repo
stringlengths 1
152
⌀ | file
stringlengths 14
221
| code
stringlengths 501
25k
| file_length
int64 501
25k
| avg_line_length
float64 20
99.5
| max_line_length
int64 21
134
| extension_type
stringclasses 2
values |
---|---|---|---|---|---|---|
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/ldebug.c | /*
** $Id: ldebug.c,v 2.29.1.6 2008/05/08 16:56:26 roberto Exp $
** Debug Interface
** See Copyright Notice in lua.h
*/
#include <stdarg.h>
#include <stddef.h>
#include <string.h>
#define ldebug_c
#define LUA_CORE
#include "lua.h"
#include "lapi.h"
#include "lcode.h"
#include "ldebug.h"
#include "ldo.h"
#include "lfunc.h"
#include "lobject.h"
#include "lopcodes.h"
#include "lstate.h"
#include "lstring.h"
#include "ltable.h"
#include "ltm.h"
#include "lvm.h"
static const char *getfuncname (lua_State *L, CallInfo *ci, const char **name);
static int currentpc (lua_State *L, CallInfo *ci) {
if (!isLua(ci)) return -1; /* function is not a Lua function? */
if (ci == L->ci)
ci->savedpc = L->savedpc;
return pcRel(ci->savedpc, ci_func(ci)->l.p);
}
static int currentline (lua_State *L, CallInfo *ci) {
int pc = currentpc(L, ci);
if (pc < 0)
return -1; /* only active lua functions have current-line information */
else
return getline(ci_func(ci)->l.p, pc);
}
/*
** this function can be called asynchronous (e.g. during a signal)
*/
LUA_API int lua_sethook (lua_State *L, lua_Hook func, int mask, int count) {
if (func == NULL || mask == 0) { /* turn off hooks? */
mask = 0;
func = NULL;
}
L->hook = func;
L->basehookcount = count;
resethookcount(L);
L->hookmask = cast_byte(mask);
return 1;
}
LUA_API lua_Hook lua_gethook (lua_State *L) {
return L->hook;
}
LUA_API int lua_gethookmask (lua_State *L) {
return L->hookmask;
}
LUA_API int lua_gethookcount (lua_State *L) {
return L->basehookcount;
}
LUA_API int lua_getstack (lua_State *L, int level, lua_Debug *ar) {
int status;
CallInfo *ci;
lua_lock(L);
for (ci = L->ci; level > 0 && ci > L->base_ci; ci--) {
level--;
if (f_isLua(ci)) /* Lua function? */
level -= ci->tailcalls; /* skip lost tail calls */
}
if (level == 0 && ci > L->base_ci) { /* level found? */
status = 1;
ar->i_ci = cast_int(ci - L->base_ci);
}
else if (level < 0) { /* level is of a lost tail call? */
status = 1;
ar->i_ci = 0;
}
else status = 0; /* no such level */
lua_unlock(L);
return status;
}
static Proto *getluaproto (CallInfo *ci) {
return (isLua(ci) ? ci_func(ci)->l.p : NULL);
}
static const char *findlocal (lua_State *L, CallInfo *ci, int n) {
const char *name;
Proto *fp = getluaproto(ci);
if (fp && (name = luaF_getlocalname(fp, n, currentpc(L, ci))) != NULL)
return name; /* is a local variable in a Lua function */
else {
StkId limit = (ci == L->ci) ? L->top : (ci+1)->func;
if (limit - ci->base >= n && n > 0) /* is 'n' inside 'ci' stack? */
return "(*temporary)";
else
return NULL;
}
}
LUA_API const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n) {
CallInfo *ci = L->base_ci + ar->i_ci;
const char *name = findlocal(L, ci, n);
lua_lock(L);
if (name)
luaA_pushobject(L, ci->base + (n - 1));
lua_unlock(L);
return name;
}
LUA_API const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n) {
CallInfo *ci = L->base_ci + ar->i_ci;
const char *name = findlocal(L, ci, n);
lua_lock(L);
if (name)
setobjs2s(L, ci->base + (n - 1), L->top - 1);
L->top--; /* pop value */
lua_unlock(L);
return name;
}
static void funcinfo (lua_Debug *ar, Closure *cl) {
if (cl->c.isC) {
ar->source = "=[C]";
ar->linedefined = -1;
ar->lastlinedefined = -1;
ar->what = "C";
}
else {
ar->source = getstr(cl->l.p->source);
ar->linedefined = cl->l.p->linedefined;
ar->lastlinedefined = cl->l.p->lastlinedefined;
ar->what = (ar->linedefined == 0) ? "main" : "Lua";
}
luaO_chunkid(ar->short_src, ar->source, LUA_IDSIZE);
}
static void info_tailcall (lua_Debug *ar) {
ar->name = ar->namewhat = "";
ar->what = "tail";
ar->lastlinedefined = ar->linedefined = ar->currentline = -1;
ar->source = "=(tail call)";
luaO_chunkid(ar->short_src, ar->source, LUA_IDSIZE);
ar->nups = 0;
}
static void collectvalidlines (lua_State *L, Closure *f) {
if (f == NULL || f->c.isC) {
setnilvalue(L->top);
}
else {
Table *t = luaH_new(L, 0, 0);
int *lineinfo = f->l.p->lineinfo;
int i;
for (i=0; i<f->l.p->sizelineinfo; i++)
setbvalue(luaH_setnum(L, t, lineinfo[i]), 1);
sethvalue(L, L->top, t);
}
incr_top(L);
}
static int auxgetinfo (lua_State *L, const char *what, lua_Debug *ar,
Closure *f, CallInfo *ci) {
int status = 1;
if (f == NULL) {
info_tailcall(ar);
return status;
}
for (; *what; what++) {
switch (*what) {
case 'S': {
funcinfo(ar, f);
break;
}
case 'l': {
ar->currentline = (ci) ? currentline(L, ci) : -1;
break;
}
case 'u': {
ar->nups = f->c.nupvalues;
break;
}
case 'n': {
ar->namewhat = (ci) ? getfuncname(L, ci, &ar->name) : NULL;
if (ar->namewhat == NULL) {
ar->namewhat = ""; /* not found */
ar->name = NULL;
}
break;
}
case 'L':
case 'f': /* handled by lua_getinfo */
break;
default: status = 0; /* invalid option */
}
}
return status;
}
LUA_API int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar) {
int status;
Closure *f = NULL;
CallInfo *ci = NULL;
lua_lock(L);
if (*what == '>') {
StkId func = L->top - 1;
luai_apicheck(L, ttisfunction(func));
what++; /* skip the '>' */
f = clvalue(func);
L->top--; /* pop function */
}
else if (ar->i_ci != 0) { /* no tail call? */
ci = L->base_ci + ar->i_ci;
lua_assert(ttisfunction(ci->func));
f = clvalue(ci->func);
}
status = auxgetinfo(L, what, ar, f, ci);
if (strchr(what, 'f')) {
if (f == NULL) setnilvalue(L->top);
else setclvalue(L, L->top, f);
incr_top(L);
}
if (strchr(what, 'L'))
collectvalidlines(L, f);
lua_unlock(L);
return status;
}
/*
** {======================================================
** Symbolic Execution and code checker
** =======================================================
*/
#define check(x) if (!(x)) return 0;
#define checkjump(pt,pc) check(0 <= pc && pc < pt->sizecode)
#define checkreg(pt,reg) check((reg) < (pt)->maxstacksize)
static int precheck (const Proto *pt) {
check(pt->maxstacksize <= MAXSTACK);
check(pt->numparams+(pt->is_vararg & VARARG_HASARG) <= pt->maxstacksize);
check(!(pt->is_vararg & VARARG_NEEDSARG) ||
(pt->is_vararg & VARARG_HASARG));
check(pt->sizeupvalues <= pt->nups);
check(pt->sizelineinfo == pt->sizecode || pt->sizelineinfo == 0);
check(pt->sizecode > 0 && GET_OPCODE(pt->code[pt->sizecode-1]) == OP_RETURN);
return 1;
}
#define checkopenop(pt,pc) luaG_checkopenop((pt)->code[(pc)+1])
int luaG_checkopenop (Instruction i) {
switch (GET_OPCODE(i)) {
case OP_CALL:
case OP_TAILCALL:
case OP_RETURN:
case OP_SETLIST: {
check(GETARG_B(i) == 0);
return 1;
}
default: return 0; /* invalid instruction after an open call */
}
}
static int checkArgMode (const Proto *pt, int r, enum OpArgMask mode) {
switch (mode) {
case OpArgN: check(r == 0); break;
case OpArgU: break;
case OpArgR: checkreg(pt, r); break;
case OpArgK:
check(ISK(r) ? INDEXK(r) < pt->sizek : r < pt->maxstacksize);
break;
}
return 1;
}
static Instruction symbexec (const Proto *pt, int lastpc, int reg) {
int pc;
int last; /* stores position of last instruction that changed `reg' */
last = pt->sizecode-1; /* points to final return (a `neutral' instruction) */
check(precheck(pt));
for (pc = 0; pc < lastpc; pc++) {
Instruction i = pt->code[pc];
OpCode op = GET_OPCODE(i);
int a = GETARG_A(i);
int b = 0;
int c = 0;
check(op < NUM_OPCODES);
checkreg(pt, a);
switch (getOpMode(op)) {
case iABC: {
b = GETARG_B(i);
c = GETARG_C(i);
check(checkArgMode(pt, b, getBMode(op)));
check(checkArgMode(pt, c, getCMode(op)));
break;
}
case iABx: {
b = GETARG_Bx(i);
if (getBMode(op) == OpArgK) check(b < pt->sizek);
break;
}
case iAsBx: {
b = GETARG_sBx(i);
if (getBMode(op) == OpArgR) {
int dest = pc+1+b;
check(0 <= dest && dest < pt->sizecode);
if (dest > 0) {
int j;
/* check that it does not jump to a setlist count; this
is tricky, because the count from a previous setlist may
have the same value of an invalid setlist; so, we must
go all the way back to the first of them (if any) */
for (j = 0; j < dest; j++) {
Instruction d = pt->code[dest-1-j];
if (!(GET_OPCODE(d) == OP_SETLIST && GETARG_C(d) == 0)) break;
}
/* if 'j' is even, previous value is not a setlist (even if
it looks like one) */
check((j&1) == 0);
}
}
break;
}
}
if (testAMode(op)) {
if (a == reg) last = pc; /* change register `a' */
}
if (testTMode(op)) {
check(pc+2 < pt->sizecode); /* check skip */
check(GET_OPCODE(pt->code[pc+1]) == OP_JMP);
}
switch (op) {
case OP_LOADBOOL: {
if (c == 1) { /* does it jump? */
check(pc+2 < pt->sizecode); /* check its jump */
check(GET_OPCODE(pt->code[pc+1]) != OP_SETLIST ||
GETARG_C(pt->code[pc+1]) != 0);
}
break;
}
case OP_LOADNIL: {
if (a <= reg && reg <= b)
last = pc; /* set registers from `a' to `b' */
break;
}
case OP_GETUPVAL:
case OP_SETUPVAL: {
check(b < pt->nups);
break;
}
case OP_GETGLOBAL:
case OP_SETGLOBAL: {
check(ttisstring(&pt->k[b]));
break;
}
case OP_SELF: {
checkreg(pt, a+1);
if (reg == a+1) last = pc;
break;
}
case OP_CONCAT: {
check(b < c); /* at least two operands */
break;
}
case OP_TFORLOOP: {
check(c >= 1); /* at least one result (control variable) */
checkreg(pt, a+2+c); /* space for results */
if (reg >= a+2) last = pc; /* affect all regs above its base */
break;
}
case OP_FORLOOP:
case OP_FORPREP:
checkreg(pt, a+3);
/* go through */
case OP_JMP: {
int dest = pc+1+b;
/* not full check and jump is forward and do not skip `lastpc'? */
if (reg != NO_REG && pc < dest && dest <= lastpc)
pc += b; /* do the jump */
break;
}
case OP_CALL:
case OP_TAILCALL: {
if (b != 0) {
checkreg(pt, a+b-1);
}
c--; /* c = num. returns */
if (c == LUA_MULTRET) {
check(checkopenop(pt, pc));
}
else if (c != 0)
checkreg(pt, a+c-1);
if (reg >= a) last = pc; /* affect all registers above base */
break;
}
case OP_RETURN: {
b--; /* b = num. returns */
if (b > 0) checkreg(pt, a+b-1);
break;
}
case OP_SETLIST: {
if (b > 0) checkreg(pt, a + b);
if (c == 0) {
pc++;
check(pc < pt->sizecode - 1);
}
break;
}
case OP_CLOSURE: {
int nup, j;
check(b < pt->sizep);
nup = pt->p[b]->nups;
check(pc + nup < pt->sizecode);
for (j = 1; j <= nup; j++) {
OpCode op1 = GET_OPCODE(pt->code[pc + j]);
check(op1 == OP_GETUPVAL || op1 == OP_MOVE);
}
if (reg != NO_REG) /* tracing? */
pc += nup; /* do not 'execute' these pseudo-instructions */
break;
}
case OP_VARARG: {
check((pt->is_vararg & VARARG_ISVARARG) &&
!(pt->is_vararg & VARARG_NEEDSARG));
b--;
if (b == LUA_MULTRET) check(checkopenop(pt, pc));
checkreg(pt, a+b-1);
break;
}
default: break;
}
}
return pt->code[last];
}
#undef check
#undef checkjump
#undef checkreg
/* }====================================================== */
int luaG_checkcode (const Proto *pt) {
return (symbexec(pt, pt->sizecode, NO_REG) != 0);
}
static const char *kname (Proto *p, int c) {
if (ISK(c) && ttisstring(&p->k[INDEXK(c)]))
return svalue(&p->k[INDEXK(c)]);
else
return "?";
}
static const char *getobjname (lua_State *L, CallInfo *ci, int stackpos,
const char **name) {
if (isLua(ci)) { /* a Lua function? */
Proto *p = ci_func(ci)->l.p;
int pc = currentpc(L, ci);
Instruction i;
*name = luaF_getlocalname(p, stackpos+1, pc);
if (*name) /* is a local? */
return "local";
i = symbexec(p, pc, stackpos); /* try symbolic execution */
lua_assert(pc != -1);
switch (GET_OPCODE(i)) {
case OP_GETGLOBAL: {
int g = GETARG_Bx(i); /* global index */
lua_assert(ttisstring(&p->k[g]));
*name = svalue(&p->k[g]);
return "global";
}
case OP_MOVE: {
int a = GETARG_A(i);
int b = GETARG_B(i); /* move from `b' to `a' */
if (b < a)
return getobjname(L, ci, b, name); /* get name for `b' */
break;
}
case OP_GETTABLE: {
int k = GETARG_C(i); /* key index */
*name = kname(p, k);
return "field";
}
case OP_GETUPVAL: {
int u = GETARG_B(i); /* upvalue index */
*name = p->upvalues ? getstr(p->upvalues[u]) : "?";
return "upvalue";
}
case OP_SELF: {
int k = GETARG_C(i); /* key index */
*name = kname(p, k);
return "method";
}
default: break;
}
}
return NULL; /* no useful name found */
}
static const char *getfuncname (lua_State *L, CallInfo *ci, const char **name) {
Instruction i;
if ((isLua(ci) && ci->tailcalls > 0) || !isLua(ci - 1))
return NULL; /* calling function is not Lua (or is unknown) */
ci--; /* calling function */
i = ci_func(ci)->l.p->code[currentpc(L, ci)];
if (GET_OPCODE(i) == OP_CALL || GET_OPCODE(i) == OP_TAILCALL ||
GET_OPCODE(i) == OP_TFORLOOP)
return getobjname(L, ci, GETARG_A(i), name);
else
return NULL; /* no useful name can be found */
}
/* only ANSI way to check whether a pointer points to an array */
static int isinstack (CallInfo *ci, const TValue *o) {
StkId p;
for (p = ci->base; p < ci->top; p++)
if (o == p) return 1;
return 0;
}
void luaG_typeerror (lua_State *L, const TValue *o, const char *op) {
const char *name = NULL;
const char *t = luaT_typenames[ttype(o)];
const char *kind = (isinstack(L->ci, o)) ?
getobjname(L, L->ci, cast_int(o - L->base), &name) :
NULL;
if (kind)
luaG_runerror(L, "attempt to %s %s " LUA_QS " (a %s value)",
op, kind, name, t);
else
luaG_runerror(L, "attempt to %s a %s value", op, t);
}
void luaG_concaterror (lua_State *L, StkId p1, StkId p2) {
if (ttisstring(p1) || ttisnumber(p1)) p1 = p2;
lua_assert(!ttisstring(p1) && !ttisnumber(p1));
luaG_typeerror(L, p1, "concatenate");
}
void luaG_aritherror (lua_State *L, const TValue *p1, const TValue *p2) {
TValue temp;
if (luaV_tonumber(p1, &temp) == NULL)
p2 = p1; /* first operand is wrong */
luaG_typeerror(L, p2, "perform arithmetic on");
}
int luaG_ordererror (lua_State *L, const TValue *p1, const TValue *p2) {
const char *t1 = luaT_typenames[ttype(p1)];
const char *t2 = luaT_typenames[ttype(p2)];
if (t1[2] == t2[2])
luaG_runerror(L, "attempt to compare two %s values", t1);
else
luaG_runerror(L, "attempt to compare %s with %s", t1, t2);
return 0;
}
static void addinfo (lua_State *L, const char *msg) {
CallInfo *ci = L->ci;
if (isLua(ci)) { /* is Lua code? */
char buff[LUA_IDSIZE]; /* add file:line information */
int line = currentline(L, ci);
luaO_chunkid(buff, getstr(getluaproto(ci)->source), LUA_IDSIZE);
luaO_pushfstring(L, "%s:%d: %s", buff, line, msg);
}
}
void luaG_errormsg (lua_State *L) {
if (L->errfunc != 0) { /* is there an error handling function? */
StkId errfunc = restorestack(L, L->errfunc);
if (!ttisfunction(errfunc)) luaD_throw(L, LUA_ERRERR);
setobjs2s(L, L->top, L->top - 1); /* move argument */
setobjs2s(L, L->top - 1, errfunc); /* push function */
incr_top(L);
luaD_call(L, L->top - 2, 1); /* call it */
}
luaD_throw(L, LUA_ERRRUN);
}
void luaG_runerror (lua_State *L, const char *fmt, ...) {
va_list argp;
va_start(argp, fmt);
addinfo(L, luaO_pushvfstring(L, fmt, argp));
va_end(argp);
luaG_errormsg(L);
}
| 16,840 | 25.355243 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/lmem.h | /*
** $Id: lmem.h,v 1.31.1.1 2007/12/27 13:02:25 roberto Exp $
** Interface to Memory Manager
** See Copyright Notice in lua.h
*/
#ifndef lmem_h
#define lmem_h
#include <stddef.h>
#include "llimits.h"
#include "lua.h"
#define MEMERRMSG "not enough memory"
#define luaM_reallocv(L,b,on,n,e) \
((cast(size_t, (n)+1) <= MAX_SIZET/(e)) ? /* +1 to avoid warnings */ \
luaM_realloc_(L, (b), (on)*(e), (n)*(e)) : \
luaM_toobig(L))
#define luaM_freemem(L, b, s) luaM_realloc_(L, (b), (s), 0)
#define luaM_free(L, b) luaM_realloc_(L, (b), sizeof(*(b)), 0)
#define luaM_freearray(L, b, n, t) luaM_reallocv(L, (b), n, 0, sizeof(t))
#define luaM_malloc(L,t) luaM_realloc_(L, NULL, 0, (t))
#define luaM_new(L,t) cast(t *, luaM_malloc(L, sizeof(t)))
#define luaM_newvector(L,n,t) \
cast(t *, luaM_reallocv(L, NULL, 0, n, sizeof(t)))
#define luaM_growvector(L,v,nelems,size,t,limit,e) \
if ((nelems)+1 > (size)) \
((v)=cast(t *, luaM_growaux_(L,v,&(size),sizeof(t),limit,e)))
#define luaM_reallocvector(L, v,oldn,n,t) \
((v)=cast(t *, luaM_reallocv(L, v, oldn, n, sizeof(t))))
LUAI_FUNC void *luaM_realloc_ (lua_State *L, void *block, size_t oldsize,
size_t size);
LUAI_FUNC void *luaM_toobig (lua_State *L);
LUAI_FUNC void *luaM_growaux_ (lua_State *L, void *block, int *size,
size_t size_elem, int limit,
const char *errormsg);
#endif
| 1,494 | 28.9 | 75 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/loadlib.c | /*
** $Id: loadlib.c,v 1.52.1.4 2009/09/09 13:17:16 roberto Exp $
** Dynamic library loader for Lua
** See Copyright Notice in lua.h
**
** This module contains an implementation of loadlib for Unix systems
** that have dlfcn, an implementation for Darwin (Mac OS X), an
** implementation for Windows, and a stub for other systems.
*/
#include <stdlib.h>
#include <string.h>
#define loadlib_c
#define LUA_LIB
#include "lua.h"
#include "lauxlib.h"
#include "lualib.h"
/* prefix for open functions in C libraries */
#define LUA_POF "luaopen_"
/* separator for open functions in C libraries */
#define LUA_OFSEP "_"
#define LIBPREFIX "LOADLIB: "
#define POF LUA_POF
#define LIB_FAIL "open"
/* error codes for ll_loadfunc */
#define ERRLIB 1
#define ERRFUNC 2
#define setprogdir(L) ((void)0)
static void ll_unloadlib (void *lib);
static void *ll_load (lua_State *L, const char *path);
static lua_CFunction ll_sym (lua_State *L, void *lib, const char *sym);
#if defined(LUA_DL_DLOPEN)
/*
** {========================================================================
** This is an implementation of loadlib based on the dlfcn interface.
** The dlfcn interface is available in Linux, SunOS, Solaris, IRIX, FreeBSD,
** NetBSD, AIX 4.2, HPUX 11, and probably most other Unix flavors, at least
** as an emulation layer on top of native functions.
** =========================================================================
*/
#include <dlfcn.h>
static void ll_unloadlib (void *lib) {
dlclose(lib);
}
static void *ll_load (lua_State *L, const char *path) {
void *lib = dlopen(path, RTLD_NOW);
if (lib == NULL) lua_pushstring(L, dlerror());
return lib;
}
static lua_CFunction ll_sym (lua_State *L, void *lib, const char *sym) {
lua_CFunction f = (lua_CFunction)dlsym(lib, sym);
if (f == NULL) lua_pushstring(L, dlerror());
return f;
}
/* }====================================================== */
#elif defined(LUA_DL_DLL)
/*
** {======================================================================
** This is an implementation of loadlib for Windows using native functions.
** =======================================================================
*/
#include <windows.h>
#undef setprogdir
static void setprogdir (lua_State *L) {
char buff[MAX_PATH + 1];
char *lb;
DWORD nsize = sizeof(buff)/sizeof(char);
DWORD n = GetModuleFileNameA(NULL, buff, nsize);
if (n == 0 || n == nsize || (lb = strrchr(buff, '\\')) == NULL)
luaL_error(L, "unable to get ModuleFileName");
else {
*lb = '\0';
luaL_gsub(L, lua_tostring(L, -1), LUA_EXECDIR, buff);
lua_remove(L, -2); /* remove original string */
}
}
static void pusherror (lua_State *L) {
int error = GetLastError();
char buffer[128];
if (FormatMessageA(FORMAT_MESSAGE_IGNORE_INSERTS | FORMAT_MESSAGE_FROM_SYSTEM,
NULL, error, 0, buffer, sizeof(buffer), NULL))
lua_pushstring(L, buffer);
else
lua_pushfstring(L, "system error %d\n", error);
}
static void ll_unloadlib (void *lib) {
FreeLibrary((HINSTANCE)lib);
}
static void *ll_load (lua_State *L, const char *path) {
HINSTANCE lib = LoadLibraryA(path);
if (lib == NULL) pusherror(L);
return lib;
}
static lua_CFunction ll_sym (lua_State *L, void *lib, const char *sym) {
lua_CFunction f = (lua_CFunction)GetProcAddress((HINSTANCE)lib, sym);
if (f == NULL) pusherror(L);
return f;
}
/* }====================================================== */
#elif defined(LUA_DL_DYLD)
/*
** {======================================================================
** Native Mac OS X / Darwin Implementation
** =======================================================================
*/
#include <mach-o/dyld.h>
/* Mac appends a `_' before C function names */
#undef POF
#define POF "_" LUA_POF
static void pusherror (lua_State *L) {
const char *err_str;
const char *err_file;
NSLinkEditErrors err;
int err_num;
NSLinkEditError(&err, &err_num, &err_file, &err_str);
lua_pushstring(L, err_str);
}
static const char *errorfromcode (NSObjectFileImageReturnCode ret) {
switch (ret) {
case NSObjectFileImageInappropriateFile:
return "file is not a bundle";
case NSObjectFileImageArch:
return "library is for wrong CPU type";
case NSObjectFileImageFormat:
return "bad format";
case NSObjectFileImageAccess:
return "cannot access file";
case NSObjectFileImageFailure:
default:
return "unable to load library";
}
}
static void ll_unloadlib (void *lib) {
NSUnLinkModule((NSModule)lib, NSUNLINKMODULE_OPTION_RESET_LAZY_REFERENCES);
}
static void *ll_load (lua_State *L, const char *path) {
NSObjectFileImage img;
NSObjectFileImageReturnCode ret;
/* this would be a rare case, but prevents crashing if it happens */
if(!_dyld_present()) {
lua_pushliteral(L, "dyld not present");
return NULL;
}
ret = NSCreateObjectFileImageFromFile(path, &img);
if (ret == NSObjectFileImageSuccess) {
NSModule mod = NSLinkModule(img, path, NSLINKMODULE_OPTION_PRIVATE |
NSLINKMODULE_OPTION_RETURN_ON_ERROR);
NSDestroyObjectFileImage(img);
if (mod == NULL) pusherror(L);
return mod;
}
lua_pushstring(L, errorfromcode(ret));
return NULL;
}
static lua_CFunction ll_sym (lua_State *L, void *lib, const char *sym) {
NSSymbol nss = NSLookupSymbolInModule((NSModule)lib, sym);
if (nss == NULL) {
lua_pushfstring(L, "symbol " LUA_QS " not found", sym);
return NULL;
}
return (lua_CFunction)NSAddressOfSymbol(nss);
}
/* }====================================================== */
#else
/*
** {======================================================
** Fallback for other systems
** =======================================================
*/
#undef LIB_FAIL
#define LIB_FAIL "absent"
#define DLMSG "dynamic libraries not enabled; check your Lua installation"
static void ll_unloadlib (void *lib) {
(void)lib; /* to avoid warnings */
}
static void *ll_load (lua_State *L, const char *path) {
(void)path; /* to avoid warnings */
lua_pushliteral(L, DLMSG);
return NULL;
}
static lua_CFunction ll_sym (lua_State *L, void *lib, const char *sym) {
(void)lib; (void)sym; /* to avoid warnings */
lua_pushliteral(L, DLMSG);
return NULL;
}
/* }====================================================== */
#endif
static void **ll_register (lua_State *L, const char *path) {
void **plib;
lua_pushfstring(L, "%s%s", LIBPREFIX, path);
lua_gettable(L, LUA_REGISTRYINDEX); /* check library in registry? */
if (!lua_isnil(L, -1)) /* is there an entry? */
plib = (void **)lua_touserdata(L, -1);
else { /* no entry yet; create one */
lua_pop(L, 1);
plib = (void **)lua_newuserdata(L, sizeof(const void *));
*plib = NULL;
luaL_getmetatable(L, "_LOADLIB");
lua_setmetatable(L, -2);
lua_pushfstring(L, "%s%s", LIBPREFIX, path);
lua_pushvalue(L, -2);
lua_settable(L, LUA_REGISTRYINDEX);
}
return plib;
}
/*
** __gc tag method: calls library's `ll_unloadlib' function with the lib
** handle
*/
static int gctm (lua_State *L) {
void **lib = (void **)luaL_checkudata(L, 1, "_LOADLIB");
if (*lib) ll_unloadlib(*lib);
*lib = NULL; /* mark library as closed */
return 0;
}
static int ll_loadfunc (lua_State *L, const char *path, const char *sym) {
void **reg = ll_register(L, path);
if (*reg == NULL) *reg = ll_load(L, path);
if (*reg == NULL)
return ERRLIB; /* unable to load library */
else {
lua_CFunction f = ll_sym(L, *reg, sym);
if (f == NULL)
return ERRFUNC; /* unable to find function */
lua_pushcfunction(L, f);
return 0; /* return function */
}
}
static int ll_loadlib (lua_State *L) {
const char *path = luaL_checkstring(L, 1);
const char *init = luaL_checkstring(L, 2);
int stat = ll_loadfunc(L, path, init);
if (stat == 0) /* no errors? */
return 1; /* return the loaded function */
else { /* error; error message is on stack top */
lua_pushnil(L);
lua_insert(L, -2);
lua_pushstring(L, (stat == ERRLIB) ? LIB_FAIL : "init");
return 3; /* return nil, error message, and where */
}
}
/*
** {======================================================
** 'require' function
** =======================================================
*/
static int readable (const char *filename) {
FILE *f = fopen(filename, "r"); /* try to open file */
if (f == NULL) return 0; /* open failed */
fclose(f);
return 1;
}
static const char *pushnexttemplate (lua_State *L, const char *path) {
const char *l;
while (*path == *LUA_PATHSEP) path++; /* skip separators */
if (*path == '\0') return NULL; /* no more templates */
l = strchr(path, *LUA_PATHSEP); /* find next separator */
if (l == NULL) l = path + strlen(path);
lua_pushlstring(L, path, l - path); /* template */
return l;
}
static const char *findfile (lua_State *L, const char *name,
const char *pname) {
const char *path;
name = luaL_gsub(L, name, ".", LUA_DIRSEP);
lua_getfield(L, LUA_ENVIRONINDEX, pname);
path = lua_tostring(L, -1);
if (path == NULL)
luaL_error(L, LUA_QL("package.%s") " must be a string", pname);
lua_pushliteral(L, ""); /* error accumulator */
while ((path = pushnexttemplate(L, path)) != NULL) {
const char *filename;
filename = luaL_gsub(L, lua_tostring(L, -1), LUA_PATH_MARK, name);
lua_remove(L, -2); /* remove path template */
if (readable(filename)) /* does file exist and is readable? */
return filename; /* return that file name */
lua_pushfstring(L, "\n\tno file " LUA_QS, filename);
lua_remove(L, -2); /* remove file name */
lua_concat(L, 2); /* add entry to possible error message */
}
return NULL; /* not found */
}
static void loaderror (lua_State *L, const char *filename) {
luaL_error(L, "error loading module " LUA_QS " from file " LUA_QS ":\n\t%s",
lua_tostring(L, 1), filename, lua_tostring(L, -1));
}
static int loader_Lua (lua_State *L) {
const char *filename;
const char *name = luaL_checkstring(L, 1);
filename = findfile(L, name, "path");
if (filename == NULL) return 1; /* library not found in this path */
if (luaL_loadfile(L, filename) != 0)
loaderror(L, filename);
return 1; /* library loaded successfully */
}
static const char *mkfuncname (lua_State *L, const char *modname) {
const char *funcname;
const char *mark = strchr(modname, *LUA_IGMARK);
if (mark) modname = mark + 1;
funcname = luaL_gsub(L, modname, ".", LUA_OFSEP);
funcname = lua_pushfstring(L, POF"%s", funcname);
lua_remove(L, -2); /* remove 'gsub' result */
return funcname;
}
static int loader_C (lua_State *L) {
const char *funcname;
const char *name = luaL_checkstring(L, 1);
const char *filename = findfile(L, name, "cpath");
if (filename == NULL) return 1; /* library not found in this path */
funcname = mkfuncname(L, name);
if (ll_loadfunc(L, filename, funcname) != 0)
loaderror(L, filename);
return 1; /* library loaded successfully */
}
static int loader_Croot (lua_State *L) {
const char *funcname;
const char *filename;
const char *name = luaL_checkstring(L, 1);
const char *p = strchr(name, '.');
int stat;
if (p == NULL) return 0; /* is root */
lua_pushlstring(L, name, p - name);
filename = findfile(L, lua_tostring(L, -1), "cpath");
if (filename == NULL) return 1; /* root not found */
funcname = mkfuncname(L, name);
if ((stat = ll_loadfunc(L, filename, funcname)) != 0) {
if (stat != ERRFUNC) loaderror(L, filename); /* real error */
lua_pushfstring(L, "\n\tno module " LUA_QS " in file " LUA_QS,
name, filename);
return 1; /* function not found */
}
return 1;
}
static int loader_preload (lua_State *L) {
const char *name = luaL_checkstring(L, 1);
lua_getfield(L, LUA_ENVIRONINDEX, "preload");
if (!lua_istable(L, -1))
luaL_error(L, LUA_QL("package.preload") " must be a table");
lua_getfield(L, -1, name);
if (lua_isnil(L, -1)) /* not found? */
lua_pushfstring(L, "\n\tno field package.preload['%s']", name);
return 1;
}
static const int sentinel_ = 0;
#define sentinel ((void *)&sentinel_)
static int ll_require (lua_State *L) {
const char *name = luaL_checkstring(L, 1);
int i;
lua_settop(L, 1); /* _LOADED table will be at index 2 */
lua_getfield(L, LUA_REGISTRYINDEX, "_LOADED");
lua_getfield(L, 2, name);
if (lua_toboolean(L, -1)) { /* is it there? */
if (lua_touserdata(L, -1) == sentinel) /* check loops */
luaL_error(L, "loop or previous error loading module " LUA_QS, name);
return 1; /* package is already loaded */
}
/* else must load it; iterate over available loaders */
lua_getfield(L, LUA_ENVIRONINDEX, "loaders");
if (!lua_istable(L, -1))
luaL_error(L, LUA_QL("package.loaders") " must be a table");
lua_pushliteral(L, ""); /* error message accumulator */
for (i=1; ; i++) {
lua_rawgeti(L, -2, i); /* get a loader */
if (lua_isnil(L, -1))
luaL_error(L, "module " LUA_QS " not found:%s",
name, lua_tostring(L, -2));
lua_pushstring(L, name);
lua_call(L, 1, 1); /* call it */
if (lua_isfunction(L, -1)) /* did it find module? */
break; /* module loaded successfully */
else if (lua_isstring(L, -1)) /* loader returned error message? */
lua_concat(L, 2); /* accumulate it */
else
lua_pop(L, 1);
}
lua_pushlightuserdata(L, sentinel);
lua_setfield(L, 2, name); /* _LOADED[name] = sentinel */
lua_pushstring(L, name); /* pass name as argument to module */
lua_call(L, 1, 1); /* run loaded module */
if (!lua_isnil(L, -1)) /* non-nil return? */
lua_setfield(L, 2, name); /* _LOADED[name] = returned value */
lua_getfield(L, 2, name);
if (lua_touserdata(L, -1) == sentinel) { /* module did not set a value? */
lua_pushboolean(L, 1); /* use true as result */
lua_pushvalue(L, -1); /* extra copy to be returned */
lua_setfield(L, 2, name); /* _LOADED[name] = true */
}
return 1;
}
/* }====================================================== */
/*
** {======================================================
** 'module' function
** =======================================================
*/
static void setfenv (lua_State *L) {
lua_Debug ar;
if (lua_getstack(L, 1, &ar) == 0 ||
lua_getinfo(L, "f", &ar) == 0 || /* get calling function */
lua_iscfunction(L, -1))
luaL_error(L, LUA_QL("module") " not called from a Lua function");
lua_pushvalue(L, -2);
lua_setfenv(L, -2);
lua_pop(L, 1);
}
static void dooptions (lua_State *L, int n) {
int i;
for (i = 2; i <= n; i++) {
lua_pushvalue(L, i); /* get option (a function) */
lua_pushvalue(L, -2); /* module */
lua_call(L, 1, 0);
}
}
static void modinit (lua_State *L, const char *modname) {
const char *dot;
lua_pushvalue(L, -1);
lua_setfield(L, -2, "_M"); /* module._M = module */
lua_pushstring(L, modname);
lua_setfield(L, -2, "_NAME");
dot = strrchr(modname, '.'); /* look for last dot in module name */
if (dot == NULL) dot = modname;
else dot++;
/* set _PACKAGE as package name (full module name minus last part) */
lua_pushlstring(L, modname, dot - modname);
lua_setfield(L, -2, "_PACKAGE");
}
static int ll_module (lua_State *L) {
const char *modname = luaL_checkstring(L, 1);
int loaded = lua_gettop(L) + 1; /* index of _LOADED table */
lua_getfield(L, LUA_REGISTRYINDEX, "_LOADED");
lua_getfield(L, loaded, modname); /* get _LOADED[modname] */
if (!lua_istable(L, -1)) { /* not found? */
lua_pop(L, 1); /* remove previous result */
/* try global variable (and create one if it does not exist) */
if (luaL_findtable(L, LUA_GLOBALSINDEX, modname, 1) != NULL)
return luaL_error(L, "name conflict for module " LUA_QS, modname);
lua_pushvalue(L, -1);
lua_setfield(L, loaded, modname); /* _LOADED[modname] = new table */
}
/* check whether table already has a _NAME field */
lua_getfield(L, -1, "_NAME");
if (!lua_isnil(L, -1)) /* is table an initialized module? */
lua_pop(L, 1);
else { /* no; initialize it */
lua_pop(L, 1);
modinit(L, modname);
}
lua_pushvalue(L, -1);
setfenv(L);
dooptions(L, loaded - 1);
return 0;
}
static int ll_seeall (lua_State *L) {
luaL_checktype(L, 1, LUA_TTABLE);
if (!lua_getmetatable(L, 1)) {
lua_createtable(L, 0, 1); /* create new metatable */
lua_pushvalue(L, -1);
lua_setmetatable(L, 1);
}
lua_pushvalue(L, LUA_GLOBALSINDEX);
lua_setfield(L, -2, "__index"); /* mt.__index = _G */
return 0;
}
/* }====================================================== */
/* auxiliary mark (for internal use) */
#define AUXMARK "\1"
static void setpath (lua_State *L, const char *fieldname, const char *envname,
const char *def) {
const char *path = getenv(envname);
if (path == NULL) /* no environment variable? */
lua_pushstring(L, def); /* use default */
else {
/* replace ";;" by ";AUXMARK;" and then AUXMARK by default path */
path = luaL_gsub(L, path, LUA_PATHSEP LUA_PATHSEP,
LUA_PATHSEP AUXMARK LUA_PATHSEP);
luaL_gsub(L, path, AUXMARK, def);
lua_remove(L, -2);
}
setprogdir(L);
lua_setfield(L, -2, fieldname);
}
static const luaL_Reg pk_funcs[] = {
{"loadlib", ll_loadlib},
{"seeall", ll_seeall},
{NULL, NULL}
};
static const luaL_Reg ll_funcs[] = {
{"module", ll_module},
{"require", ll_require},
{NULL, NULL}
};
static const lua_CFunction loaders[] =
{loader_preload, loader_Lua, loader_C, loader_Croot, NULL};
LUALIB_API int luaopen_package (lua_State *L) {
int i;
/* create new type _LOADLIB */
luaL_newmetatable(L, "_LOADLIB");
lua_pushcfunction(L, gctm);
lua_setfield(L, -2, "__gc");
/* create `package' table */
luaL_register(L, LUA_LOADLIBNAME, pk_funcs);
#if defined(LUA_COMPAT_LOADLIB)
lua_getfield(L, -1, "loadlib");
lua_setfield(L, LUA_GLOBALSINDEX, "loadlib");
#endif
lua_pushvalue(L, -1);
lua_replace(L, LUA_ENVIRONINDEX);
/* create `loaders' table */
lua_createtable(L, sizeof(loaders)/sizeof(loaders[0]) - 1, 0);
/* fill it with pre-defined loaders */
for (i=0; loaders[i] != NULL; i++) {
lua_pushcfunction(L, loaders[i]);
lua_rawseti(L, -2, i+1);
}
lua_setfield(L, -2, "loaders"); /* put it in field `loaders' */
setpath(L, "path", LUA_PATH, LUA_PATH_DEFAULT); /* set field `path' */
setpath(L, "cpath", LUA_CPATH, LUA_CPATH_DEFAULT); /* set field `cpath' */
/* store config information */
lua_pushliteral(L, LUA_DIRSEP "\n" LUA_PATHSEP "\n" LUA_PATH_MARK "\n"
LUA_EXECDIR "\n" LUA_IGMARK);
lua_setfield(L, -2, "config");
/* set field `loaded' */
luaL_findtable(L, LUA_REGISTRYINDEX, "_LOADED", 2);
lua_setfield(L, -2, "loaded");
/* set field `preload' */
lua_newtable(L);
lua_setfield(L, -2, "preload");
lua_pushvalue(L, LUA_GLOBALSINDEX);
luaL_register(L, NULL, ll_funcs); /* open lib into global table */
lua_pop(L, 1);
return 1; /* return 'package' table */
}
| 19,216 | 27.811094 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/loslib.c | /*
** $Id: loslib.c,v 1.19.1.3 2008/01/18 16:38:18 roberto Exp $
** Standard Operating System library
** See Copyright Notice in lua.h
*/
#include <errno.h>
#include <locale.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#define loslib_c
#define LUA_LIB
#include "lua.h"
#include "lauxlib.h"
#include "lualib.h"
static int os_pushresult (lua_State *L, int i, const char *filename) {
int en = errno; /* calls to Lua API may change this value */
if (i) {
lua_pushboolean(L, 1);
return 1;
}
else {
lua_pushnil(L);
lua_pushfstring(L, "%s: %s", filename, strerror(en));
lua_pushinteger(L, en);
return 3;
}
}
static int os_execute (lua_State *L) {
lua_pushinteger(L, system(luaL_optstring(L, 1, NULL)));
return 1;
}
static int os_remove (lua_State *L) {
const char *filename = luaL_checkstring(L, 1);
return os_pushresult(L, remove(filename) == 0, filename);
}
static int os_rename (lua_State *L) {
const char *fromname = luaL_checkstring(L, 1);
const char *toname = luaL_checkstring(L, 2);
return os_pushresult(L, rename(fromname, toname) == 0, fromname);
}
static int os_tmpname (lua_State *L) {
char buff[LUA_TMPNAMBUFSIZE];
int err;
lua_tmpnam(buff, err);
if (err)
return luaL_error(L, "unable to generate a unique filename");
lua_pushstring(L, buff);
return 1;
}
static int os_getenv (lua_State *L) {
lua_pushstring(L, getenv(luaL_checkstring(L, 1))); /* if NULL push nil */
return 1;
}
static int os_clock (lua_State *L) {
lua_pushnumber(L, ((lua_Number)clock())/(lua_Number)CLOCKS_PER_SEC);
return 1;
}
/*
** {======================================================
** Time/Date operations
** { year=%Y, month=%m, day=%d, hour=%H, min=%M, sec=%S,
** wday=%w+1, yday=%j, isdst=? }
** =======================================================
*/
static void setfield (lua_State *L, const char *key, int value) {
lua_pushinteger(L, value);
lua_setfield(L, -2, key);
}
static void setboolfield (lua_State *L, const char *key, int value) {
if (value < 0) /* undefined? */
return; /* does not set field */
lua_pushboolean(L, value);
lua_setfield(L, -2, key);
}
static int getboolfield (lua_State *L, const char *key) {
int res;
lua_getfield(L, -1, key);
res = lua_isnil(L, -1) ? -1 : lua_toboolean(L, -1);
lua_pop(L, 1);
return res;
}
static int getfield (lua_State *L, const char *key, int d) {
int res;
lua_getfield(L, -1, key);
if (lua_isnumber(L, -1))
res = (int)lua_tointeger(L, -1);
else {
if (d < 0)
return luaL_error(L, "field " LUA_QS " missing in date table", key);
res = d;
}
lua_pop(L, 1);
return res;
}
static int os_date (lua_State *L) {
const char *s = luaL_optstring(L, 1, "%c");
time_t t = luaL_opt(L, (time_t)luaL_checknumber, 2, time(NULL));
struct tm *stm;
if (*s == '!') { /* UTC? */
stm = gmtime(&t);
s++; /* skip `!' */
}
else
stm = localtime(&t);
if (stm == NULL) /* invalid date? */
lua_pushnil(L);
else if (strcmp(s, "*t") == 0) {
lua_createtable(L, 0, 9); /* 9 = number of fields */
setfield(L, "sec", stm->tm_sec);
setfield(L, "min", stm->tm_min);
setfield(L, "hour", stm->tm_hour);
setfield(L, "day", stm->tm_mday);
setfield(L, "month", stm->tm_mon+1);
setfield(L, "year", stm->tm_year+1900);
setfield(L, "wday", stm->tm_wday+1);
setfield(L, "yday", stm->tm_yday+1);
setboolfield(L, "isdst", stm->tm_isdst);
}
else {
char cc[3];
luaL_Buffer b;
cc[0] = '%'; cc[2] = '\0';
luaL_buffinit(L, &b);
for (; *s; s++) {
if (*s != '%' || *(s + 1) == '\0') /* no conversion specifier? */
luaL_addchar(&b, *s);
else {
size_t reslen;
char buff[200]; /* should be big enough for any conversion result */
cc[1] = *(++s);
reslen = strftime(buff, sizeof(buff), cc, stm);
luaL_addlstring(&b, buff, reslen);
}
}
luaL_pushresult(&b);
}
return 1;
}
static int os_time (lua_State *L) {
time_t t;
if (lua_isnoneornil(L, 1)) /* called without args? */
t = time(NULL); /* get current time */
else {
struct tm ts;
luaL_checktype(L, 1, LUA_TTABLE);
lua_settop(L, 1); /* make sure table is at the top */
ts.tm_sec = getfield(L, "sec", 0);
ts.tm_min = getfield(L, "min", 0);
ts.tm_hour = getfield(L, "hour", 12);
ts.tm_mday = getfield(L, "day", -1);
ts.tm_mon = getfield(L, "month", -1) - 1;
ts.tm_year = getfield(L, "year", -1) - 1900;
ts.tm_isdst = getboolfield(L, "isdst");
t = mktime(&ts);
}
if (t == (time_t)(-1))
lua_pushnil(L);
else
lua_pushnumber(L, (lua_Number)t);
return 1;
}
static int os_difftime (lua_State *L) {
lua_pushnumber(L, difftime((time_t)(luaL_checknumber(L, 1)),
(time_t)(luaL_optnumber(L, 2, 0))));
return 1;
}
/* }====================================================== */
static int os_setlocale (lua_State *L) {
static const int cat[] = {LC_ALL, LC_COLLATE, LC_CTYPE, LC_MONETARY,
LC_NUMERIC, LC_TIME};
static const char *const catnames[] = {"all", "collate", "ctype", "monetary",
"numeric", "time", NULL};
const char *l = luaL_optstring(L, 1, NULL);
int op = luaL_checkoption(L, 2, "all", catnames);
lua_pushstring(L, setlocale(cat[op], l));
return 1;
}
static int os_exit (lua_State *L) {
exit(luaL_optint(L, 1, EXIT_SUCCESS));
}
static const luaL_Reg syslib[] = {
{"clock", os_clock},
{"date", os_date},
{"difftime", os_difftime},
{"execute", os_execute},
{"exit", os_exit},
{"getenv", os_getenv},
{"remove", os_remove},
{"rename", os_rename},
{"setlocale", os_setlocale},
{"time", os_time},
{"tmpname", os_tmpname},
{NULL, NULL}
};
/* }====================================================== */
LUALIB_API int luaopen_os (lua_State *L) {
luaL_register(L, LUA_OSLIBNAME, syslib);
return 1;
}
| 5,992 | 23.561475 | 79 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/lobject.c | /*
** $Id: lobject.c,v 2.22.1.1 2007/12/27 13:02:25 roberto Exp $
** Some generic functions over Lua objects
** See Copyright Notice in lua.h
*/
#include <ctype.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define lobject_c
#define LUA_CORE
#include "lua.h"
#include "ldo.h"
#include "lmem.h"
#include "lobject.h"
#include "lstate.h"
#include "lstring.h"
#include "lvm.h"
const TValue luaO_nilobject_ = {{NULL}, LUA_TNIL};
/*
** converts an integer to a "floating point byte", represented as
** (eeeeexxx), where the real value is (1xxx) * 2^(eeeee - 1) if
** eeeee != 0 and (xxx) otherwise.
*/
int luaO_int2fb (unsigned int x) {
int e = 0; /* expoent */
while (x >= 16) {
x = (x+1) >> 1;
e++;
}
if (x < 8) return x;
else return ((e+1) << 3) | (cast_int(x) - 8);
}
/* converts back */
int luaO_fb2int (int x) {
int e = (x >> 3) & 31;
if (e == 0) return x;
else return ((x & 7)+8) << (e - 1);
}
int luaO_log2 (unsigned int x) {
static const lu_byte log_2[256] = {
0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
};
int l = -1;
while (x >= 256) { l += 8; x >>= 8; }
return l + log_2[x];
}
int luaO_rawequalObj (const TValue *t1, const TValue *t2) {
if (ttype(t1) != ttype(t2)) return 0;
else switch (ttype(t1)) {
case LUA_TNIL:
return 1;
case LUA_TNUMBER:
return luai_numeq(nvalue(t1), nvalue(t2));
case LUA_TBOOLEAN:
return bvalue(t1) == bvalue(t2); /* boolean true must be 1 !! */
case LUA_TLIGHTUSERDATA:
return pvalue(t1) == pvalue(t2);
default:
lua_assert(iscollectable(t1));
return gcvalue(t1) == gcvalue(t2);
}
}
int luaO_str2d (const char *s, lua_Number *result) {
char *endptr;
*result = lua_str2number(s, &endptr);
if (endptr == s) return 0; /* conversion failed */
if (*endptr == 'x' || *endptr == 'X') /* maybe an hexadecimal constant? */
*result = cast_num(strtoul(s, &endptr, 16));
if (*endptr == '\0') return 1; /* most common case */
while (isspace(cast(unsigned char, *endptr))) endptr++;
if (*endptr != '\0') return 0; /* invalid trailing characters? */
return 1;
}
static void pushstr (lua_State *L, const char *str) {
setsvalue2s(L, L->top, luaS_new(L, str));
incr_top(L);
}
/* this function handles only `%d', `%c', %f, %p, and `%s' formats */
const char *luaO_pushvfstring (lua_State *L, const char *fmt, va_list argp) {
int n = 1;
pushstr(L, "");
for (;;) {
const char *e = strchr(fmt, '%');
if (e == NULL) break;
setsvalue2s(L, L->top, luaS_newlstr(L, fmt, e-fmt));
incr_top(L);
switch (*(e+1)) {
case 's': {
const char *s = va_arg(argp, char *);
if (s == NULL) s = "(null)";
pushstr(L, s);
break;
}
case 'c': {
char buff[2];
buff[0] = cast(char, va_arg(argp, int));
buff[1] = '\0';
pushstr(L, buff);
break;
}
case 'd': {
setnvalue(L->top, cast_num(va_arg(argp, int)));
incr_top(L);
break;
}
case 'f': {
setnvalue(L->top, cast_num(va_arg(argp, l_uacNumber)));
incr_top(L);
break;
}
case 'p': {
char buff[4*sizeof(void *) + 8]; /* should be enough space for a `%p' */
sprintf(buff, "%p", va_arg(argp, void *));
pushstr(L, buff);
break;
}
case '%': {
pushstr(L, "%");
break;
}
default: {
char buff[3];
buff[0] = '%';
buff[1] = *(e+1);
buff[2] = '\0';
pushstr(L, buff);
break;
}
}
n += 2;
fmt = e+2;
}
pushstr(L, fmt);
luaV_concat(L, n+1, cast_int(L->top - L->base) - 1);
L->top -= n;
return svalue(L->top - 1);
}
const char *luaO_pushfstring (lua_State *L, const char *fmt, ...) {
const char *msg;
va_list argp;
va_start(argp, fmt);
msg = luaO_pushvfstring(L, fmt, argp);
va_end(argp);
return msg;
}
void luaO_chunkid (char *out, const char *source, size_t bufflen) {
if (*source == '=') {
strncpy(out, source+1, bufflen); /* remove first char */
out[bufflen-1] = '\0'; /* ensures null termination */
}
else { /* out = "source", or "...source" */
if (*source == '@') {
size_t l;
source++; /* skip the `@' */
bufflen -= sizeof(" '...' ");
l = strlen(source);
strcpy(out, "");
if (l > bufflen) {
source += (l-bufflen); /* get last part of file name */
strcat(out, "...");
}
strcat(out, source);
}
else { /* out = [string "string"] */
size_t len = strcspn(source, "\n\r"); /* stop at first newline */
bufflen -= sizeof(" [string \"...\"] ");
if (len > bufflen) len = bufflen;
strcpy(out, "[string \"");
if (source[len] != '\0') { /* must truncate? */
strncat(out, source, len);
strcat(out, "...");
}
else
strcat(out, source);
strcat(out, "\"]");
}
}
}
| 5,498 | 24.576744 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/ldo.c | /*
** $Id: ldo.c,v 2.38.1.4 2012/01/18 02:27:10 roberto Exp $
** Stack and Call structure of Lua
** See Copyright Notice in lua.h
*/
#include <setjmp.h>
#include <stdlib.h>
#include <string.h>
#define ldo_c
#define LUA_CORE
#include "lua.h"
#include "ldebug.h"
#include "ldo.h"
#include "lfunc.h"
#include "lgc.h"
#include "lmem.h"
#include "lobject.h"
#include "lopcodes.h"
#include "lparser.h"
#include "lstate.h"
#include "lstring.h"
#include "ltable.h"
#include "ltm.h"
#include "lundump.h"
#include "lvm.h"
#include "lzio.h"
/*
** {======================================================
** Error-recovery functions
** =======================================================
*/
/* chain list of long jump buffers */
struct lua_longjmp {
struct lua_longjmp *previous;
luai_jmpbuf b;
volatile int status; /* error code */
};
void luaD_seterrorobj (lua_State *L, int errcode, StkId oldtop) {
switch (errcode) {
case LUA_ERRMEM: {
setsvalue2s(L, oldtop, luaS_newliteral(L, MEMERRMSG));
break;
}
case LUA_ERRERR: {
setsvalue2s(L, oldtop, luaS_newliteral(L, "error in error handling"));
break;
}
case LUA_ERRSYNTAX:
case LUA_ERRRUN: {
setobjs2s(L, oldtop, L->top - 1); /* error message on current top */
break;
}
}
L->top = oldtop + 1;
}
static void restore_stack_limit (lua_State *L) {
lua_assert(L->stack_last - L->stack == L->stacksize - EXTRA_STACK - 1);
if (L->size_ci > LUAI_MAXCALLS) { /* there was an overflow? */
int inuse = cast_int(L->ci - L->base_ci);
if (inuse + 1 < LUAI_MAXCALLS) /* can `undo' overflow? */
luaD_reallocCI(L, LUAI_MAXCALLS);
}
}
static void resetstack (lua_State *L, int status) {
L->ci = L->base_ci;
L->base = L->ci->base;
luaF_close(L, L->base); /* close eventual pending closures */
luaD_seterrorobj(L, status, L->base);
L->nCcalls = L->baseCcalls;
L->allowhook = 1;
restore_stack_limit(L);
L->errfunc = 0;
L->errorJmp = NULL;
}
void luaD_throw (lua_State *L, int errcode) {
if (L->errorJmp) {
L->errorJmp->status = errcode;
LUAI_THROW(L, L->errorJmp);
}
else {
L->status = cast_byte(errcode);
if (G(L)->panic) {
resetstack(L, errcode);
lua_unlock(L);
G(L)->panic(L);
}
exit(EXIT_FAILURE);
}
}
int luaD_rawrunprotected (lua_State *L, Pfunc f, void *ud) {
struct lua_longjmp lj;
lj.status = 0;
lj.previous = L->errorJmp; /* chain new error handler */
L->errorJmp = &lj;
LUAI_TRY(L, &lj,
(*f)(L, ud);
);
L->errorJmp = lj.previous; /* restore old error handler */
return lj.status;
}
/* }====================================================== */
static void correctstack (lua_State *L, TValue *oldstack) {
CallInfo *ci;
GCObject *up;
L->top = (L->top - oldstack) + L->stack;
for (up = L->openupval; up != NULL; up = up->gch.next)
gco2uv(up)->v = (gco2uv(up)->v - oldstack) + L->stack;
for (ci = L->base_ci; ci <= L->ci; ci++) {
ci->top = (ci->top - oldstack) + L->stack;
ci->base = (ci->base - oldstack) + L->stack;
ci->func = (ci->func - oldstack) + L->stack;
}
L->base = (L->base - oldstack) + L->stack;
}
void luaD_reallocstack (lua_State *L, int newsize) {
TValue *oldstack = L->stack;
int realsize = newsize + 1 + EXTRA_STACK;
lua_assert(L->stack_last - L->stack == L->stacksize - EXTRA_STACK - 1);
luaM_reallocvector(L, L->stack, L->stacksize, realsize, TValue);
L->stacksize = realsize;
L->stack_last = L->stack+newsize;
correctstack(L, oldstack);
}
void luaD_reallocCI (lua_State *L, int newsize) {
CallInfo *oldci = L->base_ci;
luaM_reallocvector(L, L->base_ci, L->size_ci, newsize, CallInfo);
L->size_ci = newsize;
L->ci = (L->ci - oldci) + L->base_ci;
L->end_ci = L->base_ci + L->size_ci - 1;
}
void luaD_growstack (lua_State *L, int n) {
if (n <= L->stacksize) /* double size is enough? */
luaD_reallocstack(L, 2*L->stacksize);
else
luaD_reallocstack(L, L->stacksize + n);
}
static CallInfo *growCI (lua_State *L) {
if (L->size_ci > LUAI_MAXCALLS) /* overflow while handling overflow? */
luaD_throw(L, LUA_ERRERR);
else {
luaD_reallocCI(L, 2*L->size_ci);
if (L->size_ci > LUAI_MAXCALLS)
luaG_runerror(L, "stack overflow");
}
return ++L->ci;
}
void luaD_callhook (lua_State *L, int event, int line) {
lua_Hook hook = L->hook;
if (hook && L->allowhook) {
ptrdiff_t top = savestack(L, L->top);
ptrdiff_t ci_top = savestack(L, L->ci->top);
lua_Debug ar;
ar.event = event;
ar.currentline = line;
if (event == LUA_HOOKTAILRET)
ar.i_ci = 0; /* tail call; no debug information about it */
else
ar.i_ci = cast_int(L->ci - L->base_ci);
luaD_checkstack(L, LUA_MINSTACK); /* ensure minimum stack size */
L->ci->top = L->top + LUA_MINSTACK;
lua_assert(L->ci->top <= L->stack_last);
L->allowhook = 0; /* cannot call hooks inside a hook */
lua_unlock(L);
(*hook)(L, &ar);
lua_lock(L);
lua_assert(!L->allowhook);
L->allowhook = 1;
L->ci->top = restorestack(L, ci_top);
L->top = restorestack(L, top);
}
}
static StkId adjust_varargs (lua_State *L, Proto *p, int actual) {
int i;
int nfixargs = p->numparams;
Table *htab = NULL;
StkId base, fixed;
for (; actual < nfixargs; ++actual)
setnilvalue(L->top++);
#if defined(LUA_COMPAT_VARARG)
if (p->is_vararg & VARARG_NEEDSARG) { /* compat. with old-style vararg? */
int nvar = actual - nfixargs; /* number of extra arguments */
lua_assert(p->is_vararg & VARARG_HASARG);
luaC_checkGC(L);
luaD_checkstack(L, p->maxstacksize);
htab = luaH_new(L, nvar, 1); /* create `arg' table */
for (i=0; i<nvar; i++) /* put extra arguments into `arg' table */
setobj2n(L, luaH_setnum(L, htab, i+1), L->top - nvar + i);
/* store counter in field `n' */
setnvalue(luaH_setstr(L, htab, luaS_newliteral(L, "n")), cast_num(nvar));
}
#endif
/* move fixed parameters to final position */
fixed = L->top - actual; /* first fixed argument */
base = L->top; /* final position of first argument */
for (i=0; i<nfixargs; i++) {
setobjs2s(L, L->top++, fixed+i);
setnilvalue(fixed+i);
}
/* add `arg' parameter */
if (htab) {
sethvalue(L, L->top++, htab);
lua_assert(iswhite(obj2gco(htab)));
}
return base;
}
static StkId tryfuncTM (lua_State *L, StkId func) {
const TValue *tm = luaT_gettmbyobj(L, func, TM_CALL);
StkId p;
ptrdiff_t funcr = savestack(L, func);
if (!ttisfunction(tm))
luaG_typeerror(L, func, "call");
/* Open a hole inside the stack at `func' */
for (p = L->top; p > func; p--) setobjs2s(L, p, p-1);
incr_top(L);
func = restorestack(L, funcr); /* previous call may change stack */
setobj2s(L, func, tm); /* tag method is the new function to be called */
return func;
}
#define inc_ci(L) \
((L->ci == L->end_ci) ? growCI(L) : \
(condhardstacktests(luaD_reallocCI(L, L->size_ci)), ++L->ci))
int luaD_precall (lua_State *L, StkId func, int nresults) {
LClosure *cl;
ptrdiff_t funcr;
if (!ttisfunction(func)) /* `func' is not a function? */
func = tryfuncTM(L, func); /* check the `function' tag method */
funcr = savestack(L, func);
cl = &clvalue(func)->l;
L->ci->savedpc = L->savedpc;
if (!cl->isC) { /* Lua function? prepare its call */
CallInfo *ci;
StkId st, base;
Proto *p = cl->p;
luaD_checkstack(L, p->maxstacksize);
func = restorestack(L, funcr);
if (!p->is_vararg) { /* no varargs? */
base = func + 1;
if (L->top > base + p->numparams)
L->top = base + p->numparams;
}
else { /* vararg function */
int nargs = cast_int(L->top - func) - 1;
base = adjust_varargs(L, p, nargs);
func = restorestack(L, funcr); /* previous call may change the stack */
}
ci = inc_ci(L); /* now `enter' new function */
ci->func = func;
L->base = ci->base = base;
ci->top = L->base + p->maxstacksize;
lua_assert(ci->top <= L->stack_last);
L->savedpc = p->code; /* starting point */
ci->tailcalls = 0;
ci->nresults = nresults;
for (st = L->top; st < ci->top; st++)
setnilvalue(st);
L->top = ci->top;
if (L->hookmask & LUA_MASKCALL) {
L->savedpc++; /* hooks assume 'pc' is already incremented */
luaD_callhook(L, LUA_HOOKCALL, -1);
L->savedpc--; /* correct 'pc' */
}
return PCRLUA;
}
else { /* if is a C function, call it */
CallInfo *ci;
int n;
luaD_checkstack(L, LUA_MINSTACK); /* ensure minimum stack size */
ci = inc_ci(L); /* now `enter' new function */
ci->func = restorestack(L, funcr);
L->base = ci->base = ci->func + 1;
ci->top = L->top + LUA_MINSTACK;
lua_assert(ci->top <= L->stack_last);
ci->nresults = nresults;
if (L->hookmask & LUA_MASKCALL)
luaD_callhook(L, LUA_HOOKCALL, -1);
lua_unlock(L);
n = (*curr_func(L)->c.f)(L); /* do the actual call */
lua_lock(L);
if (n < 0) /* yielding? */
return PCRYIELD;
else {
luaD_poscall(L, L->top - n);
return PCRC;
}
}
}
static StkId callrethooks (lua_State *L, StkId firstResult) {
ptrdiff_t fr = savestack(L, firstResult); /* next call may change stack */
luaD_callhook(L, LUA_HOOKRET, -1);
if (f_isLua(L->ci)) { /* Lua function? */
while ((L->hookmask & LUA_MASKRET) && L->ci->tailcalls--) /* tail calls */
luaD_callhook(L, LUA_HOOKTAILRET, -1);
}
return restorestack(L, fr);
}
int luaD_poscall (lua_State *L, StkId firstResult) {
StkId res;
int wanted, i;
CallInfo *ci;
if (L->hookmask & LUA_MASKRET)
firstResult = callrethooks(L, firstResult);
ci = L->ci--;
res = ci->func; /* res == final position of 1st result */
wanted = ci->nresults;
L->base = (ci - 1)->base; /* restore base */
L->savedpc = (ci - 1)->savedpc; /* restore savedpc */
/* move results to correct place */
for (i = wanted; i != 0 && firstResult < L->top; i--)
setobjs2s(L, res++, firstResult++);
while (i-- > 0)
setnilvalue(res++);
L->top = res;
return (wanted - LUA_MULTRET); /* 0 iff wanted == LUA_MULTRET */
}
/*
** Call a function (C or Lua). The function to be called is at *func.
** The arguments are on the stack, right after the function.
** When returns, all the results are on the stack, starting at the original
** function position.
*/
void luaD_call (lua_State *L, StkId func, int nResults) {
if (++L->nCcalls >= LUAI_MAXCCALLS) {
if (L->nCcalls == LUAI_MAXCCALLS)
luaG_runerror(L, "C stack overflow");
else if (L->nCcalls >= (LUAI_MAXCCALLS + (LUAI_MAXCCALLS>>3)))
luaD_throw(L, LUA_ERRERR); /* error while handing stack error */
}
if (luaD_precall(L, func, nResults) == PCRLUA) /* is a Lua function? */
luaV_execute(L, 1); /* call it */
L->nCcalls--;
luaC_checkGC(L);
}
static void resume (lua_State *L, void *ud) {
StkId firstArg = cast(StkId, ud);
CallInfo *ci = L->ci;
if (L->status == 0) { /* start coroutine? */
lua_assert(ci == L->base_ci && firstArg > L->base);
if (luaD_precall(L, firstArg - 1, LUA_MULTRET) != PCRLUA)
return;
}
else { /* resuming from previous yield */
lua_assert(L->status == LUA_YIELD);
L->status = 0;
if (!f_isLua(ci)) { /* `common' yield? */
/* finish interrupted execution of `OP_CALL' */
lua_assert(GET_OPCODE(*((ci-1)->savedpc - 1)) == OP_CALL ||
GET_OPCODE(*((ci-1)->savedpc - 1)) == OP_TAILCALL);
if (luaD_poscall(L, firstArg)) /* complete it... */
L->top = L->ci->top; /* and correct top if not multiple results */
}
else /* yielded inside a hook: just continue its execution */
L->base = L->ci->base;
}
luaV_execute(L, cast_int(L->ci - L->base_ci));
}
static int resume_error (lua_State *L, const char *msg) {
L->top = L->ci->base;
setsvalue2s(L, L->top, luaS_new(L, msg));
incr_top(L);
lua_unlock(L);
return LUA_ERRRUN;
}
LUA_API int lua_resume (lua_State *L, int nargs) {
int status;
lua_lock(L);
if (L->status != LUA_YIELD && (L->status != 0 || L->ci != L->base_ci))
return resume_error(L, "cannot resume non-suspended coroutine");
if (L->nCcalls >= LUAI_MAXCCALLS)
return resume_error(L, "C stack overflow");
luai_userstateresume(L, nargs);
lua_assert(L->errfunc == 0);
L->baseCcalls = ++L->nCcalls;
status = luaD_rawrunprotected(L, resume, L->top - nargs);
if (status != 0) { /* error? */
L->status = cast_byte(status); /* mark thread as `dead' */
luaD_seterrorobj(L, status, L->top);
L->ci->top = L->top;
}
else {
lua_assert(L->nCcalls == L->baseCcalls);
status = L->status;
}
--L->nCcalls;
lua_unlock(L);
return status;
}
LUA_API int lua_yield (lua_State *L, int nresults) {
luai_userstateyield(L, nresults);
lua_lock(L);
if (L->nCcalls > L->baseCcalls)
luaG_runerror(L, "attempt to yield across metamethod/C-call boundary");
L->base = L->top - nresults; /* protect stack slots below */
L->status = LUA_YIELD;
lua_unlock(L);
return -1;
}
int luaD_pcall (lua_State *L, Pfunc func, void *u,
ptrdiff_t old_top, ptrdiff_t ef) {
int status;
unsigned short oldnCcalls = L->nCcalls;
ptrdiff_t old_ci = saveci(L, L->ci);
lu_byte old_allowhooks = L->allowhook;
ptrdiff_t old_errfunc = L->errfunc;
L->errfunc = ef;
status = luaD_rawrunprotected(L, func, u);
if (status != 0) { /* an error occurred? */
StkId oldtop = restorestack(L, old_top);
luaF_close(L, oldtop); /* close eventual pending closures */
luaD_seterrorobj(L, status, oldtop);
L->nCcalls = oldnCcalls;
L->ci = restoreci(L, old_ci);
L->base = L->ci->base;
L->savedpc = L->ci->savedpc;
L->allowhook = old_allowhooks;
restore_stack_limit(L);
}
L->errfunc = old_errfunc;
return status;
}
/*
** Execute a protected parser.
*/
struct SParser { /* data to `f_parser' */
ZIO *z;
Mbuffer buff; /* buffer to be used by the scanner */
const char *name;
};
static void f_parser (lua_State *L, void *ud) {
int i;
Proto *tf;
Closure *cl;
struct SParser *p = cast(struct SParser *, ud);
int c = luaZ_lookahead(p->z);
luaC_checkGC(L);
tf = (luaY_parser)(L, p->z,
&p->buff, p->name);
cl = luaF_newLclosure(L, tf->nups, hvalue(gt(L)));
cl->l.p = tf;
for (i = 0; i < tf->nups; i++) /* initialize eventual upvalues */
cl->l.upvals[i] = luaF_newupval(L);
setclvalue(L, L->top, cl);
incr_top(L);
}
int luaD_protectedparser (lua_State *L, ZIO *z, const char *name) {
struct SParser p;
int status;
p.z = z; p.name = name;
luaZ_initbuffer(L, &p.buff);
status = luaD_pcall(L, f_parser, &p, savestack(L, L->top), L->errfunc);
luaZ_freebuffer(L, &p.buff);
return status;
}
| 14,852 | 27.563462 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/luaconf.h | /*
** $Id: luaconf.h,v 1.82.1.7 2008/02/11 16:25:08 roberto Exp $
** Configuration file for Lua
** See Copyright Notice in lua.h
*/
#ifndef lconfig_h
#define lconfig_h
#include <limits.h>
#include <stddef.h>
/*
** ==================================================================
** Search for "@@" to find all configurable definitions.
** ===================================================================
*/
/*
@@ LUA_ANSI controls the use of non-ansi features.
** CHANGE it (define it) if you want Lua to avoid the use of any
** non-ansi feature or library.
*/
#if defined(__STRICT_ANSI__)
#define LUA_ANSI
#endif
#if !defined(LUA_ANSI) && defined(_WIN32)
#define LUA_WIN
#endif
#if defined(LUA_USE_LINUX)
#define LUA_USE_POSIX
#define LUA_USE_DLOPEN /* needs an extra library: -ldl */
#define LUA_USE_READLINE /* needs some extra libraries */
#endif
#if defined(LUA_USE_MACOSX)
#define LUA_USE_POSIX
#define LUA_DL_DYLD /* does not need extra library */
#endif
/*
@@ LUA_USE_POSIX includes all functionallity listed as X/Open System
@* Interfaces Extension (XSI).
** CHANGE it (define it) if your system is XSI compatible.
*/
#if defined(LUA_USE_POSIX)
#define LUA_USE_MKSTEMP
#define LUA_USE_ISATTY
#define LUA_USE_POPEN
#define LUA_USE_ULONGJMP
#endif
/*
@@ LUA_PATH and LUA_CPATH are the names of the environment variables that
@* Lua check to set its paths.
@@ LUA_INIT is the name of the environment variable that Lua
@* checks for initialization code.
** CHANGE them if you want different names.
*/
#define LUA_PATH "LUA_PATH"
#define LUA_CPATH "LUA_CPATH"
#define LUA_INIT "LUA_INIT"
/*
@@ LUA_PATH_DEFAULT is the default path that Lua uses to look for
@* Lua libraries.
@@ LUA_CPATH_DEFAULT is the default path that Lua uses to look for
@* C libraries.
** CHANGE them if your machine has a non-conventional directory
** hierarchy or if you want to install your libraries in
** non-conventional directories.
*/
#if defined(_WIN32)
/*
** In Windows, any exclamation mark ('!') in the path is replaced by the
** path of the directory of the executable file of the current process.
*/
#define LUA_LDIR "!\\lua\\"
#define LUA_CDIR "!\\"
#define LUA_PATH_DEFAULT \
".\\?.lua;" LUA_LDIR"?.lua;" LUA_LDIR"?\\init.lua;" \
LUA_CDIR"?.lua;" LUA_CDIR"?\\init.lua"
#define LUA_CPATH_DEFAULT \
".\\?.dll;" LUA_CDIR"?.dll;" LUA_CDIR"loadall.dll"
#else
#define LUA_ROOT "/usr/local/"
#define LUA_LDIR LUA_ROOT "share/lua/5.1/"
#define LUA_CDIR LUA_ROOT "lib/lua/5.1/"
#define LUA_PATH_DEFAULT \
"./?.lua;" LUA_LDIR"?.lua;" LUA_LDIR"?/init.lua;" \
LUA_CDIR"?.lua;" LUA_CDIR"?/init.lua"
#define LUA_CPATH_DEFAULT \
"./?.so;" LUA_CDIR"?.so;" LUA_CDIR"loadall.so"
#endif
/*
@@ LUA_DIRSEP is the directory separator (for submodules).
** CHANGE it if your machine does not use "/" as the directory separator
** and is not Windows. (On Windows Lua automatically uses "\".)
*/
#if defined(_WIN32)
#define LUA_DIRSEP "\\"
#else
#define LUA_DIRSEP "/"
#endif
/*
@@ LUA_PATHSEP is the character that separates templates in a path.
@@ LUA_PATH_MARK is the string that marks the substitution points in a
@* template.
@@ LUA_EXECDIR in a Windows path is replaced by the executable's
@* directory.
@@ LUA_IGMARK is a mark to ignore all before it when bulding the
@* luaopen_ function name.
** CHANGE them if for some reason your system cannot use those
** characters. (E.g., if one of those characters is a common character
** in file/directory names.) Probably you do not need to change them.
*/
#define LUA_PATHSEP ";"
#define LUA_PATH_MARK "?"
#define LUA_EXECDIR "!"
#define LUA_IGMARK "-"
/*
@@ LUA_INTEGER is the integral type used by lua_pushinteger/lua_tointeger.
** CHANGE that if ptrdiff_t is not adequate on your machine. (On most
** machines, ptrdiff_t gives a good choice between int or long.)
*/
#define LUA_INTEGER ptrdiff_t
/*
@@ LUA_API is a mark for all core API functions.
@@ LUALIB_API is a mark for all standard library functions.
** CHANGE them if you need to define those functions in some special way.
** For instance, if you want to create one Windows DLL with the core and
** the libraries, you may want to use the following definition (define
** LUA_BUILD_AS_DLL to get it).
*/
#if defined(LUA_BUILD_AS_DLL)
#if defined(LUA_CORE) || defined(LUA_LIB)
#define LUA_API __declspec(dllexport)
#else
#define LUA_API __declspec(dllimport)
#endif
#else
#define LUA_API extern
#endif
/* more often than not the libs go together with the core */
#define LUALIB_API LUA_API
/*
@@ LUAI_FUNC is a mark for all extern functions that are not to be
@* exported to outside modules.
@@ LUAI_DATA is a mark for all extern (const) variables that are not to
@* be exported to outside modules.
** CHANGE them if you need to mark them in some special way. Elf/gcc
** (versions 3.2 and later) mark them as "hidden" to optimize access
** when Lua is compiled as a shared library.
*/
#if defined(luaall_c)
#define LUAI_FUNC static
#define LUAI_DATA /* empty */
#elif defined(__GNUC__) && ((__GNUC__*100 + __GNUC_MINOR__) >= 302) && \
defined(__ELF__)
#define LUAI_FUNC __attribute__((visibility("hidden"))) extern
#define LUAI_DATA LUAI_FUNC
#else
#define LUAI_FUNC extern
#define LUAI_DATA extern
#endif
/*
@@ LUA_QL describes how error messages quote program elements.
** CHANGE it if you want a different appearance.
*/
#define LUA_QL(x) "'" x "'"
#define LUA_QS LUA_QL("%s")
/*
@@ LUA_IDSIZE gives the maximum size for the description of the source
@* of a function in debug information.
** CHANGE it if you want a different size.
*/
#define LUA_IDSIZE 60
/*
** {==================================================================
** Stand-alone configuration
** ===================================================================
*/
#if defined(lua_c) || defined(luaall_c)
/*
@@ lua_stdin_is_tty detects whether the standard input is a 'tty' (that
@* is, whether we're running lua interactively).
** CHANGE it if you have a better definition for non-POSIX/non-Windows
** systems.
*/
#if defined(LUA_USE_ISATTY)
#include <unistd.h>
#define lua_stdin_is_tty() isatty(0)
#elif defined(LUA_WIN)
#include <io.h>
#include <stdio.h>
#define lua_stdin_is_tty() _isatty(_fileno(stdin))
#else
#define lua_stdin_is_tty() 1 /* assume stdin is a tty */
#endif
/*
@@ LUA_PROMPT is the default prompt used by stand-alone Lua.
@@ LUA_PROMPT2 is the default continuation prompt used by stand-alone Lua.
** CHANGE them if you want different prompts. (You can also change the
** prompts dynamically, assigning to globals _PROMPT/_PROMPT2.)
*/
#define LUA_PROMPT "> "
#define LUA_PROMPT2 ">> "
/*
@@ LUA_PROGNAME is the default name for the stand-alone Lua program.
** CHANGE it if your stand-alone interpreter has a different name and
** your system is not able to detect that name automatically.
*/
#define LUA_PROGNAME "lua"
/*
@@ LUA_MAXINPUT is the maximum length for an input line in the
@* stand-alone interpreter.
** CHANGE it if you need longer lines.
*/
#define LUA_MAXINPUT 512
/*
@@ lua_readline defines how to show a prompt and then read a line from
@* the standard input.
@@ lua_saveline defines how to "save" a read line in a "history".
@@ lua_freeline defines how to free a line read by lua_readline.
** CHANGE them if you want to improve this functionality (e.g., by using
** GNU readline and history facilities).
*/
#if defined(LUA_USE_READLINE)
#include <stdio.h>
#include <readline/readline.h>
#include <readline/history.h>
#define lua_readline(L,b,p) ((void)L, ((b)=readline(p)) != NULL)
#define lua_saveline(L,idx) \
if (lua_strlen(L,idx) > 0) /* non-empty line? */ \
add_history(lua_tostring(L, idx)); /* add it to history */
#define lua_freeline(L,b) ((void)L, free(b))
#else
#define lua_readline(L,b,p) \
((void)L, fputs(p, stdout), fflush(stdout), /* show prompt */ \
fgets(b, LUA_MAXINPUT, stdin) != NULL) /* get line */
#define lua_saveline(L,idx) { (void)L; (void)idx; }
#define lua_freeline(L,b) { (void)L; (void)b; }
#endif
#endif
/* }================================================================== */
/*
@@ LUAI_GCPAUSE defines the default pause between garbage-collector cycles
@* as a percentage.
** CHANGE it if you want the GC to run faster or slower (higher values
** mean larger pauses which mean slower collection.) You can also change
** this value dynamically.
*/
#define LUAI_GCPAUSE 200 /* 200% (wait memory to double before next GC) */
/*
@@ LUAI_GCMUL defines the default speed of garbage collection relative to
@* memory allocation as a percentage.
** CHANGE it if you want to change the granularity of the garbage
** collection. (Higher values mean coarser collections. 0 represents
** infinity, where each step performs a full collection.) You can also
** change this value dynamically.
*/
#define LUAI_GCMUL 200 /* GC runs 'twice the speed' of memory allocation */
/*
@@ LUA_COMPAT_GETN controls compatibility with old getn behavior.
** CHANGE it (define it) if you want exact compatibility with the
** behavior of setn/getn in Lua 5.0.
*/
#undef LUA_COMPAT_GETN
/*
@@ LUA_COMPAT_LOADLIB controls compatibility about global loadlib.
** CHANGE it to undefined as soon as you do not need a global 'loadlib'
** function (the function is still available as 'package.loadlib').
*/
#undef LUA_COMPAT_LOADLIB
/*
@@ LUA_COMPAT_VARARG controls compatibility with old vararg feature.
** CHANGE it to undefined as soon as your programs use only '...' to
** access vararg parameters (instead of the old 'arg' table).
*/
#define LUA_COMPAT_VARARG
/*
@@ LUA_COMPAT_MOD controls compatibility with old math.mod function.
** CHANGE it to undefined as soon as your programs use 'math.fmod' or
** the new '%' operator instead of 'math.mod'.
*/
#define LUA_COMPAT_MOD
/*
@@ LUA_COMPAT_LSTR controls compatibility with old long string nesting
@* facility.
** CHANGE it to 2 if you want the old behaviour, or undefine it to turn
** off the advisory error when nesting [[...]].
*/
#define LUA_COMPAT_LSTR 1
/*
@@ LUA_COMPAT_GFIND controls compatibility with old 'string.gfind' name.
** CHANGE it to undefined as soon as you rename 'string.gfind' to
** 'string.gmatch'.
*/
#define LUA_COMPAT_GFIND
/*
@@ LUA_COMPAT_OPENLIB controls compatibility with old 'luaL_openlib'
@* behavior.
** CHANGE it to undefined as soon as you replace to 'luaL_register'
** your uses of 'luaL_openlib'
*/
#define LUA_COMPAT_OPENLIB
/*
@@ luai_apicheck is the assert macro used by the Lua-C API.
** CHANGE luai_apicheck if you want Lua to perform some checks in the
** parameters it gets from API calls. This may slow down the interpreter
** a bit, but may be quite useful when debugging C code that interfaces
** with Lua. A useful redefinition is to use assert.h.
*/
#if defined(LUA_USE_APICHECK)
#include <assert.h>
#define luai_apicheck(L,o) { (void)L; assert(o); }
#else
#define luai_apicheck(L,o) { (void)L; }
#endif
/*
@@ LUAI_BITSINT defines the number of bits in an int.
** CHANGE here if Lua cannot automatically detect the number of bits of
** your machine. Probably you do not need to change this.
*/
/* avoid overflows in comparison */
#if INT_MAX-20 < 32760
#define LUAI_BITSINT 16
#elif INT_MAX > 2147483640L
/* int has at least 32 bits */
#define LUAI_BITSINT 32
#else
#error "you must define LUA_BITSINT with number of bits in an integer"
#endif
/*
@@ LUAI_UINT32 is an unsigned integer with at least 32 bits.
@@ LUAI_INT32 is an signed integer with at least 32 bits.
@@ LUAI_UMEM is an unsigned integer big enough to count the total
@* memory used by Lua.
@@ LUAI_MEM is a signed integer big enough to count the total memory
@* used by Lua.
** CHANGE here if for some weird reason the default definitions are not
** good enough for your machine. (The definitions in the 'else'
** part always works, but may waste space on machines with 64-bit
** longs.) Probably you do not need to change this.
*/
#if LUAI_BITSINT >= 32
#define LUAI_UINT32 unsigned int
#define LUAI_INT32 int
#define LUAI_MAXINT32 INT_MAX
#define LUAI_UMEM size_t
#define LUAI_MEM ptrdiff_t
#else
/* 16-bit ints */
#define LUAI_UINT32 unsigned long
#define LUAI_INT32 long
#define LUAI_MAXINT32 LONG_MAX
#define LUAI_UMEM unsigned long
#define LUAI_MEM long
#endif
/*
@@ LUAI_MAXCALLS limits the number of nested calls.
** CHANGE it if you need really deep recursive calls. This limit is
** arbitrary; its only purpose is to stop infinite recursion before
** exhausting memory.
*/
#define LUAI_MAXCALLS 20000
/*
@@ LUAI_MAXCSTACK limits the number of Lua stack slots that a C function
@* can use.
** CHANGE it if you need lots of (Lua) stack space for your C
** functions. This limit is arbitrary; its only purpose is to stop C
** functions to consume unlimited stack space. (must be smaller than
** -LUA_REGISTRYINDEX)
*/
#define LUAI_MAXCSTACK 8000
/*
** {==================================================================
** CHANGE (to smaller values) the following definitions if your system
** has a small C stack. (Or you may want to change them to larger
** values if your system has a large C stack and these limits are
** too rigid for you.) Some of these constants control the size of
** stack-allocated arrays used by the compiler or the interpreter, while
** others limit the maximum number of recursive calls that the compiler
** or the interpreter can perform. Values too large may cause a C stack
** overflow for some forms of deep constructs.
** ===================================================================
*/
/*
@@ LUAI_MAXCCALLS is the maximum depth for nested C calls (short) and
@* syntactical nested non-terminals in a program.
*/
#define LUAI_MAXCCALLS 200
/*
@@ LUAI_MAXVARS is the maximum number of local variables per function
@* (must be smaller than 250).
*/
#define LUAI_MAXVARS 200
/*
@@ LUAI_MAXUPVALUES is the maximum number of upvalues per function
@* (must be smaller than 250).
*/
#define LUAI_MAXUPVALUES 60
/*
@@ LUAL_BUFFERSIZE is the buffer size used by the lauxlib buffer system.
*/
#define LUAL_BUFFERSIZE BUFSIZ
/* }================================================================== */
/*
** {==================================================================
@@ LUA_NUMBER is the type of numbers in Lua.
** CHANGE the following definitions only if you want to build Lua
** with a number type different from double. You may also need to
** change lua_number2int & lua_number2integer.
** ===================================================================
*/
#define LUA_NUMBER_DOUBLE
#define LUA_NUMBER double
/*
@@ LUAI_UACNUMBER is the result of an 'usual argument conversion'
@* over a number.
*/
#define LUAI_UACNUMBER double
/*
@@ LUA_NUMBER_SCAN is the format for reading numbers.
@@ LUA_NUMBER_FMT is the format for writing numbers.
@@ lua_number2str converts a number to a string.
@@ LUAI_MAXNUMBER2STR is maximum size of previous conversion.
@@ lua_str2number converts a string to a number.
*/
#define LUA_NUMBER_SCAN "%lf"
#define LUA_NUMBER_FMT "%.14g"
#define lua_number2str(s,n) sprintf((s), LUA_NUMBER_FMT, (n))
#define LUAI_MAXNUMBER2STR 32 /* 16 digits, sign, point, and \0 */
#define lua_str2number(s,p) strtod((s), (p))
/*
@@ The luai_num* macros define the primitive operations over numbers.
*/
#if defined(LUA_CORE)
#include <math.h>
#define luai_numadd(a,b) ((a)+(b))
#define luai_numsub(a,b) ((a)-(b))
#define luai_nummul(a,b) ((a)*(b))
#define luai_numdiv(a,b) ((a)/(b))
#define luai_nummod(a,b) ((a) - floor((a)/(b))*(b))
#define luai_numpow(a,b) (pow(a,b))
#define luai_numunm(a) (-(a))
#define luai_numeq(a,b) ((a)==(b))
#define luai_numlt(a,b) ((a)<(b))
#define luai_numle(a,b) ((a)<=(b))
#define luai_numisnan(a) (!luai_numeq((a), (a)))
#endif
/*
@@ lua_number2int is a macro to convert lua_Number to int.
@@ lua_number2integer is a macro to convert lua_Number to lua_Integer.
