unsigned repn, unsigned partn, struct poolset_health_status *set_hs); int replica_has_bad_blocks(unsigned repn, struct poolset_health_status *set_hs); int replica_part_has_bad_blocks(struct part_health_status *phs); int replica_part_has_corrupted_header(unsigned repn, unsigned partn, struct poolset_health_status *set_hs); unsigned replica_find_unbroken_part(unsigned repn, struct poolset_health_status *set_hs); int replica_is_replica_broken(unsigned repn, struct poolset_health_status *set_hs); int replica_is_replica_consistent(unsigned repn, struct poolset_health_status *set_hs); int replica_is_replica_healthy(unsigned repn, struct poolset_health_status *set_hs); unsigned replica_find_healthy_replica( struct poolset_health_status *set_hs); unsigned replica_find_replica_healthy_header( struct poolset_health_status *set_hs); int replica_is_poolset_healthy(struct poolset_health_status *set_hs); int replica_is_poolset_transformed(unsigned flags); ssize_t replica_get_pool_size(struct pool_set *set, unsigned repn); int replica_check_part_sizes(struct pool_set *set, size_t min_size); int replica_check_part_dirs(struct pool_set *set); int replica_check_local_part_dir(struct pool_set *set, unsigned repn, unsigned partn); int replica_open_replica_part_files(struct pool_set *set, unsigned repn); int replica_open_poolset_part_files(struct pool_set *set); int replica_sync(struct pool_set *set_in, struct poolset_health_status *set_hs, unsigned flags); int replica_transform(struct pool_set *set_in, struct pool_set *set_out, unsigned flags); #ifdef __cplusplus } #endif #endif
6,216
28.325472
80
h
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/libpmempool/check_blk.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2018, Intel Corporation */ /* * check_blk.c -- check pmemblk */ #include <inttypes.h> #include <sys/param.h> #include <endian.h> #include "out.h" #include "btt.h" #include "libpmempool.h" #include "pmempool.h" #include "pool.h" #include "check_util.h" enum question { Q_BLK_BSIZE, }; /* * blk_get_max_bsize -- (internal) return maximum size of block for given file * size */ static inline uint32_t blk_get_max_bsize(uint64_t fsize) { LOG(3, NULL); if (fsize == 0) return 0; /* default nfree */ uint32_t nfree = BTT_DEFAULT_NFREE; /* number of blocks must be at least 2 * nfree */ uint32_t internal_nlba = 2 * nfree; /* compute arena size from file size without pmemblk structure */ uint64_t arena_size = fsize - sizeof(struct pmemblk); if (arena_size > BTT_MAX_ARENA) arena_size = BTT_MAX_ARENA; arena_size = btt_arena_datasize(arena_size, nfree); /* compute maximum internal LBA size */ uint64_t internal_lbasize = (arena_size - BTT_ALIGNMENT) / internal_nlba - BTT_MAP_ENTRY_SIZE; ASSERT(internal_lbasize <= UINT32_MAX); if (internal_lbasize < BTT_MIN_LBA_SIZE) internal_lbasize = BTT_MIN_LBA_SIZE; internal_lbasize = roundup(internal_lbasize, BTT_INTERNAL_LBA_ALIGNMENT) - BTT_INTERNAL_LBA_ALIGNMENT; return (uint32_t)internal_lbasize; } /* * blk_read -- (internal) read pmemblk header */ static int blk_read(PMEMpoolcheck *ppc) { /* * Here we want to read the pmemblk header without the pool_hdr as we've * already done it before. * * Take the pointer to fields right after pool_hdr, compute the size and * offset