** CHANGE them if you know a faster way to convert a lua_Number to
** int (with any rounding method and without throwing errors) in your
** system. In Pentium machines, a naive typecast from double to int
** in C is extremely slow, so any alternative is worth trying.
*/
/* On a Pentium, resort to a trick */
#if defined(LUA_NUMBER_DOUBLE) && !defined(LUA_ANSI) && !defined(__SSE2__) && \
(defined(__i386) || defined (_M_IX86) || defined(__i386__))
/* On a Microsoft compiler, use assembler */
#if defined(_MSC_VER)
#define lua_number2int(i,d) __asm fld d __asm fistp i
#define lua_number2integer(i,n) lua_number2int(i, n)
/* the next trick should work on any Pentium, but sometimes clashes
with a DirectX idiosyncrasy */
#else
union luai_Cast { double l_d; long l_l; };
#define lua_number2int(i,d) \
{ volatile union luai_Cast u; u.l_d = (d) + 6755399441055744.0; (i) = u.l_l; }
#define lua_number2integer(i,n) lua_number2int(i, n)
#endif
/* this option always works, but may be slow */
#else
#define lua_number2int(i,d) ((i)=(int)(d))
#define lua_number2integer(i,d) ((i)=(lua_Integer)(d))
#endif
/* }================================================================== */
/*
@@ LUAI_USER_ALIGNMENT_T is a type that requires maximum alignment.
** CHANGE it if your system requires alignments larger than double. (For
** instance, if your system supports long doubles and they must be
** aligned in 16-byte boundaries, then you should add long double in the
** union.) Probably you do not need to change this.
*/
#define LUAI_USER_ALIGNMENT_T union { double u; void *s; long l; }
/*
@@ LUAI_THROW/LUAI_TRY define how Lua does exception handling.
** CHANGE them if you prefer to use longjmp/setjmp even with C++
** or if want/don't to use _longjmp/_setjmp instead of regular
** longjmp/setjmp. By default, Lua handles errors with exceptions when
** compiling as C++ code, with _longjmp/_setjmp when asked to use them,
** and with longjmp/setjmp otherwise.
*/
#if defined(__cplusplus)
/* C++ exceptions */
#define LUAI_THROW(L,c) throw(c)
#define LUAI_TRY(L,c,a) try { a } catch(...) \
{ if ((c)->status == 0) (c)->status = -1; }
#define luai_jmpbuf int /* dummy variable */
#elif defined(LUA_USE_ULONGJMP)
/* in Unix, try _longjmp/_setjmp (more efficient) */
#define LUAI_THROW(L,c) _longjmp((c)->b, 1)
#define LUAI_TRY(L,c,a) if (_setjmp((c)->b) == 0) { a }
#define luai_jmpbuf jmp_buf
#else
/* default handling with long jumps */
#define LUAI_THROW(L,c) longjmp((c)->b, 1)
#define LUAI_TRY(L,c,a) if (setjmp((c)->b) == 0) { a }
#define luai_jmpbuf jmp_buf
#endif
/*
@@ LUA_MAXCAPTURES is the maximum number of captures that a pattern
@* can do during pattern-matching.
** CHANGE it if you need more captures. This limit is arbitrary.
*/
#define LUA_MAXCAPTURES 32
/*
@@ lua_tmpnam is the function that the OS library uses to create a
@* temporary name.
@@ LUA_TMPNAMBUFSIZE is the maximum size of a name created by lua_tmpnam.
** CHANGE them if you have an alternative to tmpnam (which is considered
** insecure) or if you want the original tmpnam anyway. By default, Lua
** uses tmpnam except when POSIX is available, where it uses mkstemp.
*/
#if defined(loslib_c) || defined(luaall_c)
#if defined(LUA_USE_MKSTEMP)
#include <unistd.h>
#define LUA_TMPNAMBUFSIZE 32
#define lua_tmpnam(b,e) { \
strcpy(b, "/tmp/lua_XXXXXX"); \
e = mkstemp(b); \
if (e != -1) close(e); \
e = (e == -1); }
#else
#define LUA_TMPNAMBUFSIZE L_tmpnam
#define lua_tmpnam(b,e) { e = (tmpnam(b) == NULL); }
#endif
#endif
/*
@@ lua_popen spawns a new process connected to the current one through
@* the file streams.
** CHANGE it if you have a way to implement it in your system.
*/
#if defined(LUA_USE_POPEN)
#define lua_popen(L,c,m) ((void)L, fflush(NULL), popen(c,m))
#define lua_pclose(L,file) ((void)L, (pclose(file) != -1))
#elif defined(LUA_WIN)
#define lua_popen(L,c,m) ((void)L, _popen(c,m))
#define lua_pclose(L,file) ((void)L, (_pclose(file) != -1))
#else
#define lua_popen(L,c,m) ((void)((void)c, m), \
luaL_error(L, LUA_QL("popen") " not supported"), (FILE*)0)
#define lua_pclose(L,file) ((void)((void)L, file), 0)
#endif
/*
@@ LUA_DL_* define which dynamic-library system Lua should use.
** CHANGE here if Lua has problems choosing the appropriate
** dynamic-library system for your platform (either Windows' DLL, Mac's
** dyld, or Unix's dlopen). If your system is some kind of Unix, there
** is a good chance that it has dlopen, so LUA_DL_DLOPEN will work for
** it. To use dlopen you also need to adapt the src/Makefile (probably
** adding -ldl to the linker options), so Lua does not select it
** automatically. (When you change the makefile to add -ldl, you must
** also add -DLUA_USE_DLOPEN.)
** If you do not want any kind of dynamic library, undefine all these
** options.
** By default, _WIN32 gets LUA_DL_DLL and MAC OS X gets LUA_DL_DYLD.
*/
#if defined(LUA_USE_DLOPEN)
#define LUA_DL_DLOPEN
#endif
#if defined(LUA_WIN)
#define LUA_DL_DLL
#endif
/*
@@ LUAI_EXTRASPACE allows you to add user-specific data in a lua_State
@* (the data goes just *before* the lua_State pointer).
** CHANGE (define) this if you really need that. This value must be
** a multiple of the maximum alignment required for your machine.
*/
#define LUAI_EXTRASPACE 0
/*
@@ luai_userstate* allow user-specific actions on threads.
** CHANGE them if you defined LUAI_EXTRASPACE and need to do something
** extra when a thread is created/deleted/resumed/yielded.
*/
#define luai_userstateopen(L) ((void)L)
#define luai_userstateclose(L) ((void)L)
#define luai_userstatethread(L,L1) ((void)L)
#define luai_userstatefree(L) ((void)L)
#define luai_userstateresume(L,n) ((void)L)
#define luai_userstateyield(L,n) ((void)L)
/*
@@ LUA_INTFRMLEN is the length modifier for integer conversions
@* in 'string.format'.
@@ LUA_INTFRM_T is the integer type correspoding to the previous length
@* modifier.
** CHANGE them if your system supports long long or does not support long.
*/
#if defined(LUA_USELONGLONG)
#define LUA_INTFRMLEN "ll"
#define LUA_INTFRM_T long long
#else
#define LUA_INTFRMLEN "l"
#define LUA_INTFRM_T long
#endif
/* =================================================================== */
/*
** Local configuration. You can use this space to add your redefinitions
** without modifying the main part of the file.
*/
#endif
| 22,299 | 28.188482 | 80 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/lcode.c | /*
** $Id: lcode.c,v 2.25.1.5 2011/01/31 14:53:16 roberto Exp $
** Code generator for Lua
** See Copyright Notice in lua.h
*/
#include <stdlib.h>
#define lcode_c
#define LUA_CORE
#include "lua.h"
#include "lcode.h"
#include "ldebug.h"
#include "ldo.h"
#include "lgc.h"
#include "llex.h"
#include "lmem.h"
#include "lobject.h"
#include "lopcodes.h"
#include "lparser.h"
#include "ltable.h"
#define hasjumps(e) ((e)->t != (e)->f)
static int isnumeral(expdesc *e) {
return (e->k == VKNUM && e->t == NO_JUMP && e->f == NO_JUMP);
}
void luaK_nil (FuncState *fs, int from, int n) {
Instruction *previous;
if (fs->pc > fs->lasttarget) { /* no jumps to current position? */
if (fs->pc == 0) { /* function start? */
if (from >= fs->nactvar)
return; /* positions are already clean */
}
else {
previous = &fs->f->code[fs->pc-1];
if (GET_OPCODE(*previous) == OP_LOADNIL) {
int pfrom = GETARG_A(*previous);
int pto = GETARG_B(*previous);
if (pfrom <= from && from <= pto+1) { /* can connect both? */
if (from+n-1 > pto)
SETARG_B(*previous, from+n-1);
return;
}
}
}
}
luaK_codeABC(fs, OP_LOADNIL, from, from+n-1, 0); /* else no optimization */
}
int luaK_jump (FuncState *fs) {
int jpc = fs->jpc; /* save list of jumps to here */
int j;
fs->jpc = NO_JUMP;
j = luaK_codeAsBx(fs, OP_JMP, 0, NO_JUMP);
luaK_concat(fs, &j, jpc); /* keep them on hold */
return j;
}
void luaK_ret (FuncState *fs, int first, int nret) {
luaK_codeABC(fs, OP_RETURN, first, nret+1, 0);
}
static int condjump (FuncState *fs, OpCode op, int A, int B, int C) {
luaK_codeABC(fs, op, A, B, C);
return luaK_jump(fs);
}
static void fixjump (FuncState *fs, int pc, int dest) {
Instruction *jmp = &fs->f->code[pc];
int offset = dest-(pc+1);
lua_assert(dest != NO_JUMP);
if (abs(offset) > MAXARG_sBx)
luaX_syntaxerror(fs->ls, "control structure too long");
SETARG_sBx(*jmp, offset);
}
/*
** returns current `pc' and marks it as a jump target (to avoid wrong
** optimizations with consecutive instructions not in the same basic block).
*/
int luaK_getlabel (FuncState *fs) {
fs->lasttarget = fs->pc;
return fs->pc;
}
static int getjump (FuncState *fs, int pc) {
int offset = GETARG_sBx(fs->f->code[pc]);
if (offset == NO_JUMP) /* point to itself represents end of list */
return NO_JUMP; /* end of list */
else
return (pc+1)+offset; /* turn offset into absolute position */
}
static Instruction *getjumpcontrol (FuncState *fs, int pc) {
Instruction *pi = &fs->f->code[pc];
if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
return pi-1;
else
return pi;
}
/*
** check whether list has any jump that do not produce a value
** (or produce an inverted value)
*/
static int need_value (FuncState *fs, int list) {
for (; list != NO_JUMP; list = getjump(fs, list)) {
Instruction i = *getjumpcontrol(fs, list);
if (GET_OPCODE(i) != OP_TESTSET) return 1;
}
return 0; /* not found */
}
static int patchtestreg (FuncState *fs, int node, int reg) {
Instruction *i = getjumpcontrol(fs, node);
if (GET_OPCODE(*i) != OP_TESTSET)
return 0; /* cannot patch other instructions */
if (reg != NO_REG && reg != GETARG_B(*i))
SETARG_A(*i, reg);
else /* no register to put value or register already has the value */
*i = CREATE_ABC(OP_TEST, GETARG_B(*i), 0, GETARG_C(*i));
return 1;
}
static void removevalues (FuncState *fs, int list) {
for (; list != NO_JUMP; list = getjump(fs, list))
patchtestreg(fs, list, NO_REG);
}
static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
int dtarget) {
while (list != NO_JUMP) {
int next = getjump(fs, list);
if (patchtestreg(fs, list, reg))
fixjump(fs, list, vtarget);
else
fixjump(fs, list, dtarget); /* jump to default target */
list = next;
}
}
static void dischargejpc (FuncState *fs) {
patchlistaux(fs, fs->jpc, fs->pc, NO_REG, fs->pc);
fs->jpc = NO_JUMP;
}
void luaK_patchlist (FuncState *fs, int list, int target) {
if (target == fs->pc)
luaK_patchtohere(fs, list);
else {
lua_assert(target < fs->pc);
patchlistaux(fs, list, target, NO_REG, target);
}
}
void luaK_patchtohere (FuncState *fs, int list) {
luaK_getlabel(fs);
luaK_concat(fs, &fs->jpc, list);
}
void luaK_concat (FuncState *fs, int *l1, int l2) {
if (l2 == NO_JUMP) return;
else if (*l1 == NO_JUMP)
*l1 = l2;
else {
int list = *l1;
int next;
while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
list = next;
fixjump(fs, list, l2);
}
}
void luaK_checkstack (FuncState *fs, int n) {
int newstack = fs->freereg + n;
if (newstack > fs->f->maxstacksize) {
if (newstack >= MAXSTACK)
luaX_syntaxerror(fs->ls, "function or expression too complex");
fs->f->maxstacksize = cast_byte(newstack);
}
}
void luaK_reserveregs (FuncState *fs, int n) {
luaK_checkstack(fs, n);
fs->freereg += n;
}
static void freereg (FuncState *fs, int reg) {
if (!ISK(reg) && reg >= fs->nactvar) {
fs->freereg--;
lua_assert(reg == fs->freereg);
}
}
static void freeexp (FuncState *fs, expdesc *e) {
if (e->k == VNONRELOC)
freereg(fs, e->u.s.info);
}
static int addk (FuncState *fs, TValue *k, TValue *v) {
lua_State *L = fs->L;
TValue *idx = luaH_set(L, fs->h, k);
Proto *f = fs->f;
int oldsize = f->sizek;
if (ttisnumber(idx)) {
lua_assert(luaO_rawequalObj(&fs->f->k[cast_int(nvalue(idx))], v));
return cast_int(nvalue(idx));
}
else { /* constant not found; create a new entry */
setnvalue(idx, cast_num(fs->nk));
luaM_growvector(L, f->k, fs->nk, f->sizek, TValue,
MAXARG_Bx, "constant table overflow");
while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
setobj(L, &f->k[fs->nk], v);
luaC_barrier(L, f, v);
return fs->nk++;
}
}
int luaK_stringK (FuncState *fs, TString *s) {
TValue o;
setsvalue(fs->L, &o, s);
return addk(fs, &o, &o);
}
int luaK_numberK (FuncState *fs, lua_Number r) {
TValue o;
setnvalue(&o, r);
return addk(fs, &o, &o);
}
static int boolK (FuncState *fs, int b) {
TValue o;
setbvalue(&o, b);
return addk(fs, &o, &o);
}
static int nilK (FuncState *fs) {
TValue k, v;
setnilvalue(&v);
/* cannot use nil as key; instead use table itself to represent nil */
sethvalue(fs->L, &k, fs->h);
return addk(fs, &k, &v);
}
void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
if (e->k == VCALL) { /* expression is an open function call? */
SETARG_C(getcode(fs, e), nresults+1);
}
else if (e->k == VVARARG) {
SETARG_B(getcode(fs, e), nresults+1);
SETARG_A(getcode(fs, e), fs->freereg);
luaK_reserveregs(fs, 1);
}
}
void luaK_setoneret (FuncState *fs, expdesc *e) {
if (e->k == VCALL) { /* expression is an open function call? */
e->k = VNONRELOC;
e->u.s.info = GETARG_A(getcode(fs, e));
}
else if (e->k == VVARARG) {
SETARG_B(getcode(fs, e), 2);
e->k = VRELOCABLE; /* can relocate its simple result */
}
}
void luaK_dischargevars (FuncState *fs, expdesc *e) {
switch (e->k) {
case VLOCAL: {
e->k = VNONRELOC;
break;
}
case VUPVAL: {
e->u.s.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.s.info, 0);
e->k = VRELOCABLE;
break;
}
case VGLOBAL: {
e->u.s.info = luaK_codeABx(fs, OP_GETGLOBAL, 0, e->u.s.info);
e->k = VRELOCABLE;
break;
}
case VINDEXED: {
freereg(fs, e->u.s.aux);
freereg(fs, e->u.s.info);
e->u.s.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.s.info, e->u.s.aux);
e->k = VRELOCABLE;
break;
}
case VVARARG:
case VCALL: {
luaK_setoneret(fs, e);
break;
}
default: break; /* there is one value available (somewhere) */
}
}
static int code_label (FuncState *fs, int A, int b, int jump) {
luaK_getlabel(fs); /* those instructions may be jump targets */
return luaK_codeABC(fs, OP_LOADBOOL, A, b, jump);
}
static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
luaK_dischargevars(fs, e);
switch (e->k) {
case VNIL: {
luaK_nil(fs, reg, 1);
break;
}
case VFALSE: case VTRUE: {
luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0);
break;
}
case VK: {
luaK_codeABx(fs, OP_LOADK, reg, e->u.s.info);
break;
}
case VKNUM: {
luaK_codeABx(fs, OP_LOADK, reg, luaK_numberK(fs, e->u.nval));
break;
}
case VRELOCABLE: {
Instruction *pc = &getcode(fs, e);
SETARG_A(*pc, reg);
break;
}
case VNONRELOC: {
if (reg != e->u.s.info)
luaK_codeABC(fs, OP_MOVE, reg, e->u.s.info, 0);
break;
}
default: {
lua_assert(e->k == VVOID || e->k == VJMP);
return; /* nothing to do... */
}
}
e->u.s.info = reg;
e->k = VNONRELOC;
}
static void discharge2anyreg (FuncState *fs, expdesc *e) {
if (e->k != VNONRELOC) {
luaK_reserveregs(fs, 1);
discharge2reg(fs, e, fs->freereg-1);
}
}
static void exp2reg (FuncState *fs, expdesc *e, int reg) {
discharge2reg(fs, e, reg);
if (e->k == VJMP)
luaK_concat(fs, &e->t, e->u.s.info); /* put this jump in `t' list */
if (hasjumps(e)) {
int final; /* position after whole expression */
int p_f = NO_JUMP; /* position of an eventual LOAD false */
int p_t = NO_JUMP; /* position of an eventual LOAD true */
if (need_value(fs, e->t) || need_value(fs, e->f)) {
int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
p_f = code_label(fs, reg, 0, 1);
p_t = code_label(fs, reg, 1, 0);
luaK_patchtohere(fs, fj);
}
final = luaK_getlabel(fs);
patchlistaux(fs, e->f, final, reg, p_f);
patchlistaux(fs, e->t, final, reg, p_t);
}
e->f = e->t = NO_JUMP;
e->u.s.info = reg;
e->k = VNONRELOC;
}
void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
luaK_dischargevars(fs, e);
freeexp(fs, e);
luaK_reserveregs(fs, 1);
exp2reg(fs, e, fs->freereg - 1);
}
int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
luaK_dischargevars(fs, e);
if (e->k == VNONRELOC) {
if (!hasjumps(e)) return e->u.s.info; /* exp is already in a register */
if (e->u.s.info >= fs->nactvar) { /* reg. is not a local? */
exp2reg(fs, e, e->u.s.info); /* put value on it */
return e->u.s.info;
}
}
luaK_exp2nextreg(fs, e); /* default */
return e->u.s.info;
}
void luaK_exp2val (FuncState *fs, expdesc *e) {
if (hasjumps(e))
luaK_exp2anyreg(fs, e);
else
luaK_dischargevars(fs, e);
}
int luaK_exp2RK (FuncState *fs, expdesc *e) {
luaK_exp2val(fs, e);
switch (e->k) {
case VKNUM:
case VTRUE:
case VFALSE:
case VNIL: {
if (fs->nk <= MAXINDEXRK) { /* constant fit in RK operand? */
e->u.s.info = (e->k == VNIL) ? nilK(fs) :
(e->k == VKNUM) ? luaK_numberK(fs, e->u.nval) :
boolK(fs, (e->k == VTRUE));
e->k = VK;
return RKASK(e->u.s.info);
}
else break;
}
case VK: {
if (e->u.s.info <= MAXINDEXRK) /* constant fit in argC? */
return RKASK(e->u.s.info);
else break;
}
default: break;
}
/* not a constant in the right range: put it in a register */
return luaK_exp2anyreg(fs, e);
}
void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
switch (var->k) {
case VLOCAL: {
freeexp(fs, ex);
exp2reg(fs, ex, var->u.s.info);
return;
}
case VUPVAL: {
int e = luaK_exp2anyreg(fs, ex);
luaK_codeABC(fs, OP_SETUPVAL, e, var->u.s.info, 0);
break;
}
case VGLOBAL: {
int e = luaK_exp2anyreg(fs, ex);
luaK_codeABx(fs, OP_SETGLOBAL, e, var->u.s.info);
break;
}
case VINDEXED: {
int e = luaK_exp2RK(fs, ex);
luaK_codeABC(fs, OP_SETTABLE, var->u.s.info, var->u.s.aux, e);
break;
}
default: {
lua_assert(0); /* invalid var kind to store */
break;
}
}
freeexp(fs, ex);
}
void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
int func;
luaK_exp2anyreg(fs, e);
freeexp(fs, e);
func = fs->freereg;
luaK_reserveregs(fs, 2);
luaK_codeABC(fs, OP_SELF, func, e->u.s.info, luaK_exp2RK(fs, key));
freeexp(fs, key);
e->u.s.info = func;
e->k = VNONRELOC;
}
static void invertjump (FuncState *fs, expdesc *e) {
Instruction *pc = getjumpcontrol(fs, e->u.s.info);
lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
GET_OPCODE(*pc) != OP_TEST);
SETARG_A(*pc, !(GETARG_A(*pc)));
}
static int jumponcond (FuncState *fs, expdesc *e, int cond) {
if (e->k == VRELOCABLE) {
Instruction ie = getcode(fs, e);
if (GET_OPCODE(ie) == OP_NOT) {
fs->pc--; /* remove previous OP_NOT */
return condjump(fs, OP_TEST, GETARG_B(ie), 0, !cond);
}
/* else go through */
}
discharge2anyreg(fs, e);
freeexp(fs, e);
return condjump(fs, OP_TESTSET, NO_REG, e->u.s.info, cond);
}
void luaK_goiftrue (FuncState *fs, expdesc *e) {
int pc; /* pc of last jump */
luaK_dischargevars(fs, e);
switch (e->k) {
case VK: case VKNUM: case VTRUE: {
pc = NO_JUMP; /* always true; do nothing */
break;
}
case VJMP: {
invertjump(fs, e);
pc = e->u.s.info;
break;
}
default: {
pc = jumponcond(fs, e, 0);
break;
}
}
luaK_concat(fs, &e->f, pc); /* insert last jump in `f' list */
luaK_patchtohere(fs, e->t);
e->t = NO_JUMP;
}
static void luaK_goiffalse (FuncState *fs, expdesc *e) {
int pc; /* pc of last jump */
luaK_dischargevars(fs, e);
switch (e->k) {
case VNIL: case VFALSE: {
pc = NO_JUMP; /* always false; do nothing */
break;
}
case VJMP: {
pc = e->u.s.info;
break;
}
default: {
pc = jumponcond(fs, e, 1);
break;
}
}
luaK_concat(fs, &e->t, pc); /* insert last jump in `t' list */
luaK_patchtohere(fs, e->f);
e->f = NO_JUMP;
}
static void codenot (FuncState *fs, expdesc *e) {
luaK_dischargevars(fs, e);
switch (e->k) {
case VNIL: case VFALSE: {
e->k = VTRUE;
break;
}
case VK: case VKNUM: case VTRUE: {
e->k = VFALSE;
break;
}
case VJMP: {
invertjump(fs, e);
break;
}
case VRELOCABLE:
case VNONRELOC: {
discharge2anyreg(fs, e);
freeexp(fs, e);
e->u.s.info = luaK_codeABC(fs, OP_NOT, 0, e->u.s.info, 0);
e->k = VRELOCABLE;
break;
}
default: {
lua_assert(0); /* cannot happen */
break;
}
}
/* interchange true and false lists */
{ int temp = e->f; e->f = e->t; e->t = temp; }
removevalues(fs, e->f);
removevalues(fs, e->t);
}
void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
t->u.s.aux = luaK_exp2RK(fs, k);
t->k = VINDEXED;
}
static int constfolding (OpCode op, expdesc *e1, expdesc *e2) {
lua_Number v1, v2, r;
if (!isnumeral(e1) || !isnumeral(e2)) return 0;
v1 = e1->u.nval;
v2 = e2->u.nval;
switch (op) {
case OP_ADD: r = luai_numadd(v1, v2); break;
case OP_SUB: r = luai_numsub(v1, v2); break;
case OP_MUL: r = luai_nummul(v1, v2); break;
case OP_DIV:
if (v2 == 0) return 0; /* do not attempt to divide by 0 */
r = luai_numdiv(v1, v2); break;
case OP_MOD:
if (v2 == 0) return 0; /* do not attempt to divide by 0 */
r = luai_nummod(v1, v2); break;
case OP_POW: r = luai_numpow(v1, v2); break;
case OP_UNM: r = luai_numunm(v1); break;
case OP_LEN: return 0; /* no constant folding for 'len' */
default: lua_assert(0); r = 0; break;
}
if (luai_numisnan(r)) return 0; /* do not attempt to produce NaN */
e1->u.nval = r;
return 1;
}
static void codearith (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) {
if (constfolding(op, e1, e2))
return;
else {
int o2 = (op != OP_UNM && op != OP_LEN) ? luaK_exp2RK(fs, e2) : 0;
int o1 = luaK_exp2RK(fs, e1);
if (o1 > o2) {
freeexp(fs, e1);
freeexp(fs, e2);
}
else {
freeexp(fs, e2);
freeexp(fs, e1);
}
e1->u.s.info = luaK_codeABC(fs, op, 0, o1, o2);
e1->k = VRELOCABLE;
}
}
static void codecomp (FuncState *fs, OpCode op, int cond, expdesc *e1,
expdesc *e2) {
int o1 = luaK_exp2RK(fs, e1);
int o2 = luaK_exp2RK(fs, e2);
freeexp(fs, e2);
freeexp(fs, e1);
if (cond == 0 && op != OP_EQ) {
int temp; /* exchange args to replace by `<' or `<=' */
temp = o1; o1 = o2; o2 = temp; /* o1 <==> o2 */
cond = 1;
}
e1->u.s.info = condjump(fs, op, cond, o1, o2);
e1->k = VJMP;
}
void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e) {
expdesc e2;
e2.t = e2.f = NO_JUMP; e2.k = VKNUM; e2.u.nval = 0;
switch (op) {
case OPR_MINUS: {
if (!isnumeral(e))
luaK_exp2anyreg(fs, e); /* cannot operate on non-numeric constants */
codearith(fs, OP_UNM, e, &e2);
break;
}
case OPR_NOT: codenot(fs, e); break;
case OPR_LEN: {
luaK_exp2anyreg(fs, e); /* cannot operate on constants */
codearith(fs, OP_LEN, e, &e2);
break;
}
default: lua_assert(0);
}
}
void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
switch (op) {
case OPR_AND: {
luaK_goiftrue(fs, v);
break;
}
case OPR_OR: {
luaK_goiffalse(fs, v);
break;
}
case OPR_CONCAT: {
luaK_exp2nextreg(fs, v); /* operand must be on the `stack' */
break;
}
case OPR_ADD: case OPR_SUB: case OPR_MUL: case OPR_DIV:
case OPR_MOD: case OPR_POW: {
if (!isnumeral(v)) luaK_exp2RK(fs, v);
break;
}
default: {
luaK_exp2RK(fs, v);
break;
}
}
}
void luaK_posfix (FuncState *fs, BinOpr op, expdesc *e1, expdesc *e2) {
switch (op) {
case OPR_AND: {
lua_assert(e1->t == NO_JUMP); /* list must be closed */
luaK_dischargevars(fs, e2);
luaK_concat(fs, &e2->f, e1->f);
*e1 = *e2;
break;
}
case OPR_OR: {
lua_assert(e1->f == NO_JUMP); /* list must be closed */
luaK_dischargevars(fs, e2);
luaK_concat(fs, &e2->t, e1->t);
*e1 = *e2;
break;
}
case OPR_CONCAT: {
luaK_exp2val(fs, e2);
if (e2->k == VRELOCABLE && GET_OPCODE(getcode(fs, e2)) == OP_CONCAT) {
lua_assert(e1->u.s.info == GETARG_B(getcode(fs, e2))-1);
freeexp(fs, e1);
SETARG_B(getcode(fs, e2), e1->u.s.info);
e1->k = VRELOCABLE; e1->u.s.info = e2->u.s.info;
}
else {
luaK_exp2nextreg(fs, e2); /* operand must be on the 'stack' */
codearith(fs, OP_CONCAT, e1, e2);
}
break;
}
case OPR_ADD: codearith(fs, OP_ADD, e1, e2); break;
case OPR_SUB: codearith(fs, OP_SUB, e1, e2); break;
case OPR_MUL: codearith(fs, OP_MUL, e1, e2); break;
case OPR_DIV: codearith(fs, OP_DIV, e1, e2); break;
case OPR_MOD: codearith(fs, OP_MOD, e1, e2); break;
case OPR_POW: codearith(fs, OP_POW, e1, e2); break;
case OPR_EQ: codecomp(fs, OP_EQ, 1, e1, e2); break;
case OPR_NE: codecomp(fs, OP_EQ, 0, e1, e2); break;
case OPR_LT: codecomp(fs, OP_LT, 1, e1, e2); break;
case OPR_LE: codecomp(fs, OP_LE, 1, e1, e2); break;
case OPR_GT: codecomp(fs, OP_LT, 0, e1, e2); break;
case OPR_GE: codecomp(fs, OP_LE, 0, e1, e2); break;
default: lua_assert(0);
}
}
void luaK_fixline (FuncState *fs, int line) {
fs->f->lineinfo[fs->pc - 1] = line;
}
static int luaK_code (FuncState *fs, Instruction i, int line) {
Proto *f = fs->f;
dischargejpc(fs); /* `pc' will change */
/* put new instruction in code array */
luaM_growvector(fs->L, f->code, fs->pc, f->sizecode, Instruction,
MAX_INT, "code size overflow");
f->code[fs->pc] = i;
/* save corresponding line information */
luaM_growvector(fs->L, f->lineinfo, fs->pc, f->sizelineinfo, int,
MAX_INT, "code size overflow");
f->lineinfo[fs->pc] = line;
return fs->pc++;
}
int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) {
lua_assert(getOpMode(o) == iABC);
lua_assert(getBMode(o) != OpArgN || b == 0);
lua_assert(getCMode(o) != OpArgN || c == 0);
return luaK_code(fs, CREATE_ABC(o, a, b, c), fs->ls->lastline);
}
int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
lua_assert(getOpMode(o) == iABx || getOpMode(o) == iAsBx);
lua_assert(getCMode(o) == OpArgN);
return luaK_code(fs, CREATE_ABx(o, a, bc), fs->ls->lastline);
}
void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
int c = (nelems - 1)/LFIELDS_PER_FLUSH + 1;
int b = (tostore == LUA_MULTRET) ? 0 : tostore;
lua_assert(tostore != 0);
if (c <= MAXARG_C)
luaK_codeABC(fs, OP_SETLIST, base, b, c);
else {
luaK_codeABC(fs, OP_SETLIST, base, b, 0);
luaK_code(fs, cast(Instruction, c), fs->ls->lastline);
}
fs->freereg = base + 1; /* free registers with list values */
}
| 21,170 | 24.445913 | 78 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/lfunc.h | /*
** $Id: lfunc.h,v 2.4.1.1 2007/12/27 13:02:25 roberto Exp $
** Auxiliary functions to manipulate prototypes and closures
** See Copyright Notice in lua.h
*/
#ifndef lfunc_h
#define lfunc_h
#include "lobject.h"
#define sizeCclosure(n) (cast(int, sizeof(CClosure)) + \
cast(int, sizeof(TValue)*((n)-1)))
#define sizeLclosure(n) (cast(int, sizeof(LClosure)) + \
cast(int, sizeof(TValue *)*((n)-1)))
LUAI_FUNC Proto *luaF_newproto (lua_State *L);
LUAI_FUNC Closure *luaF_newCclosure (lua_State *L, int nelems, Table *e);
LUAI_FUNC Closure *luaF_newLclosure (lua_State *L, int nelems, Table *e);
LUAI_FUNC UpVal *luaF_newupval (lua_State *L);
LUAI_FUNC UpVal *luaF_findupval (lua_State *L, StkId level);
LUAI_FUNC void luaF_close (lua_State *L, StkId level);
LUAI_FUNC void luaF_freeproto (lua_State *L, Proto *f);
LUAI_FUNC void luaF_freeclosure (lua_State *L, Closure *c);
LUAI_FUNC void luaF_freeupval (lua_State *L, UpVal *uv);
LUAI_FUNC const char *luaF_getlocalname (const Proto *func, int local_number,
int pc);
#endif
| 1,125 | 31.171429 | 77 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/lauxlib.c | /*
** $Id: lauxlib.c,v 1.159.1.3 2008/01/21 13:20:51 roberto Exp $
** Auxiliary functions for building Lua libraries
** See Copyright Notice in lua.h
*/
#include <ctype.h>
#include <errno.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* This file uses only the official API of Lua.
** Any function declared here could be written as an application function.
*/
#define lauxlib_c
#define LUA_LIB
#include "lua.h"
#include "lauxlib.h"
#define FREELIST_REF 0 /* free list of references */
/* convert a stack index to positive */
#define abs_index(L, i) ((i) > 0 || (i) <= LUA_REGISTRYINDEX ? (i) : \
lua_gettop(L) + (i) + 1)
/*
** {======================================================
** Error-report functions
** =======================================================
*/
LUALIB_API int luaL_argerror (lua_State *L, int narg, const char *extramsg) {
lua_Debug ar;
if (!lua_getstack(L, 0, &ar)) /* no stack frame? */
return luaL_error(L, "bad argument #%d (%s)", narg, extramsg);
lua_getinfo(L, "n", &ar);
if (strcmp(ar.namewhat, "method") == 0) {
narg--; /* do not count `self' */
if (narg == 0) /* error is in the self argument itself? */
return luaL_error(L, "calling " LUA_QS " on bad self (%s)",
ar.name, extramsg);
}
if (ar.name == NULL)
ar.name = "?";
return luaL_error(L, "bad argument #%d to " LUA_QS " (%s)",
narg, ar.name, extramsg);
}
LUALIB_API int luaL_typerror (lua_State *L, int narg, const char *tname) {
const char *msg = lua_pushfstring(L, "%s expected, got %s",
tname, luaL_typename(L, narg));
return luaL_argerror(L, narg, msg);
}
static void tag_error (lua_State *L, int narg, int tag) {
luaL_typerror(L, narg, lua_typename(L, tag));
}
LUALIB_API void luaL_where (lua_State *L, int level) {
lua_Debug ar;
if (lua_getstack(L, level, &ar)) { /* check function at level */
lua_getinfo(L, "Sl", &ar); /* get info about it */
if (ar.currentline > 0) { /* is there info? */
lua_pushfstring(L, "%s:%d: ", ar.short_src, ar.currentline);
return;
}
}
lua_pushliteral(L, ""); /* else, no information available... */
}
LUALIB_API int luaL_error (lua_State *L, const char *fmt, ...) {
va_list argp;
va_start(argp, fmt);
luaL_where(L, 1);
lua_pushvfstring(L, fmt, argp);
va_end(argp);
lua_concat(L, 2);
return lua_error(L);
}
/* }====================================================== */
LUALIB_API int luaL_checkoption (lua_State *L, int narg, const char *def,
const char *const lst[]) {
const char *name = (def) ? luaL_optstring(L, narg, def) :
luaL_checkstring(L, narg);
int i;
for (i=0; lst[i]; i++)
if (strcmp(lst[i], name) == 0)
return i;
return luaL_argerror(L, narg,
lua_pushfstring(L, "invalid option " LUA_QS, name));
}
LUALIB_API int luaL_newmetatable (lua_State *L, const char *tname) {
lua_getfield(L, LUA_REGISTRYINDEX, tname); /* get registry.name */
if (!lua_isnil(L, -1)) /* name already in use? */
return 0; /* leave previous value on top, but return 0 */
lua_pop(L, 1);
lua_newtable(L); /* create metatable */
lua_pushvalue(L, -1);
lua_setfield(L, LUA_REGISTRYINDEX, tname); /* registry.name = metatable */
return 1;
}
LUALIB_API void *luaL_checkudata (lua_State *L, int ud, const char *tname) {
void *p = lua_touserdata(L, ud);
if (p != NULL) { /* value is a userdata? */
if (lua_getmetatable(L, ud)) { /* does it have a metatable? */
lua_getfield(L, LUA_REGISTRYINDEX, tname); /* get correct metatable */
if (lua_rawequal(L, -1, -2)) { /* does it have the correct mt? */
lua_pop(L, 2); /* remove both metatables */
return p;
}
}
}
luaL_typerror(L, ud, tname); /* else error */
return NULL; /* to avoid warnings */
}
LUALIB_API void luaL_checkstack (lua_State *L, int space, const char *mes) {
if (!lua_checkstack(L, space))
luaL_error(L, "stack overflow (%s)", mes);
}
LUALIB_API void luaL_checktype (lua_State *L, int narg, int t) {
if (lua_type(L, narg) != t)
tag_error(L, narg, t);
}
LUALIB_API void luaL_checkany (lua_State *L, int narg) {
if (lua_type(L, narg) == LUA_TNONE)
luaL_argerror(L, narg, "value expected");
}
LUALIB_API const char *luaL_checklstring (lua_State *L, int narg, size_t *len) {
const char *s = lua_tolstring(L, narg, len);
if (!s) tag_error(L, narg, LUA_TSTRING);
return s;
}
LUALIB_API const char *luaL_optlstring (lua_State *L, int narg,
const char *def, size_t *len) {
if (lua_isnoneornil(L, narg)) {
if (len)
*len = (def ? strlen(def) : 0);
return def;
}
else return luaL_checklstring(L, narg, len);
}
LUALIB_API lua_Number luaL_checknumber (lua_State *L, int narg) {
lua_Number d = lua_tonumber(L, narg);
if (d == 0 && !lua_isnumber(L, narg)) /* avoid extra test when d is not 0 */
tag_error(L, narg, LUA_TNUMBER);
return d;
}
LUALIB_API lua_Number luaL_optnumber (lua_State *L, int narg, lua_Number def) {
return luaL_opt(L, luaL_checknumber, narg, def);
}
LUALIB_API lua_Integer luaL_checkinteger (lua_State *L, int narg) {
lua_Integer d = lua_tointeger(L, narg);
if (d == 0 && !lua_isnumber(L, narg)) /* avoid extra test when d is not 0 */
tag_error(L, narg, LUA_TNUMBER);
return d;
}
LUALIB_API lua_Integer luaL_optinteger (lua_State *L, int narg,
lua_Integer def) {
return luaL_opt(L, luaL_checkinteger, narg, def);
}
LUALIB_API int luaL_getmetafield (lua_State *L, int obj, const char *event) {
if (!lua_getmetatable(L, obj)) /* no metatable? */
return 0;
lua_pushstring(L, event);
lua_rawget(L, -2);
if (lua_isnil(L, -1)) {
lua_pop(L, 2); /* remove metatable and metafield */
return 0;
}
else {
lua_remove(L, -2); /* remove only metatable */
return 1;
}
}
LUALIB_API int luaL_callmeta (lua_State *L, int obj, const char *event) {
obj = abs_index(L, obj);
if (!luaL_getmetafield(L, obj, event)) /* no metafield? */
return 0;
lua_pushvalue(L, obj);
lua_call(L, 1, 1);
return 1;
}
LUALIB_API void (luaL_register) (lua_State *L, const char *libname,
const luaL_Reg *l) {
luaI_openlib(L, libname, l, 0);
}
static int libsize (const luaL_Reg *l) {
int size = 0;
for (; l->name; l++) size++;
return size;
}
LUALIB_API void luaI_openlib (lua_State *L, const char *libname,
const luaL_Reg *l, int nup) {
if (libname) {
int size = libsize(l);
/* check whether lib already exists */
luaL_findtable(L, LUA_REGISTRYINDEX, "_LOADED", 1);
lua_getfield(L, -1, libname); /* get _LOADED[libname] */
if (!lua_istable(L, -1)) { /* not found? */
lua_pop(L, 1); /* remove previous result */
/* try global variable (and create one if it does not exist) */
if (luaL_findtable(L, LUA_GLOBALSINDEX, libname, size) != NULL)
luaL_error(L, "name conflict for module " LUA_QS, libname);
lua_pushvalue(L, -1);
lua_setfield(L, -3, libname); /* _LOADED[libname] = new table */
}
lua_remove(L, -2); /* remove _LOADED table */
lua_insert(L, -(nup+1)); /* move library table to below upvalues */
}
for (; l->name; l++) {
int i;
for (i=0; i<nup; i++) /* copy upvalues to the top */
lua_pushvalue(L, -nup);
lua_pushcclosure(L, l->func, nup);
lua_setfield(L, -(nup+2), l->name);
}
lua_pop(L, nup); /* remove upvalues */
}
/*
** {======================================================
** getn-setn: size for arrays
** =======================================================
*/
#if defined(LUA_COMPAT_GETN)
static int checkint (lua_State *L, int topop) {
int n = (lua_type(L, -1) == LUA_TNUMBER) ? lua_tointeger(L, -1) : -1;
lua_pop(L, topop);
return n;
}
static void getsizes (lua_State *L) {
lua_getfield(L, LUA_REGISTRYINDEX, "LUA_SIZES");
if (lua_isnil(L, -1)) { /* no `size' table? */
lua_pop(L, 1); /* remove nil */
lua_newtable(L); /* create it */
lua_pushvalue(L, -1); /* `size' will be its own metatable */
lua_setmetatable(L, -2);
lua_pushliteral(L, "kv");
lua_setfield(L, -2, "__mode"); /* metatable(N).__mode = "kv" */
lua_pushvalue(L, -1);
lua_setfield(L, LUA_REGISTRYINDEX, "LUA_SIZES"); /* store in register */
}
}
LUALIB_API void luaL_setn (lua_State *L, int t, int n) {
t = abs_index(L, t);
lua_pushliteral(L, "n");
lua_rawget(L, t);
if (checkint(L, 1) >= 0) { /* is there a numeric field `n'? */
lua_pushliteral(L, "n"); /* use it */
lua_pushinteger(L, n);
lua_rawset(L, t);
}
else { /* use `sizes' */
getsizes(L);
lua_pushvalue(L, t);
lua_pushinteger(L, n);
lua_rawset(L, -3); /* sizes[t] = n */
lua_pop(L, 1); /* remove `sizes' */
}
}
LUALIB_API int luaL_getn (lua_State *L, int t) {
int n;
t = abs_index(L, t);
lua_pushliteral(L, "n"); /* try t.n */
lua_rawget(L, t);
if ((n = checkint(L, 1)) >= 0) return n;
getsizes(L); /* else try sizes[t] */
lua_pushvalue(L, t);
lua_rawget(L, -2);
if ((n = checkint(L, 2)) >= 0) return n;
return (int)lua_objlen(L, t);
}
#endif
/* }====================================================== */
LUALIB_API const char *luaL_gsub (lua_State *L, const char *s, const char *p,
const char *r) {
const char *wild;
size_t l = strlen(p);
luaL_Buffer b;
luaL_buffinit(L, &b);
while ((wild = strstr(s, p)) != NULL) {
luaL_addlstring(&b, s, wild - s); /* push prefix */
luaL_addstring(&b, r); /* push replacement in place of pattern */
s = wild + l; /* continue after `p' */
}
luaL_addstring(&b, s); /* push last suffix */
luaL_pushresult(&b);
return lua_tostring(L, -1);
}
LUALIB_API const char *luaL_findtable (lua_State *L, int idx,
const char *fname, int szhint) {
const char *e;
lua_pushvalue(L, idx);
do {
e = strchr(fname, '.');
if (e == NULL) e = fname + strlen(fname);
lua_pushlstring(L, fname, e - fname);
lua_rawget(L, -2);
if (lua_isnil(L, -1)) { /* no such field? */
lua_pop(L, 1); /* remove this nil */
lua_createtable(L, 0, (*e == '.' ? 1 : szhint)); /* new table for field */
lua_pushlstring(L, fname, e - fname);
lua_pushvalue(L, -2);
lua_settable(L, -4); /* set new table into field */
}
else if (!lua_istable(L, -1)) { /* field has a non-table value? */
lua_pop(L, 2); /* remove table and value */
return fname; /* return problematic part of the name */
}
lua_remove(L, -2); /* remove previous table */
fname = e + 1;
} while (*e == '.');
return NULL;
}
/*
** {======================================================
** Generic Buffer manipulation
** =======================================================
*/
#define bufflen(B) ((B)->p - (B)->buffer)
#define bufffree(B) ((size_t)(LUAL_BUFFERSIZE - bufflen(B)))
#define LIMIT (LUA_MINSTACK/2)
static int emptybuffer (luaL_Buffer *B) {
size_t l = bufflen(B);
if (l == 0) return 0; /* put nothing on stack */
else {
lua_pushlstring(B->L, B->buffer, l);
B->p = B->buffer;
B->lvl++;
return 1;
}
}
static void adjuststack (luaL_Buffer *B) {
if (B->lvl > 1) {
lua_State *L = B->L;
int toget = 1; /* number of levels to concat */
size_t toplen = lua_strlen(L, -1);
do {
size_t l = lua_strlen(L, -(toget+1));
if (B->lvl - toget + 1 >= LIMIT || toplen > l) {
toplen += l;
toget++;
}
else break;
} while (toget < B->lvl);
lua_concat(L, toget);
B->lvl = B->lvl - toget + 1;
}
}
LUALIB_API char *luaL_prepbuffer (luaL_Buffer *B) {
if (emptybuffer(B))
adjuststack(B);
return B->buffer;
}
LUALIB_API void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l) {
while (l--)
luaL_addchar(B, *s++);
}
LUALIB_API void luaL_addstring (luaL_Buffer *B, const char *s) {
luaL_addlstring(B, s, strlen(s));
}
LUALIB_API void luaL_pushresult (luaL_Buffer *B) {
emptybuffer(B);
lua_concat(B->L, B->lvl);
B->lvl = 1;
}
LUALIB_API void luaL_addvalue (luaL_Buffer *B) {
lua_State *L = B->L;
size_t vl;
const char *s = lua_tolstring(L, -1, &vl);
if (vl <= bufffree(B)) { /* fit into buffer? */
memcpy(B->p, s, vl); /* put it there */
B->p += vl;
lua_pop(L, 1); /* remove from stack */
}
else {
if (emptybuffer(B))
lua_insert(L, -2); /* put buffer before new value */
B->lvl++; /* add new value into B stack */
adjuststack(B);
}
}
LUALIB_API void luaL_buffinit (lua_State *L, luaL_Buffer *B) {
B->L = L;
B->p = B->buffer;
B->lvl = 0;
}
/* }====================================================== */
LUALIB_API int luaL_ref (lua_State *L, int t) {
int ref;
t = abs_index(L, t);
if (lua_isnil(L, -1)) {
lua_pop(L, 1); /* remove from stack */
return LUA_REFNIL; /* `nil' has a unique fixed reference */
}
lua_rawgeti(L, t, FREELIST_REF); /* get first free element */
ref = (int)lua_tointeger(L, -1); /* ref = t[FREELIST_REF] */
lua_pop(L, 1); /* remove it from stack */
if (ref != 0) { /* any free element? */
lua_rawgeti(L, t, ref); /* remove it from list */
lua_rawseti(L, t, FREELIST_REF); /* (t[FREELIST_REF] = t[ref]) */
}
else { /* no free elements */
ref = (int)lua_objlen(L, t);
ref++; /* create new reference */
}
lua_rawseti(L, t, ref);
return ref;
}
LUALIB_API void luaL_unref (lua_State *L, int t, int ref) {
if (ref >= 0) {
t = abs_index(L, t);
lua_rawgeti(L, t, FREELIST_REF);
lua_rawseti(L, t, ref); /* t[ref] = t[FREELIST_REF] */
lua_pushinteger(L, ref);
lua_rawseti(L, t, FREELIST_REF); /* t[FREELIST_REF] = ref */
}
}
/*
** {======================================================
** Load functions
** =======================================================
*/
typedef struct LoadF {
int extraline;
FILE *f;
char buff[LUAL_BUFFERSIZE];
} LoadF;
static const char *getF (lua_State *L, void *ud, size_t *size) {
LoadF *lf = (LoadF *)ud;
(void)L;
if (lf->extraline) {
lf->extraline = 0;
*size = 1;
return "\n";
}
if (feof(lf->f)) return NULL;
*size = fread(lf->buff, 1, sizeof(lf->buff), lf->f);
return (*size > 0) ? lf->buff : NULL;
}
static int errfile (lua_State *L, const char *what, int fnameindex) {
const char *serr = strerror(errno);
const char *filename = lua_tostring(L, fnameindex) + 1;
lua_pushfstring(L, "cannot %s %s: %s", what, filename, serr);
lua_remove(L, fnameindex);
return LUA_ERRFILE;
}
LUALIB_API int luaL_loadfile (lua_State *L, const char *filename) {
LoadF lf;
int status, readstatus;
int c;
int fnameindex = lua_gettop(L) + 1; /* index of filename on the stack */
lf.extraline = 0;
if (filename == NULL) {
lua_pushliteral(L, "=stdin");
lf.f = stdin;
}
else {
lua_pushfstring(L, "@%s", filename);
lf.f = fopen(filename, "r");
if (lf.f == NULL) return errfile(L, "open", fnameindex);
}
c = getc(lf.f);
if (c == '#') { /* Unix exec. file? */
lf.extraline = 1;
while ((c = getc(lf.f)) != EOF && c != '\n') ; /* skip first line */
if (c == '\n') c = getc(lf.f);
}
if (c == LUA_SIGNATURE[0] && filename) { /* binary file? */
lf.f = freopen(filename, "rb", lf.f); /* reopen in binary mode */
if (lf.f == NULL) return errfile(L, "reopen", fnameindex);
/* skip eventual `#!...' */
while ((c = getc(lf.f)) != EOF && c != LUA_SIGNATURE[0]) ;
lf.extraline = 0;
}
ungetc(c, lf.f);
status = lua_load(L, getF, &lf, lua_tostring(L, -1));
readstatus = ferror(lf.f);
if (filename) fclose(lf.f); /* close file (even in case of errors) */
if (readstatus) {
lua_settop(L, fnameindex); /* ignore results from `lua_load' */
return errfile(L, "read", fnameindex);
}
lua_remove(L, fnameindex);
return status;
}
typedef struct LoadS {
const char *s;
size_t size;
} LoadS;
static const char *getS (lua_State *L, void *ud, size_t *size) {
LoadS *ls = (LoadS *)ud;
(void)L;
if (ls->size == 0) return NULL;
*size = ls->size;
ls->size = 0;
return ls->s;
}
LUALIB_API int luaL_loadbuffer (lua_State *L, const char *buff, size_t size,
const char *name) {
LoadS ls;
ls.s = buff;
ls.size = size;
return lua_load(L, getS, &ls, name);
}
LUALIB_API int (luaL_loadstring) (lua_State *L, const char *s) {
return luaL_loadbuffer(L, s, strlen(s), s);
}
/* }====================================================== */
static void *l_alloc (void *ud, void *ptr, size_t osize, size_t nsize) {
(void)ud;
(void)osize;
if (nsize == 0) {
free(ptr);
return NULL;
}
else
return realloc(ptr, nsize);
}
static int panic (lua_State *L) {
(void)L; /* to avoid warnings */
fprintf(stderr, "PANIC: unprotected error in call to Lua API (%s)\n",
lua_tostring(L, -1));
return 0;
}
LUALIB_API lua_State *luaL_newstate (void) {
lua_State *L = lua_newstate(l_alloc, NULL);
if (L) lua_atpanic(L, &panic);
return L;
}
| 17,417 | 25.673813 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/ltm.c | /*
** $Id: ltm.c,v 2.8.1.1 2007/12/27 13:02:25 roberto Exp $
** Tag methods
** See Copyright Notice in lua.h
*/
#include <string.h>
#define ltm_c
#define LUA_CORE
#include "lua.h"
#include "lobject.h"
#include "lstate.h"
#include "lstring.h"
#include "ltable.h"
#include "ltm.h"
const char *const luaT_typenames[] = {
"nil", "boolean", "userdata", "number",
"string", "table", "function", "userdata", "thread",
"proto", "upval"
};
void luaT_init (lua_State *L) {
static const char *const luaT_eventname[] = { /* ORDER TM */
"__index", "__newindex",
"__gc", "__mode", "__eq",
"__add", "__sub", "__mul", "__div", "__mod",
"__pow", "__unm", "__len", "__lt", "__le",
"__concat", "__call"
};
int i;
for (i=0; i<TM_N; i++) {
G(L)->tmname[i] = luaS_new(L, luaT_eventname[i]);
luaS_fix(G(L)->tmname[i]); /* never collect these names */
}
}
/*
** function to be used with macro "fasttm": optimized for absence of
** tag methods
*/
const TValue *luaT_gettm (Table *events, TMS event, TString *ename) {
const TValue *tm = luaH_getstr(events, ename);
lua_assert(event <= TM_EQ);
if (ttisnil(tm)) { /* no tag method? */
events->flags |= cast_byte(1u<<event); /* cache this fact */
return NULL;
}
else return tm;
}
const TValue *luaT_gettmbyobj (lua_State *L, const TValue *o, TMS event) {
Table *mt;
switch (ttype(o)) {
case LUA_TTABLE:
mt = hvalue(o)->metatable;
break;
case LUA_TUSERDATA:
mt = uvalue(o)->metatable;
break;
default:
mt = G(L)->mt[ttype(o)];
}
return (mt ? luaH_getstr(mt, G(L)->tmname[event]) : luaO_nilobject);
}
| 1,650 | 20.723684 | 74 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/strbuf.h | /* strbuf - String buffer routines
*
* Copyright (c) 2010-2012 Mark Pulford <[email protected]>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <stdlib.h>
#include <stdarg.h>
/* Size: Total bytes allocated to *buf
* Length: String length, excluding optional NULL terminator.
* Increment: Allocation increments when resizing the string buffer.
* Dynamic: True if created via strbuf_new()
*/
typedef struct {
char *buf;
int size;
int length;
int increment;
int dynamic;
int reallocs;
int debug;
} strbuf_t;
#ifndef STRBUF_DEFAULT_SIZE
#define STRBUF_DEFAULT_SIZE 1023
#endif
#ifndef STRBUF_DEFAULT_INCREMENT
#define STRBUF_DEFAULT_INCREMENT -2
#endif
/* Initialise */
extern strbuf_t *strbuf_new(int len);
extern void strbuf_init(strbuf_t *s, int len);
extern void strbuf_set_increment(strbuf_t *s, int increment);
/* Release */
extern void strbuf_free(strbuf_t *s);
extern char *strbuf_free_to_string(strbuf_t *s, int *len);
/* Management */
extern void strbuf_resize(strbuf_t *s, int len);
static int strbuf_empty_length(strbuf_t *s);
static int strbuf_length(strbuf_t *s);
static char *strbuf_string(strbuf_t *s, int *len);
static void strbuf_ensure_empty_length(strbuf_t *s, int len);
static char *strbuf_empty_ptr(strbuf_t *s);
static void strbuf_extend_length(strbuf_t *s, int len);
/* Update */
extern void strbuf_append_fmt(strbuf_t *s, int len, const char *fmt, ...);
extern void strbuf_append_fmt_retry(strbuf_t *s, const char *format, ...);
static void strbuf_append_mem(strbuf_t *s, const char *c, int len);
extern void strbuf_append_string(strbuf_t *s, const char *str);
static void strbuf_append_char(strbuf_t *s, const char c);
static void strbuf_ensure_null(strbuf_t *s);
/* Reset string for before use */
static inline void strbuf_reset(strbuf_t *s)
{
s->length = 0;
}
static inline int strbuf_allocated(strbuf_t *s)
{
return s->buf != NULL;
}
/* Return bytes remaining in the string buffer
* Ensure there is space for a NULL terminator. */
static inline int strbuf_empty_length(strbuf_t *s)
{
return s->size - s->length - 1;
}
static inline void strbuf_ensure_empty_length(strbuf_t *s, int len)
{
if (len > strbuf_empty_length(s))
strbuf_resize(s, s->length + len);
}
static inline char *strbuf_empty_ptr(strbuf_t *s)
{
return s->buf + s->length;
}
static inline void strbuf_extend_length(strbuf_t *s, int len)
{
s->length += len;
}
static inline int strbuf_length(strbuf_t *s)
{
return s->length;
}
static inline void strbuf_append_char(strbuf_t *s, const char c)
{
strbuf_ensure_empty_length(s, 1);
s->buf[s->length++] = c;
}
static inline void strbuf_append_char_unsafe(strbuf_t *s, const char c)
{
s->buf[s->length++] = c;
}
static inline void strbuf_append_mem(strbuf_t *s, const char *c, int len)
{
strbuf_ensure_empty_length(s, len);
memcpy(s->buf + s->length, c, len);
s->length += len;
}
static inline void strbuf_append_mem_unsafe(strbuf_t *s, const char *c, int len)
{
memcpy(s->buf + s->length, c, len);
s->length += len;
}
static inline void strbuf_ensure_null(strbuf_t *s)
{
s->buf[s->length] = 0;
}
static inline char *strbuf_string(strbuf_t *s, int *len)
{
if (len)
*len = s->length;
return s->buf;
}
/* vi:ai et sw=4 ts=4:
*/
| 4,349 | 27.064516 | 80 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/lmem.c | /*
** $Id: lmem.c,v 1.70.1.1 2007/12/27 13:02:25 roberto Exp $
** Interface to Memory Manager
** See Copyright Notice in lua.h
*/
#include <stddef.h>
#define lmem_c
#define LUA_CORE
#include "lua.h"
#include "ldebug.h"
#include "ldo.h"
#include "lmem.h"
#include "lobject.h"
#include "lstate.h"
/*
** About the realloc function:
** void * frealloc (void *ud, void *ptr, size_t osize, size_t nsize);
** (`osize' is the old size, `nsize' is the new size)
**
** Lua ensures that (ptr == NULL) iff (osize == 0).
**
** * frealloc(ud, NULL, 0, x) creates a new block of size `x'
**
** * frealloc(ud, p, x, 0) frees the block `p'
** (in this specific case, frealloc must return NULL).
** particularly, frealloc(ud, NULL, 0, 0) does nothing
** (which is equivalent to free(NULL) in ANSI C)
**
** frealloc returns NULL if it cannot create or reallocate the area
** (any reallocation to an equal or smaller size cannot fail!)
*/
#define MINSIZEARRAY 4
void *luaM_growaux_ (lua_State *L, void *block, int *size, size_t size_elems,
int limit, const char *errormsg) {
void *newblock;
int newsize;
if (*size >= limit/2) { /* cannot double it? */
if (*size >= limit) /* cannot grow even a little? */
luaG_runerror(L, errormsg);
newsize = limit; /* still have at least one free place */
}
else {
newsize = (*size)*2;
if (newsize < MINSIZEARRAY)
newsize = MINSIZEARRAY; /* minimum size */
}
newblock = luaM_reallocv(L, block, *size, newsize, size_elems);
*size = newsize; /* update only when everything else is OK */
return newblock;
}
void *luaM_toobig (lua_State *L) {
luaG_runerror(L, "memory allocation error: block too big");
return NULL; /* to avoid warnings */
}
/*
** generic allocation routine.
*/
void *luaM_realloc_ (lua_State *L, void *block, size_t osize, size_t nsize) {
global_State *g = G(L);
lua_assert((osize == 0) == (block == NULL));
block = (*g->frealloc)(g->ud, block, osize, nsize);
if (block == NULL && nsize > 0)
luaD_throw(L, LUA_ERRMEM);
lua_assert((nsize == 0) == (block == NULL));
g->totalbytes = (g->totalbytes - osize) + nsize;
return block;
}
| 2,172 | 23.977011 | 77 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/lauxlib.h | /*
** $Id: lauxlib.h,v 1.88.1.1 2007/12/27 13:02:25 roberto Exp $
** Auxiliary functions for building Lua libraries
** See Copyright Notice in lua.h
*/
#ifndef lauxlib_h
#define lauxlib_h
#include <stddef.h>
#include <stdio.h>
#include "lua.h"
#if defined(LUA_COMPAT_GETN)
LUALIB_API int (luaL_getn) (lua_State *L, int t);
LUALIB_API void (luaL_setn) (lua_State *L, int t, int n);
#else
#define luaL_getn(L,i) ((int)lua_objlen(L, i))
#define luaL_setn(L,i,j) ((void)0) /* no op! */
#endif
#if defined(LUA_COMPAT_OPENLIB)
#define luaI_openlib luaL_openlib
#endif
/* extra error code for `luaL_load' */
#define LUA_ERRFILE (LUA_ERRERR+1)
typedef struct luaL_Reg {
const char *name;
lua_CFunction func;
} luaL_Reg;
LUALIB_API void (luaI_openlib) (lua_State *L, const char *libname,
const luaL_Reg *l, int nup);
LUALIB_API void (luaL_register) (lua_State *L, const char *libname,
const luaL_Reg *l);
LUALIB_API int (luaL_getmetafield) (lua_State *L, int obj, const char *e);
LUALIB_API int (luaL_callmeta) (lua_State *L, int obj, const char *e);
LUALIB_API int (luaL_typerror) (lua_State *L, int narg, const char *tname);
LUALIB_API int (luaL_argerror) (lua_State *L, int numarg, const char *extramsg);
LUALIB_API const char *(luaL_checklstring) (lua_State *L, int numArg,
size_t *l);
LUALIB_API const char *(luaL_optlstring) (lua_State *L, int numArg,
const char *def, size_t *l);
LUALIB_API lua_Number (luaL_checknumber) (lua_State *L, int numArg);
LUALIB_API lua_Number (luaL_optnumber) (lua_State *L, int nArg, lua_Number def);
LUALIB_API lua_Integer (luaL_checkinteger) (lua_State *L, int numArg);
LUALIB_API lua_Integer (luaL_optinteger) (lua_State *L, int nArg,
lua_Integer def);
LUALIB_API void (luaL_checkstack) (lua_State *L, int sz, const char *msg);
LUALIB_API void (luaL_checktype) (lua_State *L, int narg, int t);
LUALIB_API void (luaL_checkany) (lua_State *L, int narg);
LUALIB_API int (luaL_newmetatable) (lua_State *L, const char *tname);
LUALIB_API void *(luaL_checkudata) (lua_State *L, int ud, const char *tname);
LUALIB_API void (luaL_where) (lua_State *L, int lvl);
LUALIB_API int (luaL_error) (lua_State *L, const char *fmt, ...);
LUALIB_API int (luaL_checkoption) (lua_State *L, int narg, const char *def,
const char *const lst[]);
LUALIB_API int (luaL_ref) (lua_State *L, int t);
LUALIB_API void (luaL_unref) (lua_State *L, int t, int ref);
LUALIB_API int (luaL_loadfile) (lua_State *L, const char *filename);
LUALIB_API int (luaL_loadbuffer) (lua_State *L, const char *buff, size_t sz,
const char *name);
LUALIB_API int (luaL_loadstring) (lua_State *L, const char *s);
LUALIB_API lua_State *(luaL_newstate) (void);
LUALIB_API const char *(luaL_gsub) (lua_State *L, const char *s, const char *p,
const char *r);
LUALIB_API const char *(luaL_findtable) (lua_State *L, int idx,
const char *fname, int szhint);
/*
** ===============================================================
** some useful macros
** ===============================================================
*/
#define luaL_argcheck(L, cond,numarg,extramsg) \
((void)((cond) || luaL_argerror(L, (numarg), (extramsg))))
#define luaL_checkstring(L,n) (luaL_checklstring(L, (n), NULL))
#define luaL_optstring(L,n,d) (luaL_optlstring(L, (n), (d), NULL))
#define luaL_checkint(L,n) ((int)luaL_checkinteger(L, (n)))
#define luaL_optint(L,n,d) ((int)luaL_optinteger(L, (n), (d)))
#define luaL_checklong(L,n) ((long)luaL_checkinteger(L, (n)))
#define luaL_optlong(L,n,d) ((long)luaL_optinteger(L, (n), (d)))
#define luaL_typename(L,i) lua_typename(L, lua_type(L,(i)))
#define luaL_dofile(L, fn) \
(luaL_loadfile(L, fn) || lua_pcall(L, 0, LUA_MULTRET, 0))
#define luaL_dostring(L, s) \
(luaL_loadstring(L, s) || lua_pcall(L, 0, LUA_MULTRET, 0))
#define luaL_getmetatable(L,n) (lua_getfield(L, LUA_REGISTRYINDEX, (n)))
#define luaL_opt(L,f,n,d) (lua_isnoneornil(L,(n)) ? (d) : f(L,(n)))
/*
** {======================================================
** Generic Buffer manipulation
** =======================================================
*/
typedef struct luaL_Buffer {
char *p; /* current position in buffer */
int lvl; /* number of strings in the stack (level) */
lua_State *L;
char buffer[LUAL_BUFFERSIZE];
} luaL_Buffer;
#define luaL_addchar(B,c) \
((void)((B)->p < ((B)->buffer+LUAL_BUFFERSIZE) || luaL_prepbuffer(B)), \
(*(B)->p++ = (char)(c)))
/* compatibility only */
#define luaL_putchar(B,c) luaL_addchar(B,c)
#define luaL_addsize(B,n) ((B)->p += (n))
LUALIB_API void (luaL_buffinit) (lua_State *L, luaL_Buffer *B);
LUALIB_API char *(luaL_prepbuffer) (luaL_Buffer *B);
LUALIB_API void (luaL_addlstring) (luaL_Buffer *B, const char *s, size_t l);
LUALIB_API void (luaL_addstring) (luaL_Buffer *B, const char *s);
LUALIB_API void (luaL_addvalue) (luaL_Buffer *B);
LUALIB_API void (luaL_pushresult) (luaL_Buffer *B);
/* }====================================================== */
/* compatibility with ref system */
/* pre-defined references */
#define LUA_NOREF (-2)
#define LUA_REFNIL (-1)
#define lua_ref(L,lock) ((lock) ? luaL_ref(L, LUA_REGISTRYINDEX) : \
(lua_pushstring(L, "unlocked references are obsolete"), lua_error(L), 0))
#define lua_unref(L,ref) luaL_unref(L, LUA_REGISTRYINDEX, (ref))
#define lua_getref(L,ref) lua_rawgeti(L, LUA_REGISTRYINDEX, (ref))
#define luaL_reg luaL_Reg
#endif
| 5,777 | 32.017143 | 80 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/print.c | /*
** $Id: print.c,v 1.55a 2006/05/31 13:30:05 lhf Exp $
** print bytecodes
** See Copyright Notice in lua.h
*/
#include <ctype.h>
#include <stdio.h>
#define luac_c
#define LUA_CORE
#include "ldebug.h"
#include "lobject.h"
#include "lopcodes.h"
#include "lundump.h"
#define PrintFunction luaU_print
#define Sizeof(x) ((int)sizeof(x))
#define VOID(p) ((const void*)(p))
static void PrintString(const TString* ts)
{
const char* s=getstr(ts);
size_t i,n=ts->tsv.len;
putchar('"');
for (i=0; i<n; i++)
{
int c=s[i];
switch (c)
{
case '"': printf("\\\""); break;
case '\\': printf("\\\\"); break;
case '\a': printf("\\a"); break;
case '\b': printf("\\b"); break;
case '\f': printf("\\f"); break;
case '\n': printf("\\n"); break;
case '\r': printf("\\r"); break;
case '\t': printf("\\t"); break;
case '\v': printf("\\v"); break;
default: if (isprint((unsigned char)c))
putchar(c);
else
printf("\\%03u",(unsigned char)c);
}
}
putchar('"');
}
static void PrintConstant(const Proto* f, int i)
{
const TValue* o=&f->k[i];
switch (ttype(o))
{
case LUA_TNIL:
printf("nil");
break;
case LUA_TBOOLEAN:
printf(bvalue(o) ? "true" : "false");
break;
case LUA_TNUMBER:
printf(LUA_NUMBER_FMT,nvalue(o));
break;
case LUA_TSTRING:
PrintString(rawtsvalue(o));
break;
default: /* cannot happen */
printf("? type=%d",ttype(o));
break;
}
}
static void PrintCode(const Proto* f)
{
const Instruction* code=f->code;
int pc,n=f->sizecode;
for (pc=0; pc<n; pc++)
{
Instruction i=code[pc];
OpCode o=GET_OPCODE(i);
int a=GETARG_A(i);
int b=GETARG_B(i);
int c=GETARG_C(i);
int bx=GETARG_Bx(i);
int sbx=GETARG_sBx(i);
int line=getline(f,pc);
printf("\t%d\t",pc+1);
if (line>0) printf("[%d]\t",line); else printf("[-]\t");
printf("%-9s\t",luaP_opnames[o]);
switch (getOpMode(o))
{
case iABC:
printf("%d",a);
if (getBMode(o)!=OpArgN) printf(" %d",ISK(b) ? (-1-INDEXK(b)) : b);
if (getCMode(o)!=OpArgN) printf(" %d",ISK(c) ? (-1-INDEXK(c)) : c);
break;
case iABx:
if (getBMode(o)==OpArgK) printf("%d %d",a,-1-bx); else printf("%d %d",a,bx);
break;
case iAsBx:
if (o==OP_JMP) printf("%d",sbx); else printf("%d %d",a,sbx);
break;
}
switch (o)
{
case OP_LOADK:
printf("\t; "); PrintConstant(f,bx);
break;
case OP_GETUPVAL:
case OP_SETUPVAL:
printf("\t; %s", (f->sizeupvalues>0) ? getstr(f->upvalues[b]) : "-");
break;
case OP_GETGLOBAL:
case OP_SETGLOBAL:
printf("\t; %s",svalue(&f->k[bx]));
break;
case OP_GETTABLE:
case OP_SELF:
if (ISK(c)) { printf("\t; "); PrintConstant(f,INDEXK(c)); }
break;
case OP_SETTABLE:
case OP_ADD:
case OP_SUB:
case OP_MUL:
case OP_DIV:
case OP_POW:
case OP_EQ:
case OP_LT:
case OP_LE:
if (ISK(b) || ISK(c))
{
printf("\t; ");
if (ISK(b)) PrintConstant(f,INDEXK(b)); else printf("-");
printf(" ");
if (ISK(c)) PrintConstant(f,INDEXK(c)); else printf("-");
}
break;
case OP_JMP:
case OP_FORLOOP:
case OP_FORPREP:
printf("\t; to %d",sbx+pc+2);
break;
case OP_CLOSURE:
printf("\t; %p",VOID(f->p[bx]));
break;
case OP_SETLIST:
if (c==0) printf("\t; %d",(int)code[++pc]);
else printf("\t; %d",c);
break;
default:
break;
}
printf("\n");
}
}
#define SS(x) (x==1)?"":"s"
#define S(x) x,SS(x)
static void PrintHeader(const Proto* f)
{
const char* s=getstr(f->source);
if (*s=='@' || *s=='=')
s++;
else if (*s==LUA_SIGNATURE[0])
s="(bstring)";
else
s="(string)";
printf("\n%s <%s:%d,%d> (%d instruction%s, %d bytes at %p)\n",
(f->linedefined==0)?"main":"function",s,
f->linedefined,f->lastlinedefined,
S(f->sizecode),f->sizecode*Sizeof(Instruction),VOID(f));
printf("%d%s param%s, %d slot%s, %d upvalue%s, ",
f->numparams,f->is_vararg?"+":"",SS(f->numparams),
S(f->maxstacksize),S(f->nups));
printf("%d local%s, %d constant%s, %d function%s\n",
S(f->sizelocvars),S(f->sizek),S(f->sizep));
}
static void PrintConstants(const Proto* f)
{
int i,n=f->sizek;
printf("constants (%d) for %p:\n",n,VOID(f));
for (i=0; i<n; i++)
{
printf("\t%d\t",i+1);
PrintConstant(f,i);
printf("\n");
}
}
static void PrintLocals(const Proto* f)
{
int i,n=f->sizelocvars;
printf("locals (%d) for %p:\n",n,VOID(f));
for (i=0; i<n; i++)
{
printf("\t%d\t%s\t%d\t%d\n",
i,getstr(f->locvars[i].varname),f->locvars[i].startpc+1,f->locvars[i].endpc+1);
}
}
static void PrintUpvalues(const Proto* f)
{
int i,n=f->sizeupvalues;
printf("upvalues (%d) for %p:\n",n,VOID(f));
if (f->upvalues==NULL) return;
for (i=0; i<n; i++)
{
printf("\t%d\t%s\n",i,getstr(f->upvalues[i]));
}
}
void PrintFunction(const Proto* f, int full)
{
int i,n=f->sizep;
PrintHeader(f);
PrintCode(f);
if (full)
{
PrintConstants(f);
PrintLocals(f);
PrintUpvalues(f);
}
for (i=0; i<n; i++) PrintFunction(f->p[i],full);
}
| 4,944 | 20.688596 | 81 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/lstrlib.c | /*
** $Id: lstrlib.c,v 1.132.1.5 2010/05/14 15:34:19 roberto Exp $
** Standard library for string operations and pattern-matching
** See Copyright Notice in lua.h
*/
#include <ctype.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define lstrlib_c
#define LUA_LIB
#include "lua.h"
#include "lauxlib.h"
#include "lualib.h"
/* macro to `unsign' a character */
#define uchar(c) ((unsigned char)(c))
static int str_len (lua_State *L) {
size_t l;
luaL_checklstring(L, 1, &l);
lua_pushinteger(L, l);
return 1;
}
static ptrdiff_t posrelat (ptrdiff_t pos, size_t len) {
/* relative string position: negative means back from end */
if (pos < 0) pos += (ptrdiff_t)len + 1;
return (pos >= 0) ? pos : 0;
}
static int str_sub (lua_State *L) {
size_t l;
const char *s = luaL_checklstring(L, 1, &l);
ptrdiff_t start = posrelat(luaL_checkinteger(L, 2), l);
ptrdiff_t end = posrelat(luaL_optinteger(L, 3, -1), l);
if (start < 1) start = 1;
if (end > (ptrdiff_t)l) end = (ptrdiff_t)l;
if (start <= end)
lua_pushlstring(L, s+start-1, end-start+1);
else lua_pushliteral(L, "");
return 1;
}
static int str_reverse (lua_State *L) {
size_t l;
luaL_Buffer b;
const char *s = luaL_checklstring(L, 1, &l);
luaL_buffinit(L, &b);
while (l--) luaL_addchar(&b, s[l]);
luaL_pushresult(&b);
return 1;
}
static int str_lower (lua_State *L) {
size_t l;
size_t i;
luaL_Buffer b;
const char *s = luaL_checklstring(L, 1, &l);
luaL_buffinit(L, &b);
for (i=0; i<l; i++)
luaL_addchar(&b, tolower(uchar(s[i])));
luaL_pushresult(&b);
return 1;
}
static int str_upper (lua_State *L) {
size_t l;
size_t i;
luaL_Buffer b;
const char *s = luaL_checklstring(L, 1, &l);
luaL_buffinit(L, &b);
for (i=0; i<l; i++)
luaL_addchar(&b, toupper(uchar(s[i])));
luaL_pushresult(&b);
return 1;
}
static int str_rep (lua_State *L) {
size_t l;
luaL_Buffer b;
const char *s = luaL_checklstring(L, 1, &l);
int n = luaL_checkint(L, 2);
luaL_buffinit(L, &b);
while (n-- > 0)
luaL_addlstring(&b, s, l);
luaL_pushresult(&b);
return 1;
}
static int str_byte (lua_State *L) {
size_t l;
const char *s = luaL_checklstring(L, 1, &l);
ptrdiff_t posi = posrelat(luaL_optinteger(L, 2, 1), l);
ptrdiff_t pose = posrelat(luaL_optinteger(L, 3, posi), l);
int n, i;
if (posi <= 0) posi = 1;
if ((size_t)pose > l) pose = l;
if (posi > pose) return 0; /* empty interval; return no values */
n = (int)(pose - posi + 1);
if (posi + n <= pose) /* overflow? */
luaL_error(L, "string slice too long");
luaL_checkstack(L, n, "string slice too long");
for (i=0; i<n; i++)
lua_pushinteger(L, uchar(s[posi+i-1]));
return n;
}
static int str_char (lua_State *L) {
int n = lua_gettop(L); /* number of arguments */
int i;
luaL_Buffer b;
luaL_buffinit(L, &b);
for (i=1; i<=n; i++) {
int c = luaL_checkint(L, i);
luaL_argcheck(L, uchar(c) == c, i, "invalid value");
luaL_addchar(&b, uchar(c));
}
luaL_pushresult(&b);
return 1;
}
static int writer (lua_State *L, const void* b, size_t size, void* B) {
(void)L;
luaL_addlstring((luaL_Buffer*) B, (const char *)b, size);
return 0;
}
static int str_dump (lua_State *L) {
luaL_Buffer b;
luaL_checktype(L, 1, LUA_TFUNCTION);
lua_settop(L, 1);
luaL_buffinit(L,&b);
if (lua_dump(L, writer, &b) != 0)
luaL_error(L, "unable to dump given function");
luaL_pushresult(&b);
return 1;
}
/*
** {======================================================
** PATTERN MATCHING
** =======================================================
*/
#define CAP_UNFINISHED (-1)
#define CAP_POSITION (-2)
typedef struct MatchState {
const char *src_init; /* init of source string */
const char *src_end; /* end (`\0') of source string */
lua_State *L;
int level; /* total number of captures (finished or unfinished) */
struct {
const char *init;
ptrdiff_t len;
} capture[LUA_MAXCAPTURES];
} MatchState;
#define L_ESC '%'
#define SPECIALS "^$*+?.([%-"
static int check_capture (MatchState *ms, int l) {
l -= '1';
if (l < 0 || l >= ms->level || ms->capture[l].len == CAP_UNFINISHED)
return luaL_error(ms->L, "invalid capture index");
return l;
}
static int capture_to_close (MatchState *ms) {
int level = ms->level;
for (level--; level>=0; level--)
if (ms->capture[level].len == CAP_UNFINISHED) return level;
return luaL_error(ms->L, "invalid pattern capture");
}
static const char *classend (MatchState *ms, const char *p) {
switch (*p++) {
case L_ESC: {
if (*p == '\0')
luaL_error(ms->L, "malformed pattern (ends with " LUA_QL("%%") ")");
return p+1;
}
case '[': {
if (*p == '^') p++;
do { /* look for a `]' */
if (*p == '\0')
luaL_error(ms->L, "malformed pattern (missing " LUA_QL("]") ")");
if (*(p++) == L_ESC && *p != '\0')
p++; /* skip escapes (e.g. `%]') */
} while (*p != ']');
return p+1;
}
default: {
return p;
}
}
}
static int match_class (int c, int cl) {
int res;
switch (tolower(cl)) {
case 'a' : res = isalpha(c); break;
case 'c' : res = iscntrl(c); break;
case 'd' : res = isdigit(c); break;
case 'l' : res = islower(c); break;
case 'p' : res = ispunct(c); break;
case 's' : res = isspace(c); break;
case 'u' : res = isupper(c); break;
case 'w' : res = isalnum(c); break;
case 'x' : res = isxdigit(c); break;
case 'z' : res = (c == 0); break;
default: return (cl == c);
}
return (islower(cl) ? res : !res);
}
static int matchbracketclass (int c, const char *p, const char *ec) {
int sig = 1;
if (*(p+1) == '^') {
sig = 0;
p++; /* skip the `^' */
}
while (++p < ec) {
if (*p == L_ESC) {
p++;
if (match_class(c, uchar(*p)))
return sig;
}
else if ((*(p+1) == '-') && (p+2 < ec)) {
p+=2;
if (uchar(*(p-2)) <= c && c <= uchar(*p))
return sig;
}
else if (uchar(*p) == c) return sig;
}
return !sig;
}
static int singlematch (int c, const char *p, const char *ep) {
switch (*p) {
case '.': return 1; /* matches any char */
case L_ESC: return match_class(c, uchar(*(p+1)));
case '[': return matchbracketclass(c, p, ep-1);
default: return (uchar(*p) == c);
}
}
static const char *match (MatchState *ms, const char *s, const char *p);
static const char *matchbalance (MatchState *ms, const char *s,
const char *p) {
if (*p == 0 || *(p+1) == 0)
luaL_error(ms->L, "unbalanced pattern");
if (*s != *p) return NULL;
else {
int b = *p;
int e = *(p+1);
int cont = 1;
while (++s < ms->src_end) {
if (*s == e) {
if (--cont == 0) return s+1;
}
else if (*s == b) cont++;
}
}
return NULL; /* string ends out of balance */
}
static const char *max_expand (MatchState *ms, const char *s,
const char *p, const char *ep) {
ptrdiff_t i = 0; /* counts maximum expand for item */
while ((s+i)<ms->src_end && singlematch(uchar(*(s+i)), p, ep))
i++;
/* keeps trying to match with the maximum repetitions */
while (i>=0) {
const char *res = match(ms, (s+i), ep+1);
if (res) return res;
i--; /* else didn't match; reduce 1 repetition to try again */
}
return NULL;
}
static const char *min_expand (MatchState *ms, const char *s,
const char *p, const char *ep) {
for (;;) {
const char *res = match(ms, s, ep+1);
if (res != NULL)
return res;
else if (s<ms->src_end && singlematch(uchar(*s), p, ep))
s++; /* try with one more repetition */
else return NULL;
}
}
static const char *start_capture (MatchState *ms, const char *s,
const char *p, int what) {
const char *res;
int level = ms->level;
if (level >= LUA_MAXCAPTURES) luaL_error(ms->L, "too many captures");
ms->capture[level].init = s;
ms->capture[level].len = what;
ms->level = level+1;
if ((res=match(ms, s, p)) == NULL) /* match failed? */
ms->level--; /* undo capture */
return res;
}
static const char *end_capture (MatchState *ms, const char *s,
const char *p) {
int l = capture_to_close(ms);
const char *res;
ms->capture[l].len = s - ms->capture[l].init; /* close capture */
if ((res = match(ms, s, p)) == NULL) /* match failed? */
ms->capture[l].len = CAP_UNFINISHED; /* undo capture */
return res;
}
static const char *match_capture (MatchState *ms, const char *s, int l) {
size_t len;
l = check_capture(ms, l);
len = ms->capture[l].len;
if ((size_t)(ms->src_end-s) >= len &&
memcmp(ms->capture[l].init, s, len) == 0)
return s+len;
else return NULL;
}
static const char *match (MatchState *ms, const char *s, const char *p) {
init: /* using goto's to optimize tail recursion */
switch (*p) {
case '(': { /* start capture */
if (*(p+1) == ')') /* position capture? */
return start_capture(ms, s, p+2, CAP_POSITION);
else
return start_capture(ms, s, p+1, CAP_UNFINISHED);
}
case ')': { /* end capture */
return end_capture(ms, s, p+1);
}
case L_ESC: {
switch (*(p+1)) {
case 'b': { /* balanced string? */
s = matchbalance(ms, s, p+2);
if (s == NULL) return NULL;
p+=4; goto init; /* else return match(ms, s, p+4); */
}
case 'f': { /* frontier? */
const char *ep; char previous;
p += 2;
if (*p != '[')
luaL_error(ms->L, "missing " LUA_QL("[") " after "
LUA_QL("%%f") " in pattern");
ep = classend(ms, p); /* points to what is next */
previous = (s == ms->src_init) ? '\0' : *(s-1);
if (matchbracketclass(uchar(previous), p, ep-1) ||
!matchbracketclass(uchar(*s), p, ep-1)) return NULL;
p=ep; goto init; /* else return match(ms, s, ep); */
}
default: {
if (isdigit(uchar(*(p+1)))) { /* capture results (%0-%9)? */
s = match_capture(ms, s, uchar(*(p+1)));
if (s == NULL) return NULL;
p+=2; goto init; /* else return match(ms, s, p+2) */
}
goto dflt; /* case default */
}
}
}
case '\0': { /* end of pattern */
return s; /* match succeeded */
}
case '$': {
if (*(p+1) == '\0') /* is the `$' the last char in pattern? */
return (s == ms->src_end) ? s : NULL; /* check end of string */
else goto dflt;
}
default: dflt: { /* it is a pattern item */
const char *ep = classend(ms, p); /* points to what is next */
int m = s<ms->src_end && singlematch(uchar(*s), p, ep);
switch (*ep) {
case '?': { /* optional */
const char *res;
if (m && ((res=match(ms, s+1, ep+1)) != NULL))
return res;
p=ep+1; goto init; /* else return match(ms, s, ep+1); */
}
case '*': { /* 0 or more repetitions */
return max_expand(ms, s, p, ep);
}
case '+': { /* 1 or more repetitions */
return (m ? max_expand(ms, s+1, p, ep) : NULL);
}
case '-': { /* 0 or more repetitions (minimum) */
return min_expand(ms, s, p, ep);
}
default: {
if (!m) return NULL;
s++; p=ep; goto init; /* else return match(ms, s+1, ep); */
}
}
}
}
}
static const char *lmemfind (const char *s1, size_t l1,
const char *s2, size_t l2) {
if (l2 == 0) return s1; /* empty strings are everywhere */
else if (l2 > l1) return NULL; /* avoids a negative `l1' */
else {
const char *init; /* to search for a `*s2' inside `s1' */
l2--; /* 1st char will be checked by `memchr' */
l1 = l1-l2; /* `s2' cannot be found after that */
while (l1 > 0 && (init = (const char *)memchr(s1, *s2, l1)) != NULL) {
init++; /* 1st char is already checked */
if (memcmp(init, s2+1, l2) == 0)
return init-1;
else { /* correct `l1' and `s1' to try again */
l1 -= init-s1;
s1 = init;
}
}
return NULL; /* not found */
}
}
static void push_onecapture (MatchState *ms, int i, const char *s,
const char *e) {
if (i >= ms->level) {
if (i == 0) /* ms->level == 0, too */
lua_pushlstring(ms->L, s, e - s); /* add whole match */
else
luaL_error(ms->L, "invalid capture index");
}
else {
ptrdiff_t l = ms->capture[i].len;
if (l == CAP_UNFINISHED) luaL_error(ms->L, "unfinished capture");
if (l == CAP_POSITION)
lua_pushinteger(ms->L, ms->capture[i].init - ms->src_init + 1);
else
lua_pushlstring(ms->L, ms->capture[i].init, l);
}
}
static int push_captures (MatchState *ms, const char *s, const char *e) {
int i;
int nlevels = (ms->level == 0 && s) ? 1 : ms->level;
luaL_checkstack(ms->L, nlevels, "too many captures");
for (i = 0; i < nlevels; i++)
push_onecapture(ms, i, s, e);
return nlevels; /* number of strings pushed */
}
static int str_find_aux (lua_State *L, int find) {
size_t l1, l2;
const char *s = luaL_checklstring(L, 1, &l1);
const char *p = luaL_checklstring(L, 2, &l2);
ptrdiff_t init = posrelat(luaL_optinteger(L, 3, 1), l1) - 1;
if (init < 0) init = 0;
else if ((size_t)(init) > l1) init = (ptrdiff_t)l1;
if (find && (lua_toboolean(L, 4) || /* explicit request? */
strpbrk(p, SPECIALS) == NULL)) { /* or no special characters? */
/* do a plain search */
const char *s2 = lmemfind(s+init, l1-init, p, l2);
if (s2) {
lua_pushinteger(L, s2-s+1);
lua_pushinteger(L, s2-s+l2);
return 2;
}
}
else {
MatchState ms;
int anchor = (*p == '^') ? (p++, 1) : 0;
const char *s1=s+init;
ms.L = L;
ms.src_init = s;
ms.src_end = s+l1;
do {
const char *res;
ms.level = 0;
if ((res=match(&ms, s1, p)) != NULL) {
if (find) {
lua_pushinteger(L, s1-s+1); /* start */
lua_pushinteger(L, res-s); /* end */
return push_captures(&ms, NULL, 0) + 2;
}
else
return push_captures(&ms, s1, res);
}
} while (s1++ < ms.src_end && !anchor);
}
lua_pushnil(L); /* not found */
return 1;
}
static int str_find (lua_State *L) {
return str_find_aux(L, 1);
}
static int str_match (lua_State *L) {
return str_find_aux(L, 0);
}
static int gmatch_aux (lua_State *L) {
MatchState ms;
size_t ls;
const char *s = lua_tolstring(L, lua_upvalueindex(1), &ls);
const char *p = lua_tostring(L, lua_upvalueindex(2));
const char *src;
ms.L = L;
ms.src_init = s;
ms.src_end = s+ls;
for (src = s + (size_t)lua_tointeger(L, lua_upvalueindex(3));
src <= ms.src_end;
src++) {
const char *e;
ms.level = 0;
if ((e = match(&ms, src, p)) != NULL) {
lua_Integer newstart = e-s;
if (e == src) newstart++; /* empty match? go at least one position */
lua_pushinteger(L, newstart);
lua_replace(L, lua_upvalueindex(3));
return push_captures(&ms, src, e);
}
}
return 0; /* not found */
}
static int gmatch (lua_State *L) {
luaL_checkstring(L, 1);
luaL_checkstring(L, 2);
lua_settop(L, 2);
lua_pushinteger(L, 0);
lua_pushcclosure(L, gmatch_aux, 3);
return 1;
}
static int gfind_nodef (lua_State *L) {
return luaL_error(L, LUA_QL("string.gfind") " was renamed to "
LUA_QL("string.gmatch"));
}
static void add_s (MatchState *ms, luaL_Buffer *b, const char *s,
const char *e) {
size_t l, i;
const char *news = lua_tolstring(ms->L, 3, &l);
for (i = 0; i < l; i++) {
if (news[i] != L_ESC)
luaL_addchar(b, news[i]);
else {
i++; /* skip ESC */
if (!isdigit(uchar(news[i])))
luaL_addchar(b, news[i]);
else if (news[i] == '0')
luaL_addlstring(b, s, e - s);
else {
push_onecapture(ms, news[i] - '1', s, e);
luaL_addvalue(b); /* add capture to accumulated result */
}
}
}
}
static void add_value (MatchState *ms, luaL_Buffer *b, const char *s,
const char *e) {
lua_State *L = ms->L;
switch (lua_type(L, 3)) {
case LUA_TNUMBER:
case LUA_TSTRING: {
add_s(ms, b, s, e);
return;
}
case LUA_TFUNCTION: {
int n;
lua_pushvalue(L, 3);
n = push_captures(ms, s, e);
lua_call(L, n, 1);
break;
}
case LUA_TTABLE: {
push_onecapture(ms, 0, s, e);
lua_gettable(L, 3);
break;
}
}
if (!lua_toboolean(L, -1)) { /* nil or false? */
lua_pop(L, 1);
lua_pushlstring(L, s, e - s); /* keep original text */
}
else if (!lua_isstring(L, -1))
luaL_error(L, "invalid replacement value (a %s)", luaL_typename(L, -1));
luaL_addvalue(b); /* add result to accumulator */
}
static int str_gsub (lua_State *L) {
size_t srcl;
const char *src = luaL_checklstring(L, 1, &srcl);
const char *p = luaL_checkstring(L, 2);
int tr = lua_type(L, 3);
int max_s = luaL_optint(L, 4, srcl+1);
int anchor = (*p == '^') ? (p++, 1) : 0;
int n = 0;
MatchState ms;
luaL_Buffer b;
luaL_argcheck(L, tr == LUA_TNUMBER || tr == LUA_TSTRING ||
tr == LUA_TFUNCTION || tr == LUA_TTABLE, 3,
"string/function/table expected");
luaL_buffinit(L, &b);
ms.L = L;
ms.src_init = src;
ms.src_end = src+srcl;
while (n < max_s) {
const char *e;
ms.level = 0;
e = match(&ms, src, p);
if (e) {
n++;
add_value(&ms, &b, src, e);
}
if (e && e>src) /* non empty match? */
src = e; /* skip it */
else if (src < ms.src_end)
luaL_addchar(&b, *src++);
else break;
if (anchor) break;
}
luaL_addlstring(&b, src, ms.src_end-src);
luaL_pushresult(&b);
lua_pushinteger(L, n); /* number of substitutions */
return 2;
}
/* }====================================================== */
/* maximum size of each formatted item (> len(format('%99.99f', -1e308))) */
#define MAX_ITEM 512
/* valid flags in a format specification */
#define FLAGS "-+ #0"
/*
** maximum size of each format specification (such as '%-099.99d')
** (+10 accounts for %99.99x plus margin of error)
*/
#define MAX_FORMAT (sizeof(FLAGS) + sizeof(LUA_INTFRMLEN) + 10)
static void addquoted (lua_State *L, luaL_Buffer *b, int arg) {
size_t l;
const char *s = luaL_checklstring(L, arg, &l);
luaL_addchar(b, '"');
while (l--) {
switch (*s) {
case '"': case '\\': case '\n': {
luaL_addchar(b, '\\');
luaL_addchar(b, *s);
break;
}
case '\r': {
luaL_addlstring(b, "\\r", 2);
break;
}
case '\0': {
luaL_addlstring(b, "\\000", 4);
break;
}
default: {
luaL_addchar(b, *s);
break;
}
}
s++;
}
luaL_addchar(b, '"');
}
static const char *scanformat (lua_State *L, const char *strfrmt, char *form) {
const char *p = strfrmt;
while (*p != '\0' && strchr(FLAGS, *p) != NULL) p++; /* skip flags */
if ((size_t)(p - strfrmt) >= sizeof(FLAGS))
luaL_error(L, "invalid format (repeated flags)");
if (isdigit(uchar(*p))) p++; /* skip width */
if (isdigit(uchar(*p))) p++; /* (2 digits at most) */
if (*p == '.') {
p++;
if (isdigit(uchar(*p))) p++; /* skip precision */
if (isdigit(uchar(*p))) p++; /* (2 digits at most) */
}
if (isdigit(uchar(*p)))
luaL_error(L, "invalid format (width or precision too long)");
*(form++) = '%';
strncpy(form, strfrmt, p - strfrmt + 1);
form += p - strfrmt + 1;
*form = '\0';
return p;
}
static void addintlen (char *form) {
size_t l = strlen(form);
char spec = form[l - 1];
strcpy(form + l - 1, LUA_INTFRMLEN);
form[l + sizeof(LUA_INTFRMLEN) - 2] = spec;
form[l + sizeof(LUA_INTFRMLEN) - 1] = '\0';
}
static int str_format (lua_State *L) {
int top = lua_gettop(L);
int arg = 1;
size_t sfl;
const char *strfrmt = luaL_checklstring(L, arg, &sfl);
const char *strfrmt_end = strfrmt+sfl;
luaL_Buffer b;
luaL_buffinit(L, &b);
while (strfrmt < strfrmt_end) {
if (*strfrmt != L_ESC)
luaL_addchar(&b, *strfrmt++);
else if (*++strfrmt == L_ESC)
luaL_addchar(&b, *strfrmt++); /* %% */
else { /* format item */
char form[MAX_FORMAT]; /* to store the format (`%...') */
char buff[MAX_ITEM]; /* to store the formatted item */
if (++arg > top)
luaL_argerror(L, arg, "no value");
strfrmt = scanformat(L, strfrmt, form);
switch (*strfrmt++) {
case 'c': {
sprintf(buff, form, (int)luaL_checknumber(L, arg));
break;
}
case 'd': case 'i': {
addintlen(form);
sprintf(buff, form, (LUA_INTFRM_T)luaL_checknumber(L, arg));
break;
}
case 'o': case 'u': case 'x': case 'X': {
addintlen(form);
sprintf(buff, form, (unsigned LUA_INTFRM_T)luaL_checknumber(L, arg));
break;
}
case 'e': case 'E': case 'f':
case 'g': case 'G': {
sprintf(buff, form, (double)luaL_checknumber(L, arg));
break;
}
case 'q': {
addquoted(L, &b, arg);
continue; /* skip the 'addsize' at the end */
}
case 's': {
size_t l;
const char *s = luaL_checklstring(L, arg, &l);
if (!strchr(form, '.') && l >= 100) {
/* no precision and string is too long to be formatted;
keep original string */
lua_pushvalue(L, arg);
luaL_addvalue(&b);
continue; /* skip the `addsize' at the end */
}
else {
sprintf(buff, form, s);
break;
}
}
default: { /* also treat cases `pnLlh' */
return luaL_error(L, "invalid option " LUA_QL("%%%c") " to "
LUA_QL("format"), *(strfrmt - 1));
}
}
luaL_addlstring(&b, buff, strlen(buff));
}
}
luaL_pushresult(&b);
return 1;
}
static const luaL_Reg strlib[] = {
{"byte", str_byte},
{"char", str_char},
{"dump", str_dump},
{"find", str_find},
{"format", str_format},
{"gfind", gfind_nodef},
{"gmatch", gmatch},
{"gsub", str_gsub},
{"len", str_len},
{"lower", str_lower},
{"match", str_match},
{"rep", str_rep},
{"reverse", str_reverse},
{"sub", str_sub},
{"upper", str_upper},
{NULL, NULL}
};
static void createmetatable (lua_State *L) {
lua_createtable(L, 0, 1); /* create metatable for strings */
lua_pushliteral(L, ""); /* dummy string */
lua_pushvalue(L, -2);
lua_setmetatable(L, -2); /* set string metatable */
lua_pop(L, 1); /* pop dummy string */
lua_pushvalue(L, -2); /* string library... */
lua_setfield(L, -2, "__index"); /* ...is the __index metamethod */
lua_pop(L, 1); /* pop metatable */
}
/*
** Open string library
*/
LUALIB_API int luaopen_string (lua_State *L) {
luaL_register(L, LUA_STRLIBNAME, strlib);
#if defined(LUA_COMPAT_GFIND)
lua_getfield(L, -1, "gmatch");
lua_setfield(L, -2, "gfind");
#endif
createmetatable(L);
return 1;
}
| 23,561 | 26.020642 | 79 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/fpconv.c | /* fpconv - Floating point conversion routines
*
* Copyright (c) 2011-2012 Mark Pulford <[email protected]>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* JSON uses a '.' decimal separator. strtod() / sprintf() under C libraries
* with locale support will break when the decimal separator is a comma.
*
* fpconv_* will around these issues with a translation buffer if required.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include "fpconv.h"
/* Lua CJSON assumes the locale is the same for all threads within a
* process and doesn't change after initialisation.
*
* This avoids the need for per thread storage or expensive checks
* for call. */
static char locale_decimal_point = '.';
/* In theory multibyte decimal_points are possible, but
* Lua CJSON only supports UTF-8 and known locales only have
* single byte decimal points ([.,]).
*
* localconv() may not be thread safe (=>crash), and nl_langinfo() is
* not supported on some platforms. Use sprintf() instead - if the
* locale does change, at least Lua CJSON won't crash. */
static void fpconv_update_locale()
{
char buf[8];
snprintf(buf, sizeof(buf), "%g", 0.5);
/* Failing this test might imply the platform has a buggy dtoa
* implementation or wide characters */
if (buf[0] != '0' || buf[2] != '5' || buf[3] != 0) {
fprintf(stderr, "Error: wide characters found or printf() bug.");
abort();
}
locale_decimal_point = buf[1];
}
/* Check for a valid number character: [-+0-9a-yA-Y.]
* Eg: -0.6e+5, infinity, 0xF0.F0pF0
*
* Used to find the probable end of a number. It doesn't matter if
* invalid characters are counted - strtod() will find the valid
* number if it exists. The risk is that slightly more memory might
* be allocated before a parse error occurs. */
static inline int valid_number_character(char ch)
{
char lower_ch;
if ('0' <= ch && ch <= '9')
return 1;
if (ch == '-' || ch == '+' || ch == '.')
return 1;
/* Hex digits, exponent (e), base (p), "infinity",.. */
lower_ch = ch | 0x20;
if ('a' <= lower_ch && lower_ch <= 'y')
return 1;
return 0;
}
/* Calculate the size of the buffer required for a strtod locale
* conversion. */
static int strtod_buffer_size(const char *s)
{
const char *p = s;
while (valid_number_character(*p))
p++;
return p - s;
}
/* Similar to strtod(), but must be passed the current locale's decimal point
* character. Guaranteed to be called at the start of any valid number in a string */
double fpconv_strtod(const char *nptr, char **endptr)
{
char localbuf[FPCONV_G_FMT_BUFSIZE];
char *buf, *endbuf, *dp;
int buflen;
double value;
/* System strtod() is fine when decimal point is '.' */
if (locale_decimal_point == '.')
return strtod(nptr, endptr);
buflen = strtod_buffer_size(nptr);
if (!buflen) {
/* No valid characters found, standard strtod() return */
*endptr = (char *)nptr;
return 0;
}
/* Duplicate number into buffer */
if (buflen >= FPCONV_G_FMT_BUFSIZE) {
/* Handle unusually large numbers */
buf = malloc(buflen + 1);
if (!buf) {
fprintf(stderr, "Out of memory");
abort();
}
} else {
/* This is the common case.. */
buf = localbuf;
}
memcpy(buf, nptr, buflen);
buf[buflen] = 0;
/* Update decimal point character if found */
dp = strchr(buf, '.');
if (dp)
*dp = locale_decimal_point;
value = strtod(buf, &endbuf);
*endptr = (char *)&nptr[endbuf - buf];
if (buflen >= FPCONV_G_FMT_BUFSIZE)
free(buf);
return value;
}
/* "fmt" must point to a buffer of at least 6 characters */
static void set_number_format(char *fmt, int precision)
{
int d1, d2, i;
assert(1 <= precision && precision <= 14);
/* Create printf format (%.14g) from precision */
d1 = precision / 10;
d2 = precision % 10;
fmt[0] = '%';
fmt[1] = '.';
i = 2;
if (d1) {
fmt[i++] = '0' + d1;
}
fmt[i++] = '0' + d2;
fmt[i++] = 'g';
fmt[i] = 0;
}
/* Assumes there is always at least 32 characters available in the target buffer */
int fpconv_g_fmt(char *str, double num, int precision)
{
char buf[FPCONV_G_FMT_BUFSIZE];
char fmt[6];
int len;
char *b;
set_number_format(fmt, precision);
/* Pass through when decimal point character is dot. */
if (locale_decimal_point == '.')
return snprintf(str, FPCONV_G_FMT_BUFSIZE, fmt, num);
/* snprintf() to a buffer then translate for other decimal point characters */
len = snprintf(buf, FPCONV_G_FMT_BUFSIZE, fmt, num);
/* Copy into target location. Translate decimal point if required */
b = buf;
do {
*str++ = (*b == locale_decimal_point ? '.' : *b);
} while(*b++);
return len;
}
void fpconv_init()
{
fpconv_update_locale();
}
/* vi:ai et sw=4 ts=4:
*/
| 6,056 | 28.402913 | 85 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/lua_struct.c | /*
** {======================================================
** Library for packing/unpacking structures.
** $Id: struct.c,v 1.4 2012/07/04 18:54:29 roberto Exp $
** See Copyright Notice at the end of this file
** =======================================================
*/
/*
** Valid formats:
** > - big endian
** < - little endian
** ![num] - alignment
** x - pading
** b/B - signed/unsigned byte
** h/H - signed/unsigned short
** l/L - signed/unsigned long
** T - size_t
** i/In - signed/unsigned integer with size `n' (default is size of int)
** cn - sequence of `n' chars (from/to a string); when packing, n==0 means
the whole string; when unpacking, n==0 means use the previous
read number as the string length
** s - zero-terminated string
** f - float
** d - double
** ' ' - ignored
*/
#include <assert.h>
#include <ctype.h>
#include <limits.h>
#include <stddef.h>
#include <string.h>
#include "lua.h"
#include "lauxlib.h"
#if (LUA_VERSION_NUM >= 502)
#define luaL_register(L,n,f) luaL_newlib(L,f)
#endif
/* basic integer type */
#if !defined(STRUCT_INT)
#define STRUCT_INT long
#endif
typedef STRUCT_INT Inttype;
/* corresponding unsigned version */
typedef unsigned STRUCT_INT Uinttype;
/* maximum size (in bytes) for integral types */
#define MAXINTSIZE 32
/* is 'x' a power of 2? */
#define isp2(x) ((x) > 0 && ((x) & ((x) - 1)) == 0)
/* dummy structure to get alignment requirements */
struct cD {
char c;
double d;
};
#define PADDING (sizeof(struct cD) - sizeof(double))
#define MAXALIGN (PADDING > sizeof(int) ? PADDING : sizeof(int))
/* endian options */
#define BIG 0
#define LITTLE 1
static union {
int dummy;
char endian;
} const native = {1};
typedef struct Header {
int endian;
int align;
} Header;
static int getnum (lua_State *L, const char **fmt, int df) {
if (!isdigit(**fmt)) /* no number? */
return df; /* return default value */
else {
int a = 0;
do {
if (a > (INT_MAX / 10) || a * 10 > (INT_MAX - (**fmt - '0')))
luaL_error(L, "integral size overflow");
a = a*10 + *((*fmt)++) - '0';
} while (isdigit(**fmt));
return a;
}
}
#define defaultoptions(h) ((h)->endian = native.endian, (h)->align = 1)
static size_t optsize (lua_State *L, char opt, const char **fmt) {
switch (opt) {
case 'B': case 'b': return sizeof(char);
case 'H': case 'h': return sizeof(short);
case 'L': case 'l': return sizeof(long);
case 'T': return sizeof(size_t);
case 'f': return sizeof(float);
case 'd': return sizeof(double);
case 'x': return 1;
case 'c': return getnum(L, fmt, 1);
case 'i': case 'I': {
int sz = getnum(L, fmt, sizeof(int));
if (sz > MAXINTSIZE)
luaL_error(L, "integral size %d is larger than limit of %d",
sz, MAXINTSIZE);
return sz;
}
default: return 0; /* other cases do not need alignment */
}
}
/*
** return number of bytes needed to align an element of size 'size'
** at current position 'len'
*/
static int gettoalign (size_t len, Header *h, int opt, size_t size) {
if (size == 0 || opt == 'c') return 0;
if (size > (size_t)h->align)
size = h->align; /* respect max. alignment */
return (size - (len & (size - 1))) & (size - 1);
}
/*
** options to control endianess and alignment
*/
static void controloptions (lua_State *L, int opt, const char **fmt,
Header *h) {
switch (opt) {
case ' ': return; /* ignore white spaces */
case '>': h->endian = BIG; return;
case '<': h->endian = LITTLE; return;
case '!': {
int a = getnum(L, fmt, MAXALIGN);
if (!isp2(a))
luaL_error(L, "alignment %d is not a power of 2", a);
h->align = a;
return;
}
default: {
const char *msg = lua_pushfstring(L, "invalid format option '%c'", opt);
luaL_argerror(L, 1, msg);
}
}
}
static void putinteger (lua_State *L, luaL_Buffer *b, int arg, int endian,
int size) {
lua_Number n = luaL_checknumber(L, arg);
Uinttype value;
char buff[MAXINTSIZE];
if (n < 0)
value = (Uinttype)(Inttype)n;
else
value = (Uinttype)n;
if (endian == LITTLE) {
int i;
for (i = 0; i < size; i++) {
buff[i] = (value & 0xff);
value >>= 8;
}
}
else {
int i;
for (i = size - 1; i >= 0; i--) {
buff[i] = (value & 0xff);
value >>= 8;
}
}
luaL_addlstring(b, buff, size);
}
static void correctbytes (char *b, int size, int endian) {
if (endian != native.endian) {
int i = 0;
while (i < --size) {
char temp = b[i];
b[i++] = b[size];
b[size] = temp;
}
}
}
static int b_pack (lua_State *L) {
luaL_Buffer b;
const char *fmt = luaL_checkstring(L, 1);
Header h;
int arg = 2;
size_t totalsize = 0;
defaultoptions(&h);
lua_pushnil(L); /* mark to separate arguments from string buffer */
luaL_buffinit(L, &b);
while (*fmt != '\0') {
int opt = *fmt++;
size_t size = optsize(L, opt, &fmt);
int toalign = gettoalign(totalsize, &h, opt, size);
totalsize += toalign;
while (toalign-- > 0) luaL_addchar(&b, '\0');
switch (opt) {
case 'b': case 'B': case 'h': case 'H':
case 'l': case 'L': case 'T': case 'i': case 'I': { /* integer types */
putinteger(L, &b, arg++, h.endian, size);
break;
}
case 'x': {
luaL_addchar(&b, '\0');
break;
}
case 'f': {
float f = (float)luaL_checknumber(L, arg++);
correctbytes((char *)&f, size, h.endian);
luaL_addlstring(&b, (char *)&f, size);
break;
}
case 'd': {
double d = luaL_checknumber(L, arg++);
correctbytes((char *)&d, size, h.endian);
luaL_addlstring(&b, (char *)&d, size);
break;
}
case 'c': case 's': {
size_t l;
const char *s = luaL_checklstring(L, arg++, &l);
if (size == 0) size = l;
luaL_argcheck(L, l >= (size_t)size, arg, "string too short");
luaL_addlstring(&b, s, size);
if (opt == 's') {
luaL_addchar(&b, '\0'); /* add zero at the end */
size++;
}
break;
}
default: controloptions(L, opt, &fmt, &h);
}
totalsize += size;
}
luaL_pushresult(&b);
return 1;
}
static lua_Number getinteger (const char *buff, int endian,
int issigned, int size) {
Uinttype l = 0;
int i;
if (endian == BIG) {
for (i = 0; i < size; i++) {
l <<= 8;
l |= (Uinttype)(unsigned char)buff[i];
}
}
else {
for (i = size - 1; i >= 0; i--) {
l <<= 8;
l |= (Uinttype)(unsigned char)buff[i];
}
}
if (!issigned)
return (lua_Number)l;
else { /* signed format */
Uinttype mask = (Uinttype)(~((Uinttype)0)) << (size*8 - 1);
if (l & mask) /* negative value? */
l |= mask; /* signal extension */
return (lua_Number)(Inttype)l;
}
}
static int b_unpack (lua_State *L) {
Header h;
const char *fmt = luaL_checkstring(L, 1);
size_t ld;
const char *data = luaL_checklstring(L, 2, &ld);
size_t pos = luaL_optinteger(L, 3, 1) - 1;
defaultoptions(&h);
lua_settop(L, 2);
while (*fmt) {
int opt = *fmt++;
size_t size = optsize(L, opt, &fmt);
pos += gettoalign(pos, &h, opt, size);
luaL_argcheck(L, pos+size <= ld, 2, "data string too short");
luaL_checkstack(L, 1, "too many results");
switch (opt) {
case 'b': case 'B': case 'h': case 'H':
case 'l': case 'L': case 'T': case 'i': case 'I': { /* integer types */
int issigned = islower(opt);
lua_Number res = getinteger(data+pos, h.endian, issigned, size);
lua_pushnumber(L, res);
break;
}
case 'x': {
break;
}
case 'f': {
float f;
memcpy(&f, data+pos, size);
correctbytes((char *)&f, sizeof(f), h.endian);
lua_pushnumber(L, f);
break;
}
case 'd': {
double d;
memcpy(&d, data+pos, size);
correctbytes((char *)&d, sizeof(d), h.endian);
lua_pushnumber(L, d);
break;
}
case 'c': {
if (size == 0) {
if (!lua_isnumber(L, -1))
luaL_error(L, "format `c0' needs a previous size");
size = lua_tonumber(L, -1);
lua_pop(L, 1);
luaL_argcheck(L, pos+size <= ld, 2, "data string too short");
}
lua_pushlstring(L, data+pos, size);
break;
}
case 's': {
const char *e = (const char *)memchr(data+pos, '\0', ld - pos);
if (e == NULL)
luaL_error(L, "unfinished string in data");
size = (e - (data+pos)) + 1;
lua_pushlstring(L, data+pos, size - 1);
break;
}
default: controloptions(L, opt, &fmt, &h);
}
pos += size;
}
lua_pushinteger(L, pos + 1);
return lua_gettop(L) - 2;
}
static int b_size (lua_State *L) {
Header h;
const char *fmt = luaL_checkstring(L, 1);
size_t pos = 0;
defaultoptions(&h);
while (*fmt) {
int opt = *fmt++;
size_t size = optsize(L, opt, &fmt);
pos += gettoalign(pos, &h, opt, size);
if (opt == 's')
luaL_argerror(L, 1, "option 's' has no fixed size");
else if (opt == 'c' && size == 0)
luaL_argerror(L, 1, "option 'c0' has no fixed size");
if (!isalnum(opt))
controloptions(L, opt, &fmt, &h);
pos += size;
}
lua_pushinteger(L, pos);
return 1;
}
/* }====================================================== */
static const struct luaL_Reg thislib[] = {
{"pack", b_pack},
{"unpack", b_unpack},
{"size", b_size},
{NULL, NULL}
};
LUALIB_API int luaopen_struct (lua_State *L);
LUALIB_API int luaopen_struct (lua_State *L) {
luaL_register(L, "struct", thislib);
return 1;
}
/******************************************************************************
* Copyright (C) 2010-2012 Lua.org, PUC-Rio. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
******************************************************************************/
| 11,133 | 25.259434 | 79 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/lzio.h | /*
** $Id: lzio.h,v 1.21.1.1 2007/12/27 13:02:25 roberto Exp $
** Buffered streams
** See Copyright Notice in lua.h
*/
#ifndef lzio_h
#define lzio_h
#include "lua.h"
#include "lmem.h"
#define EOZ (-1) /* end of stream */
typedef struct Zio ZIO;
#define char2int(c) cast(int, cast(unsigned char, (c)))
#define zgetc(z) (((z)->n--)>0 ? char2int(*(z)->p++) : luaZ_fill(z))
typedef struct Mbuffer {
char *buffer;
size_t n;
size_t buffsize;
} Mbuffer;
#define luaZ_initbuffer(L, buff) ((buff)->buffer = NULL, (buff)->buffsize = 0)
#define luaZ_buffer(buff) ((buff)->buffer)
#define luaZ_sizebuffer(buff) ((buff)->buffsize)
#define luaZ_bufflen(buff) ((buff)->n)
#define luaZ_resetbuffer(buff) ((buff)->n = 0)
#define luaZ_resizebuffer(L, buff, size) \
(luaM_reallocvector(L, (buff)->buffer, (buff)->buffsize, size, char), \
(buff)->buffsize = size)
#define luaZ_freebuffer(L, buff) luaZ_resizebuffer(L, buff, 0)
LUAI_FUNC char *luaZ_openspace (lua_State *L, Mbuffer *buff, size_t n);
LUAI_FUNC void luaZ_init (lua_State *L, ZIO *z, lua_Reader reader,
void *data);
LUAI_FUNC size_t luaZ_read (ZIO* z, void* b, size_t n); /* read next n bytes */
LUAI_FUNC int luaZ_lookahead (ZIO *z);
/* --------- Private Part ------------------ */
struct Zio {
size_t n; /* bytes still unread */
const char *p; /* current position in buffer */
lua_Reader reader;
void* data; /* additional data */
lua_State *L; /* Lua state (for reader) */
};
LUAI_FUNC int luaZ_fill (ZIO *z);
#endif
| 1,556 | 21.897059 | 79 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/lparser.h | /*
** $Id: lparser.h,v 1.57.1.1 2007/12/27 13:02:25 roberto Exp $
** Lua Parser
** See Copyright Notice in lua.h
*/
#ifndef lparser_h
#define lparser_h
#include "llimits.h"
#include "lobject.h"
#include "lzio.h"
/*
** Expression descriptor
*/
typedef enum {
VVOID, /* no value */
VNIL,
VTRUE,
VFALSE,
VK, /* info = index of constant in `k' */
VKNUM, /* nval = numerical value */
VLOCAL, /* info = local register */
VUPVAL, /* info = index of upvalue in `upvalues' */
VGLOBAL, /* info = index of table; aux = index of global name in `k' */
VINDEXED, /* info = table register; aux = index register (or `k') */
VJMP, /* info = instruction pc */
VRELOCABLE, /* info = instruction pc */
VNONRELOC, /* info = result register */
VCALL, /* info = instruction pc */
VVARARG /* info = instruction pc */
} expkind;
typedef struct expdesc {
expkind k;
union {
struct { int info, aux; } s;
lua_Number nval;
} u;
int t; /* patch list of `exit when true' */
int f; /* patch list of `exit when false' */
} expdesc;
typedef struct upvaldesc {
lu_byte k;
lu_byte info;
} upvaldesc;
struct BlockCnt; /* defined in lparser.c */
/* state needed to generate code for a given function */
typedef struct FuncState {
Proto *f; /* current function header */
Table *h; /* table to find (and reuse) elements in `k' */
struct FuncState *prev; /* enclosing function */
struct LexState *ls; /* lexical state */
struct lua_State *L; /* copy of the Lua state */
struct BlockCnt *bl; /* chain of current blocks */
int pc; /* next position to code (equivalent to `ncode') */
int lasttarget; /* `pc' of last `jump target' */
int jpc; /* list of pending jumps to `pc' */
int freereg; /* first free register */
int nk; /* number of elements in `k' */
int np; /* number of elements in `p' */
short nlocvars; /* number of elements in `locvars' */
lu_byte nactvar; /* number of active local variables */
upvaldesc upvalues[LUAI_MAXUPVALUES]; /* upvalues */
unsigned short actvar[LUAI_MAXVARS]; /* declared-variable stack */
} FuncState;
LUAI_FUNC Proto *luaY_parser (lua_State *L, ZIO *z, Mbuffer *buff,
const char *name);
#endif
| 2,261 | 26.253012 | 73 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/fpconv.h | /* Lua CJSON floating point conversion routines */
/* Buffer required to store the largest string representation of a double.
*
* Longest double printed with %.14g is 21 characters long:
* -1.7976931348623e+308 */
# define FPCONV_G_FMT_BUFSIZE 32
#ifdef USE_INTERNAL_FPCONV
static inline void fpconv_init()
{
/* Do nothing - not required */
}
#else
extern void fpconv_init();
#endif
extern int fpconv_g_fmt(char*, double, int);
extern double fpconv_strtod(const char*, char**);
/* vi:ai et sw=4 ts=4:
*/
| 518 | 21.565217 | 74 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/lundump.h | /*
** $Id: lundump.h,v 1.37.1.1 2007/12/27 13:02:25 roberto Exp $
** load precompiled Lua chunks
** See Copyright Notice in lua.h
*/
#ifndef lundump_h
#define lundump_h
#include "lobject.h"
#include "lzio.h"
/* load one chunk; from lundump.c */
LUAI_FUNC Proto* luaU_undump (lua_State* L, ZIO* Z, Mbuffer* buff, const char* name);
/* make header; from lundump.c */
LUAI_FUNC void luaU_header (char* h);
/* dump one chunk; from ldump.c */
LUAI_FUNC int luaU_dump (lua_State* L, const Proto* f, lua_Writer w, void* data, int strip);
#ifdef luac_c
/* print one chunk; from print.c */
LUAI_FUNC void luaU_print (const Proto* f, int full);
#endif
/* for header of binary files -- this is Lua 5.1 */
#define LUAC_VERSION 0x51
/* for header of binary files -- this is the official format */
#define LUAC_FORMAT 0
/* size of header of binary files */
#define LUAC_HEADERSIZE 12
#endif
| 890 | 23.081081 | 92 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/lstring.c | /*
** $Id: lstring.c,v 2.8.1.1 2007/12/27 13:02:25 roberto Exp $
** String table (keeps all strings handled by Lua)
** See Copyright Notice in lua.h
*/
#include <string.h>
#define lstring_c
#define LUA_CORE
#include "lua.h"
#include "lmem.h"
#include "lobject.h"
#include "lstate.h"
#include "lstring.h"
void luaS_resize (lua_State *L, int newsize) {
GCObject **newhash;
stringtable *tb;
int i;
if (G(L)->gcstate == GCSsweepstring)
return; /* cannot resize during GC traverse */
newhash = luaM_newvector(L, newsize, GCObject *);
tb = &G(L)->strt;
for (i=0; i<newsize; i++) newhash[i] = NULL;
/* rehash */
for (i=0; i<tb->size; i++) {
GCObject *p = tb->hash[i];
while (p) { /* for each node in the list */
GCObject *next = p->gch.next; /* save next */
unsigned int h = gco2ts(p)->hash;
int h1 = lmod(h, newsize); /* new position */
lua_assert(cast_int(h%newsize) == lmod(h, newsize));
p->gch.next = newhash[h1]; /* chain it */
newhash[h1] = p;
p = next;
}
}
luaM_freearray(L, tb->hash, tb->size, TString *);
tb->size = newsize;
tb->hash = newhash;
}
static TString *newlstr (lua_State *L, const char *str, size_t l,
unsigned int h) {
TString *ts;
stringtable *tb;
if (l+1 > (MAX_SIZET - sizeof(TString))/sizeof(char))
luaM_toobig(L);
ts = cast(TString *, luaM_malloc(L, (l+1)*sizeof(char)+sizeof(TString)));
ts->tsv.len = l;
ts->tsv.hash = h;
ts->tsv.marked = luaC_white(G(L));
ts->tsv.tt = LUA_TSTRING;
ts->tsv.reserved = 0;
memcpy(ts+1, str, l*sizeof(char));
((char *)(ts+1))[l] = '\0'; /* ending 0 */
tb = &G(L)->strt;
h = lmod(h, tb->size);
ts->tsv.next = tb->hash[h]; /* chain new entry */
tb->hash[h] = obj2gco(ts);
tb->nuse++;
if (tb->nuse > cast(lu_int32, tb->size) && tb->size <= MAX_INT/2)
luaS_resize(L, tb->size*2); /* too crowded */
return ts;
}
TString *luaS_newlstr (lua_State *L, const char *str, size_t l) {
GCObject *o;
unsigned int h = cast(unsigned int, l); /* seed */
size_t step = (l>>5)+1; /* if string is too long, don't hash all its chars */
size_t l1;
for (l1=l; l1>=step; l1-=step) /* compute hash */
h = h ^ ((h<<5)+(h>>2)+cast(unsigned char, str[l1-1]));
for (o = G(L)->strt.hash[lmod(h, G(L)->strt.size)];
o != NULL;
o = o->gch.next) {
TString *ts = rawgco2ts(o);
if (ts->tsv.len == l && (memcmp(str, getstr(ts), l) == 0)) {
/* string may be dead */
if (isdead(G(L), o)) changewhite(o);
return ts;
}
}
return newlstr(L, str, l, h); /* not found */
}
Udata *luaS_newudata (lua_State *L, size_t s, Table *e) {
Udata *u;
if (s > MAX_SIZET - sizeof(Udata))
luaM_toobig(L);
u = cast(Udata *, luaM_malloc(L, s + sizeof(Udata)));
u->uv.marked = luaC_white(G(L)); /* is not finalized */
u->uv.tt = LUA_TUSERDATA;
u->uv.len = s;
u->uv.metatable = NULL;
u->uv.env = e;
/* chain it on udata list (after main thread) */
u->uv.next = G(L)->mainthread->next;
G(L)->mainthread->next = obj2gco(u);
return u;
}
| 3,110 | 26.776786 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/lua.h | /*
** $Id: lua.h,v 1.218.1.7 2012/01/13 20:36:20 roberto Exp $
** Lua - An Extensible Extension Language
** Lua.org, PUC-Rio, Brazil (http://www.lua.org)
** See Copyright Notice at the end of this file
*/
#ifndef lua_h
#define lua_h
#include <stdarg.h>
#include <stddef.h>
#include "luaconf.h"
#define LUA_VERSION "Lua 5.1"
#define LUA_RELEASE "Lua 5.1.5"
#define LUA_VERSION_NUM 501
#define LUA_COPYRIGHT "Copyright (C) 1994-2012 Lua.org, PUC-Rio"
#define LUA_AUTHORS "R. Ierusalimschy, L. H. de Figueiredo & W. Celes"
/* mark for precompiled code (`<esc>Lua') */
#define LUA_SIGNATURE "\033Lua"
/* option for multiple returns in `lua_pcall' and `lua_call' */
#define LUA_MULTRET (-1)
/*
** pseudo-indices
*/
#define LUA_REGISTRYINDEX (-10000)
#define LUA_ENVIRONINDEX (-10001)
#define LUA_GLOBALSINDEX (-10002)
#define lua_upvalueindex(i) (LUA_GLOBALSINDEX-(i))
/* thread status; 0 is OK */
#define LUA_YIELD 1
#define LUA_ERRRUN 2
#define LUA_ERRSYNTAX 3
#define LUA_ERRMEM 4
#define LUA_ERRERR 5
typedef struct lua_State lua_State;
typedef int (*lua_CFunction) (lua_State *L);
/*
** functions that read/write blocks when loading/dumping Lua chunks
*/
typedef const char * (*lua_Reader) (lua_State *L, void *ud, size_t *sz);
typedef int (*lua_Writer) (lua_State *L, const void* p, size_t sz, void* ud);
/*
** prototype for memory-allocation functions
*/
typedef void * (*lua_Alloc) (void *ud, void *ptr, size_t osize, size_t nsize);
/*
** basic types
*/
#define LUA_TNONE (-1)
#define LUA_TNIL 0
#define LUA_TBOOLEAN 1
#define LUA_TLIGHTUSERDATA 2
#define LUA_TNUMBER 3
#define LUA_TSTRING 4
#define LUA_TTABLE 5
#define LUA_TFUNCTION 6
#define LUA_TUSERDATA 7
#define LUA_TTHREAD 8
/* minimum Lua stack available to a C function */
#define LUA_MINSTACK 20
/*
** generic extra include file
*/
#if defined(LUA_USER_H)
#include LUA_USER_H
#endif
/* type of numbers in Lua */
typedef LUA_NUMBER lua_Number;
/* type for integer functions */
typedef LUA_INTEGER lua_Integer;
/*
** state manipulation
*/
LUA_API lua_State *(lua_newstate) (lua_Alloc f, void *ud);
LUA_API void (lua_close) (lua_State *L);
LUA_API lua_State *(lua_newthread) (lua_State *L);
LUA_API lua_CFunction (lua_atpanic) (lua_State *L, lua_CFunction panicf);
/*
** basic stack manipulation
*/
LUA_API int (lua_gettop) (lua_State *L);
LUA_API void (lua_settop) (lua_State *L, int idx);
LUA_API void (lua_pushvalue) (lua_State *L, int idx);
LUA_API void (lua_remove) (lua_State *L, int idx);
LUA_API void (lua_insert) (lua_State *L, int idx);
LUA_API void (lua_replace) (lua_State *L, int idx);
LUA_API int (lua_checkstack) (lua_State *L, int sz);
LUA_API void (lua_xmove) (lua_State *from, lua_State *to, int n);
/*
** access functions (stack -> C)
*/
LUA_API int (lua_isnumber) (lua_State *L, int idx);
LUA_API int (lua_isstring) (lua_State *L, int idx);
LUA_API int (lua_iscfunction) (lua_State *L, int idx);
LUA_API int (lua_isuserdata) (lua_State *L, int idx);
LUA_API int (lua_type) (lua_State *L, int idx);
LUA_API const char *(lua_typename) (lua_State *L, int tp);
LUA_API int (lua_equal) (lua_State *L, int idx1, int idx2);
LUA_API int (lua_rawequal) (lua_State *L, int idx1, int idx2);
LUA_API int (lua_lessthan) (lua_State *L, int idx1, int idx2);
LUA_API lua_Number (lua_tonumber) (lua_State *L, int idx);
LUA_API lua_Integer (lua_tointeger) (lua_State *L, int idx);
LUA_API int (lua_toboolean) (lua_State *L, int idx);
LUA_API const char *(lua_tolstring) (lua_State *L, int idx, size_t *len);
LUA_API size_t (lua_objlen) (lua_State *L, int idx);
LUA_API lua_CFunction (lua_tocfunction) (lua_State *L, int idx);
LUA_API void *(lua_touserdata) (lua_State *L, int idx);
LUA_API lua_State *(lua_tothread) (lua_State *L, int idx);
LUA_API const void *(lua_topointer) (lua_State *L, int idx);
/*
** push functions (C -> stack)
*/
LUA_API void (lua_pushnil) (lua_State *L);
LUA_API void (lua_pushnumber) (lua_State *L, lua_Number n);
LUA_API void (lua_pushinteger) (lua_State *L, lua_Integer n);
LUA_API void (lua_pushlstring) (lua_State *L, const char *s, size_t l);
LUA_API void (lua_pushstring) (lua_State *L, const char *s);
LUA_API const char *(lua_pushvfstring) (lua_State *L, const char *fmt,
va_list argp);
LUA_API const char *(lua_pushfstring) (lua_State *L, const char *fmt, ...);
LUA_API void (lua_pushcclosure) (lua_State *L, lua_CFunction fn, int n);
LUA_API void (lua_pushboolean) (lua_State *L, int b);
LUA_API void (lua_pushlightuserdata) (lua_State *L, void *p);
LUA_API int (lua_pushthread) (lua_State *L);
/*
** get functions (Lua -> stack)
*/
LUA_API void (lua_gettable) (lua_State *L, int idx);
LUA_API void (lua_getfield) (lua_State *L, int idx, const char *k);
LUA_API void (lua_rawget) (lua_State *L, int idx);
LUA_API void (lua_rawgeti) (lua_State *L, int idx, int n);
LUA_API void (lua_createtable) (lua_State *L, int narr, int nrec);
LUA_API void *(lua_newuserdata) (lua_State *L, size_t sz);
LUA_API int (lua_getmetatable) (lua_State *L, int objindex);
LUA_API void (lua_getfenv) (lua_State *L, int idx);
/*
** set functions (stack -> Lua)
*/
LUA_API void (lua_settable) (lua_State *L, int idx);
LUA_API void (lua_setfield) (lua_State *L, int idx, const char *k);
LUA_API void (lua_rawset) (lua_State *L, int idx);
LUA_API void (lua_rawseti) (lua_State *L, int idx, int n);
LUA_API int (lua_setmetatable) (lua_State *L, int objindex);
LUA_API int (lua_setfenv) (lua_State *L, int idx);
/*
** `load' and `call' functions (load and run Lua code)
*/
LUA_API void (lua_call) (lua_State *L, int nargs, int nresults);
LUA_API int (lua_pcall) (lua_State *L, int nargs, int nresults, int errfunc);
LUA_API int (lua_cpcall) (lua_State *L, lua_CFunction func, void *ud);
LUA_API int (lua_load) (lua_State *L, lua_Reader reader, void *dt,
const char *chunkname);
LUA_API int (lua_dump) (lua_State *L, lua_Writer writer, void *data);
/*
** coroutine functions
*/
LUA_API int (lua_yield) (lua_State *L, int nresults);
LUA_API int (lua_resume) (lua_State *L, int narg);
LUA_API int (lua_status) (lua_State *L);
/*
** garbage-collection function and options
*/
#define LUA_GCSTOP 0
#define LUA_GCRESTART 1
#define LUA_GCCOLLECT 2
#define LUA_GCCOUNT 3
#define LUA_GCCOUNTB 4
#define LUA_GCSTEP 5
#define LUA_GCSETPAUSE 6
#define LUA_GCSETSTEPMUL 7
LUA_API int (lua_gc) (lua_State *L, int what, int data);
/*
** miscellaneous functions
*/
LUA_API int (lua_error) (lua_State *L);
LUA_API int (lua_next) (lua_State *L, int idx);
LUA_API void (lua_concat) (lua_State *L, int n);
LUA_API lua_Alloc (lua_getallocf) (lua_State *L, void **ud);
LUA_API void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);
/*
** ===============================================================
** some useful macros
** ===============================================================
*/
#define lua_pop(L,n) lua_settop(L, -(n)-1)
#define lua_newtable(L) lua_createtable(L, 0, 0)
#define lua_register(L,n,f) (lua_pushcfunction(L, (f)), lua_setglobal(L, (n)))
#define lua_pushcfunction(L,f) lua_pushcclosure(L, (f), 0)
#define lua_strlen(L,i) lua_objlen(L, (i))
#define lua_isfunction(L,n) (lua_type(L, (n)) == LUA_TFUNCTION)
#define lua_istable(L,n) (lua_type(L, (n)) == LUA_TTABLE)
#define lua_islightuserdata(L,n) (lua_type(L, (n)) == LUA_TLIGHTUSERDATA)
#define lua_isnil(L,n) (lua_type(L, (n)) == LUA_TNIL)
#define lua_isboolean(L,n) (lua_type(L, (n)) == LUA_TBOOLEAN)
#define lua_isthread(L,n) (lua_type(L, (n)) == LUA_TTHREAD)
#define lua_isnone(L,n) (lua_type(L, (n)) == LUA_TNONE)
#define lua_isnoneornil(L, n) (lua_type(L, (n)) <= 0)
#define lua_pushliteral(L, s) \
lua_pushlstring(L, "" s, (sizeof(s)/sizeof(char))-1)
#define lua_setglobal(L,s) lua_setfield(L, LUA_GLOBALSINDEX, (s))
#define lua_getglobal(L,s) lua_getfield(L, LUA_GLOBALSINDEX, (s))
#define lua_tostring(L,i) lua_tolstring(L, (i), NULL)
/*
** compatibility macros and functions
*/
#define lua_open() luaL_newstate()
#define lua_getregistry(L) lua_pushvalue(L, LUA_REGISTRYINDEX)
#define lua_getgccount(L) lua_gc(L, LUA_GCCOUNT, 0)
#define lua_Chunkreader lua_Reader
#define lua_Chunkwriter lua_Writer
/* hack */
LUA_API void lua_setlevel (lua_State *from, lua_State *to);
/*
** {======================================================================
** Debug API
** =======================================================================
*/
/*
** Event codes
*/
#define LUA_HOOKCALL 0
#define LUA_HOOKRET 1
#define LUA_HOOKLINE 2
#define LUA_HOOKCOUNT 3
#define LUA_HOOKTAILRET 4
/*
** Event masks
*/
#define LUA_MASKCALL (1 << LUA_HOOKCALL)
#define LUA_MASKRET (1 << LUA_HOOKRET)
#define LUA_MASKLINE (1 << LUA_HOOKLINE)
#define LUA_MASKCOUNT (1 << LUA_HOOKCOUNT)
typedef struct lua_Debug lua_Debug; /* activation record */
/* Functions to be called by the debuger in specific events */
typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);
LUA_API int lua_getstack (lua_State *L, int level, lua_Debug *ar);
LUA_API int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);
LUA_API const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n);
LUA_API const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n);
LUA_API const char *lua_getupvalue (lua_State *L, int funcindex, int n);
LUA_API const char *lua_setupvalue (lua_State *L, int funcindex, int n);
LUA_API int lua_sethook (lua_State *L, lua_Hook func, int mask, int count);
LUA_API lua_Hook lua_gethook (lua_State *L);
LUA_API int lua_gethookmask (lua_State *L);
LUA_API int lua_gethookcount (lua_State *L);
struct lua_Debug {
int event;
const char *name; /* (n) */
const char *namewhat; /* (n) `global', `local', `field', `method' */
const char *what; /* (S) `Lua', `C', `main', `tail' */
const char *source; /* (S) */
int currentline; /* (l) */
int nups; /* (u) number of upvalues */
int linedefined; /* (S) */
int lastlinedefined; /* (S) */
char short_src[LUA_IDSIZE]; /* (S) */
/* private part */
int i_ci; /* active function */
};
/* }====================================================================== */
/******************************************************************************
* Copyright (C) 1994-2012 Lua.org, PUC-Rio. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
******************************************************************************/
#endif
| 11,688 | 29.048843 | 79 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/lstate.c | /*
** $Id: lstate.c,v 2.36.1.2 2008/01/03 15:20:39 roberto Exp $
** Global State
** See Copyright Notice in lua.h
*/
#include <stddef.h>
#define lstate_c
#define LUA_CORE
#include "lua.h"
#include "ldebug.h"
#include "ldo.h"
#include "lfunc.h"
#include "lgc.h"
#include "llex.h"
#include "lmem.h"
#include "lstate.h"
#include "lstring.h"
#include "ltable.h"
#include "ltm.h"
#define state_size(x) (sizeof(x) + LUAI_EXTRASPACE)
#define fromstate(l) (cast(lu_byte *, (l)) - LUAI_EXTRASPACE)
#define tostate(l) (cast(lua_State *, cast(lu_byte *, l) + LUAI_EXTRASPACE))
/*
** Main thread combines a thread state and the global state
*/
typedef struct LG {
lua_State l;
global_State g;
} LG;
static void stack_init (lua_State *L1, lua_State *L) {
/* initialize CallInfo array */
L1->base_ci = luaM_newvector(L, BASIC_CI_SIZE, CallInfo);
L1->ci = L1->base_ci;
L1->size_ci = BASIC_CI_SIZE;
L1->end_ci = L1->base_ci + L1->size_ci - 1;
/* initialize stack array */
L1->stack = luaM_newvector(L, BASIC_STACK_SIZE + EXTRA_STACK, TValue);
L1->stacksize = BASIC_STACK_SIZE + EXTRA_STACK;
L1->top = L1->stack;
L1->stack_last = L1->stack+(L1->stacksize - EXTRA_STACK)-1;
/* initialize first ci */
L1->ci->func = L1->top;
setnilvalue(L1->top++); /* `function' entry for this `ci' */
L1->base = L1->ci->base = L1->top;
L1->ci->top = L1->top + LUA_MINSTACK;
}
static void freestack (lua_State *L, lua_State *L1) {
luaM_freearray(L, L1->base_ci, L1->size_ci, CallInfo);
luaM_freearray(L, L1->stack, L1->stacksize, TValue);
}
/*
** open parts that may cause memory-allocation errors
*/
static void f_luaopen (lua_State *L, void *ud) {
global_State *g = G(L);
UNUSED(ud);
stack_init(L, L); /* init stack */
sethvalue(L, gt(L), luaH_new(L, 0, 2)); /* table of globals */
sethvalue(L, registry(L), luaH_new(L, 0, 2)); /* registry */
luaS_resize(L, MINSTRTABSIZE); /* initial size of string table */
luaT_init(L);
luaX_init(L);
luaS_fix(luaS_newliteral(L, MEMERRMSG));
g->GCthreshold = 4*g->totalbytes;
}
static void preinit_state (lua_State *L, global_State *g) {
G(L) = g;
L->stack = NULL;
L->stacksize = 0;
L->errorJmp = NULL;
L->hook = NULL;
L->hookmask = 0;
L->basehookcount = 0;
L->allowhook = 1;
resethookcount(L);
L->openupval = NULL;
L->size_ci = 0;
L->nCcalls = L->baseCcalls = 0;
L->status = 0;
L->base_ci = L->ci = NULL;
L->savedpc = NULL;
L->errfunc = 0;
setnilvalue(gt(L));
}
static void close_state (lua_State *L) {
global_State *g = G(L);
luaF_close(L, L->stack); /* close all upvalues for this thread */
luaC_freeall(L); /* collect all objects */
lua_assert(g->rootgc == obj2gco(L));
lua_assert(g->strt.nuse == 0);
luaM_freearray(L, G(L)->strt.hash, G(L)->strt.size, TString *);
luaZ_freebuffer(L, &g->buff);
freestack(L, L);
lua_assert(g->totalbytes == sizeof(LG));
(*g->frealloc)(g->ud, fromstate(L), state_size(LG), 0);
}
lua_State *luaE_newthread (lua_State *L) {
lua_State *L1 = tostate(luaM_malloc(L, state_size(lua_State)));
luaC_link(L, obj2gco(L1), LUA_TTHREAD);
preinit_state(L1, G(L));
stack_init(L1, L); /* init stack */
setobj2n(L, gt(L1), gt(L)); /* share table of globals */
L1->hookmask = L->hookmask;
L1->basehookcount = L->basehookcount;
L1->hook = L->hook;
resethookcount(L1);
lua_assert(iswhite(obj2gco(L1)));
return L1;
}
void luaE_freethread (lua_State *L, lua_State *L1) {
luaF_close(L1, L1->stack); /* close all upvalues for this thread */
lua_assert(L1->openupval == NULL);
luai_userstatefree(L1);
freestack(L, L1);
luaM_freemem(L, fromstate(L1), state_size(lua_State));
}
LUA_API lua_State *lua_newstate (lua_Alloc f, void *ud) {
int i;
lua_State *L;
global_State *g;
void *l = (*f)(ud, NULL, 0, state_size(LG));
if (l == NULL) return NULL;
L = tostate(l);
g = &((LG *)L)->g;
L->next = NULL;
L->tt = LUA_TTHREAD;
g->currentwhite = bit2mask(WHITE0BIT, FIXEDBIT);
L->marked = luaC_white(g);
set2bits(L->marked, FIXEDBIT, SFIXEDBIT);
preinit_state(L, g);
g->frealloc = f;
g->ud = ud;
g->mainthread = L;
g->uvhead.u.l.prev = &g->uvhead;
g->uvhead.u.l.next = &g->uvhead;
g->GCthreshold = 0; /* mark it as unfinished state */
g->strt.size = 0;
g->strt.nuse = 0;
g->strt.hash = NULL;
setnilvalue(registry(L));
luaZ_initbuffer(L, &g->buff);
g->panic = NULL;
g->gcstate = GCSpause;
g->rootgc = obj2gco(L);
g->sweepstrgc = 0;
g->sweepgc = &g->rootgc;
g->gray = NULL;
g->grayagain = NULL;
g->weak = NULL;
g->tmudata = NULL;
g->totalbytes = sizeof(LG);
g->gcpause = LUAI_GCPAUSE;
g->gcstepmul = LUAI_GCMUL;
g->gcdept = 0;
for (i=0; i<NUM_TAGS; i++) g->mt[i] = NULL;
if (luaD_rawrunprotected(L, f_luaopen, NULL) != 0) {
/* memory allocation error: free partial state */
close_state(L);
L = NULL;
}
else
luai_userstateopen(L);
return L;
}
static void callallgcTM (lua_State *L, void *ud) {
UNUSED(ud);
luaC_callGCTM(L); /* call GC metamethods for all udata */
}
LUA_API void lua_close (lua_State *L) {
L = G(L)->mainthread; /* only the main thread can be closed */
lua_lock(L);
luaF_close(L, L->stack); /* close all upvalues for this thread */
luaC_separateudata(L, 1); /* separate udata that have GC metamethods */
L->errfunc = 0; /* no error function during GC metamethods */
do { /* repeat until no more errors */
L->ci = L->base_ci;
L->base = L->top = L->ci->base;
L->nCcalls = L->baseCcalls = 0;
} while (luaD_rawrunprotected(L, callallgcTM, NULL) != 0);
lua_assert(G(L)->tmudata == NULL);
luai_userstateclose(L);
close_state(L);
}
| 5,674 | 25.395349 | 78 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/ldebug.h | /*
** $Id: ldebug.h,v 2.3.1.1 2007/12/27 13:02:25 roberto Exp $
** Auxiliary functions from Debug Interface module
** See Copyright Notice in lua.h
*/
#ifndef ldebug_h
#define ldebug_h
#include "lstate.h"
#define pcRel(pc, p) (cast(int, (pc) - (p)->code) - 1)
#define getline(f,pc) (((f)->lineinfo) ? (f)->lineinfo[pc] : 0)
#define resethookcount(L) (L->hookcount = L->basehookcount)
LUAI_FUNC void luaG_typeerror (lua_State *L, const TValue *o,
const char *opname);
LUAI_FUNC void luaG_concaterror (lua_State *L, StkId p1, StkId p2);
LUAI_FUNC void luaG_aritherror (lua_State *L, const TValue *p1,
const TValue *p2);
LUAI_FUNC int luaG_ordererror (lua_State *L, const TValue *p1,
const TValue *p2);
LUAI_FUNC void luaG_runerror (lua_State *L, const char *fmt, ...);
LUAI_FUNC void luaG_errormsg (lua_State *L);
LUAI_FUNC int luaG_checkcode (const Proto *pt);
LUAI_FUNC int luaG_checkopenop (Instruction i);
#endif
| 1,061 | 30.235294 | 67 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/lvm.h | /*
** $Id: lvm.h,v 2.5.1.1 2007/12/27 13:02:25 roberto Exp $
** Lua virtual machine
** See Copyright Notice in lua.h
*/
#ifndef lvm_h
#define lvm_h
#include "ldo.h"
#include "lobject.h"
#include "ltm.h"
#define tostring(L,o) ((ttype(o) == LUA_TSTRING) || (luaV_tostring(L, o)))
#define tonumber(o,n) (ttype(o) == LUA_TNUMBER || \
(((o) = luaV_tonumber(o,n)) != NULL))
#define equalobj(L,o1,o2) \
(ttype(o1) == ttype(o2) && luaV_equalval(L, o1, o2))
LUAI_FUNC int luaV_lessthan (lua_State *L, const TValue *l, const TValue *r);
LUAI_FUNC int luaV_equalval (lua_State *L, const TValue *t1, const TValue *t2);
LUAI_FUNC const TValue *luaV_tonumber (const TValue *obj, TValue *n);
LUAI_FUNC int luaV_tostring (lua_State *L, StkId obj);
LUAI_FUNC void luaV_gettable (lua_State *L, const TValue *t, TValue *key,
StkId val);
LUAI_FUNC void luaV_settable (lua_State *L, const TValue *t, TValue *key,
StkId val);
LUAI_FUNC void luaV_execute (lua_State *L, int nexeccalls);
LUAI_FUNC void luaV_concat (lua_State *L, int total, int last);
#endif
| 1,159 | 30.351351 | 79 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/lstring.h | /*
** $Id: lstring.h,v 1.43.1.1 2007/12/27 13:02:25 roberto Exp $
** String table (keep all strings handled by Lua)
** See Copyright Notice in lua.h
*/
#ifndef lstring_h
#define lstring_h
#include "lgc.h"
#include "lobject.h"
#include "lstate.h"
#define sizestring(s) (sizeof(union TString)+((s)->len+1)*sizeof(char))
#define sizeudata(u) (sizeof(union Udata)+(u)->len)
#define luaS_new(L, s) (luaS_newlstr(L, s, strlen(s)))
#define luaS_newliteral(L, s) (luaS_newlstr(L, "" s, \
(sizeof(s)/sizeof(char))-1))
#define luaS_fix(s) l_setbit((s)->tsv.marked, FIXEDBIT)
LUAI_FUNC void luaS_resize (lua_State *L, int newsize);
LUAI_FUNC Udata *luaS_newudata (lua_State *L, size_t s, Table *e);
LUAI_FUNC TString *luaS_newlstr (lua_State *L, const char *str, size_t l);
#endif
| 814 | 24.46875 | 74 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/luac.c | /*
** $Id: luac.c,v 1.54 2006/06/02 17:37:11 lhf Exp $
** Lua compiler (saves bytecodes to files; also list bytecodes)
** See Copyright Notice in lua.h
*/
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define luac_c
#define LUA_CORE
#include "lua.h"
#include "lauxlib.h"
#include "ldo.h"
#include "lfunc.h"
#include "lmem.h"
#include "lobject.h"
#include "lopcodes.h"
#include "lstring.h"
#include "lundump.h"
#define PROGNAME "luac" /* default program name */
#define OUTPUT PROGNAME ".out" /* default output file */
static int listing=0; /* list bytecodes? */
static int dumping=1; /* dump bytecodes? */
static int stripping=0; /* strip debug information? */
static char Output[]={ OUTPUT }; /* default output file name */
static const char* output=Output; /* actual output file name */
static const char* progname=PROGNAME; /* actual program name */
static void fatal(const char* message)
{
fprintf(stderr,"%s: %s\n",progname,message);
exit(EXIT_FAILURE);
}
static void cannot(const char* what)
{
fprintf(stderr,"%s: cannot %s %s: %s\n",progname,what,output,strerror(errno));
exit(EXIT_FAILURE);
}
static void usage(const char* message)
{
if (*message=='-')
fprintf(stderr,"%s: unrecognized option " LUA_QS "\n",progname,message);
else
fprintf(stderr,"%s: %s\n",progname,message);
fprintf(stderr,
"usage: %s [options] [filenames].\n"
"Available options are:\n"
" - process stdin\n"
" -l list\n"
" -o name output to file " LUA_QL("name") " (default is \"%s\")\n"
" -p parse only\n"
" -s strip debug information\n"
" -v show version information\n"
" -- stop handling options\n",
progname,Output);
exit(EXIT_FAILURE);
}
#define IS(s) (strcmp(argv[i],s)==0)
static int doargs(int argc, char* argv[])
{
int i;
int version=0;
if (argv[0]!=NULL && *argv[0]!=0) progname=argv[0];
for (i=1; i<argc; i++)
{
if (*argv[i]!='-') /* end of options; keep it */
break;
else if (IS("--")) /* end of options; skip it */
{
++i;
if (version) ++version;
break;
}
else if (IS("-")) /* end of options; use stdin */
break;
else if (IS("-l")) /* list */
++listing;
else if (IS("-o")) /* output file */
{
output=argv[++i];
if (output==NULL || *output==0) usage(LUA_QL("-o") " needs argument");
if (IS("-")) output=NULL;
}
else if (IS("-p")) /* parse only */
dumping=0;
else if (IS("-s")) /* strip debug information */
stripping=1;
else if (IS("-v")) /* show version */
++version;
else /* unknown option */
usage(argv[i]);
}
if (i==argc && (listing || !dumping))
{
dumping=0;
argv[--i]=Output;
}
if (version)
{
printf("%s %s\n",LUA_RELEASE,LUA_COPYRIGHT);
if (version==argc-1) exit(EXIT_SUCCESS);
}
return i;
}
#define toproto(L,i) (clvalue(L->top+(i))->l.p)
static const Proto* combine(lua_State* L, int n)
{
if (n==1)
return toproto(L,-1);
else
{
int i,pc;
Proto* f=luaF_newproto(L);
setptvalue2s(L,L->top,f); incr_top(L);
f->source=luaS_newliteral(L,"=(" PROGNAME ")");
f->maxstacksize=1;
pc=2*n+1;
f->code=luaM_newvector(L,pc,Instruction);
f->sizecode=pc;
f->p=luaM_newvector(L,n,Proto*);
f->sizep=n;
pc=0;
for (i=0; i<n; i++)
{
f->p[i]=toproto(L,i-n-1);
f->code[pc++]=CREATE_ABx(OP_CLOSURE,0,i);
f->code[pc++]=CREATE_ABC(OP_CALL,0,1,1);
}
f->code[pc++]=CREATE_ABC(OP_RETURN,0,1,0);
return f;
}
}
static int writer(lua_State* L, const void* p, size_t size, void* u)
{
UNUSED(L);
return (fwrite(p,size,1,(FILE*)u)!=1) && (size!=0);
}
struct Smain {
int argc;
char** argv;
};
static int pmain(lua_State* L)
{
struct Smain* s = (struct Smain*)lua_touserdata(L, 1);
int argc=s->argc;
char** argv=s->argv;
const Proto* f;
int i;
if (!lua_checkstack(L,argc)) fatal("too many input files");
for (i=0; i<argc; i++)
{
const char* filename=IS("-") ? NULL : argv[i];
if (luaL_loadfile(L,filename)!=0) fatal(lua_tostring(L,-1));
}
f=combine(L,argc);
if (listing) luaU_print(f,listing>1);
if (dumping)
{
FILE* D= (output==NULL) ? stdout : fopen(output,"wb");
if (D==NULL) cannot("open");
lua_lock(L);
luaU_dump(L,f,writer,D,stripping);
lua_unlock(L);
if (ferror(D)) cannot("write");
if (fclose(D)) cannot("close");
}
return 0;
}
int main(int argc, char* argv[])
{
lua_State* L;
struct Smain s;
int i=doargs(argc,argv);
argc-=i; argv+=i;
if (argc<=0) usage("no input files given");
L=lua_open();
if (L==NULL) fatal("not enough memory for state");
s.argc=argc;
s.argv=argv;
if (lua_cpcall(L,pmain,&s)!=0) fatal(lua_tostring(L,-1));
lua_close(L);
return EXIT_SUCCESS;
}
| 4,661 | 22.19403 | 79 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/src/strbuf.c | /* strbuf - String buffer routines
*
* Copyright (c) 2010-2012 Mark Pulford <[email protected]>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include "strbuf.h"
static void die(const char *fmt, ...)
{
va_list arg;
va_start(arg, fmt);
vfprintf(stderr, fmt, arg);
va_end(arg);
fprintf(stderr, "\n");
exit(-1);
}
void strbuf_init(strbuf_t *s, int len)
{
int size;
if (len <= 0)
size = STRBUF_DEFAULT_SIZE;
else
size = len + 1; /* \0 terminator */
s->buf = NULL;
s->size = size;
s->length = 0;
s->increment = STRBUF_DEFAULT_INCREMENT;
s->dynamic = 0;
s->reallocs = 0;
s->debug = 0;
s->buf = malloc(size);
if (!s->buf)
die("Out of memory");
strbuf_ensure_null(s);
}
strbuf_t *strbuf_new(int len)
{
strbuf_t *s;
s = malloc(sizeof(strbuf_t));
if (!s)
die("Out of memory");
strbuf_init(s, len);
/* Dynamic strbuf allocation / deallocation */
s->dynamic = 1;
return s;
}
void strbuf_set_increment(strbuf_t *s, int increment)
{
/* Increment > 0: Linear buffer growth rate
* Increment < -1: Exponential buffer growth rate */
if (increment == 0 || increment == -1)
die("BUG: Invalid string increment");
s->increment = increment;
}
static inline void debug_stats(strbuf_t *s)
{
if (s->debug) {
fprintf(stderr, "strbuf(%lx) reallocs: %d, length: %d, size: %d\n",
(long)s, s->reallocs, s->length, s->size);
}
}
/* If strbuf_t has not been dynamically allocated, strbuf_free() can
* be called any number of times strbuf_init() */
void strbuf_free(strbuf_t *s)
{
debug_stats(s);
if (s->buf) {
free(s->buf);
s->buf = NULL;
}
if (s->dynamic)
free(s);
}
char *strbuf_free_to_string(strbuf_t *s, int *len)
{
char *buf;
debug_stats(s);
strbuf_ensure_null(s);
buf = s->buf;
if (len)
*len = s->length;
if (s->dynamic)
free(s);
return buf;
}
static int calculate_new_size(strbuf_t *s, int len)
{
int reqsize, newsize;
if (len <= 0)
die("BUG: Invalid strbuf length requested");
/* Ensure there is room for optional NULL termination */
reqsize = len + 1;
/* If the user has requested to shrink the buffer, do it exactly */
if (s->size > reqsize)
return reqsize;
newsize = s->size;
if (s->increment < 0) {
/* Exponential sizing */
while (newsize < reqsize)
newsize *= -s->increment;
} else {
/* Linear sizing */
newsize = ((newsize + s->increment - 1) / s->increment) * s->increment;
}
return newsize;
}
/* Ensure strbuf can handle a string length bytes long (ignoring NULL
* optional termination). */
void strbuf_resize(strbuf_t *s, int len)
{
int newsize;
newsize = calculate_new_size(s, len);
if (s->debug > 1) {
fprintf(stderr, "strbuf(%lx) resize: %d => %d\n",
(long)s, s->size, newsize);
}
s->size = newsize;
s->buf = realloc(s->buf, s->size);
if (!s->buf)
die("Out of memory");
s->reallocs++;
}
void strbuf_append_string(strbuf_t *s, const char *str)
{
int space, i;
space = strbuf_empty_length(s);
for (i = 0; str[i]; i++) {
if (space < 1) {
strbuf_resize(s, s->length + 1);
space = strbuf_empty_length(s);
}
s->buf[s->length] = str[i];
s->length++;
space--;
}
}
/* strbuf_append_fmt() should only be used when an upper bound
* is known for the output string. */
void strbuf_append_fmt(strbuf_t *s, int len, const char *fmt, ...)
{
va_list arg;
int fmt_len;
strbuf_ensure_empty_length(s, len);
va_start(arg, fmt);
fmt_len = vsnprintf(s->buf + s->length, len, fmt, arg);
va_end(arg);
if (fmt_len < 0)
die("BUG: Unable to convert number"); /* This should never happen.. */
s->length += fmt_len;
}
/* strbuf_append_fmt_retry() can be used when the there is no known
* upper bound for the output string. */
void strbuf_append_fmt_retry(strbuf_t *s, const char *fmt, ...)
{
va_list arg;
int fmt_len, try;
int empty_len;
/* If the first attempt to append fails, resize the buffer appropriately
* and try again */
for (try = 0; ; try++) {
va_start(arg, fmt);
/* Append the new formatted string */
/* fmt_len is the length of the string required, excluding the
* trailing NULL */
empty_len = strbuf_empty_length(s);
/* Add 1 since there is also space to store the terminating NULL. */
fmt_len = vsnprintf(s->buf + s->length, empty_len + 1, fmt, arg);
va_end(arg);
if (fmt_len <= empty_len)
break; /* SUCCESS */
if (try > 0)
die("BUG: length of formatted string changed");
strbuf_resize(s, s->length + fmt_len);
}
s->length += fmt_len;
}
/* vi:ai et sw=4 ts=4:
*/
| 6,132 | 23.337302 | 79 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/lua/etc/noparser.c | /*
* The code below can be used to make a Lua core that does not contain the
* parsing modules (lcode, llex, lparser), which represent 35% of the total core.
* You'll only be able to load binary files and strings, precompiled with luac.
* (Of course, you'll have to build luac with the original parsing modules!)
*
* To use this module, simply compile it ("make noparser" does that) and list
* its object file before the Lua libraries. The linker should then not load
* the parsing modules. To try it, do "make luab".
*
* If you also want to avoid the dump module (ldump.o), define NODUMP.
* #define NODUMP
*/
#define LUA_CORE
#include "llex.h"
#include "lparser.h"
#include "lzio.h"
LUAI_FUNC void luaX_init (lua_State *L) {
UNUSED(L);
}
LUAI_FUNC Proto *luaY_parser (lua_State *L, ZIO *z, Mbuffer *buff, const char *name) {
UNUSED(z);
UNUSED(buff);
UNUSED(name);
lua_pushliteral(L,"parser not loaded");
lua_error(L);
return NULL;
}
#ifdef NODUMP
#include "lundump.h"
LUAI_FUNC int luaU_dump (lua_State* L, const Proto* f, lua_Writer w, void* data, int strip) {
UNUSED(f);
UNUSED(w);
UNUSED(data);
UNUSED(strip);
#if 1
UNUSED(L);
return 0;
#else
lua_pushliteral(L,"dumper not loaded");
lua_error(L);
#endif
}
#endif
| 1,253 | 23.588235 | 93 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/src/chunk_dss.c | #define JEMALLOC_CHUNK_DSS_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Data. */
const char *dss_prec_names[] = {
"disabled",
"primary",
"secondary",
"N/A"
};
/*
* Current dss precedence default, used when creating new arenas. NB: This is
* stored as unsigned rather than dss_prec_t because in principle there's no
* guarantee that sizeof(dss_prec_t) is the same as sizeof(unsigned), and we use
* atomic operations to synchronize the setting.
*/
static unsigned dss_prec_default = (unsigned)DSS_PREC_DEFAULT;
/* Base address of the DSS. */
static void *dss_base;
/* Atomic boolean indicating whether the DSS is exhausted. */
static unsigned dss_exhausted;
/* Atomic current upper limit on DSS addresses. */
static void *dss_max;
/******************************************************************************/
static void *
chunk_dss_sbrk(intptr_t increment)
{
#ifdef JEMALLOC_DSS
return (sbrk(increment));
#else
not_implemented();
return (NULL);
#endif
}
dss_prec_t
chunk_dss_prec_get(void)
{
dss_prec_t ret;
if (!have_dss)
return (dss_prec_disabled);
ret = (dss_prec_t)atomic_read_u(&dss_prec_default);
return (ret);
}
bool
chunk_dss_prec_set(dss_prec_t dss_prec)
{
if (!have_dss)
return (dss_prec != dss_prec_disabled);
atomic_write_u(&dss_prec_default, (unsigned)dss_prec);
return (false);
}
static void *
chunk_dss_max_update(void *new_addr)
{
void *max_cur;
spin_t spinner;
/*
* Get the current end of the DSS as max_cur and assure that dss_max is
* up to date.
*/
spin_init(&spinner);
while (true) {
void *max_prev = atomic_read_p(&dss_max);
max_cur = chunk_dss_sbrk(0);
if ((uintptr_t)max_prev > (uintptr_t)max_cur) {
/*
* Another thread optimistically updated dss_max. Wait
* for it to finish.
*/
spin_adaptive(&spinner);
continue;
}
if (!atomic_cas_p(&dss_max, max_prev, max_cur))
break;
}
/* Fixed new_addr can only be supported if it is at the edge of DSS. */
if (new_addr != NULL && max_cur != new_addr)
return (NULL);
return (max_cur);
}
void *
chunk_alloc_dss(tsdn_t *tsdn, arena_t *arena, void *new_addr, size_t size,
size_t alignment, bool *zero, bool *commit)
{
cassert(have_dss);
assert(size > 0 && (size & chunksize_mask) == 0);
assert(alignment > 0 && (alignment & chunksize_mask) == 0);
/*
* sbrk() uses a signed increment argument, so take care not to
* interpret a huge allocation request as a negative increment.
*/
if ((intptr_t)size < 0)
return (NULL);
if (!atomic_read_u(&dss_exhausted)) {
/*
* The loop is necessary to recover from races with other
* threads that are using the DSS for something other than
* malloc.
*/
while (true) {
void *ret, *cpad, *max_cur, *dss_next, *dss_prev;
size_t gap_size, cpad_size;
intptr_t incr;
max_cur = chunk_dss_max_update(new_addr);
if (max_cur == NULL)
goto label_oom;
/*
* Calculate how much padding is necessary to
* chunk-align the end of the DSS.
*/
gap_size = (chunksize - CHUNK_ADDR2OFFSET(dss_max)) &
chunksize_mask;
/*
* Compute how much chunk-aligned pad space (if any) is
* necessary to satisfy alignment. This space can be
* recycled for later use.
*/
cpad = (void *)((uintptr_t)dss_max + gap_size);
ret = (void *)ALIGNMENT_CEILING((uintptr_t)dss_max,
alignment);
cpad_size = (uintptr_t)ret - (uintptr_t)cpad;
dss_next = (void *)((uintptr_t)ret + size);
if ((uintptr_t)ret < (uintptr_t)dss_max ||
(uintptr_t)dss_next < (uintptr_t)dss_max)
goto label_oom; /* Wrap-around. */
incr = gap_size + cpad_size + size;
/*
* Optimistically update dss_max, and roll back below if
* sbrk() fails. No other thread will try to extend the
* DSS while dss_max is greater than the current DSS
* max reported by sbrk(0).
*/
if (atomic_cas_p(&dss_max, max_cur, dss_next))
continue;
/* Try to allocate. */
dss_prev = chunk_dss_sbrk(incr);
if (dss_prev == max_cur) {
/* Success. */
if (cpad_size != 0) {
chunk_hooks_t chunk_hooks =
CHUNK_HOOKS_INITIALIZER;
chunk_dalloc_wrapper(tsdn, arena,
&chunk_hooks, cpad, cpad_size,
arena_extent_sn_next(arena), false,
true);
}
if (*zero) {
JEMALLOC_VALGRIND_MAKE_MEM_UNDEFINED(
ret, size);
memset(ret, 0, size);
}
if (!*commit)
*commit = pages_decommit(ret, size);
return (ret);
}
/*
* Failure, whether due to OOM or a race with a raw
* sbrk() call from outside the allocator. Try to roll
* back optimistic dss_max update; if rollback fails,
* it's due to another caller of this function having
* succeeded since this invocation started, in which
* case rollback is not necessary.
*/
atomic_cas_p(&dss_max, dss_next, max_cur);
if (dss_prev == (void *)-1) {
/* OOM. */
atomic_write_u(&dss_exhausted, (unsigned)true);
goto label_oom;
}
}
}
label_oom:
return (NULL);
}
static bool
chunk_in_dss_helper(void *chunk, void *max)
{
return ((uintptr_t)chunk >= (uintptr_t)dss_base && (uintptr_t)chunk <
(uintptr_t)max);
}
bool
chunk_in_dss(void *chunk)
{
cassert(have_dss);
return (chunk_in_dss_helper(chunk, atomic_read_p(&dss_max)));
}
bool
chunk_dss_mergeable(void *chunk_a, void *chunk_b)
{
void *max;
cassert(have_dss);
max = atomic_read_p(&dss_max);
return (chunk_in_dss_helper(chunk_a, max) ==
chunk_in_dss_helper(chunk_b, max));
}
void
chunk_dss_boot(void)
{
cassert(have_dss);
dss_base = chunk_dss_sbrk(0);
dss_exhausted = (unsigned)(dss_base == (void *)-1);
dss_max = dss_base;
}
/******************************************************************************/
| 5,817 | 23.343096 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/src/witness.c | #define JEMALLOC_WITNESS_C_
#include "jemalloc/internal/jemalloc_internal.h"
void
witness_init(witness_t *witness, const char *name, witness_rank_t rank,
witness_comp_t *comp)
{
witness->name = name;
witness->rank = rank;
witness->comp = comp;
}
#ifdef JEMALLOC_JET
#undef witness_lock_error
#define witness_lock_error JEMALLOC_N(n_witness_lock_error)
#endif
void
witness_lock_error(const witness_list_t *witnesses, const witness_t *witness)
{
witness_t *w;
malloc_printf("<jemalloc>: Lock rank order reversal:");
ql_foreach(w, witnesses, link) {
malloc_printf(" %s(%u)", w->name, w->rank);
}
malloc_printf(" %s(%u)\n", witness->name, witness->rank);
abort();
}
#ifdef JEMALLOC_JET
#undef witness_lock_error
#define witness_lock_error JEMALLOC_N(witness_lock_error)
witness_lock_error_t *witness_lock_error = JEMALLOC_N(n_witness_lock_error);
#endif
#ifdef JEMALLOC_JET
#undef witness_owner_error
#define witness_owner_error JEMALLOC_N(n_witness_owner_error)
#endif
void
witness_owner_error(const witness_t *witness)
{
malloc_printf("<jemalloc>: Should own %s(%u)\n", witness->name,
witness->rank);
abort();
}
#ifdef JEMALLOC_JET
#undef witness_owner_error
#define witness_owner_error JEMALLOC_N(witness_owner_error)
witness_owner_error_t *witness_owner_error = JEMALLOC_N(n_witness_owner_error);
#endif
#ifdef JEMALLOC_JET
#undef witness_not_owner_error
#define witness_not_owner_error JEMALLOC_N(n_witness_not_owner_error)
#endif
void
witness_not_owner_error(const witness_t *witness)
{
malloc_printf("<jemalloc>: Should not own %s(%u)\n", witness->name,
witness->rank);
abort();
}
#ifdef JEMALLOC_JET
#undef witness_not_owner_error
#define witness_not_owner_error JEMALLOC_N(witness_not_owner_error)
witness_not_owner_error_t *witness_not_owner_error =
JEMALLOC_N(n_witness_not_owner_error);
#endif
#ifdef JEMALLOC_JET
#undef witness_lockless_error
#define witness_lockless_error JEMALLOC_N(n_witness_lockless_error)
#endif
void
witness_lockless_error(const witness_list_t *witnesses)
{
witness_t *w;
malloc_printf("<jemalloc>: Should not own any locks:");
ql_foreach(w, witnesses, link) {
malloc_printf(" %s(%u)", w->name, w->rank);
}
malloc_printf("\n");
abort();
}
#ifdef JEMALLOC_JET
#undef witness_lockless_error
#define witness_lockless_error JEMALLOC_N(witness_lockless_error)
witness_lockless_error_t *witness_lockless_error =
JEMALLOC_N(n_witness_lockless_error);
#endif
void
witnesses_cleanup(tsd_t *tsd)
{
witness_assert_lockless(tsd_tsdn(tsd));
/* Do nothing. */
}
void
witness_fork_cleanup(tsd_t *tsd)
{
/* Do nothing. */
}
void
witness_prefork(tsd_t *tsd)
{
tsd_witness_fork_set(tsd, true);
}
void
witness_postfork_parent(tsd_t *tsd)
{
tsd_witness_fork_set(tsd, false);
}
void
witness_postfork_child(tsd_t *tsd)
{
#ifndef JEMALLOC_MUTEX_INIT_CB
witness_list_t *witnesses;
witnesses = tsd_witnessesp_get(tsd);
ql_new(witnesses);
#endif
tsd_witness_fork_set(tsd, false);
}
| 2,963 | 20.635036 | 79 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/src/util.c | /*
* Define simple versions of assertion macros that won't recurse in case
* of assertion failures in malloc_*printf().
*/
#define assert(e) do { \
if (config_debug && !(e)) { \
malloc_write("<jemalloc>: Failed assertion\n"); \
abort(); \
} \
} while (0)
#define not_reached() do { \
if (config_debug) { \
malloc_write("<jemalloc>: Unreachable code reached\n"); \
abort(); \
} \
unreachable(); \
} while (0)
#define not_implemented() do { \
if (config_debug) { \
malloc_write("<jemalloc>: Not implemented\n"); \
abort(); \
} \
} while (0)
#define JEMALLOC_UTIL_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Function prototypes for non-inline static functions. */
static void wrtmessage(void *cbopaque, const char *s);
#define U2S_BUFSIZE ((1U << (LG_SIZEOF_INTMAX_T + 3)) + 1)
static char *u2s(uintmax_t x, unsigned base, bool uppercase, char *s,
size_t *slen_p);
#define D2S_BUFSIZE (1 + U2S_BUFSIZE)
static char *d2s(intmax_t x, char sign, char *s, size_t *slen_p);
#define O2S_BUFSIZE (1 + U2S_BUFSIZE)
static char *o2s(uintmax_t x, bool alt_form, char *s, size_t *slen_p);
#define X2S_BUFSIZE (2 + U2S_BUFSIZE)
static char *x2s(uintmax_t x, bool alt_form, bool uppercase, char *s,
size_t *slen_p);
/******************************************************************************/
/* malloc_message() setup. */
static void
wrtmessage(void *cbopaque, const char *s)
{
#if defined(JEMALLOC_USE_SYSCALL) && defined(SYS_write)
/*
* Use syscall(2) rather than write(2) when possible in order to avoid
* the possibility of memory allocation within libc. This is necessary
* on FreeBSD; most operating systems do not have this problem though.
*
* syscall() returns long or int, depending on platform, so capture the
* unused result in the widest plausible type to avoid compiler
* warnings.
*/
UNUSED long result = syscall(SYS_write, STDERR_FILENO, s, strlen(s));
#else
UNUSED ssize_t result = write(STDERR_FILENO, s, strlen(s));
#endif
}
JEMALLOC_EXPORT void (*je_malloc_message)(void *, const char *s);
/*
* Wrapper around malloc_message() that avoids the need for
* je_malloc_message(...) throughout the code.
*/
void
malloc_write(const char *s)
{
if (je_malloc_message != NULL)
je_malloc_message(NULL, s);
else
wrtmessage(NULL, s);
}
/*
* glibc provides a non-standard strerror_r() when _GNU_SOURCE is defined, so
* provide a wrapper.
*/
int
buferror(int err, char *buf, size_t buflen)
{
#ifdef _WIN32
FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM, NULL, err, 0,
(LPSTR)buf, (DWORD)buflen, NULL);
return (0);
#elif defined(__GLIBC__) && defined(_GNU_SOURCE)
char *b = strerror_r(err, buf, buflen);
if (b != buf) {
strncpy(buf, b, buflen);
buf[buflen-1] = '\0';
}
return (0);
#else
return (strerror_r(err, buf, buflen));
#endif
}
uintmax_t
malloc_strtoumax(const char *restrict nptr, char **restrict endptr, int base)
{
uintmax_t ret, digit;
unsigned b;
bool neg;
const char *p, *ns;
p = nptr;
if (base < 0 || base == 1 || base > 36) {
ns = p;
set_errno(EINVAL);
ret = UINTMAX_MAX;
goto label_return;
}
b = base;
/* Swallow leading whitespace and get sign, if any. */
neg = false;
while (true) {
switch (*p) {
case '\t': case '\n': case '\v': case '\f': case '\r': case ' ':
p++;
break;
case '-':
neg = true;
/* Fall through. */
case '+':
p++;
/* Fall through. */
default:
goto label_prefix;
}
}
/* Get prefix, if any. */
label_prefix:
/*
* Note where the first non-whitespace/sign character is so that it is
* possible to tell whether any digits are consumed (e.g., " 0" vs.
* " -x").