of remaining fields. */ uint8_t *ptr = (uint8_t *)&ppc->pool->hdr.blk; ptr += sizeof(ppc->pool->hdr.blk.hdr); size_t size = sizeof(ppc->pool->hdr.blk) - sizeof(ppc->pool->hdr.blk.hdr); uint64_t offset = sizeof(ppc->pool->hdr.blk.hdr); if (pool_read(ppc->pool, ptr, size, offset)) { return CHECK_ERR(ppc, "cannot read pmemblk structure"); } /* endianness conversion */ ppc->pool->hdr.blk.bsize = le32toh(ppc->pool->hdr.blk.bsize); return 0; } /* * blk_bsize_valid -- (internal) check if block size is valid for given file * size */ static int blk_bsize_valid(uint32_t bsize, uint64_t fsize) { uint32_t max_bsize = blk_get_max_bsize(fsize); return (bsize >= max_bsize); } /* * blk_hdr_check -- (internal) check pmemblk header */ static int blk_hdr_check(PMEMpoolcheck *ppc, location *loc) { LOG(3, NULL); CHECK_INFO(ppc, "checking pmemblk header"); if (blk_read(ppc)) { ppc->result = CHECK_RESULT_ERROR; return -1; } /* check for valid BTT Info arena as we can take bsize from it */ if (!ppc->pool->bttc.valid) pool_blk_get_first_valid_arena(ppc->pool, &ppc->pool->bttc); if (ppc->pool->bttc.valid) { const uint32_t btt_bsize = ppc->pool->bttc.btt_info.external_lbasize; if (ppc->pool->hdr.blk.bsize != btt_bsize) { CHECK_ASK(ppc, Q_BLK_BSIZE, "invalid pmemblk.bsize.|Do you want to set " "pmemblk.bsize to %u from BTT Info?", btt_bsize); } } else if (!ppc->pool->bttc.zeroed) { if (ppc->pool->hdr.blk.bsize < BTT_MIN_LBA_SIZE || blk_bsize_valid(ppc->pool->hdr.blk.bsize, ppc->pool->set_file->size)) { ppc->result = CHECK_RESULT_CANNOT_REPAIR; return CHECK_ERR(ppc, "invalid pmemblk.bsize"); } } if (ppc->result == CHECK_RESULT_CONSISTENT || ppc->result == CHECK_RESULT_REPAIRED) CHECK_INFO(ppc, "pmemblk header correct"); return check_questions_sequence_validate(ppc); } /* * blk_hdr_fix -- (internal) fix pmemblk header */ static int blk_hdr_fix(PMEMpoolcheck *ppc, location *loc, uint32_t question, void *ctx) { LOG(3, NULL); uint32_t btt_bsize; switch (question) { case Q_BLK_BSIZE: /* * check for valid BTT Info arena as we can take bsize from it */ if (!ppc->pool->bttc.valid) pool_blk_get_first_valid_arena(ppc->pool, &ppc->pool->bttc); btt_bsize = ppc->pool->bttc.btt_info.external_lbasize; CHECK_INFO(ppc, "setting pmemblk.b_size to 0x%x", btt_bsize); ppc->pool->hdr.blk.bsize = btt_bsize; break; default: ERR("not implemented question id: %u", question); } return 0; } struct step { int (*check)(PMEMpoolcheck *, location *); int (*fix)(PMEMpoolcheck *, location *, uint32_t, void *); enum pool_type type; }; static const struct step steps[] = { { .check = blk_hdr_check, .type = POOL_TYPE_BLK }, { .fix = blk_hdr_fix, .type = POOL_TYPE_BLK }, { .check = NULL, .fix = NULL, }, }; /* * step_exe -- (internal) perform single step according to its parameters */ static inline int step_exe(PMEMpoolcheck *ppc, location *loc) { ASSERT(loc->step < ARRAY_SIZE(steps)); ASSERTeq(ppc->pool->params.type, POOL_TYPE_BLK); const struct step *step = &steps[loc->step++]; if (!(step->type & ppc->pool->params.type)) return 0; if (!step->fix) return step->check(ppc, loc); if (blk_read(ppc)) { ppc->result = CHECK_RESULT_ERROR; return -1; } return check_answer_loop(ppc, loc, NULL, 1, step->fix); } /* * check_blk -- entry point for pmemblk checks */ void check_blk(PMEMpoolcheck *ppc) { LOG(3, NULL); location *loc = check_get_step_data(ppc->data); /* do all checks */ while (CHECK_NOT_COMPLETE(loc, steps)) { if (step_exe(ppc, loc)) break; } }