*/
ns = p;
if (*p == '0') {
switch (p[1]) {
case '0': case '1': case '2': case '3': case '4': case '5':
case '6': case '7':
if (b == 0)
b = 8;
if (b == 8)
p++;
break;
case 'X': case 'x':
switch (p[2]) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
case 'A': case 'B': case 'C': case 'D': case 'E':
case 'F':
case 'a': case 'b': case 'c': case 'd': case 'e':
case 'f':
if (b == 0)
b = 16;
if (b == 16)
p += 2;
break;
default:
break;
}
break;
default:
p++;
ret = 0;
goto label_return;
}
}
if (b == 0)
b = 10;
/* Convert. */
ret = 0;
while ((*p >= '0' && *p <= '9' && (digit = *p - '0') < b)
|| (*p >= 'A' && *p <= 'Z' && (digit = 10 + *p - 'A') < b)
|| (*p >= 'a' && *p <= 'z' && (digit = 10 + *p - 'a') < b)) {
uintmax_t pret = ret;
ret *= b;
ret += digit;
if (ret < pret) {
/* Overflow. */
set_errno(ERANGE);
ret = UINTMAX_MAX;
goto label_return;
}
p++;
}
if (neg)
ret = (uintmax_t)(-((intmax_t)ret));
if (p == ns) {
/* No conversion performed. */
set_errno(EINVAL);
ret = UINTMAX_MAX;
goto label_return;
}
label_return:
if (endptr != NULL) {
if (p == ns) {
/* No characters were converted. */
*endptr = (char *)nptr;
} else
*endptr = (char *)p;
}
return (ret);
}
static char *
u2s(uintmax_t x, unsigned base, bool uppercase, char *s, size_t *slen_p)
{
unsigned i;
i = U2S_BUFSIZE - 1;
s[i] = '\0';
switch (base) {
case 10:
do {
i--;
s[i] = "0123456789"[x % (uint64_t)10];
x /= (uint64_t)10;
} while (x > 0);
break;
case 16: {
const char *digits = (uppercase)
? "0123456789ABCDEF"
: "0123456789abcdef";
do {
i--;
s[i] = digits[x & 0xf];
x >>= 4;
} while (x > 0);
break;
} default: {
const char *digits = (uppercase)
? "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
: "0123456789abcdefghijklmnopqrstuvwxyz";
assert(base >= 2 && base <= 36);
do {
i--;
s[i] = digits[x % (uint64_t)base];
x /= (uint64_t)base;
} while (x > 0);
}}
*slen_p = U2S_BUFSIZE - 1 - i;
return (&s[i]);
}
static char *
d2s(intmax_t x, char sign, char *s, size_t *slen_p)
{
bool neg;
if ((neg = (x < 0)))
x = -x;
s = u2s(x, 10, false, s, slen_p);
if (neg)
sign = '-';
switch (sign) {
case '-':
if (!neg)
break;
/* Fall through. */
case ' ':
case '+':
s--;
(*slen_p)++;
*s = sign;
break;
default: not_reached();
}
return (s);
}
static char *
o2s(uintmax_t x, bool alt_form, char *s, size_t *slen_p)
{
s = u2s(x, 8, false, s, slen_p);
if (alt_form && *s != '0') {
s--;
(*slen_p)++;
*s = '0';
}
return (s);
}
static char *
x2s(uintmax_t x, bool alt_form, bool uppercase, char *s, size_t *slen_p)
{
s = u2s(x, 16, uppercase, s, slen_p);
if (alt_form) {
s -= 2;
(*slen_p) += 2;
memcpy(s, uppercase ? "0X" : "0x", 2);
}
return (s);
}
size_t
malloc_vsnprintf(char *str, size_t size, const char *format, va_list ap)
{
size_t i;
const char *f;
#define APPEND_C(c) do { \
if (i < size) \
str[i] = (c); \
i++; \
} while (0)
#define APPEND_S(s, slen) do { \
if (i < size) { \
size_t cpylen = (slen <= size - i) ? slen : size - i; \
memcpy(&str[i], s, cpylen); \
} \
i += slen; \
} while (0)
#define APPEND_PADDED_S(s, slen, width, left_justify) do { \
/* Left padding. */ \
size_t pad_len = (width == -1) ? 0 : ((slen < (size_t)width) ? \
(size_t)width - slen : 0); \
if (!left_justify && pad_len != 0) { \
size_t j; \
for (j = 0; j < pad_len; j++) \
APPEND_C(' '); \
} \
/* Value. */ \
APPEND_S(s, slen); \
/* Right padding. */ \
if (left_justify && pad_len != 0) { \
size_t j; \
for (j = 0; j < pad_len; j++) \
APPEND_C(' '); \
} \
} while (0)
#define GET_ARG_NUMERIC(val, len) do { \
switch (len) { \
case '?': \
val = va_arg(ap, int); \
break; \
case '?' | 0x80: \
val = va_arg(ap, unsigned int); \
break; \
case 'l': \
val = va_arg(ap, long); \
break; \
case 'l' | 0x80: \
val = va_arg(ap, unsigned long); \
break; \
case 'q': \
val = va_arg(ap, long long); \
break; \
case 'q' | 0x80: \
val = va_arg(ap, unsigned long long); \
break; \
case 'j': \
val = va_arg(ap, intmax_t); \
break; \
case 'j' | 0x80: \
val = va_arg(ap, uintmax_t); \
break; \
case 't': \
val = va_arg(ap, ptrdiff_t); \
break; \
case 'z': \
val = va_arg(ap, ssize_t); \
break; \
case 'z' | 0x80: \
val = va_arg(ap, size_t); \
break; \
case 'p': /* Synthetic; used for %p. */ \
val = va_arg(ap, uintptr_t); \
break; \
default: \
not_reached(); \
val = 0; \
} \
} while (0)
i = 0;
f = format;
while (true) {
switch (*f) {
case '\0': goto label_out;
case '%': {
bool alt_form = false;
bool left_justify = false;
bool plus_space = false;
bool plus_plus = false;
int prec = -1;
int width = -1;
unsigned char len = '?';
char *s;
size_t slen;
f++;
/* Flags. */
while (true) {
switch (*f) {
case '#':
assert(!alt_form);
alt_form = true;
break;
case '-':
assert(!left_justify);
left_justify = true;
break;
case ' ':
assert(!plus_space);
plus_space = true;
break;
case '+':
assert(!plus_plus);
plus_plus = true;
break;
default: goto label_width;
}
f++;
}
/* Width. */
label_width:
switch (*f) {
case '*':
width = va_arg(ap, int);
f++;
if (width < 0) {
left_justify = true;
width = -width;
}
break;
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9': {
uintmax_t uwidth;
set_errno(0);
uwidth = malloc_strtoumax(f, (char **)&f, 10);
assert(uwidth != UINTMAX_MAX || get_errno() !=
ERANGE);
width = (int)uwidth;
break;
} default:
break;
}
/* Width/precision separator. */
if (*f == '.')
f++;
else
goto label_length;
/* Precision. */
switch (*f) {
case '*':
prec = va_arg(ap, int);
f++;
break;
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9': {
uintmax_t uprec;
set_errno(0);
uprec = malloc_strtoumax(f, (char **)&f, 10);
assert(uprec != UINTMAX_MAX || get_errno() !=
ERANGE);
prec = (int)uprec;
break;
}
default: break;
}
/* Length. */
label_length:
switch (*f) {
case 'l':
f++;
if (*f == 'l') {
len = 'q';
f++;
} else
len = 'l';
break;
case 'q': case 'j': case 't': case 'z':
len = *f;
f++;
break;
default: break;
}
/* Conversion specifier. */
switch (*f) {
case '%':
/* %% */
APPEND_C(*f);
f++;
break;
case 'd': case 'i': {
intmax_t val JEMALLOC_CC_SILENCE_INIT(0);
char buf[D2S_BUFSIZE];
GET_ARG_NUMERIC(val, len);
s = d2s(val, (plus_plus ? '+' : (plus_space ?
' ' : '-')), buf, &slen);
APPEND_PADDED_S(s, slen, width, left_justify);
f++;
break;
} case 'o': {
uintmax_t val JEMALLOC_CC_SILENCE_INIT(0);
char buf[O2S_BUFSIZE];
GET_ARG_NUMERIC(val, len | 0x80);
s = o2s(val, alt_form, buf, &slen);
APPEND_PADDED_S(s, slen, width, left_justify);
f++;
break;
} case 'u': {
uintmax_t val JEMALLOC_CC_SILENCE_INIT(0);
char buf[U2S_BUFSIZE];
GET_ARG_NUMERIC(val, len | 0x80);
s = u2s(val, 10, false, buf, &slen);
APPEND_PADDED_S(s, slen, width, left_justify);
f++;
break;
} case 'x': case 'X': {
uintmax_t val JEMALLOC_CC_SILENCE_INIT(0);
char buf[X2S_BUFSIZE];
GET_ARG_NUMERIC(val, len | 0x80);
s = x2s(val, alt_form, *f == 'X', buf, &slen);
APPEND_PADDED_S(s, slen, width, left_justify);
f++;
break;
} case 'c': {
unsigned char val;
char buf[2];
assert(len == '?' || len == 'l');
assert_not_implemented(len != 'l');
val = va_arg(ap, int);
buf[0] = val;
buf[1] = '\0';
APPEND_PADDED_S(buf, 1, width, left_justify);
f++;
break;
} case 's':
assert(len == '?' || len == 'l');
assert_not_implemented(len != 'l');
s = va_arg(ap, char *);
slen = (prec < 0) ? strlen(s) : (size_t)prec;
APPEND_PADDED_S(s, slen, width, left_justify);
f++;
break;
case 'p': {
uintmax_t val;
char buf[X2S_BUFSIZE];
GET_ARG_NUMERIC(val, 'p');
s = x2s(val, true, false, buf, &slen);
APPEND_PADDED_S(s, slen, width, left_justify);
f++;
break;
} default: not_reached();
}
break;
} default: {
APPEND_C(*f);
f++;
break;
}}
}
label_out:
if (i < size)
str[i] = '\0';
else
str[size - 1] = '\0';
#undef APPEND_C
#undef APPEND_S
#undef APPEND_PADDED_S
#undef GET_ARG_NUMERIC
return (i);
}
JEMALLOC_FORMAT_PRINTF(3, 4)
size_t
malloc_snprintf(char *str, size_t size, const char *format, ...)
{
size_t ret;
va_list ap;
va_start(ap, format);
ret = malloc_vsnprintf(str, size, format, ap);
va_end(ap);
return (ret);
}
void
malloc_vcprintf(void (*write_cb)(void *, const char *), void *cbopaque,
const char *format, va_list ap)
{
char buf[MALLOC_PRINTF_BUFSIZE];
if (write_cb == NULL) {
/*
* The caller did not provide an alternate write_cb callback
* function, so use the default one. malloc_write() is an
* inline function, so use malloc_message() directly here.
*/
write_cb = (je_malloc_message != NULL) ? je_malloc_message :
wrtmessage;
cbopaque = NULL;
}
malloc_vsnprintf(buf, sizeof(buf), format, ap);
write_cb(cbopaque, buf);
}
/*
* Print to a callback function in such a way as to (hopefully) avoid memory
* allocation.
*/
JEMALLOC_FORMAT_PRINTF(3, 4)
void
malloc_cprintf(void (*write_cb)(void *, const char *), void *cbopaque,
const char *format, ...)
{
va_list ap;
va_start(ap, format);
malloc_vcprintf(write_cb, cbopaque, format, ap);
va_end(ap);
}
/* Print to stderr in such a way as to avoid memory allocation. */
JEMALLOC_FORMAT_PRINTF(1, 2)
void
malloc_printf(const char *format, ...)
{
va_list ap;
va_start(ap, format);
malloc_vcprintf(NULL, NULL, format, ap);
va_end(ap);
}
/*
* Restore normal assertion macros, in order to make it possible to compile all
* C files as a single concatenation.
*/
#undef assert
#undef not_reached
#undef not_implemented
#include "jemalloc/internal/assert.h"
| 14,528 | 20.782609 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/src/zone.c | #include "jemalloc/internal/jemalloc_internal.h"
#ifndef JEMALLOC_ZONE
# error "This source file is for zones on Darwin (OS X)."
#endif
/*
* The malloc_default_purgeable_zone() function is only available on >= 10.6.
* We need to check whether it is present at runtime, thus the weak_import.
*/
extern malloc_zone_t *malloc_default_purgeable_zone(void)
JEMALLOC_ATTR(weak_import);
/******************************************************************************/
/* Data. */
static malloc_zone_t *default_zone, *purgeable_zone;
static malloc_zone_t jemalloc_zone;
static struct malloc_introspection_t jemalloc_zone_introspect;
/******************************************************************************/
/* Function prototypes for non-inline static functions. */
static size_t zone_size(malloc_zone_t *zone, void *ptr);
static void *zone_malloc(malloc_zone_t *zone, size_t size);
static void *zone_calloc(malloc_zone_t *zone, size_t num, size_t size);
static void *zone_valloc(malloc_zone_t *zone, size_t size);
static void zone_free(malloc_zone_t *zone, void *ptr);
static void *zone_realloc(malloc_zone_t *zone, void *ptr, size_t size);
#if (JEMALLOC_ZONE_VERSION >= 5)
static void *zone_memalign(malloc_zone_t *zone, size_t alignment,
#endif
#if (JEMALLOC_ZONE_VERSION >= 6)
size_t size);
static void zone_free_definite_size(malloc_zone_t *zone, void *ptr,
size_t size);
#endif
static void *zone_destroy(malloc_zone_t *zone);
static size_t zone_good_size(malloc_zone_t *zone, size_t size);
static void zone_force_lock(malloc_zone_t *zone);
static void zone_force_unlock(malloc_zone_t *zone);
/******************************************************************************/
/*
* Functions.
*/
static size_t
zone_size(malloc_zone_t *zone, void *ptr)
{
/*
* There appear to be places within Darwin (such as setenv(3)) that
* cause calls to this function with pointers that *no* zone owns. If
* we knew that all pointers were owned by *some* zone, we could split
* our zone into two parts, and use one as the default allocator and
* the other as the default deallocator/reallocator. Since that will
* not work in practice, we must check all pointers to assure that they
* reside within a mapped chunk before determining size.
*/
return (ivsalloc(tsdn_fetch(), ptr, config_prof));
}
static void *
zone_malloc(malloc_zone_t *zone, size_t size)
{
return (je_malloc(size));
}
static void *
zone_calloc(malloc_zone_t *zone, size_t num, size_t size)
{
return (je_calloc(num, size));
}
static void *
zone_valloc(malloc_zone_t *zone, size_t size)
{
void *ret = NULL; /* Assignment avoids useless compiler warning. */
je_posix_memalign(&ret, PAGE, size);
return (ret);
}
static void
zone_free(malloc_zone_t *zone, void *ptr)
{
if (ivsalloc(tsdn_fetch(), ptr, config_prof) != 0) {
je_free(ptr);
return;
}
free(ptr);
}
static void *
zone_realloc(malloc_zone_t *zone, void *ptr, size_t size)
{
if (ivsalloc(tsdn_fetch(), ptr, config_prof) != 0)
return (je_realloc(ptr, size));
return (realloc(ptr, size));
}
#if (JEMALLOC_ZONE_VERSION >= 5)
static void *
zone_memalign(malloc_zone_t *zone, size_t alignment, size_t size)
{
void *ret = NULL; /* Assignment avoids useless compiler warning. */
je_posix_memalign(&ret, alignment, size);
return (ret);
}
#endif
#if (JEMALLOC_ZONE_VERSION >= 6)
static void
zone_free_definite_size(malloc_zone_t *zone, void *ptr, size_t size)
{
size_t alloc_size;
alloc_size = ivsalloc(tsdn_fetch(), ptr, config_prof);
if (alloc_size != 0) {
assert(alloc_size == size);
je_free(ptr);
return;
}
free(ptr);
}
#endif
static void *
zone_destroy(malloc_zone_t *zone)
{
/* This function should never be called. */
not_reached();
return (NULL);
}
static size_t
zone_good_size(malloc_zone_t *zone, size_t size)
{
if (size == 0)
size = 1;
return (s2u(size));
}
static void
zone_force_lock(malloc_zone_t *zone)
{
if (isthreaded)
jemalloc_prefork();
}
static void
zone_force_unlock(malloc_zone_t *zone)
{
/*
* Call jemalloc_postfork_child() rather than
* jemalloc_postfork_parent(), because this function is executed by both
* parent and child. The parent can tolerate having state
* reinitialized, but the child cannot unlock mutexes that were locked
* by the parent.
*/
if (isthreaded)
jemalloc_postfork_child();
}
static void
zone_init(void)
{
jemalloc_zone.size = (void *)zone_size;
jemalloc_zone.malloc = (void *)zone_malloc;
jemalloc_zone.calloc = (void *)zone_calloc;
jemalloc_zone.valloc = (void *)zone_valloc;
jemalloc_zone.free = (void *)zone_free;
jemalloc_zone.realloc = (void *)zone_realloc;
jemalloc_zone.destroy = (void *)zone_destroy;
jemalloc_zone.zone_name = "jemalloc_zone";
jemalloc_zone.batch_malloc = NULL;
jemalloc_zone.batch_free = NULL;
jemalloc_zone.introspect = &jemalloc_zone_introspect;
jemalloc_zone.version = JEMALLOC_ZONE_VERSION;
#if (JEMALLOC_ZONE_VERSION >= 5)
jemalloc_zone.memalign = zone_memalign;
#endif
#if (JEMALLOC_ZONE_VERSION >= 6)
jemalloc_zone.free_definite_size = zone_free_definite_size;
#endif
#if (JEMALLOC_ZONE_VERSION >= 8)
jemalloc_zone.pressure_relief = NULL;
#endif
jemalloc_zone_introspect.enumerator = NULL;
jemalloc_zone_introspect.good_size = (void *)zone_good_size;
jemalloc_zone_introspect.check = NULL;
jemalloc_zone_introspect.print = NULL;
jemalloc_zone_introspect.log = NULL;
jemalloc_zone_introspect.force_lock = (void *)zone_force_lock;
jemalloc_zone_introspect.force_unlock = (void *)zone_force_unlock;
jemalloc_zone_introspect.statistics = NULL;
#if (JEMALLOC_ZONE_VERSION >= 6)
jemalloc_zone_introspect.zone_locked = NULL;
#endif
#if (JEMALLOC_ZONE_VERSION >= 7)
jemalloc_zone_introspect.enable_discharge_checking = NULL;
jemalloc_zone_introspect.disable_discharge_checking = NULL;
jemalloc_zone_introspect.discharge = NULL;
# ifdef __BLOCKS__
jemalloc_zone_introspect.enumerate_discharged_pointers = NULL;
# else
jemalloc_zone_introspect.enumerate_unavailable_without_blocks = NULL;
# endif
#endif
}
static malloc_zone_t *
zone_default_get(void)
{
malloc_zone_t **zones = NULL;
unsigned int num_zones = 0;
/*
* On OSX 10.12, malloc_default_zone returns a special zone that is not
* present in the list of registered zones. That zone uses a "lite zone"
* if one is present (apparently enabled when malloc stack logging is
* enabled), or the first registered zone otherwise. In practice this
* means unless malloc stack logging is enabled, the first registered
* zone is the default. So get the list of zones to get the first one,
* instead of relying on malloc_default_zone.
*/
if (KERN_SUCCESS != malloc_get_all_zones(0, NULL,
(vm_address_t**)&zones, &num_zones)) {
/*
* Reset the value in case the failure happened after it was
* set.
*/
num_zones = 0;
}
if (num_zones)
return (zones[0]);
return (malloc_default_zone());
}
/* As written, this function can only promote jemalloc_zone. */
static void
zone_promote(void)
{
malloc_zone_t *zone;
do {
/*
* Unregister and reregister the default zone. On OSX >= 10.6,
* unregistering takes the last registered zone and places it
* at the location of the specified zone. Unregistering the
* default zone thus makes the last registered one the default.
* On OSX < 10.6, unregistering shifts all registered zones.
* The first registered zone then becomes the default.
*/
malloc_zone_unregister(default_zone);
malloc_zone_register(default_zone);
/*
* On OSX 10.6, having the default purgeable zone appear before
* the default zone makes some things crash because it thinks it
* owns the default zone allocated pointers. We thus
* unregister/re-register it in order to ensure it's always
* after the default zone. On OSX < 10.6, there is no purgeable
* zone, so this does nothing. On OSX >= 10.6, unregistering
* replaces the purgeable zone with the last registered zone
* above, i.e. the default zone. Registering it again then puts
* it at the end, obviously after the default zone.
*/
if (purgeable_zone != NULL) {
malloc_zone_unregister(purgeable_zone);
malloc_zone_register(purgeable_zone);
}
zone = zone_default_get();
} while (zone != &jemalloc_zone);
}
JEMALLOC_ATTR(constructor)
void
zone_register(void)
{
/*
* If something else replaced the system default zone allocator, don't
* register jemalloc's.
*/
default_zone = zone_default_get();
if (!default_zone->zone_name || strcmp(default_zone->zone_name,
"DefaultMallocZone") != 0)
return;
/*
* The default purgeable zone is created lazily by OSX's libc. It uses
* the default zone when it is created for "small" allocations
* (< 15 KiB), but assumes the default zone is a scalable_zone. This
* obviously fails when the default zone is the jemalloc zone, so
* malloc_default_purgeable_zone() is called beforehand so that the
* default purgeable zone is created when the default zone is still
* a scalable_zone. As purgeable zones only exist on >= 10.6, we need
* to check for the existence of malloc_default_purgeable_zone() at
* run time.
*/
purgeable_zone = (malloc_default_purgeable_zone == NULL) ? NULL :
malloc_default_purgeable_zone();
/* Register the custom zone. At this point it won't be the default. */
zone_init();
malloc_zone_register(&jemalloc_zone);
/* Promote the custom zone to be default. */
zone_promote();
}
| 9,450 | 27.55287 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/src/bitmap.c | #define JEMALLOC_BITMAP_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
#ifdef USE_TREE
void
bitmap_info_init(bitmap_info_t *binfo, size_t nbits)
{
unsigned i;
size_t group_count;
assert(nbits > 0);
assert(nbits <= (ZU(1) << LG_BITMAP_MAXBITS));
/*
* Compute the number of groups necessary to store nbits bits, and
* progressively work upward through the levels until reaching a level
* that requires only one group.
*/
binfo->levels[0].group_offset = 0;
group_count = BITMAP_BITS2GROUPS(nbits);
for (i = 1; group_count > 1; i++) {
assert(i < BITMAP_MAX_LEVELS);
binfo->levels[i].group_offset = binfo->levels[i-1].group_offset
+ group_count;
group_count = BITMAP_BITS2GROUPS(group_count);
}
binfo->levels[i].group_offset = binfo->levels[i-1].group_offset
+ group_count;
assert(binfo->levels[i].group_offset <= BITMAP_GROUPS_MAX);
binfo->nlevels = i;
binfo->nbits = nbits;
}
static size_t
bitmap_info_ngroups(const bitmap_info_t *binfo)
{
return (binfo->levels[binfo->nlevels].group_offset);
}
void
bitmap_init(bitmap_t *bitmap, const bitmap_info_t *binfo)
{
size_t extra;
unsigned i;
/*
* Bits are actually inverted with regard to the external bitmap
* interface, so the bitmap starts out with all 1 bits, except for
* trailing unused bits (if any). Note that each group uses bit 0 to
* correspond to the first logical bit in the group, so extra bits
* are the most significant bits of the last group.
*/
memset(bitmap, 0xffU, bitmap_size(binfo));
extra = (BITMAP_GROUP_NBITS - (binfo->nbits & BITMAP_GROUP_NBITS_MASK))
& BITMAP_GROUP_NBITS_MASK;
if (extra != 0)
bitmap[binfo->levels[1].group_offset - 1] >>= extra;
for (i = 1; i < binfo->nlevels; i++) {
size_t group_count = binfo->levels[i].group_offset -
binfo->levels[i-1].group_offset;
extra = (BITMAP_GROUP_NBITS - (group_count &
BITMAP_GROUP_NBITS_MASK)) & BITMAP_GROUP_NBITS_MASK;
if (extra != 0)
bitmap[binfo->levels[i+1].group_offset - 1] >>= extra;
}
}
#else /* USE_TREE */
void
bitmap_info_init(bitmap_info_t *binfo, size_t nbits)
{
assert(nbits > 0);
assert(nbits <= (ZU(1) << LG_BITMAP_MAXBITS));
binfo->ngroups = BITMAP_BITS2GROUPS(nbits);
binfo->nbits = nbits;
}
static size_t
bitmap_info_ngroups(const bitmap_info_t *binfo)
{
return (binfo->ngroups);
}
void
bitmap_init(bitmap_t *bitmap, const bitmap_info_t *binfo)
{
size_t extra;
memset(bitmap, 0xffU, bitmap_size(binfo));
extra = (BITMAP_GROUP_NBITS - (binfo->nbits & BITMAP_GROUP_NBITS_MASK))
& BITMAP_GROUP_NBITS_MASK;
if (extra != 0)
bitmap[binfo->ngroups - 1] >>= extra;
}
#endif /* USE_TREE */
size_t
bitmap_size(const bitmap_info_t *binfo)
{
return (bitmap_info_ngroups(binfo) << LG_SIZEOF_BITMAP);
}
| 2,837 | 24.339286 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/src/ckh.c | /*
*******************************************************************************
* Implementation of (2^1+,2) cuckoo hashing, where 2^1+ indicates that each
* hash bucket contains 2^n cells, for n >= 1, and 2 indicates that two hash
* functions are employed. The original cuckoo hashing algorithm was described
* in:
*
* Pagh, R., F.F. Rodler (2004) Cuckoo Hashing. Journal of Algorithms
* 51(2):122-144.
*
* Generalization of cuckoo hashing was discussed in:
*
* Erlingsson, U., M. Manasse, F. McSherry (2006) A cool and practical
* alternative to traditional hash tables. In Proceedings of the 7th
* Workshop on Distributed Data and Structures (WDAS'06), Santa Clara, CA,
* January 2006.
*
* This implementation uses precisely two hash functions because that is the
* fewest that can work, and supporting multiple hashes is an implementation
* burden. Here is a reproduction of Figure 1 from Erlingsson et al. (2006)
* that shows approximate expected maximum load factors for various
* configurations:
*
* | #cells/bucket |
* #hashes | 1 | 2 | 4 | 8 |
* --------+-------+-------+-------+-------+
* 1 | 0.006 | 0.006 | 0.03 | 0.12 |
* 2 | 0.49 | 0.86 |>0.93< |>0.96< |
* 3 | 0.91 | 0.97 | 0.98 | 0.999 |
* 4 | 0.97 | 0.99 | 0.999 | |
*
* The number of cells per bucket is chosen such that a bucket fits in one cache
* line. So, on 32- and 64-bit systems, we use (8,2) and (4,2) cuckoo hashing,
* respectively.
*
******************************************************************************/
#define JEMALLOC_CKH_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Function prototypes for non-inline static functions. */
static bool ckh_grow(tsd_t *tsd, ckh_t *ckh);
static void ckh_shrink(tsd_t *tsd, ckh_t *ckh);
/******************************************************************************/
/*
* Search bucket for key and return the cell number if found; SIZE_T_MAX
* otherwise.
*/
JEMALLOC_INLINE_C size_t
ckh_bucket_search(ckh_t *ckh, size_t bucket, const void *key)
{
ckhc_t *cell;
unsigned i;
for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) {
cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i];
if (cell->key != NULL && ckh->keycomp(key, cell->key))
return ((bucket << LG_CKH_BUCKET_CELLS) + i);
}
return (SIZE_T_MAX);
}
/*
* Search table for key and return cell number if found; SIZE_T_MAX otherwise.
*/
JEMALLOC_INLINE_C size_t
ckh_isearch(ckh_t *ckh, const void *key)
{
size_t hashes[2], bucket, cell;
assert(ckh != NULL);
ckh->hash(key, hashes);
/* Search primary bucket. */
bucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets) - 1);
cell = ckh_bucket_search(ckh, bucket, key);
if (cell != SIZE_T_MAX)
return (cell);
/* Search secondary bucket. */
bucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1);
cell = ckh_bucket_search(ckh, bucket, key);
return (cell);
}
JEMALLOC_INLINE_C bool
ckh_try_bucket_insert(ckh_t *ckh, size_t bucket, const void *key,
const void *data)
{
ckhc_t *cell;
unsigned offset, i;
/*
* Cycle through the cells in the bucket, starting at a random position.
* The randomness avoids worst-case search overhead as buckets fill up.
*/
offset = (unsigned)prng_lg_range_u64(&ckh->prng_state,
LG_CKH_BUCKET_CELLS);
for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) {
cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) +
((i + offset) & ((ZU(1) << LG_CKH_BUCKET_CELLS) - 1))];
if (cell->key == NULL) {
cell->key = key;
cell->data = data;
ckh->count++;
return (false);
}
}
return (true);
}
/*
* No space is available in bucket. Randomly evict an item, then try to find an
* alternate location for that item. Iteratively repeat this
* eviction/relocation procedure until either success or detection of an
* eviction/relocation bucket cycle.
*/
JEMALLOC_INLINE_C bool
ckh_evict_reloc_insert(ckh_t *ckh, size_t argbucket, void const **argkey,
void const **argdata)
{
const void *key, *data, *tkey, *tdata;
ckhc_t *cell;
size_t hashes[2], bucket, tbucket;
unsigned i;
bucket = argbucket;
key = *argkey;
data = *argdata;
while (true) {
/*
* Choose a random item within the bucket to evict. This is
* critical to correct function, because without (eventually)
* evicting all items within a bucket during iteration, it
* would be possible to get stuck in an infinite loop if there
* were an item for which both hashes indicated the same
* bucket.
*/
i = (unsigned)prng_lg_range_u64(&ckh->prng_state,
LG_CKH_BUCKET_CELLS);
cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i];
assert(cell->key != NULL);
/* Swap cell->{key,data} and {key,data} (evict). */
tkey = cell->key; tdata = cell->data;
cell->key = key; cell->data = data;
key = tkey; data = tdata;
#ifdef CKH_COUNT
ckh->nrelocs++;
#endif
/* Find the alternate bucket for the evicted item. */
ckh->hash(key, hashes);
tbucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1);
if (tbucket == bucket) {
tbucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets)
- 1);
/*
* It may be that (tbucket == bucket) still, if the
* item's hashes both indicate this bucket. However,
* we are guaranteed to eventually escape this bucket
* during iteration, assuming pseudo-random item
* selection (true randomness would make infinite
* looping a remote possibility). The reason we can
* never get trapped forever is that there are two
* cases:
*
* 1) This bucket == argbucket, so we will quickly
* detect an eviction cycle and terminate.
* 2) An item was evicted to this bucket from another,
* which means that at least one item in this bucket
* has hashes that indicate distinct buckets.
*/
}
/* Check for a cycle. */
if (tbucket == argbucket) {
*argkey = key;
*argdata = data;
return (true);
}
bucket = tbucket;
if (!ckh_try_bucket_insert(ckh, bucket, key, data))
return (false);
}
}
JEMALLOC_INLINE_C bool
ckh_try_insert(ckh_t *ckh, void const**argkey, void const**argdata)
{
size_t hashes[2], bucket;
const void *key = *argkey;
const void *data = *argdata;
ckh->hash(key, hashes);
/* Try to insert in primary bucket. */
bucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets) - 1);
if (!ckh_try_bucket_insert(ckh, bucket, key, data))
return (false);
/* Try to insert in secondary bucket. */
bucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1);
if (!ckh_try_bucket_insert(ckh, bucket, key, data))
return (false);
/*
* Try to find a place for this item via iterative eviction/relocation.
*/
return (ckh_evict_reloc_insert(ckh, bucket, argkey, argdata));
}
/*
* Try to rebuild the hash table from scratch by inserting all items from the
* old table into the new.
*/
JEMALLOC_INLINE_C bool
ckh_rebuild(ckh_t *ckh, ckhc_t *aTab)
{
size_t count, i, nins;
const void *key, *data;
count = ckh->count;
ckh->count = 0;
for (i = nins = 0; nins < count; i++) {
if (aTab[i].key != NULL) {
key = aTab[i].key;
data = aTab[i].data;
if (ckh_try_insert(ckh, &key, &data)) {
ckh->count = count;
return (true);
}
nins++;
}
}
return (false);
}
static bool
ckh_grow(tsd_t *tsd, ckh_t *ckh)
{
bool ret;
ckhc_t *tab, *ttab;
unsigned lg_prevbuckets, lg_curcells;
#ifdef CKH_COUNT
ckh->ngrows++;
#endif
/*
* It is possible (though unlikely, given well behaved hashes) that the
* table will have to be doubled more than once in order to create a
* usable table.
*/
lg_prevbuckets = ckh->lg_curbuckets;
lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS;
while (true) {
size_t usize;
lg_curcells++;
usize = sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE);
if (unlikely(usize == 0 || usize > HUGE_MAXCLASS)) {
ret = true;
goto label_return;
}
tab = (ckhc_t *)ipallocztm(tsd_tsdn(tsd), usize, CACHELINE,
true, NULL, true, arena_ichoose(tsd, NULL));
if (tab == NULL) {
ret = true;
goto label_return;
}
/* Swap in new table. */
ttab = ckh->tab;
ckh->tab = tab;
tab = ttab;
ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS;
if (!ckh_rebuild(ckh, tab)) {
idalloctm(tsd_tsdn(tsd), tab, NULL, true, true);
break;
}
/* Rebuilding failed, so back out partially rebuilt table. */
idalloctm(tsd_tsdn(tsd), ckh->tab, NULL, true, true);
ckh->tab = tab;
ckh->lg_curbuckets = lg_prevbuckets;
}
ret = false;
label_return:
return (ret);
}
static void
ckh_shrink(tsd_t *tsd, ckh_t *ckh)
{
ckhc_t *tab, *ttab;
size_t usize;
unsigned lg_prevbuckets, lg_curcells;
/*
* It is possible (though unlikely, given well behaved hashes) that the
* table rebuild will fail.
*/
lg_prevbuckets = ckh->lg_curbuckets;
lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS - 1;
usize = sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE);
if (unlikely(usize == 0 || usize > HUGE_MAXCLASS))
return;
tab = (ckhc_t *)ipallocztm(tsd_tsdn(tsd), usize, CACHELINE, true, NULL,
true, arena_ichoose(tsd, NULL));
if (tab == NULL) {
/*
* An OOM error isn't worth propagating, since it doesn't
* prevent this or future operations from proceeding.
*/
return;
}
/* Swap in new table. */
ttab = ckh->tab;
ckh->tab = tab;
tab = ttab;
ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS;
if (!ckh_rebuild(ckh, tab)) {
idalloctm(tsd_tsdn(tsd), tab, NULL, true, true);
#ifdef CKH_COUNT
ckh->nshrinks++;
#endif
return;
}
/* Rebuilding failed, so back out partially rebuilt table. */
idalloctm(tsd_tsdn(tsd), ckh->tab, NULL, true, true);
ckh->tab = tab;
ckh->lg_curbuckets = lg_prevbuckets;
#ifdef CKH_COUNT
ckh->nshrinkfails++;
#endif
}
bool
ckh_new(tsd_t *tsd, ckh_t *ckh, size_t minitems, ckh_hash_t *hash,
ckh_keycomp_t *keycomp)
{
bool ret;
size_t mincells, usize;
unsigned lg_mincells;
assert(minitems > 0);
assert(hash != NULL);
assert(keycomp != NULL);
#ifdef CKH_COUNT
ckh->ngrows = 0;
ckh->nshrinks = 0;
ckh->nshrinkfails = 0;
ckh->ninserts = 0;
ckh->nrelocs = 0;
#endif
ckh->prng_state = 42; /* Value doesn't really matter. */
ckh->count = 0;
/*
* Find the minimum power of 2 that is large enough to fit minitems
* entries. We are using (2+,2) cuckoo hashing, which has an expected
* maximum load factor of at least ~0.86, so 0.75 is a conservative load
* factor that will typically allow mincells items to fit without ever
* growing the table.
*/
assert(LG_CKH_BUCKET_CELLS > 0);
mincells = ((minitems + (3 - (minitems % 3))) / 3) << 2;
for (lg_mincells = LG_CKH_BUCKET_CELLS;
(ZU(1) << lg_mincells) < mincells;
lg_mincells++)
; /* Do nothing. */
ckh->lg_minbuckets = lg_mincells - LG_CKH_BUCKET_CELLS;
ckh->lg_curbuckets = lg_mincells - LG_CKH_BUCKET_CELLS;
ckh->hash = hash;
ckh->keycomp = keycomp;
usize = sa2u(sizeof(ckhc_t) << lg_mincells, CACHELINE);
if (unlikely(usize == 0 || usize > HUGE_MAXCLASS)) {
ret = true;
goto label_return;
}
ckh->tab = (ckhc_t *)ipallocztm(tsd_tsdn(tsd), usize, CACHELINE, true,
NULL, true, arena_ichoose(tsd, NULL));
if (ckh->tab == NULL) {
ret = true;
goto label_return;
}
ret = false;
label_return:
return (ret);
}
void
ckh_delete(tsd_t *tsd, ckh_t *ckh)
{
assert(ckh != NULL);
#ifdef CKH_VERBOSE
malloc_printf(
"%s(%p): ngrows: %"FMTu64", nshrinks: %"FMTu64","
" nshrinkfails: %"FMTu64", ninserts: %"FMTu64","
" nrelocs: %"FMTu64"\n", __func__, ckh,
(unsigned long long)ckh->ngrows,
(unsigned long long)ckh->nshrinks,
(unsigned long long)ckh->nshrinkfails,
(unsigned long long)ckh->ninserts,
(unsigned long long)ckh->nrelocs);
#endif
idalloctm(tsd_tsdn(tsd), ckh->tab, NULL, true, true);
if (config_debug)
memset(ckh, JEMALLOC_FREE_JUNK, sizeof(ckh_t));
}
size_t
ckh_count(ckh_t *ckh)
{
assert(ckh != NULL);
return (ckh->count);
}
bool
ckh_iter(ckh_t *ckh, size_t *tabind, void **key, void **data)
{
size_t i, ncells;
for (i = *tabind, ncells = (ZU(1) << (ckh->lg_curbuckets +
LG_CKH_BUCKET_CELLS)); i < ncells; i++) {
if (ckh->tab[i].key != NULL) {
if (key != NULL)
*key = (void *)ckh->tab[i].key;
if (data != NULL)
*data = (void *)ckh->tab[i].data;
*tabind = i + 1;
return (false);
}
}
return (true);
}
bool
ckh_insert(tsd_t *tsd, ckh_t *ckh, const void *key, const void *data)
{
bool ret;
assert(ckh != NULL);
assert(ckh_search(ckh, key, NULL, NULL));
#ifdef CKH_COUNT
ckh->ninserts++;
#endif
while (ckh_try_insert(ckh, &key, &data)) {
if (ckh_grow(tsd, ckh)) {
ret = true;
goto label_return;
}
}
ret = false;
label_return:
return (ret);
}
bool
ckh_remove(tsd_t *tsd, ckh_t *ckh, const void *searchkey, void **key,
void **data)
{
size_t cell;
assert(ckh != NULL);
cell = ckh_isearch(ckh, searchkey);
if (cell != SIZE_T_MAX) {
if (key != NULL)
*key = (void *)ckh->tab[cell].key;
if (data != NULL)
*data = (void *)ckh->tab[cell].data;
ckh->tab[cell].key = NULL;
ckh->tab[cell].data = NULL; /* Not necessary. */
ckh->count--;
/* Try to halve the table if it is less than 1/4 full. */
if (ckh->count < (ZU(1) << (ckh->lg_curbuckets
+ LG_CKH_BUCKET_CELLS - 2)) && ckh->lg_curbuckets
> ckh->lg_minbuckets) {
/* Ignore error due to OOM. */
ckh_shrink(tsd, ckh);
}
return (false);
}
return (true);
}
bool
ckh_search(ckh_t *ckh, const void *searchkey, void **key, void **data)
{
size_t cell;
assert(ckh != NULL);
cell = ckh_isearch(ckh, searchkey);
if (cell != SIZE_T_MAX) {
if (key != NULL)
*key = (void *)ckh->tab[cell].key;
if (data != NULL)
*data = (void *)ckh->tab[cell].data;
return (false);
}
return (true);
}
void
ckh_string_hash(const void *key, size_t r_hash[2])
{
hash(key, strlen((const char *)key), 0x94122f33U, r_hash);
}
bool
ckh_string_keycomp(const void *k1, const void *k2)
{
assert(k1 != NULL);
assert(k2 != NULL);
return (strcmp((char *)k1, (char *)k2) ? false : true);
}
void
ckh_pointer_hash(const void *key, size_t r_hash[2])
{
union {
const void *v;
size_t i;
} u;
assert(sizeof(u.v) == sizeof(u.i));
u.v = key;
hash(&u.i, sizeof(u.i), 0xd983396eU, r_hash);
}
bool
ckh_pointer_keycomp(const void *k1, const void *k2)
{
return ((k1 == k2) ? true : false);
}
| 14,460 | 24.370175 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/src/extent.c | #define JEMALLOC_EXTENT_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/*
* Round down to the nearest chunk size that can actually be requested during
* normal huge allocation.
*/
JEMALLOC_INLINE_C size_t
extent_quantize(size_t size)
{
size_t ret;
szind_t ind;
assert(size > 0);
ind = size2index(size + 1);
if (ind == 0) {
/* Avoid underflow. */
return (index2size(0));
}
ret = index2size(ind - 1);
assert(ret <= size);
return (ret);
}
JEMALLOC_INLINE_C int
extent_sz_comp(const extent_node_t *a, const extent_node_t *b)
{
size_t a_qsize = extent_quantize(extent_node_size_get(a));
size_t b_qsize = extent_quantize(extent_node_size_get(b));
return ((a_qsize > b_qsize) - (a_qsize < b_qsize));
}
JEMALLOC_INLINE_C int
extent_sn_comp(const extent_node_t *a, const extent_node_t *b)
{
size_t a_sn = extent_node_sn_get(a);
size_t b_sn = extent_node_sn_get(b);
return ((a_sn > b_sn) - (a_sn < b_sn));
}
JEMALLOC_INLINE_C int
extent_ad_comp(const extent_node_t *a, const extent_node_t *b)
{
uintptr_t a_addr = (uintptr_t)extent_node_addr_get(a);
uintptr_t b_addr = (uintptr_t)extent_node_addr_get(b);
return ((a_addr > b_addr) - (a_addr < b_addr));
}
JEMALLOC_INLINE_C int
extent_szsnad_comp(const extent_node_t *a, const extent_node_t *b)
{
int ret;
ret = extent_sz_comp(a, b);
if (ret != 0)
return (ret);
ret = extent_sn_comp(a, b);
if (ret != 0)
return (ret);
ret = extent_ad_comp(a, b);
return (ret);
}
/* Generate red-black tree functions. */
rb_gen(, extent_tree_szsnad_, extent_tree_t, extent_node_t, szsnad_link,
extent_szsnad_comp)
/* Generate red-black tree functions. */
rb_gen(, extent_tree_ad_, extent_tree_t, extent_node_t, ad_link, extent_ad_comp)
| 1,799 | 22.076923 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/src/base.c | #define JEMALLOC_BASE_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Data. */
static malloc_mutex_t base_mtx;
static size_t base_extent_sn_next;
static extent_tree_t base_avail_szsnad;
static extent_node_t *base_nodes;
static size_t base_allocated;
static size_t base_resident;
static size_t base_mapped;
/******************************************************************************/
static extent_node_t *
base_node_try_alloc(tsdn_t *tsdn)
{
extent_node_t *node;
malloc_mutex_assert_owner(tsdn, &base_mtx);
if (base_nodes == NULL)
return (NULL);
node = base_nodes;
base_nodes = *(extent_node_t **)node;
JEMALLOC_VALGRIND_MAKE_MEM_UNDEFINED(node, sizeof(extent_node_t));
return (node);
}
static void
base_node_dalloc(tsdn_t *tsdn, extent_node_t *node)
{
malloc_mutex_assert_owner(tsdn, &base_mtx);
JEMALLOC_VALGRIND_MAKE_MEM_UNDEFINED(node, sizeof(extent_node_t));
*(extent_node_t **)node = base_nodes;
base_nodes = node;
}
static void
base_extent_node_init(extent_node_t *node, void *addr, size_t size)
{
size_t sn = atomic_add_z(&base_extent_sn_next, 1) - 1;
extent_node_init(node, NULL, addr, size, sn, true, true);
}
static extent_node_t *
base_chunk_alloc(tsdn_t *tsdn, size_t minsize)
{
extent_node_t *node;
size_t csize, nsize;
void *addr;
malloc_mutex_assert_owner(tsdn, &base_mtx);
assert(minsize != 0);
node = base_node_try_alloc(tsdn);
/* Allocate enough space to also carve a node out if necessary. */
nsize = (node == NULL) ? CACHELINE_CEILING(sizeof(extent_node_t)) : 0;
csize = CHUNK_CEILING(minsize + nsize);
addr = chunk_alloc_base(csize);
if (addr == NULL) {
if (node != NULL)
base_node_dalloc(tsdn, node);
return (NULL);
}
base_mapped += csize;
if (node == NULL) {
node = (extent_node_t *)addr;
addr = (void *)((uintptr_t)addr + nsize);
csize -= nsize;
if (config_stats) {
base_allocated += nsize;
base_resident += PAGE_CEILING(nsize);
}
}
base_extent_node_init(node, addr, csize);
return (node);
}
/*
* base_alloc() guarantees demand-zeroed memory, in order to make multi-page
* sparse data structures such as radix tree nodes efficient with respect to
* physical memory usage.
*/
void *
base_alloc(tsdn_t *tsdn, size_t size)
{
void *ret;
size_t csize, usize;
extent_node_t *node;
extent_node_t key;
/*
* Round size up to nearest multiple of the cacheline size, so that
* there is no chance of false cache line sharing.
*/
csize = CACHELINE_CEILING(size);
usize = s2u(csize);
extent_node_init(&key, NULL, NULL, usize, 0, false, false);
malloc_mutex_lock(tsdn, &base_mtx);
node = extent_tree_szsnad_nsearch(&base_avail_szsnad, &key);
if (node != NULL) {
/* Use existing space. */
extent_tree_szsnad_remove(&base_avail_szsnad, node);
} else {
/* Try to allocate more space. */
node = base_chunk_alloc(tsdn, csize);
}
if (node == NULL) {
ret = NULL;
goto label_return;
}
ret = extent_node_addr_get(node);
if (extent_node_size_get(node) > csize) {
extent_node_addr_set(node, (void *)((uintptr_t)ret + csize));
extent_node_size_set(node, extent_node_size_get(node) - csize);
extent_tree_szsnad_insert(&base_avail_szsnad, node);
} else
base_node_dalloc(tsdn, node);
if (config_stats) {
base_allocated += csize;
/*
* Add one PAGE to base_resident for every page boundary that is
* crossed by the new allocation.
*/
base_resident += PAGE_CEILING((uintptr_t)ret + csize) -
PAGE_CEILING((uintptr_t)ret);
}
JEMALLOC_VALGRIND_MAKE_MEM_DEFINED(ret, csize);
label_return:
malloc_mutex_unlock(tsdn, &base_mtx);
return (ret);
}
void
base_stats_get(tsdn_t *tsdn, size_t *allocated, size_t *resident,
size_t *mapped)
{
malloc_mutex_lock(tsdn, &base_mtx);
assert(base_allocated <= base_resident);
assert(base_resident <= base_mapped);
*allocated = base_allocated;
*resident = base_resident;
*mapped = base_mapped;
malloc_mutex_unlock(tsdn, &base_mtx);
}
bool
base_boot(void)
{
if (malloc_mutex_init(&base_mtx, "base", WITNESS_RANK_BASE))
return (true);
base_extent_sn_next = 0;
extent_tree_szsnad_new(&base_avail_szsnad);
base_nodes = NULL;
return (false);
}
void
base_prefork(tsdn_t *tsdn)
{
malloc_mutex_prefork(tsdn, &base_mtx);
}
void
base_postfork_parent(tsdn_t *tsdn)
{
malloc_mutex_postfork_parent(tsdn, &base_mtx);
}
void
base_postfork_child(tsdn_t *tsdn)
{
malloc_mutex_postfork_child(tsdn, &base_mtx);
}
| 4,488 | 22.87766 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/src/rtree.c | #define JEMALLOC_RTREE_C_
#include "jemalloc/internal/jemalloc_internal.h"
static unsigned
hmin(unsigned ha, unsigned hb)
{
return (ha < hb ? ha : hb);
}
/* Only the most significant bits of keys passed to rtree_[gs]et() are used. */
bool
rtree_new(rtree_t *rtree, unsigned bits, rtree_node_alloc_t *alloc,
rtree_node_dalloc_t *dalloc)
{
unsigned bits_in_leaf, height, i;
assert(RTREE_HEIGHT_MAX == ((ZU(1) << (LG_SIZEOF_PTR+3)) /
RTREE_BITS_PER_LEVEL));
assert(bits > 0 && bits <= (sizeof(uintptr_t) << 3));
bits_in_leaf = (bits % RTREE_BITS_PER_LEVEL) == 0 ? RTREE_BITS_PER_LEVEL
: (bits % RTREE_BITS_PER_LEVEL);
if (bits > bits_in_leaf) {
height = 1 + (bits - bits_in_leaf) / RTREE_BITS_PER_LEVEL;
if ((height-1) * RTREE_BITS_PER_LEVEL + bits_in_leaf != bits)
height++;
} else
height = 1;
assert((height-1) * RTREE_BITS_PER_LEVEL + bits_in_leaf == bits);
rtree->alloc = alloc;
rtree->dalloc = dalloc;
rtree->height = height;
/* Root level. */
rtree->levels[0].subtree = NULL;
rtree->levels[0].bits = (height > 1) ? RTREE_BITS_PER_LEVEL :
bits_in_leaf;
rtree->levels[0].cumbits = rtree->levels[0].bits;
/* Interior levels. */
for (i = 1; i < height-1; i++) {
rtree->levels[i].subtree = NULL;
rtree->levels[i].bits = RTREE_BITS_PER_LEVEL;
rtree->levels[i].cumbits = rtree->levels[i-1].cumbits +
RTREE_BITS_PER_LEVEL;
}
/* Leaf level. */
if (height > 1) {
rtree->levels[height-1].subtree = NULL;
rtree->levels[height-1].bits = bits_in_leaf;
rtree->levels[height-1].cumbits = bits;
}
/* Compute lookup table to be used by rtree_start_level(). */
for (i = 0; i < RTREE_HEIGHT_MAX; i++) {
rtree->start_level[i] = hmin(RTREE_HEIGHT_MAX - 1 - i, height -
1);
}
return (false);
}
static void
rtree_delete_subtree(rtree_t *rtree, rtree_node_elm_t *node, unsigned level)
{
if (level + 1 < rtree->height) {
size_t nchildren, i;
nchildren = ZU(1) << rtree->levels[level].bits;
for (i = 0; i < nchildren; i++) {
rtree_node_elm_t *child = node[i].child;
if (child != NULL)
rtree_delete_subtree(rtree, child, level + 1);
}
}
rtree->dalloc(node);
}
void
rtree_delete(rtree_t *rtree)
{
unsigned i;
for (i = 0; i < rtree->height; i++) {
rtree_node_elm_t *subtree = rtree->levels[i].subtree;
if (subtree != NULL)
rtree_delete_subtree(rtree, subtree, i);
}
}
static rtree_node_elm_t *
rtree_node_init(rtree_t *rtree, unsigned level, rtree_node_elm_t **elmp)
{
rtree_node_elm_t *node;
if (atomic_cas_p((void **)elmp, NULL, RTREE_NODE_INITIALIZING)) {
spin_t spinner;
/*
* Another thread is already in the process of initializing.
* Spin-wait until initialization is complete.
*/
spin_init(&spinner);
do {
spin_adaptive(&spinner);
node = atomic_read_p((void **)elmp);
} while (node == RTREE_NODE_INITIALIZING);
} else {
node = rtree->alloc(ZU(1) << rtree->levels[level].bits);
if (node == NULL)
return (NULL);
atomic_write_p((void **)elmp, node);
}
return (node);
}
rtree_node_elm_t *
rtree_subtree_read_hard(rtree_t *rtree, unsigned level)
{
return (rtree_node_init(rtree, level, &rtree->levels[level].subtree));
}
rtree_node_elm_t *
rtree_child_read_hard(rtree_t *rtree, rtree_node_elm_t *elm, unsigned level)
{
return (rtree_node_init(rtree, level+1, &elm->child));
}
| 3,324 | 24 | 79 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/src/huge.c | #define JEMALLOC_HUGE_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
static extent_node_t *
huge_node_get(const void *ptr)
{
extent_node_t *node;
node = chunk_lookup(ptr, true);
assert(!extent_node_achunk_get(node));
return (node);
}
static bool
huge_node_set(tsdn_t *tsdn, const void *ptr, extent_node_t *node)
{
assert(extent_node_addr_get(node) == ptr);
assert(!extent_node_achunk_get(node));
return (chunk_register(tsdn, ptr, node));
}
static void
huge_node_reset(tsdn_t *tsdn, const void *ptr, extent_node_t *node)
{
bool err;
err = huge_node_set(tsdn, ptr, node);
assert(!err);
}
static void
huge_node_unset(const void *ptr, const extent_node_t *node)
{
chunk_deregister(ptr, node);
}
void *
huge_malloc(tsdn_t *tsdn, arena_t *arena, size_t usize, bool zero)
{
assert(usize == s2u(usize));
return (huge_palloc(tsdn, arena, usize, chunksize, zero));
}
void *
huge_palloc(tsdn_t *tsdn, arena_t *arena, size_t usize, size_t alignment,
bool zero)
{
void *ret;
size_t ausize;
arena_t *iarena;
extent_node_t *node;
size_t sn;
bool is_zeroed;
/* Allocate one or more contiguous chunks for this request. */
assert(!tsdn_null(tsdn) || arena != NULL);
ausize = sa2u(usize, alignment);
if (unlikely(ausize == 0 || ausize > HUGE_MAXCLASS))
return (NULL);
assert(ausize >= chunksize);
/* Allocate an extent node with which to track the chunk. */
iarena = (!tsdn_null(tsdn)) ? arena_ichoose(tsdn_tsd(tsdn), NULL) :
a0get();
node = ipallocztm(tsdn, CACHELINE_CEILING(sizeof(extent_node_t)),
CACHELINE, false, NULL, true, iarena);
if (node == NULL)
return (NULL);
/*
* Copy zero into is_zeroed and pass the copy to chunk_alloc(), so that
* it is possible to make correct junk/zero fill decisions below.
*/
is_zeroed = zero;
if (likely(!tsdn_null(tsdn)))
arena = arena_choose(tsdn_tsd(tsdn), arena);
if (unlikely(arena == NULL) || (ret = arena_chunk_alloc_huge(tsdn,
arena, usize, alignment, &sn, &is_zeroed)) == NULL) {
idalloctm(tsdn, node, NULL, true, true);
return (NULL);
}
extent_node_init(node, arena, ret, usize, sn, is_zeroed, true);
if (huge_node_set(tsdn, ret, node)) {
arena_chunk_dalloc_huge(tsdn, arena, ret, usize, sn);
idalloctm(tsdn, node, NULL, true, true);
return (NULL);
}
/* Insert node into huge. */
malloc_mutex_lock(tsdn, &arena->huge_mtx);
ql_elm_new(node, ql_link);
ql_tail_insert(&arena->huge, node, ql_link);
malloc_mutex_unlock(tsdn, &arena->huge_mtx);
if (zero || (config_fill && unlikely(opt_zero))) {
if (!is_zeroed)
memset(ret, 0, usize);
} else if (config_fill && unlikely(opt_junk_alloc))
memset(ret, JEMALLOC_ALLOC_JUNK, usize);
arena_decay_tick(tsdn, arena);
return (ret);
}
#ifdef JEMALLOC_JET
#undef huge_dalloc_junk
#define huge_dalloc_junk JEMALLOC_N(huge_dalloc_junk_impl)
#endif
static void
huge_dalloc_junk(void *ptr, size_t usize)
{
if (config_fill && have_dss && unlikely(opt_junk_free)) {
/*
* Only bother junk filling if the chunk isn't about to be
* unmapped.
*/
if (!config_munmap || (have_dss && chunk_in_dss(ptr)))
memset(ptr, JEMALLOC_FREE_JUNK, usize);
}
}
#ifdef JEMALLOC_JET
#undef huge_dalloc_junk
#define huge_dalloc_junk JEMALLOC_N(huge_dalloc_junk)
huge_dalloc_junk_t *huge_dalloc_junk = JEMALLOC_N(huge_dalloc_junk_impl);
#endif
static void
huge_ralloc_no_move_similar(tsdn_t *tsdn, void *ptr, size_t oldsize,
size_t usize_min, size_t usize_max, bool zero)
{
size_t usize, usize_next;
extent_node_t *node;
arena_t *arena;
chunk_hooks_t chunk_hooks = CHUNK_HOOKS_INITIALIZER;
bool pre_zeroed, post_zeroed;
/* Increase usize to incorporate extra. */
for (usize = usize_min; usize < usize_max && (usize_next = s2u(usize+1))
<= oldsize; usize = usize_next)
; /* Do nothing. */
if (oldsize == usize)
return;
node = huge_node_get(ptr);
arena = extent_node_arena_get(node);
pre_zeroed = extent_node_zeroed_get(node);
/* Fill if necessary (shrinking). */
if (oldsize > usize) {
size_t sdiff = oldsize - usize;
if (config_fill && unlikely(opt_junk_free)) {
memset((void *)((uintptr_t)ptr + usize),
JEMALLOC_FREE_JUNK, sdiff);
post_zeroed = false;
} else {
post_zeroed = !chunk_purge_wrapper(tsdn, arena,
&chunk_hooks, ptr, CHUNK_CEILING(oldsize), usize,
sdiff);
}
} else
post_zeroed = pre_zeroed;
malloc_mutex_lock(tsdn, &arena->huge_mtx);
/* Update the size of the huge allocation. */
huge_node_unset(ptr, node);
assert(extent_node_size_get(node) != usize);
extent_node_size_set(node, usize);
huge_node_reset(tsdn, ptr, node);
/* Update zeroed. */
extent_node_zeroed_set(node, post_zeroed);
malloc_mutex_unlock(tsdn, &arena->huge_mtx);
arena_chunk_ralloc_huge_similar(tsdn, arena, ptr, oldsize, usize);
/* Fill if necessary (growing). */
if (oldsize < usize) {
if (zero || (config_fill && unlikely(opt_zero))) {
if (!pre_zeroed) {
memset((void *)((uintptr_t)ptr + oldsize), 0,
usize - oldsize);
}
} else if (config_fill && unlikely(opt_junk_alloc)) {
memset((void *)((uintptr_t)ptr + oldsize),
JEMALLOC_ALLOC_JUNK, usize - oldsize);
}
}
}
static bool
huge_ralloc_no_move_shrink(tsdn_t *tsdn, void *ptr, size_t oldsize,
size_t usize)
{
extent_node_t *node;
arena_t *arena;
chunk_hooks_t chunk_hooks;
size_t cdiff;
bool pre_zeroed, post_zeroed;
node = huge_node_get(ptr);
arena = extent_node_arena_get(node);
pre_zeroed = extent_node_zeroed_get(node);
chunk_hooks = chunk_hooks_get(tsdn, arena);
assert(oldsize > usize);
/* Split excess chunks. */
cdiff = CHUNK_CEILING(oldsize) - CHUNK_CEILING(usize);
if (cdiff != 0 && chunk_hooks.split(ptr, CHUNK_CEILING(oldsize),
CHUNK_CEILING(usize), cdiff, true, arena->ind))
return (true);
if (oldsize > usize) {
size_t sdiff = oldsize - usize;
if (config_fill && unlikely(opt_junk_free)) {
huge_dalloc_junk((void *)((uintptr_t)ptr + usize),
sdiff);
post_zeroed = false;
} else {
post_zeroed = !chunk_purge_wrapper(tsdn, arena,
&chunk_hooks, CHUNK_ADDR2BASE((uintptr_t)ptr +
usize), CHUNK_CEILING(oldsize),
CHUNK_ADDR2OFFSET((uintptr_t)ptr + usize), sdiff);
}
} else
post_zeroed = pre_zeroed;
malloc_mutex_lock(tsdn, &arena->huge_mtx);
/* Update the size of the huge allocation. */
huge_node_unset(ptr, node);
extent_node_size_set(node, usize);
huge_node_reset(tsdn, ptr, node);
/* Update zeroed. */
extent_node_zeroed_set(node, post_zeroed);
malloc_mutex_unlock(tsdn, &arena->huge_mtx);
/* Zap the excess chunks. */
arena_chunk_ralloc_huge_shrink(tsdn, arena, ptr, oldsize, usize,
extent_node_sn_get(node));
return (false);
}
static bool
huge_ralloc_no_move_expand(tsdn_t *tsdn, void *ptr, size_t oldsize,
size_t usize, bool zero) {
extent_node_t *node;
arena_t *arena;
bool is_zeroed_subchunk, is_zeroed_chunk;
node = huge_node_get(ptr);
arena = extent_node_arena_get(node);
malloc_mutex_lock(tsdn, &arena->huge_mtx);
is_zeroed_subchunk = extent_node_zeroed_get(node);
malloc_mutex_unlock(tsdn, &arena->huge_mtx);
/*
* Use is_zeroed_chunk to detect whether the trailing memory is zeroed,
* update extent's zeroed field, and zero as necessary.
*/
is_zeroed_chunk = false;
if (arena_chunk_ralloc_huge_expand(tsdn, arena, ptr, oldsize, usize,
&is_zeroed_chunk))
return (true);
malloc_mutex_lock(tsdn, &arena->huge_mtx);
huge_node_unset(ptr, node);
extent_node_size_set(node, usize);
extent_node_zeroed_set(node, extent_node_zeroed_get(node) &&
is_zeroed_chunk);
huge_node_reset(tsdn, ptr, node);
malloc_mutex_unlock(tsdn, &arena->huge_mtx);
if (zero || (config_fill && unlikely(opt_zero))) {
if (!is_zeroed_subchunk) {
memset((void *)((uintptr_t)ptr + oldsize), 0,
CHUNK_CEILING(oldsize) - oldsize);
}
if (!is_zeroed_chunk) {
memset((void *)((uintptr_t)ptr +
CHUNK_CEILING(oldsize)), 0, usize -
CHUNK_CEILING(oldsize));
}
} else if (config_fill && unlikely(opt_junk_alloc)) {
memset((void *)((uintptr_t)ptr + oldsize), JEMALLOC_ALLOC_JUNK,
usize - oldsize);
}
return (false);
}
bool
huge_ralloc_no_move(tsdn_t *tsdn, void *ptr, size_t oldsize, size_t usize_min,
size_t usize_max, bool zero)
{
assert(s2u(oldsize) == oldsize);
/* The following should have been caught by callers. */
assert(usize_min > 0 && usize_max <= HUGE_MAXCLASS);
/* Both allocations must be huge to avoid a move. */
if (oldsize < chunksize || usize_max < chunksize)
return (true);
if (CHUNK_CEILING(usize_max) > CHUNK_CEILING(oldsize)) {
/* Attempt to expand the allocation in-place. */
if (!huge_ralloc_no_move_expand(tsdn, ptr, oldsize, usize_max,
zero)) {
arena_decay_tick(tsdn, huge_aalloc(ptr));
return (false);
}
/* Try again, this time with usize_min. */
if (usize_min < usize_max && CHUNK_CEILING(usize_min) >
CHUNK_CEILING(oldsize) && huge_ralloc_no_move_expand(tsdn,
ptr, oldsize, usize_min, zero)) {
arena_decay_tick(tsdn, huge_aalloc(ptr));
return (false);
}
}
/*
* Avoid moving the allocation if the existing chunk size accommodates
* the new size.
*/
if (CHUNK_CEILING(oldsize) >= CHUNK_CEILING(usize_min)
&& CHUNK_CEILING(oldsize) <= CHUNK_CEILING(usize_max)) {
huge_ralloc_no_move_similar(tsdn, ptr, oldsize, usize_min,
usize_max, zero);
arena_decay_tick(tsdn, huge_aalloc(ptr));
return (false);
}
/* Attempt to shrink the allocation in-place. */
if (CHUNK_CEILING(oldsize) > CHUNK_CEILING(usize_max)) {
if (!huge_ralloc_no_move_shrink(tsdn, ptr, oldsize,
usize_max)) {
arena_decay_tick(tsdn, huge_aalloc(ptr));
return (false);
}
}
return (true);
}
static void *
huge_ralloc_move_helper(tsdn_t *tsdn, arena_t *arena, size_t usize,
size_t alignment, bool zero)
{
if (alignment <= chunksize)
return (huge_malloc(tsdn, arena, usize, zero));
return (huge_palloc(tsdn, arena, usize, alignment, zero));
}
void *
huge_ralloc(tsd_t *tsd, arena_t *arena, void *ptr, size_t oldsize,
size_t usize, size_t alignment, bool zero, tcache_t *tcache)
{
void *ret;
size_t copysize;
/* The following should have been caught by callers. */
assert(usize > 0 && usize <= HUGE_MAXCLASS);
/* Try to avoid moving the allocation. */
if (!huge_ralloc_no_move(tsd_tsdn(tsd), ptr, oldsize, usize, usize,
zero))
return (ptr);
/*
* usize and oldsize are different enough that we need to use a
* different size class. In that case, fall back to allocating new
* space and copying.
*/
ret = huge_ralloc_move_helper(tsd_tsdn(tsd), arena, usize, alignment,
zero);
if (ret == NULL)
return (NULL);
copysize = (usize < oldsize) ? usize : oldsize;
memcpy(ret, ptr, copysize);
isqalloc(tsd, ptr, oldsize, tcache, true);
return (ret);
}
void
huge_dalloc(tsdn_t *tsdn, void *ptr)
{
extent_node_t *node;
arena_t *arena;
node = huge_node_get(ptr);
arena = extent_node_arena_get(node);
huge_node_unset(ptr, node);
malloc_mutex_lock(tsdn, &arena->huge_mtx);
ql_remove(&arena->huge, node, ql_link);
malloc_mutex_unlock(tsdn, &arena->huge_mtx);
huge_dalloc_junk(extent_node_addr_get(node),
extent_node_size_get(node));
arena_chunk_dalloc_huge(tsdn, extent_node_arena_get(node),
extent_node_addr_get(node), extent_node_size_get(node),
extent_node_sn_get(node));
idalloctm(tsdn, node, NULL, true, true);
arena_decay_tick(tsdn, arena);
}
arena_t *
huge_aalloc(const void *ptr)
{
return (extent_node_arena_get(huge_node_get(ptr)));
}
size_t
huge_salloc(tsdn_t *tsdn, const void *ptr)
{
size_t size;
extent_node_t *node;
arena_t *arena;
node = huge_node_get(ptr);
arena = extent_node_arena_get(node);
malloc_mutex_lock(tsdn, &arena->huge_mtx);
size = extent_node_size_get(node);
malloc_mutex_unlock(tsdn, &arena->huge_mtx);
return (size);
}
prof_tctx_t *
huge_prof_tctx_get(tsdn_t *tsdn, const void *ptr)
{
prof_tctx_t *tctx;
extent_node_t *node;
arena_t *arena;
node = huge_node_get(ptr);
arena = extent_node_arena_get(node);
malloc_mutex_lock(tsdn, &arena->huge_mtx);
tctx = extent_node_prof_tctx_get(node);
malloc_mutex_unlock(tsdn, &arena->huge_mtx);
return (tctx);
}
void
huge_prof_tctx_set(tsdn_t *tsdn, const void *ptr, prof_tctx_t *tctx)
{
extent_node_t *node;
arena_t *arena;
node = huge_node_get(ptr);
arena = extent_node_arena_get(node);
malloc_mutex_lock(tsdn, &arena->huge_mtx);
extent_node_prof_tctx_set(node, tctx);
malloc_mutex_unlock(tsdn, &arena->huge_mtx);
}
void
huge_prof_tctx_reset(tsdn_t *tsdn, const void *ptr)
{
huge_prof_tctx_set(tsdn, ptr, (prof_tctx_t *)(uintptr_t)1U);
}
| 12,682 | 25.533473 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/src/tcache.c | #define JEMALLOC_TCACHE_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Data. */
bool opt_tcache = true;
ssize_t opt_lg_tcache_max = LG_TCACHE_MAXCLASS_DEFAULT;
tcache_bin_info_t *tcache_bin_info;
static unsigned stack_nelms; /* Total stack elms per tcache. */
unsigned nhbins;
size_t tcache_maxclass;
tcaches_t *tcaches;
/* Index of first element within tcaches that has never been used. */
static unsigned tcaches_past;
/* Head of singly linked list tracking available tcaches elements. */
static tcaches_t *tcaches_avail;
/******************************************************************************/
size_t
tcache_salloc(tsdn_t *tsdn, const void *ptr)
{
return (arena_salloc(tsdn, ptr, false));
}
void
tcache_event_hard(tsd_t *tsd, tcache_t *tcache)
{
szind_t binind = tcache->next_gc_bin;
tcache_bin_t *tbin = &tcache->tbins[binind];
tcache_bin_info_t *tbin_info = &tcache_bin_info[binind];
if (tbin->low_water > 0) {
/*
* Flush (ceiling) 3/4 of the objects below the low water mark.
*/
if (binind < NBINS) {
tcache_bin_flush_small(tsd, tcache, tbin, binind,
tbin->ncached - tbin->low_water + (tbin->low_water
>> 2));
} else {
tcache_bin_flush_large(tsd, tbin, binind, tbin->ncached
- tbin->low_water + (tbin->low_water >> 2), tcache);
}
/*
* Reduce fill count by 2X. Limit lg_fill_div such that the
* fill count is always at least 1.
*/
if ((tbin_info->ncached_max >> (tbin->lg_fill_div+1)) >= 1)
tbin->lg_fill_div++;
} else if (tbin->low_water < 0) {
/*
* Increase fill count by 2X. Make sure lg_fill_div stays
* greater than 0.
*/
if (tbin->lg_fill_div > 1)
tbin->lg_fill_div--;
}
tbin->low_water = tbin->ncached;
tcache->next_gc_bin++;
if (tcache->next_gc_bin == nhbins)
tcache->next_gc_bin = 0;
}
void *
tcache_alloc_small_hard(tsdn_t *tsdn, arena_t *arena, tcache_t *tcache,
tcache_bin_t *tbin, szind_t binind, bool *tcache_success)
{
void *ret;
arena_tcache_fill_small(tsdn, arena, tbin, binind, config_prof ?
tcache->prof_accumbytes : 0);
if (config_prof)
tcache->prof_accumbytes = 0;
ret = tcache_alloc_easy(tbin, tcache_success);
return (ret);
}
void
tcache_bin_flush_small(tsd_t *tsd, tcache_t *tcache, tcache_bin_t *tbin,
szind_t binind, unsigned rem)
{
arena_t *arena;
void *ptr;
unsigned i, nflush, ndeferred;
bool merged_stats = false;
assert(binind < NBINS);
assert(rem <= tbin->ncached);
arena = arena_choose(tsd, NULL);
assert(arena != NULL);
for (nflush = tbin->ncached - rem; nflush > 0; nflush = ndeferred) {
/* Lock the arena bin associated with the first object. */
arena_chunk_t *chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(
*(tbin->avail - 1));
arena_t *bin_arena = extent_node_arena_get(&chunk->node);
arena_bin_t *bin = &bin_arena->bins[binind];
if (config_prof && bin_arena == arena) {
if (arena_prof_accum(tsd_tsdn(tsd), arena,
tcache->prof_accumbytes))
prof_idump(tsd_tsdn(tsd));
tcache->prof_accumbytes = 0;
}
malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock);
if (config_stats && bin_arena == arena) {
assert(!merged_stats);
merged_stats = true;
bin->stats.nflushes++;
bin->stats.nrequests += tbin->tstats.nrequests;
tbin->tstats.nrequests = 0;
}
ndeferred = 0;
for (i = 0; i < nflush; i++) {
ptr = *(tbin->avail - 1 - i);
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (extent_node_arena_get(&chunk->node) == bin_arena) {
size_t pageind = ((uintptr_t)ptr -
(uintptr_t)chunk) >> LG_PAGE;
arena_chunk_map_bits_t *bitselm =
arena_bitselm_get_mutable(chunk, pageind);
arena_dalloc_bin_junked_locked(tsd_tsdn(tsd),
bin_arena, chunk, ptr, bitselm);
} else {
/*
* This object was allocated via a different
* arena bin than the one that is currently
* locked. Stash the object, so that it can be
* handled in a future pass.
*/
*(tbin->avail - 1 - ndeferred) = ptr;
ndeferred++;
}
}
malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock);
arena_decay_ticks(tsd_tsdn(tsd), bin_arena, nflush - ndeferred);
}
if (config_stats && !merged_stats) {
/*
* The flush loop didn't happen to flush to this thread's
* arena, so the stats didn't get merged. Manually do so now.
*/
arena_bin_t *bin = &arena->bins[binind];
malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock);
bin->stats.nflushes++;
bin->stats.nrequests += tbin->tstats.nrequests;
tbin->tstats.nrequests = 0;
malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock);
}
memmove(tbin->avail - rem, tbin->avail - tbin->ncached, rem *
sizeof(void *));
tbin->ncached = rem;
if ((int)tbin->ncached < tbin->low_water)
tbin->low_water = tbin->ncached;
}
void
tcache_bin_flush_large(tsd_t *tsd, tcache_bin_t *tbin, szind_t binind,
unsigned rem, tcache_t *tcache)
{
arena_t *arena;
void *ptr;
unsigned i, nflush, ndeferred;
bool merged_stats = false;
assert(binind < nhbins);
assert(rem <= tbin->ncached);
arena = arena_choose(tsd, NULL);
assert(arena != NULL);
for (nflush = tbin->ncached - rem; nflush > 0; nflush = ndeferred) {
/* Lock the arena associated with the first object. */
arena_chunk_t *chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(
*(tbin->avail - 1));
arena_t *locked_arena = extent_node_arena_get(&chunk->node);
UNUSED bool idump;
if (config_prof)
idump = false;
malloc_mutex_lock(tsd_tsdn(tsd), &locked_arena->lock);
if ((config_prof || config_stats) && locked_arena == arena) {
if (config_prof) {
idump = arena_prof_accum_locked(arena,
tcache->prof_accumbytes);
tcache->prof_accumbytes = 0;
}
if (config_stats) {
merged_stats = true;
arena->stats.nrequests_large +=
tbin->tstats.nrequests;
arena->stats.lstats[binind - NBINS].nrequests +=
tbin->tstats.nrequests;
tbin->tstats.nrequests = 0;
}
}
ndeferred = 0;
for (i = 0; i < nflush; i++) {
ptr = *(tbin->avail - 1 - i);
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (extent_node_arena_get(&chunk->node) ==
locked_arena) {
arena_dalloc_large_junked_locked(tsd_tsdn(tsd),
locked_arena, chunk, ptr);
} else {
/*
* This object was allocated via a different
* arena than the one that is currently locked.
* Stash the object, so that it can be handled
* in a future pass.
*/
*(tbin->avail - 1 - ndeferred) = ptr;
ndeferred++;
}
}
malloc_mutex_unlock(tsd_tsdn(tsd), &locked_arena->lock);
if (config_prof && idump)
prof_idump(tsd_tsdn(tsd));
arena_decay_ticks(tsd_tsdn(tsd), locked_arena, nflush -
ndeferred);
}
if (config_stats && !merged_stats) {
/*
* The flush loop didn't happen to flush to this thread's
* arena, so the stats didn't get merged. Manually do so now.
*/
malloc_mutex_lock(tsd_tsdn(tsd), &arena->lock);
arena->stats.nrequests_large += tbin->tstats.nrequests;
arena->stats.lstats[binind - NBINS].nrequests +=
tbin->tstats.nrequests;
tbin->tstats.nrequests = 0;
malloc_mutex_unlock(tsd_tsdn(tsd), &arena->lock);
}
memmove(tbin->avail - rem, tbin->avail - tbin->ncached, rem *
sizeof(void *));
tbin->ncached = rem;
if ((int)tbin->ncached < tbin->low_water)
tbin->low_water = tbin->ncached;
}
static void
tcache_arena_associate(tsdn_t *tsdn, tcache_t *tcache, arena_t *arena)
{
if (config_stats) {
/* Link into list of extant tcaches. */
malloc_mutex_lock(tsdn, &arena->lock);
ql_elm_new(tcache, link);
ql_tail_insert(&arena->tcache_ql, tcache, link);
malloc_mutex_unlock(tsdn, &arena->lock);
}
}
static void
tcache_arena_dissociate(tsdn_t *tsdn, tcache_t *tcache, arena_t *arena)
{
if (config_stats) {
/* Unlink from list of extant tcaches. */
malloc_mutex_lock(tsdn, &arena->lock);
if (config_debug) {
bool in_ql = false;
tcache_t *iter;
ql_foreach(iter, &arena->tcache_ql, link) {
if (iter == tcache) {
in_ql = true;
break;
}
}
assert(in_ql);
}
ql_remove(&arena->tcache_ql, tcache, link);
tcache_stats_merge(tsdn, tcache, arena);
malloc_mutex_unlock(tsdn, &arena->lock);
}
}
void
tcache_arena_reassociate(tsdn_t *tsdn, tcache_t *tcache, arena_t *oldarena,
arena_t *newarena)
{
tcache_arena_dissociate(tsdn, tcache, oldarena);
tcache_arena_associate(tsdn, tcache, newarena);
}
tcache_t *
tcache_get_hard(tsd_t *tsd)
{
arena_t *arena;
if (!tcache_enabled_get()) {
if (tsd_nominal(tsd))
tcache_enabled_set(false); /* Memoize. */
return (NULL);
}
arena = arena_choose(tsd, NULL);
if (unlikely(arena == NULL))
return (NULL);
return (tcache_create(tsd_tsdn(tsd), arena));
}
tcache_t *
tcache_create(tsdn_t *tsdn, arena_t *arena)
{
tcache_t *tcache;
size_t size, stack_offset;
unsigned i;
size = offsetof(tcache_t, tbins) + (sizeof(tcache_bin_t) * nhbins);
/* Naturally align the pointer stacks. */
size = PTR_CEILING(size);
stack_offset = size;
size += stack_nelms * sizeof(void *);
/* Avoid false cacheline sharing. */
size = sa2u(size, CACHELINE);
tcache = ipallocztm(tsdn, size, CACHELINE, true, NULL, true,
arena_get(TSDN_NULL, 0, true));
if (tcache == NULL)
return (NULL);
tcache_arena_associate(tsdn, tcache, arena);
ticker_init(&tcache->gc_ticker, TCACHE_GC_INCR);
assert((TCACHE_NSLOTS_SMALL_MAX & 1U) == 0);
for (i = 0; i < nhbins; i++) {
tcache->tbins[i].lg_fill_div = 1;
stack_offset += tcache_bin_info[i].ncached_max * sizeof(void *);
/*
* avail points past the available space. Allocations will
* access the slots toward higher addresses (for the benefit of
* prefetch).
*/
tcache->tbins[i].avail = (void **)((uintptr_t)tcache +
(uintptr_t)stack_offset);
}
return (tcache);
}
static void
tcache_destroy(tsd_t *tsd, tcache_t *tcache)
{
arena_t *arena;
unsigned i;
arena = arena_choose(tsd, NULL);
tcache_arena_dissociate(tsd_tsdn(tsd), tcache, arena);
for (i = 0; i < NBINS; i++) {
tcache_bin_t *tbin = &tcache->tbins[i];
tcache_bin_flush_small(tsd, tcache, tbin, i, 0);
if (config_stats && tbin->tstats.nrequests != 0) {
arena_bin_t *bin = &arena->bins[i];
malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock);
bin->stats.nrequests += tbin->tstats.nrequests;
malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock);
}
}
for (; i < nhbins; i++) {
tcache_bin_t *tbin = &tcache->tbins[i];
tcache_bin_flush_large(tsd, tbin, i, 0, tcache);
if (config_stats && tbin->tstats.nrequests != 0) {
malloc_mutex_lock(tsd_tsdn(tsd), &arena->lock);
arena->stats.nrequests_large += tbin->tstats.nrequests;
arena->stats.lstats[i - NBINS].nrequests +=
tbin->tstats.nrequests;
malloc_mutex_unlock(tsd_tsdn(tsd), &arena->lock);
}
}
if (config_prof && tcache->prof_accumbytes > 0 &&
arena_prof_accum(tsd_tsdn(tsd), arena, tcache->prof_accumbytes))
prof_idump(tsd_tsdn(tsd));
idalloctm(tsd_tsdn(tsd), tcache, NULL, true, true);
}
void
tcache_cleanup(tsd_t *tsd)
{
tcache_t *tcache;
if (!config_tcache)
return;
if ((tcache = tsd_tcache_get(tsd)) != NULL) {
tcache_destroy(tsd, tcache);
tsd_tcache_set(tsd, NULL);
}
}
void
tcache_enabled_cleanup(tsd_t *tsd)
{
/* Do nothing. */
}
void
tcache_stats_merge(tsdn_t *tsdn, tcache_t *tcache, arena_t *arena)
{
unsigned i;
cassert(config_stats);
malloc_mutex_assert_owner(tsdn, &arena->lock);
/* Merge and reset tcache stats. */
for (i = 0; i < NBINS; i++) {
arena_bin_t *bin = &arena->bins[i];
tcache_bin_t *tbin = &tcache->tbins[i];
malloc_mutex_lock(tsdn, &bin->lock);
bin->stats.nrequests += tbin->tstats.nrequests;
malloc_mutex_unlock(tsdn, &bin->lock);
tbin->tstats.nrequests = 0;
}
for (; i < nhbins; i++) {
malloc_large_stats_t *lstats = &arena->stats.lstats[i - NBINS];
tcache_bin_t *tbin = &tcache->tbins[i];
arena->stats.nrequests_large += tbin->tstats.nrequests;
lstats->nrequests += tbin->tstats.nrequests;
tbin->tstats.nrequests = 0;
}
}
bool
tcaches_create(tsd_t *tsd, unsigned *r_ind)
{
arena_t *arena;
tcache_t *tcache;
tcaches_t *elm;
if (tcaches == NULL) {
tcaches = base_alloc(tsd_tsdn(tsd), sizeof(tcache_t *) *
(MALLOCX_TCACHE_MAX+1));
if (tcaches == NULL)
return (true);
}
if (tcaches_avail == NULL && tcaches_past > MALLOCX_TCACHE_MAX)
return (true);
arena = arena_ichoose(tsd, NULL);
if (unlikely(arena == NULL))
return (true);
tcache = tcache_create(tsd_tsdn(tsd), arena);
if (tcache == NULL)
return (true);
if (tcaches_avail != NULL) {
elm = tcaches_avail;
tcaches_avail = tcaches_avail->next;
elm->tcache = tcache;
*r_ind = (unsigned)(elm - tcaches);
} else {
elm = &tcaches[tcaches_past];
elm->tcache = tcache;
*r_ind = tcaches_past;
tcaches_past++;
}
return (false);
}
static void
tcaches_elm_flush(tsd_t *tsd, tcaches_t *elm)
{
if (elm->tcache == NULL)
return;
tcache_destroy(tsd, elm->tcache);
elm->tcache = NULL;
}
void
tcaches_flush(tsd_t *tsd, unsigned ind)
{
tcaches_elm_flush(tsd, &tcaches[ind]);
}
void
tcaches_destroy(tsd_t *tsd, unsigned ind)
{
tcaches_t *elm = &tcaches[ind];
tcaches_elm_flush(tsd, elm);
elm->next = tcaches_avail;
tcaches_avail = elm;
}
bool
tcache_boot(tsdn_t *tsdn)
{
unsigned i;
/*
* If necessary, clamp opt_lg_tcache_max, now that large_maxclass is
* known.
*/
if (opt_lg_tcache_max < 0 || (ZU(1) << opt_lg_tcache_max) < SMALL_MAXCLASS)
tcache_maxclass = SMALL_MAXCLASS;
else if ((ZU(1) << opt_lg_tcache_max) > large_maxclass)
tcache_maxclass = large_maxclass;
else
tcache_maxclass = (ZU(1) << opt_lg_tcache_max);
nhbins = size2index(tcache_maxclass) + 1;
/* Initialize tcache_bin_info. */
tcache_bin_info = (tcache_bin_info_t *)base_alloc(tsdn, nhbins *
sizeof(tcache_bin_info_t));
if (tcache_bin_info == NULL)
return (true);
stack_nelms = 0;
for (i = 0; i < NBINS; i++) {
if ((arena_bin_info[i].nregs << 1) <= TCACHE_NSLOTS_SMALL_MIN) {
tcache_bin_info[i].ncached_max =
TCACHE_NSLOTS_SMALL_MIN;
} else if ((arena_bin_info[i].nregs << 1) <=
TCACHE_NSLOTS_SMALL_MAX) {
tcache_bin_info[i].ncached_max =
(arena_bin_info[i].nregs << 1);
} else {
tcache_bin_info[i].ncached_max =
TCACHE_NSLOTS_SMALL_MAX;
}
stack_nelms += tcache_bin_info[i].ncached_max;
}
for (; i < nhbins; i++) {
tcache_bin_info[i].ncached_max = TCACHE_NSLOTS_LARGE;
stack_nelms += tcache_bin_info[i].ncached_max;
}
return (false);
}
| 14,530 | 25.134892 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/src/chunk.c | #define JEMALLOC_CHUNK_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Data. */
const char *opt_dss = DSS_DEFAULT;
size_t opt_lg_chunk = 0;
/* Used exclusively for gdump triggering. */
static size_t curchunks;
static size_t highchunks;
rtree_t chunks_rtree;
/* Various chunk-related settings. */
size_t chunksize;
size_t chunksize_mask; /* (chunksize - 1). */
size_t chunk_npages;
static void *chunk_alloc_default(void *new_addr, size_t size,
size_t alignment, bool *zero, bool *commit, unsigned arena_ind);
static bool chunk_dalloc_default(void *chunk, size_t size, bool committed,
unsigned arena_ind);
static bool chunk_commit_default(void *chunk, size_t size, size_t offset,
size_t length, unsigned arena_ind);
static bool chunk_decommit_default(void *chunk, size_t size, size_t offset,
size_t length, unsigned arena_ind);
static bool chunk_purge_default(void *chunk, size_t size, size_t offset,
size_t length, unsigned arena_ind);
static bool chunk_split_default(void *chunk, size_t size, size_t size_a,
size_t size_b, bool committed, unsigned arena_ind);
static bool chunk_merge_default(void *chunk_a, size_t size_a, void *chunk_b,
size_t size_b, bool committed, unsigned arena_ind);
const chunk_hooks_t chunk_hooks_default = {
chunk_alloc_default,
chunk_dalloc_default,
chunk_commit_default,
chunk_decommit_default,
chunk_purge_default,
chunk_split_default,
chunk_merge_default
};
/******************************************************************************/
/*
* Function prototypes for static functions that are referenced prior to
* definition.
*/
static void chunk_record(tsdn_t *tsdn, arena_t *arena,
chunk_hooks_t *chunk_hooks, extent_tree_t *chunks_szsnad,
extent_tree_t *chunks_ad, bool cache, void *chunk, size_t size, size_t sn,
bool zeroed, bool committed);
/******************************************************************************/
static chunk_hooks_t
chunk_hooks_get_locked(arena_t *arena)
{
return (arena->chunk_hooks);
}
chunk_hooks_t
chunk_hooks_get(tsdn_t *tsdn, arena_t *arena)
{
chunk_hooks_t chunk_hooks;
malloc_mutex_lock(tsdn, &arena->chunks_mtx);
chunk_hooks = chunk_hooks_get_locked(arena);
malloc_mutex_unlock(tsdn, &arena->chunks_mtx);
return (chunk_hooks);
}
chunk_hooks_t
chunk_hooks_set(tsdn_t *tsdn, arena_t *arena, const chunk_hooks_t *chunk_hooks)
{
chunk_hooks_t old_chunk_hooks;
malloc_mutex_lock(tsdn, &arena->chunks_mtx);
old_chunk_hooks = arena->chunk_hooks;
/*
* Copy each field atomically so that it is impossible for readers to
* see partially updated pointers. There are places where readers only
* need one hook function pointer (therefore no need to copy the
* entirety of arena->chunk_hooks), and stale reads do not affect
* correctness, so they perform unlocked reads.
*/
#define ATOMIC_COPY_HOOK(n) do { \
union { \
chunk_##n##_t **n; \
void **v; \
} u; \
u.n = &arena->chunk_hooks.n; \
atomic_write_p(u.v, chunk_hooks->n); \
} while (0)
ATOMIC_COPY_HOOK(alloc);
ATOMIC_COPY_HOOK(dalloc);
ATOMIC_COPY_HOOK(commit);
ATOMIC_COPY_HOOK(decommit);
ATOMIC_COPY_HOOK(purge);
ATOMIC_COPY_HOOK(split);
ATOMIC_COPY_HOOK(merge);
#undef ATOMIC_COPY_HOOK
malloc_mutex_unlock(tsdn, &arena->chunks_mtx);
return (old_chunk_hooks);
}
static void
chunk_hooks_assure_initialized_impl(tsdn_t *tsdn, arena_t *arena,
chunk_hooks_t *chunk_hooks, bool locked)
{
static const chunk_hooks_t uninitialized_hooks =
CHUNK_HOOKS_INITIALIZER;
if (memcmp(chunk_hooks, &uninitialized_hooks, sizeof(chunk_hooks_t)) ==
0) {
*chunk_hooks = locked ? chunk_hooks_get_locked(arena) :
chunk_hooks_get(tsdn, arena);
}
}
static void
chunk_hooks_assure_initialized_locked(tsdn_t *tsdn, arena_t *arena,
chunk_hooks_t *chunk_hooks)
{
chunk_hooks_assure_initialized_impl(tsdn, arena, chunk_hooks, true);
}
static void
chunk_hooks_assure_initialized(tsdn_t *tsdn, arena_t *arena,
chunk_hooks_t *chunk_hooks)
{
chunk_hooks_assure_initialized_impl(tsdn, arena, chunk_hooks, false);
}
bool
chunk_register(tsdn_t *tsdn, const void *chunk, const extent_node_t *node)
{
assert(extent_node_addr_get(node) == chunk);
if (rtree_set(&chunks_rtree, (uintptr_t)chunk, node))
return (true);
if (config_prof && opt_prof) {
size_t size = extent_node_size_get(node);
size_t nadd = (size == 0) ? 1 : size / chunksize;
size_t cur = atomic_add_z(&curchunks, nadd);
size_t high = atomic_read_z(&highchunks);
while (cur > high && atomic_cas_z(&highchunks, high, cur)) {
/*
* Don't refresh cur, because it may have decreased
* since this thread lost the highchunks update race.
*/
high = atomic_read_z(&highchunks);
}
if (cur > high && prof_gdump_get_unlocked())
prof_gdump(tsdn);
}
return (false);
}
void
chunk_deregister(const void *chunk, const extent_node_t *node)
{
bool err;
err = rtree_set(&chunks_rtree, (uintptr_t)chunk, NULL);
assert(!err);
if (config_prof && opt_prof) {
size_t size = extent_node_size_get(node);
size_t nsub = (size == 0) ? 1 : size / chunksize;
assert(atomic_read_z(&curchunks) >= nsub);
atomic_sub_z(&curchunks, nsub);
}
}
/*
* Do first-best-fit chunk selection, i.e. select the oldest/lowest chunk that
* best fits.
*/
static extent_node_t *
chunk_first_best_fit(arena_t *arena, extent_tree_t *chunks_szsnad, size_t size)
{
extent_node_t key;
assert(size == CHUNK_CEILING(size));
extent_node_init(&key, arena, NULL, size, 0, false, false);
return (extent_tree_szsnad_nsearch(chunks_szsnad, &key));
}
static void *
chunk_recycle(tsdn_t *tsdn, arena_t *arena, chunk_hooks_t *chunk_hooks,
extent_tree_t *chunks_szsnad, extent_tree_t *chunks_ad, bool cache,
void *new_addr, size_t size, size_t alignment, size_t *sn, bool *zero,
bool *commit, bool dalloc_node)
{
void *ret;
extent_node_t *node;
size_t alloc_size, leadsize, trailsize;
bool zeroed, committed;
assert(CHUNK_CEILING(size) == size);
assert(alignment > 0);
assert(new_addr == NULL || alignment == chunksize);
assert(CHUNK_ADDR2BASE(new_addr) == new_addr);
/*
* Cached chunks use the node linkage embedded in their headers, in
* which case dalloc_node is true, and new_addr is non-NULL because
* we're operating on a specific chunk.
*/
assert(dalloc_node || new_addr != NULL);
alloc_size = size + CHUNK_CEILING(alignment) - chunksize;
/* Beware size_t wrap-around. */
if (alloc_size < size)
return (NULL);
malloc_mutex_lock(tsdn, &arena->chunks_mtx);
chunk_hooks_assure_initialized_locked(tsdn, arena, chunk_hooks);
if (new_addr != NULL) {
extent_node_t key;
extent_node_init(&key, arena, new_addr, alloc_size, 0, false,
false);
node = extent_tree_ad_search(chunks_ad, &key);
} else {
node = chunk_first_best_fit(arena, chunks_szsnad, alloc_size);
}
if (node == NULL || (new_addr != NULL && extent_node_size_get(node) <
size)) {
malloc_mutex_unlock(tsdn, &arena->chunks_mtx);
return (NULL);
}
leadsize = ALIGNMENT_CEILING((uintptr_t)extent_node_addr_get(node),
alignment) - (uintptr_t)extent_node_addr_get(node);
assert(new_addr == NULL || leadsize == 0);
assert(extent_node_size_get(node) >= leadsize + size);
trailsize = extent_node_size_get(node) - leadsize - size;
ret = (void *)((uintptr_t)extent_node_addr_get(node) + leadsize);
*sn = extent_node_sn_get(node);
zeroed = extent_node_zeroed_get(node);
if (zeroed)
*zero = true;
committed = extent_node_committed_get(node);
if (committed)
*commit = true;
/* Split the lead. */
if (leadsize != 0 &&
chunk_hooks->split(extent_node_addr_get(node),
extent_node_size_get(node), leadsize, size, false, arena->ind)) {
malloc_mutex_unlock(tsdn, &arena->chunks_mtx);
return (NULL);
}
/* Remove node from the tree. */
extent_tree_szsnad_remove(chunks_szsnad, node);
extent_tree_ad_remove(chunks_ad, node);
arena_chunk_cache_maybe_remove(arena, node, cache);
if (leadsize != 0) {
/* Insert the leading space as a smaller chunk. */
extent_node_size_set(node, leadsize);
extent_tree_szsnad_insert(chunks_szsnad, node);
extent_tree_ad_insert(chunks_ad, node);
arena_chunk_cache_maybe_insert(arena, node, cache);
node = NULL;
}
if (trailsize != 0) {
/* Split the trail. */
if (chunk_hooks->split(ret, size + trailsize, size,
trailsize, false, arena->ind)) {
if (dalloc_node && node != NULL)
arena_node_dalloc(tsdn, arena, node);
malloc_mutex_unlock(tsdn, &arena->chunks_mtx);
chunk_record(tsdn, arena, chunk_hooks, chunks_szsnad,
chunks_ad, cache, ret, size + trailsize, *sn,
zeroed, committed);
return (NULL);
}
/* Insert the trailing space as a smaller chunk. */
if (node == NULL) {
node = arena_node_alloc(tsdn, arena);
if (node == NULL) {
malloc_mutex_unlock(tsdn, &arena->chunks_mtx);
chunk_record(tsdn, arena, chunk_hooks,
chunks_szsnad, chunks_ad, cache, ret, size
+ trailsize, *sn, zeroed, committed);
return (NULL);
}
}
extent_node_init(node, arena, (void *)((uintptr_t)(ret) + size),
trailsize, *sn, zeroed, committed);
extent_tree_szsnad_insert(chunks_szsnad, node);
extent_tree_ad_insert(chunks_ad, node);
arena_chunk_cache_maybe_insert(arena, node, cache);
node = NULL;
}
if (!committed && chunk_hooks->commit(ret, size, 0, size, arena->ind)) {
malloc_mutex_unlock(tsdn, &arena->chunks_mtx);
chunk_record(tsdn, arena, chunk_hooks, chunks_szsnad, chunks_ad,
cache, ret, size, *sn, zeroed, committed);
return (NULL);
}
malloc_mutex_unlock(tsdn, &arena->chunks_mtx);
assert(dalloc_node || node != NULL);
if (dalloc_node && node != NULL)
arena_node_dalloc(tsdn, arena, node);
if (*zero) {
if (!zeroed)
memset(ret, 0, size);
else if (config_debug) {
size_t i;
size_t *p = (size_t *)(uintptr_t)ret;
for (i = 0; i < size / sizeof(size_t); i++)
assert(p[i] == 0);
}
if (config_valgrind)
JEMALLOC_VALGRIND_MAKE_MEM_DEFINED(ret, size);
}
return (ret);
}
/*
* If the caller specifies (!*zero), it is still possible to receive zeroed
* memory, in which case *zero is toggled to true. arena_chunk_alloc() takes
* advantage of this to avoid demanding zeroed chunks, but taking advantage of
* them if they are returned.
*/
static void *
chunk_alloc_core(tsdn_t *tsdn, arena_t *arena, void *new_addr, size_t size,
size_t alignment, bool *zero, bool *commit, dss_prec_t dss_prec)
{
void *ret;
assert(size != 0);
assert((size & chunksize_mask) == 0);
assert(alignment != 0);
assert((alignment & chunksize_mask) == 0);
/* "primary" dss. */
if (have_dss && dss_prec == dss_prec_primary && (ret =
chunk_alloc_dss(tsdn, arena, new_addr, size, alignment, zero,
commit)) != NULL)
return (ret);
/* mmap. */
if ((ret = chunk_alloc_mmap(new_addr, size, alignment, zero, commit)) !=
NULL)
return (ret);
/* "secondary" dss. */
if (have_dss && dss_prec == dss_prec_secondary && (ret =
chunk_alloc_dss(tsdn, arena, new_addr, size, alignment, zero,
commit)) != NULL)
return (ret);
/* All strategies for allocation failed. */
return (NULL);
}
void *
chunk_alloc_base(size_t size)
{
void *ret;
bool zero, commit;
/*
* Directly call chunk_alloc_mmap() rather than chunk_alloc_core()
* because it's critical that chunk_alloc_base() return untouched
* demand-zeroed virtual memory.
*/
zero = true;
commit = true;
ret = chunk_alloc_mmap(NULL, size, chunksize, &zero, &commit);
if (ret == NULL)
return (NULL);
if (config_valgrind)
JEMALLOC_VALGRIND_MAKE_MEM_UNDEFINED(ret, size);
return (ret);
}
void *
chunk_alloc_cache(tsdn_t *tsdn, arena_t *arena, chunk_hooks_t *chunk_hooks,
void *new_addr, size_t size, size_t alignment, size_t *sn, bool *zero,
bool *commit, bool dalloc_node)
{
void *ret;
assert(size != 0);
assert((size & chunksize_mask) == 0);
assert(alignment != 0);
assert((alignment & chunksize_mask) == 0);
ret = chunk_recycle(tsdn, arena, chunk_hooks,
&arena->chunks_szsnad_cached, &arena->chunks_ad_cached, true,
new_addr, size, alignment, sn, zero, commit, dalloc_node);
if (ret == NULL)
return (NULL);
if (config_valgrind)
JEMALLOC_VALGRIND_MAKE_MEM_UNDEFINED(ret, size);
return (ret);
}
static arena_t *
chunk_arena_get(tsdn_t *tsdn, unsigned arena_ind)
{
arena_t *arena;
arena = arena_get(tsdn, arena_ind, false);
/*
* The arena we're allocating on behalf of must have been initialized
* already.
*/
assert(arena != NULL);
return (arena);
}
static void *
chunk_alloc_default_impl(tsdn_t *tsdn, arena_t *arena, void *new_addr,
size_t size, size_t alignment, bool *zero, bool *commit)
{
void *ret;
ret = chunk_alloc_core(tsdn, arena, new_addr, size, alignment, zero,
commit, arena->dss_prec);
if (ret == NULL)
return (NULL);
if (config_valgrind)
JEMALLOC_VALGRIND_MAKE_MEM_UNDEFINED(ret, size);
return (ret);
}
static void *
chunk_alloc_default(void *new_addr, size_t size, size_t alignment, bool *zero,
bool *commit, unsigned arena_ind)
{
tsdn_t *tsdn;
arena_t *arena;
tsdn = tsdn_fetch();
arena = chunk_arena_get(tsdn, arena_ind);
return (chunk_alloc_default_impl(tsdn, arena, new_addr, size, alignment,
zero, commit));
}
static void *
chunk_alloc_retained(tsdn_t *tsdn, arena_t *arena, chunk_hooks_t *chunk_hooks,
void *new_addr, size_t size, size_t alignment, size_t *sn, bool *zero,
bool *commit)
{
void *ret;
assert(size != 0);
assert((size & chunksize_mask) == 0);
assert(alignment != 0);
assert((alignment & chunksize_mask) == 0);
ret = chunk_recycle(tsdn, arena, chunk_hooks,
&arena->chunks_szsnad_retained, &arena->chunks_ad_retained, false,
new_addr, size, alignment, sn, zero, commit, true);
if (config_stats && ret != NULL)
arena->stats.retained -= size;
return (ret);
}
void *
chunk_alloc_wrapper(tsdn_t *tsdn, arena_t *arena, chunk_hooks_t *chunk_hooks,
void *new_addr, size_t size, size_t alignment, size_t *sn, bool *zero,
bool *commit)
{
void *ret;
chunk_hooks_assure_initialized(tsdn, arena, chunk_hooks);
ret = chunk_alloc_retained(tsdn, arena, chunk_hooks, new_addr, size,
alignment, sn, zero, commit);
if (ret == NULL) {
if (chunk_hooks->alloc == chunk_alloc_default) {
/* Call directly to propagate tsdn. */
ret = chunk_alloc_default_impl(tsdn, arena, new_addr,
size, alignment, zero, commit);
} else {
ret = chunk_hooks->alloc(new_addr, size, alignment,
zero, commit, arena->ind);
}
if (ret == NULL)
return (NULL);
*sn = arena_extent_sn_next(arena);
if (config_valgrind && chunk_hooks->alloc !=
chunk_alloc_default)
JEMALLOC_VALGRIND_MAKE_MEM_UNDEFINED(ret, chunksize);
}
return (ret);
}
static void
chunk_record(tsdn_t *tsdn, arena_t *arena, chunk_hooks_t *chunk_hooks,
extent_tree_t *chunks_szsnad, extent_tree_t *chunks_ad, bool cache,
void *chunk, size_t size, size_t sn, bool zeroed, bool committed)
{
bool unzeroed;
extent_node_t *node, *prev;
extent_node_t key;
assert(!cache || !zeroed);
unzeroed = cache || !zeroed;
JEMALLOC_VALGRIND_MAKE_MEM_NOACCESS(chunk, size);
malloc_mutex_lock(tsdn, &arena->chunks_mtx);
chunk_hooks_assure_initialized_locked(tsdn, arena, chunk_hooks);
extent_node_init(&key, arena, (void *)((uintptr_t)chunk + size), 0, 0,
false, false);
node = extent_tree_ad_nsearch(chunks_ad, &key);
/* Try to coalesce forward. */
if (node != NULL && extent_node_addr_get(node) ==
extent_node_addr_get(&key) && extent_node_committed_get(node) ==
committed && !chunk_hooks->merge(chunk, size,
extent_node_addr_get(node), extent_node_size_get(node), false,
arena->ind)) {
/*
* Coalesce chunk with the following address range. This does
* not change the position within chunks_ad, so only
* remove/insert from/into chunks_szsnad.
*/
extent_tree_szsnad_remove(chunks_szsnad, node);
arena_chunk_cache_maybe_remove(arena, node, cache);
extent_node_addr_set(node, chunk);
extent_node_size_set(node, size + extent_node_size_get(node));
if (sn < extent_node_sn_get(node))
extent_node_sn_set(node, sn);
extent_node_zeroed_set(node, extent_node_zeroed_get(node) &&
!unzeroed);
extent_tree_szsnad_insert(chunks_szsnad, node);
arena_chunk_cache_maybe_insert(arena, node, cache);
} else {
/* Coalescing forward failed, so insert a new node. */
node = arena_node_alloc(tsdn, arena);
if (node == NULL) {
/*
* Node allocation failed, which is an exceedingly
* unlikely failure. Leak chunk after making sure its
* pages have already been purged, so that this is only
* a virtual memory leak.
*/
if (cache) {
chunk_purge_wrapper(tsdn, arena, chunk_hooks,
chunk, size, 0, size);
}
goto label_return;
}
extent_node_init(node, arena, chunk, size, sn, !unzeroed,
committed);
extent_tree_ad_insert(chunks_ad, node);
extent_tree_szsnad_insert(chunks_szsnad, node);
arena_chunk_cache_maybe_insert(arena, node, cache);
}
/* Try to coalesce backward. */
prev = extent_tree_ad_prev(chunks_ad, node);
if (prev != NULL && (void *)((uintptr_t)extent_node_addr_get(prev) +
extent_node_size_get(prev)) == chunk &&
extent_node_committed_get(prev) == committed &&
!chunk_hooks->merge(extent_node_addr_get(prev),
extent_node_size_get(prev), chunk, size, false, arena->ind)) {
/*
* Coalesce chunk with the previous address range. This does
* not change the position within chunks_ad, so only
* remove/insert node from/into chunks_szsnad.
*/
extent_tree_szsnad_remove(chunks_szsnad, prev);
extent_tree_ad_remove(chunks_ad, prev);
arena_chunk_cache_maybe_remove(arena, prev, cache);
extent_tree_szsnad_remove(chunks_szsnad, node);
arena_chunk_cache_maybe_remove(arena, node, cache);
extent_node_addr_set(node, extent_node_addr_get(prev));
extent_node_size_set(node, extent_node_size_get(prev) +
extent_node_size_get(node));
if (extent_node_sn_get(prev) < extent_node_sn_get(node))
extent_node_sn_set(node, extent_node_sn_get(prev));
extent_node_zeroed_set(node, extent_node_zeroed_get(prev) &&
extent_node_zeroed_get(node));
extent_tree_szsnad_insert(chunks_szsnad, node);
arena_chunk_cache_maybe_insert(arena, node, cache);
arena_node_dalloc(tsdn, arena, prev);
}
label_return:
malloc_mutex_unlock(tsdn, &arena->chunks_mtx);
}
void
chunk_dalloc_cache(tsdn_t *tsdn, arena_t *arena, chunk_hooks_t *chunk_hooks,
void *chunk, size_t size, size_t sn, bool committed)
{
assert(chunk != NULL);
assert(CHUNK_ADDR2BASE(chunk) == chunk);
assert(size != 0);
assert((size & chunksize_mask) == 0);
chunk_record(tsdn, arena, chunk_hooks, &arena->chunks_szsnad_cached,
&arena->chunks_ad_cached, true, chunk, size, sn, false,
committed);
arena_maybe_purge(tsdn, arena);
}
static bool
chunk_dalloc_default_impl(void *chunk, size_t size)
{
if (!have_dss || !chunk_in_dss(chunk))
return (chunk_dalloc_mmap(chunk, size));
return (true);
}
static bool
chunk_dalloc_default(void *chunk, size_t size, bool committed,
unsigned arena_ind)
{
return (chunk_dalloc_default_impl(chunk, size));
}
void
chunk_dalloc_wrapper(tsdn_t *tsdn, arena_t *arena, chunk_hooks_t *chunk_hooks,
void *chunk, size_t size, size_t sn, bool zeroed, bool committed)
{
bool err;
assert(chunk != NULL);
assert(CHUNK_ADDR2BASE(chunk) == chunk);
assert(size != 0);
assert((size & chunksize_mask) == 0);
chunk_hooks_assure_initialized(tsdn, arena, chunk_hooks);
/* Try to deallocate. */
if (chunk_hooks->dalloc == chunk_dalloc_default) {
/* Call directly to propagate tsdn. */
err = chunk_dalloc_default_impl(chunk, size);
} else
err = chunk_hooks->dalloc(chunk, size, committed, arena->ind);
if (!err)
return;
/* Try to decommit; purge if that fails. */
if (committed) {
committed = chunk_hooks->decommit(chunk, size, 0, size,
arena->ind);
}
zeroed = !committed || !chunk_hooks->purge(chunk, size, 0, size,
arena->ind);
chunk_record(tsdn, arena, chunk_hooks, &arena->chunks_szsnad_retained,
&arena->chunks_ad_retained, false, chunk, size, sn, zeroed,
committed);
if (config_stats)
arena->stats.retained += size;
}
static bool
chunk_commit_default(void *chunk, size_t size, size_t offset, size_t length,
unsigned arena_ind)
{
return (pages_commit((void *)((uintptr_t)chunk + (uintptr_t)offset),
length));
}
static bool
chunk_decommit_default(void *chunk, size_t size, size_t offset, size_t length,
unsigned arena_ind)
{
return (pages_decommit((void *)((uintptr_t)chunk + (uintptr_t)offset),
length));
}
static bool
chunk_purge_default(void *chunk, size_t size, size_t offset, size_t length,
unsigned arena_ind)
{
assert(chunk != NULL);
assert(CHUNK_ADDR2BASE(chunk) == chunk);
assert((offset & PAGE_MASK) == 0);
assert(length != 0);
assert((length & PAGE_MASK) == 0);
return (pages_purge((void *)((uintptr_t)chunk + (uintptr_t)offset),
length));
}
bool
chunk_purge_wrapper(tsdn_t *tsdn, arena_t *arena, chunk_hooks_t *chunk_hooks,
void *chunk, size_t size, size_t offset, size_t length)
{
chunk_hooks_assure_initialized(tsdn, arena, chunk_hooks);
return (chunk_hooks->purge(chunk, size, offset, length, arena->ind));
}
static bool
chunk_split_default(void *chunk, size_t size, size_t size_a, size_t size_b,
bool committed, unsigned arena_ind)
{
if (!maps_coalesce)
return (true);
return (false);
}
static bool
chunk_merge_default_impl(void *chunk_a, void *chunk_b)
{
if (!maps_coalesce)
return (true);
if (have_dss && !chunk_dss_mergeable(chunk_a, chunk_b))
return (true);
return (false);
}
static bool
chunk_merge_default(void *chunk_a, size_t size_a, void *chunk_b, size_t size_b,
bool committed, unsigned arena_ind)
{
return (chunk_merge_default_impl(chunk_a, chunk_b));
}
static rtree_node_elm_t *
chunks_rtree_node_alloc(size_t nelms)
{
return ((rtree_node_elm_t *)base_alloc(TSDN_NULL, nelms *
sizeof(rtree_node_elm_t)));
}
bool
chunk_boot(void)
{
#ifdef _WIN32
SYSTEM_INFO info;
GetSystemInfo(&info);
/*
* Verify actual page size is equal to or an integral multiple of
* configured page size.
*/
if (info.dwPageSize & ((1U << LG_PAGE) - 1))
return (true);
/*
* Configure chunksize (if not set) to match granularity (usually 64K),
* so pages_map will always take fast path.
*/
if (!opt_lg_chunk) {
opt_lg_chunk = ffs_u((unsigned)info.dwAllocationGranularity)
- 1;
}
#else
if (!opt_lg_chunk)
opt_lg_chunk = LG_CHUNK_DEFAULT;
#endif
/* Set variables according to the value of opt_lg_chunk. */
chunksize = (ZU(1) << opt_lg_chunk);
assert(chunksize >= PAGE);
chunksize_mask = chunksize - 1;
chunk_npages = (chunksize >> LG_PAGE);
if (have_dss)
chunk_dss_boot();
if (rtree_new(&chunks_rtree, (unsigned)((ZU(1) << (LG_SIZEOF_PTR+3)) -
opt_lg_chunk), chunks_rtree_node_alloc, NULL))
return (true);
return (false);
}
| 23,043 | 27.949749 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/src/chunk_mmap.c | #define JEMALLOC_CHUNK_MMAP_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
static void *
chunk_alloc_mmap_slow(size_t size, size_t alignment, bool *zero, bool *commit)
{
void *ret;
size_t alloc_size;
alloc_size = size + alignment - PAGE;
/* Beware size_t wrap-around. */
if (alloc_size < size)
return (NULL);
do {
void *pages;
size_t leadsize;
pages = pages_map(NULL, alloc_size, commit);
if (pages == NULL)
return (NULL);
leadsize = ALIGNMENT_CEILING((uintptr_t)pages, alignment) -
(uintptr_t)pages;
ret = pages_trim(pages, alloc_size, leadsize, size, commit);
} while (ret == NULL);
assert(ret != NULL);
*zero = true;
return (ret);
}
void *
chunk_alloc_mmap(void *new_addr, size_t size, size_t alignment, bool *zero,
bool *commit)
{
void *ret;
size_t offset;
/*
* Ideally, there would be a way to specify alignment to mmap() (like
* NetBSD has), but in the absence of such a feature, we have to work
* hard to efficiently create aligned mappings. The reliable, but
* slow method is to create a mapping that is over-sized, then trim the
* excess. However, that always results in one or two calls to
* pages_unmap().
*
* Optimistically try mapping precisely the right amount before falling
* back to the slow method, with the expectation that the optimistic
* approach works most of the time.
*/
assert(alignment != 0);
assert((alignment & chunksize_mask) == 0);
ret = pages_map(new_addr, size, commit);
if (ret == NULL || ret == new_addr)
return (ret);
assert(new_addr == NULL);
offset = ALIGNMENT_ADDR2OFFSET(ret, alignment);
if (offset != 0) {
pages_unmap(ret, size);
return (chunk_alloc_mmap_slow(size, alignment, zero, commit));
}
assert(ret != NULL);
*zero = true;
return (ret);
}
bool
chunk_dalloc_mmap(void *chunk, size_t size)
{
if (config_munmap)
pages_unmap(chunk, size);
return (!config_munmap);
}
| 1,993 | 24.240506 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/src/quarantine.c | #define JEMALLOC_QUARANTINE_C_
#include "jemalloc/internal/jemalloc_internal.h"
/*
* Quarantine pointers close to NULL are used to encode state information that
* is used for cleaning up during thread shutdown.
*/
#define QUARANTINE_STATE_REINCARNATED ((quarantine_t *)(uintptr_t)1)
#define QUARANTINE_STATE_PURGATORY ((quarantine_t *)(uintptr_t)2)
#define QUARANTINE_STATE_MAX QUARANTINE_STATE_PURGATORY
/******************************************************************************/
/* Function prototypes for non-inline static functions. */
static quarantine_t *quarantine_grow(tsd_t *tsd, quarantine_t *quarantine);
static void quarantine_drain_one(tsdn_t *tsdn, quarantine_t *quarantine);
static void quarantine_drain(tsdn_t *tsdn, quarantine_t *quarantine,
size_t upper_bound);
/******************************************************************************/
static quarantine_t *
quarantine_init(tsdn_t *tsdn, size_t lg_maxobjs)
{
quarantine_t *quarantine;
size_t size;
size = offsetof(quarantine_t, objs) + ((ZU(1) << lg_maxobjs) *
sizeof(quarantine_obj_t));
quarantine = (quarantine_t *)iallocztm(tsdn, size, size2index(size),
false, NULL, true, arena_get(TSDN_NULL, 0, true), true);
if (quarantine == NULL)
return (NULL);
quarantine->curbytes = 0;
quarantine->curobjs = 0;
quarantine->first = 0;
quarantine->lg_maxobjs = lg_maxobjs;
return (quarantine);
}
void
quarantine_alloc_hook_work(tsd_t *tsd)
{
quarantine_t *quarantine;
if (!tsd_nominal(tsd))
return;
quarantine = quarantine_init(tsd_tsdn(tsd), LG_MAXOBJS_INIT);
/*
* Check again whether quarantine has been initialized, because
* quarantine_init() may have triggered recursive initialization.
*/
if (tsd_quarantine_get(tsd) == NULL)
tsd_quarantine_set(tsd, quarantine);
else
idalloctm(tsd_tsdn(tsd), quarantine, NULL, true, true);
}
static quarantine_t *
quarantine_grow(tsd_t *tsd, quarantine_t *quarantine)
{
quarantine_t *ret;
ret = quarantine_init(tsd_tsdn(tsd), quarantine->lg_maxobjs + 1);
if (ret == NULL) {
quarantine_drain_one(tsd_tsdn(tsd), quarantine);
return (quarantine);
}
ret->curbytes = quarantine->curbytes;
ret->curobjs = quarantine->curobjs;
if (quarantine->first + quarantine->curobjs <= (ZU(1) <<
quarantine->lg_maxobjs)) {
/* objs ring buffer data are contiguous. */
memcpy(ret->objs, &quarantine->objs[quarantine->first],
quarantine->curobjs * sizeof(quarantine_obj_t));
} else {
/* objs ring buffer data wrap around. */
size_t ncopy_a = (ZU(1) << quarantine->lg_maxobjs) -
quarantine->first;
size_t ncopy_b = quarantine->curobjs - ncopy_a;
memcpy(ret->objs, &quarantine->objs[quarantine->first], ncopy_a
* sizeof(quarantine_obj_t));
memcpy(&ret->objs[ncopy_a], quarantine->objs, ncopy_b *
sizeof(quarantine_obj_t));
}
idalloctm(tsd_tsdn(tsd), quarantine, NULL, true, true);
tsd_quarantine_set(tsd, ret);
return (ret);
}
static void
quarantine_drain_one(tsdn_t *tsdn, quarantine_t *quarantine)
{
quarantine_obj_t *obj = &quarantine->objs[quarantine->first];
assert(obj->usize == isalloc(tsdn, obj->ptr, config_prof));
idalloctm(tsdn, obj->ptr, NULL, false, true);
quarantine->curbytes -= obj->usize;
quarantine->curobjs--;
quarantine->first = (quarantine->first + 1) & ((ZU(1) <<
quarantine->lg_maxobjs) - 1);
}
static void
quarantine_drain(tsdn_t *tsdn, quarantine_t *quarantine, size_t upper_bound)
{
while (quarantine->curbytes > upper_bound && quarantine->curobjs > 0)
quarantine_drain_one(tsdn, quarantine);
}
void
quarantine(tsd_t *tsd, void *ptr)
{
quarantine_t *quarantine;
size_t usize = isalloc(tsd_tsdn(tsd), ptr, config_prof);
cassert(config_fill);
assert(opt_quarantine);
if ((quarantine = tsd_quarantine_get(tsd)) == NULL) {
idalloctm(tsd_tsdn(tsd), ptr, NULL, false, true);
return;
}
/*
* Drain one or more objects if the quarantine size limit would be
* exceeded by appending ptr.
*/
if (quarantine->curbytes + usize > opt_quarantine) {
size_t upper_bound = (opt_quarantine >= usize) ? opt_quarantine
- usize : 0;
quarantine_drain(tsd_tsdn(tsd), quarantine, upper_bound);
}
/* Grow the quarantine ring buffer if it's full. */
if (quarantine->curobjs == (ZU(1) << quarantine->lg_maxobjs))
quarantine = quarantine_grow(tsd, quarantine);
/* quarantine_grow() must free a slot if it fails to grow. */
assert(quarantine->curobjs < (ZU(1) << quarantine->lg_maxobjs));
/* Append ptr if its size doesn't exceed the quarantine size. */
if (quarantine->curbytes + usize <= opt_quarantine) {
size_t offset = (quarantine->first + quarantine->curobjs) &
((ZU(1) << quarantine->lg_maxobjs) - 1);
quarantine_obj_t *obj = &quarantine->objs[offset];
obj->ptr = ptr;
obj->usize = usize;
quarantine->curbytes += usize;
quarantine->curobjs++;
if (config_fill && unlikely(opt_junk_free)) {
/*
* Only do redzone validation if Valgrind isn't in
* operation.
*/
if ((!config_valgrind || likely(!in_valgrind))
&& usize <= SMALL_MAXCLASS)
arena_quarantine_junk_small(ptr, usize);
else
memset(ptr, JEMALLOC_FREE_JUNK, usize);
}
} else {
assert(quarantine->curbytes == 0);
idalloctm(tsd_tsdn(tsd), ptr, NULL, false, true);
}
}
void
quarantine_cleanup(tsd_t *tsd)
{
quarantine_t *quarantine;
if (!config_fill)
return;
quarantine = tsd_quarantine_get(tsd);
if (quarantine != NULL) {
quarantine_drain(tsd_tsdn(tsd), quarantine, 0);
idalloctm(tsd_tsdn(tsd), quarantine, NULL, true, true);
tsd_quarantine_set(tsd, NULL);
}
}
| 5,560 | 29.222826 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/src/mutex.c | #define JEMALLOC_MUTEX_C_
#include "jemalloc/internal/jemalloc_internal.h"
#if defined(JEMALLOC_LAZY_LOCK) && !defined(_WIN32)
#include <dlfcn.h>
#endif
#ifndef _CRT_SPINCOUNT
#define _CRT_SPINCOUNT 4000
#endif
/******************************************************************************/
/* Data. */
#ifdef JEMALLOC_LAZY_LOCK
bool isthreaded = false;
#endif
#ifdef JEMALLOC_MUTEX_INIT_CB
static bool postpone_init = true;
static malloc_mutex_t *postponed_mutexes = NULL;
#endif
#if defined(JEMALLOC_LAZY_LOCK) && !defined(_WIN32)
static void pthread_create_once(void);
#endif
/******************************************************************************/
/*
* We intercept pthread_create() calls in order to toggle isthreaded if the
* process goes multi-threaded.
*/
#if defined(JEMALLOC_LAZY_LOCK) && !defined(_WIN32)
static int (*pthread_create_fptr)(pthread_t *__restrict, const pthread_attr_t *,
void *(*)(void *), void *__restrict);
static void
pthread_create_once(void)
{
pthread_create_fptr = dlsym(RTLD_NEXT, "pthread_create");
if (pthread_create_fptr == NULL) {
malloc_write("<jemalloc>: Error in dlsym(RTLD_NEXT, "
"\"pthread_create\")\n");
abort();
}
isthreaded = true;
}
JEMALLOC_EXPORT int
pthread_create(pthread_t *__restrict thread,
const pthread_attr_t *__restrict attr, void *(*start_routine)(void *),
void *__restrict arg)
{
static pthread_once_t once_control = PTHREAD_ONCE_INIT;
pthread_once(&once_control, pthread_create_once);
return (pthread_create_fptr(thread, attr, start_routine, arg));
}
#endif
/******************************************************************************/
#ifdef JEMALLOC_MUTEX_INIT_CB
JEMALLOC_EXPORT int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
void *(calloc_cb)(size_t, size_t));
#endif
bool
malloc_mutex_init(malloc_mutex_t *mutex, const char *name, witness_rank_t rank)
{
#ifdef _WIN32
# if _WIN32_WINNT >= 0x0600
InitializeSRWLock(&mutex->lock);
# else
if (!InitializeCriticalSectionAndSpinCount(&mutex->lock,
_CRT_SPINCOUNT))
return (true);
# endif
#elif (defined(JEMALLOC_OS_UNFAIR_LOCK))
mutex->lock = OS_UNFAIR_LOCK_INIT;
#elif (defined(JEMALLOC_OSSPIN))
mutex->lock = 0;
#elif (defined(JEMALLOC_MUTEX_INIT_CB))
if (postpone_init) {
mutex->postponed_next = postponed_mutexes;
postponed_mutexes = mutex;
} else {
if (_pthread_mutex_init_calloc_cb(&mutex->lock,
bootstrap_calloc) != 0)
return (true);
}
#else
pthread_mutexattr_t attr;
if (pthread_mutexattr_init(&attr) != 0)
return (true);
pthread_mutexattr_settype(&attr, MALLOC_MUTEX_TYPE);
if (pthread_mutex_init(&mutex->lock, &attr) != 0) {
pthread_mutexattr_destroy(&attr);
return (true);
}
pthread_mutexattr_destroy(&attr);
#endif
if (config_debug)
witness_init(&mutex->witness, name, rank, NULL);
return (false);
}
void
malloc_mutex_prefork(tsdn_t *tsdn, malloc_mutex_t *mutex)
{
malloc_mutex_lock(tsdn, mutex);
}
void
malloc_mutex_postfork_parent(tsdn_t *tsdn, malloc_mutex_t *mutex)
{
malloc_mutex_unlock(tsdn, mutex);
}
void
malloc_mutex_postfork_child(tsdn_t *tsdn, malloc_mutex_t *mutex)
{
#ifdef JEMALLOC_MUTEX_INIT_CB
malloc_mutex_unlock(tsdn, mutex);
#else
if (malloc_mutex_init(mutex, mutex->witness.name,
mutex->witness.rank)) {
malloc_printf("<jemalloc>: Error re-initializing mutex in "
"child\n");
if (opt_abort)
abort();
}
#endif
}
bool
malloc_mutex_boot(void)
{
#ifdef JEMALLOC_MUTEX_INIT_CB
postpone_init = false;
while (postponed_mutexes != NULL) {
if (_pthread_mutex_init_calloc_cb(&postponed_mutexes->lock,
bootstrap_calloc) != 0)
return (true);
postponed_mutexes = postponed_mutexes->postponed_next;
}
#endif
return (false);
}
| 3,729 | 22.459119 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/pack.c | #include "test/jemalloc_test.h"
const char *malloc_conf =
/* Use smallest possible chunk size. */
"lg_chunk:0"
/* Immediately purge to minimize fragmentation. */
",lg_dirty_mult:-1"
",decay_time:-1"
;
/*
* Size class that is a divisor of the page size, ideally 4+ regions per run.
*/
#if LG_PAGE <= 14
#define SZ (ZU(1) << (LG_PAGE - 2))
#else
#define SZ 4096
#endif
/*
* Number of chunks to consume at high water mark. Should be at least 2 so that
* if mmap()ed memory grows downward, downward growth of mmap()ed memory is
* tested.
*/
#define NCHUNKS 8
static unsigned
binind_compute(void)
{
size_t sz;
unsigned nbins, i;
sz = sizeof(nbins);
assert_d_eq(mallctl("arenas.nbins", (void *)&nbins, &sz, NULL, 0), 0,
"Unexpected mallctl failure");
for (i = 0; i < nbins; i++) {
size_t mib[4];
size_t miblen = sizeof(mib)/sizeof(size_t);
size_t size;
assert_d_eq(mallctlnametomib("arenas.bin.0.size", mib,
&miblen), 0, "Unexpected mallctlnametomb failure");
mib[2] = (size_t)i;
sz = sizeof(size);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&size, &sz, NULL,
0), 0, "Unexpected mallctlbymib failure");
if (size == SZ)
return (i);
}
test_fail("Unable to compute nregs_per_run");
return (0);
}
static size_t
nregs_per_run_compute(void)
{
uint32_t nregs;
size_t sz;
unsigned binind = binind_compute();
size_t mib[4];
size_t miblen = sizeof(mib)/sizeof(size_t);
assert_d_eq(mallctlnametomib("arenas.bin.0.nregs", mib, &miblen), 0,
"Unexpected mallctlnametomb failure");
mib[2] = (size_t)binind;
sz = sizeof(nregs);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&nregs, &sz, NULL,
0), 0, "Unexpected mallctlbymib failure");
return (nregs);
}
static size_t
npages_per_run_compute(void)
{
size_t sz;
unsigned binind = binind_compute();
size_t mib[4];
size_t miblen = sizeof(mib)/sizeof(size_t);
size_t run_size;
assert_d_eq(mallctlnametomib("arenas.bin.0.run_size", mib, &miblen), 0,
"Unexpected mallctlnametomb failure");
mib[2] = (size_t)binind;
sz = sizeof(run_size);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&run_size, &sz, NULL,
0), 0, "Unexpected mallctlbymib failure");
return (run_size >> LG_PAGE);
}
static size_t
npages_per_chunk_compute(void)
{
return ((chunksize >> LG_PAGE) - map_bias);
}
static size_t
nruns_per_chunk_compute(void)
{
return (npages_per_chunk_compute() / npages_per_run_compute());
}
static unsigned
arenas_extend_mallctl(void)
{
unsigned arena_ind;
size_t sz;
sz = sizeof(arena_ind);
assert_d_eq(mallctl("arenas.extend", (void *)&arena_ind, &sz, NULL, 0),
0, "Error in arenas.extend");
return (arena_ind);
}
static void
arena_reset_mallctl(unsigned arena_ind)
{
size_t mib[3];
size_t miblen = sizeof(mib)/sizeof(size_t);
assert_d_eq(mallctlnametomib("arena.0.reset", mib, &miblen), 0,
"Unexpected mallctlnametomib() failure");
mib[1] = (size_t)arena_ind;
assert_d_eq(mallctlbymib(mib, miblen, NULL, NULL, NULL, 0), 0,
"Unexpected mallctlbymib() failure");
}
TEST_BEGIN(test_pack)
{
unsigned arena_ind = arenas_extend_mallctl();
size_t nregs_per_run = nregs_per_run_compute();
size_t nruns_per_chunk = nruns_per_chunk_compute();
size_t nruns = nruns_per_chunk * NCHUNKS;
size_t nregs = nregs_per_run * nruns;
VARIABLE_ARRAY(void *, ptrs, nregs);
size_t i, j, offset;
/* Fill matrix. */
for (i = offset = 0; i < nruns; i++) {
for (j = 0; j < nregs_per_run; j++) {
void *p = mallocx(SZ, MALLOCX_ARENA(arena_ind) |
MALLOCX_TCACHE_NONE);
assert_ptr_not_null(p,
"Unexpected mallocx(%zu, MALLOCX_ARENA(%u) |"
" MALLOCX_TCACHE_NONE) failure, run=%zu, reg=%zu",
SZ, arena_ind, i, j);
ptrs[(i * nregs_per_run) + j] = p;
}
}
/*
* Free all but one region of each run, but rotate which region is
* preserved, so that subsequent allocations exercise the within-run
* layout policy.
*/
offset = 0;
for (i = offset = 0;
i < nruns;
i++, offset = (offset + 1) % nregs_per_run) {
for (j = 0; j < nregs_per_run; j++) {
void *p = ptrs[(i * nregs_per_run) + j];
if (offset == j)
continue;
dallocx(p, MALLOCX_ARENA(arena_ind) |
MALLOCX_TCACHE_NONE);
}
}
/*
* Logically refill matrix, skipping preserved regions and verifying
* that the matrix is unmodified.
*/
offset = 0;
for (i = offset = 0;
i < nruns;
i++, offset = (offset + 1) % nregs_per_run) {
for (j = 0; j < nregs_per_run; j++) {
void *p;
if (offset == j)
continue;
p = mallocx(SZ, MALLOCX_ARENA(arena_ind) |
MALLOCX_TCACHE_NONE);
assert_ptr_eq(p, ptrs[(i * nregs_per_run) + j],
"Unexpected refill discrepancy, run=%zu, reg=%zu\n",
i, j);
}
}
/* Clean up. */
arena_reset_mallctl(arena_ind);
}
TEST_END
int
main(void)
{
return (test(
test_pack));
}
| 4,849 | 22.429952 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/prof_thread_name.c | #include "test/jemalloc_test.h"
#ifdef JEMALLOC_PROF
const char *malloc_conf = "prof:true,prof_active:false";
#endif
static void
mallctl_thread_name_get_impl(const char *thread_name_expected, const char *func,
int line)
{
const char *thread_name_old;
size_t sz;
sz = sizeof(thread_name_old);
assert_d_eq(mallctl("thread.prof.name", (void *)&thread_name_old, &sz,
NULL, 0), 0,
"%s():%d: Unexpected mallctl failure reading thread.prof.name",
func, line);
assert_str_eq(thread_name_old, thread_name_expected,
"%s():%d: Unexpected thread.prof.name value", func, line);
}
#define mallctl_thread_name_get(a) \
mallctl_thread_name_get_impl(a, __func__, __LINE__)
static void
mallctl_thread_name_set_impl(const char *thread_name, const char *func,
int line)
{
assert_d_eq(mallctl("thread.prof.name", NULL, NULL,
(void *)&thread_name, sizeof(thread_name)), 0,
"%s():%d: Unexpected mallctl failure reading thread.prof.name",
func, line);
mallctl_thread_name_get_impl(thread_name, func, line);
}
#define mallctl_thread_name_set(a) \
mallctl_thread_name_set_impl(a, __func__, __LINE__)
TEST_BEGIN(test_prof_thread_name_validation)
{
const char *thread_name;
test_skip_if(!config_prof);
mallctl_thread_name_get("");
mallctl_thread_name_set("hi there");
/* NULL input shouldn't be allowed. */
thread_name = NULL;
assert_d_eq(mallctl("thread.prof.name", NULL, NULL,
(void *)&thread_name, sizeof(thread_name)), EFAULT,
"Unexpected mallctl result writing \"%s\" to thread.prof.name",
thread_name);
/* '\n' shouldn't be allowed. */
thread_name = "hi\nthere";
assert_d_eq(mallctl("thread.prof.name", NULL, NULL,
(void *)&thread_name, sizeof(thread_name)), EFAULT,
"Unexpected mallctl result writing \"%s\" to thread.prof.name",
thread_name);
/* Simultaneous read/write shouldn't be allowed. */
{
const char *thread_name_old;
size_t sz;
sz = sizeof(thread_name_old);
assert_d_eq(mallctl("thread.prof.name",
(void *)&thread_name_old, &sz, (void *)&thread_name,
sizeof(thread_name)), EPERM,
"Unexpected mallctl result writing \"%s\" to "
"thread.prof.name", thread_name);
}
mallctl_thread_name_set("");
}
TEST_END
#define NTHREADS 4
#define NRESET 25
static void *
thd_start(void *varg)
{
unsigned thd_ind = *(unsigned *)varg;
char thread_name[16] = "";
unsigned i;
malloc_snprintf(thread_name, sizeof(thread_name), "thread %u", thd_ind);
mallctl_thread_name_get("");
mallctl_thread_name_set(thread_name);
for (i = 0; i < NRESET; i++) {
assert_d_eq(mallctl("prof.reset", NULL, NULL, NULL, 0), 0,
"Unexpected error while resetting heap profile data");
mallctl_thread_name_get(thread_name);
}
mallctl_thread_name_set(thread_name);
mallctl_thread_name_set("");
return (NULL);
}
TEST_BEGIN(test_prof_thread_name_threaded)
{
thd_t thds[NTHREADS];
unsigned thd_args[NTHREADS];
unsigned i;
test_skip_if(!config_prof);
for (i = 0; i < NTHREADS; i++) {
thd_args[i] = i;
thd_create(&thds[i], thd_start, (void *)&thd_args[i]);
}
for (i = 0; i < NTHREADS; i++)
thd_join(thds[i], NULL);
}
TEST_END
#undef NTHREADS
#undef NRESET
int
main(void)
{
return (test(
test_prof_thread_name_validation,
test_prof_thread_name_threaded));
}
| 3,300 | 24.007576 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/arena_reset.c | #include "test/jemalloc_test.h"
#ifdef JEMALLOC_PROF
const char *malloc_conf = "prof:true,lg_prof_sample:0";
#endif
static unsigned
get_nsizes_impl(const char *cmd)
{
unsigned ret;
size_t z;
z = sizeof(unsigned);
assert_d_eq(mallctl(cmd, (void *)&ret, &z, NULL, 0), 0,
"Unexpected mallctl(\"%s\", ...) failure", cmd);
return (ret);
}
static unsigned
get_nsmall(void)
{
return (get_nsizes_impl("arenas.nbins"));
}
static unsigned
get_nlarge(void)
{
return (get_nsizes_impl("arenas.nlruns"));
}
static unsigned
get_nhuge(void)
{
return (get_nsizes_impl("arenas.nhchunks"));
}
static size_t
get_size_impl(const char *cmd, size_t ind)
{
size_t ret;
size_t z;
size_t mib[4];
size_t miblen = 4;
z = sizeof(size_t);
assert_d_eq(mallctlnametomib(cmd, mib, &miblen),
0, "Unexpected mallctlnametomib(\"%s\", ...) failure", cmd);
mib[2] = ind;
z = sizeof(size_t);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&ret, &z, NULL, 0),
0, "Unexpected mallctlbymib([\"%s\", %zu], ...) failure", cmd, ind);
return (ret);
}
static size_t
get_small_size(size_t ind)
{
return (get_size_impl("arenas.bin.0.size", ind));
}
static size_t
get_large_size(size_t ind)
{
return (get_size_impl("arenas.lrun.0.size", ind));
}
static size_t
get_huge_size(size_t ind)
{
return (get_size_impl("arenas.hchunk.0.size", ind));
}
TEST_BEGIN(test_arena_reset)
{
#define NHUGE 4
unsigned arena_ind, nsmall, nlarge, nhuge, nptrs, i;
size_t sz, miblen;
void **ptrs;
int flags;
size_t mib[3];
tsdn_t *tsdn;
test_skip_if((config_valgrind && unlikely(in_valgrind)) || (config_fill
&& unlikely(opt_quarantine)));
sz = sizeof(unsigned);
assert_d_eq(mallctl("arenas.extend", (void *)&arena_ind, &sz, NULL, 0),
0, "Unexpected mallctl() failure");
flags = MALLOCX_ARENA(arena_ind) | MALLOCX_TCACHE_NONE;
nsmall = get_nsmall();
nlarge = get_nlarge();
nhuge = get_nhuge() > NHUGE ? NHUGE : get_nhuge();
nptrs = nsmall + nlarge + nhuge;
ptrs = (void **)malloc(nptrs * sizeof(void *));
assert_ptr_not_null(ptrs, "Unexpected malloc() failure");
/* Allocate objects with a wide range of sizes. */
for (i = 0; i < nsmall; i++) {
sz = get_small_size(i);
ptrs[i] = mallocx(sz, flags);
assert_ptr_not_null(ptrs[i],
"Unexpected mallocx(%zu, %#x) failure", sz, flags);
}
for (i = 0; i < nlarge; i++) {
sz = get_large_size(i);
ptrs[nsmall + i] = mallocx(sz, flags);
assert_ptr_not_null(ptrs[i],
"Unexpected mallocx(%zu, %#x) failure", sz, flags);
}
for (i = 0; i < nhuge; i++) {
sz = get_huge_size(i);
ptrs[nsmall + nlarge + i] = mallocx(sz, flags);
assert_ptr_not_null(ptrs[i],
"Unexpected mallocx(%zu, %#x) failure", sz, flags);
}
tsdn = tsdn_fetch();
/* Verify allocations. */
for (i = 0; i < nptrs; i++) {
assert_zu_gt(ivsalloc(tsdn, ptrs[i], false), 0,
"Allocation should have queryable size");
}
/* Reset. */
miblen = sizeof(mib)/sizeof(size_t);
assert_d_eq(mallctlnametomib("arena.0.reset", mib, &miblen), 0,
"Unexpected mallctlnametomib() failure");
mib[1] = (size_t)arena_ind;
assert_d_eq(mallctlbymib(mib, miblen, NULL, NULL, NULL, 0), 0,
"Unexpected mallctlbymib() failure");
/* Verify allocations no longer exist. */
for (i = 0; i < nptrs; i++) {
assert_zu_eq(ivsalloc(tsdn, ptrs[i], false), 0,
"Allocation should no longer exist");
}
free(ptrs);
}
TEST_END
int
main(void)
{
return (test(
test_arena_reset));
}
| 3,442 | 20.51875 | 73 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/witness.c | #include "test/jemalloc_test.h"
static witness_lock_error_t *witness_lock_error_orig;
static witness_owner_error_t *witness_owner_error_orig;
static witness_not_owner_error_t *witness_not_owner_error_orig;
static witness_lockless_error_t *witness_lockless_error_orig;
static bool saw_lock_error;
static bool saw_owner_error;
static bool saw_not_owner_error;
static bool saw_lockless_error;
static void
witness_lock_error_intercept(const witness_list_t *witnesses,
const witness_t *witness)
{
saw_lock_error = true;
}
static void
witness_owner_error_intercept(const witness_t *witness)
{
saw_owner_error = true;
}
static void
witness_not_owner_error_intercept(const witness_t *witness)
{
saw_not_owner_error = true;
}
static void
witness_lockless_error_intercept(const witness_list_t *witnesses)
{
saw_lockless_error = true;
}
static int
witness_comp(const witness_t *a, const witness_t *b)
{
assert_u_eq(a->rank, b->rank, "Witnesses should have equal rank");
return (strcmp(a->name, b->name));
}
static int
witness_comp_reverse(const witness_t *a, const witness_t *b)
{
assert_u_eq(a->rank, b->rank, "Witnesses should have equal rank");
return (-strcmp(a->name, b->name));
}
TEST_BEGIN(test_witness)
{
witness_t a, b;
tsdn_t *tsdn;
test_skip_if(!config_debug);
tsdn = tsdn_fetch();
witness_assert_lockless(tsdn);
witness_init(&a, "a", 1, NULL);
witness_assert_not_owner(tsdn, &a);
witness_lock(tsdn, &a);
witness_assert_owner(tsdn, &a);
witness_init(&b, "b", 2, NULL);
witness_assert_not_owner(tsdn, &b);
witness_lock(tsdn, &b);
witness_assert_owner(tsdn, &b);
witness_unlock(tsdn, &a);
witness_unlock(tsdn, &b);
witness_assert_lockless(tsdn);
}
TEST_END
TEST_BEGIN(test_witness_comp)
{
witness_t a, b, c, d;
tsdn_t *tsdn;
test_skip_if(!config_debug);
tsdn = tsdn_fetch();
witness_assert_lockless(tsdn);
witness_init(&a, "a", 1, witness_comp);
witness_assert_not_owner(tsdn, &a);
witness_lock(tsdn, &a);
witness_assert_owner(tsdn, &a);
witness_init(&b, "b", 1, witness_comp);
witness_assert_not_owner(tsdn, &b);
witness_lock(tsdn, &b);
witness_assert_owner(tsdn, &b);
witness_unlock(tsdn, &b);
witness_lock_error_orig = witness_lock_error;
witness_lock_error = witness_lock_error_intercept;
saw_lock_error = false;
witness_init(&c, "c", 1, witness_comp_reverse);
witness_assert_not_owner(tsdn, &c);
assert_false(saw_lock_error, "Unexpected witness lock error");
witness_lock(tsdn, &c);
assert_true(saw_lock_error, "Expected witness lock error");
witness_unlock(tsdn, &c);
saw_lock_error = false;
witness_init(&d, "d", 1, NULL);
witness_assert_not_owner(tsdn, &d);
assert_false(saw_lock_error, "Unexpected witness lock error");
witness_lock(tsdn, &d);
assert_true(saw_lock_error, "Expected witness lock error");
witness_unlock(tsdn, &d);
witness_unlock(tsdn, &a);
witness_assert_lockless(tsdn);
witness_lock_error = witness_lock_error_orig;
}
TEST_END
TEST_BEGIN(test_witness_reversal)
{
witness_t a, b;
tsdn_t *tsdn;
test_skip_if(!config_debug);
witness_lock_error_orig = witness_lock_error;
witness_lock_error = witness_lock_error_intercept;
saw_lock_error = false;
tsdn = tsdn_fetch();
witness_assert_lockless(tsdn);
witness_init(&a, "a", 1, NULL);
witness_init(&b, "b", 2, NULL);
witness_lock(tsdn, &b);
assert_false(saw_lock_error, "Unexpected witness lock error");
witness_lock(tsdn, &a);
assert_true(saw_lock_error, "Expected witness lock error");
witness_unlock(tsdn, &a);
witness_unlock(tsdn, &b);
witness_assert_lockless(tsdn);
witness_lock_error = witness_lock_error_orig;
}
TEST_END
TEST_BEGIN(test_witness_recursive)
{
witness_t a;
tsdn_t *tsdn;
test_skip_if(!config_debug);
witness_not_owner_error_orig = witness_not_owner_error;
witness_not_owner_error = witness_not_owner_error_intercept;
saw_not_owner_error = false;
witness_lock_error_orig = witness_lock_error;
witness_lock_error = witness_lock_error_intercept;
saw_lock_error = false;
tsdn = tsdn_fetch();
witness_assert_lockless(tsdn);
witness_init(&a, "a", 1, NULL);
witness_lock(tsdn, &a);
assert_false(saw_lock_error, "Unexpected witness lock error");
assert_false(saw_not_owner_error, "Unexpected witness not owner error");
witness_lock(tsdn, &a);
assert_true(saw_lock_error, "Expected witness lock error");
assert_true(saw_not_owner_error, "Expected witness not owner error");
witness_unlock(tsdn, &a);
witness_assert_lockless(tsdn);
witness_owner_error = witness_owner_error_orig;
witness_lock_error = witness_lock_error_orig;
}
TEST_END
TEST_BEGIN(test_witness_unlock_not_owned)
{
witness_t a;
tsdn_t *tsdn;
test_skip_if(!config_debug);
witness_owner_error_orig = witness_owner_error;
witness_owner_error = witness_owner_error_intercept;
saw_owner_error = false;
tsdn = tsdn_fetch();
witness_assert_lockless(tsdn);
witness_init(&a, "a", 1, NULL);
assert_false(saw_owner_error, "Unexpected owner error");
witness_unlock(tsdn, &a);
assert_true(saw_owner_error, "Expected owner error");
witness_assert_lockless(tsdn);
witness_owner_error = witness_owner_error_orig;
}
TEST_END
TEST_BEGIN(test_witness_lockful)
{
witness_t a;
tsdn_t *tsdn;
test_skip_if(!config_debug);
witness_lockless_error_orig = witness_lockless_error;
witness_lockless_error = witness_lockless_error_intercept;
saw_lockless_error = false;
tsdn = tsdn_fetch();
witness_assert_lockless(tsdn);
witness_init(&a, "a", 1, NULL);
assert_false(saw_lockless_error, "Unexpected lockless error");
witness_assert_lockless(tsdn);
witness_lock(tsdn, &a);
witness_assert_lockless(tsdn);
assert_true(saw_lockless_error, "Expected lockless error");
witness_unlock(tsdn, &a);
witness_assert_lockless(tsdn);
witness_lockless_error = witness_lockless_error_orig;
}
TEST_END
int
main(void)
{
return (test(
test_witness,
test_witness_comp,
test_witness_reversal,
test_witness_recursive,
test_witness_unlock_not_owned,
test_witness_lockful));
}
| 6,010 | 20.544803 | 73 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/rb.c | #include "test/jemalloc_test.h"
#define rbtn_black_height(a_type, a_field, a_rbt, r_height) do { \
a_type *rbp_bh_t; \
for (rbp_bh_t = (a_rbt)->rbt_root, (r_height) = 0; \
rbp_bh_t != NULL; \
rbp_bh_t = rbtn_left_get(a_type, a_field, rbp_bh_t)) { \
if (!rbtn_red_get(a_type, a_field, rbp_bh_t)) { \
(r_height)++; \
} \
} \
} while (0)
typedef struct node_s node_t;
struct node_s {
#define NODE_MAGIC 0x9823af7e
uint32_t magic;
rb_node(node_t) link;
uint64_t key;
};
static int
node_cmp(const node_t *a, const node_t *b) {
int ret;
assert_u32_eq(a->magic, NODE_MAGIC, "Bad magic");
assert_u32_eq(b->magic, NODE_MAGIC, "Bad magic");
ret = (a->key > b->key) - (a->key < b->key);
if (ret == 0) {
/*
* Duplicates are not allowed in the tree, so force an
* arbitrary ordering for non-identical items with equal keys.
*/
ret = (((uintptr_t)a) > ((uintptr_t)b))
- (((uintptr_t)a) < ((uintptr_t)b));
}
return (ret);
}
typedef rb_tree(node_t) tree_t;
rb_gen(static, tree_, tree_t, node_t, link, node_cmp);
TEST_BEGIN(test_rb_empty)
{
tree_t tree;
node_t key;
tree_new(&tree);
assert_true(tree_empty(&tree), "Tree should be empty");
assert_ptr_null(tree_first(&tree), "Unexpected node");
assert_ptr_null(tree_last(&tree), "Unexpected node");
key.key = 0;
key.magic = NODE_MAGIC;
assert_ptr_null(tree_search(&tree, &key), "Unexpected node");
key.key = 0;
key.magic = NODE_MAGIC;
assert_ptr_null(tree_nsearch(&tree, &key), "Unexpected node");
key.key = 0;
key.magic = NODE_MAGIC;
assert_ptr_null(tree_psearch(&tree, &key), "Unexpected node");
}
TEST_END
static unsigned
tree_recurse(node_t *node, unsigned black_height, unsigned black_depth)
{
unsigned ret = 0;
node_t *left_node;
node_t *right_node;
if (node == NULL)
return (ret);
left_node = rbtn_left_get(node_t, link, node);
right_node = rbtn_right_get(node_t, link, node);
if (!rbtn_red_get(node_t, link, node))
black_depth++;
/* Red nodes must be interleaved with black nodes. */
if (rbtn_red_get(node_t, link, node)) {
if (left_node != NULL)
assert_false(rbtn_red_get(node_t, link, left_node),
"Node should be black");
if (right_node != NULL)
assert_false(rbtn_red_get(node_t, link, right_node),
"Node should be black");
}
/* Self. */
assert_u32_eq(node->magic, NODE_MAGIC, "Bad magic");
/* Left subtree. */
if (left_node != NULL)
ret += tree_recurse(left_node, black_height, black_depth);
else
ret += (black_depth != black_height);
/* Right subtree. */
if (right_node != NULL)
ret += tree_recurse(right_node, black_height, black_depth);
else
ret += (black_depth != black_height);
return (ret);
}
static node_t *
tree_iterate_cb(tree_t *tree, node_t *node, void *data)
{
unsigned *i = (unsigned *)data;
node_t *search_node;
assert_u32_eq(node->magic, NODE_MAGIC, "Bad magic");
/* Test rb_search(). */
search_node = tree_search(tree, node);
assert_ptr_eq(search_node, node,
"tree_search() returned unexpected node");
/* Test rb_nsearch(). */
search_node = tree_nsearch(tree, node);
assert_ptr_eq(search_node, node,
"tree_nsearch() returned unexpected node");
/* Test rb_psearch(). */
search_node = tree_psearch(tree, node);
assert_ptr_eq(search_node, node,
"tree_psearch() returned unexpected node");
(*i)++;
return (NULL);
}
static unsigned
tree_iterate(tree_t *tree)
{
unsigned i;
i = 0;
tree_iter(tree, NULL, tree_iterate_cb, (void *)&i);
return (i);
}
static unsigned
tree_iterate_reverse(tree_t *tree)
{
unsigned i;
i = 0;
tree_reverse_iter(tree, NULL, tree_iterate_cb, (void *)&i);
return (i);
}
static void
node_remove(tree_t *tree, node_t *node, unsigned nnodes)
{
node_t *search_node;
unsigned black_height, imbalances;
tree_remove(tree, node);
/* Test rb_nsearch(). */
search_node = tree_nsearch(tree, node);
if (search_node != NULL) {
assert_u64_ge(search_node->key, node->key,
"Key ordering error");
}
/* Test rb_psearch(). */
search_node = tree_psearch(tree, node);
if (search_node != NULL) {
assert_u64_le(search_node->key, node->key,
"Key ordering error");
}
node->magic = 0;
rbtn_black_height(node_t, link, tree, black_height);
imbalances = tree_recurse(tree->rbt_root, black_height, 0);
assert_u_eq(imbalances, 0, "Tree is unbalanced");
assert_u_eq(tree_iterate(tree), nnodes-1,
"Unexpected node iteration count");
assert_u_eq(tree_iterate_reverse(tree), nnodes-1,
"Unexpected node iteration count");
}
static node_t *
remove_iterate_cb(tree_t *tree, node_t *node, void *data)
{
unsigned *nnodes = (unsigned *)data;
node_t *ret = tree_next(tree, node);
node_remove(tree, node, *nnodes);
return (ret);
}
static node_t *
remove_reverse_iterate_cb(tree_t *tree, node_t *node, void *data)
{
unsigned *nnodes = (unsigned *)data;
node_t *ret = tree_prev(tree, node);
node_remove(tree, node, *nnodes);
return (ret);
}
static void
destroy_cb(node_t *node, void *data)
{
unsigned *nnodes = (unsigned *)data;
assert_u_gt(*nnodes, 0, "Destruction removed too many nodes");
(*nnodes)--;
}
TEST_BEGIN(test_rb_random)
{
#define NNODES 25
#define NBAGS 250
#define SEED 42
sfmt_t *sfmt;
uint64_t bag[NNODES];
tree_t tree;
node_t nodes[NNODES];
unsigned i, j, k, black_height, imbalances;
sfmt = init_gen_rand(SEED);
for (i = 0; i < NBAGS; i++) {
switch (i) {
case 0:
/* Insert in order. */
for (j = 0; j < NNODES; j++)
bag[j] = j;
break;
case 1:
/* Insert in reverse order. */
for (j = 0; j < NNODES; j++)
bag[j] = NNODES - j - 1;
break;
default:
for (j = 0; j < NNODES; j++)
bag[j] = gen_rand64_range(sfmt, NNODES);
}
for (j = 1; j <= NNODES; j++) {
/* Initialize tree and nodes. */
tree_new(&tree);
for (k = 0; k < j; k++) {
nodes[k].magic = NODE_MAGIC;
nodes[k].key = bag[k];
}
/* Insert nodes. */
for (k = 0; k < j; k++) {
tree_insert(&tree, &nodes[k]);
rbtn_black_height(node_t, link, &tree,
black_height);
imbalances = tree_recurse(tree.rbt_root,
black_height, 0);
assert_u_eq(imbalances, 0,
"Tree is unbalanced");
assert_u_eq(tree_iterate(&tree), k+1,
"Unexpected node iteration count");
assert_u_eq(tree_iterate_reverse(&tree), k+1,
"Unexpected node iteration count");
assert_false(tree_empty(&tree),
"Tree should not be empty");
assert_ptr_not_null(tree_first(&tree),
"Tree should not be empty");
assert_ptr_not_null(tree_last(&tree),
"Tree should not be empty");
tree_next(&tree, &nodes[k]);
tree_prev(&tree, &nodes[k]);
}
/* Remove nodes. */
switch (i % 5) {
case 0:
for (k = 0; k < j; k++)
node_remove(&tree, &nodes[k], j - k);
break;
case 1:
for (k = j; k > 0; k--)
node_remove(&tree, &nodes[k-1], k);
break;
case 2: {
node_t *start;
unsigned nnodes = j;
start = NULL;
do {
start = tree_iter(&tree, start,
remove_iterate_cb, (void *)&nnodes);
nnodes--;
} while (start != NULL);
assert_u_eq(nnodes, 0,
"Removal terminated early");
break;
} case 3: {
node_t *start;
unsigned nnodes = j;
start = NULL;
do {
start = tree_reverse_iter(&tree, start,
remove_reverse_iterate_cb,
(void *)&nnodes);
nnodes--;
} while (start != NULL);
assert_u_eq(nnodes, 0,
"Removal terminated early");
break;
} case 4: {
unsigned nnodes = j;
tree_destroy(&tree, destroy_cb, &nnodes);
assert_u_eq(nnodes, 0,
"Destruction terminated early");
break;
} default:
not_reached();
}
}
}
fini_gen_rand(sfmt);
#undef NNODES
#undef NBAGS
#undef SEED
}
TEST_END
int
main(void)
{
return (test(
test_rb_empty,
test_rb_random));
}
| 7,865 | 21.157746 | 71 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/util.c | #include "test/jemalloc_test.h"
#define TEST_POW2_CEIL(t, suf, pri) do { \
unsigned i, pow2; \
t x; \
\
assert_##suf##_eq(pow2_ceil_##suf(0), 0, "Unexpected result"); \
\
for (i = 0; i < sizeof(t) * 8; i++) { \
assert_##suf##_eq(pow2_ceil_##suf(((t)1) << i), ((t)1) \
<< i, "Unexpected result"); \
} \
\
for (i = 2; i < sizeof(t) * 8; i++) { \
assert_##suf##_eq(pow2_ceil_##suf((((t)1) << i) - 1), \
((t)1) << i, "Unexpected result"); \
} \
\
for (i = 0; i < sizeof(t) * 8 - 1; i++) { \
assert_##suf##_eq(pow2_ceil_##suf((((t)1) << i) + 1), \
((t)1) << (i+1), "Unexpected result"); \
} \
\
for (pow2 = 1; pow2 < 25; pow2++) { \
for (x = (((t)1) << (pow2-1)) + 1; x <= ((t)1) << pow2; \
x++) { \
assert_##suf##_eq(pow2_ceil_##suf(x), \
((t)1) << pow2, \
"Unexpected result, x=%"pri, x); \
} \
} \
} while (0)
TEST_BEGIN(test_pow2_ceil_u64)
{
TEST_POW2_CEIL(uint64_t, u64, FMTu64);
}
TEST_END
TEST_BEGIN(test_pow2_ceil_u32)
{
TEST_POW2_CEIL(uint32_t, u32, FMTu32);
}
TEST_END
TEST_BEGIN(test_pow2_ceil_zu)
{
TEST_POW2_CEIL(size_t, zu, "zu");
}
TEST_END
TEST_BEGIN(test_malloc_strtoumax_no_endptr)
{
int err;
set_errno(0);
assert_ju_eq(malloc_strtoumax("0", NULL, 0), 0, "Unexpected result");
err = get_errno();
assert_d_eq(err, 0, "Unexpected failure");
}
TEST_END
TEST_BEGIN(test_malloc_strtoumax)
{
struct test_s {
const char *input;
const char *expected_remainder;
int base;
int expected_errno;
const char *expected_errno_name;
uintmax_t expected_x;
};
#define ERR(e) e, #e
#define KUMAX(x) ((uintmax_t)x##ULL)
#define KSMAX(x) ((uintmax_t)(intmax_t)x##LL)
struct test_s tests[] = {
{"0", "0", -1, ERR(EINVAL), UINTMAX_MAX},
{"0", "0", 1, ERR(EINVAL), UINTMAX_MAX},
{"0", "0", 37, ERR(EINVAL), UINTMAX_MAX},
{"", "", 0, ERR(EINVAL), UINTMAX_MAX},
{"+", "+", 0, ERR(EINVAL), UINTMAX_MAX},
{"++3", "++3", 0, ERR(EINVAL), UINTMAX_MAX},
{"-", "-", 0, ERR(EINVAL), UINTMAX_MAX},
{"42", "", 0, ERR(0), KUMAX(42)},
{"+42", "", 0, ERR(0), KUMAX(42)},
{"-42", "", 0, ERR(0), KSMAX(-42)},
{"042", "", 0, ERR(0), KUMAX(042)},
{"+042", "", 0, ERR(0), KUMAX(042)},
{"-042", "", 0, ERR(0), KSMAX(-042)},
{"0x42", "", 0, ERR(0), KUMAX(0x42)},
{"+0x42", "", 0, ERR(0), KUMAX(0x42)},
{"-0x42", "", 0, ERR(0), KSMAX(-0x42)},
{"0", "", 0, ERR(0), KUMAX(0)},
{"1", "", 0, ERR(0), KUMAX(1)},
{"42", "", 0, ERR(0), KUMAX(42)},
{" 42", "", 0, ERR(0), KUMAX(42)},
{"42 ", " ", 0, ERR(0), KUMAX(42)},
{"0x", "x", 0, ERR(0), KUMAX(0)},
{"42x", "x", 0, ERR(0), KUMAX(42)},
{"07", "", 0, ERR(0), KUMAX(7)},
{"010", "", 0, ERR(0), KUMAX(8)},
{"08", "8", 0, ERR(0), KUMAX(0)},
{"0_", "_", 0, ERR(0), KUMAX(0)},
{"0x", "x", 0, ERR(0), KUMAX(0)},
{"0X", "X", 0, ERR(0), KUMAX(0)},
{"0xg", "xg", 0, ERR(0), KUMAX(0)},
{"0XA", "", 0, ERR(0), KUMAX(10)},
{"010", "", 10, ERR(0), KUMAX(10)},
{"0x3", "x3", 10, ERR(0), KUMAX(0)},
{"12", "2", 2, ERR(0), KUMAX(1)},
{"78", "8", 8, ERR(0), KUMAX(7)},
{"9a", "a", 10, ERR(0), KUMAX(9)},
{"9A", "A", 10, ERR(0), KUMAX(9)},
{"fg", "g", 16, ERR(0), KUMAX(15)},
{"FG", "G", 16, ERR(0), KUMAX(15)},
{"0xfg", "g", 16, ERR(0), KUMAX(15)},
{"0XFG", "G", 16, ERR(0), KUMAX(15)},
{"z_", "_", 36, ERR(0), KUMAX(35)},
{"Z_", "_", 36, ERR(0), KUMAX(35)}
};
#undef ERR
#undef KUMAX
#undef KSMAX
unsigned i;
for (i = 0; i < sizeof(tests)/sizeof(struct test_s); i++) {
struct test_s *test = &tests[i];
int err;
uintmax_t result;
char *remainder;
set_errno(0);
result = malloc_strtoumax(test->input, &remainder, test->base);
err = get_errno();
assert_d_eq(err, test->expected_errno,
"Expected errno %s for \"%s\", base %d",
test->expected_errno_name, test->input, test->base);
assert_str_eq(remainder, test->expected_remainder,
"Unexpected remainder for \"%s\", base %d",
test->input, test->base);
if (err == 0) {
assert_ju_eq(result, test->expected_x,
"Unexpected result for \"%s\", base %d",
test->input, test->base);
}
}
}
TEST_END
TEST_BEGIN(test_malloc_snprintf_truncated)
{
#define BUFLEN 15
char buf[BUFLEN];
size_t result;
size_t len;
#define TEST(expected_str_untruncated, ...) do { \
result = malloc_snprintf(buf, len, __VA_ARGS__); \
assert_d_eq(strncmp(buf, expected_str_untruncated, len-1), 0, \
"Unexpected string inequality (\"%s\" vs \"%s\")", \
buf, expected_str_untruncated); \
assert_zu_eq(result, strlen(expected_str_untruncated), \
"Unexpected result"); \
} while (0)
for (len = 1; len < BUFLEN; len++) {
TEST("012346789", "012346789");
TEST("a0123b", "a%sb", "0123");
TEST("a01234567", "a%s%s", "0123", "4567");
TEST("a0123 ", "a%-6s", "0123");
TEST("a 0123", "a%6s", "0123");
TEST("a 012", "a%6.3s", "0123");
TEST("a 012", "a%*.*s", 6, 3, "0123");
TEST("a 123b", "a% db", 123);
TEST("a123b", "a%-db", 123);
TEST("a-123b", "a%-db", -123);
TEST("a+123b", "a%+db", 123);
}
#undef BUFLEN
#undef TEST
}
TEST_END
TEST_BEGIN(test_malloc_snprintf)
{
#define BUFLEN 128
char buf[BUFLEN];
size_t result;
#define TEST(expected_str, ...) do { \
result = malloc_snprintf(buf, sizeof(buf), __VA_ARGS__); \
assert_str_eq(buf, expected_str, "Unexpected output"); \
assert_zu_eq(result, strlen(expected_str), "Unexpected result");\
} while (0)
TEST("hello", "hello");
TEST("50%, 100%", "50%%, %d%%", 100);
TEST("a0123b", "a%sb", "0123");
TEST("a 0123b", "a%5sb", "0123");
TEST("a 0123b", "a%*sb", 5, "0123");
TEST("a0123 b", "a%-5sb", "0123");
TEST("a0123b", "a%*sb", -1, "0123");
TEST("a0123 b", "a%*sb", -5, "0123");
TEST("a0123 b", "a%-*sb", -5, "0123");
TEST("a012b", "a%.3sb", "0123");
TEST("a012b", "a%.*sb", 3, "0123");
TEST("a0123b", "a%.*sb", -3, "0123");
TEST("a 012b", "a%5.3sb", "0123");
TEST("a 012b", "a%5.*sb", 3, "0123");
TEST("a 012b", "a%*.3sb", 5, "0123");
TEST("a 012b", "a%*.*sb", 5, 3, "0123");
TEST("a 0123b", "a%*.*sb", 5, -3, "0123");
TEST("_abcd_", "_%x_", 0xabcd);
TEST("_0xabcd_", "_%#x_", 0xabcd);
TEST("_1234_", "_%o_", 01234);
TEST("_01234_", "_%#o_", 01234);
TEST("_1234_", "_%u_", 1234);
TEST("_1234_", "_%d_", 1234);
TEST("_ 1234_", "_% d_", 1234);
TEST("_+1234_", "_%+d_", 1234);
TEST("_-1234_", "_%d_", -1234);
TEST("_-1234_", "_% d_", -1234);
TEST("_-1234_", "_%+d_", -1234);
TEST("_-1234_", "_%d_", -1234);
TEST("_1234_", "_%d_", 1234);
TEST("_-1234_", "_%i_", -1234);
TEST("_1234_", "_%i_", 1234);
TEST("_01234_", "_%#o_", 01234);
TEST("_1234_", "_%u_", 1234);
TEST("_0x1234abc_", "_%#x_", 0x1234abc);
TEST("_0X1234ABC_", "_%#X_", 0x1234abc);
TEST("_c_", "_%c_", 'c');
TEST("_string_", "_%s_", "string");
TEST("_0x42_", "_%p_", ((void *)0x42));
TEST("_-1234_", "_%ld_", ((long)-1234));
TEST("_1234_", "_%ld_", ((long)1234));
TEST("_-1234_", "_%li_", ((long)-1234));
TEST("_1234_", "_%li_", ((long)1234));
TEST("_01234_", "_%#lo_", ((long)01234));
TEST("_1234_", "_%lu_", ((long)1234));
TEST("_0x1234abc_", "_%#lx_", ((long)0x1234abc));
TEST("_0X1234ABC_", "_%#lX_", ((long)0x1234ABC));
TEST("_-1234_", "_%lld_", ((long long)-1234));
TEST("_1234_", "_%lld_", ((long long)1234));
TEST("_-1234_", "_%lli_", ((long long)-1234));
TEST("_1234_", "_%lli_", ((long long)1234));
TEST("_01234_", "_%#llo_", ((long long)01234));
TEST("_1234_", "_%llu_", ((long long)1234));
TEST("_0x1234abc_", "_%#llx_", ((long long)0x1234abc));
TEST("_0X1234ABC_", "_%#llX_", ((long long)0x1234ABC));
TEST("_-1234_", "_%qd_", ((long long)-1234));
TEST("_1234_", "_%qd_", ((long long)1234));
TEST("_-1234_", "_%qi_", ((long long)-1234));
TEST("_1234_", "_%qi_", ((long long)1234));
TEST("_01234_", "_%#qo_", ((long long)01234));
TEST("_1234_", "_%qu_", ((long long)1234));
TEST("_0x1234abc_", "_%#qx_", ((long long)0x1234abc));
TEST("_0X1234ABC_", "_%#qX_", ((long long)0x1234ABC));
TEST("_-1234_", "_%jd_", ((intmax_t)-1234));
TEST("_1234_", "_%jd_", ((intmax_t)1234));
TEST("_-1234_", "_%ji_", ((intmax_t)-1234));
TEST("_1234_", "_%ji_", ((intmax_t)1234));
TEST("_01234_", "_%#jo_", ((intmax_t)01234));
TEST("_1234_", "_%ju_", ((intmax_t)1234));
TEST("_0x1234abc_", "_%#jx_", ((intmax_t)0x1234abc));
TEST("_0X1234ABC_", "_%#jX_", ((intmax_t)0x1234ABC));
TEST("_1234_", "_%td_", ((ptrdiff_t)1234));
TEST("_-1234_", "_%td_", ((ptrdiff_t)-1234));
TEST("_1234_", "_%ti_", ((ptrdiff_t)1234));
TEST("_-1234_", "_%ti_", ((ptrdiff_t)-1234));
TEST("_-1234_", "_%zd_", ((ssize_t)-1234));
TEST("_1234_", "_%zd_", ((ssize_t)1234));
TEST("_-1234_", "_%zi_", ((ssize_t)-1234));
TEST("_1234_", "_%zi_", ((ssize_t)1234));
TEST("_01234_", "_%#zo_", ((ssize_t)01234));
TEST("_1234_", "_%zu_", ((ssize_t)1234));
TEST("_0x1234abc_", "_%#zx_", ((ssize_t)0x1234abc));
TEST("_0X1234ABC_", "_%#zX_", ((ssize_t)0x1234ABC));
#undef BUFLEN
}
TEST_END
int
main(void)
{
return (test(
test_pow2_ceil_u64,
test_pow2_ceil_u32,
test_pow2_ceil_zu,
test_malloc_strtoumax_no_endptr,
test_malloc_strtoumax,
test_malloc_snprintf_truncated,
test_malloc_snprintf));
}
| 9,319 | 28.125 | 70 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/prng.c | #include "test/jemalloc_test.h"
static void
test_prng_lg_range_u32(bool atomic)
{
uint32_t sa, sb, ra, rb;
unsigned lg_range;
sa = 42;
ra = prng_lg_range_u32(&sa, 32, atomic);
sa = 42;
rb = prng_lg_range_u32(&sa, 32, atomic);
assert_u32_eq(ra, rb,
"Repeated generation should produce repeated results");
sb = 42;
rb = prng_lg_range_u32(&sb, 32, atomic);
assert_u32_eq(ra, rb,
"Equivalent generation should produce equivalent results");
sa = 42;
ra = prng_lg_range_u32(&sa, 32, atomic);
rb = prng_lg_range_u32(&sa, 32, atomic);
assert_u32_ne(ra, rb,
"Full-width results must not immediately repeat");
sa = 42;
ra = prng_lg_range_u32(&sa, 32, atomic);
for (lg_range = 31; lg_range > 0; lg_range--) {
sb = 42;
rb = prng_lg_range_u32(&sb, lg_range, atomic);
assert_u32_eq((rb & (UINT32_C(0xffffffff) << lg_range)),
0, "High order bits should be 0, lg_range=%u", lg_range);
assert_u32_eq(rb, (ra >> (32 - lg_range)),
"Expected high order bits of full-width result, "
"lg_range=%u", lg_range);
}
}
static void
test_prng_lg_range_u64(void)
{
uint64_t sa, sb, ra, rb;
unsigned lg_range;
sa = 42;
ra = prng_lg_range_u64(&sa, 64);
sa = 42;
rb = prng_lg_range_u64(&sa, 64);
assert_u64_eq(ra, rb,
"Repeated generation should produce repeated results");
sb = 42;
rb = prng_lg_range_u64(&sb, 64);
assert_u64_eq(ra, rb,
"Equivalent generation should produce equivalent results");
sa = 42;
ra = prng_lg_range_u64(&sa, 64);
rb = prng_lg_range_u64(&sa, 64);
assert_u64_ne(ra, rb,
"Full-width results must not immediately repeat");
sa = 42;
ra = prng_lg_range_u64(&sa, 64);
for (lg_range = 63; lg_range > 0; lg_range--) {
sb = 42;
rb = prng_lg_range_u64(&sb, lg_range);
assert_u64_eq((rb & (UINT64_C(0xffffffffffffffff) << lg_range)),
0, "High order bits should be 0, lg_range=%u", lg_range);
assert_u64_eq(rb, (ra >> (64 - lg_range)),
"Expected high order bits of full-width result, "
"lg_range=%u", lg_range);
}
}
static void
test_prng_lg_range_zu(bool atomic)
{
size_t sa, sb, ra, rb;
unsigned lg_range;
sa = 42;
ra = prng_lg_range_zu(&sa, ZU(1) << (3 + LG_SIZEOF_PTR), atomic);
sa = 42;
rb = prng_lg_range_zu(&sa, ZU(1) << (3 + LG_SIZEOF_PTR), atomic);
assert_zu_eq(ra, rb,
"Repeated generation should produce repeated results");
sb = 42;
rb = prng_lg_range_zu(&sb, ZU(1) << (3 + LG_SIZEOF_PTR), atomic);
assert_zu_eq(ra, rb,
"Equivalent generation should produce equivalent results");
sa = 42;
ra = prng_lg_range_zu(&sa, ZU(1) << (3 + LG_SIZEOF_PTR), atomic);
rb = prng_lg_range_zu(&sa, ZU(1) << (3 + LG_SIZEOF_PTR), atomic);
assert_zu_ne(ra, rb,
"Full-width results must not immediately repeat");
sa = 42;
ra = prng_lg_range_zu(&sa, ZU(1) << (3 + LG_SIZEOF_PTR), atomic);
for (lg_range = (ZU(1) << (3 + LG_SIZEOF_PTR)) - 1; lg_range > 0;
lg_range--) {
sb = 42;
rb = prng_lg_range_zu(&sb, lg_range, atomic);
assert_zu_eq((rb & (SIZE_T_MAX << lg_range)),
0, "High order bits should be 0, lg_range=%u", lg_range);
assert_zu_eq(rb, (ra >> ((ZU(1) << (3 + LG_SIZEOF_PTR)) -
lg_range)), "Expected high order bits of full-width "
"result, lg_range=%u", lg_range);
}
}
TEST_BEGIN(test_prng_lg_range_u32_nonatomic)
{
test_prng_lg_range_u32(false);
}
TEST_END
TEST_BEGIN(test_prng_lg_range_u32_atomic)
{
test_prng_lg_range_u32(true);
}
TEST_END
TEST_BEGIN(test_prng_lg_range_u64_nonatomic)
{
test_prng_lg_range_u64();
}
TEST_END
TEST_BEGIN(test_prng_lg_range_zu_nonatomic)
{
test_prng_lg_range_zu(false);
}
TEST_END
TEST_BEGIN(test_prng_lg_range_zu_atomic)
{
test_prng_lg_range_zu(true);
}
TEST_END
static void
test_prng_range_u32(bool atomic)
{
uint32_t range;
#define MAX_RANGE 10000000
#define RANGE_STEP 97
#define NREPS 10
for (range = 2; range < MAX_RANGE; range += RANGE_STEP) {
uint32_t s;
unsigned rep;
s = range;
for (rep = 0; rep < NREPS; rep++) {
uint32_t r = prng_range_u32(&s, range, atomic);
assert_u32_lt(r, range, "Out of range");
}
}
}
static void
test_prng_range_u64(void)
{
uint64_t range;
#define MAX_RANGE 10000000
#define RANGE_STEP 97
#define NREPS 10
for (range = 2; range < MAX_RANGE; range += RANGE_STEP) {
uint64_t s;
unsigned rep;
s = range;
for (rep = 0; rep < NREPS; rep++) {
uint64_t r = prng_range_u64(&s, range);
assert_u64_lt(r, range, "Out of range");
}
}
}
static void
test_prng_range_zu(bool atomic)
{
size_t range;
#define MAX_RANGE 10000000
#define RANGE_STEP 97
#define NREPS 10
for (range = 2; range < MAX_RANGE; range += RANGE_STEP) {
size_t s;
unsigned rep;
s = range;
for (rep = 0; rep < NREPS; rep++) {
size_t r = prng_range_zu(&s, range, atomic);
assert_zu_lt(r, range, "Out of range");
}
}
}
TEST_BEGIN(test_prng_range_u32_nonatomic)
{
test_prng_range_u32(false);
}
TEST_END
TEST_BEGIN(test_prng_range_u32_atomic)
{
test_prng_range_u32(true);
}
TEST_END
TEST_BEGIN(test_prng_range_u64_nonatomic)
{
test_prng_range_u64();
}
TEST_END
TEST_BEGIN(test_prng_range_zu_nonatomic)
{
test_prng_range_zu(false);
}
TEST_END
TEST_BEGIN(test_prng_range_zu_atomic)
{
test_prng_range_zu(true);
}
TEST_END
int
main(void)
{
return (test(
test_prng_lg_range_u32_nonatomic,
test_prng_lg_range_u32_atomic,
test_prng_lg_range_u64_nonatomic,
test_prng_lg_range_zu_nonatomic,
test_prng_lg_range_zu_atomic,
test_prng_range_u32_nonatomic,
test_prng_range_u32_atomic,
test_prng_range_u64_nonatomic,
test_prng_range_zu_nonatomic,
test_prng_range_zu_atomic));
}
| 5,611 | 20.257576 | 66 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/stats.c | #include "test/jemalloc_test.h"
TEST_BEGIN(test_stats_summary)
{
size_t *cactive;
size_t sz, allocated, active, resident, mapped;
int expected = config_stats ? 0 : ENOENT;
sz = sizeof(cactive);
assert_d_eq(mallctl("stats.cactive", (void *)&cactive, &sz, NULL, 0),
expected, "Unexpected mallctl() result");
sz = sizeof(size_t);
assert_d_eq(mallctl("stats.allocated", (void *)&allocated, &sz, NULL,
0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.active", (void *)&active, &sz, NULL, 0),
expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.resident", (void *)&resident, &sz, NULL, 0),
expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.mapped", (void *)&mapped, &sz, NULL, 0),
expected, "Unexpected mallctl() result");
if (config_stats) {
assert_zu_le(active, *cactive,
"active should be no larger than cactive");
assert_zu_le(allocated, active,
"allocated should be no larger than active");
assert_zu_lt(active, resident,
"active should be less than resident");
assert_zu_lt(active, mapped,
"active should be less than mapped");
}
}
TEST_END
TEST_BEGIN(test_stats_huge)
{
void *p;
uint64_t epoch;
size_t allocated;
uint64_t nmalloc, ndalloc, nrequests;
size_t sz;
int expected = config_stats ? 0 : ENOENT;
p = mallocx(large_maxclass+1, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch, sizeof(epoch)),
0, "Unexpected mallctl() failure");
sz = sizeof(size_t);
assert_d_eq(mallctl("stats.arenas.0.huge.allocated", (void *)&allocated,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.huge.nmalloc", (void *)&nmalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.huge.ndalloc", (void *)&ndalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.huge.nrequests", (void *)&nrequests,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
if (config_stats) {
assert_zu_gt(allocated, 0,
"allocated should be greater than zero");
assert_u64_ge(nmalloc, ndalloc,
"nmalloc should be at least as large as ndalloc");
assert_u64_le(nmalloc, nrequests,
"nmalloc should no larger than nrequests");
}
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_stats_arenas_summary)
{
unsigned arena;
void *little, *large, *huge;
uint64_t epoch;
size_t sz;
int expected = config_stats ? 0 : ENOENT;
size_t mapped;
uint64_t npurge, nmadvise, purged;
arena = 0;
assert_d_eq(mallctl("thread.arena", NULL, NULL, (void *)&arena,
sizeof(arena)), 0, "Unexpected mallctl() failure");
little = mallocx(SMALL_MAXCLASS, 0);
assert_ptr_not_null(little, "Unexpected mallocx() failure");
large = mallocx(large_maxclass, 0);
assert_ptr_not_null(large, "Unexpected mallocx() failure");
huge = mallocx(chunksize, 0);
assert_ptr_not_null(huge, "Unexpected mallocx() failure");
dallocx(little, 0);
dallocx(large, 0);
dallocx(huge, 0);
assert_d_eq(mallctl("arena.0.purge", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl() failure");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch, sizeof(epoch)),
0, "Unexpected mallctl() failure");
sz = sizeof(size_t);
assert_d_eq(mallctl("stats.arenas.0.mapped", (void *)&mapped, &sz, NULL,
0), expected, "Unexepected mallctl() result");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.npurge", (void *)&npurge, &sz, NULL,
0), expected, "Unexepected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.nmadvise", (void *)&nmadvise, &sz,
NULL, 0), expected, "Unexepected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.purged", (void *)&purged, &sz, NULL,
0), expected, "Unexepected mallctl() result");
if (config_stats) {
assert_u64_gt(npurge, 0,
"At least one purge should have occurred");
assert_u64_le(nmadvise, purged,
"nmadvise should be no greater than purged");
}
}
TEST_END
void *
thd_start(void *arg)
{
return (NULL);
}
static void
no_lazy_lock(void)
{
thd_t thd;
thd_create(&thd, thd_start, NULL);
thd_join(thd, NULL);
}
TEST_BEGIN(test_stats_arenas_small)
{
unsigned arena;
void *p;
size_t sz, allocated;
uint64_t epoch, nmalloc, ndalloc, nrequests;
int expected = config_stats ? 0 : ENOENT;
no_lazy_lock(); /* Lazy locking would dodge tcache testing. */
arena = 0;
assert_d_eq(mallctl("thread.arena", NULL, NULL, (void *)&arena,
sizeof(arena)), 0, "Unexpected mallctl() failure");
p = mallocx(SMALL_MAXCLASS, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_d_eq(mallctl("thread.tcache.flush", NULL, NULL, NULL, 0),
config_tcache ? 0 : ENOENT, "Unexpected mallctl() result");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch, sizeof(epoch)),
0, "Unexpected mallctl() failure");
sz = sizeof(size_t);
assert_d_eq(mallctl("stats.arenas.0.small.allocated",
(void *)&allocated, &sz, NULL, 0), expected,
"Unexpected mallctl() result");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.small.nmalloc", (void *)&nmalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.small.ndalloc", (void *)&ndalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.small.nrequests",
(void *)&nrequests, &sz, NULL, 0), expected,
"Unexpected mallctl() result");
if (config_stats) {
assert_zu_gt(allocated, 0,
"allocated should be greater than zero");
assert_u64_gt(nmalloc, 0,
"nmalloc should be no greater than zero");
assert_u64_ge(nmalloc, ndalloc,
"nmalloc should be at least as large as ndalloc");
assert_u64_gt(nrequests, 0,
"nrequests should be greater than zero");
}
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_stats_arenas_large)
{
unsigned arena;
void *p;
size_t sz, allocated;
uint64_t epoch, nmalloc, ndalloc, nrequests;
int expected = config_stats ? 0 : ENOENT;
arena = 0;
assert_d_eq(mallctl("thread.arena", NULL, NULL, (void *)&arena,
sizeof(arena)), 0, "Unexpected mallctl() failure");
p = mallocx(large_maxclass, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch, sizeof(epoch)),
0, "Unexpected mallctl() failure");
sz = sizeof(size_t);
assert_d_eq(mallctl("stats.arenas.0.large.allocated",
(void *)&allocated, &sz, NULL, 0), expected,
"Unexpected mallctl() result");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.large.nmalloc", (void *)&nmalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.large.ndalloc", (void *)&ndalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.large.nrequests",
(void *)&nrequests, &sz, NULL, 0), expected,
"Unexpected mallctl() result");
if (config_stats) {
assert_zu_gt(allocated, 0,
"allocated should be greater than zero");
assert_u64_gt(nmalloc, 0,
"nmalloc should be greater than zero");
assert_u64_ge(nmalloc, ndalloc,
"nmalloc should be at least as large as ndalloc");
assert_u64_gt(nrequests, 0,
"nrequests should be greater than zero");
}
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_stats_arenas_huge)
{
unsigned arena;
void *p;
size_t sz, allocated;
uint64_t epoch, nmalloc, ndalloc;
int expected = config_stats ? 0 : ENOENT;
arena = 0;
assert_d_eq(mallctl("thread.arena", NULL, NULL, (void *)&arena,
sizeof(arena)), 0, "Unexpected mallctl() failure");
p = mallocx(chunksize, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch, sizeof(epoch)),
0, "Unexpected mallctl() failure");
sz = sizeof(size_t);
assert_d_eq(mallctl("stats.arenas.0.huge.allocated", (void *)&allocated,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.huge.nmalloc", (void *)&nmalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.huge.ndalloc", (void *)&ndalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
if (config_stats) {
assert_zu_gt(allocated, 0,
"allocated should be greater than zero");
assert_u64_gt(nmalloc, 0,
"nmalloc should be greater than zero");
assert_u64_ge(nmalloc, ndalloc,
"nmalloc should be at least as large as ndalloc");
}
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_stats_arenas_bins)
{
unsigned arena;
void *p;
size_t sz, curruns, curregs;
uint64_t epoch, nmalloc, ndalloc, nrequests, nfills, nflushes;
uint64_t nruns, nreruns;
int expected = config_stats ? 0 : ENOENT;
arena = 0;
assert_d_eq(mallctl("thread.arena", NULL, NULL, (void *)&arena,
sizeof(arena)), 0, "Unexpected mallctl() failure");
p = mallocx(arena_bin_info[0].reg_size, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_d_eq(mallctl("thread.tcache.flush", NULL, NULL, NULL, 0),
config_tcache ? 0 : ENOENT, "Unexpected mallctl() result");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch, sizeof(epoch)),
0, "Unexpected mallctl() failure");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.bins.0.nmalloc", (void *)&nmalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.bins.0.ndalloc", (void *)&ndalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.bins.0.nrequests",
(void *)&nrequests, &sz, NULL, 0), expected,
"Unexpected mallctl() result");
sz = sizeof(size_t);
assert_d_eq(mallctl("stats.arenas.0.bins.0.curregs", (void *)&curregs,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.bins.0.nfills", (void *)&nfills,
&sz, NULL, 0), config_tcache ? expected : ENOENT,
"Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.bins.0.nflushes", (void *)&nflushes,
&sz, NULL, 0), config_tcache ? expected : ENOENT,
"Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.bins.0.nruns", (void *)&nruns, &sz,
NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.bins.0.nreruns", (void *)&nreruns,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
sz = sizeof(size_t);
assert_d_eq(mallctl("stats.arenas.0.bins.0.curruns", (void *)&curruns,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
if (config_stats) {
assert_u64_gt(nmalloc, 0,
"nmalloc should be greater than zero");
assert_u64_ge(nmalloc, ndalloc,
"nmalloc should be at least as large as ndalloc");
assert_u64_gt(nrequests, 0,
"nrequests should be greater than zero");
assert_zu_gt(curregs, 0,
"allocated should be greater than zero");
if (config_tcache) {
assert_u64_gt(nfills, 0,
"At least one fill should have occurred");
assert_u64_gt(nflushes, 0,
"At least one flush should have occurred");
}
assert_u64_gt(nruns, 0,
"At least one run should have been allocated");
assert_zu_gt(curruns, 0,
"At least one run should be currently allocated");
}
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_stats_arenas_lruns)
{
unsigned arena;
void *p;
uint64_t epoch, nmalloc, ndalloc, nrequests;
size_t curruns, sz;
int expected = config_stats ? 0 : ENOENT;
arena = 0;
assert_d_eq(mallctl("thread.arena", NULL, NULL, (void *)&arena,
sizeof(arena)), 0, "Unexpected mallctl() failure");
p = mallocx(LARGE_MINCLASS, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch, sizeof(epoch)),
0, "Unexpected mallctl() failure");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.lruns.0.nmalloc", (void *)&nmalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.lruns.0.ndalloc", (void *)&ndalloc,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.lruns.0.nrequests",
(void *)&nrequests, &sz, NULL, 0), expected,
"Unexpected mallctl() result");
sz = sizeof(size_t);
assert_d_eq(mallctl("stats.arenas.0.lruns.0.curruns", (void *)&curruns,
&sz, NULL, 0), expected, "Unexpected mallctl() result");
if (config_stats) {
assert_u64_gt(nmalloc, 0,
"nmalloc should be greater than zero");
assert_u64_ge(nmalloc, ndalloc,
"nmalloc should be at least as large as ndalloc");
assert_u64_gt(nrequests, 0,
"nrequests should be greater than zero");
assert_u64_gt(curruns, 0,
"At least one run should be currently allocated");
}
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_stats_arenas_hchunks)
{
unsigned arena;
void *p;
uint64_t epoch, nmalloc, ndalloc;
size_t curhchunks, sz;
int expected = config_stats ? 0 : ENOENT;
arena = 0;
assert_d_eq(mallctl("thread.arena", NULL, NULL, (void *)&arena,
sizeof(arena)), 0, "Unexpected mallctl() failure");
p = mallocx(chunksize, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch, sizeof(epoch)),
0, "Unexpected mallctl() failure");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.hchunks.0.nmalloc",
(void *)&nmalloc, &sz, NULL, 0), expected,
"Unexpected mallctl() result");
assert_d_eq(mallctl("stats.arenas.0.hchunks.0.ndalloc",
(void *)&ndalloc, &sz, NULL, 0), expected,
"Unexpected mallctl() result");
sz = sizeof(size_t);
assert_d_eq(mallctl("stats.arenas.0.hchunks.0.curhchunks",
(void *)&curhchunks, &sz, NULL, 0), expected,
"Unexpected mallctl() result");
if (config_stats) {
assert_u64_gt(nmalloc, 0,
"nmalloc should be greater than zero");
assert_u64_ge(nmalloc, ndalloc,
"nmalloc should be at least as large as ndalloc");
assert_u64_gt(curhchunks, 0,
"At least one chunk should be currently allocated");
}
dallocx(p, 0);
}
TEST_END
int
main(void)
{
return (test(
test_stats_summary,
test_stats_huge,
test_stats_arenas_summary,
test_stats_arenas_small,
test_stats_arenas_large,
test_stats_arenas_huge,
test_stats_arenas_bins,
test_stats_arenas_lruns,
test_stats_arenas_hchunks));
}
| 14,583 | 30.912473 | 73 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/nstime.c | #include "test/jemalloc_test.h"
#define BILLION UINT64_C(1000000000)
TEST_BEGIN(test_nstime_init)
{
nstime_t nst;
nstime_init(&nst, 42000000043);
assert_u64_eq(nstime_ns(&nst), 42000000043, "ns incorrectly read");
assert_u64_eq(nstime_sec(&nst), 42, "sec incorrectly read");
assert_u64_eq(nstime_nsec(&nst), 43, "nsec incorrectly read");
}
TEST_END
TEST_BEGIN(test_nstime_init2)
{
nstime_t nst;
nstime_init2(&nst, 42, 43);
assert_u64_eq(nstime_sec(&nst), 42, "sec incorrectly read");
assert_u64_eq(nstime_nsec(&nst), 43, "nsec incorrectly read");
}
TEST_END
TEST_BEGIN(test_nstime_copy)
{
nstime_t nsta, nstb;
nstime_init2(&nsta, 42, 43);
nstime_init(&nstb, 0);
nstime_copy(&nstb, &nsta);
assert_u64_eq(nstime_sec(&nstb), 42, "sec incorrectly copied");
assert_u64_eq(nstime_nsec(&nstb), 43, "nsec incorrectly copied");
}
TEST_END
TEST_BEGIN(test_nstime_compare)
{
nstime_t nsta, nstb;
nstime_init2(&nsta, 42, 43);
nstime_copy(&nstb, &nsta);
assert_d_eq(nstime_compare(&nsta, &nstb), 0, "Times should be equal");
assert_d_eq(nstime_compare(&nstb, &nsta), 0, "Times should be equal");
nstime_init2(&nstb, 42, 42);
assert_d_eq(nstime_compare(&nsta, &nstb), 1,
"nsta should be greater than nstb");
assert_d_eq(nstime_compare(&nstb, &nsta), -1,
"nstb should be less than nsta");
nstime_init2(&nstb, 42, 44);
assert_d_eq(nstime_compare(&nsta, &nstb), -1,
"nsta should be less than nstb");
assert_d_eq(nstime_compare(&nstb, &nsta), 1,
"nstb should be greater than nsta");
nstime_init2(&nstb, 41, BILLION - 1);
assert_d_eq(nstime_compare(&nsta, &nstb), 1,
"nsta should be greater than nstb");
assert_d_eq(nstime_compare(&nstb, &nsta), -1,
"nstb should be less than nsta");
nstime_init2(&nstb, 43, 0);
assert_d_eq(nstime_compare(&nsta, &nstb), -1,
"nsta should be less than nstb");
assert_d_eq(nstime_compare(&nstb, &nsta), 1,
"nstb should be greater than nsta");
}
TEST_END
TEST_BEGIN(test_nstime_add)
{
nstime_t nsta, nstb;
nstime_init2(&nsta, 42, 43);
nstime_copy(&nstb, &nsta);
nstime_add(&nsta, &nstb);
nstime_init2(&nstb, 84, 86);
assert_d_eq(nstime_compare(&nsta, &nstb), 0,
"Incorrect addition result");
nstime_init2(&nsta, 42, BILLION - 1);
nstime_copy(&nstb, &nsta);
nstime_add(&nsta, &nstb);
nstime_init2(&nstb, 85, BILLION - 2);
assert_d_eq(nstime_compare(&nsta, &nstb), 0,
"Incorrect addition result");
}
TEST_END
TEST_BEGIN(test_nstime_subtract)
{
nstime_t nsta, nstb;
nstime_init2(&nsta, 42, 43);
nstime_copy(&nstb, &nsta);
nstime_subtract(&nsta, &nstb);
nstime_init(&nstb, 0);
assert_d_eq(nstime_compare(&nsta, &nstb), 0,
"Incorrect subtraction result");
nstime_init2(&nsta, 42, 43);
nstime_init2(&nstb, 41, 44);
nstime_subtract(&nsta, &nstb);
nstime_init2(&nstb, 0, BILLION - 1);
assert_d_eq(nstime_compare(&nsta, &nstb), 0,
"Incorrect subtraction result");
}
TEST_END
TEST_BEGIN(test_nstime_imultiply)
{
nstime_t nsta, nstb;
nstime_init2(&nsta, 42, 43);
nstime_imultiply(&nsta, 10);
nstime_init2(&nstb, 420, 430);
assert_d_eq(nstime_compare(&nsta, &nstb), 0,
"Incorrect multiplication result");
nstime_init2(&nsta, 42, 666666666);
nstime_imultiply(&nsta, 3);
nstime_init2(&nstb, 127, 999999998);
assert_d_eq(nstime_compare(&nsta, &nstb), 0,
"Incorrect multiplication result");
}
TEST_END
TEST_BEGIN(test_nstime_idivide)
{
nstime_t nsta, nstb;
nstime_init2(&nsta, 42, 43);
nstime_copy(&nstb, &nsta);
nstime_imultiply(&nsta, 10);
nstime_idivide(&nsta, 10);
assert_d_eq(nstime_compare(&nsta, &nstb), 0,
"Incorrect division result");
nstime_init2(&nsta, 42, 666666666);
nstime_copy(&nstb, &nsta);
nstime_imultiply(&nsta, 3);
nstime_idivide(&nsta, 3);
assert_d_eq(nstime_compare(&nsta, &nstb), 0,
"Incorrect division result");
}
TEST_END
TEST_BEGIN(test_nstime_divide)
{
nstime_t nsta, nstb, nstc;
nstime_init2(&nsta, 42, 43);
nstime_copy(&nstb, &nsta);
nstime_imultiply(&nsta, 10);
assert_u64_eq(nstime_divide(&nsta, &nstb), 10,
"Incorrect division result");
nstime_init2(&nsta, 42, 43);
nstime_copy(&nstb, &nsta);
nstime_imultiply(&nsta, 10);
nstime_init(&nstc, 1);
nstime_add(&nsta, &nstc);
assert_u64_eq(nstime_divide(&nsta, &nstb), 10,
"Incorrect division result");
nstime_init2(&nsta, 42, 43);
nstime_copy(&nstb, &nsta);
nstime_imultiply(&nsta, 10);
nstime_init(&nstc, 1);
nstime_subtract(&nsta, &nstc);
assert_u64_eq(nstime_divide(&nsta, &nstb), 9,
"Incorrect division result");
}
TEST_END
TEST_BEGIN(test_nstime_monotonic)
{
nstime_monotonic();
}
TEST_END
TEST_BEGIN(test_nstime_update)
{
nstime_t nst;
nstime_init(&nst, 0);
assert_false(nstime_update(&nst), "Basic time update failed.");
/* Only Rip Van Winkle sleeps this long. */
{
nstime_t addend;
nstime_init2(&addend, 631152000, 0);
nstime_add(&nst, &addend);
}
{
nstime_t nst0;
nstime_copy(&nst0, &nst);
assert_true(nstime_update(&nst),
"Update should detect time roll-back.");
assert_d_eq(nstime_compare(&nst, &nst0), 0,
"Time should not have been modified");
}
}
TEST_END
int
main(void)
{
return (test(
test_nstime_init,
test_nstime_init2,
test_nstime_copy,
test_nstime_compare,
test_nstime_add,
test_nstime_subtract,
test_nstime_imultiply,
test_nstime_idivide,
test_nstime_divide,
test_nstime_monotonic,
test_nstime_update));
}
| 5,414 | 22.75 | 71 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/atomic.c | #include "test/jemalloc_test.h"
#define TEST_STRUCT(p, t) \
struct p##_test_s { \
t accum0; \
t x; \
t s; \
}; \
typedef struct p##_test_s p##_test_t;
#define TEST_BODY(p, t, tc, ta, FMT) do { \
const p##_test_t tests[] = { \
{(t)-1, (t)-1, (t)-2}, \
{(t)-1, (t) 0, (t)-2}, \
{(t)-1, (t) 1, (t)-2}, \
\
{(t) 0, (t)-1, (t)-2}, \
{(t) 0, (t) 0, (t)-2}, \
{(t) 0, (t) 1, (t)-2}, \
\
{(t) 1, (t)-1, (t)-2}, \
{(t) 1, (t) 0, (t)-2}, \
{(t) 1, (t) 1, (t)-2}, \
\
{(t)0, (t)-(1 << 22), (t)-2}, \
{(t)0, (t)(1 << 22), (t)-2}, \
{(t)(1 << 22), (t)-(1 << 22), (t)-2}, \
{(t)(1 << 22), (t)(1 << 22), (t)-2} \
}; \
unsigned i; \
\
for (i = 0; i < sizeof(tests)/sizeof(p##_test_t); i++) { \
bool err; \
t accum = tests[i].accum0; \
assert_##ta##_eq(atomic_read_##p(&accum), \
tests[i].accum0, \
"Erroneous read, i=%u", i); \
\
assert_##ta##_eq(atomic_add_##p(&accum, tests[i].x), \
(t)((tc)tests[i].accum0 + (tc)tests[i].x), \
"i=%u, accum=%"FMT", x=%"FMT, \
i, tests[i].accum0, tests[i].x); \
assert_##ta##_eq(atomic_read_##p(&accum), accum, \
"Erroneous add, i=%u", i); \
\
accum = tests[i].accum0; \
assert_##ta##_eq(atomic_sub_##p(&accum, tests[i].x), \
(t)((tc)tests[i].accum0 - (tc)tests[i].x), \
"i=%u, accum=%"FMT", x=%"FMT, \
i, tests[i].accum0, tests[i].x); \
assert_##ta##_eq(atomic_read_##p(&accum), accum, \
"Erroneous sub, i=%u", i); \
\
accum = tests[i].accum0; \
err = atomic_cas_##p(&accum, tests[i].x, tests[i].s); \
assert_b_eq(err, tests[i].accum0 != tests[i].x, \
"Erroneous cas success/failure result"); \
assert_##ta##_eq(accum, err ? tests[i].accum0 : \
tests[i].s, "Erroneous cas effect, i=%u", i); \
\
accum = tests[i].accum0; \
atomic_write_##p(&accum, tests[i].s); \
assert_##ta##_eq(accum, tests[i].s, \
"Erroneous write, i=%u", i); \
} \
} while (0)
TEST_STRUCT(uint64, uint64_t)
TEST_BEGIN(test_atomic_uint64)
{
#if !(LG_SIZEOF_PTR == 3 || LG_SIZEOF_INT == 3)
test_skip("64-bit atomic operations not supported");
#else
TEST_BODY(uint64, uint64_t, uint64_t, u64, FMTx64);
#endif
}
TEST_END
TEST_STRUCT(uint32, uint32_t)
TEST_BEGIN(test_atomic_uint32)
{
TEST_BODY(uint32, uint32_t, uint32_t, u32, "#"FMTx32);
}
TEST_END
TEST_STRUCT(p, void *)
TEST_BEGIN(test_atomic_p)
{
TEST_BODY(p, void *, uintptr_t, ptr, "p");
}
TEST_END
TEST_STRUCT(z, size_t)
TEST_BEGIN(test_atomic_z)
{
TEST_BODY(z, size_t, size_t, zu, "#zx");
}
TEST_END
TEST_STRUCT(u, unsigned)
TEST_BEGIN(test_atomic_u)
{
TEST_BODY(u, unsigned, unsigned, u, "#x");
}
TEST_END
int
main(void)
{
return (test(
test_atomic_uint64,
test_atomic_uint32,
test_atomic_p,
test_atomic_z,
test_atomic_u));
}
| 2,991 | 23.325203 | 59 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/bitmap.c | #include "test/jemalloc_test.h"
TEST_BEGIN(test_bitmap_size)
{
size_t i, prev_size;
prev_size = 0;
for (i = 1; i <= BITMAP_MAXBITS; i++) {
bitmap_info_t binfo;
size_t size;
bitmap_info_init(&binfo, i);
size = bitmap_size(&binfo);
assert_true(size >= prev_size,
"Bitmap size is smaller than expected");
prev_size = size;
}
}
TEST_END
TEST_BEGIN(test_bitmap_init)
{
size_t i;
for (i = 1; i <= BITMAP_MAXBITS; i++) {
bitmap_info_t binfo;
bitmap_info_init(&binfo, i);
{
size_t j;
bitmap_t *bitmap = (bitmap_t *)malloc(
bitmap_size(&binfo));
bitmap_init(bitmap, &binfo);
for (j = 0; j < i; j++) {
assert_false(bitmap_get(bitmap, &binfo, j),
"Bit should be unset");
}
free(bitmap);
}
}
}
TEST_END
TEST_BEGIN(test_bitmap_set)
{
size_t i;
for (i = 1; i <= BITMAP_MAXBITS; i++) {
bitmap_info_t binfo;
bitmap_info_init(&binfo, i);
{
size_t j;
bitmap_t *bitmap = (bitmap_t *)malloc(
bitmap_size(&binfo));
bitmap_init(bitmap, &binfo);
for (j = 0; j < i; j++)
bitmap_set(bitmap, &binfo, j);
assert_true(bitmap_full(bitmap, &binfo),
"All bits should be set");
free(bitmap);
}
}
}
TEST_END
TEST_BEGIN(test_bitmap_unset)
{
size_t i;
for (i = 1; i <= BITMAP_MAXBITS; i++) {
bitmap_info_t binfo;
bitmap_info_init(&binfo, i);
{
size_t j;
bitmap_t *bitmap = (bitmap_t *)malloc(
bitmap_size(&binfo));
bitmap_init(bitmap, &binfo);
for (j = 0; j < i; j++)
bitmap_set(bitmap, &binfo, j);
assert_true(bitmap_full(bitmap, &binfo),
"All bits should be set");
for (j = 0; j < i; j++)
bitmap_unset(bitmap, &binfo, j);
for (j = 0; j < i; j++)
bitmap_set(bitmap, &binfo, j);
assert_true(bitmap_full(bitmap, &binfo),
"All bits should be set");
free(bitmap);
}
}
}
TEST_END
TEST_BEGIN(test_bitmap_sfu)
{
size_t i;
for (i = 1; i <= BITMAP_MAXBITS; i++) {
bitmap_info_t binfo;
bitmap_info_init(&binfo, i);
{
size_t j;
bitmap_t *bitmap = (bitmap_t *)malloc(
bitmap_size(&binfo));
bitmap_init(bitmap, &binfo);
/* Iteratively set bits starting at the beginning. */
for (j = 0; j < i; j++) {
assert_zd_eq(bitmap_sfu(bitmap, &binfo), j,
"First unset bit should be just after "
"previous first unset bit");
}
assert_true(bitmap_full(bitmap, &binfo),
"All bits should be set");
/*
* Iteratively unset bits starting at the end, and
* verify that bitmap_sfu() reaches the unset bits.