5,277
21.176471
78
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/libpmempool/check_sds.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2018-2020, Intel Corporation */ /* * check_shutdown_state.c -- shutdown state check */ #include <stdio.h> #include <inttypes.h> #include <sys/mman.h> #include <endian.h> #include "out.h" #include "util_pmem.h" #include "libpmempool.h" #include "libpmem.h" #include "pmempool.h" #include "pool.h" #include "set.h" #include "check_util.h" enum question { Q_RESET_SDS, }; #define SDS_CHECK_STR "checking shutdown state" #define SDS_OK_STR "shutdown state correct" #define SDS_DIRTY_STR "shutdown state is dirty" #define ADR_FAILURE_STR \ "an ADR failure was detected - your pool might be corrupted" #define ZERO_SDS_STR \ "Do you want to zero shutdown state?" #define RESET_SDS_STR \ "Do you want to reset shutdown state at your own risk? " \ "If you have more then one replica you will have to " \ "synchronize your pool after this operation." #define SDS_FAIL_MSG(hdrp) \ IGNORE_SDS(hdrp) ? SDS_DIRTY_STR : ADR_FAILURE_STR #define SDS_REPAIR_MSG(hdrp) \ IGNORE_SDS(hdrp) \ ? SDS_DIRTY_STR ".|" ZERO_SDS_STR \ : ADR_FAILURE_STR ".|" RESET_SDS_STR /* * sds_check_replica -- (internal) check if replica is healthy */ static int sds_check_replica(location *loc) { LOG(3, NULL); struct pool_replica *rep = REP(loc->set, loc->replica); if (rep->remote) return 0; /* make a copy of sds as we shouldn't modify a pool */ struct shutdown_state old_sds = loc->hdr.sds; struct shutdown_state curr_sds; if (IGNORE_SDS(&loc->hdr)) return util_is_zeroed(&old_sds, sizeof(old_sds)) ? 0 : -1; shutdown_state_init(&curr_sds, NULL); /* get current shutdown state */ for (unsigned p = 0; p < rep->nparts; ++p) { if (shutdown_state_add_part(&curr_sds, PART(rep, p)->fd, NULL)) return -1; } /* compare current and old shutdown state */ return shutdown_state_check(&curr_sds, &old_sds, NULL); } /* * sds_check -- (internal) check shutdown_state */ static int sds_check(PMEMpoolcheck *ppc, location *loc) { LOG(3, NULL); CHECK_INFO(ppc, "%s" SDS_CHECK_STR, loc->prefix); /* shutdown state is valid */ if (!sds_check_replica(loc)) { CHECK_INFO(ppc, "%s" SDS_OK_STR, loc->prefix); loc->step = CHECK_STEP_COMPLETE; return 0; } /* shutdown state is NOT valid and can NOT be repaired */ if (CHECK_IS_NOT(ppc, REPAIR)) { check_end(ppc->data); ppc->result = CHECK_RESULT_NOT_CONSISTENT; return CHECK_ERR(ppc, "%s%s", loc->prefix, SDS_FAIL_MSG(&loc->hdr)); } /* shutdown state is NOT valid but can be repaired */ CHECK_ASK(ppc, Q_RESET_SDS, "%s%s", loc->prefix, SDS_REPAIR_MSG(&loc->hdr)); return check_questions_sequence_validate(ppc); } /* * sds_fix -- (internal) fix shutdown state */ static int sds_fix(PMEMpoolcheck *ppc, location *loc, uint32_t question, void *context) { LOG(3, NULL); switch (question) { case Q_RESET_SDS: CHECK_INFO(ppc, "%sresetting pool_hdr.sds", loc->prefix); memset(&loc->hdr.sds, 0, sizeof(loc->hdr.sds)); ++loc->healthy_replicas; break; default: ERR("not implemented question id: %u", question); } return 0; } struct step { int (*check)(PMEMpoolcheck *, location *); int (*fix)(PMEMpoolcheck *, location *, uint32_t, void *); }; static const struct step steps[] = { { .check = sds_check, }, { .fix = sds_fix, }, { .check = NULL, .fix = NULL, }, }; /* * step_exe -- (internal) perform single step according to its parameters */ static int step_exe(PMEMpoolcheck *ppc, const struct step *steps, location *loc) { const struct step *step = &steps[loc->step++]; if (!step->fix) return step->check(ppc, loc); if (!check_has_answer(ppc->data)) return 0; if (check_answer_loop(ppc, loc, NULL, 0 /* fail on no */, step->fix)) return -1; util_convert2le_hdr(&loc->hdr); memcpy(loc->hdrp, &loc->hdr, sizeof(loc->hdr)); util_persist_auto(loc->is_dev_dax, loc->hdrp, sizeof(*loc->hdrp)); util_convert2h_hdr_nocheck(&loc->hdr); loc->pool_hdr_modified = 1; return 0; } /* * init_prefix -- prepare prefix for messages */ static void init_prefix(location *loc) { if (loc->set->nreplicas > 1) { int ret = util_snprintf(loc->prefix, PREFIX_MAX_SIZE, "replica %u: ", loc->replica); if (ret < 0) FATAL("!snprintf"); } else loc->prefix[0] = '\0'; loc->step = 0; } /* * init_location_data -- (internal) prepare location information */ static void init_location_data(PMEMpoolcheck *ppc, location *loc) { ASSERTeq(loc->part, 0); loc->set = ppc->pool->set_file->poolset; if (ppc->result != CHECK_RESULT_PROCESS_ANSWERS) init_prefix(loc); struct pool_replica *rep = REP(loc->set, loc->replica); loc->hdrp = HDR(rep, loc->part); memcpy(&loc->hdr, loc->hdrp, sizeof(loc->hdr)); util_convert2h_hdr_nocheck(&loc->hdr); loc->is_dev_dax = PART(rep, 0)->is_dev_dax; } /* * sds_get_healthy_replicas_num -- (internal) get number of healthy replicas */ static void sds_get_healthy_replicas_num(PMEMpoolcheck *ppc, location *loc) { const unsigned nreplicas = ppc->pool->set_file->poolset->nreplicas; loc->healthy_replicas = 0; loc->part = 0; for (; loc->replica < nreplicas; loc->replica++) { init_location_data(ppc, loc); if (!sds_check_replica(loc)) { ++loc->healthy_replicas; /* healthy replica found */ } } loc->replica = 0; /* reset replica index */ } /* * check_sds -- entry point for shutdown state checks */ void check_sds(PMEMpoolcheck *ppc) { LOG(3, NULL); const unsigned nreplicas = ppc->pool->set_file->poolset->nreplicas; location *loc = check_get_step_data(ppc->data); if (!loc->init_done) { sds_get_healthy_replicas_num(ppc, loc); if (loc->healthy_replicas == nreplicas) { /* all replicas have healthy shutdown state */ /* print summary */ for (; loc->replica < nreplicas; loc->replica++) { init_prefix(loc); CHECK_INFO(ppc, "%s" SDS_CHECK_STR, loc->prefix); CHECK_INFO(ppc, "%s" SDS_OK_STR, loc->prefix); } return; } else if (loc->healthy_replicas > 0) { ppc->sync_required = true; return; } loc->init_done = true; } /* produce single healthy replica */ loc->part = 0; for (; loc->replica < nreplicas; loc->replica++) { init_location_data(ppc, loc); while (CHECK_NOT_COMPLETE(loc, steps)) { ASSERT(loc->step < ARRAY_SIZE(steps)); if (step_exe(ppc, steps, loc)) return; } if (loc->healthy_replicas) break; } if (loc->healthy_replicas == 0) { ppc->result = CHECK_RESULT_NOT_CONSISTENT; CHECK_ERR(ppc, "cannot complete repair, reverting changes"); } else if (loc->healthy_replicas < nreplicas) { ppc->sync_required = true; } }