*/
for (j = i - 1; j < i; j--) { /* (i..0] */
bitmap_unset(bitmap, &binfo, j);
assert_zd_eq(bitmap_sfu(bitmap, &binfo), j,
"First unset bit should the bit previously "
"unset");
bitmap_unset(bitmap, &binfo, j);
}
assert_false(bitmap_get(bitmap, &binfo, 0),
"Bit should be unset");
/*
* Iteratively set bits starting at the beginning, and
* verify that bitmap_sfu() looks past them.
*/
for (j = 1; j < i; j++) {
bitmap_set(bitmap, &binfo, j - 1);
assert_zd_eq(bitmap_sfu(bitmap, &binfo), j,
"First unset bit should be just after the "
"bit previously set");
bitmap_unset(bitmap, &binfo, j);
}
assert_zd_eq(bitmap_sfu(bitmap, &binfo), i - 1,
"First unset bit should be the last bit");
assert_true(bitmap_full(bitmap, &binfo),
"All bits should be set");
free(bitmap);
}
}
}
TEST_END
int
main(void)
{
return (test(
test_bitmap_size,
test_bitmap_init,
test_bitmap_set,
test_bitmap_unset,
test_bitmap_sfu));
}
| 3,574 | 20.79878 | 57 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/junk.c | #include "test/jemalloc_test.h"
#ifdef JEMALLOC_FILL
# ifndef JEMALLOC_TEST_JUNK_OPT
# define JEMALLOC_TEST_JUNK_OPT "junk:true"
# endif
const char *malloc_conf =
"abort:false,zero:false,redzone:true,quarantine:0," JEMALLOC_TEST_JUNK_OPT;
#endif
static arena_dalloc_junk_small_t *arena_dalloc_junk_small_orig;
static arena_dalloc_junk_large_t *arena_dalloc_junk_large_orig;
static huge_dalloc_junk_t *huge_dalloc_junk_orig;
static void *watch_for_junking;
static bool saw_junking;
static void
watch_junking(void *p)
{
watch_for_junking = p;
saw_junking = false;
}
static void
arena_dalloc_junk_small_intercept(void *ptr, arena_bin_info_t *bin_info)
{
size_t i;
arena_dalloc_junk_small_orig(ptr, bin_info);
for (i = 0; i < bin_info->reg_size; i++) {
assert_u_eq(((uint8_t *)ptr)[i], JEMALLOC_FREE_JUNK,
"Missing junk fill for byte %zu/%zu of deallocated region",
i, bin_info->reg_size);
}
if (ptr == watch_for_junking)
saw_junking = true;
}
static void
arena_dalloc_junk_large_intercept(void *ptr, size_t usize)
{
size_t i;
arena_dalloc_junk_large_orig(ptr, usize);
for (i = 0; i < usize; i++) {
assert_u_eq(((uint8_t *)ptr)[i], JEMALLOC_FREE_JUNK,
"Missing junk fill for byte %zu/%zu of deallocated region",
i, usize);
}
if (ptr == watch_for_junking)
saw_junking = true;
}
static void
huge_dalloc_junk_intercept(void *ptr, size_t usize)
{
huge_dalloc_junk_orig(ptr, usize);
/*
* The conditions under which junk filling actually occurs are nuanced
* enough that it doesn't make sense to duplicate the decision logic in
* test code, so don't actually check that the region is junk-filled.
*/
if (ptr == watch_for_junking)
saw_junking = true;
}
static void
test_junk(size_t sz_min, size_t sz_max)
{
uint8_t *s;
size_t sz_prev, sz, i;
if (opt_junk_free) {
arena_dalloc_junk_small_orig = arena_dalloc_junk_small;
arena_dalloc_junk_small = arena_dalloc_junk_small_intercept;
arena_dalloc_junk_large_orig = arena_dalloc_junk_large;
arena_dalloc_junk_large = arena_dalloc_junk_large_intercept;
huge_dalloc_junk_orig = huge_dalloc_junk;
huge_dalloc_junk = huge_dalloc_junk_intercept;
}
sz_prev = 0;
s = (uint8_t *)mallocx(sz_min, 0);
assert_ptr_not_null((void *)s, "Unexpected mallocx() failure");
for (sz = sallocx(s, 0); sz <= sz_max;
sz_prev = sz, sz = sallocx(s, 0)) {
if (sz_prev > 0) {
assert_u_eq(s[0], 'a',
"Previously allocated byte %zu/%zu is corrupted",
ZU(0), sz_prev);
assert_u_eq(s[sz_prev-1], 'a',
"Previously allocated byte %zu/%zu is corrupted",
sz_prev-1, sz_prev);
}
for (i = sz_prev; i < sz; i++) {
if (opt_junk_alloc) {
assert_u_eq(s[i], JEMALLOC_ALLOC_JUNK,
"Newly allocated byte %zu/%zu isn't "
"junk-filled", i, sz);
}
s[i] = 'a';
}
if (xallocx(s, sz+1, 0, 0) == sz) {
watch_junking(s);
s = (uint8_t *)rallocx(s, sz+1, 0);
assert_ptr_not_null((void *)s,
"Unexpected rallocx() failure");
assert_true(!opt_junk_free || saw_junking,
"Expected region of size %zu to be junk-filled",
sz);
}
}
watch_junking(s);
dallocx(s, 0);
assert_true(!opt_junk_free || saw_junking,
"Expected region of size %zu to be junk-filled", sz);
if (opt_junk_free) {
arena_dalloc_junk_small = arena_dalloc_junk_small_orig;
arena_dalloc_junk_large = arena_dalloc_junk_large_orig;
huge_dalloc_junk = huge_dalloc_junk_orig;
}
}
TEST_BEGIN(test_junk_small)
{
test_skip_if(!config_fill);
test_junk(1, SMALL_MAXCLASS-1);
}
TEST_END
TEST_BEGIN(test_junk_large)
{
test_skip_if(!config_fill);
test_junk(SMALL_MAXCLASS+1, large_maxclass);
}
TEST_END
TEST_BEGIN(test_junk_huge)
{
test_skip_if(!config_fill);
test_junk(large_maxclass+1, chunksize*2);
}
TEST_END
arena_ralloc_junk_large_t *arena_ralloc_junk_large_orig;
static void *most_recently_trimmed;
static size_t
shrink_size(size_t size)
{
size_t shrink_size;
for (shrink_size = size - 1; nallocx(shrink_size, 0) == size;
shrink_size--)
; /* Do nothing. */
return (shrink_size);
}
static void
arena_ralloc_junk_large_intercept(void *ptr, size_t old_usize, size_t usize)
{
arena_ralloc_junk_large_orig(ptr, old_usize, usize);
assert_zu_eq(old_usize, large_maxclass, "Unexpected old_usize");
assert_zu_eq(usize, shrink_size(large_maxclass), "Unexpected usize");
most_recently_trimmed = ptr;
}
TEST_BEGIN(test_junk_large_ralloc_shrink)
{
void *p1, *p2;
p1 = mallocx(large_maxclass, 0);
assert_ptr_not_null(p1, "Unexpected mallocx() failure");
arena_ralloc_junk_large_orig = arena_ralloc_junk_large;
arena_ralloc_junk_large = arena_ralloc_junk_large_intercept;
p2 = rallocx(p1, shrink_size(large_maxclass), 0);
assert_ptr_eq(p1, p2, "Unexpected move during shrink");
arena_ralloc_junk_large = arena_ralloc_junk_large_orig;
assert_ptr_eq(most_recently_trimmed, p1,
"Expected trimmed portion of region to be junk-filled");
}
TEST_END
static bool detected_redzone_corruption;
static void
arena_redzone_corruption_replacement(void *ptr, size_t usize, bool after,
size_t offset, uint8_t byte)
{
detected_redzone_corruption = true;
}
TEST_BEGIN(test_junk_redzone)
{
char *s;
arena_redzone_corruption_t *arena_redzone_corruption_orig;
test_skip_if(!config_fill);
test_skip_if(!opt_junk_alloc || !opt_junk_free);
arena_redzone_corruption_orig = arena_redzone_corruption;
arena_redzone_corruption = arena_redzone_corruption_replacement;
/* Test underflow. */
detected_redzone_corruption = false;
s = (char *)mallocx(1, 0);
assert_ptr_not_null((void *)s, "Unexpected mallocx() failure");
s[-1] = 0xbb;
dallocx(s, 0);
assert_true(detected_redzone_corruption,
"Did not detect redzone corruption");
/* Test overflow. */
detected_redzone_corruption = false;
s = (char *)mallocx(1, 0);
assert_ptr_not_null((void *)s, "Unexpected mallocx() failure");
s[sallocx(s, 0)] = 0xbb;
dallocx(s, 0);
assert_true(detected_redzone_corruption,
"Did not detect redzone corruption");
arena_redzone_corruption = arena_redzone_corruption_orig;
}
TEST_END
int
main(void)
{
return (test(
test_junk_small,
test_junk_large,
test_junk_huge,
test_junk_large_ralloc_shrink,
test_junk_redzone));
}
| 6,244 | 23.586614 | 79 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/ckh.c | #include "test/jemalloc_test.h"
TEST_BEGIN(test_new_delete)
{
tsd_t *tsd;
ckh_t ckh;
tsd = tsd_fetch();
assert_false(ckh_new(tsd, &ckh, 2, ckh_string_hash,
ckh_string_keycomp), "Unexpected ckh_new() error");
ckh_delete(tsd, &ckh);
assert_false(ckh_new(tsd, &ckh, 3, ckh_pointer_hash,
ckh_pointer_keycomp), "Unexpected ckh_new() error");
ckh_delete(tsd, &ckh);
}
TEST_END
TEST_BEGIN(test_count_insert_search_remove)
{
tsd_t *tsd;
ckh_t ckh;
const char *strs[] = {
"a string",
"A string",
"a string.",
"A string."
};
const char *missing = "A string not in the hash table.";
size_t i;
tsd = tsd_fetch();
assert_false(ckh_new(tsd, &ckh, 2, ckh_string_hash,
ckh_string_keycomp), "Unexpected ckh_new() error");
assert_zu_eq(ckh_count(&ckh), 0,
"ckh_count() should return %zu, but it returned %zu", ZU(0),
ckh_count(&ckh));
/* Insert. */
for (i = 0; i < sizeof(strs)/sizeof(const char *); i++) {
ckh_insert(tsd, &ckh, strs[i], strs[i]);
assert_zu_eq(ckh_count(&ckh), i+1,
"ckh_count() should return %zu, but it returned %zu", i+1,
ckh_count(&ckh));
}
/* Search. */
for (i = 0; i < sizeof(strs)/sizeof(const char *); i++) {
union {
void *p;
const char *s;
} k, v;
void **kp, **vp;
const char *ks, *vs;
kp = (i & 1) ? &k.p : NULL;
vp = (i & 2) ? &v.p : NULL;
k.p = NULL;
v.p = NULL;
assert_false(ckh_search(&ckh, strs[i], kp, vp),
"Unexpected ckh_search() error");
ks = (i & 1) ? strs[i] : (const char *)NULL;
vs = (i & 2) ? strs[i] : (const char *)NULL;
assert_ptr_eq((void *)ks, (void *)k.s, "Key mismatch, i=%zu",
i);
assert_ptr_eq((void *)vs, (void *)v.s, "Value mismatch, i=%zu",
i);
}
assert_true(ckh_search(&ckh, missing, NULL, NULL),
"Unexpected ckh_search() success");
/* Remove. */
for (i = 0; i < sizeof(strs)/sizeof(const char *); i++) {
union {
void *p;
const char *s;
} k, v;
void **kp, **vp;
const char *ks, *vs;
kp = (i & 1) ? &k.p : NULL;
vp = (i & 2) ? &v.p : NULL;
k.p = NULL;
v.p = NULL;
assert_false(ckh_remove(tsd, &ckh, strs[i], kp, vp),
"Unexpected ckh_remove() error");
ks = (i & 1) ? strs[i] : (const char *)NULL;
vs = (i & 2) ? strs[i] : (const char *)NULL;
assert_ptr_eq((void *)ks, (void *)k.s, "Key mismatch, i=%zu",
i);
assert_ptr_eq((void *)vs, (void *)v.s, "Value mismatch, i=%zu",
i);
assert_zu_eq(ckh_count(&ckh),
sizeof(strs)/sizeof(const char *) - i - 1,
"ckh_count() should return %zu, but it returned %zu",
sizeof(strs)/sizeof(const char *) - i - 1,
ckh_count(&ckh));
}
ckh_delete(tsd, &ckh);
}
TEST_END
TEST_BEGIN(test_insert_iter_remove)
{
#define NITEMS ZU(1000)
tsd_t *tsd;
ckh_t ckh;
void **p[NITEMS];
void *q, *r;
size_t i;
tsd = tsd_fetch();
assert_false(ckh_new(tsd, &ckh, 2, ckh_pointer_hash,
ckh_pointer_keycomp), "Unexpected ckh_new() error");
for (i = 0; i < NITEMS; i++) {
p[i] = mallocx(i+1, 0);
assert_ptr_not_null(p[i], "Unexpected mallocx() failure");
}
for (i = 0; i < NITEMS; i++) {
size_t j;
for (j = i; j < NITEMS; j++) {
assert_false(ckh_insert(tsd, &ckh, p[j], p[j]),
"Unexpected ckh_insert() failure");
assert_false(ckh_search(&ckh, p[j], &q, &r),
"Unexpected ckh_search() failure");
assert_ptr_eq(p[j], q, "Key pointer mismatch");
assert_ptr_eq(p[j], r, "Value pointer mismatch");
}
assert_zu_eq(ckh_count(&ckh), NITEMS,
"ckh_count() should return %zu, but it returned %zu",
NITEMS, ckh_count(&ckh));
for (j = i + 1; j < NITEMS; j++) {
assert_false(ckh_search(&ckh, p[j], NULL, NULL),
"Unexpected ckh_search() failure");
assert_false(ckh_remove(tsd, &ckh, p[j], &q, &r),
"Unexpected ckh_remove() failure");
assert_ptr_eq(p[j], q, "Key pointer mismatch");
assert_ptr_eq(p[j], r, "Value pointer mismatch");
assert_true(ckh_search(&ckh, p[j], NULL, NULL),
"Unexpected ckh_search() success");
assert_true(ckh_remove(tsd, &ckh, p[j], &q, &r),
"Unexpected ckh_remove() success");
}
{
bool seen[NITEMS];
size_t tabind;
memset(seen, 0, sizeof(seen));
for (tabind = 0; !ckh_iter(&ckh, &tabind, &q, &r);) {
size_t k;
assert_ptr_eq(q, r, "Key and val not equal");
for (k = 0; k < NITEMS; k++) {
if (p[k] == q) {
assert_false(seen[k],
"Item %zu already seen", k);
seen[k] = true;
break;
}
}
}
for (j = 0; j < i + 1; j++)
assert_true(seen[j], "Item %zu not seen", j);
for (; j < NITEMS; j++)
assert_false(seen[j], "Item %zu seen", j);
}
}
for (i = 0; i < NITEMS; i++) {
assert_false(ckh_search(&ckh, p[i], NULL, NULL),
"Unexpected ckh_search() failure");
assert_false(ckh_remove(tsd, &ckh, p[i], &q, &r),
"Unexpected ckh_remove() failure");
assert_ptr_eq(p[i], q, "Key pointer mismatch");
assert_ptr_eq(p[i], r, "Value pointer mismatch");
assert_true(ckh_search(&ckh, p[i], NULL, NULL),
"Unexpected ckh_search() success");
assert_true(ckh_remove(tsd, &ckh, p[i], &q, &r),
"Unexpected ckh_remove() success");
dallocx(p[i], 0);
}
assert_zu_eq(ckh_count(&ckh), 0,
"ckh_count() should return %zu, but it returned %zu",
ZU(0), ckh_count(&ckh));
ckh_delete(tsd, &ckh);
#undef NITEMS
}
TEST_END
int
main(void)
{
return (test(
test_new_delete,
test_count_insert_search_remove,
test_insert_iter_remove));
}
| 5,467 | 24.432558 | 65 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/run_quantize.c | #include "test/jemalloc_test.h"
TEST_BEGIN(test_small_run_size)
{
unsigned nbins, i;
size_t sz, run_size;
size_t mib[4];
size_t miblen = sizeof(mib) / sizeof(size_t);
/*
* Iterate over all small size classes, get their run sizes, and verify
* that the quantized size is the same as the run size.
*/
sz = sizeof(unsigned);
assert_d_eq(mallctl("arenas.nbins", (void *)&nbins, &sz, NULL, 0), 0,
"Unexpected mallctl failure");
assert_d_eq(mallctlnametomib("arenas.bin.0.run_size", mib, &miblen), 0,
"Unexpected mallctlnametomib failure");
for (i = 0; i < nbins; i++) {
mib[2] = i;
sz = sizeof(size_t);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&run_size, &sz,
NULL, 0), 0, "Unexpected mallctlbymib failure");
assert_zu_eq(run_size, run_quantize_floor(run_size),
"Small run quantization should be a no-op (run_size=%zu)",
run_size);
assert_zu_eq(run_size, run_quantize_ceil(run_size),
"Small run quantization should be a no-op (run_size=%zu)",
run_size);
}
}
TEST_END
TEST_BEGIN(test_large_run_size)
{
bool cache_oblivious;
unsigned nlruns, i;
size_t sz, run_size_prev, ceil_prev;
size_t mib[4];
size_t miblen = sizeof(mib) / sizeof(size_t);
/*
* Iterate over all large size classes, get their run sizes, and verify
* that the quantized size is the same as the run size.
*/
sz = sizeof(bool);
assert_d_eq(mallctl("config.cache_oblivious", (void *)&cache_oblivious,
&sz, NULL, 0), 0, "Unexpected mallctl failure");
sz = sizeof(unsigned);
assert_d_eq(mallctl("arenas.nlruns", (void *)&nlruns, &sz, NULL, 0), 0,
"Unexpected mallctl failure");
assert_d_eq(mallctlnametomib("arenas.lrun.0.size", mib, &miblen), 0,
"Unexpected mallctlnametomib failure");
for (i = 0; i < nlruns; i++) {
size_t lrun_size, run_size, floor, ceil;
mib[2] = i;
sz = sizeof(size_t);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&lrun_size, &sz,
NULL, 0), 0, "Unexpected mallctlbymib failure");
run_size = cache_oblivious ? lrun_size + PAGE : lrun_size;
floor = run_quantize_floor(run_size);
ceil = run_quantize_ceil(run_size);
assert_zu_eq(run_size, floor,
"Large run quantization should be a no-op for precise "
"size (lrun_size=%zu, run_size=%zu)", lrun_size, run_size);
assert_zu_eq(run_size, ceil,
"Large run quantization should be a no-op for precise "
"size (lrun_size=%zu, run_size=%zu)", lrun_size, run_size);
if (i > 0) {
assert_zu_eq(run_size_prev, run_quantize_floor(run_size
- PAGE), "Floor should be a precise size");
if (run_size_prev < ceil_prev) {
assert_zu_eq(ceil_prev, run_size,
"Ceiling should be a precise size "
"(run_size_prev=%zu, ceil_prev=%zu, "
"run_size=%zu)", run_size_prev, ceil_prev,
run_size);
}
}
run_size_prev = floor;
ceil_prev = run_quantize_ceil(run_size + PAGE);
}
}
TEST_END
TEST_BEGIN(test_monotonic)
{
unsigned nbins, nlruns, i;
size_t sz, floor_prev, ceil_prev;
/*
* Iterate over all run sizes and verify that
* run_quantize_{floor,ceil}() are monotonic.
*/
sz = sizeof(unsigned);
assert_d_eq(mallctl("arenas.nbins", (void *)&nbins, &sz, NULL, 0), 0,
"Unexpected mallctl failure");
sz = sizeof(unsigned);
assert_d_eq(mallctl("arenas.nlruns", (void *)&nlruns, &sz, NULL, 0), 0,
"Unexpected mallctl failure");
floor_prev = 0;
ceil_prev = 0;
for (i = 1; i <= chunksize >> LG_PAGE; i++) {
size_t run_size, floor, ceil;
run_size = i << LG_PAGE;
floor = run_quantize_floor(run_size);
ceil = run_quantize_ceil(run_size);
assert_zu_le(floor, run_size,
"Floor should be <= (floor=%zu, run_size=%zu, ceil=%zu)",
floor, run_size, ceil);
assert_zu_ge(ceil, run_size,
"Ceiling should be >= (floor=%zu, run_size=%zu, ceil=%zu)",
floor, run_size, ceil);
assert_zu_le(floor_prev, floor, "Floor should be monotonic "
"(floor_prev=%zu, floor=%zu, run_size=%zu, ceil=%zu)",
floor_prev, floor, run_size, ceil);
assert_zu_le(ceil_prev, ceil, "Ceiling should be monotonic "
"(floor=%zu, run_size=%zu, ceil_prev=%zu, ceil=%zu)",
floor, run_size, ceil_prev, ceil);
floor_prev = floor;
ceil_prev = ceil;
}
}
TEST_END
int
main(void)
{
return (test(
test_small_run_size,
test_large_run_size,
test_monotonic));
}
| 4,340 | 27.94 | 72 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/math.c | #include "test/jemalloc_test.h"
#define MAX_REL_ERR 1.0e-9
#define MAX_ABS_ERR 1.0e-9
#include <float.h>
#ifdef __PGI
#undef INFINITY
#endif
#ifndef INFINITY
#define INFINITY (DBL_MAX + DBL_MAX)
#endif
static bool
double_eq_rel(double a, double b, double max_rel_err, double max_abs_err)
{
double rel_err;
if (fabs(a - b) < max_abs_err)
return (true);
rel_err = (fabs(b) > fabs(a)) ? fabs((a-b)/b) : fabs((a-b)/a);
return (rel_err < max_rel_err);
}
static uint64_t
factorial(unsigned x)
{
uint64_t ret = 1;
unsigned i;
for (i = 2; i <= x; i++)
ret *= (uint64_t)i;
return (ret);
}
TEST_BEGIN(test_ln_gamma_factorial)
{
unsigned x;
/* exp(ln_gamma(x)) == (x-1)! for integer x. */
for (x = 1; x <= 21; x++) {
assert_true(double_eq_rel(exp(ln_gamma(x)),
(double)factorial(x-1), MAX_REL_ERR, MAX_ABS_ERR),
"Incorrect factorial result for x=%u", x);
}
}
TEST_END
/* Expected ln_gamma([0.0..100.0] increment=0.25). */
static const double ln_gamma_misc_expected[] = {
INFINITY,
1.28802252469807743, 0.57236494292470008, 0.20328095143129538,
0.00000000000000000, -0.09827183642181320, -0.12078223763524518,
-0.08440112102048555, 0.00000000000000000, 0.12487171489239651,
0.28468287047291918, 0.47521466691493719, 0.69314718055994529,
0.93580193110872523, 1.20097360234707429, 1.48681557859341718,
1.79175946922805496, 2.11445692745037128, 2.45373657084244234,
2.80857141857573644, 3.17805383034794575, 3.56137591038669710,
3.95781396761871651, 4.36671603662228680, 4.78749174278204581,
5.21960398699022932, 5.66256205985714178, 6.11591589143154568,
6.57925121201010121, 7.05218545073853953, 7.53436423675873268,
8.02545839631598312, 8.52516136106541467, 9.03318691960512332,
9.54926725730099690, 10.07315123968123949, 10.60460290274525086,
11.14340011995171231, 11.68933342079726856, 12.24220494005076176,
12.80182748008146909, 13.36802367147604720, 13.94062521940376342,
14.51947222506051816, 15.10441257307551943, 15.69530137706046524,
16.29200047656724237, 16.89437797963419285, 17.50230784587389010,
18.11566950571089407, 18.73434751193644843, 19.35823122022435427,
19.98721449566188468, 20.62119544270163018, 21.26007615624470048,
21.90376249182879320, 22.55216385312342098, 23.20519299513386002,
23.86276584168908954, 24.52480131594137802, 25.19122118273868338,
25.86194990184851861, 26.53691449111561340, 27.21604439872720604,
27.89927138384089389, 28.58652940490193828, 29.27775451504081516,
29.97288476399884871, 30.67186010608067548, 31.37462231367769050,
32.08111489594735843, 32.79128302226991565, 33.50507345013689076,
34.22243445715505317, 34.94331577687681545, 35.66766853819134298,
36.39544520803305261, 37.12659953718355865, 37.86108650896109395,
38.59886229060776230, 39.33988418719949465, 40.08411059791735198,
40.83150097453079752, 41.58201578195490100, 42.33561646075348506,
43.09226539146988699, 43.85192586067515208, 44.61456202863158893,
45.38013889847690052, 46.14862228684032885, 46.91997879580877395,
47.69417578616628361, 48.47118135183522014, 49.25096429545256882,
50.03349410501914463, 50.81874093156324790, 51.60667556776436982,
52.39726942748592364, 53.19049452616926743, 53.98632346204390586,
54.78472939811231157, 55.58568604486942633, 56.38916764371992940,
57.19514895105859864, 58.00360522298051080, 58.81451220059079787,
59.62784609588432261, 60.44358357816834371, 61.26170176100199427,
62.08217818962842927, 62.90499082887649962, 63.73011805151035958,
64.55753862700632340, 65.38723171073768015, 66.21917683354901385,
67.05335389170279825, 67.88974313718154008, 68.72832516833013017,
69.56908092082363737, 70.41199165894616385, 71.25703896716800045,
72.10420474200799390, 72.95347118416940191, 73.80482079093779646,
74.65823634883015814, 75.51370092648485866, 76.37119786778275454,
77.23071078519033961, 78.09222355331530707, 78.95572030266725960,
79.82118541361435859, 80.68860351052903468, 81.55795945611502873,
82.42923834590904164, 83.30242550295004378, 84.17750647261028973,
85.05446701758152983, 85.93329311301090456, 86.81397094178107920,
87.69648688992882057, 88.58082754219766741, 89.46697967771913795,
90.35493026581838194, 91.24466646193963015, 92.13617560368709292,
93.02944520697742803, 93.92446296229978486, 94.82121673107967297,
95.71969454214321615, 96.61988458827809723, 97.52177522288820910,
98.42535495673848800, 99.33061245478741341, 100.23753653310367895,
101.14611615586458981, 102.05634043243354370, 102.96819861451382394,
103.88168009337621811, 104.79677439715833032, 105.71347118823287303,
106.63176026064346047, 107.55163153760463501, 108.47307506906540198,
109.39608102933323153, 110.32063971475740516, 111.24674154146920557,
112.17437704317786995, 113.10353686902013237, 114.03421178146170689,
114.96639265424990128, 115.90007047041454769, 116.83523632031698014,
117.77188139974506953, 118.70999700805310795, 119.64957454634490830,
120.59060551569974962, 121.53308151543865279, 122.47699424143097247,
123.42233548443955726, 124.36909712850338394, 125.31727114935689826,
126.26684961288492559, 127.21782467361175861, 128.17018857322420899,
129.12393363912724453, 130.07905228303084755, 131.03553699956862033,
131.99338036494577864, 132.95257503561629164, 133.91311374698926784,
134.87498931216194364, 135.83819462068046846, 136.80272263732638294,
137.76856640092901785, 138.73571902320256299, 139.70417368760718091,
140.67392364823425055, 141.64496222871400732, 142.61728282114600574,
143.59087888505104047, 144.56574394634486680, 145.54187159633210058,
146.51925549072063859, 147.49788934865566148, 148.47776695177302031,
149.45888214327129617, 150.44122882700193600, 151.42480096657754984,
152.40959258449737490, 153.39559776128982094, 154.38281063467164245,
155.37122539872302696, 156.36083630307879844, 157.35163765213474107,
158.34362380426921391, 159.33678917107920370, 160.33112821663092973,
161.32663545672428995, 162.32330545817117695, 163.32113283808695314,
164.32011226319519892, 165.32023844914485267, 166.32150615984036790,
167.32391020678358018, 168.32744544842768164, 169.33210678954270634,
170.33788918059275375, 171.34478761712384198, 172.35279713916281707,
173.36191283062726143, 174.37212981874515094, 175.38344327348534080,
176.39584840699734514, 177.40934047306160437, 178.42391476654847793,
179.43956662288721304, 180.45629141754378111, 181.47408456550741107,
182.49294152078630304, 183.51285777591152737, 184.53382886144947861,
185.55585034552262869, 186.57891783333786861, 187.60302696672312095,
188.62817342367162610, 189.65435291789341932, 190.68156119837468054,
191.70979404894376330, 192.73904728784492590, 193.76931676731820176,
194.80059837318714244, 195.83288802445184729, 196.86618167288995096,
197.90047530266301123, 198.93576492992946214, 199.97204660246373464,
201.00931639928148797, 202.04757043027063901, 203.08680483582807597,
204.12701578650228385, 205.16819948264117102, 206.21035215404597807,
207.25347005962987623, 208.29754948708190909, 209.34258675253678916,
210.38857820024875878, 211.43552020227099320, 212.48340915813977858,
213.53224149456323744, 214.58201366511514152, 215.63272214993284592,
216.68436345542014010, 217.73693411395422004, 218.79043068359703739,
219.84484974781133815, 220.90018791517996988, 221.95644181913033322,
223.01360811766215875, 224.07168349307951871, 225.13066465172661879,
226.19054832372759734, 227.25133126272962159, 228.31301024565024704,
229.37558207242807384, 230.43904356577689896, 231.50339157094342113,
232.56862295546847008, 233.63473460895144740, 234.70172344281823484,
235.76958639009222907, 236.83832040516844586, 237.90792246359117712,
238.97838956183431947, 240.04971871708477238, 241.12190696702904802,
242.19495136964280846, 243.26884900298270509, 244.34359696498191283,
245.41919237324782443, 246.49563236486270057, 247.57291409618682110,
248.65103474266476269, 249.72999149863338175, 250.80978157713354904,
251.89040220972316320, 252.97185064629374551, 254.05412415488834199,
255.13722002152300661, 256.22113555000953511, 257.30586806178126835,
258.39141489572085675, 259.47777340799029844, 260.56494097186322279,
261.65291497755913497, 262.74169283208021852, 263.83127195904967266,
264.92164979855277807, 266.01282380697938379, 267.10479145686849733,
268.19755023675537586, 269.29109765101975427, 270.38543121973674488,
271.48054847852881721, 272.57644697842033565, 273.67312428569374561,
274.77057798174683967, 275.86880566295326389, 276.96780494052313770,
278.06757344036617496, 279.16810880295668085, 280.26940868320008349,
281.37147075030043197, 282.47429268763045229, 283.57787219260217171,
284.68220697654078322, 285.78729476455760050, 286.89313329542699194,
287.99972032146268930, 289.10705360839756395, 290.21513093526289140,
291.32395009427028754, 292.43350889069523646, 293.54380514276073200,
294.65483668152336350, 295.76660135076059532, 296.87909700685889902,
297.99232151870342022, 299.10627276756946458, 300.22094864701409733,
301.33634706277030091, 302.45246593264130297, 303.56930318639643929,
304.68685676566872189, 305.80512462385280514, 306.92410472600477078,
308.04379504874236773, 309.16419358014690033, 310.28529831966631036,
311.40710727801865687, 312.52961847709792664, 313.65282994987899201,
314.77673974032603610, 315.90134590329950015, 317.02664650446632777,
318.15263962020929966, 319.27932333753892635, 320.40669575400545455,
321.53475497761127144, 322.66349912672620803, 323.79292633000159185,
324.92303472628691452, 326.05382246454587403, 327.18528770377525916,
328.31742861292224234, 329.45024337080525356, 330.58373016603343331,
331.71788719692847280, 332.85271267144611329, 333.98820480709991898,
335.12436183088397001, 336.26118197919845443, 337.39866349777429377,
338.53680464159958774, 339.67560367484657036, 340.81505887079896411,
341.95516851178109619, 343.09593088908627578, 344.23734430290727460,
345.37940706226686416, 346.52211748494903532, 347.66547389743118401,
348.80947463481720661, 349.95411804077025408, 351.09940246744753267,
352.24532627543504759, 353.39188783368263103, 354.53908551944078908,
355.68691771819692349, 356.83538282361303118, 357.98447923746385868,
359.13420536957539753
};
TEST_BEGIN(test_ln_gamma_misc)
{
unsigned i;
for (i = 1; i < sizeof(ln_gamma_misc_expected)/sizeof(double); i++) {
double x = (double)i * 0.25;
assert_true(double_eq_rel(ln_gamma(x),
ln_gamma_misc_expected[i], MAX_REL_ERR, MAX_ABS_ERR),
"Incorrect ln_gamma result for i=%u", i);
}
}
TEST_END
/* Expected pt_norm([0.01..0.99] increment=0.01). */
static const double pt_norm_expected[] = {
-INFINITY,
-2.32634787404084076, -2.05374891063182252, -1.88079360815125085,
-1.75068607125216946, -1.64485362695147264, -1.55477359459685305,
-1.47579102817917063, -1.40507156030963221, -1.34075503369021654,
-1.28155156554460081, -1.22652812003661049, -1.17498679206608991,
-1.12639112903880045, -1.08031934081495606, -1.03643338949378938,
-0.99445788320975281, -0.95416525314619416, -0.91536508784281390,
-0.87789629505122846, -0.84162123357291418, -0.80642124701824025,
-0.77219321418868492, -0.73884684918521371, -0.70630256284008752,
-0.67448975019608171, -0.64334540539291685, -0.61281299101662701,
-0.58284150727121620, -0.55338471955567281, -0.52440051270804067,
-0.49585034734745320, -0.46769879911450812, -0.43991316567323380,
-0.41246312944140462, -0.38532046640756751, -0.35845879325119373,
-0.33185334643681652, -0.30548078809939738, -0.27931903444745404,
-0.25334710313579978, -0.22754497664114931, -0.20189347914185077,
-0.17637416478086135, -0.15096921549677725, -0.12566134685507399,
-0.10043372051146975, -0.07526986209982976, -0.05015358346473352,
-0.02506890825871106, 0.00000000000000000, 0.02506890825871106,
0.05015358346473366, 0.07526986209982990, 0.10043372051146990,
0.12566134685507413, 0.15096921549677739, 0.17637416478086146,
0.20189347914185105, 0.22754497664114931, 0.25334710313579978,
0.27931903444745404, 0.30548078809939738, 0.33185334643681652,
0.35845879325119373, 0.38532046640756762, 0.41246312944140484,
0.43991316567323391, 0.46769879911450835, 0.49585034734745348,
0.52440051270804111, 0.55338471955567303, 0.58284150727121620,
0.61281299101662701, 0.64334540539291685, 0.67448975019608171,
0.70630256284008752, 0.73884684918521371, 0.77219321418868492,
0.80642124701824036, 0.84162123357291441, 0.87789629505122879,
0.91536508784281423, 0.95416525314619460, 0.99445788320975348,
1.03643338949378938, 1.08031934081495606, 1.12639112903880045,
1.17498679206608991, 1.22652812003661049, 1.28155156554460081,
1.34075503369021654, 1.40507156030963265, 1.47579102817917085,
1.55477359459685394, 1.64485362695147308, 1.75068607125217102,
1.88079360815125041, 2.05374891063182208, 2.32634787404084076
};
TEST_BEGIN(test_pt_norm)
{
unsigned i;
for (i = 1; i < sizeof(pt_norm_expected)/sizeof(double); i++) {
double p = (double)i * 0.01;
assert_true(double_eq_rel(pt_norm(p), pt_norm_expected[i],
MAX_REL_ERR, MAX_ABS_ERR),
"Incorrect pt_norm result for i=%u", i);
}
}
TEST_END
/*
* Expected pt_chi2(p=[0.01..0.99] increment=0.07,
* df={0.1, 1.1, 10.1, 100.1, 1000.1}).
*/
static const double pt_chi2_df[] = {0.1, 1.1, 10.1, 100.1, 1000.1};
static const double pt_chi2_expected[] = {
1.168926411457320e-40, 1.347680397072034e-22, 3.886980416666260e-17,
8.245951724356564e-14, 2.068936347497604e-11, 1.562561743309233e-09,
5.459543043426564e-08, 1.114775688149252e-06, 1.532101202364371e-05,
1.553884683726585e-04, 1.239396954915939e-03, 8.153872320255721e-03,
4.631183739647523e-02, 2.473187311701327e-01, 2.175254800183617e+00,
0.0003729887888876379, 0.0164409238228929513, 0.0521523015190650113,
0.1064701372271216612, 0.1800913735793082115, 0.2748704281195626931,
0.3939246282787986497, 0.5420727552260817816, 0.7267265822221973259,
0.9596554296000253670, 1.2607440376386165326, 1.6671185084541604304,
2.2604828984738705167, 3.2868613342148607082, 6.9298574921692139839,
2.606673548632508, 4.602913725294877, 5.646152813924212,
6.488971315540869, 7.249823275816285, 7.977314231410841,
8.700354939944047, 9.441728024225892, 10.224338321374127,
11.076435368801061, 12.039320937038386, 13.183878752697167,
14.657791935084575, 16.885728216339373, 23.361991680031817,
70.14844087392152, 80.92379498849355, 85.53325420085891,
88.94433120715347, 91.83732712857017, 94.46719943606301,
96.96896479994635, 99.43412843510363, 101.94074719829733,
104.57228644307247, 107.43900093448734, 110.71844673417287,
114.76616819871325, 120.57422505959563, 135.92318818757556,
899.0072447849649, 937.9271278858220, 953.8117189560207,
965.3079371501154, 974.8974061207954, 983.4936235182347,
991.5691170518946, 999.4334123954690, 1007.3391826856553,
1015.5445154999951, 1024.3777075619569, 1034.3538789836223,
1046.4872561869577, 1063.5717461999654, 1107.0741966053859
};
TEST_BEGIN(test_pt_chi2)
{
unsigned i, j;
unsigned e = 0;
for (i = 0; i < sizeof(pt_chi2_df)/sizeof(double); i++) {
double df = pt_chi2_df[i];
double ln_gamma_df = ln_gamma(df * 0.5);
for (j = 1; j < 100; j += 7) {
double p = (double)j * 0.01;
assert_true(double_eq_rel(pt_chi2(p, df, ln_gamma_df),
pt_chi2_expected[e], MAX_REL_ERR, MAX_ABS_ERR),
"Incorrect pt_chi2 result for i=%u, j=%u", i, j);
e++;
}
}
}
TEST_END
/*
* Expected pt_gamma(p=[0.1..0.99] increment=0.07,
* shape=[0.5..3.0] increment=0.5).
*/
static const double pt_gamma_shape[] = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0};
static const double pt_gamma_expected[] = {
7.854392895485103e-05, 5.043466107888016e-03, 1.788288957794883e-02,
3.900956150232906e-02, 6.913847560638034e-02, 1.093710833465766e-01,
1.613412523825817e-01, 2.274682115597864e-01, 3.114117323127083e-01,
4.189466220207417e-01, 5.598106789059246e-01, 7.521856146202706e-01,
1.036125427911119e+00, 1.532450860038180e+00, 3.317448300510606e+00,
0.01005033585350144, 0.08338160893905107, 0.16251892949777497,
0.24846135929849966, 0.34249030894677596, 0.44628710262841947,
0.56211891815354142, 0.69314718055994529, 0.84397007029452920,
1.02165124753198167, 1.23787435600161766, 1.51412773262977574,
1.89711998488588196, 2.52572864430825783, 4.60517018598809091,
0.05741590094955853, 0.24747378084860744, 0.39888572212236084,
0.54394139997444901, 0.69048812513915159, 0.84311389861296104,
1.00580622221479898, 1.18298694218766931, 1.38038096305861213,
1.60627736383027453, 1.87396970522337947, 2.20749220408081070,
2.65852391865854942, 3.37934630984842244, 5.67243336507218476,
0.1485547402532659, 0.4657458011640391, 0.6832386130709406,
0.8794297834672100, 1.0700752852474524, 1.2629614217350744,
1.4638400448580779, 1.6783469900166610, 1.9132338090606940,
2.1778589228618777, 2.4868823970010991, 2.8664695666264195,
3.3724415436062114, 4.1682658512758071, 6.6383520679938108,
0.2771490383641385, 0.7195001279643727, 0.9969081732265243,
1.2383497880608061, 1.4675206597269927, 1.6953064251816552,
1.9291243435606809, 2.1757300955477641, 2.4428032131216391,
2.7406534569230616, 3.0851445039665513, 3.5043101122033367,
4.0575997065264637, 4.9182956424675286, 7.5431362346944937,
0.4360451650782932, 0.9983600902486267, 1.3306365880734528,
1.6129750834753802, 1.8767241606994294, 2.1357032436097660,
2.3988853336865565, 2.6740603137235603, 2.9697561737517959,
3.2971457713883265, 3.6731795898504660, 4.1275751617770631,
4.7230515633946677, 5.6417477865306020, 8.4059469148854635
};
TEST_BEGIN(test_pt_gamma_shape)
{
unsigned i, j;
unsigned e = 0;
for (i = 0; i < sizeof(pt_gamma_shape)/sizeof(double); i++) {
double shape = pt_gamma_shape[i];
double ln_gamma_shape = ln_gamma(shape);
for (j = 1; j < 100; j += 7) {
double p = (double)j * 0.01;
assert_true(double_eq_rel(pt_gamma(p, shape, 1.0,
ln_gamma_shape), pt_gamma_expected[e], MAX_REL_ERR,
MAX_ABS_ERR),
"Incorrect pt_gamma result for i=%u, j=%u", i, j);
e++;
}
}
}
TEST_END
TEST_BEGIN(test_pt_gamma_scale)
{
double shape = 1.0;
double ln_gamma_shape = ln_gamma(shape);
assert_true(double_eq_rel(
pt_gamma(0.5, shape, 1.0, ln_gamma_shape) * 10.0,
pt_gamma(0.5, shape, 10.0, ln_gamma_shape), MAX_REL_ERR,
MAX_ABS_ERR),
"Scale should be trivially equivalent to external multiplication");
}
TEST_END
int
main(void)
{
return (test(
test_ln_gamma_factorial,
test_ln_gamma_misc,
test_pt_norm,
test_pt_chi2,
test_pt_gamma_shape,
test_pt_gamma_scale));
}
| 18,485 | 45.330827 | 73 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/ql.c | #include "test/jemalloc_test.h"
/* Number of ring entries, in [2..26]. */
#define NENTRIES 9
typedef struct list_s list_t;
typedef ql_head(list_t) list_head_t;
struct list_s {
ql_elm(list_t) link;
char id;
};
static void
test_empty_list(list_head_t *head)
{
list_t *t;
unsigned i;
assert_ptr_null(ql_first(head), "Unexpected element for empty list");
assert_ptr_null(ql_last(head, link),
"Unexpected element for empty list");
i = 0;
ql_foreach(t, head, link) {
i++;
}
assert_u_eq(i, 0, "Unexpected element for empty list");
i = 0;
ql_reverse_foreach(t, head, link) {
i++;
}
assert_u_eq(i, 0, "Unexpected element for empty list");
}
TEST_BEGIN(test_ql_empty)
{
list_head_t head;
ql_new(&head);
test_empty_list(&head);
}
TEST_END
static void
init_entries(list_t *entries, unsigned nentries)
{
unsigned i;
for (i = 0; i < nentries; i++) {
entries[i].id = 'a' + i;
ql_elm_new(&entries[i], link);
}
}
static void
test_entries_list(list_head_t *head, list_t *entries, unsigned nentries)
{
list_t *t;
unsigned i;
assert_c_eq(ql_first(head)->id, entries[0].id, "Element id mismatch");
assert_c_eq(ql_last(head, link)->id, entries[nentries-1].id,
"Element id mismatch");
i = 0;
ql_foreach(t, head, link) {
assert_c_eq(t->id, entries[i].id, "Element id mismatch");
i++;
}
i = 0;
ql_reverse_foreach(t, head, link) {
assert_c_eq(t->id, entries[nentries-i-1].id,
"Element id mismatch");
i++;
}
for (i = 0; i < nentries-1; i++) {
t = ql_next(head, &entries[i], link);
assert_c_eq(t->id, entries[i+1].id, "Element id mismatch");
}
assert_ptr_null(ql_next(head, &entries[nentries-1], link),
"Unexpected element");
assert_ptr_null(ql_prev(head, &entries[0], link), "Unexpected element");
for (i = 1; i < nentries; i++) {
t = ql_prev(head, &entries[i], link);
assert_c_eq(t->id, entries[i-1].id, "Element id mismatch");
}
}
TEST_BEGIN(test_ql_tail_insert)
{
list_head_t head;
list_t entries[NENTRIES];
unsigned i;
ql_new(&head);
init_entries(entries, sizeof(entries)/sizeof(list_t));
for (i = 0; i < NENTRIES; i++)
ql_tail_insert(&head, &entries[i], link);
test_entries_list(&head, entries, NENTRIES);
}
TEST_END
TEST_BEGIN(test_ql_tail_remove)
{
list_head_t head;
list_t entries[NENTRIES];
unsigned i;
ql_new(&head);
init_entries(entries, sizeof(entries)/sizeof(list_t));
for (i = 0; i < NENTRIES; i++)
ql_tail_insert(&head, &entries[i], link);
for (i = 0; i < NENTRIES; i++) {
test_entries_list(&head, entries, NENTRIES-i);
ql_tail_remove(&head, list_t, link);
}
test_empty_list(&head);
}
TEST_END
TEST_BEGIN(test_ql_head_insert)
{
list_head_t head;
list_t entries[NENTRIES];
unsigned i;
ql_new(&head);
init_entries(entries, sizeof(entries)/sizeof(list_t));
for (i = 0; i < NENTRIES; i++)
ql_head_insert(&head, &entries[NENTRIES-i-1], link);
test_entries_list(&head, entries, NENTRIES);
}
TEST_END
TEST_BEGIN(test_ql_head_remove)
{
list_head_t head;
list_t entries[NENTRIES];
unsigned i;
ql_new(&head);
init_entries(entries, sizeof(entries)/sizeof(list_t));
for (i = 0; i < NENTRIES; i++)
ql_head_insert(&head, &entries[NENTRIES-i-1], link);
for (i = 0; i < NENTRIES; i++) {
test_entries_list(&head, &entries[i], NENTRIES-i);
ql_head_remove(&head, list_t, link);
}
test_empty_list(&head);
}
TEST_END
TEST_BEGIN(test_ql_insert)
{
list_head_t head;
list_t entries[8];
list_t *a, *b, *c, *d, *e, *f, *g, *h;
ql_new(&head);
init_entries(entries, sizeof(entries)/sizeof(list_t));
a = &entries[0];
b = &entries[1];
c = &entries[2];
d = &entries[3];
e = &entries[4];
f = &entries[5];
g = &entries[6];
h = &entries[7];
/*
* ql_remove(), ql_before_insert(), and ql_after_insert() are used
* internally by other macros that are already tested, so there's no
* need to test them completely. However, insertion/deletion from the
* middle of lists is not otherwise tested; do so here.