6,571
21.662069
76
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/libpmempool/check_log.c
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2018, Intel Corporation */ /* * check_log.c -- check pmemlog */ #include <inttypes.h> #include <sys/param.h> #include <endian.h> #include "out.h" #include "libpmempool.h" #include "pmempool.h" #include "pool.h" #include "check_util.h" enum question { Q_LOG_START_OFFSET, Q_LOG_END_OFFSET, Q_LOG_WRITE_OFFSET, }; /* * log_read -- (internal) read pmemlog header */ static int log_read(PMEMpoolcheck *ppc) { /* * Here we want to read the pmemlog header without the pool_hdr as we've * already done it before. * * Take the pointer to fields right after pool_hdr, compute the size and * offset of remaining fields. */ uint8_t *ptr = (uint8_t *)&ppc->pool->hdr.log; ptr += sizeof(ppc->pool->hdr.log.hdr); size_t size = sizeof(ppc->pool->hdr.log) - sizeof(ppc->pool->hdr.log.hdr); uint64_t offset = sizeof(ppc->pool->hdr.log.hdr); if (pool_read(ppc->pool, ptr, size, offset)) return CHECK_ERR(ppc, "cannot read pmemlog structure"); /* endianness conversion */ log_convert2h(&ppc->pool->hdr.log); return 0; } /* * log_hdr_check -- (internal) check pmemlog header */ static int log_hdr_check(PMEMpoolcheck *ppc, location *loc) { LOG(3, NULL); CHECK_INFO(ppc, "checking pmemlog header"); if (log_read(ppc)) { ppc->result = CHECK_RESULT_ERROR; return -1; } /* determine constant values for pmemlog */ const uint64_t d_start_offset = roundup(sizeof(ppc->pool->hdr.log), LOG_FORMAT_DATA_ALIGN); if (ppc->pool->hdr.log.start_offset != d_start_offset) { if (CHECK_ASK(ppc, Q_LOG_START_OFFSET, "invalid pmemlog.start_offset: 0x%jx.|Do you " "want to set pmemlog.start_offset to default " "0x%jx?", ppc->pool->hdr.log.start_offset, d_start_offset)) goto error; } if (ppc->pool->hdr.log.end_offset != ppc->pool->set_file->size) { if (CHECK_ASK(ppc, Q_LOG_END_OFFSET, "invalid pmemlog.end_offset: 0x%jx.|Do you " "want to set pmemlog.end_offset to 0x%jx?", ppc->pool->hdr.log.end_offset, ppc->pool->set_file->size)) goto error; } if (ppc->pool->hdr.log.write_offset < d_start_offset || ppc->pool->hdr.log.write_offset > ppc->pool->set_file->size) { if (CHECK_ASK(ppc, Q_LOG_WRITE_OFFSET, "invalid pmemlog.write_offset: 0x%jx.|Do you " "want to set pmemlog.write_offset to " "pmemlog.end_offset?", ppc->pool->hdr.log.write_offset)) goto error; } if (ppc->result == CHECK_RESULT_CONSISTENT || ppc->result == CHECK_RESULT_REPAIRED) CHECK_INFO(ppc, "pmemlog header correct"); return check_questions_sequence_validate(ppc); error: ppc->result = CHECK_RESULT_NOT_CONSISTENT; check_end(ppc->data); return -1; } /* * log_hdr_fix -- (internal) fix pmemlog header */ static int log_hdr_fix(PMEMpoolcheck *ppc, location *loc, uint32_t question, void *ctx) { LOG(3, NULL); uint64_t d_start_offset; switch (question) { case Q_LOG_START_OFFSET: /* determine constant values for pmemlog */ d_start_offset = roundup(sizeof(ppc->pool->hdr.log), LOG_FORMAT_DATA_ALIGN); CHECK_INFO(ppc, "setting pmemlog.start_offset to 0x%jx", d_start_offset); ppc->pool->hdr.log.start_offset = d_start_offset; break; case Q_LOG_END_OFFSET: CHECK_INFO(ppc, "setting pmemlog.end_offset to 0x%jx", ppc->pool->set_file->size); ppc->pool->hdr.log.end_offset = ppc->pool->set_file->size; break; case Q_LOG_WRITE_OFFSET: CHECK_INFO(ppc, "setting pmemlog.write_offset to " "pmemlog.end_offset"); ppc->pool->hdr.log.write_offset = ppc->pool->set_file->size; break; default: ERR("not implemented question id: %u", question); } return 0; } struct step { int (*check)(PMEMpoolcheck *, location *); int (*fix)(PMEMpoolcheck *, location *, uint32_t, void *); enum pool_type type; }; static const struct step steps[] = { { .check = log_hdr_check, .type = POOL_TYPE_LOG }, { .fix = log_hdr_fix, .type = POOL_TYPE_LOG }, { .check = NULL, .fix = NULL, }, }; /* * step_exe -- (internal) perform single step according to its parameters */ static inline int step_exe(PMEMpoolcheck *ppc, location *loc) { ASSERT(loc->step < ARRAY_SIZE(steps)); ASSERTeq(ppc->pool->params.type, POOL_TYPE_LOG); const struct step *step = &steps[loc->step++]; if (!(step->type & ppc->pool->params.type)) return 0; if (!step->fix) return step->check(ppc, loc); if (log_read(ppc)) { ppc->result = CHECK_RESULT_ERROR; return -1; } return check_answer_loop(ppc, loc, NULL, 1, step->fix); } /* * check_log -- entry point for pmemlog checks */ void check_log(PMEMpoolcheck *ppc) { LOG(3, NULL); location *loc = check_get_step_data(ppc->data); /* do all checks */ while (CHECK_NOT_COMPLETE(loc, steps)) { if (step_exe(ppc, loc)) break; } }
4,760
21.671429
76
c
null
NearPMSW-main/nearpm/checkpointing/pmdk-checkpoint1/src/libpmempool/check_util.h
// SPDX-License-Identifier: BSD-3-Clause /* Copyright 2016-2018, Intel Corporation */ /* * check_util.h -- internal definitions check util */ #ifndef CHECK_UTIL_H #define CHECK_UTIL_H #include <time.h> #include <limits.h> #include <sys/param.h> #ifdef __cplusplus extern "C" { #endif #define CHECK_STEP_COMPLETE UINT_MAX #define CHECK_INVALID_QUESTION UINT_MAX #define REQUIRE_ADVANCED "the following error can be fixed using " \ "PMEMPOOL_CHECK_ADVANCED flag" #ifndef min #define min(a, b) ((a) < (b) ? (a) : (b)) #endif /* check control context */ struct check_data; struct arena; /* queue of check statuses */ struct check_status; /* container storing state of all check steps */ #define PREFIX_MAX_SIZE 30 typedef struct { unsigned init_done; unsigned step; unsigned replica; unsigned part; int single_repl; int single_part; struct pool_set *set; int is_dev_dax; struct pool_hdr *hdrp; /* copy of the pool header in host byte order */ struct pool_hdr hdr; int hdr_valid; /* * If pool header has been modified this field indicates that * the pool parameters structure requires refresh. */ int pool_hdr_modified; unsigned healthy_replicas; struct pool_hdr *next_part_hdrp; struct pool_hdr *prev_part_hdrp; struct pool_hdr *next_repl_hdrp; struct pool_hdr *prev_repl_hdrp; int next_part_hdr_valid; int prev_part_hdr_valid; int next_repl_hdr_valid; int prev_repl_hdr_valid; /* valid poolset uuid */ uuid_t *valid_puuid; /* valid part uuid */ uuid_t *valid_uuid; /* valid part pool header */ struct pool_hdr *valid_part_hdrp; int valid_part_done; unsigned valid_part_replica; char prefix[PREFIX_MAX_SIZE]; struct arena *arenap; uint64_t offset; uint32_t narena; uint8_t *bitmap; uint8_t *dup_bitmap; uint8_t *fbitmap; struct list *list_inval; struct list *list_flog_inval; struct