*/
ql_tail_insert(&head, f, link);
ql_before_insert(&head, f, b, link);
ql_before_insert(&head, f, c, link);
ql_after_insert(f, h, link);
ql_after_insert(f, g, link);
ql_before_insert(&head, b, a, link);
ql_after_insert(c, d, link);
ql_before_insert(&head, f, e, link);
test_entries_list(&head, entries, sizeof(entries)/sizeof(list_t));
}
TEST_END
int
main(void)
{
return (test(
test_ql_empty,
test_ql_tail_insert,
test_ql_tail_remove,
test_ql_head_insert,
test_ql_head_remove,
test_ql_insert));
}
| 4,483 | 20.352381 | 73 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/mallctl.c | #include "test/jemalloc_test.h"
TEST_BEGIN(test_mallctl_errors)
{
uint64_t epoch;
size_t sz;
assert_d_eq(mallctl("no_such_name", NULL, NULL, NULL, 0), ENOENT,
"mallctl() should return ENOENT for non-existent names");
assert_d_eq(mallctl("version", NULL, NULL, "0.0.0", strlen("0.0.0")),
EPERM, "mallctl() should return EPERM on attempt to write "
"read-only value");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch,
sizeof(epoch)-1), EINVAL,
"mallctl() should return EINVAL for input size mismatch");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch,
sizeof(epoch)+1), EINVAL,
"mallctl() should return EINVAL for input size mismatch");
sz = sizeof(epoch)-1;
assert_d_eq(mallctl("epoch", (void *)&epoch, &sz, NULL, 0), EINVAL,
"mallctl() should return EINVAL for output size mismatch");
sz = sizeof(epoch)+1;
assert_d_eq(mallctl("epoch", (void *)&epoch, &sz, NULL, 0), EINVAL,
"mallctl() should return EINVAL for output size mismatch");
}
TEST_END
TEST_BEGIN(test_mallctlnametomib_errors)
{
size_t mib[1];
size_t miblen;
miblen = sizeof(mib)/sizeof(size_t);
assert_d_eq(mallctlnametomib("no_such_name", mib, &miblen), ENOENT,
"mallctlnametomib() should return ENOENT for non-existent names");
}
TEST_END
TEST_BEGIN(test_mallctlbymib_errors)
{
uint64_t epoch;
size_t sz;
size_t mib[1];
size_t miblen;
miblen = sizeof(mib)/sizeof(size_t);
assert_d_eq(mallctlnametomib("version", mib, &miblen), 0,
"Unexpected mallctlnametomib() failure");
assert_d_eq(mallctlbymib(mib, miblen, NULL, NULL, "0.0.0",
strlen("0.0.0")), EPERM, "mallctl() should return EPERM on "
"attempt to write read-only value");
miblen = sizeof(mib)/sizeof(size_t);
assert_d_eq(mallctlnametomib("epoch", mib, &miblen), 0,
"Unexpected mallctlnametomib() failure");
assert_d_eq(mallctlbymib(mib, miblen, NULL, NULL, (void *)&epoch,
sizeof(epoch)-1), EINVAL,
"mallctlbymib() should return EINVAL for input size mismatch");
assert_d_eq(mallctlbymib(mib, miblen, NULL, NULL, (void *)&epoch,
sizeof(epoch)+1), EINVAL,
"mallctlbymib() should return EINVAL for input size mismatch");
sz = sizeof(epoch)-1;
assert_d_eq(mallctlbymib(mib, miblen, (void *)&epoch, &sz, NULL, 0),
EINVAL,
"mallctlbymib() should return EINVAL for output size mismatch");
sz = sizeof(epoch)+1;
assert_d_eq(mallctlbymib(mib, miblen, (void *)&epoch, &sz, NULL, 0),
EINVAL,
"mallctlbymib() should return EINVAL for output size mismatch");
}
TEST_END
TEST_BEGIN(test_mallctl_read_write)
{
uint64_t old_epoch, new_epoch;
size_t sz = sizeof(old_epoch);
/* Blind. */
assert_d_eq(mallctl("epoch", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl() failure");
assert_zu_eq(sz, sizeof(old_epoch), "Unexpected output size");
/* Read. */
assert_d_eq(mallctl("epoch", (void *)&old_epoch, &sz, NULL, 0), 0,
"Unexpected mallctl() failure");
assert_zu_eq(sz, sizeof(old_epoch), "Unexpected output size");
/* Write. */
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&new_epoch,
sizeof(new_epoch)), 0, "Unexpected mallctl() failure");
assert_zu_eq(sz, sizeof(old_epoch), "Unexpected output size");
/* Read+write. */
assert_d_eq(mallctl("epoch", (void *)&old_epoch, &sz,
(void *)&new_epoch, sizeof(new_epoch)), 0,
"Unexpected mallctl() failure");
assert_zu_eq(sz, sizeof(old_epoch), "Unexpected output size");
}
TEST_END
TEST_BEGIN(test_mallctlnametomib_short_mib)
{
size_t mib[4];
size_t miblen;
miblen = 3;
mib[3] = 42;
assert_d_eq(mallctlnametomib("arenas.bin.0.nregs", mib, &miblen), 0,
"Unexpected mallctlnametomib() failure");
assert_zu_eq(miblen, 3, "Unexpected mib output length");
assert_zu_eq(mib[3], 42,
"mallctlnametomib() wrote past the end of the input mib");
}
TEST_END
TEST_BEGIN(test_mallctl_config)
{
#define TEST_MALLCTL_CONFIG(config, t) do { \
t oldval; \
size_t sz = sizeof(oldval); \
assert_d_eq(mallctl("config."#config, (void *)&oldval, &sz, \
NULL, 0), 0, "Unexpected mallctl() failure"); \
assert_b_eq(oldval, config_##config, "Incorrect config value"); \
assert_zu_eq(sz, sizeof(oldval), "Unexpected output size"); \
} while (0)
TEST_MALLCTL_CONFIG(cache_oblivious, bool);
TEST_MALLCTL_CONFIG(debug, bool);
TEST_MALLCTL_CONFIG(fill, bool);
TEST_MALLCTL_CONFIG(lazy_lock, bool);
TEST_MALLCTL_CONFIG(malloc_conf, const char *);
TEST_MALLCTL_CONFIG(munmap, bool);
TEST_MALLCTL_CONFIG(prof, bool);
TEST_MALLCTL_CONFIG(prof_libgcc, bool);
TEST_MALLCTL_CONFIG(prof_libunwind, bool);
TEST_MALLCTL_CONFIG(stats, bool);
TEST_MALLCTL_CONFIG(tcache, bool);
TEST_MALLCTL_CONFIG(tls, bool);
TEST_MALLCTL_CONFIG(utrace, bool);
TEST_MALLCTL_CONFIG(valgrind, bool);
TEST_MALLCTL_CONFIG(xmalloc, bool);
#undef TEST_MALLCTL_CONFIG
}
TEST_END
TEST_BEGIN(test_mallctl_opt)
{
bool config_always = true;
#define TEST_MALLCTL_OPT(t, opt, config) do { \
t oldval; \
size_t sz = sizeof(oldval); \
int expected = config_##config ? 0 : ENOENT; \
int result = mallctl("opt."#opt, (void *)&oldval, &sz, NULL, \
0); \
assert_d_eq(result, expected, \
"Unexpected mallctl() result for opt."#opt); \
assert_zu_eq(sz, sizeof(oldval), "Unexpected output size"); \
} while (0)
TEST_MALLCTL_OPT(bool, abort, always);
TEST_MALLCTL_OPT(size_t, lg_chunk, always);
TEST_MALLCTL_OPT(const char *, dss, always);
TEST_MALLCTL_OPT(unsigned, narenas, always);
TEST_MALLCTL_OPT(const char *, purge, always);
TEST_MALLCTL_OPT(ssize_t, lg_dirty_mult, always);
TEST_MALLCTL_OPT(ssize_t, decay_time, always);
TEST_MALLCTL_OPT(bool, stats_print, always);
TEST_MALLCTL_OPT(const char *, junk, fill);
TEST_MALLCTL_OPT(size_t, quarantine, fill);
TEST_MALLCTL_OPT(bool, redzone, fill);
TEST_MALLCTL_OPT(bool, zero, fill);
TEST_MALLCTL_OPT(bool, utrace, utrace);
TEST_MALLCTL_OPT(bool, xmalloc, xmalloc);
TEST_MALLCTL_OPT(bool, tcache, tcache);
TEST_MALLCTL_OPT(size_t, lg_tcache_max, tcache);
TEST_MALLCTL_OPT(bool, prof, prof);
TEST_MALLCTL_OPT(const char *, prof_prefix, prof);
TEST_MALLCTL_OPT(bool, prof_active, prof);
TEST_MALLCTL_OPT(ssize_t, lg_prof_sample, prof);
TEST_MALLCTL_OPT(bool, prof_accum, prof);
TEST_MALLCTL_OPT(ssize_t, lg_prof_interval, prof);
TEST_MALLCTL_OPT(bool, prof_gdump, prof);
TEST_MALLCTL_OPT(bool, prof_final, prof);
TEST_MALLCTL_OPT(bool, prof_leak, prof);
#undef TEST_MALLCTL_OPT
}
TEST_END
TEST_BEGIN(test_manpage_example)
{
unsigned nbins, i;
size_t mib[4];
size_t len, miblen;
len = sizeof(nbins);
assert_d_eq(mallctl("arenas.nbins", (void *)&nbins, &len, NULL, 0), 0,
"Unexpected mallctl() failure");
miblen = 4;
assert_d_eq(mallctlnametomib("arenas.bin.0.size", mib, &miblen), 0,
"Unexpected mallctlnametomib() failure");
for (i = 0; i < nbins; i++) {
size_t bin_size;
mib[2] = i;
len = sizeof(bin_size);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&bin_size, &len,
NULL, 0), 0, "Unexpected mallctlbymib() failure");
/* Do something with bin_size... */
}
}
TEST_END
TEST_BEGIN(test_tcache_none)
{
void *p0, *q, *p1;
test_skip_if(!config_tcache);
/* Allocate p and q. */
p0 = mallocx(42, 0);
assert_ptr_not_null(p0, "Unexpected mallocx() failure");
q = mallocx(42, 0);
assert_ptr_not_null(q, "Unexpected mallocx() failure");
/* Deallocate p and q, but bypass the tcache for q. */
dallocx(p0, 0);
dallocx(q, MALLOCX_TCACHE_NONE);
/* Make sure that tcache-based allocation returns p, not q. */
p1 = mallocx(42, 0);
assert_ptr_not_null(p1, "Unexpected mallocx() failure");
assert_ptr_eq(p0, p1, "Expected tcache to allocate cached region");
/* Clean up. */
dallocx(p1, MALLOCX_TCACHE_NONE);
}
TEST_END
TEST_BEGIN(test_tcache)
{
#define NTCACHES 10
unsigned tis[NTCACHES];
void *ps[NTCACHES];
void *qs[NTCACHES];
unsigned i;
size_t sz, psz, qsz;
test_skip_if(!config_tcache);
psz = 42;
qsz = nallocx(psz, 0) + 1;
/* Create tcaches. */
for (i = 0; i < NTCACHES; i++) {
sz = sizeof(unsigned);
assert_d_eq(mallctl("tcache.create", (void *)&tis[i], &sz, NULL,
0), 0, "Unexpected mallctl() failure, i=%u", i);
}
/* Exercise tcache ID recycling. */
for (i = 0; i < NTCACHES; i++) {
assert_d_eq(mallctl("tcache.destroy", NULL, NULL,
(void *)&tis[i], sizeof(unsigned)), 0,
"Unexpected mallctl() failure, i=%u", i);
}
for (i = 0; i < NTCACHES; i++) {
sz = sizeof(unsigned);
assert_d_eq(mallctl("tcache.create", (void *)&tis[i], &sz, NULL,
0), 0, "Unexpected mallctl() failure, i=%u", i);
}
/* Flush empty tcaches. */
for (i = 0; i < NTCACHES; i++) {
assert_d_eq(mallctl("tcache.flush", NULL, NULL, (void *)&tis[i],
sizeof(unsigned)), 0, "Unexpected mallctl() failure, i=%u",
i);
}
/* Cache some allocations. */
for (i = 0; i < NTCACHES; i++) {
ps[i] = mallocx(psz, MALLOCX_TCACHE(tis[i]));
assert_ptr_not_null(ps[i], "Unexpected mallocx() failure, i=%u",
i);
dallocx(ps[i], MALLOCX_TCACHE(tis[i]));
qs[i] = mallocx(qsz, MALLOCX_TCACHE(tis[i]));
assert_ptr_not_null(qs[i], "Unexpected mallocx() failure, i=%u",
i);
dallocx(qs[i], MALLOCX_TCACHE(tis[i]));
}
/* Verify that tcaches allocate cached regions. */
for (i = 0; i < NTCACHES; i++) {
void *p0 = ps[i];
ps[i] = mallocx(psz, MALLOCX_TCACHE(tis[i]));
assert_ptr_not_null(ps[i], "Unexpected mallocx() failure, i=%u",
i);
assert_ptr_eq(ps[i], p0,
"Expected mallocx() to allocate cached region, i=%u", i);
}
/* Verify that reallocation uses cached regions. */
for (i = 0; i < NTCACHES; i++) {
void *q0 = qs[i];
qs[i] = rallocx(ps[i], qsz, MALLOCX_TCACHE(tis[i]));
assert_ptr_not_null(qs[i], "Unexpected rallocx() failure, i=%u",
i);
assert_ptr_eq(qs[i], q0,
"Expected rallocx() to allocate cached region, i=%u", i);
/* Avoid undefined behavior in case of test failure. */
if (qs[i] == NULL)
qs[i] = ps[i];
}
for (i = 0; i < NTCACHES; i++)
dallocx(qs[i], MALLOCX_TCACHE(tis[i]));
/* Flush some non-empty tcaches. */
for (i = 0; i < NTCACHES/2; i++) {
assert_d_eq(mallctl("tcache.flush", NULL, NULL, (void *)&tis[i],
sizeof(unsigned)), 0, "Unexpected mallctl() failure, i=%u",
i);
}
/* Destroy tcaches. */
for (i = 0; i < NTCACHES; i++) {
assert_d_eq(mallctl("tcache.destroy", NULL, NULL,
(void *)&tis[i], sizeof(unsigned)), 0,
"Unexpected mallctl() failure, i=%u", i);
}
}
TEST_END
TEST_BEGIN(test_thread_arena)
{
unsigned arena_old, arena_new, narenas;
size_t sz = sizeof(unsigned);
assert_d_eq(mallctl("arenas.narenas", (void *)&narenas, &sz, NULL, 0),
0, "Unexpected mallctl() failure");
assert_u_eq(narenas, opt_narenas, "Number of arenas incorrect");
arena_new = narenas - 1;
assert_d_eq(mallctl("thread.arena", (void *)&arena_old, &sz,
(void *)&arena_new, sizeof(unsigned)), 0,
"Unexpected mallctl() failure");
arena_new = 0;
assert_d_eq(mallctl("thread.arena", (void *)&arena_old, &sz,
(void *)&arena_new, sizeof(unsigned)), 0,
"Unexpected mallctl() failure");
}
TEST_END
TEST_BEGIN(test_arena_i_lg_dirty_mult)
{
ssize_t lg_dirty_mult, orig_lg_dirty_mult, prev_lg_dirty_mult;
size_t sz = sizeof(ssize_t);
test_skip_if(opt_purge != purge_mode_ratio);
assert_d_eq(mallctl("arena.0.lg_dirty_mult",
(void *)&orig_lg_dirty_mult, &sz, NULL, 0), 0,
"Unexpected mallctl() failure");
lg_dirty_mult = -2;
assert_d_eq(mallctl("arena.0.lg_dirty_mult", NULL, NULL,
(void *)&lg_dirty_mult, sizeof(ssize_t)), EFAULT,
"Unexpected mallctl() success");
lg_dirty_mult = (sizeof(size_t) << 3);
assert_d_eq(mallctl("arena.0.lg_dirty_mult", NULL, NULL,
(void *)&lg_dirty_mult, sizeof(ssize_t)), EFAULT,
"Unexpected mallctl() success");
for (prev_lg_dirty_mult = orig_lg_dirty_mult, lg_dirty_mult = -1;
lg_dirty_mult < (ssize_t)(sizeof(size_t) << 3); prev_lg_dirty_mult
= lg_dirty_mult, lg_dirty_mult++) {
ssize_t old_lg_dirty_mult;
assert_d_eq(mallctl("arena.0.lg_dirty_mult",
(void *)&old_lg_dirty_mult, &sz, (void *)&lg_dirty_mult,
sizeof(ssize_t)), 0, "Unexpected mallctl() failure");
assert_zd_eq(old_lg_dirty_mult, prev_lg_dirty_mult,
"Unexpected old arena.0.lg_dirty_mult");
}
}
TEST_END
TEST_BEGIN(test_arena_i_decay_time)
{
ssize_t decay_time, orig_decay_time, prev_decay_time;
size_t sz = sizeof(ssize_t);
test_skip_if(opt_purge != purge_mode_decay);
assert_d_eq(mallctl("arena.0.decay_time", (void *)&orig_decay_time, &sz,
NULL, 0), 0, "Unexpected mallctl() failure");
decay_time = -2;
assert_d_eq(mallctl("arena.0.decay_time", NULL, NULL,
(void *)&decay_time, sizeof(ssize_t)), EFAULT,
"Unexpected mallctl() success");
decay_time = 0x7fffffff;
assert_d_eq(mallctl("arena.0.decay_time", NULL, NULL,
(void *)&decay_time, sizeof(ssize_t)), 0,
"Unexpected mallctl() failure");
for (prev_decay_time = decay_time, decay_time = -1;
decay_time < 20; prev_decay_time = decay_time, decay_time++) {
ssize_t old_decay_time;
assert_d_eq(mallctl("arena.0.decay_time", (void *)&old_decay_time,
&sz, (void *)&decay_time, sizeof(ssize_t)), 0,
"Unexpected mallctl() failure");
assert_zd_eq(old_decay_time, prev_decay_time,
"Unexpected old arena.0.decay_time");
}
}
TEST_END
TEST_BEGIN(test_arena_i_purge)
{
unsigned narenas;
size_t sz = sizeof(unsigned);
size_t mib[3];
size_t miblen = 3;
assert_d_eq(mallctl("arena.0.purge", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl() failure");
assert_d_eq(mallctl("arenas.narenas", (void *)&narenas, &sz, NULL, 0),
0, "Unexpected mallctl() failure");
assert_d_eq(mallctlnametomib("arena.0.purge", mib, &miblen), 0,
"Unexpected mallctlnametomib() failure");
mib[1] = narenas;
assert_d_eq(mallctlbymib(mib, miblen, NULL, NULL, NULL, 0), 0,
"Unexpected mallctlbymib() failure");
}
TEST_END
TEST_BEGIN(test_arena_i_decay)
{
unsigned narenas;
size_t sz = sizeof(unsigned);
size_t mib[3];
size_t miblen = 3;
assert_d_eq(mallctl("arena.0.decay", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl() failure");
assert_d_eq(mallctl("arenas.narenas", (void *)&narenas, &sz, NULL, 0),
0, "Unexpected mallctl() failure");
assert_d_eq(mallctlnametomib("arena.0.decay", mib, &miblen), 0,
"Unexpected mallctlnametomib() failure");
mib[1] = narenas;
assert_d_eq(mallctlbymib(mib, miblen, NULL, NULL, NULL, 0), 0,
"Unexpected mallctlbymib() failure");
}
TEST_END
TEST_BEGIN(test_arena_i_dss)
{
const char *dss_prec_old, *dss_prec_new;
size_t sz = sizeof(dss_prec_old);
size_t mib[3];
size_t miblen;
miblen = sizeof(mib)/sizeof(size_t);
assert_d_eq(mallctlnametomib("arena.0.dss", mib, &miblen), 0,
"Unexpected mallctlnametomib() error");
dss_prec_new = "disabled";
assert_d_eq(mallctlbymib(mib, miblen, (void *)&dss_prec_old, &sz,
(void *)&dss_prec_new, sizeof(dss_prec_new)), 0,
"Unexpected mallctl() failure");
assert_str_ne(dss_prec_old, "primary",
"Unexpected default for dss precedence");
assert_d_eq(mallctlbymib(mib, miblen, (void *)&dss_prec_new, &sz,
(void *)&dss_prec_old, sizeof(dss_prec_old)), 0,
"Unexpected mallctl() failure");
assert_d_eq(mallctlbymib(mib, miblen, (void *)&dss_prec_old, &sz, NULL,
0), 0, "Unexpected mallctl() failure");
assert_str_ne(dss_prec_old, "primary",
"Unexpected value for dss precedence");
mib[1] = narenas_total_get();
dss_prec_new = "disabled";
assert_d_eq(mallctlbymib(mib, miblen, (void *)&dss_prec_old, &sz,
(void *)&dss_prec_new, sizeof(dss_prec_new)), 0,
"Unexpected mallctl() failure");
assert_str_ne(dss_prec_old, "primary",
"Unexpected default for dss precedence");
assert_d_eq(mallctlbymib(mib, miblen, (void *)&dss_prec_new, &sz,
(void *)&dss_prec_old, sizeof(dss_prec_new)), 0,
"Unexpected mallctl() failure");
assert_d_eq(mallctlbymib(mib, miblen, (void *)&dss_prec_old, &sz, NULL,
0), 0, "Unexpected mallctl() failure");
assert_str_ne(dss_prec_old, "primary",
"Unexpected value for dss precedence");
}
TEST_END
TEST_BEGIN(test_arenas_initialized)
{
unsigned narenas;
size_t sz = sizeof(narenas);
assert_d_eq(mallctl("arenas.narenas", (void *)&narenas, &sz, NULL, 0),
0, "Unexpected mallctl() failure");
{
VARIABLE_ARRAY(bool, initialized, narenas);
sz = narenas * sizeof(bool);
assert_d_eq(mallctl("arenas.initialized", (void *)initialized,
&sz, NULL, 0), 0, "Unexpected mallctl() failure");
}
}
TEST_END
TEST_BEGIN(test_arenas_lg_dirty_mult)
{
ssize_t lg_dirty_mult, orig_lg_dirty_mult, prev_lg_dirty_mult;
size_t sz = sizeof(ssize_t);
test_skip_if(opt_purge != purge_mode_ratio);
assert_d_eq(mallctl("arenas.lg_dirty_mult", (void *)&orig_lg_dirty_mult,
&sz, NULL, 0), 0, "Unexpected mallctl() failure");
lg_dirty_mult = -2;
assert_d_eq(mallctl("arenas.lg_dirty_mult", NULL, NULL,
(void *)&lg_dirty_mult, sizeof(ssize_t)), EFAULT,
"Unexpected mallctl() success");
lg_dirty_mult = (sizeof(size_t) << 3);
assert_d_eq(mallctl("arenas.lg_dirty_mult", NULL, NULL,
(void *)&lg_dirty_mult, sizeof(ssize_t)), EFAULT,
"Unexpected mallctl() success");
for (prev_lg_dirty_mult = orig_lg_dirty_mult, lg_dirty_mult = -1;
lg_dirty_mult < (ssize_t)(sizeof(size_t) << 3); prev_lg_dirty_mult =
lg_dirty_mult, lg_dirty_mult++) {
ssize_t old_lg_dirty_mult;
assert_d_eq(mallctl("arenas.lg_dirty_mult",
(void *)&old_lg_dirty_mult, &sz, (void *)&lg_dirty_mult,
sizeof(ssize_t)), 0, "Unexpected mallctl() failure");
assert_zd_eq(old_lg_dirty_mult, prev_lg_dirty_mult,
"Unexpected old arenas.lg_dirty_mult");
}
}
TEST_END
TEST_BEGIN(test_arenas_decay_time)
{
ssize_t decay_time, orig_decay_time, prev_decay_time;
size_t sz = sizeof(ssize_t);
test_skip_if(opt_purge != purge_mode_decay);
assert_d_eq(mallctl("arenas.decay_time", (void *)&orig_decay_time, &sz,
NULL, 0), 0, "Unexpected mallctl() failure");
decay_time = -2;
assert_d_eq(mallctl("arenas.decay_time", NULL, NULL,
(void *)&decay_time, sizeof(ssize_t)), EFAULT,
"Unexpected mallctl() success");
decay_time = 0x7fffffff;
assert_d_eq(mallctl("arenas.decay_time", NULL, NULL,
(void *)&decay_time, sizeof(ssize_t)), 0,
"Expected mallctl() failure");
for (prev_decay_time = decay_time, decay_time = -1;
decay_time < 20; prev_decay_time = decay_time, decay_time++) {
ssize_t old_decay_time;
assert_d_eq(mallctl("arenas.decay_time",
(void *)&old_decay_time, &sz, (void *)&decay_time,
sizeof(ssize_t)), 0, "Unexpected mallctl() failure");
assert_zd_eq(old_decay_time, prev_decay_time,
"Unexpected old arenas.decay_time");
}
}
TEST_END
TEST_BEGIN(test_arenas_constants)
{
#define TEST_ARENAS_CONSTANT(t, name, expected) do { \
t name; \
size_t sz = sizeof(t); \
assert_d_eq(mallctl("arenas."#name, (void *)&name, &sz, NULL, \
0), 0, "Unexpected mallctl() failure"); \
assert_zu_eq(name, expected, "Incorrect "#name" size"); \
} while (0)
TEST_ARENAS_CONSTANT(size_t, quantum, QUANTUM);
TEST_ARENAS_CONSTANT(size_t, page, PAGE);
TEST_ARENAS_CONSTANT(unsigned, nbins, NBINS);
TEST_ARENAS_CONSTANT(unsigned, nlruns, nlclasses);
TEST_ARENAS_CONSTANT(unsigned, nhchunks, nhclasses);
#undef TEST_ARENAS_CONSTANT
}
TEST_END
TEST_BEGIN(test_arenas_bin_constants)
{
#define TEST_ARENAS_BIN_CONSTANT(t, name, expected) do { \
t name; \
size_t sz = sizeof(t); \
assert_d_eq(mallctl("arenas.bin.0."#name, (void *)&name, &sz, \
NULL, 0), 0, "Unexpected mallctl() failure"); \
assert_zu_eq(name, expected, "Incorrect "#name" size"); \
} while (0)
TEST_ARENAS_BIN_CONSTANT(size_t, size, arena_bin_info[0].reg_size);
TEST_ARENAS_BIN_CONSTANT(uint32_t, nregs, arena_bin_info[0].nregs);
TEST_ARENAS_BIN_CONSTANT(size_t, run_size, arena_bin_info[0].run_size);
#undef TEST_ARENAS_BIN_CONSTANT
}
TEST_END
TEST_BEGIN(test_arenas_lrun_constants)
{
#define TEST_ARENAS_LRUN_CONSTANT(t, name, expected) do { \
t name; \
size_t sz = sizeof(t); \
assert_d_eq(mallctl("arenas.lrun.0."#name, (void *)&name, &sz, \
NULL, 0), 0, "Unexpected mallctl() failure"); \
assert_zu_eq(name, expected, "Incorrect "#name" size"); \
} while (0)
TEST_ARENAS_LRUN_CONSTANT(size_t, size, LARGE_MINCLASS);
#undef TEST_ARENAS_LRUN_CONSTANT
}
TEST_END
TEST_BEGIN(test_arenas_hchunk_constants)
{
#define TEST_ARENAS_HCHUNK_CONSTANT(t, name, expected) do { \
t name; \
size_t sz = sizeof(t); \
assert_d_eq(mallctl("arenas.hchunk.0."#name, (void *)&name, \
&sz, NULL, 0), 0, "Unexpected mallctl() failure"); \
assert_zu_eq(name, expected, "Incorrect "#name" size"); \
} while (0)
TEST_ARENAS_HCHUNK_CONSTANT(size_t, size, chunksize);
#undef TEST_ARENAS_HCHUNK_CONSTANT
}
TEST_END
TEST_BEGIN(test_arenas_extend)
{
unsigned narenas_before, arena, narenas_after;
size_t sz = sizeof(unsigned);
assert_d_eq(mallctl("arenas.narenas", (void *)&narenas_before, &sz,
NULL, 0), 0, "Unexpected mallctl() failure");
assert_d_eq(mallctl("arenas.extend", (void *)&arena, &sz, NULL, 0), 0,
"Unexpected mallctl() failure");
assert_d_eq(mallctl("arenas.narenas", (void *)&narenas_after, &sz, NULL,
0), 0, "Unexpected mallctl() failure");
assert_u_eq(narenas_before+1, narenas_after,
"Unexpected number of arenas before versus after extension");
assert_u_eq(arena, narenas_after-1, "Unexpected arena index");
}
TEST_END
TEST_BEGIN(test_stats_arenas)
{
#define TEST_STATS_ARENAS(t, name) do { \
t name; \
size_t sz = sizeof(t); \
assert_d_eq(mallctl("stats.arenas.0."#name, (void *)&name, &sz, \
NULL, 0), 0, "Unexpected mallctl() failure"); \
} while (0)
TEST_STATS_ARENAS(unsigned, nthreads);
TEST_STATS_ARENAS(const char *, dss);
TEST_STATS_ARENAS(ssize_t, lg_dirty_mult);
TEST_STATS_ARENAS(ssize_t, decay_time);
TEST_STATS_ARENAS(size_t, pactive);
TEST_STATS_ARENAS(size_t, pdirty);
#undef TEST_STATS_ARENAS
}
TEST_END
int
main(void)
{
return (test(
test_mallctl_errors,
test_mallctlnametomib_errors,
test_mallctlbymib_errors,
test_mallctl_read_write,
test_mallctlnametomib_short_mib,
test_mallctl_config,
test_mallctl_opt,
test_manpage_example,
test_tcache_none,
test_tcache,
test_thread_arena,
test_arena_i_lg_dirty_mult,
test_arena_i_decay_time,
test_arena_i_purge,
test_arena_i_decay,
test_arena_i_dss,
test_arenas_initialized,
test_arenas_lg_dirty_mult,
test_arenas_decay_time,
test_arenas_constants,
test_arenas_bin_constants,
test_arenas_lrun_constants,
test_arenas_hchunk_constants,
test_arenas_extend,
test_stats_arenas));
}
| 22,753 | 29.542282 | 73 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/rtree.c | #include "test/jemalloc_test.h"
static rtree_node_elm_t *
node_alloc(size_t nelms)
{
return ((rtree_node_elm_t *)calloc(nelms, sizeof(rtree_node_elm_t)));
}
static void
node_dalloc(rtree_node_elm_t *node)
{
free(node);
}
TEST_BEGIN(test_rtree_get_empty)
{
unsigned i;
for (i = 1; i <= (sizeof(uintptr_t) << 3); i++) {
rtree_t rtree;
assert_false(rtree_new(&rtree, i, node_alloc, node_dalloc),
"Unexpected rtree_new() failure");
assert_ptr_null(rtree_get(&rtree, 0, false),
"rtree_get() should return NULL for empty tree");
rtree_delete(&rtree);
}
}
TEST_END
TEST_BEGIN(test_rtree_extrema)
{
unsigned i;
extent_node_t node_a, node_b;
for (i = 1; i <= (sizeof(uintptr_t) << 3); i++) {
rtree_t rtree;
assert_false(rtree_new(&rtree, i, node_alloc, node_dalloc),
"Unexpected rtree_new() failure");
assert_false(rtree_set(&rtree, 0, &node_a),
"Unexpected rtree_set() failure");
assert_ptr_eq(rtree_get(&rtree, 0, true), &node_a,
"rtree_get() should return previously set value");
assert_false(rtree_set(&rtree, ~((uintptr_t)0), &node_b),
"Unexpected rtree_set() failure");
assert_ptr_eq(rtree_get(&rtree, ~((uintptr_t)0), true), &node_b,
"rtree_get() should return previously set value");
rtree_delete(&rtree);
}
}
TEST_END
TEST_BEGIN(test_rtree_bits)
{
unsigned i, j, k;
for (i = 1; i < (sizeof(uintptr_t) << 3); i++) {
uintptr_t keys[] = {0, 1,
(((uintptr_t)1) << (sizeof(uintptr_t)*8-i)) - 1};
extent_node_t node;
rtree_t rtree;
assert_false(rtree_new(&rtree, i, node_alloc, node_dalloc),
"Unexpected rtree_new() failure");
for (j = 0; j < sizeof(keys)/sizeof(uintptr_t); j++) {
assert_false(rtree_set(&rtree, keys[j], &node),
"Unexpected rtree_set() failure");
for (k = 0; k < sizeof(keys)/sizeof(uintptr_t); k++) {
assert_ptr_eq(rtree_get(&rtree, keys[k], true),
&node, "rtree_get() should return "
"previously set value and ignore "
"insignificant key bits; i=%u, j=%u, k=%u, "
"set key=%#"FMTxPTR", get key=%#"FMTxPTR, i,
j, k, keys[j], keys[k]);
}
assert_ptr_null(rtree_get(&rtree,
(((uintptr_t)1) << (sizeof(uintptr_t)*8-i)), false),
"Only leftmost rtree leaf should be set; "
"i=%u, j=%u", i, j);
assert_false(rtree_set(&rtree, keys[j], NULL),
"Unexpected rtree_set() failure");
}
rtree_delete(&rtree);
}
}
TEST_END
TEST_BEGIN(test_rtree_random)
{
unsigned i;
sfmt_t *sfmt;
#define NSET 16
#define SEED 42
sfmt = init_gen_rand(SEED);
for (i = 1; i <= (sizeof(uintptr_t) << 3); i++) {
uintptr_t keys[NSET];
extent_node_t node;
unsigned j;
rtree_t rtree;
assert_false(rtree_new(&rtree, i, node_alloc, node_dalloc),
"Unexpected rtree_new() failure");
for (j = 0; j < NSET; j++) {
keys[j] = (uintptr_t)gen_rand64(sfmt);
assert_false(rtree_set(&rtree, keys[j], &node),
"Unexpected rtree_set() failure");
assert_ptr_eq(rtree_get(&rtree, keys[j], true), &node,
"rtree_get() should return previously set value");
}
for (j = 0; j < NSET; j++) {
assert_ptr_eq(rtree_get(&rtree, keys[j], true), &node,
"rtree_get() should return previously set value");
}
for (j = 0; j < NSET; j++) {
assert_false(rtree_set(&rtree, keys[j], NULL),
"Unexpected rtree_set() failure");
assert_ptr_null(rtree_get(&rtree, keys[j], true),
"rtree_get() should return previously set value");
}
for (j = 0; j < NSET; j++) {
assert_ptr_null(rtree_get(&rtree, keys[j], true),
"rtree_get() should return previously set value");
}
rtree_delete(&rtree);
}
fini_gen_rand(sfmt);
#undef NSET
#undef SEED
}
TEST_END
int
main(void)
{
return (test(
test_rtree_get_empty,
test_rtree_extrema,
test_rtree_bits,
test_rtree_random));
}
| 3,831 | 24.210526 | 70 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/decay.c | #include "test/jemalloc_test.h"
const char *malloc_conf = "purge:decay,decay_time:1";
static nstime_monotonic_t *nstime_monotonic_orig;
static nstime_update_t *nstime_update_orig;
static unsigned nupdates_mock;
static nstime_t time_mock;
static bool monotonic_mock;
static bool
nstime_monotonic_mock(void)
{
return (monotonic_mock);
}
static bool
nstime_update_mock(nstime_t *time)
{
nupdates_mock++;
if (monotonic_mock)
nstime_copy(time, &time_mock);
return (!monotonic_mock);
}
TEST_BEGIN(test_decay_ticks)
{
ticker_t *decay_ticker;
unsigned tick0, tick1;
size_t sz, huge0, large0;
void *p;
test_skip_if(opt_purge != purge_mode_decay);
decay_ticker = decay_ticker_get(tsd_fetch(), 0);
assert_ptr_not_null(decay_ticker,
"Unexpected failure getting decay ticker");
sz = sizeof(size_t);
assert_d_eq(mallctl("arenas.hchunk.0.size", (void *)&huge0, &sz, NULL,
0), 0, "Unexpected mallctl failure");
assert_d_eq(mallctl("arenas.lrun.0.size", (void *)&large0, &sz, NULL,
0), 0, "Unexpected mallctl failure");
/*
* Test the standard APIs using a huge size class, since we can't
* control tcache interactions (except by completely disabling tcache
* for the entire test program).
*/
/* malloc(). */
tick0 = ticker_read(decay_ticker);
p = malloc(huge0);
assert_ptr_not_null(p, "Unexpected malloc() failure");
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0, "Expected ticker to tick during malloc()");
/* free(). */
tick0 = ticker_read(decay_ticker);
free(p);
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0, "Expected ticker to tick during free()");
/* calloc(). */
tick0 = ticker_read(decay_ticker);
p = calloc(1, huge0);
assert_ptr_not_null(p, "Unexpected calloc() failure");
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0, "Expected ticker to tick during calloc()");
free(p);
/* posix_memalign(). */
tick0 = ticker_read(decay_ticker);
assert_d_eq(posix_memalign(&p, sizeof(size_t), huge0), 0,
"Unexpected posix_memalign() failure");
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0,
"Expected ticker to tick during posix_memalign()");
free(p);
/* aligned_alloc(). */
tick0 = ticker_read(decay_ticker);
p = aligned_alloc(sizeof(size_t), huge0);
assert_ptr_not_null(p, "Unexpected aligned_alloc() failure");
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0,
"Expected ticker to tick during aligned_alloc()");
free(p);
/* realloc(). */
/* Allocate. */
tick0 = ticker_read(decay_ticker);
p = realloc(NULL, huge0);
assert_ptr_not_null(p, "Unexpected realloc() failure");
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0, "Expected ticker to tick during realloc()");
/* Reallocate. */
tick0 = ticker_read(decay_ticker);
p = realloc(p, huge0);
assert_ptr_not_null(p, "Unexpected realloc() failure");
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0, "Expected ticker to tick during realloc()");
/* Deallocate. */
tick0 = ticker_read(decay_ticker);
realloc(p, 0);
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0, "Expected ticker to tick during realloc()");
/*
* Test the *allocx() APIs using huge, large, and small size classes,
* with tcache explicitly disabled.
*/
{
unsigned i;
size_t allocx_sizes[3];
allocx_sizes[0] = huge0;
allocx_sizes[1] = large0;
allocx_sizes[2] = 1;
for (i = 0; i < sizeof(allocx_sizes) / sizeof(size_t); i++) {
sz = allocx_sizes[i];
/* mallocx(). */
tick0 = ticker_read(decay_ticker);
p = mallocx(sz, MALLOCX_TCACHE_NONE);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0,
"Expected ticker to tick during mallocx() (sz=%zu)",
sz);
/* rallocx(). */
tick0 = ticker_read(decay_ticker);
p = rallocx(p, sz, MALLOCX_TCACHE_NONE);
assert_ptr_not_null(p, "Unexpected rallocx() failure");
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0,
"Expected ticker to tick during rallocx() (sz=%zu)",
sz);
/* xallocx(). */
tick0 = ticker_read(decay_ticker);
xallocx(p, sz, 0, MALLOCX_TCACHE_NONE);
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0,
"Expected ticker to tick during xallocx() (sz=%zu)",
sz);
/* dallocx(). */
tick0 = ticker_read(decay_ticker);
dallocx(p, MALLOCX_TCACHE_NONE);
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0,
"Expected ticker to tick during dallocx() (sz=%zu)",
sz);
/* sdallocx(). */
p = mallocx(sz, MALLOCX_TCACHE_NONE);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
tick0 = ticker_read(decay_ticker);
sdallocx(p, sz, MALLOCX_TCACHE_NONE);
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0,
"Expected ticker to tick during sdallocx() "
"(sz=%zu)", sz);
}
}
/*
* Test tcache fill/flush interactions for large and small size classes,
* using an explicit tcache.
*/
if (config_tcache) {
unsigned tcache_ind, i;
size_t tcache_sizes[2];
tcache_sizes[0] = large0;
tcache_sizes[1] = 1;
sz = sizeof(unsigned);
assert_d_eq(mallctl("tcache.create", (void *)&tcache_ind, &sz,
NULL, 0), 0, "Unexpected mallctl failure");
for (i = 0; i < sizeof(tcache_sizes) / sizeof(size_t); i++) {
sz = tcache_sizes[i];
/* tcache fill. */
tick0 = ticker_read(decay_ticker);
p = mallocx(sz, MALLOCX_TCACHE(tcache_ind));
assert_ptr_not_null(p, "Unexpected mallocx() failure");
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0,
"Expected ticker to tick during tcache fill "
"(sz=%zu)", sz);
/* tcache flush. */
dallocx(p, MALLOCX_TCACHE(tcache_ind));
tick0 = ticker_read(decay_ticker);
assert_d_eq(mallctl("tcache.flush", NULL, NULL,
(void *)&tcache_ind, sizeof(unsigned)), 0,
"Unexpected mallctl failure");
tick1 = ticker_read(decay_ticker);
assert_u32_ne(tick1, tick0,
"Expected ticker to tick during tcache flush "
"(sz=%zu)", sz);
}
}
}
TEST_END
TEST_BEGIN(test_decay_ticker)
{
#define NPS 1024
int flags = (MALLOCX_ARENA(0) | MALLOCX_TCACHE_NONE);
void *ps[NPS];
uint64_t epoch;
uint64_t npurge0 = 0;
uint64_t npurge1 = 0;
size_t sz, large;
unsigned i, nupdates0;
nstime_t time, decay_time, deadline;
test_skip_if(opt_purge != purge_mode_decay);
/*
* Allocate a bunch of large objects, pause the clock, deallocate the
* objects, restore the clock, then [md]allocx() in a tight loop to
* verify the ticker triggers purging.
*/
if (config_tcache) {
size_t tcache_max;
sz = sizeof(size_t);
assert_d_eq(mallctl("arenas.tcache_max", (void *)&tcache_max,
&sz, NULL, 0), 0, "Unexpected mallctl failure");
large = nallocx(tcache_max + 1, flags);
} else {
sz = sizeof(size_t);
assert_d_eq(mallctl("arenas.lrun.0.size", (void *)&large, &sz,
NULL, 0), 0, "Unexpected mallctl failure");
}
assert_d_eq(mallctl("arena.0.purge", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl failure");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch,
sizeof(uint64_t)), 0, "Unexpected mallctl failure");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.npurge", (void *)&npurge0, &sz,
NULL, 0), config_stats ? 0 : ENOENT, "Unexpected mallctl result");
for (i = 0; i < NPS; i++) {
ps[i] = mallocx(large, flags);
assert_ptr_not_null(ps[i], "Unexpected mallocx() failure");
}
nupdates_mock = 0;
nstime_init(&time_mock, 0);
nstime_update(&time_mock);
monotonic_mock = true;
nstime_monotonic_orig = nstime_monotonic;
nstime_update_orig = nstime_update;
nstime_monotonic = nstime_monotonic_mock;
nstime_update = nstime_update_mock;
for (i = 0; i < NPS; i++) {
dallocx(ps[i], flags);
nupdates0 = nupdates_mock;
assert_d_eq(mallctl("arena.0.decay", NULL, NULL, NULL, 0), 0,
"Unexpected arena.0.decay failure");
assert_u_gt(nupdates_mock, nupdates0,
"Expected nstime_update() to be called");
}
nstime_monotonic = nstime_monotonic_orig;
nstime_update = nstime_update_orig;
nstime_init(&time, 0);
nstime_update(&time);
nstime_init2(&decay_time, opt_decay_time, 0);
nstime_copy(&deadline, &time);
nstime_add(&deadline, &decay_time);
do {
for (i = 0; i < DECAY_NTICKS_PER_UPDATE / 2; i++) {
void *p = mallocx(1, flags);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
dallocx(p, flags);
}
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch,
sizeof(uint64_t)), 0, "Unexpected mallctl failure");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.npurge", (void *)&npurge1,
&sz, NULL, 0), config_stats ? 0 : ENOENT,
"Unexpected mallctl result");
nstime_update(&time);
} while (nstime_compare(&time, &deadline) <= 0 && npurge1 == npurge0);
if (config_stats)
assert_u64_gt(npurge1, npurge0, "Expected purging to occur");
#undef NPS
}
TEST_END
TEST_BEGIN(test_decay_nonmonotonic)
{
#define NPS (SMOOTHSTEP_NSTEPS + 1)
int flags = (MALLOCX_ARENA(0) | MALLOCX_TCACHE_NONE);
void *ps[NPS];
uint64_t epoch;
uint64_t npurge0 = 0;
uint64_t npurge1 = 0;
size_t sz, large0;
unsigned i, nupdates0;
test_skip_if(opt_purge != purge_mode_decay);
sz = sizeof(size_t);
assert_d_eq(mallctl("arenas.lrun.0.size", (void *)&large0, &sz, NULL,
0), 0, "Unexpected mallctl failure");
assert_d_eq(mallctl("arena.0.purge", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl failure");
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch,
sizeof(uint64_t)), 0, "Unexpected mallctl failure");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.npurge", (void *)&npurge0, &sz,
NULL, 0), config_stats ? 0 : ENOENT, "Unexpected mallctl result");
nupdates_mock = 0;
nstime_init(&time_mock, 0);
nstime_update(&time_mock);
monotonic_mock = false;
nstime_monotonic_orig = nstime_monotonic;
nstime_update_orig = nstime_update;
nstime_monotonic = nstime_monotonic_mock;
nstime_update = nstime_update_mock;
for (i = 0; i < NPS; i++) {
ps[i] = mallocx(large0, flags);
assert_ptr_not_null(ps[i], "Unexpected mallocx() failure");
}
for (i = 0; i < NPS; i++) {
dallocx(ps[i], flags);
nupdates0 = nupdates_mock;
assert_d_eq(mallctl("arena.0.decay", NULL, NULL, NULL, 0), 0,
"Unexpected arena.0.decay failure");
assert_u_gt(nupdates_mock, nupdates0,
"Expected nstime_update() to be called");
}
assert_d_eq(mallctl("epoch", NULL, NULL, (void *)&epoch,
sizeof(uint64_t)), 0, "Unexpected mallctl failure");
sz = sizeof(uint64_t);
assert_d_eq(mallctl("stats.arenas.0.npurge", (void *)&npurge1, &sz,
NULL, 0), config_stats ? 0 : ENOENT, "Unexpected mallctl result");
if (config_stats)
assert_u64_eq(npurge0, npurge1, "Unexpected purging occurred");
nstime_monotonic = nstime_monotonic_orig;
nstime_update = nstime_update_orig;
#undef NPS
}
TEST_END
int
main(void)
{
return (test(
test_decay_ticks,
test_decay_ticker,
test_decay_nonmonotonic));
}
| 11,060 | 28.496 | 73 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/ph.c | #include "test/jemalloc_test.h"
typedef struct node_s node_t;
struct node_s {
#define NODE_MAGIC 0x9823af7e
uint32_t magic;
phn(node_t) link;
uint64_t key;
};
static int
node_cmp(const node_t *a, const node_t *b)
{
int ret;
ret = (a->key > b->key) - (a->key < b->key);
if (ret == 0) {
/*
* Duplicates are not allowed in the heap, so force an
* arbitrary ordering for non-identical items with equal keys.
*/
ret = (((uintptr_t)a) > ((uintptr_t)b))
- (((uintptr_t)a) < ((uintptr_t)b));
}
return (ret);
}
static int
node_cmp_magic(const node_t *a, const node_t *b) {
assert_u32_eq(a->magic, NODE_MAGIC, "Bad magic");
assert_u32_eq(b->magic, NODE_MAGIC, "Bad magic");
return (node_cmp(a, b));
}
typedef ph(node_t) heap_t;
ph_gen(static, heap_, heap_t, node_t, link, node_cmp_magic);
static void
node_print(const node_t *node, unsigned depth)
{
unsigned i;
node_t *leftmost_child, *sibling;
for (i = 0; i < depth; i++)
malloc_printf("\t");
malloc_printf("%2"FMTu64"\n", node->key);
leftmost_child = phn_lchild_get(node_t, link, node);
if (leftmost_child == NULL)
return;
node_print(leftmost_child, depth + 1);
for (sibling = phn_next_get(node_t, link, leftmost_child); sibling !=
NULL; sibling = phn_next_get(node_t, link, sibling)) {
node_print(sibling, depth + 1);
}
}
static void
heap_print(const heap_t *heap)
{
node_t *auxelm;
malloc_printf("vvv heap %p vvv\n", heap);
if (heap->ph_root == NULL)
goto label_return;
node_print(heap->ph_root, 0);
for (auxelm = phn_next_get(node_t, link, heap->ph_root); auxelm != NULL;
auxelm = phn_next_get(node_t, link, auxelm)) {
assert_ptr_eq(phn_next_get(node_t, link, phn_prev_get(node_t,
link, auxelm)), auxelm,
"auxelm's prev doesn't link to auxelm");
node_print(auxelm, 0);
}
label_return:
malloc_printf("^^^ heap %p ^^^\n", heap);
}
static unsigned
node_validate(const node_t *node, const node_t *parent)
{
unsigned nnodes = 1;
node_t *leftmost_child, *sibling;
if (parent != NULL) {
assert_d_ge(node_cmp_magic(node, parent), 0,
"Child is less than parent");
}
leftmost_child = phn_lchild_get(node_t, link, node);
if (leftmost_child == NULL)
return (nnodes);
assert_ptr_eq((void *)phn_prev_get(node_t, link, leftmost_child),
(void *)node, "Leftmost child does not link to node");
nnodes += node_validate(leftmost_child, node);
for (sibling = phn_next_get(node_t, link, leftmost_child); sibling !=
NULL; sibling = phn_next_get(node_t, link, sibling)) {
assert_ptr_eq(phn_next_get(node_t, link, phn_prev_get(node_t,
link, sibling)), sibling,
"sibling's prev doesn't link to sibling");
nnodes += node_validate(sibling, node);
}
return (nnodes);
}
static unsigned
heap_validate(const heap_t *heap)
{
unsigned nnodes = 0;
node_t *auxelm;
if (heap->ph_root == NULL)
goto label_return;
nnodes += node_validate(heap->ph_root, NULL);
for (auxelm = phn_next_get(node_t, link, heap->ph_root); auxelm != NULL;
auxelm = phn_next_get(node_t, link, auxelm)) {
assert_ptr_eq(phn_next_get(node_t, link, phn_prev_get(node_t,
link, auxelm)), auxelm,
"auxelm's prev doesn't link to auxelm");
nnodes += node_validate(auxelm, NULL);
}
label_return:
if (false)
heap_print(heap);
return (nnodes);
}
TEST_BEGIN(test_ph_empty)
{
heap_t heap;
heap_new(&heap);
assert_true(heap_empty(&heap), "Heap should be empty");
assert_ptr_null(heap_first(&heap), "Unexpected node");
}
TEST_END
static void
node_remove(heap_t *heap, node_t *node)
{
heap_remove(heap, node);
node->magic = 0;
}
static node_t *
node_remove_first(heap_t *heap)
{
node_t *node = heap_remove_first(heap);
node->magic = 0;
return (node);
}
TEST_BEGIN(test_ph_random)
{
#define NNODES 25
#define NBAGS 250
#define SEED 42
sfmt_t *sfmt;
uint64_t bag[NNODES];
heap_t heap;
node_t nodes[NNODES];
unsigned i, j, k;
sfmt = init_gen_rand(SEED);
for (i = 0; i < NBAGS; i++) {
switch (i) {
case 0:
/* Insert in order. */
for (j = 0; j < NNODES; j++)
bag[j] = j;
break;
case 1:
/* Insert in reverse order. */
for (j = 0; j < NNODES; j++)
bag[j] = NNODES - j - 1;
break;
default:
for (j = 0; j < NNODES; j++)
bag[j] = gen_rand64_range(sfmt, NNODES);
}
for (j = 1; j <= NNODES; j++) {
/* Initialize heap and nodes. */
heap_new(&heap);
assert_u_eq(heap_validate(&heap), 0,
"Incorrect node count");
for (k = 0; k < j; k++) {
nodes[k].magic = NODE_MAGIC;
nodes[k].key = bag[k];
}
/* Insert nodes. */
for (k = 0; k < j; k++) {
heap_insert(&heap, &nodes[k]);
if (i % 13 == 12) {
/* Trigger merging. */
assert_ptr_not_null(heap_first(&heap),
"Heap should not be empty");
}
assert_u_eq(heap_validate(&heap), k + 1,
"Incorrect node count");
}
assert_false(heap_empty(&heap),
"Heap should not be empty");
/* Remove nodes. */
switch (i % 4) {
case 0:
for (k = 0; k < j; k++) {
assert_u_eq(heap_validate(&heap), j - k,
"Incorrect node count");
node_remove(&heap, &nodes[k]);
assert_u_eq(heap_validate(&heap), j - k
- 1, "Incorrect node count");
}
break;
case 1:
for (k = j; k > 0; k--) {
node_remove(&heap, &nodes[k-1]);
assert_u_eq(heap_validate(&heap), k - 1,
"Incorrect node count");
}
break;
case 2: {
node_t *prev = NULL;
for (k = 0; k < j; k++) {
node_t *node = node_remove_first(&heap);
assert_u_eq(heap_validate(&heap), j - k
- 1, "Incorrect node count");
if (prev != NULL) {
assert_d_ge(node_cmp(node,
prev), 0,
"Bad removal order");
}
prev = node;
}
break;
} case 3: {
node_t *prev = NULL;
for (k = 0; k < j; k++) {
node_t *node = heap_first(&heap);
assert_u_eq(heap_validate(&heap), j - k,
"Incorrect node count");
if (prev != NULL) {
assert_d_ge(node_cmp(node,
prev), 0,
"Bad removal order");
}
node_remove(&heap, node);
assert_u_eq(heap_validate(&heap), j - k
- 1, "Incorrect node count");
prev = node;
}
break;
} default:
not_reached();
}
assert_ptr_null(heap_first(&heap),
"Heap should be empty");
assert_true(heap_empty(&heap), "Heap should be empty");
}
}
fini_gen_rand(sfmt);
#undef NNODES
#undef SEED
}
TEST_END
int
main(void)
{
return (test(
test_ph_empty,
test_ph_random));
}
| 6,510 | 21.37457 | 73 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/prof_reset.c | #include "test/jemalloc_test.h"
#ifdef JEMALLOC_PROF
const char *malloc_conf =
"prof:true,prof_active:false,lg_prof_sample:0";
#endif
static int
prof_dump_open_intercept(bool propagate_err, const char *filename)
{
int fd;
fd = open("/dev/null", O_WRONLY);
assert_d_ne(fd, -1, "Unexpected open() failure");
return (fd);
}
static void
set_prof_active(bool active)
{
assert_d_eq(mallctl("prof.active", NULL, NULL, (void *)&active,
sizeof(active)), 0, "Unexpected mallctl failure");
}
static size_t
get_lg_prof_sample(void)
{
size_t lg_prof_sample;
size_t sz = sizeof(size_t);
assert_d_eq(mallctl("prof.lg_sample", (void *)&lg_prof_sample, &sz,
NULL, 0), 0,
"Unexpected mallctl failure while reading profiling sample rate");
return (lg_prof_sample);
}
static void
do_prof_reset(size_t lg_prof_sample)
{
assert_d_eq(mallctl("prof.reset", NULL, NULL,
(void *)&lg_prof_sample, sizeof(size_t)), 0,
"Unexpected mallctl failure while resetting profile data");
assert_zu_eq(lg_prof_sample, get_lg_prof_sample(),
"Expected profile sample rate change");
}
TEST_BEGIN(test_prof_reset_basic)
{
size_t lg_prof_sample_orig, lg_prof_sample, lg_prof_sample_next;
size_t sz;
unsigned i;
test_skip_if(!config_prof);
sz = sizeof(size_t);
assert_d_eq(mallctl("opt.lg_prof_sample", (void *)&lg_prof_sample_orig,
&sz, NULL, 0), 0,
"Unexpected mallctl failure while reading profiling sample rate");
assert_zu_eq(lg_prof_sample_orig, 0,
"Unexpected profiling sample rate");
lg_prof_sample = get_lg_prof_sample();
assert_zu_eq(lg_prof_sample_orig, lg_prof_sample,
"Unexpected disagreement between \"opt.lg_prof_sample\" and "
"\"prof.lg_sample\"");
/* Test simple resets. */
for (i = 0; i < 2; i++) {
assert_d_eq(mallctl("prof.reset", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl failure while resetting profile data");
lg_prof_sample = get_lg_prof_sample();
assert_zu_eq(lg_prof_sample_orig, lg_prof_sample,
"Unexpected profile sample rate change");
}
/* Test resets with prof.lg_sample changes. */
lg_prof_sample_next = 1;
for (i = 0; i < 2; i++) {
do_prof_reset(lg_prof_sample_next);
lg_prof_sample = get_lg_prof_sample();
assert_zu_eq(lg_prof_sample, lg_prof_sample_next,
"Expected profile sample rate change");
lg_prof_sample_next = lg_prof_sample_orig;
}
/* Make sure the test code restored prof.lg_sample. */
lg_prof_sample = get_lg_prof_sample();
assert_zu_eq(lg_prof_sample_orig, lg_prof_sample,
"Unexpected disagreement between \"opt.lg_prof_sample\" and "
"\"prof.lg_sample\"");
}
TEST_END
bool prof_dump_header_intercepted = false;
prof_cnt_t cnt_all_copy = {0, 0, 0, 0};
static bool
prof_dump_header_intercept(tsdn_t *tsdn, bool propagate_err,
const prof_cnt_t *cnt_all)
{
prof_dump_header_intercepted = true;
memcpy(&cnt_all_copy, cnt_all, sizeof(prof_cnt_t));
return (false);
}
TEST_BEGIN(test_prof_reset_cleanup)
{
void *p;
prof_dump_header_t *prof_dump_header_orig;
test_skip_if(!config_prof);
set_prof_active(true);
assert_zu_eq(prof_bt_count(), 0, "Expected 0 backtraces");
p = mallocx(1, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_zu_eq(prof_bt_count(), 1, "Expected 1 backtrace");
prof_dump_header_orig = prof_dump_header;
prof_dump_header = prof_dump_header_intercept;
assert_false(prof_dump_header_intercepted, "Unexpected intercept");
assert_d_eq(mallctl("prof.dump", NULL, NULL, NULL, 0),
0, "Unexpected error while dumping heap profile");
assert_true(prof_dump_header_intercepted, "Expected intercept");
assert_u64_eq(cnt_all_copy.curobjs, 1, "Expected 1 allocation");
assert_d_eq(mallctl("prof.reset", NULL, NULL, NULL, 0), 0,
"Unexpected error while resetting heap profile data");
assert_d_eq(mallctl("prof.dump", NULL, NULL, NULL, 0),
0, "Unexpected error while dumping heap profile");
assert_u64_eq(cnt_all_copy.curobjs, 0, "Expected 0 allocations");
assert_zu_eq(prof_bt_count(), 1, "Expected 1 backtrace");
prof_dump_header = prof_dump_header_orig;
dallocx(p, 0);
assert_zu_eq(prof_bt_count(), 0, "Expected 0 backtraces");
set_prof_active(false);
}
TEST_END
#define NTHREADS 4
#define NALLOCS_PER_THREAD (1U << 13)
#define OBJ_RING_BUF_COUNT 1531
#define RESET_INTERVAL (1U << 10)
#define DUMP_INTERVAL 3677
static void *
thd_start(void *varg)
{
unsigned thd_ind = *(unsigned *)varg;
unsigned i;
void *objs[OBJ_RING_BUF_COUNT];
memset(objs, 0, sizeof(objs));
for (i = 0; i < NALLOCS_PER_THREAD; i++) {
if (i % RESET_INTERVAL == 0) {
assert_d_eq(mallctl("prof.reset", NULL, NULL, NULL, 0),
0, "Unexpected error while resetting heap profile "
"data");
}
if (i % DUMP_INTERVAL == 0) {
assert_d_eq(mallctl("prof.dump", NULL, NULL, NULL, 0),
0, "Unexpected error while dumping heap profile");
}
{
void **pp = &objs[i % OBJ_RING_BUF_COUNT];
if (*pp != NULL) {
dallocx(*pp, 0);
*pp = NULL;
}
*pp = btalloc(1, thd_ind*NALLOCS_PER_THREAD + i);
assert_ptr_not_null(*pp,
"Unexpected btalloc() failure");
}
}
/* Clean up any remaining objects. */
for (i = 0; i < OBJ_RING_BUF_COUNT; i++) {
void **pp = &objs[i % OBJ_RING_BUF_COUNT];
if (*pp != NULL) {
dallocx(*pp, 0);
*pp = NULL;
}
}
return (NULL);
}
TEST_BEGIN(test_prof_reset)
{
size_t lg_prof_sample_orig;
thd_t thds[NTHREADS];
unsigned thd_args[NTHREADS];
unsigned i;
size_t bt_count, tdata_count;
test_skip_if(!config_prof);
bt_count = prof_bt_count();
assert_zu_eq(bt_count, 0,
"Unexpected pre-existing tdata structures");
tdata_count = prof_tdata_count();
lg_prof_sample_orig = get_lg_prof_sample();
do_prof_reset(5);
set_prof_active(true);
for (i = 0; i < NTHREADS; i++) {
thd_args[i] = i;
thd_create(&thds[i], thd_start, (void *)&thd_args[i]);
}
for (i = 0; i < NTHREADS; i++)
thd_join(thds[i], NULL);
assert_zu_eq(prof_bt_count(), bt_count,
"Unexpected bactrace count change");
assert_zu_eq(prof_tdata_count(), tdata_count,
"Unexpected remaining tdata structures");
set_prof_active(false);
do_prof_reset(lg_prof_sample_orig);
}
TEST_END
#undef NTHREADS
#undef NALLOCS_PER_THREAD
#undef OBJ_RING_BUF_COUNT
#undef RESET_INTERVAL
#undef DUMP_INTERVAL
/* Test sampling at the same allocation site across resets. */
#define NITER 10
TEST_BEGIN(test_xallocx)
{
size_t lg_prof_sample_orig;
unsigned i;
void *ptrs[NITER];
test_skip_if(!config_prof);
lg_prof_sample_orig = get_lg_prof_sample();
set_prof_active(true);
/* Reset profiling. */
do_prof_reset(0);
for (i = 0; i < NITER; i++) {
void *p;
size_t sz, nsz;
/* Reset profiling. */
do_prof_reset(0);
/* Allocate small object (which will be promoted). */
p = ptrs[i] = mallocx(1, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
/* Reset profiling. */
do_prof_reset(0);
/* Perform successful xallocx(). */
sz = sallocx(p, 0);
assert_zu_eq(xallocx(p, sz, 0, 0), sz,
"Unexpected xallocx() failure");
/* Perform unsuccessful xallocx(). */
nsz = nallocx(sz+1, 0);
assert_zu_eq(xallocx(p, nsz, 0, 0), sz,
"Unexpected xallocx() success");
}
for (i = 0; i < NITER; i++) {
/* dallocx. */
dallocx(ptrs[i], 0);
}
set_prof_active(false);
do_prof_reset(lg_prof_sample_orig);
}
TEST_END
#undef NITER
int
main(void)
{
/* Intercept dumping prior to running any tests. */
prof_dump_open = prof_dump_open_intercept;
return (test(
test_prof_reset_basic,
test_prof_reset_cleanup,
test_prof_reset,
test_xallocx));
}
| 7,580 | 23.855738 | 72 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/hash.c | /*
* This file is based on code that is part of SMHasher
* (https://code.google.com/p/smhasher/), and is subject to the MIT license
* (http://www.opensource.org/licenses/mit-license.php). Both email addresses
* associated with the source code's revision history belong to Austin Appleby,
* and the revision history ranges from 2010 to 2012. Therefore the copyright
* and license are here taken to be:
*
* Copyright (c) 2010-2012 Austin Appleby
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "test/jemalloc_test.h"
typedef enum {
hash_variant_x86_32,
hash_variant_x86_128,
hash_variant_x64_128
} hash_variant_t;
static int
hash_variant_bits(hash_variant_t variant)
{
switch (variant) {
case hash_variant_x86_32: return (32);
case hash_variant_x86_128: return (128);
case hash_variant_x64_128: return (128);
default: not_reached();
}
}
static const char *
hash_variant_string(hash_variant_t variant)
{
switch (variant) {
case hash_variant_x86_32: return ("hash_x86_32");
case hash_variant_x86_128: return ("hash_x86_128");
case hash_variant_x64_128: return ("hash_x64_128");
default: not_reached();
}
}
#define KEY_SIZE 256
static void
hash_variant_verify_key(hash_variant_t variant, uint8_t *key)
{
const int hashbytes = hash_variant_bits(variant) / 8;
const int hashes_size = hashbytes * 256;
VARIABLE_ARRAY(uint8_t, hashes, hashes_size);
VARIABLE_ARRAY(uint8_t, final, hashbytes);
unsigned i;
uint32_t computed, expected;
memset(key, 0, KEY_SIZE);
memset(hashes, 0, hashes_size);
memset(final, 0, hashbytes);
/*
* Hash keys of the form {0}, {0,1}, {0,1,2}, ..., {0,1,...,255} as the
* seed.
*/
for (i = 0; i < 256; i++) {
key[i] = (uint8_t)i;
switch (variant) {
case hash_variant_x86_32: {
uint32_t out;
out = hash_x86_32(key, i, 256-i);
memcpy(&hashes[i*hashbytes], &out, hashbytes);
break;
} case hash_variant_x86_128: {
uint64_t out[2];
hash_x86_128(key, i, 256-i, out);
memcpy(&hashes[i*hashbytes], out, hashbytes);
break;
} case hash_variant_x64_128: {
uint64_t out[2];
hash_x64_128(key, i, 256-i, out);
memcpy(&hashes[i*hashbytes], out, hashbytes);
break;
} default: not_reached();
}
}
/* Hash the result array. */
switch (variant) {
case hash_variant_x86_32: {
uint32_t out = hash_x86_32(hashes, hashes_size, 0);
memcpy(final, &out, sizeof(out));
break;
} case hash_variant_x86_128: {
uint64_t out[2];
hash_x86_128(hashes, hashes_size, 0, out);
memcpy(final, out, sizeof(out));
break;
} case hash_variant_x64_128: {
uint64_t out[2];
hash_x64_128(hashes, hashes_size, 0, out);
memcpy(final, out, sizeof(out));
break;
} default: not_reached();
}
computed = (final[0] << 0) | (final[1] << 8) | (final[2] << 16) |
(final[3] << 24);
switch (variant) {
#ifdef JEMALLOC_BIG_ENDIAN
case hash_variant_x86_32: expected = 0x6213303eU; break;
case hash_variant_x86_128: expected = 0x266820caU; break;
case hash_variant_x64_128: expected = 0xcc622b6fU; break;
#else
case hash_variant_x86_32: expected = 0xb0f57ee3U; break;
case hash_variant_x86_128: expected = 0xb3ece62aU; break;
case hash_variant_x64_128: expected = 0x6384ba69U; break;
#endif
default: not_reached();
}
assert_u32_eq(computed, expected,
"Hash mismatch for %s(): expected %#x but got %#x",
hash_variant_string(variant), expected, computed);
}
static void
hash_variant_verify(hash_variant_t variant)
{
#define MAX_ALIGN 16
uint8_t key[KEY_SIZE + (MAX_ALIGN - 1)];
unsigned i;
for (i = 0; i < MAX_ALIGN; i++)
hash_variant_verify_key(variant, &key[i]);
#undef MAX_ALIGN
}
#undef KEY_SIZE
TEST_BEGIN(test_hash_x86_32)
{
hash_variant_verify(hash_variant_x86_32);
}
TEST_END
TEST_BEGIN(test_hash_x86_128)
{
hash_variant_verify(hash_variant_x86_128);
}
TEST_END
TEST_BEGIN(test_hash_x64_128)
{
hash_variant_verify(hash_variant_x64_128);
}
TEST_END
int
main(void)
{
return (test(
test_hash_x86_32,
test_hash_x86_128,
test_hash_x64_128));
}
| 5,031 | 26.053763 | 80 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/smoothstep.c | #include "test/jemalloc_test.h"
static const uint64_t smoothstep_tab[] = {
#define STEP(step, h, x, y) \
h,
SMOOTHSTEP
#undef STEP
};
TEST_BEGIN(test_smoothstep_integral)
{
uint64_t sum, min, max;
unsigned i;
/*
* The integral of smoothstep in the [0..1] range equals 1/2. Verify
* that the fixed point representation's integral is no more than
* rounding error distant from 1/2. Regarding rounding, each table
* element is rounded down to the nearest fixed point value, so the
* integral may be off by as much as SMOOTHSTEP_NSTEPS ulps.
*/
sum = 0;
for (i = 0; i < SMOOTHSTEP_NSTEPS; i++)
sum += smoothstep_tab[i];
max = (KQU(1) << (SMOOTHSTEP_BFP-1)) * (SMOOTHSTEP_NSTEPS+1);
min = max - SMOOTHSTEP_NSTEPS;
assert_u64_ge(sum, min,
"Integral too small, even accounting for truncation");
assert_u64_le(sum, max, "Integral exceeds 1/2");
if (false) {
malloc_printf("%"FMTu64" ulps under 1/2 (limit %d)\n",
max - sum, SMOOTHSTEP_NSTEPS);
}
}
TEST_END
TEST_BEGIN(test_smoothstep_monotonic)
{
uint64_t prev_h;
unsigned i;
/*
* The smoothstep function is monotonic in [0..1], i.e. its slope is
* non-negative. In practice we want to parametrize table generation
* such that piecewise slope is greater than zero, but do not require
* that here.
*/
prev_h = 0;
for (i = 0; i < SMOOTHSTEP_NSTEPS; i++) {
uint64_t h = smoothstep_tab[i];
assert_u64_ge(h, prev_h, "Piecewise non-monotonic, i=%u", i);
prev_h = h;
}
assert_u64_eq(smoothstep_tab[SMOOTHSTEP_NSTEPS-1],
(KQU(1) << SMOOTHSTEP_BFP), "Last step must equal 1");
}
TEST_END
TEST_BEGIN(test_smoothstep_slope)
{
uint64_t prev_h, prev_delta;
unsigned i;
/*
* The smoothstep slope strictly increases until x=0.5, and then
* strictly decreases until x=1.0. Verify the slightly weaker
* requirement of monotonicity, so that inadequate table precision does
* not cause false test failures.
*/
prev_h = 0;
prev_delta = 0;
for (i = 0; i < SMOOTHSTEP_NSTEPS / 2 + SMOOTHSTEP_NSTEPS % 2; i++) {
uint64_t h = smoothstep_tab[i];
uint64_t delta = h - prev_h;
assert_u64_ge(delta, prev_delta,
"Slope must monotonically increase in 0.0 <= x <= 0.5, "
"i=%u", i);
prev_h = h;
prev_delta = delta;
}
prev_h = KQU(1) << SMOOTHSTEP_BFP;
prev_delta = 0;
for (i = SMOOTHSTEP_NSTEPS-1; i >= SMOOTHSTEP_NSTEPS / 2; i--) {
uint64_t h = smoothstep_tab[i];
uint64_t delta = prev_h - h;
assert_u64_ge(delta, prev_delta,
"Slope must monotonically decrease in 0.5 <= x <= 1.0, "
"i=%u", i);
prev_h = h;
prev_delta = delta;
}
}
TEST_END
int
main(void)
{
return (test(
test_smoothstep_integral,
test_smoothstep_monotonic,
test_smoothstep_slope));
}
| 2,728 | 24.504673 | 72 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/prof_gdump.c | #include "test/jemalloc_test.h"
#ifdef JEMALLOC_PROF
const char *malloc_conf = "prof:true,prof_active:false,prof_gdump:true";
#endif
static bool did_prof_dump_open;
static int
prof_dump_open_intercept(bool propagate_err, const char *filename)
{
int fd;
did_prof_dump_open = true;
fd = open("/dev/null", O_WRONLY);
assert_d_ne(fd, -1, "Unexpected open() failure");
return (fd);
}
TEST_BEGIN(test_gdump)
{
bool active, gdump, gdump_old;
void *p, *q, *r, *s;
size_t sz;
test_skip_if(!config_prof);
active = true;
assert_d_eq(mallctl("prof.active", NULL, NULL, (void *)&active,
sizeof(active)), 0,
"Unexpected mallctl failure while activating profiling");
prof_dump_open = prof_dump_open_intercept;
did_prof_dump_open = false;
p = mallocx(chunksize, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_true(did_prof_dump_open, "Expected a profile dump");
did_prof_dump_open = false;
q = mallocx(chunksize, 0);
assert_ptr_not_null(q, "Unexpected mallocx() failure");
assert_true(did_prof_dump_open, "Expected a profile dump");
gdump = false;
sz = sizeof(gdump_old);
assert_d_eq(mallctl("prof.gdump", (void *)&gdump_old, &sz,
(void *)&gdump, sizeof(gdump)), 0,
"Unexpected mallctl failure while disabling prof.gdump");
assert(gdump_old);
did_prof_dump_open = false;
r = mallocx(chunksize, 0);
assert_ptr_not_null(q, "Unexpected mallocx() failure");
assert_false(did_prof_dump_open, "Unexpected profile dump");
gdump = true;
sz = sizeof(gdump_old);
assert_d_eq(mallctl("prof.gdump", (void *)&gdump_old, &sz,
(void *)&gdump, sizeof(gdump)), 0,
"Unexpected mallctl failure while enabling prof.gdump");
assert(!gdump_old);
did_prof_dump_open = false;
s = mallocx(chunksize, 0);
assert_ptr_not_null(q, "Unexpected mallocx() failure");
assert_true(did_prof_dump_open, "Expected a profile dump");
dallocx(p, 0);
dallocx(q, 0);
dallocx(r, 0);
dallocx(s, 0);
}
TEST_END
int
main(void)
{
return (test(
test_gdump));
}
| 2,010 | 23.228916 | 72 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/prof_active.c | #include "test/jemalloc_test.h"
#ifdef JEMALLOC_PROF
const char *malloc_conf =
"prof:true,prof_thread_active_init:false,lg_prof_sample:0";
#endif
static void
mallctl_bool_get(const char *name, bool expected, const char *func, int line)
{
bool old;
size_t sz;
sz = sizeof(old);
assert_d_eq(mallctl(name, (void *)&old, &sz, NULL, 0), 0,
"%s():%d: Unexpected mallctl failure reading %s", func, line, name);
assert_b_eq(old, expected, "%s():%d: Unexpected %s value", func, line,
name);
}
static void
mallctl_bool_set(const char *name, bool old_expected, bool val_new,
const char *func, int line)
{
bool old;
size_t sz;
sz = sizeof(old);
assert_d_eq(mallctl(name, (void *)&old, &sz, (void *)&val_new,
sizeof(val_new)), 0,
"%s():%d: Unexpected mallctl failure reading/writing %s", func,
line, name);
assert_b_eq(old, old_expected, "%s():%d: Unexpected %s value", func,
line, name);
}
static void
mallctl_prof_active_get_impl(bool prof_active_old_expected, const char *func,
int line)
{
mallctl_bool_get("prof.active", prof_active_old_expected, func, line);
}
#define mallctl_prof_active_get(a) \
mallctl_prof_active_get_impl(a, __func__, __LINE__)
static void
mallctl_prof_active_set_impl(bool prof_active_old_expected,
bool prof_active_new, const char *func, int line)
{
mallctl_bool_set("prof.active", prof_active_old_expected,
prof_active_new, func, line);
}
#define mallctl_prof_active_set(a, b) \
mallctl_prof_active_set_impl(a, b, __func__, __LINE__)
static void
mallctl_thread_prof_active_get_impl(bool thread_prof_active_old_expected,
const char *func, int line)
{
mallctl_bool_get("thread.prof.active", thread_prof_active_old_expected,
func, line);
}
#define mallctl_thread_prof_active_get(a) \
mallctl_thread_prof_active_get_impl(a, __func__, __LINE__)
static void
mallctl_thread_prof_active_set_impl(bool thread_prof_active_old_expected,
bool thread_prof_active_new, const char *func, int line)
{
mallctl_bool_set("thread.prof.active", thread_prof_active_old_expected,
thread_prof_active_new, func, line);
}
#define mallctl_thread_prof_active_set(a, b) \
mallctl_thread_prof_active_set_impl(a, b, __func__, __LINE__)
static void
prof_sampling_probe_impl(bool expect_sample, const char *func, int line)
{
void *p;
size_t expected_backtraces = expect_sample ? 1 : 0;
assert_zu_eq(prof_bt_count(), 0, "%s():%d: Expected 0 backtraces", func,
line);
p = mallocx(1, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_zu_eq(prof_bt_count(), expected_backtraces,
"%s():%d: Unexpected backtrace count", func, line);
dallocx(p, 0);
}
#define prof_sampling_probe(a) \
prof_sampling_probe_impl(a, __func__, __LINE__)
TEST_BEGIN(test_prof_active)
{
test_skip_if(!config_prof);
mallctl_prof_active_get(true);
mallctl_thread_prof_active_get(false);
mallctl_prof_active_set(true, true);
mallctl_thread_prof_active_set(false, false);
/* prof.active, !thread.prof.active. */
prof_sampling_probe(false);
mallctl_prof_active_set(true, false);
mallctl_thread_prof_active_set(false, false);
/* !prof.active, !thread.prof.active. */
prof_sampling_probe(false);
mallctl_prof_active_set(false, false);
mallctl_thread_prof_active_set(false, true);
/* !prof.active, thread.prof.active. */
prof_sampling_probe(false);
mallctl_prof_active_set(false, true);
mallctl_thread_prof_active_set(true, true);
/* prof.active, thread.prof.active. */
prof_sampling_probe(true);
/* Restore settings. */
mallctl_prof_active_set(true, true);
mallctl_thread_prof_active_set(true, false);
}
TEST_END
int
main(void)
{
return (test(
test_prof_active));
}
| 3,706 | 25.862319 | 77 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/quarantine.c | #include "test/jemalloc_test.h"
#define QUARANTINE_SIZE 8192
#define STRINGIFY_HELPER(x) #x
#define STRINGIFY(x) STRINGIFY_HELPER(x)
#ifdef JEMALLOC_FILL
const char *malloc_conf = "abort:false,junk:true,redzone:true,quarantine:"
STRINGIFY(QUARANTINE_SIZE);
#endif
void
quarantine_clear(void)
{
void *p;
p = mallocx(QUARANTINE_SIZE*2, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
dallocx(p, 0);
}
TEST_BEGIN(test_quarantine)
{
#define SZ ZU(256)
#define NQUARANTINED (QUARANTINE_SIZE/SZ)
void *quarantined[NQUARANTINED+1];
size_t i, j;
test_skip_if(!config_fill);
assert_zu_eq(nallocx(SZ, 0), SZ,
"SZ=%zu does not precisely equal a size class", SZ);
quarantine_clear();
/*
* Allocate enough regions to completely fill the quarantine, plus one
* more. The last iteration occurs with a completely full quarantine,
* but no regions should be drained from the quarantine until the last
* deallocation occurs. Therefore no region recycling should occur
* until after this loop completes.
*/
for (i = 0; i < NQUARANTINED+1; i++) {
void *p = mallocx(SZ, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
quarantined[i] = p;
dallocx(p, 0);
for (j = 0; j < i; j++) {
assert_ptr_ne(p, quarantined[j],
"Quarantined region recycled too early; "
"i=%zu, j=%zu", i, j);
}
}
#undef NQUARANTINED
#undef SZ
}
TEST_END
static bool detected_redzone_corruption;
static void
arena_redzone_corruption_replacement(void *ptr, size_t usize, bool after,
size_t offset, uint8_t byte)
{
detected_redzone_corruption = true;
}
TEST_BEGIN(test_quarantine_redzone)
{
char *s;
arena_redzone_corruption_t *arena_redzone_corruption_orig;
test_skip_if(!config_fill);
arena_redzone_corruption_orig = arena_redzone_corruption;
arena_redzone_corruption = arena_redzone_corruption_replacement;
/* Test underflow. */
detected_redzone_corruption = false;
s = (char *)mallocx(1, 0);
assert_ptr_not_null((void *)s, "Unexpected mallocx() failure");
s[-1] = 0xbb;
dallocx(s, 0);
assert_true(detected_redzone_corruption,
"Did not detect redzone corruption");
/* Test overflow. */
detected_redzone_corruption = false;
s = (char *)mallocx(1, 0);
assert_ptr_not_null((void *)s, "Unexpected mallocx() failure");
s[sallocx(s, 0)] = 0xbb;
dallocx(s, 0);
assert_true(detected_redzone_corruption,
"Did not detect redzone corruption");
arena_redzone_corruption = arena_redzone_corruption_orig;
}
TEST_END
int
main(void)
{
return (test(
test_quarantine,
test_quarantine_redzone));
}
| 2,583 | 22.706422 | 74 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/ticker.c | #include "test/jemalloc_test.h"
TEST_BEGIN(test_ticker_tick)
{
#define NREPS 2
#define NTICKS 3
ticker_t ticker;
int32_t i, j;
ticker_init(&ticker, NTICKS);
for (i = 0; i < NREPS; i++) {
for (j = 0; j < NTICKS; j++) {
assert_u_eq(ticker_read(&ticker), NTICKS - j,
"Unexpected ticker value (i=%d, j=%d)", i, j);
assert_false(ticker_tick(&ticker),
"Unexpected ticker fire (i=%d, j=%d)", i, j);
}
assert_u32_eq(ticker_read(&ticker), 0,
"Expected ticker depletion");
assert_true(ticker_tick(&ticker),
"Expected ticker fire (i=%d)", i);
assert_u32_eq(ticker_read(&ticker), NTICKS,
"Expected ticker reset");
}
#undef NTICKS
}
TEST_END
TEST_BEGIN(test_ticker_ticks)
{
#define NTICKS 3
ticker_t ticker;
ticker_init(&ticker, NTICKS);
assert_u_eq(ticker_read(&ticker), NTICKS, "Unexpected ticker value");
assert_false(ticker_ticks(&ticker, NTICKS), "Unexpected ticker fire");
assert_u_eq(ticker_read(&ticker), 0, "Unexpected ticker value");
assert_true(ticker_ticks(&ticker, NTICKS), "Expected ticker fire");
assert_u_eq(ticker_read(&ticker), NTICKS, "Unexpected ticker value");
assert_true(ticker_ticks(&ticker, NTICKS + 1), "Expected ticker fire");
assert_u_eq(ticker_read(&ticker), NTICKS, "Unexpected ticker value");
#undef NTICKS
}
TEST_END
TEST_BEGIN(test_ticker_copy)
{
#define NTICKS 3
ticker_t ta, tb;
ticker_init(&ta, NTICKS);
ticker_copy(&tb, &ta);
assert_u_eq(ticker_read(&tb), NTICKS, "Unexpected ticker value");
assert_true(ticker_ticks(&tb, NTICKS + 1), "Expected ticker fire");
assert_u_eq(ticker_read(&tb), NTICKS, "Unexpected ticker value");
ticker_tick(&ta);
ticker_copy(&tb, &ta);
assert_u_eq(ticker_read(&tb), NTICKS - 1, "Unexpected ticker value");
assert_true(ticker_ticks(&tb, NTICKS), "Expected ticker fire");
assert_u_eq(ticker_read(&tb), NTICKS, "Unexpected ticker value");
#undef NTICKS
}
TEST_END
int
main(void)
{
return (test(
test_ticker_tick,
test_ticker_ticks,
test_ticker_copy));
}
| 2,006 | 25.064935 | 72 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/unit/size_classes.c | #include "test/jemalloc_test.h"
static size_t
get_max_size_class(void)
{
unsigned nhchunks;
size_t mib[4];
size_t sz, miblen, max_size_class;
sz = sizeof(unsigned);
assert_d_eq(mallctl("arenas.nhchunks", (void *)&nhchunks, &sz, NULL, 0),
0, "Unexpected mallctl() error");
miblen = sizeof(mib) / sizeof(size_t);
assert_d_eq(mallctlnametomib("arenas.hchunk.0.size", mib, &miblen), 0,
"Unexpected mallctlnametomib() error");
mib[2] = nhchunks - 1;
sz = sizeof(size_t);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&max_size_class, &sz,
NULL, 0), 0, "Unexpected mallctlbymib() error");
return (max_size_class);
}
TEST_BEGIN(test_size_classes)
{
size_t size_class, max_size_class;
szind_t index, max_index;
max_size_class = get_max_size_class();
max_index = size2index(max_size_class);
for (index = 0, size_class = index2size(index); index < max_index ||
size_class < max_size_class; index++, size_class =
index2size(index)) {
assert_true(index < max_index,
"Loop conditionals should be equivalent; index=%u, "
"size_class=%zu (%#zx)", index, size_class, size_class);
assert_true(size_class < max_size_class,
"Loop conditionals should be equivalent; index=%u, "
"size_class=%zu (%#zx)", index, size_class, size_class);
assert_u_eq(index, size2index(size_class),
"size2index() does not reverse index2size(): index=%u -->"
" size_class=%zu --> index=%u --> size_class=%zu", index,
size_class, size2index(size_class),
index2size(size2index(size_class)));
assert_zu_eq(size_class, index2size(size2index(size_class)),
"index2size() does not reverse size2index(): index=%u -->"
" size_class=%zu --> index=%u --> size_class=%zu", index,
size_class, size2index(size_class),
index2size(size2index(size_class)));
assert_u_eq(index+1, size2index(size_class+1),
"Next size_class does not round up properly");
assert_zu_eq(size_class, (index > 0) ?
s2u(index2size(index-1)+1) : s2u(1),
"s2u() does not round up to size class");
assert_zu_eq(size_class, s2u(size_class-1),
"s2u() does not round up to size class");
assert_zu_eq(size_class, s2u(size_class),
"s2u() does not compute same size class");
assert_zu_eq(s2u(size_class+1), index2size(index+1),
"s2u() does not round up to next size class");
}
assert_u_eq(index, size2index(index2size(index)),
"size2index() does not reverse index2size()");
assert_zu_eq(max_size_class, index2size(size2index(max_size_class)),
"index2size() does not reverse size2index()");
assert_zu_eq(size_class, s2u(index2size(index-1)+1),
"s2u() does not round up to size class");
assert_zu_eq(size_class, s2u(size_class-1),
"s2u() does not round up to size class");
assert_zu_eq(size_class, s2u(size_class),
"s2u() does not compute same size class");
}
TEST_END
TEST_BEGIN(test_psize_classes)
{
size_t size_class, max_size_class;
pszind_t pind, max_pind;
max_size_class = get_max_size_class();
max_pind = psz2ind(max_size_class);
for (pind = 0, size_class = pind2sz(pind); pind < max_pind ||
size_class < max_size_class; pind++, size_class =
pind2sz(pind)) {
assert_true(pind < max_pind,
"Loop conditionals should be equivalent; pind=%u, "
"size_class=%zu (%#zx)", pind, size_class, size_class);
assert_true(size_class < max_size_class,
"Loop conditionals should be equivalent; pind=%u, "
"size_class=%zu (%#zx)", pind, size_class, size_class);
assert_u_eq(pind, psz2ind(size_class),
"psz2ind() does not reverse pind2sz(): pind=%u -->"
" size_class=%zu --> pind=%u --> size_class=%zu", pind,
size_class, psz2ind(size_class),
pind2sz(psz2ind(size_class)));
assert_zu_eq(size_class, pind2sz(psz2ind(size_class)),
"pind2sz() does not reverse psz2ind(): pind=%u -->"
" size_class=%zu --> pind=%u --> size_class=%zu", pind,
size_class, psz2ind(size_class),
pind2sz(psz2ind(size_class)));
assert_u_eq(pind+1, psz2ind(size_class+1),
"Next size_class does not round up properly");
assert_zu_eq(size_class, (pind > 0) ?
psz2u(pind2sz(pind-1)+1) : psz2u(1),
"psz2u() does not round up to size class");
assert_zu_eq(size_class, psz2u(size_class-1),
"psz2u() does not round up to size class");
assert_zu_eq(size_class, psz2u(size_class),
"psz2u() does not compute same size class");
assert_zu_eq(psz2u(size_class+1), pind2sz(pind+1),
"psz2u() does not round up to next size class");
}
assert_u_eq(pind, psz2ind(pind2sz(pind)),
"psz2ind() does not reverse pind2sz()");
assert_zu_eq(max_size_class, pind2sz(psz2ind(max_size_class)),
"pind2sz() does not reverse psz2ind()");
assert_zu_eq(size_class, psz2u(pind2sz(pind-1)+1),
"psz2u() does not round up to size class");
assert_zu_eq(size_class, psz2u(size_class-1),
"psz2u() does not round up to size class");
assert_zu_eq(size_class, psz2u(size_class),
"psz2u() does not compute same size class");
}
TEST_END
TEST_BEGIN(test_overflow)
{
size_t max_size_class;
max_size_class = get_max_size_class();
assert_u_eq(size2index(max_size_class+1), NSIZES,
"size2index() should return NSIZES on overflow");
assert_u_eq(size2index(ZU(PTRDIFF_MAX)+1), NSIZES,
"size2index() should return NSIZES on overflow");
assert_u_eq(size2index(SIZE_T_MAX), NSIZES,
"size2index() should return NSIZES on overflow");
assert_zu_eq(s2u(max_size_class+1), 0,
"s2u() should return 0 for unsupported size");
assert_zu_eq(s2u(ZU(PTRDIFF_MAX)+1), 0,
"s2u() should return 0 for unsupported size");
assert_zu_eq(s2u(SIZE_T_MAX), 0,
"s2u() should return 0 on overflow");
assert_u_eq(psz2ind(max_size_class+1), NPSIZES,
"psz2ind() should return NPSIZES on overflow");
assert_u_eq(psz2ind(ZU(PTRDIFF_MAX)+1), NPSIZES,
"psz2ind() should return NPSIZES on overflow");
assert_u_eq(psz2ind(SIZE_T_MAX), NPSIZES,
"psz2ind() should return NPSIZES on overflow");
assert_zu_eq(psz2u(max_size_class+1), 0,
"psz2u() should return 0 for unsupported size");
assert_zu_eq(psz2u(ZU(PTRDIFF_MAX)+1), 0,
"psz2u() should return 0 for unsupported size");
assert_zu_eq(psz2u(SIZE_T_MAX), 0,
"psz2u() should return 0 on overflow");
}
TEST_END
int
main(void)
{
return (test(
test_size_classes,
test_psize_classes,
test_overflow));
}
| 6,414 | 33.675676 | 73 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/src/SFMT.c | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file SFMT.c
* @brief SIMD oriented Fast Mersenne Twister(SFMT)
*
* @author Mutsuo Saito (Hiroshima University)
* @author Makoto Matsumoto (Hiroshima University)
*
* Copyright (C) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* The new BSD License is applied to this software, see LICENSE.txt
*/
#define SFMT_C_
#include "test/jemalloc_test.h"
#include "test/SFMT-params.h"
#if defined(JEMALLOC_BIG_ENDIAN) && !defined(BIG_ENDIAN64)
#define BIG_ENDIAN64 1
#endif
#if defined(__BIG_ENDIAN__) && !defined(__amd64) && !defined(BIG_ENDIAN64)
#define BIG_ENDIAN64 1
#endif
#if defined(HAVE_ALTIVEC) && !defined(BIG_ENDIAN64)
#define BIG_ENDIAN64 1
#endif
#if defined(ONLY64) && !defined(BIG_ENDIAN64)
#if defined(__GNUC__)
#error "-DONLY64 must be specified with -DBIG_ENDIAN64"
#endif
#undef ONLY64
#endif
/*------------------------------------------------------
128-bit SIMD data type for Altivec, SSE2 or standard C
------------------------------------------------------*/
#if defined(HAVE_ALTIVEC)
/** 128-bit data structure */
union W128_T {
vector unsigned int s;
uint32_t u[4];
};
/** 128-bit data type */
typedef union W128_T w128_t;
#elif defined(HAVE_SSE2)
/** 128-bit data structure */
union W128_T {
__m128i si;
uint32_t u[4];
};
/** 128-bit data type */
typedef union W128_T w128_t;
#else
/** 128-bit data structure */
struct W128_T {
uint32_t u[4];
};
/** 128-bit data type */
typedef struct W128_T w128_t;
#endif
struct sfmt_s {
/** the 128-bit internal state array */
w128_t sfmt[N];
/** index counter to the 32-bit internal state array */
int idx;
/** a flag: it is 0 if and only if the internal state is not yet
* initialized. */
int initialized;
};
/*--------------------------------------
FILE GLOBAL VARIABLES
internal state, index counter and flag
--------------------------------------*/
/** a parity check vector which certificate the period of 2^{MEXP} */
static uint32_t parity[4] = {PARITY1, PARITY2, PARITY3, PARITY4};
/*----------------
STATIC FUNCTIONS
----------------*/
JEMALLOC_INLINE_C int idxof(int i);
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
JEMALLOC_INLINE_C void rshift128(w128_t *out, w128_t const *in, int shift);
JEMALLOC_INLINE_C void lshift128(w128_t *out, w128_t const *in, int shift);
#endif
JEMALLOC_INLINE_C void gen_rand_all(sfmt_t *ctx);
JEMALLOC_INLINE_C void gen_rand_array(sfmt_t *ctx, w128_t *array, int size);
JEMALLOC_INLINE_C uint32_t func1(uint32_t x);
JEMALLOC_INLINE_C uint32_t func2(uint32_t x);
static void period_certification(sfmt_t *ctx);
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
JEMALLOC_INLINE_C void swap(w128_t *array, int size);
#endif
#if defined(HAVE_ALTIVEC)
#include "test/SFMT-alti.h"
#elif defined(HAVE_SSE2)
#include "test/SFMT-sse2.h"
#endif
/**
* This function simulate a 64-bit index of LITTLE ENDIAN
* in BIG ENDIAN machine.
*/
#ifdef ONLY64
JEMALLOC_INLINE_C int idxof(int i) {
return i ^ 1;
}
#else
JEMALLOC_INLINE_C int idxof(int i) {
return i;
}
#endif
/**
* This function simulates SIMD 128-bit right shift by the standard C.
* The 128-bit integer given in in is shifted by (shift * 8) bits.
* This function simulates the LITTLE ENDIAN SIMD.
* @param out the output of this function
* @param in the 128-bit data to be shifted
* @param shift the shift value
*/
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
#ifdef ONLY64
JEMALLOC_INLINE_C void rshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);
oh = th >> (shift * 8);
ol = tl >> (shift * 8);
ol |= th << (64 - shift * 8);
out->u[0] = (uint32_t)(ol >> 32);
out->u[1] = (uint32_t)ol;
out->u[2] = (uint32_t)(oh >> 32);
out->u[3] = (uint32_t)oh;
}
#else
JEMALLOC_INLINE_C void rshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);
oh = th >> (shift * 8);
ol = tl >> (shift * 8);
ol |= th << (64 - shift * 8);
out->u[1] = (uint32_t)(ol >> 32);
out->u[0] = (uint32_t)ol;
out->u[3] = (uint32_t)(oh >> 32);
out->u[2] = (uint32_t)oh;
}
#endif
/**
* This function simulates SIMD 128-bit left shift by the standard C.
* The 128-bit integer given in in is shifted by (shift * 8) bits.
* This function simulates the LITTLE ENDIAN SIMD.
* @param out the output of this function
* @param in the 128-bit data to be shifted
* @param shift the shift value
*/
#ifdef ONLY64
JEMALLOC_INLINE_C void lshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);
oh = th << (shift * 8);
ol = tl << (shift * 8);
oh |= tl >> (64 - shift * 8);
out->u[0] = (uint32_t)(ol >> 32);
out->u[1] = (uint32_t)ol;
out->u[2] = (uint32_t)(oh >> 32);
out->u[3] = (uint32_t)oh;
}
#else
JEMALLOC_INLINE_C void lshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);
oh = th << (shift * 8);
ol = tl << (shift * 8);
oh |= tl >> (64 - shift * 8);
out->u[1] = (uint32_t)(ol >> 32);
out->u[0] = (uint32_t)ol;
out->u[3] = (uint32_t)(oh >> 32);
out->u[2] = (uint32_t)oh;
}
#endif
#endif
/**
* This function represents the recursion formula.
* @param r output
* @param a a 128-bit part of the internal state array
* @param b a 128-bit part of the internal state array
* @param c a 128-bit part of the internal state array
* @param d a 128-bit part of the internal state array
*/
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
#ifdef ONLY64
JEMALLOC_INLINE_C void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
w128_t *d) {
w128_t x;
w128_t y;
lshift128(&x, a, SL2);
rshift128(&y, c, SR2);
r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK2) ^ y.u[0]
^ (d->u[0] << SL1);
r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK1) ^ y.u[1]
^ (d->u[1] << SL1);
r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK4) ^ y.u[2]
^ (d->u[2] << SL1);
r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK3) ^ y.u[3]
^ (d->u[3] << SL1);
}
#else
JEMALLOC_INLINE_C void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
w128_t *d) {
w128_t x;
w128_t y;
lshift128(&x, a, SL2);
rshift128(&y, c, SR2);
r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK1) ^ y.u[0]
^ (d->u[0] << SL1);
r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK2) ^ y.u[1]
^ (d->u[1] << SL1);
r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK3) ^ y.u[2]
^ (d->u[2] << SL1);
r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK4) ^ y.u[3]
^ (d->u[3] << SL1);
}
#endif
#endif
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
/**
* This function fills the internal state array with pseudorandom
* integers.
*/
JEMALLOC_INLINE_C void gen_rand_all(sfmt_t *ctx) {
int i;
w128_t *r1, *r2;
r1 = &ctx->sfmt[N - 2];
r2 = &ctx->sfmt[N - 1];
for (i = 0; i < N - POS1; i++) {
do_recursion(&ctx->sfmt[i], &ctx->sfmt[i], &ctx->sfmt[i + POS1], r1,
r2);
r1 = r2;
r2 = &ctx->sfmt[i];
}
for (; i < N; i++) {
do_recursion(&ctx->sfmt[i], &ctx->sfmt[i], &ctx->sfmt[i + POS1 - N], r1,
r2);
r1 = r2;
r2 = &ctx->sfmt[i];
}
}
/**
* This function fills the user-specified array with pseudorandom
* integers.
*
* @param array an 128-bit array to be filled by pseudorandom numbers.
* @param size number of 128-bit pseudorandom numbers to be generated.
*/
JEMALLOC_INLINE_C void gen_rand_array(sfmt_t *ctx, w128_t *array, int size) {
int i, j;
w128_t *r1, *r2;
r1 = &ctx->sfmt[N - 2];
r2 = &ctx->sfmt[N - 1];
for (i = 0; i < N - POS1; i++) {
do_recursion(&array[i], &ctx->sfmt[i], &ctx->sfmt[i + POS1], r1, r2);
r1 = r2;
r2 = &array[i];
}
for (; i < N; i++) {
do_recursion(&array[i], &ctx->sfmt[i], &array[i + POS1 - N], r1, r2);
r1 = r2;
r2 = &array[i];
}
for (; i < size - N; i++) {
do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
r1 = r2;
r2 = &array[i];
}
for (j = 0; j < 2 * N - size; j++) {
ctx->sfmt[j] = array[j + size - N];
}
for (; i < size; i++, j++) {
do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
r1 = r2;
r2 = &array[i];
ctx->sfmt[j] = array[i];
}
}
#endif
#if defined(BIG_ENDIAN64) && !defined(ONLY64) && !defined(HAVE_ALTIVEC)
JEMALLOC_INLINE_C void swap(w128_t *array, int size) {
int i;
uint32_t x, y;
for (i = 0; i < size; i++) {
x = array[i].u[0];
y = array[i].u[2];
array[i].u[0] = array[i].u[1];
array[i].u[2] = array[i].u[3];
array[i].u[1] = x;
array[i].u[3] = y;
}
}
#endif
/**
* This function represents a function used in the initialization
* by init_by_array
* @param x 32-bit integer
* @return 32-bit integer
*/
static uint32_t func1(uint32_t x) {
return (x ^ (x >> 27)) * (uint32_t)1664525UL;
}
/**
* This function represents a function used in the initialization
* by init_by_array
* @param x 32-bit integer
* @return 32-bit integer
*/
static uint32_t func2(uint32_t x) {
return (x ^ (x >> 27)) * (uint32_t)1566083941UL;
}
/**
* This function certificate the period of 2^{MEXP}
*/
static void period_certification(sfmt_t *ctx) {
int inner = 0;
int i, j;
uint32_t work;
uint32_t *psfmt32 = &ctx->sfmt[0].u[0];
for (i = 0; i < 4; i++)
inner ^= psfmt32[idxof(i)] & parity[i];
for (i = 16; i > 0; i >>= 1)
inner ^= inner >> i;
inner &= 1;
/* check OK */
if (inner == 1) {
return;
}
/* check NG, and modification */
for (i = 0; i < 4; i++) {
work = 1;
for (j = 0; j < 32; j++) {
if ((work & parity[i]) != 0) {
psfmt32[idxof(i)] ^= work;
return;
}
work = work << 1;
}
}
}
/*----------------
PUBLIC FUNCTIONS
----------------*/
/**
* This function returns the identification string.
* The string shows the word size, the Mersenne exponent,
* and all parameters of this generator.
*/
const char *get_idstring(void) {
return IDSTR;
}
/**
* This function returns the minimum size of array used for \b
* fill_array32() function.
* @return minimum size of array used for fill_array32() function.
*/
int get_min_array_size32(void) {
return N32;
}
/**
* This function returns the minimum size of array used for \b
* fill_array64() function.
* @return minimum size of array used for fill_array64() function.
*/
int get_min_array_size64(void) {
return N64;
}
#ifndef ONLY64
/**
* This function generates and returns 32-bit pseudorandom number.
* init_gen_rand or init_by_array must be called before this function.
* @return 32-bit pseudorandom number
*/
uint32_t gen_rand32(sfmt_t *ctx) {
uint32_t r;
uint32_t *psfmt32 = &ctx->sfmt[0].u[0];
assert(ctx->initialized);
if (ctx->idx >= N32) {
gen_rand_all(ctx);
ctx->idx = 0;
}
r = psfmt32[ctx->idx++];
return r;
}
/* Generate a random integer in [0..limit). */
uint32_t gen_rand32_range(sfmt_t *ctx, uint32_t limit) {
uint32_t ret, above;
above = 0xffffffffU - (0xffffffffU % limit);
while (1) {
ret = gen_rand32(ctx);
if (ret < above) {
ret %= limit;
break;
}
}
return ret;
}
#endif
/**
* This function generates and returns 64-bit pseudorandom number.