list *list_unmap; struct { int btti_header; int btti_backup; } valid; struct { struct btt_info btti; uint64_t btti_offset; } pool_valid; } location; /* check steps */ void check_bad_blocks(PMEMpoolcheck *ppc); void check_backup(PMEMpoolcheck *ppc); void check_pool_hdr(PMEMpoolcheck *ppc); void check_pool_hdr_uuids(PMEMpoolcheck *ppc); void check_sds(PMEMpoolcheck *ppc); void check_log(PMEMpoolcheck *ppc); void check_blk(PMEMpoolcheck *ppc); void check_btt_info(PMEMpoolcheck *ppc); void check_btt_map_flog(PMEMpoolcheck *ppc); void check_write(PMEMpoolcheck *ppc); struct check_data *check_data_alloc(void); void check_data_free(struct check_data *data); uint32_t check_step_get(struct check_data *data); void check_step_inc(struct check_data *data); location *check_get_step_data(struct check_data *data); void check_end(struct check_data *data); int check_is_end_util(struct check_data *data); int check_status_create(PMEMpoolcheck *ppc, enum pmempool_check_msg_type type, uint32_t arg, const char *fmt, ...) FORMAT_PRINTF(4, 5); void check_status_release(PMEMpoolcheck *ppc, struct check_status *status); void check_clear_status_cache(struct check_data *data); struct check_status *check_pop_question(struct check_data *data); struct check_status *check_pop_error(struct check_data *data); struct check_status *check_pop_info(struct check_data *data); bool check_has_error(struct check_data *data); bool check_has_answer(struct check_data *data); int check_push_answer(PMEMpoolcheck *ppc); struct pmempool_check_status *check_status_get_util( struct check_status *status); int check_status_is(struct check_status *status, enum pmempool_check_msg_type type); /* create info status */ #define CHECK_INFO(ppc, ...)\ check_status_create(ppc, PMEMPOOL_CHECK_MSG_TYPE_INFO, 0, __VA_ARGS__) /* create info status and append error message based on errno */ #define CHECK_INFO_ERRNO(ppc, ...)\ check_status_create(ppc, PMEMPOOL_CHECK_MSG_TYPE_INFO,\ (uint32_t)errno, __VA_ARGS__) /* create error status */ #define CHECK_ERR(ppc, ...)\ check_status_create(ppc, PMEMPOOL_CHECK_MSG_TYPE_ERROR, 0, __VA_ARGS__) /* create question status */ #define CHECK_ASK(ppc, question, ...)\ check_status_create(ppc, PMEMPOOL_CHECK_MSG_TYPE_QUESTION, question,\ __VA_ARGS__) #define CHECK_NOT_COMPLETE(loc, steps)\ ((loc)->step != CHECK_STEP_COMPLETE &&\ ((steps)[(loc)->step].check != NULL ||\ (steps)[(loc)->step].fix != NULL)) int check_answer_loop(PMEMpoolcheck *ppc, location *data, void *ctx, int fail_on_no, int (*callback)(PMEMpoolcheck *, location *, uint32_t, void *ctx)); int check_questions_sequence_validate(PMEMpoolcheck *ppc); const char *check_get_time_str(time_t time); const char *check_get_uuid_str(uuid_t uuid); const char *check_get_pool_type_str(enum pool_type type); void check_insert_arena(PMEMpoolcheck *ppc, struct arena *arenap); #ifdef _WIN32 void cache_to_utf8(struct check_data *data, char *buf, size_t size); #endif #define CHECK_IS(ppc, flag)\ util_flag_isset((ppc)->args.flags, PMEMPOOL_CHECK_ ## flag) #define CHECK_IS_NOT(ppc, flag)\ util_flag_isclr((ppc)->args.flags, PMEMPOOL_CHECK_ ## flag) #define CHECK_WITHOUT_FIXING(ppc)\ CHECK_IS_NOT(ppc, REPAIR) || CHECK_IS(ppc, DRY_RUN) #ifdef __cplusplus } #endif #endif
5,143
25.111675
78
h