* init_gen_rand or init_by_array must be called before this function.
* The function gen_rand64 should not be called after gen_rand32,
* unless an initialization is again executed.
* @return 64-bit pseudorandom number
*/
uint64_t gen_rand64(sfmt_t *ctx) {
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
uint32_t r1, r2;
uint32_t *psfmt32 = &ctx->sfmt[0].u[0];
#else
uint64_t r;
uint64_t *psfmt64 = (uint64_t *)&ctx->sfmt[0].u[0];
#endif
assert(ctx->initialized);
assert(ctx->idx % 2 == 0);
if (ctx->idx >= N32) {
gen_rand_all(ctx);
ctx->idx = 0;
}
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
r1 = psfmt32[ctx->idx];
r2 = psfmt32[ctx->idx + 1];
ctx->idx += 2;
return ((uint64_t)r2 << 32) | r1;
#else
r = psfmt64[ctx->idx / 2];
ctx->idx += 2;
return r;
#endif
}
/* Generate a random integer in [0..limit). */
uint64_t gen_rand64_range(sfmt_t *ctx, uint64_t limit) {
uint64_t ret, above;
above = KQU(0xffffffffffffffff) - (KQU(0xffffffffffffffff) % limit);
while (1) {
ret = gen_rand64(ctx);
if (ret < above) {
ret %= limit;
break;
}
}
return ret;
}
#ifndef ONLY64
/**
* This function generates pseudorandom 32-bit integers in the
* specified array[] by one call. The number of pseudorandom integers
* is specified by the argument size, which must be at least 624 and a
* multiple of four. The generation by this function is much faster
* than the following gen_rand function.
*
* For initialization, init_gen_rand or init_by_array must be called
* before the first call of this function. This function can not be
* used after calling gen_rand function, without initialization.
*
* @param array an array where pseudorandom 32-bit integers are filled
* by this function. The pointer to the array must be \b "aligned"
* (namely, must be a multiple of 16) in the SIMD version, since it
* refers to the address of a 128-bit integer. In the standard C
* version, the pointer is arbitrary.
*
* @param size the number of 32-bit pseudorandom integers to be
* generated. size must be a multiple of 4, and greater than or equal
* to (MEXP / 128 + 1) * 4.
*
* @note \b memalign or \b posix_memalign is available to get aligned
* memory. Mac OSX doesn't have these functions, but \b malloc of OSX
* returns the pointer to the aligned memory block.
*/
void fill_array32(sfmt_t *ctx, uint32_t *array, int size) {
assert(ctx->initialized);
assert(ctx->idx == N32);
assert(size % 4 == 0);
assert(size >= N32);
gen_rand_array(ctx, (w128_t *)array, size / 4);
ctx->idx = N32;
}
#endif
/**
* This function generates pseudorandom 64-bit integers in the
* specified array[] by one call. The number of pseudorandom integers
* is specified by the argument size, which must be at least 312 and a
* multiple of two. The generation by this function is much faster
* than the following gen_rand function.
*
* For initialization, init_gen_rand or init_by_array must be called
* before the first call of this function. This function can not be
* used after calling gen_rand function, without initialization.
*
* @param array an array where pseudorandom 64-bit integers are filled
* by this function. The pointer to the array must be "aligned"
* (namely, must be a multiple of 16) in the SIMD version, since it
* refers to the address of a 128-bit integer. In the standard C
* version, the pointer is arbitrary.
*
* @param size the number of 64-bit pseudorandom integers to be
* generated. size must be a multiple of 2, and greater than or equal
* to (MEXP / 128 + 1) * 2
*
* @note \b memalign or \b posix_memalign is available to get aligned
* memory. Mac OSX doesn't have these functions, but \b malloc of OSX
* returns the pointer to the aligned memory block.
*/
void fill_array64(sfmt_t *ctx, uint64_t *array, int size) {
assert(ctx->initialized);
assert(ctx->idx == N32);
assert(size % 2 == 0);
assert(size >= N64);
gen_rand_array(ctx, (w128_t *)array, size / 2);
ctx->idx = N32;
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
swap((w128_t *)array, size /2);
#endif
}
/**
* This function initializes the internal state array with a 32-bit
* integer seed.
*
* @param seed a 32-bit integer used as the seed.
*/
sfmt_t *init_gen_rand(uint32_t seed) {
void *p;
sfmt_t *ctx;
int i;
uint32_t *psfmt32;
if (posix_memalign(&p, sizeof(w128_t), sizeof(sfmt_t)) != 0) {
return NULL;
}
ctx = (sfmt_t *)p;
psfmt32 = &ctx->sfmt[0].u[0];
psfmt32[idxof(0)] = seed;
for (i = 1; i < N32; i++) {
psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)]
^ (psfmt32[idxof(i - 1)] >> 30))
+ i;
}
ctx->idx = N32;
period_certification(ctx);
ctx->initialized = 1;
return ctx;
}
/**
* This function initializes the internal state array,
* with an array of 32-bit integers used as the seeds
* @param init_key the array of 32-bit integers, used as a seed.
* @param key_length the length of init_key.
*/
sfmt_t *init_by_array(uint32_t *init_key, int key_length) {
void *p;
sfmt_t *ctx;
int i, j, count;
uint32_t r;
int lag;
int mid;
int size = N * 4;
uint32_t *psfmt32;
if (posix_memalign(&p, sizeof(w128_t), sizeof(sfmt_t)) != 0) {
return NULL;
}
ctx = (sfmt_t *)p;
psfmt32 = &ctx->sfmt[0].u[0];
if (size >= 623) {
lag = 11;
} else if (size >= 68) {
lag = 7;
} else if (size >= 39) {
lag = 5;
} else {
lag = 3;
}
mid = (size - lag) / 2;
memset(ctx->sfmt, 0x8b, sizeof(ctx->sfmt));
if (key_length + 1 > N32) {
count = key_length + 1;
} else {
count = N32;
}
r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)]
^ psfmt32[idxof(N32 - 1)]);
psfmt32[idxof(mid)] += r;
r += key_length;
psfmt32[idxof(mid + lag)] += r;
psfmt32[idxof(0)] = r;
count--;
for (i = 1, j = 0; (j < count) && (j < key_length); j++) {
r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
^ psfmt32[idxof((i + N32 - 1) % N32)]);
psfmt32[idxof((i + mid) % N32)] += r;
r += init_key[j] + i;
psfmt32[idxof((i + mid + lag) % N32)] += r;
psfmt32[idxof(i)] = r;
i = (i + 1) % N32;
}
for (; j < count; j++) {
r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
^ psfmt32[idxof((i + N32 - 1) % N32)]);
psfmt32[idxof((i + mid) % N32)] += r;
r += i;
psfmt32[idxof((i + mid + lag) % N32)] += r;
psfmt32[idxof(i)] = r;
i = (i + 1) % N32;
}
for (j = 0; j < N32; j++) {
r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % N32)]
+ psfmt32[idxof((i + N32 - 1) % N32)]);
psfmt32[idxof((i + mid) % N32)] ^= r;
r -= i;
psfmt32[idxof((i + mid + lag) % N32)] ^= r;
psfmt32[idxof(i)] = r;
i = (i + 1) % N32;
}
ctx->idx = N32;
period_certification(ctx);
ctx->initialized = 1;
return ctx;
}
void fini_gen_rand(sfmt_t *ctx) {
assert(ctx != NULL);
ctx->initialized = 0;
free(ctx);
}
| 20,695 | 27.744444 | 79 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/integration/allocated.c | #include "test/jemalloc_test.h"
static const bool config_stats =
#ifdef JEMALLOC_STATS
true
#else
false
#endif
;
void *
thd_start(void *arg)
{
int err;
void *p;
uint64_t a0, a1, d0, d1;
uint64_t *ap0, *ap1, *dp0, *dp1;
size_t sz, usize;
sz = sizeof(a0);
if ((err = mallctl("thread.allocated", (void *)&a0, &sz, NULL, 0))) {
if (err == ENOENT)
goto label_ENOENT;
test_fail("%s(): Error in mallctl(): %s", __func__,
strerror(err));
}
sz = sizeof(ap0);
if ((err = mallctl("thread.allocatedp", (void *)&ap0, &sz, NULL, 0))) {
if (err == ENOENT)
goto label_ENOENT;
test_fail("%s(): Error in mallctl(): %s", __func__,
strerror(err));
}
assert_u64_eq(*ap0, a0,
"\"thread.allocatedp\" should provide a pointer to internal "
"storage");
sz = sizeof(d0);
if ((err = mallctl("thread.deallocated", (void *)&d0, &sz, NULL, 0))) {
if (err == ENOENT)
goto label_ENOENT;
test_fail("%s(): Error in mallctl(): %s", __func__,
strerror(err));
}
sz = sizeof(dp0);
if ((err = mallctl("thread.deallocatedp", (void *)&dp0, &sz, NULL,
0))) {
if (err == ENOENT)
goto label_ENOENT;
test_fail("%s(): Error in mallctl(): %s", __func__,
strerror(err));
}
assert_u64_eq(*dp0, d0,
"\"thread.deallocatedp\" should provide a pointer to internal "
"storage");
p = malloc(1);
assert_ptr_not_null(p, "Unexpected malloc() error");
sz = sizeof(a1);
mallctl("thread.allocated", (void *)&a1, &sz, NULL, 0);
sz = sizeof(ap1);
mallctl("thread.allocatedp", (void *)&ap1, &sz, NULL, 0);
assert_u64_eq(*ap1, a1,
"Dereferenced \"thread.allocatedp\" value should equal "
"\"thread.allocated\" value");
assert_ptr_eq(ap0, ap1,
"Pointer returned by \"thread.allocatedp\" should not change");
usize = malloc_usable_size(p);
assert_u64_le(a0 + usize, a1,
"Allocated memory counter should increase by at least the amount "
"explicitly allocated");
free(p);
sz = sizeof(d1);
mallctl("thread.deallocated", (void *)&d1, &sz, NULL, 0);
sz = sizeof(dp1);
mallctl("thread.deallocatedp", (void *)&dp1, &sz, NULL, 0);
assert_u64_eq(*dp1, d1,
"Dereferenced \"thread.deallocatedp\" value should equal "
"\"thread.deallocated\" value");
assert_ptr_eq(dp0, dp1,
"Pointer returned by \"thread.deallocatedp\" should not change");
assert_u64_le(d0 + usize, d1,
"Deallocated memory counter should increase by at least the amount "
"explicitly deallocated");
return (NULL);
label_ENOENT:
assert_false(config_stats,
"ENOENT should only be returned if stats are disabled");
test_skip("\"thread.allocated\" mallctl not available");
return (NULL);
}
TEST_BEGIN(test_main_thread)
{
thd_start(NULL);
}
TEST_END
TEST_BEGIN(test_subthread)
{
thd_t thd;
thd_create(&thd, thd_start, NULL);
thd_join(thd, NULL);
}
TEST_END
int
main(void)
{
/* Run tests multiple times to check for bad interactions. */
return (test(
test_main_thread,
test_subthread,
test_main_thread,
test_subthread,
test_main_thread));
}
| 3,058 | 23.086614 | 73 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/integration/xallocx.c | #include "test/jemalloc_test.h"
#ifdef JEMALLOC_FILL
const char *malloc_conf = "junk:false";
#endif
/*
* Use a separate arena for xallocx() extension/contraction tests so that
* internal allocation e.g. by heap profiling can't interpose allocations where
* xallocx() would ordinarily be able to extend.
*/
static unsigned
arena_ind(void)
{
static unsigned ind = 0;
if (ind == 0) {
size_t sz = sizeof(ind);
assert_d_eq(mallctl("arenas.extend", (void *)&ind, &sz, NULL,
0), 0, "Unexpected mallctl failure creating arena");
}
return (ind);
}
TEST_BEGIN(test_same_size)
{
void *p;
size_t sz, tsz;
p = mallocx(42, 0);
assert_ptr_not_null(p, "Unexpected mallocx() error");
sz = sallocx(p, 0);
tsz = xallocx(p, sz, 0, 0);
assert_zu_eq(tsz, sz, "Unexpected size change: %zu --> %zu", sz, tsz);
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_extra_no_move)
{
void *p;
size_t sz, tsz;
p = mallocx(42, 0);
assert_ptr_not_null(p, "Unexpected mallocx() error");
sz = sallocx(p, 0);
tsz = xallocx(p, sz, sz-42, 0);
assert_zu_eq(tsz, sz, "Unexpected size change: %zu --> %zu", sz, tsz);
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_no_move_fail)
{
void *p;
size_t sz, tsz;
p = mallocx(42, 0);
assert_ptr_not_null(p, "Unexpected mallocx() error");
sz = sallocx(p, 0);
tsz = xallocx(p, sz + 5, 0, 0);
assert_zu_eq(tsz, sz, "Unexpected size change: %zu --> %zu", sz, tsz);
dallocx(p, 0);
}
TEST_END
static unsigned
get_nsizes_impl(const char *cmd)
{
unsigned ret;
size_t z;
z = sizeof(unsigned);
assert_d_eq(mallctl(cmd, (void *)&ret, &z, NULL, 0), 0,
"Unexpected mallctl(\"%s\", ...) failure", cmd);
return (ret);
}
static unsigned
get_nsmall(void)
{
return (get_nsizes_impl("arenas.nbins"));
}
static unsigned
get_nlarge(void)
{
return (get_nsizes_impl("arenas.nlruns"));
}
static unsigned
get_nhuge(void)
{
return (get_nsizes_impl("arenas.nhchunks"));
}
static size_t
get_size_impl(const char *cmd, size_t ind)
{
size_t ret;
size_t z;
size_t mib[4];
size_t miblen = 4;
z = sizeof(size_t);
assert_d_eq(mallctlnametomib(cmd, mib, &miblen),
0, "Unexpected mallctlnametomib(\"%s\", ...) failure", cmd);
mib[2] = ind;
z = sizeof(size_t);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&ret, &z, NULL, 0),
0, "Unexpected mallctlbymib([\"%s\", %zu], ...) failure", cmd, ind);
return (ret);
}
static size_t
get_small_size(size_t ind)
{
return (get_size_impl("arenas.bin.0.size", ind));
}
static size_t
get_large_size(size_t ind)
{
return (get_size_impl("arenas.lrun.0.size", ind));
}
static size_t
get_huge_size(size_t ind)
{
return (get_size_impl("arenas.hchunk.0.size", ind));
}
TEST_BEGIN(test_size)
{
size_t small0, hugemax;
void *p;
/* Get size classes. */
small0 = get_small_size(0);
hugemax = get_huge_size(get_nhuge()-1);
p = mallocx(small0, 0);
assert_ptr_not_null(p, "Unexpected mallocx() error");
/* Test smallest supported size. */
assert_zu_eq(xallocx(p, 1, 0, 0), small0,
"Unexpected xallocx() behavior");
/* Test largest supported size. */
assert_zu_le(xallocx(p, hugemax, 0, 0), hugemax,
"Unexpected xallocx() behavior");
/* Test size overflow. */
assert_zu_le(xallocx(p, hugemax+1, 0, 0), hugemax,
"Unexpected xallocx() behavior");
assert_zu_le(xallocx(p, SIZE_T_MAX, 0, 0), hugemax,
"Unexpected xallocx() behavior");
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_size_extra_overflow)
{
size_t small0, hugemax;
void *p;
/* Get size classes. */
small0 = get_small_size(0);
hugemax = get_huge_size(get_nhuge()-1);
p = mallocx(small0, 0);
assert_ptr_not_null(p, "Unexpected mallocx() error");
/* Test overflows that can be resolved by clamping extra. */
assert_zu_le(xallocx(p, hugemax-1, 2, 0), hugemax,
"Unexpected xallocx() behavior");
assert_zu_le(xallocx(p, hugemax, 1, 0), hugemax,
"Unexpected xallocx() behavior");
/* Test overflow such that hugemax-size underflows. */
assert_zu_le(xallocx(p, hugemax+1, 2, 0), hugemax,
"Unexpected xallocx() behavior");
assert_zu_le(xallocx(p, hugemax+2, 3, 0), hugemax,
"Unexpected xallocx() behavior");
assert_zu_le(xallocx(p, SIZE_T_MAX-2, 2, 0), hugemax,
"Unexpected xallocx() behavior");
assert_zu_le(xallocx(p, SIZE_T_MAX-1, 1, 0), hugemax,
"Unexpected xallocx() behavior");
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_extra_small)
{
size_t small0, small1, hugemax;
void *p;
/* Get size classes. */
small0 = get_small_size(0);
small1 = get_small_size(1);
hugemax = get_huge_size(get_nhuge()-1);
p = mallocx(small0, 0);
assert_ptr_not_null(p, "Unexpected mallocx() error");
assert_zu_eq(xallocx(p, small1, 0, 0), small0,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, small1, 0, 0), small0,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, small0, small1 - small0, 0), small0,
"Unexpected xallocx() behavior");
/* Test size+extra overflow. */
assert_zu_eq(xallocx(p, small0, hugemax - small0 + 1, 0), small0,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, small0, SIZE_T_MAX - small0, 0), small0,
"Unexpected xallocx() behavior");
dallocx(p, 0);
}
TEST_END
TEST_BEGIN(test_extra_large)
{
int flags = MALLOCX_ARENA(arena_ind());
size_t smallmax, large0, large1, large2, huge0, hugemax;
void *p;
/* Get size classes. */
smallmax = get_small_size(get_nsmall()-1);
large0 = get_large_size(0);
large1 = get_large_size(1);
large2 = get_large_size(2);
huge0 = get_huge_size(0);
hugemax = get_huge_size(get_nhuge()-1);
p = mallocx(large2, flags);
assert_ptr_not_null(p, "Unexpected mallocx() error");
assert_zu_eq(xallocx(p, large2, 0, flags), large2,
"Unexpected xallocx() behavior");
/* Test size decrease with zero extra. */
assert_zu_eq(xallocx(p, large0, 0, flags), large0,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, smallmax, 0, flags), large0,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, large2, 0, flags), large2,
"Unexpected xallocx() behavior");
/* Test size decrease with non-zero extra. */
assert_zu_eq(xallocx(p, large0, large2 - large0, flags), large2,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, large1, large2 - large1, flags), large2,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, large0, large1 - large0, flags), large1,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, smallmax, large0 - smallmax, flags), large0,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, large0, 0, flags), large0,
"Unexpected xallocx() behavior");
/* Test size increase with zero extra. */
assert_zu_eq(xallocx(p, large2, 0, flags), large2,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, huge0, 0, flags), large2,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, large0, 0, flags), large0,
"Unexpected xallocx() behavior");
/* Test size increase with non-zero extra. */
assert_zu_lt(xallocx(p, large0, huge0 - large0, flags), huge0,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, large0, 0, flags), large0,
"Unexpected xallocx() behavior");
/* Test size increase with non-zero extra. */
assert_zu_eq(xallocx(p, large0, large2 - large0, flags), large2,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, large2, 0, flags), large2,
"Unexpected xallocx() behavior");
/* Test size+extra overflow. */
assert_zu_lt(xallocx(p, large2, hugemax - large2 + 1, flags), huge0,
"Unexpected xallocx() behavior");
dallocx(p, flags);
}
TEST_END
TEST_BEGIN(test_extra_huge)
{
int flags = MALLOCX_ARENA(arena_ind());
size_t largemax, huge1, huge2, huge3, hugemax;
void *p;
/* Get size classes. */
largemax = get_large_size(get_nlarge()-1);
huge1 = get_huge_size(1);
huge2 = get_huge_size(2);
huge3 = get_huge_size(3);
hugemax = get_huge_size(get_nhuge()-1);
p = mallocx(huge3, flags);
assert_ptr_not_null(p, "Unexpected mallocx() error");
assert_zu_eq(xallocx(p, huge3, 0, flags), huge3,
"Unexpected xallocx() behavior");
/* Test size decrease with zero extra. */
assert_zu_ge(xallocx(p, huge1, 0, flags), huge1,
"Unexpected xallocx() behavior");
assert_zu_ge(xallocx(p, largemax, 0, flags), huge1,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, huge3, 0, flags), huge3,
"Unexpected xallocx() behavior");
/* Test size decrease with non-zero extra. */
assert_zu_eq(xallocx(p, huge1, huge3 - huge1, flags), huge3,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, huge2, huge3 - huge2, flags), huge3,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, huge1, huge2 - huge1, flags), huge2,
"Unexpected xallocx() behavior");
assert_zu_ge(xallocx(p, largemax, huge1 - largemax, flags), huge1,
"Unexpected xallocx() behavior");
assert_zu_ge(xallocx(p, huge1, 0, flags), huge1,
"Unexpected xallocx() behavior");
/* Test size increase with zero extra. */
assert_zu_le(xallocx(p, huge3, 0, flags), huge3,
"Unexpected xallocx() behavior");
assert_zu_le(xallocx(p, hugemax+1, 0, flags), huge3,
"Unexpected xallocx() behavior");
assert_zu_ge(xallocx(p, huge1, 0, flags), huge1,
"Unexpected xallocx() behavior");
/* Test size increase with non-zero extra. */
assert_zu_le(xallocx(p, huge1, SIZE_T_MAX - huge1, flags), hugemax,
"Unexpected xallocx() behavior");
assert_zu_ge(xallocx(p, huge1, 0, flags), huge1,
"Unexpected xallocx() behavior");
/* Test size increase with non-zero extra. */
assert_zu_le(xallocx(p, huge1, huge3 - huge1, flags), huge3,
"Unexpected xallocx() behavior");
assert_zu_eq(xallocx(p, huge3, 0, flags), huge3,
"Unexpected xallocx() behavior");
/* Test size+extra overflow. */
assert_zu_le(xallocx(p, huge3, hugemax - huge3 + 1, flags), hugemax,
"Unexpected xallocx() behavior");
dallocx(p, flags);
}
TEST_END
static void
print_filled_extents(const void *p, uint8_t c, size_t len)
{
const uint8_t *pc = (const uint8_t *)p;
size_t i, range0;
uint8_t c0;
malloc_printf(" p=%p, c=%#x, len=%zu:", p, c, len);
range0 = 0;
c0 = pc[0];
for (i = 0; i < len; i++) {
if (pc[i] != c0) {
malloc_printf(" %#x[%zu..%zu)", c0, range0, i);
range0 = i;
c0 = pc[i];
}
}
malloc_printf(" %#x[%zu..%zu)\n", c0, range0, i);
}
static bool
validate_fill(const void *p, uint8_t c, size_t offset, size_t len)
{
const uint8_t *pc = (const uint8_t *)p;
bool err;
size_t i;
for (i = offset, err = false; i < offset+len; i++) {
if (pc[i] != c)
err = true;
}
if (err)
print_filled_extents(p, c, offset + len);
return (err);
}
static void
test_zero(size_t szmin, size_t szmax)
{
int flags = MALLOCX_ARENA(arena_ind()) | MALLOCX_ZERO;
size_t sz, nsz;
void *p;
#define FILL_BYTE 0x7aU
sz = szmax;
p = mallocx(sz, flags);
assert_ptr_not_null(p, "Unexpected mallocx() error");
assert_false(validate_fill(p, 0x00, 0, sz), "Memory not filled: sz=%zu",
sz);
/*
* Fill with non-zero so that non-debug builds are more likely to detect
* errors.
*/
memset(p, FILL_BYTE, sz);
assert_false(validate_fill(p, FILL_BYTE, 0, sz),
"Memory not filled: sz=%zu", sz);
/* Shrink in place so that we can expect growing in place to succeed. */
sz = szmin;
assert_zu_eq(xallocx(p, sz, 0, flags), sz,
"Unexpected xallocx() error");
assert_false(validate_fill(p, FILL_BYTE, 0, sz),
"Memory not filled: sz=%zu", sz);
for (sz = szmin; sz < szmax; sz = nsz) {
nsz = nallocx(sz+1, flags);
assert_zu_eq(xallocx(p, sz+1, 0, flags), nsz,
"Unexpected xallocx() failure");
assert_false(validate_fill(p, FILL_BYTE, 0, sz),
"Memory not filled: sz=%zu", sz);
assert_false(validate_fill(p, 0x00, sz, nsz-sz),
"Memory not filled: sz=%zu, nsz-sz=%zu", sz, nsz-sz);
memset((void *)((uintptr_t)p + sz), FILL_BYTE, nsz-sz);
assert_false(validate_fill(p, FILL_BYTE, 0, nsz),
"Memory not filled: nsz=%zu", nsz);
}
dallocx(p, flags);
}
TEST_BEGIN(test_zero_large)
{
size_t large0, largemax;
/* Get size classes. */
large0 = get_large_size(0);
largemax = get_large_size(get_nlarge()-1);
test_zero(large0, largemax);
}
TEST_END
TEST_BEGIN(test_zero_huge)
{
size_t huge0, huge1;
/* Get size classes. */
huge0 = get_huge_size(0);
huge1 = get_huge_size(1);
test_zero(huge1, huge0 * 2);
}
TEST_END
int
main(void)
{
return (test(
test_same_size,
test_extra_no_move,
test_no_move_fail,
test_size,
test_size_extra_overflow,
test_extra_small,
test_extra_large,
test_extra_huge,
test_zero_large,
test_zero_huge));
}
| 12,608 | 24.319277 | 79 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/integration/mallocx.c | #include "test/jemalloc_test.h"
#ifdef JEMALLOC_FILL
const char *malloc_conf = "junk:false";
#endif
static unsigned
get_nsizes_impl(const char *cmd)
{
unsigned ret;
size_t z;
z = sizeof(unsigned);
assert_d_eq(mallctl(cmd, (void *)&ret, &z, NULL, 0), 0,
"Unexpected mallctl(\"%s\", ...) failure", cmd);
return (ret);
}
static unsigned
get_nhuge(void)
{
return (get_nsizes_impl("arenas.nhchunks"));
}
static size_t
get_size_impl(const char *cmd, size_t ind)
{
size_t ret;
size_t z;
size_t mib[4];
size_t miblen = 4;
z = sizeof(size_t);
assert_d_eq(mallctlnametomib(cmd, mib, &miblen),
0, "Unexpected mallctlnametomib(\"%s\", ...) failure", cmd);
mib[2] = ind;
z = sizeof(size_t);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&ret, &z, NULL, 0),
0, "Unexpected mallctlbymib([\"%s\", %zu], ...) failure", cmd, ind);
return (ret);
}
static size_t
get_huge_size(size_t ind)
{
return (get_size_impl("arenas.hchunk.0.size", ind));
}
/*
* On systems which can't merge extents, tests that call this function generate
* a lot of dirty memory very quickly. Purging between cycles mitigates
* potential OOM on e.g. 32-bit Windows.
*/
static void
purge(void)
{
assert_d_eq(mallctl("arena.0.purge", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl error");
}
TEST_BEGIN(test_overflow)
{
size_t hugemax;
hugemax = get_huge_size(get_nhuge()-1);
assert_ptr_null(mallocx(hugemax+1, 0),
"Expected OOM for mallocx(size=%#zx, 0)", hugemax+1);
assert_ptr_null(mallocx(ZU(PTRDIFF_MAX)+1, 0),
"Expected OOM for mallocx(size=%#zx, 0)", ZU(PTRDIFF_MAX)+1);
assert_ptr_null(mallocx(SIZE_T_MAX, 0),
"Expected OOM for mallocx(size=%#zx, 0)", SIZE_T_MAX);
assert_ptr_null(mallocx(1, MALLOCX_ALIGN(ZU(PTRDIFF_MAX)+1)),
"Expected OOM for mallocx(size=1, MALLOCX_ALIGN(%#zx))",
ZU(PTRDIFF_MAX)+1);
}
TEST_END
TEST_BEGIN(test_oom)
{
size_t hugemax;
bool oom;
void *ptrs[3];
unsigned i;
/*
* It should be impossible to allocate three objects that each consume
* nearly half the virtual address space.
*/
hugemax = get_huge_size(get_nhuge()-1);
oom = false;
for (i = 0; i < sizeof(ptrs) / sizeof(void *); i++) {
ptrs[i] = mallocx(hugemax, 0);
if (ptrs[i] == NULL)
oom = true;
}
assert_true(oom,
"Expected OOM during series of calls to mallocx(size=%zu, 0)",
hugemax);
for (i = 0; i < sizeof(ptrs) / sizeof(void *); i++) {
if (ptrs[i] != NULL)
dallocx(ptrs[i], 0);
}
purge();
#if LG_SIZEOF_PTR == 3
assert_ptr_null(mallocx(0x8000000000000000ULL,
MALLOCX_ALIGN(0x8000000000000000ULL)),
"Expected OOM for mallocx()");
assert_ptr_null(mallocx(0x8000000000000000ULL,
MALLOCX_ALIGN(0x80000000)),
"Expected OOM for mallocx()");
#else
assert_ptr_null(mallocx(0x80000000UL, MALLOCX_ALIGN(0x80000000UL)),
"Expected OOM for mallocx()");
#endif
}
TEST_END
TEST_BEGIN(test_basic)
{
#define MAXSZ (((size_t)1) << 23)
size_t sz;
for (sz = 1; sz < MAXSZ; sz = nallocx(sz, 0) + 1) {
size_t nsz, rsz;
void *p;
nsz = nallocx(sz, 0);
assert_zu_ne(nsz, 0, "Unexpected nallocx() error");
p = mallocx(sz, 0);
assert_ptr_not_null(p,
"Unexpected mallocx(size=%zx, flags=0) error", sz);
rsz = sallocx(p, 0);
assert_zu_ge(rsz, sz, "Real size smaller than expected");
assert_zu_eq(nsz, rsz, "nallocx()/sallocx() size mismatch");
dallocx(p, 0);
p = mallocx(sz, 0);
assert_ptr_not_null(p,
"Unexpected mallocx(size=%zx, flags=0) error", sz);
dallocx(p, 0);
nsz = nallocx(sz, MALLOCX_ZERO);
assert_zu_ne(nsz, 0, "Unexpected nallocx() error");
p = mallocx(sz, MALLOCX_ZERO);
assert_ptr_not_null(p,
"Unexpected mallocx(size=%zx, flags=MALLOCX_ZERO) error",
nsz);
rsz = sallocx(p, 0);
assert_zu_eq(nsz, rsz, "nallocx()/sallocx() rsize mismatch");
dallocx(p, 0);
purge();
}
#undef MAXSZ
}
TEST_END
TEST_BEGIN(test_alignment_and_size)
{
#define MAXALIGN (((size_t)1) << 23)
#define NITER 4
size_t nsz, rsz, sz, alignment, total;
unsigned i;
void *ps[NITER];
for (i = 0; i < NITER; i++)
ps[i] = NULL;
for (alignment = 8;
alignment <= MAXALIGN;
alignment <<= 1) {
total = 0;
for (sz = 1;
sz < 3 * alignment && sz < (1U << 31);
sz += (alignment >> (LG_SIZEOF_PTR-1)) - 1) {
for (i = 0; i < NITER; i++) {
nsz = nallocx(sz, MALLOCX_ALIGN(alignment) |
MALLOCX_ZERO);
assert_zu_ne(nsz, 0,
"nallocx() error for alignment=%zu, "
"size=%zu (%#zx)", alignment, sz, sz);
ps[i] = mallocx(sz, MALLOCX_ALIGN(alignment) |
MALLOCX_ZERO);
assert_ptr_not_null(ps[i],
"mallocx() error for alignment=%zu, "
"size=%zu (%#zx)", alignment, sz, sz);
rsz = sallocx(ps[i], 0);
assert_zu_ge(rsz, sz,
"Real size smaller than expected for "
"alignment=%zu, size=%zu", alignment, sz);
assert_zu_eq(nsz, rsz,
"nallocx()/sallocx() size mismatch for "
"alignment=%zu, size=%zu", alignment, sz);
assert_ptr_null(
(void *)((uintptr_t)ps[i] & (alignment-1)),
"%p inadequately aligned for"
" alignment=%zu, size=%zu", ps[i],
alignment, sz);
total += rsz;
if (total >= (MAXALIGN << 1))
break;
}
for (i = 0; i < NITER; i++) {
if (ps[i] != NULL) {
dallocx(ps[i], 0);
ps[i] = NULL;
}
}
}
purge();
}
#undef MAXALIGN
#undef NITER
}
TEST_END
int
main(void)
{
return (test(
test_overflow,
test_oom,
test_basic,
test_alignment_and_size));
}
| 5,506 | 22.434043 | 79 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/integration/rallocx.c | #include "test/jemalloc_test.h"
static unsigned
get_nsizes_impl(const char *cmd)
{
unsigned ret;
size_t z;
z = sizeof(unsigned);
assert_d_eq(mallctl(cmd, (void *)&ret, &z, NULL, 0), 0,
"Unexpected mallctl(\"%s\", ...) failure", cmd);
return (ret);
}
static unsigned
get_nhuge(void)
{
return (get_nsizes_impl("arenas.nhchunks"));
}
static size_t
get_size_impl(const char *cmd, size_t ind)
{
size_t ret;
size_t z;
size_t mib[4];
size_t miblen = 4;
z = sizeof(size_t);
assert_d_eq(mallctlnametomib(cmd, mib, &miblen),
0, "Unexpected mallctlnametomib(\"%s\", ...) failure", cmd);
mib[2] = ind;
z = sizeof(size_t);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&ret, &z, NULL, 0),
0, "Unexpected mallctlbymib([\"%s\", %zu], ...) failure", cmd, ind);
return (ret);
}
static size_t
get_huge_size(size_t ind)
{
return (get_size_impl("arenas.hchunk.0.size", ind));
}
TEST_BEGIN(test_grow_and_shrink)
{
void *p, *q;
size_t tsz;
#define NCYCLES 3
unsigned i, j;
#define NSZS 2500
size_t szs[NSZS];
#define MAXSZ ZU(12 * 1024 * 1024)
p = mallocx(1, 0);
assert_ptr_not_null(p, "Unexpected mallocx() error");
szs[0] = sallocx(p, 0);
for (i = 0; i < NCYCLES; i++) {
for (j = 1; j < NSZS && szs[j-1] < MAXSZ; j++) {
q = rallocx(p, szs[j-1]+1, 0);
assert_ptr_not_null(q,
"Unexpected rallocx() error for size=%zu-->%zu",
szs[j-1], szs[j-1]+1);
szs[j] = sallocx(q, 0);
assert_zu_ne(szs[j], szs[j-1]+1,
"Expected size to be at least: %zu", szs[j-1]+1);
p = q;
}
for (j--; j > 0; j--) {
q = rallocx(p, szs[j-1], 0);
assert_ptr_not_null(q,
"Unexpected rallocx() error for size=%zu-->%zu",
szs[j], szs[j-1]);
tsz = sallocx(q, 0);
assert_zu_eq(tsz, szs[j-1],
"Expected size=%zu, got size=%zu", szs[j-1], tsz);
p = q;
}
}
dallocx(p, 0);
#undef MAXSZ
#undef NSZS
#undef NCYCLES
}
TEST_END
static bool
validate_fill(const void *p, uint8_t c, size_t offset, size_t len)
{
bool ret = false;
const uint8_t *buf = (const uint8_t *)p;
size_t i;
for (i = 0; i < len; i++) {
uint8_t b = buf[offset+i];
if (b != c) {
test_fail("Allocation at %p (len=%zu) contains %#x "
"rather than %#x at offset %zu", p, len, b, c,
offset+i);
ret = true;
}
}
return (ret);
}
TEST_BEGIN(test_zero)
{
void *p, *q;
size_t psz, qsz, i, j;
size_t start_sizes[] = {1, 3*1024, 63*1024, 4095*1024};
#define FILL_BYTE 0xaaU
#define RANGE 2048
for (i = 0; i < sizeof(start_sizes)/sizeof(size_t); i++) {
size_t start_size = start_sizes[i];
p = mallocx(start_size, MALLOCX_ZERO);
assert_ptr_not_null(p, "Unexpected mallocx() error");
psz = sallocx(p, 0);
assert_false(validate_fill(p, 0, 0, psz),
"Expected zeroed memory");
memset(p, FILL_BYTE, psz);
assert_false(validate_fill(p, FILL_BYTE, 0, psz),
"Expected filled memory");
for (j = 1; j < RANGE; j++) {
q = rallocx(p, start_size+j, MALLOCX_ZERO);
assert_ptr_not_null(q, "Unexpected rallocx() error");
qsz = sallocx(q, 0);
if (q != p || qsz != psz) {
assert_false(validate_fill(q, FILL_BYTE, 0,
psz), "Expected filled memory");
assert_false(validate_fill(q, 0, psz, qsz-psz),
"Expected zeroed memory");
}
if (psz != qsz) {
memset((void *)((uintptr_t)q+psz), FILL_BYTE,
qsz-psz);
psz = qsz;
}
p = q;
}
assert_false(validate_fill(p, FILL_BYTE, 0, psz),
"Expected filled memory");
dallocx(p, 0);
}
#undef FILL_BYTE
}
TEST_END
TEST_BEGIN(test_align)
{
void *p, *q;
size_t align;
#define MAX_ALIGN (ZU(1) << 25)
align = ZU(1);
p = mallocx(1, MALLOCX_ALIGN(align));
assert_ptr_not_null(p, "Unexpected mallocx() error");
for (align <<= 1; align <= MAX_ALIGN; align <<= 1) {
q = rallocx(p, 1, MALLOCX_ALIGN(align));
assert_ptr_not_null(q,
"Unexpected rallocx() error for align=%zu", align);
assert_ptr_null(
(void *)((uintptr_t)q & (align-1)),
"%p inadequately aligned for align=%zu",
q, align);
p = q;
}
dallocx(p, 0);
#undef MAX_ALIGN
}
TEST_END
TEST_BEGIN(test_lg_align_and_zero)
{
void *p, *q;
unsigned lg_align;
size_t sz;
#define MAX_LG_ALIGN 25
#define MAX_VALIDATE (ZU(1) << 22)
lg_align = 0;
p = mallocx(1, MALLOCX_LG_ALIGN(lg_align)|MALLOCX_ZERO);
assert_ptr_not_null(p, "Unexpected mallocx() error");
for (lg_align++; lg_align <= MAX_LG_ALIGN; lg_align++) {
q = rallocx(p, 1, MALLOCX_LG_ALIGN(lg_align)|MALLOCX_ZERO);
assert_ptr_not_null(q,
"Unexpected rallocx() error for lg_align=%u", lg_align);
assert_ptr_null(
(void *)((uintptr_t)q & ((ZU(1) << lg_align)-1)),
"%p inadequately aligned for lg_align=%u", q, lg_align);
sz = sallocx(q, 0);
if ((sz << 1) <= MAX_VALIDATE) {
assert_false(validate_fill(q, 0, 0, sz),
"Expected zeroed memory");
} else {
assert_false(validate_fill(q, 0, 0, MAX_VALIDATE),
"Expected zeroed memory");
assert_false(validate_fill(
(void *)((uintptr_t)q+sz-MAX_VALIDATE),
0, 0, MAX_VALIDATE), "Expected zeroed memory");
}
p = q;
}
dallocx(p, 0);
#undef MAX_VALIDATE
#undef MAX_LG_ALIGN
}
TEST_END
TEST_BEGIN(test_overflow)
{
size_t hugemax;
void *p;
hugemax = get_huge_size(get_nhuge()-1);
p = mallocx(1, 0);
assert_ptr_not_null(p, "Unexpected mallocx() failure");
assert_ptr_null(rallocx(p, hugemax+1, 0),
"Expected OOM for rallocx(p, size=%#zx, 0)", hugemax+1);
assert_ptr_null(rallocx(p, ZU(PTRDIFF_MAX)+1, 0),
"Expected OOM for rallocx(p, size=%#zx, 0)", ZU(PTRDIFF_MAX)+1);
assert_ptr_null(rallocx(p, SIZE_T_MAX, 0),
"Expected OOM for rallocx(p, size=%#zx, 0)", SIZE_T_MAX);
assert_ptr_null(rallocx(p, 1, MALLOCX_ALIGN(ZU(PTRDIFF_MAX)+1)),
"Expected OOM for rallocx(p, size=1, MALLOCX_ALIGN(%#zx))",
ZU(PTRDIFF_MAX)+1);
dallocx(p, 0);
}
TEST_END
int
main(void)
{
return (test(
test_grow_and_shrink,
test_zero,
test_align,
test_lg_align_and_zero,
test_overflow));
}
| 5,973 | 21.976923 | 73 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/integration/thread_tcache_enabled.c | #include "test/jemalloc_test.h"
static const bool config_tcache =
#ifdef JEMALLOC_TCACHE
true
#else
false
#endif
;
void *
thd_start(void *arg)
{
int err;
size_t sz;
bool e0, e1;
sz = sizeof(bool);
if ((err = mallctl("thread.tcache.enabled", (void *)&e0, &sz, NULL,
0))) {
if (err == ENOENT) {
assert_false(config_tcache,
"ENOENT should only be returned if tcache is "
"disabled");
}
goto label_ENOENT;
}
if (e0) {
e1 = false;
assert_d_eq(mallctl("thread.tcache.enabled", (void *)&e0, &sz,
(void *)&e1, sz), 0, "Unexpected mallctl() error");
assert_true(e0, "tcache should be enabled");
}
e1 = true;
assert_d_eq(mallctl("thread.tcache.enabled", (void *)&e0, &sz,
(void *)&e1, sz), 0, "Unexpected mallctl() error");
assert_false(e0, "tcache should be disabled");
e1 = true;
assert_d_eq(mallctl("thread.tcache.enabled", (void *)&e0, &sz,
(void *)&e1, sz), 0, "Unexpected mallctl() error");
assert_true(e0, "tcache should be enabled");
e1 = false;
assert_d_eq(mallctl("thread.tcache.enabled", (void *)&e0, &sz,
(void *)&e1, sz), 0, "Unexpected mallctl() error");
assert_true(e0, "tcache should be enabled");
e1 = false;
assert_d_eq(mallctl("thread.tcache.enabled", (void *)&e0, &sz,
(void *)&e1, sz), 0, "Unexpected mallctl() error");
assert_false(e0, "tcache should be disabled");
free(malloc(1));
e1 = true;
assert_d_eq(mallctl("thread.tcache.enabled", (void *)&e0, &sz,
(void *)&e1, sz), 0, "Unexpected mallctl() error");
assert_false(e0, "tcache should be disabled");
free(malloc(1));
e1 = true;
assert_d_eq(mallctl("thread.tcache.enabled", (void *)&e0, &sz,
(void *)&e1, sz), 0, "Unexpected mallctl() error");
assert_true(e0, "tcache should be enabled");
free(malloc(1));
e1 = false;
assert_d_eq(mallctl("thread.tcache.enabled", (void *)&e0, &sz,
(void *)&e1, sz), 0, "Unexpected mallctl() error");
assert_true(e0, "tcache should be enabled");
free(malloc(1));
e1 = false;
assert_d_eq(mallctl("thread.tcache.enabled", (void *)&e0, &sz,
(void *)&e1, sz), 0, "Unexpected mallctl() error");
assert_false(e0, "tcache should be disabled");
free(malloc(1));
return (NULL);
label_ENOENT:
test_skip("\"thread.tcache.enabled\" mallctl not available");
return (NULL);
}
TEST_BEGIN(test_main_thread)
{
thd_start(NULL);
}
TEST_END
TEST_BEGIN(test_subthread)
{
thd_t thd;
thd_create(&thd, thd_start, NULL);
thd_join(thd, NULL);
}
TEST_END
int
main(void)
{
/* Run tests multiple times to check for bad interactions. */
return (test(
test_main_thread,
test_subthread,
test_main_thread,
test_subthread,
test_main_thread));
}
| 2,692 | 22.417391 | 68 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/integration/chunk.c | #include "test/jemalloc_test.h"
#ifdef JEMALLOC_FILL
const char *malloc_conf = "junk:false";
#endif
static chunk_hooks_t orig_hooks;
static chunk_hooks_t old_hooks;
static bool do_dalloc = true;
static bool do_decommit;
static bool did_alloc;
static bool did_dalloc;
static bool did_commit;
static bool did_decommit;
static bool did_purge;
static bool did_split;
static bool did_merge;
#if 0
# define TRACE_HOOK(fmt, ...) malloc_printf(fmt, __VA_ARGS__)
#else
# define TRACE_HOOK(fmt, ...)
#endif
void *
chunk_alloc(void *new_addr, size_t size, size_t alignment, bool *zero,
bool *commit, unsigned arena_ind)
{
TRACE_HOOK("%s(new_addr=%p, size=%zu, alignment=%zu, *zero=%s, "
"*commit=%s, arena_ind=%u)\n", __func__, new_addr, size, alignment,
*zero ? "true" : "false", *commit ? "true" : "false", arena_ind);
did_alloc = true;
return (old_hooks.alloc(new_addr, size, alignment, zero, commit,
arena_ind));
}
bool
chunk_dalloc(void *chunk, size_t size, bool committed, unsigned arena_ind)
{
TRACE_HOOK("%s(chunk=%p, size=%zu, committed=%s, arena_ind=%u)\n",
__func__, chunk, size, committed ? "true" : "false", arena_ind);
did_dalloc = true;
if (!do_dalloc)
return (true);
return (old_hooks.dalloc(chunk, size, committed, arena_ind));
}
bool
chunk_commit(void *chunk, size_t size, size_t offset, size_t length,
unsigned arena_ind)
{
bool err;
TRACE_HOOK("%s(chunk=%p, size=%zu, offset=%zu, length=%zu, "
"arena_ind=%u)\n", __func__, chunk, size, offset, length,
arena_ind);
err = old_hooks.commit(chunk, size, offset, length, arena_ind);
did_commit = !err;
return (err);
}
bool
chunk_decommit(void *chunk, size_t size, size_t offset, size_t length,
unsigned arena_ind)
{
bool err;
TRACE_HOOK("%s(chunk=%p, size=%zu, offset=%zu, length=%zu, "
"arena_ind=%u)\n", __func__, chunk, size, offset, length,
arena_ind);
if (!do_decommit)
return (true);
err = old_hooks.decommit(chunk, size, offset, length, arena_ind);
did_decommit = !err;
return (err);
}
bool
chunk_purge(void *chunk, size_t size, size_t offset, size_t length,
unsigned arena_ind)
{
TRACE_HOOK("%s(chunk=%p, size=%zu, offset=%zu, length=%zu "
"arena_ind=%u)\n", __func__, chunk, size, offset, length,
arena_ind);
did_purge = true;
return (old_hooks.purge(chunk, size, offset, length, arena_ind));
}
bool
chunk_split(void *chunk, size_t size, size_t size_a, size_t size_b,
bool committed, unsigned arena_ind)
{
TRACE_HOOK("%s(chunk=%p, size=%zu, size_a=%zu, size_b=%zu, "
"committed=%s, arena_ind=%u)\n", __func__, chunk, size, size_a,
size_b, committed ? "true" : "false", arena_ind);
did_split = true;
return (old_hooks.split(chunk, size, size_a, size_b, committed,
arena_ind));
}
bool
chunk_merge(void *chunk_a, size_t size_a, void *chunk_b, size_t size_b,
bool committed, unsigned arena_ind)
{
TRACE_HOOK("%s(chunk_a=%p, size_a=%zu, chunk_b=%p size_b=%zu, "
"committed=%s, arena_ind=%u)\n", __func__, chunk_a, size_a, chunk_b,
size_b, committed ? "true" : "false", arena_ind);
did_merge = true;
return (old_hooks.merge(chunk_a, size_a, chunk_b, size_b,
committed, arena_ind));
}
TEST_BEGIN(test_chunk)
{
void *p;
size_t old_size, new_size, large0, large1, huge0, huge1, huge2, sz;
unsigned arena_ind;
int flags;
size_t hooks_mib[3], purge_mib[3];
size_t hooks_miblen, purge_miblen;
chunk_hooks_t new_hooks = {
chunk_alloc,
chunk_dalloc,
chunk_commit,
chunk_decommit,
chunk_purge,
chunk_split,
chunk_merge
};
bool xallocx_success_a, xallocx_success_b, xallocx_success_c;
sz = sizeof(unsigned);
assert_d_eq(mallctl("arenas.extend", (void *)&arena_ind, &sz, NULL, 0),
0, "Unexpected mallctl() failure");
flags = MALLOCX_ARENA(arena_ind) | MALLOCX_TCACHE_NONE;
/* Install custom chunk hooks. */
hooks_miblen = sizeof(hooks_mib)/sizeof(size_t);
assert_d_eq(mallctlnametomib("arena.0.chunk_hooks", hooks_mib,
&hooks_miblen), 0, "Unexpected mallctlnametomib() failure");
hooks_mib[1] = (size_t)arena_ind;
old_size = sizeof(chunk_hooks_t);
new_size = sizeof(chunk_hooks_t);
assert_d_eq(mallctlbymib(hooks_mib, hooks_miblen, (void *)&old_hooks,
&old_size, (void *)&new_hooks, new_size), 0,
"Unexpected chunk_hooks error");
orig_hooks = old_hooks;
assert_ptr_ne(old_hooks.alloc, chunk_alloc, "Unexpected alloc error");
assert_ptr_ne(old_hooks.dalloc, chunk_dalloc,
"Unexpected dalloc error");
assert_ptr_ne(old_hooks.commit, chunk_commit,
"Unexpected commit error");
assert_ptr_ne(old_hooks.decommit, chunk_decommit,
"Unexpected decommit error");
assert_ptr_ne(old_hooks.purge, chunk_purge, "Unexpected purge error");
assert_ptr_ne(old_hooks.split, chunk_split, "Unexpected split error");
assert_ptr_ne(old_hooks.merge, chunk_merge, "Unexpected merge error");
/* Get large size classes. */
sz = sizeof(size_t);
assert_d_eq(mallctl("arenas.lrun.0.size", (void *)&large0, &sz, NULL,
0), 0, "Unexpected arenas.lrun.0.size failure");
assert_d_eq(mallctl("arenas.lrun.1.size", (void *)&large1, &sz, NULL,
0), 0, "Unexpected arenas.lrun.1.size failure");
/* Get huge size classes. */
assert_d_eq(mallctl("arenas.hchunk.0.size", (void *)&huge0, &sz, NULL,
0), 0, "Unexpected arenas.hchunk.0.size failure");
assert_d_eq(mallctl("arenas.hchunk.1.size", (void *)&huge1, &sz, NULL,
0), 0, "Unexpected arenas.hchunk.1.size failure");
assert_d_eq(mallctl("arenas.hchunk.2.size", (void *)&huge2, &sz, NULL,
0), 0, "Unexpected arenas.hchunk.2.size failure");
/* Test dalloc/decommit/purge cascade. */
purge_miblen = sizeof(purge_mib)/sizeof(size_t);
assert_d_eq(mallctlnametomib("arena.0.purge", purge_mib, &purge_miblen),
0, "Unexpected mallctlnametomib() failure");
purge_mib[1] = (size_t)arena_ind;
do_dalloc = false;
do_decommit = false;
p = mallocx(huge0 * 2, flags);
assert_ptr_not_null(p, "Unexpected mallocx() error");
did_dalloc = false;
did_decommit = false;
did_purge = false;
did_split = false;
xallocx_success_a = (xallocx(p, huge0, 0, flags) == huge0);
assert_d_eq(mallctlbymib(purge_mib, purge_miblen, NULL, NULL, NULL, 0),
0, "Unexpected arena.%u.purge error", arena_ind);
if (xallocx_success_a) {
assert_true(did_dalloc, "Expected dalloc");
assert_false(did_decommit, "Unexpected decommit");
assert_true(did_purge, "Expected purge");
}
assert_true(did_split, "Expected split");
dallocx(p, flags);
do_dalloc = true;
/* Test decommit/commit and observe split/merge. */
do_dalloc = false;
do_decommit = true;
p = mallocx(huge0 * 2, flags);
assert_ptr_not_null(p, "Unexpected mallocx() error");
did_decommit = false;
did_commit = false;
did_split = false;
did_merge = false;
xallocx_success_b = (xallocx(p, huge0, 0, flags) == huge0);
assert_d_eq(mallctlbymib(purge_mib, purge_miblen, NULL, NULL, NULL, 0),
0, "Unexpected arena.%u.purge error", arena_ind);
if (xallocx_success_b)
assert_true(did_split, "Expected split");
xallocx_success_c = (xallocx(p, huge0 * 2, 0, flags) == huge0 * 2);
assert_b_eq(did_decommit, did_commit, "Expected decommit/commit match");
if (xallocx_success_b && xallocx_success_c)
assert_true(did_merge, "Expected merge");
dallocx(p, flags);
do_dalloc = true;
do_decommit = false;
/* Test purge for partial-chunk huge allocations. */
if (huge0 * 2 > huge2) {
/*
* There are at least four size classes per doubling, so a
* successful xallocx() from size=huge2 to size=huge1 is
* guaranteed to leave trailing purgeable memory.
*/
p = mallocx(huge2, flags);
assert_ptr_not_null(p, "Unexpected mallocx() error");
did_purge = false;
assert_zu_eq(xallocx(p, huge1, 0, flags), huge1,
"Unexpected xallocx() failure");
assert_true(did_purge, "Expected purge");
dallocx(p, flags);
}
/* Test decommit for large allocations. */
do_decommit = true;
p = mallocx(large1, flags);
assert_ptr_not_null(p, "Unexpected mallocx() error");
assert_d_eq(mallctlbymib(purge_mib, purge_miblen, NULL, NULL, NULL, 0),
0, "Unexpected arena.%u.purge error", arena_ind);
did_decommit = false;
assert_zu_eq(xallocx(p, large0, 0, flags), large0,
"Unexpected xallocx() failure");
assert_d_eq(mallctlbymib(purge_mib, purge_miblen, NULL, NULL, NULL, 0),
0, "Unexpected arena.%u.purge error", arena_ind);
did_commit = false;
assert_zu_eq(xallocx(p, large1, 0, flags), large1,
"Unexpected xallocx() failure");
assert_b_eq(did_decommit, did_commit, "Expected decommit/commit match");
dallocx(p, flags);
do_decommit = false;
/* Make sure non-huge allocation succeeds. */
p = mallocx(42, flags);
assert_ptr_not_null(p, "Unexpected mallocx() error");
dallocx(p, flags);
/* Restore chunk hooks. */
assert_d_eq(mallctlbymib(hooks_mib, hooks_miblen, NULL, NULL,
(void *)&old_hooks, new_size), 0, "Unexpected chunk_hooks error");
assert_d_eq(mallctlbymib(hooks_mib, hooks_miblen, (void *)&old_hooks,
&old_size, NULL, 0), 0, "Unexpected chunk_hooks error");
assert_ptr_eq(old_hooks.alloc, orig_hooks.alloc,
"Unexpected alloc error");
assert_ptr_eq(old_hooks.dalloc, orig_hooks.dalloc,
"Unexpected dalloc error");
assert_ptr_eq(old_hooks.commit, orig_hooks.commit,
"Unexpected commit error");
assert_ptr_eq(old_hooks.decommit, orig_hooks.decommit,
"Unexpected decommit error");
assert_ptr_eq(old_hooks.purge, orig_hooks.purge,
"Unexpected purge error");
assert_ptr_eq(old_hooks.split, orig_hooks.split,
"Unexpected split error");
assert_ptr_eq(old_hooks.merge, orig_hooks.merge,
"Unexpected merge error");
}
TEST_END
int
main(void)
{
return (test(test_chunk));
}
| 9,660 | 31.749153 | 74 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/integration/aligned_alloc.c | #include "test/jemalloc_test.h"
#define CHUNK 0x400000
#define MAXALIGN (((size_t)1) << 23)
/*
* On systems which can't merge extents, tests that call this function generate
* a lot of dirty memory very quickly. Purging between cycles mitigates
* potential OOM on e.g. 32-bit Windows.
*/
static void
purge(void)
{
assert_d_eq(mallctl("arena.0.purge", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl error");
}
TEST_BEGIN(test_alignment_errors)
{
size_t alignment;
void *p;
alignment = 0;
set_errno(0);
p = aligned_alloc(alignment, 1);
assert_false(p != NULL || get_errno() != EINVAL,
"Expected error for invalid alignment %zu", alignment);
for (alignment = sizeof(size_t); alignment < MAXALIGN;
alignment <<= 1) {
set_errno(0);
p = aligned_alloc(alignment + 1, 1);
assert_false(p != NULL || get_errno() != EINVAL,
"Expected error for invalid alignment %zu",
alignment + 1);
}
}
TEST_END
TEST_BEGIN(test_oom_errors)
{
size_t alignment, size;
void *p;
#if LG_SIZEOF_PTR == 3
alignment = UINT64_C(0x8000000000000000);
size = UINT64_C(0x8000000000000000);
#else
alignment = 0x80000000LU;
size = 0x80000000LU;
#endif
set_errno(0);
p = aligned_alloc(alignment, size);
assert_false(p != NULL || get_errno() != ENOMEM,
"Expected error for aligned_alloc(%zu, %zu)",
alignment, size);
#if LG_SIZEOF_PTR == 3
alignment = UINT64_C(0x4000000000000000);
size = UINT64_C(0xc000000000000001);
#else
alignment = 0x40000000LU;
size = 0xc0000001LU;
#endif
set_errno(0);
p = aligned_alloc(alignment, size);
assert_false(p != NULL || get_errno() != ENOMEM,
"Expected error for aligned_alloc(%zu, %zu)",
alignment, size);
alignment = 0x10LU;
#if LG_SIZEOF_PTR == 3
size = UINT64_C(0xfffffffffffffff0);
#else
size = 0xfffffff0LU;
#endif
set_errno(0);
p = aligned_alloc(alignment, size);
assert_false(p != NULL || get_errno() != ENOMEM,
"Expected error for aligned_alloc(&p, %zu, %zu)",
alignment, size);
}
TEST_END
TEST_BEGIN(test_alignment_and_size)
{
#define NITER 4
size_t alignment, size, total;
unsigned i;
void *ps[NITER];
for (i = 0; i < NITER; i++)
ps[i] = NULL;
for (alignment = 8;
alignment <= MAXALIGN;
alignment <<= 1) {
total = 0;
for (size = 1;
size < 3 * alignment && size < (1U << 31);
size += (alignment >> (LG_SIZEOF_PTR-1)) - 1) {
for (i = 0; i < NITER; i++) {
ps[i] = aligned_alloc(alignment, size);
if (ps[i] == NULL) {
char buf[BUFERROR_BUF];
buferror(get_errno(), buf, sizeof(buf));
test_fail(
"Error for alignment=%zu, "
"size=%zu (%#zx): %s",
alignment, size, size, buf);
}
total += malloc_usable_size(ps[i]);
if (total >= (MAXALIGN << 1))
break;
}
for (i = 0; i < NITER; i++) {
if (ps[i] != NULL) {
free(ps[i]);
ps[i] = NULL;
}
}
}
purge();
}
#undef NITER
}
TEST_END
int
main(void)
{
return (test(
test_alignment_errors,
test_oom_errors,
test_alignment_and_size));
}
| 3,053 | 20.814286 | 79 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/integration/posix_memalign.c | #include "test/jemalloc_test.h"
#define CHUNK 0x400000
#define MAXALIGN (((size_t)1) << 23)
/*
* On systems which can't merge extents, tests that call this function generate
* a lot of dirty memory very quickly. Purging between cycles mitigates
* potential OOM on e.g. 32-bit Windows.
*/
static void
purge(void)
{
assert_d_eq(mallctl("arena.0.purge", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl error");
}
TEST_BEGIN(test_alignment_errors)
{
size_t alignment;
void *p;
for (alignment = 0; alignment < sizeof(void *); alignment++) {
assert_d_eq(posix_memalign(&p, alignment, 1), EINVAL,
"Expected error for invalid alignment %zu",
alignment);
}
for (alignment = sizeof(size_t); alignment < MAXALIGN;
alignment <<= 1) {
assert_d_ne(posix_memalign(&p, alignment + 1, 1), 0,
"Expected error for invalid alignment %zu",
alignment + 1);
}
}
TEST_END
TEST_BEGIN(test_oom_errors)
{
size_t alignment, size;
void *p;
#if LG_SIZEOF_PTR == 3
alignment = UINT64_C(0x8000000000000000);
size = UINT64_C(0x8000000000000000);
#else
alignment = 0x80000000LU;
size = 0x80000000LU;
#endif
assert_d_ne(posix_memalign(&p, alignment, size), 0,
"Expected error for posix_memalign(&p, %zu, %zu)",
alignment, size);
#if LG_SIZEOF_PTR == 3
alignment = UINT64_C(0x4000000000000000);
size = UINT64_C(0xc000000000000001);
#else
alignment = 0x40000000LU;
size = 0xc0000001LU;
#endif
assert_d_ne(posix_memalign(&p, alignment, size), 0,
"Expected error for posix_memalign(&p, %zu, %zu)",
alignment, size);
alignment = 0x10LU;
#if LG_SIZEOF_PTR == 3
size = UINT64_C(0xfffffffffffffff0);
#else
size = 0xfffffff0LU;
#endif
assert_d_ne(posix_memalign(&p, alignment, size), 0,
"Expected error for posix_memalign(&p, %zu, %zu)",
alignment, size);
}
TEST_END
TEST_BEGIN(test_alignment_and_size)
{
#define NITER 4
size_t alignment, size, total;
unsigned i;
int err;
void *ps[NITER];
for (i = 0; i < NITER; i++)
ps[i] = NULL;
for (alignment = 8;
alignment <= MAXALIGN;
alignment <<= 1) {
total = 0;
for (size = 1;
size < 3 * alignment && size < (1U << 31);
size += (alignment >> (LG_SIZEOF_PTR-1)) - 1) {
for (i = 0; i < NITER; i++) {
err = posix_memalign(&ps[i],
alignment, size);
if (err) {
char buf[BUFERROR_BUF];
buferror(get_errno(), buf, sizeof(buf));
test_fail(
"Error for alignment=%zu, "
"size=%zu (%#zx): %s",
alignment, size, size, buf);
}
total += malloc_usable_size(ps[i]);
if (total >= (MAXALIGN << 1))
break;
}
for (i = 0; i < NITER; i++) {
if (ps[i] != NULL) {
free(ps[i]);
ps[i] = NULL;
}
}
}
purge();
}
#undef NITER
}
TEST_END
int
main(void)
{
return (test(
test_alignment_errors,
test_oom_errors,
test_alignment_and_size));
}
| 2,896 | 20.619403 | 79 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/integration/overflow.c | #include "test/jemalloc_test.h"
TEST_BEGIN(test_overflow)
{
unsigned nhchunks;
size_t mib[4];
size_t sz, miblen, max_size_class;
void *p;
sz = sizeof(unsigned);
assert_d_eq(mallctl("arenas.nhchunks", (void *)&nhchunks, &sz, NULL, 0),
0, "Unexpected mallctl() error");
miblen = sizeof(mib) / sizeof(size_t);
assert_d_eq(mallctlnametomib("arenas.hchunk.0.size", mib, &miblen), 0,
"Unexpected mallctlnametomib() error");
mib[2] = nhchunks - 1;
sz = sizeof(size_t);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&max_size_class, &sz,
NULL, 0), 0, "Unexpected mallctlbymib() error");
assert_ptr_null(malloc(max_size_class + 1),
"Expected OOM due to over-sized allocation request");
assert_ptr_null(malloc(SIZE_T_MAX),
"Expected OOM due to over-sized allocation request");
assert_ptr_null(calloc(1, max_size_class + 1),
"Expected OOM due to over-sized allocation request");
assert_ptr_null(calloc(1, SIZE_T_MAX),
"Expected OOM due to over-sized allocation request");
p = malloc(1);
assert_ptr_not_null(p, "Unexpected malloc() OOM");
assert_ptr_null(realloc(p, max_size_class + 1),
"Expected OOM due to over-sized allocation request");
assert_ptr_null(realloc(p, SIZE_T_MAX),
"Expected OOM due to over-sized allocation request");
free(p);
}
TEST_END
int
main(void)
{
return (test(
test_overflow));
}
| 1,373 | 26.48 | 73 | c |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/include/test/SFMT-params.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_PARAMS_H
#define SFMT_PARAMS_H
#if !defined(MEXP)
#ifdef __GNUC__
#warning "MEXP is not defined. I assume MEXP is 19937."
#endif
#define MEXP 19937
#endif
/*-----------------
BASIC DEFINITIONS
-----------------*/
/** Mersenne Exponent. The period of the sequence
* is a multiple of 2^MEXP-1.
* #define MEXP 19937 */
/** SFMT generator has an internal state array of 128-bit integers,
* and N is its size. */
#define N (MEXP / 128 + 1)
/** N32 is the size of internal state array when regarded as an array
* of 32-bit integers.*/
#define N32 (N * 4)
/** N64 is the size of internal state array when regarded as an array
* of 64-bit integers.*/
#define N64 (N * 2)
/*----------------------
the parameters of SFMT
following definitions are in paramsXXXX.h file.
----------------------*/
/** the pick up position of the array.
#define POS1 122
*/
/** the parameter of shift left as four 32-bit registers.
#define SL1 18
*/
/** the parameter of shift left as one 128-bit register.
* The 128-bit integer is shifted by (SL2 * 8) bits.
#define SL2 1
*/
/** the parameter of shift right as four 32-bit registers.
#define SR1 11
*/
/** the parameter of shift right as one 128-bit register.
* The 128-bit integer is shifted by (SL2 * 8) bits.
#define SR2 1
*/
/** A bitmask, used in the recursion. These parameters are introduced
* to break symmetry of SIMD.
#define MSK1 0xdfffffefU
#define MSK2 0xddfecb7fU
#define MSK3 0xbffaffffU
#define MSK4 0xbffffff6U
*/
/** These definitions are part of a 128-bit period certification vector.
#define PARITY1 0x00000001U
#define PARITY2 0x00000000U
#define PARITY3 0x00000000U
#define PARITY4 0xc98e126aU
*/
#if MEXP == 607
#include "test/SFMT-params607.h"
#elif MEXP == 1279
#include "test/SFMT-params1279.h"
#elif MEXP == 2281
#include "test/SFMT-params2281.h"
#elif MEXP == 4253
#include "test/SFMT-params4253.h"
#elif MEXP == 11213
#include "test/SFMT-params11213.h"
#elif MEXP == 19937
#include "test/SFMT-params19937.h"
#elif MEXP == 44497
#include "test/SFMT-params44497.h"
#elif MEXP == 86243
#include "test/SFMT-params86243.h"
#elif MEXP == 132049
#include "test/SFMT-params132049.h"
#elif MEXP == 216091
#include "test/SFMT-params216091.h"
#else
#ifdef __GNUC__
#error "MEXP is not valid."
#undef MEXP
#else
#undef MEXP
#endif
#endif
#endif /* SFMT_PARAMS_H */
| 4,286 | 31.233083 | 79 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/include/test/SFMT-params4253.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_PARAMS4253_H
#define SFMT_PARAMS4253_H
#define POS1 17
#define SL1 20
#define SL2 1
#define SR1 7
#define SR2 1
#define MSK1 0x9f7bffffU
#define MSK2 0x9fffff5fU
#define MSK3 0x3efffffbU
#define MSK4 0xfffff7bbU
#define PARITY1 0xa8000001U
#define PARITY2 0xaf5390a3U
#define PARITY3 0xb740b3f8U
#define PARITY4 0x6c11486dU
/* PARAMETERS FOR ALTIVEC */
#if defined(__APPLE__) /* For OSX */
#define ALTI_SL1 (vector unsigned int)(SL1, SL1, SL1, SL1)
#define ALTI_SR1 (vector unsigned int)(SR1, SR1, SR1, SR1)
#define ALTI_MSK (vector unsigned int)(MSK1, MSK2, MSK3, MSK4)
#define ALTI_MSK64 \
(vector unsigned int)(MSK2, MSK1, MSK4, MSK3)
#define ALTI_SL2_PERM \
(vector unsigned char)(1,2,3,23,5,6,7,0,9,10,11,4,13,14,15,8)
#define ALTI_SL2_PERM64 \
(vector unsigned char)(1,2,3,4,5,6,7,31,9,10,11,12,13,14,15,0)
#define ALTI_SR2_PERM \
(vector unsigned char)(7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14)
#define ALTI_SR2_PERM64 \
(vector unsigned char)(15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14)
#else /* For OTHER OSs(Linux?) */
#define ALTI_SL1 {SL1, SL1, SL1, SL1}
#define ALTI_SR1 {SR1, SR1, SR1, SR1}
#define ALTI_MSK {MSK1, MSK2, MSK3, MSK4}
#define ALTI_MSK64 {MSK2, MSK1, MSK4, MSK3}
#define ALTI_SL2_PERM {1,2,3,23,5,6,7,0,9,10,11,4,13,14,15,8}
#define ALTI_SL2_PERM64 {1,2,3,4,5,6,7,31,9,10,11,12,13,14,15,0}
#define ALTI_SR2_PERM {7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14}
#define ALTI_SR2_PERM64 {15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14}
#endif /* For OSX */
#define IDSTR "SFMT-4253:17-20-1-7-1:9f7bffff-9fffff5f-3efffffb-fffff7bb"
#endif /* SFMT_PARAMS4253_H */
| 3,552 | 42.329268 | 79 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/include/test/SFMT-params607.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_PARAMS607_H
#define SFMT_PARAMS607_H
#define POS1 2
#define SL1 15
#define SL2 3
#define SR1 13
#define SR2 3
#define MSK1 0xfdff37ffU
#define MSK2 0xef7f3f7dU
#define MSK3 0xff777b7dU
#define MSK4 0x7ff7fb2fU
#define PARITY1 0x00000001U
#define PARITY2 0x00000000U
#define PARITY3 0x00000000U
#define PARITY4 0x5986f054U
/* PARAMETERS FOR ALTIVEC */
#if defined(__APPLE__) /* For OSX */
#define ALTI_SL1 (vector unsigned int)(SL1, SL1, SL1, SL1)
#define ALTI_SR1 (vector unsigned int)(SR1, SR1, SR1, SR1)
#define ALTI_MSK (vector unsigned int)(MSK1, MSK2, MSK3, MSK4)
#define ALTI_MSK64 \
(vector unsigned int)(MSK2, MSK1, MSK4, MSK3)
#define ALTI_SL2_PERM \
(vector unsigned char)(3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10)
#define ALTI_SL2_PERM64 \
(vector unsigned char)(3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2)
#define ALTI_SR2_PERM \
(vector unsigned char)(5,6,7,0,9,10,11,4,13,14,15,8,19,19,19,12)
#define ALTI_SR2_PERM64 \
(vector unsigned char)(13,14,15,0,1,2,3,4,19,19,19,8,9,10,11,12)
#else /* For OTHER OSs(Linux?) */
#define ALTI_SL1 {SL1, SL1, SL1, SL1}
#define ALTI_SR1 {SR1, SR1, SR1, SR1}
#define ALTI_MSK {MSK1, MSK2, MSK3, MSK4}
#define ALTI_MSK64 {MSK2, MSK1, MSK4, MSK3}
#define ALTI_SL2_PERM {3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10}
#define ALTI_SL2_PERM64 {3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2}
#define ALTI_SR2_PERM {5,6,7,0,9,10,11,4,13,14,15,8,19,19,19,12}
#define ALTI_SR2_PERM64 {13,14,15,0,1,2,3,4,19,19,19,8,9,10,11,12}
#endif /* For OSX */
#define IDSTR "SFMT-607:2-15-3-13-3:fdff37ff-ef7f3f7d-ff777b7d-7ff7fb2f"
#endif /* SFMT_PARAMS607_H */
| 3,558 | 42.402439 | 79 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/include/test/SFMT-params216091.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_PARAMS216091_H
#define SFMT_PARAMS216091_H
#define POS1 627
#define SL1 11
#define SL2 3
#define SR1 10
#define SR2 1
#define MSK1 0xbff7bff7U
#define MSK2 0xbfffffffU
#define MSK3 0xbffffa7fU
#define MSK4 0xffddfbfbU
#define PARITY1 0xf8000001U
#define PARITY2 0x89e80709U
#define PARITY3 0x3bd2b64bU
#define PARITY4 0x0c64b1e4U
/* PARAMETERS FOR ALTIVEC */
#if defined(__APPLE__) /* For OSX */
#define ALTI_SL1 (vector unsigned int)(SL1, SL1, SL1, SL1)
#define ALTI_SR1 (vector unsigned int)(SR1, SR1, SR1, SR1)
#define ALTI_MSK (vector unsigned int)(MSK1, MSK2, MSK3, MSK4)
#define ALTI_MSK64 \
(vector unsigned int)(MSK2, MSK1, MSK4, MSK3)
#define ALTI_SL2_PERM \
(vector unsigned char)(3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10)
#define ALTI_SL2_PERM64 \
(vector unsigned char)(3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2)
#define ALTI_SR2_PERM \
(vector unsigned char)(7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14)
#define ALTI_SR2_PERM64 \
(vector unsigned char)(15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14)
#else /* For OTHER OSs(Linux?) */
#define ALTI_SL1 {SL1, SL1, SL1, SL1}
#define ALTI_SR1 {SR1, SR1, SR1, SR1}
#define ALTI_MSK {MSK1, MSK2, MSK3, MSK4}
#define ALTI_MSK64 {MSK2, MSK1, MSK4, MSK3}
#define ALTI_SL2_PERM {3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10}
#define ALTI_SL2_PERM64 {3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2}
#define ALTI_SR2_PERM {7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14}
#define ALTI_SR2_PERM64 {15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14}
#endif /* For OSX */
#define IDSTR "SFMT-216091:627-11-3-10-1:bff7bff7-bfffffff-bffffa7f-ffddfbfb"
#endif /* SFMT_PARAMS216091_H */
| 3,566 | 42.5 | 79 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/include/test/mq.h | void mq_nanosleep(unsigned ns);
/*
* Simple templated message queue implementation that relies on only mutexes for
* synchronization (which reduces portability issues). Given the following
* setup:
*
* typedef struct mq_msg_s mq_msg_t;
* struct mq_msg_s {
* mq_msg(mq_msg_t) link;
* [message data]
* };
* mq_gen(, mq_, mq_t, mq_msg_t, link)
*
* The API is as follows:
*
* bool mq_init(mq_t *mq);
* void mq_fini(mq_t *mq);
* unsigned mq_count(mq_t *mq);
* mq_msg_t *mq_tryget(mq_t *mq);
* mq_msg_t *mq_get(mq_t *mq);
* void mq_put(mq_t *mq, mq_msg_t *msg);
*
* The message queue linkage embedded in each message is to be treated as
* externally opaque (no need to initialize or clean up externally). mq_fini()
* does not perform any cleanup of messages, since it knows nothing of their
* payloads.
*/
#define mq_msg(a_mq_msg_type) ql_elm(a_mq_msg_type)
#define mq_gen(a_attr, a_prefix, a_mq_type, a_mq_msg_type, a_field) \
typedef struct { \
mtx_t lock; \
ql_head(a_mq_msg_type) msgs; \
unsigned count; \
} a_mq_type; \
a_attr bool \
a_prefix##init(a_mq_type *mq) { \
\
if (mtx_init(&mq->lock)) \
return (true); \
ql_new(&mq->msgs); \
mq->count = 0; \
return (false); \
} \
a_attr void \
a_prefix##fini(a_mq_type *mq) \
{ \
\
mtx_fini(&mq->lock); \
} \
a_attr unsigned \
a_prefix##count(a_mq_type *mq) \
{ \
unsigned count; \
\
mtx_lock(&mq->lock); \
count = mq->count; \
mtx_unlock(&mq->lock); \
return (count); \
} \
a_attr a_mq_msg_type * \
a_prefix##tryget(a_mq_type *mq) \
{ \
a_mq_msg_type *msg; \
\
mtx_lock(&mq->lock); \
msg = ql_first(&mq->msgs); \
if (msg != NULL) { \
ql_head_remove(&mq->msgs, a_mq_msg_type, a_field); \
mq->count--; \
} \
mtx_unlock(&mq->lock); \
return (msg); \
} \
a_attr a_mq_msg_type * \
a_prefix##get(a_mq_type *mq) \
{ \
a_mq_msg_type *msg; \
unsigned ns; \
\
msg = a_prefix##tryget(mq); \
if (msg != NULL) \
return (msg); \
\
ns = 1; \
while (true) { \
mq_nanosleep(ns); \
msg = a_prefix##tryget(mq); \
if (msg != NULL) \
return (msg); \
if (ns < 1000*1000*1000) { \
/* Double sleep time, up to max 1 second. */ \
ns <<= 1; \
if (ns > 1000*1000*1000) \
ns = 1000*1000*1000; \
} \
} \
} \
a_attr void \
a_prefix##put(a_mq_type *mq, a_mq_msg_type *msg) \
{ \
\
mtx_lock(&mq->lock); \
ql_elm_new(msg, a_field); \
ql_tail_insert(&mq->msgs, msg, a_field); \
mq->count++; \
mtx_unlock(&mq->lock); \
}
| 2,902 | 25.390909 | 80 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/include/test/btalloc.h | /* btalloc() provides a mechanism for allocating via permuted backtraces. */
void *btalloc(size_t size, unsigned bits);
#define btalloc_n_proto(n) \
void *btalloc_##n(size_t size, unsigned bits);
btalloc_n_proto(0)
btalloc_n_proto(1)
#define btalloc_n_gen(n) \
void * \
btalloc_##n(size_t size, unsigned bits) \
{ \
void *p; \
\
if (bits == 0) \
p = mallocx(size, 0); \
else { \
switch (bits & 0x1U) { \
case 0: \
p = (btalloc_0(size, bits >> 1)); \
break; \
case 1: \
p = (btalloc_1(size, bits >> 1)); \
break; \
default: not_reached(); \
} \
} \
/* Intentionally sabotage tail call optimization. */ \
assert_ptr_not_null(p, "Unexpected mallocx() failure"); \
return (p); \
}
| 825 | 24.8125 | 76 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/include/test/SFMT-params1279.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_PARAMS1279_H
#define SFMT_PARAMS1279_H
#define POS1 7
#define SL1 14
#define SL2 3
#define SR1 5
#define SR2 1
#define MSK1 0xf7fefffdU
#define MSK2 0x7fefcfffU
#define MSK3 0xaff3ef3fU
#define MSK4 0xb5ffff7fU
#define PARITY1 0x00000001U
#define PARITY2 0x00000000U
#define PARITY3 0x00000000U
#define PARITY4 0x20000000U
/* PARAMETERS FOR ALTIVEC */
#if defined(__APPLE__) /* For OSX */
#define ALTI_SL1 (vector unsigned int)(SL1, SL1, SL1, SL1)
#define ALTI_SR1 (vector unsigned int)(SR1, SR1, SR1, SR1)
#define ALTI_MSK (vector unsigned int)(MSK1, MSK2, MSK3, MSK4)
#define ALTI_MSK64 \
(vector unsigned int)(MSK2, MSK1, MSK4, MSK3)
#define ALTI_SL2_PERM \
(vector unsigned char)(3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10)
#define ALTI_SL2_PERM64 \
(vector unsigned char)(3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2)
#define ALTI_SR2_PERM \
(vector unsigned char)(7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14)
#define ALTI_SR2_PERM64 \
(vector unsigned char)(15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14)
#else /* For OTHER OSs(Linux?) */
#define ALTI_SL1 {SL1, SL1, SL1, SL1}
#define ALTI_SR1 {SR1, SR1, SR1, SR1}
#define ALTI_MSK {MSK1, MSK2, MSK3, MSK4}
#define ALTI_MSK64 {MSK2, MSK1, MSK4, MSK3}
#define ALTI_SL2_PERM {3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10}
#define ALTI_SL2_PERM64 {3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2}
#define ALTI_SR2_PERM {7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14}
#define ALTI_SR2_PERM64 {15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14}
#endif /* For OSX */
#define IDSTR "SFMT-1279:7-14-3-5-1:f7fefffd-7fefcfff-aff3ef3f-b5ffff7f"
#endif /* SFMT_PARAMS1279_H */
| 3,552 | 42.329268 | 79 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/include/test/SFMT-params11213.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_PARAMS11213_H
#define SFMT_PARAMS11213_H
#define POS1 68
#define SL1 14
#define SL2 3
#define SR1 7
#define SR2 3
#define MSK1 0xeffff7fbU
#define MSK2 0xffffffefU
#define MSK3 0xdfdfbfffU
#define MSK4 0x7fffdbfdU
#define PARITY1 0x00000001U
#define PARITY2 0x00000000U
#define PARITY3 0xe8148000U
#define PARITY4 0xd0c7afa3U
/* PARAMETERS FOR ALTIVEC */
#if defined(__APPLE__) /* For OSX */
#define ALTI_SL1 (vector unsigned int)(SL1, SL1, SL1, SL1)
#define ALTI_SR1 (vector unsigned int)(SR1, SR1, SR1, SR1)
#define ALTI_MSK (vector unsigned int)(MSK1, MSK2, MSK3, MSK4)
#define ALTI_MSK64 \
(vector unsigned int)(MSK2, MSK1, MSK4, MSK3)
#define ALTI_SL2_PERM \
(vector unsigned char)(3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10)
#define ALTI_SL2_PERM64 \
(vector unsigned char)(3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2)
#define ALTI_SR2_PERM \
(vector unsigned char)(5,6,7,0,9,10,11,4,13,14,15,8,19,19,19,12)
#define ALTI_SR2_PERM64 \
(vector unsigned char)(13,14,15,0,1,2,3,4,19,19,19,8,9,10,11,12)
#else /* For OTHER OSs(Linux?) */
#define ALTI_SL1 {SL1, SL1, SL1, SL1}
#define ALTI_SR1 {SR1, SR1, SR1, SR1}
#define ALTI_MSK {MSK1, MSK2, MSK3, MSK4}
#define ALTI_MSK64 {MSK2, MSK1, MSK4, MSK3}
#define ALTI_SL2_PERM {3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10}
#define ALTI_SL2_PERM64 {3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2}
#define ALTI_SR2_PERM {5,6,7,0,9,10,11,4,13,14,15,8,19,19,19,12}
#define ALTI_SR2_PERM64 {13,14,15,0,1,2,3,4,19,19,19,8,9,10,11,12}
#endif /* For OSX */
#define IDSTR "SFMT-11213:68-14-3-7-3:effff7fb-ffffffef-dfdfbfff-7fffdbfd"
#endif /* SFMT_PARAMS11213_H */
| 3,566 | 42.5 | 79 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/include/test/SFMT-sse2.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file SFMT-sse2.h
* @brief SIMD oriented Fast Mersenne Twister(SFMT) for Intel SSE2
*
* @author Mutsuo Saito (Hiroshima University)
* @author Makoto Matsumoto (Hiroshima University)
*
* @note We assume LITTLE ENDIAN in this file
*
* Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* The new BSD License is applied to this software, see LICENSE.txt
*/
#ifndef SFMT_SSE2_H
#define SFMT_SSE2_H
/**
* This function represents the recursion formula.
* @param a a 128-bit part of the interal state array
* @param b a 128-bit part of the interal state array
* @param c a 128-bit part of the interal state array
* @param d a 128-bit part of the interal state array
* @param mask 128-bit mask
* @return output
*/
JEMALLOC_ALWAYS_INLINE __m128i mm_recursion(__m128i *a, __m128i *b,
__m128i c, __m128i d, __m128i mask) {
__m128i v, x, y, z;
x = _mm_load_si128(a);
y = _mm_srli_epi32(*b, SR1);
z = _mm_srli_si128(c, SR2);
v = _mm_slli_epi32(d, SL1);
z = _mm_xor_si128(z, x);
z = _mm_xor_si128(z, v);
x = _mm_slli_si128(x, SL2);
y = _mm_and_si128(y, mask);
z = _mm_xor_si128(z, x);
z = _mm_xor_si128(z, y);
return z;
}
/**
* This function fills the internal state array with pseudorandom
* integers.
*/
JEMALLOC_INLINE void gen_rand_all(sfmt_t *ctx) {
int i;
__m128i r, r1, r2, mask;
mask = _mm_set_epi32(MSK4, MSK3, MSK2, MSK1);
r1 = _mm_load_si128(&ctx->sfmt[N - 2].si);
r2 = _mm_load_si128(&ctx->sfmt[N - 1].si);
for (i = 0; i < N - POS1; i++) {
r = mm_recursion(&ctx->sfmt[i].si, &ctx->sfmt[i + POS1].si, r1, r2,
mask);
_mm_store_si128(&ctx->sfmt[i].si, r);
r1 = r2;
r2 = r;
}
for (; i < N; i++) {
r = mm_recursion(&ctx->sfmt[i].si, &ctx->sfmt[i + POS1 - N].si, r1, r2,
mask);
_mm_store_si128(&ctx->sfmt[i].si, r);
r1 = r2;
r2 = r;
}
}
/**
* This function fills the user-specified array with pseudorandom
* integers.
*
* @param array an 128-bit array to be filled by pseudorandom numbers.
* @param size number of 128-bit pesudorandom numbers to be generated.
*/
JEMALLOC_INLINE void gen_rand_array(sfmt_t *ctx, w128_t *array, int size) {
int i, j;
__m128i r, r1, r2, mask;
mask = _mm_set_epi32(MSK4, MSK3, MSK2, MSK1);
r1 = _mm_load_si128(&ctx->sfmt[N - 2].si);
r2 = _mm_load_si128(&ctx->sfmt[N - 1].si);
for (i = 0; i < N - POS1; i++) {
r = mm_recursion(&ctx->sfmt[i].si, &ctx->sfmt[i + POS1].si, r1, r2,
mask);
_mm_store_si128(&array[i].si, r);
r1 = r2;
r2 = r;
}
for (; i < N; i++) {
r = mm_recursion(&ctx->sfmt[i].si, &array[i + POS1 - N].si, r1, r2,
mask);
_mm_store_si128(&array[i].si, r);
r1 = r2;
r2 = r;
}
/* main loop */
for (; i < size - N; i++) {
r = mm_recursion(&array[i - N].si, &array[i + POS1 - N].si, r1, r2,
mask);
_mm_store_si128(&array[i].si, r);
r1 = r2;
r2 = r;
}
for (j = 0; j < 2 * N - size; j++) {
r = _mm_load_si128(&array[j + size - N].si);
_mm_store_si128(&ctx->sfmt[j].si, r);
}
for (; i < size; i++) {
r = mm_recursion(&array[i - N].si, &array[i + POS1 - N].si, r1, r2,
mask);
_mm_store_si128(&array[i].si, r);
_mm_store_si128(&ctx->sfmt[j++].si, r);
r1 = r2;
r2 = r;
}
}
#endif
| 5,215 | 32.012658 | 79 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/include/test/math.h | #ifndef JEMALLOC_ENABLE_INLINE
double ln_gamma(double x);
double i_gamma(double x, double p, double ln_gamma_p);
double pt_norm(double p);
double pt_chi2(double p, double df, double ln_gamma_df_2);
double pt_gamma(double p, double shape, double scale, double ln_gamma_shape);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(MATH_C_))
/*
* Compute the natural log of Gamma(x), accurate to 10 decimal places.
*
* This implementation is based on:
*
* Pike, M.C., I.D. Hill (1966) Algorithm 291: Logarithm of Gamma function
* [S14]. Communications of the ACM 9(9):684.
*/
JEMALLOC_INLINE double
ln_gamma(double x)
{
double f, z;
assert(x > 0.0);
if (x < 7.0) {
f = 1.0;
z = x;
while (z < 7.0) {
f *= z;
z += 1.0;
}
x = z;
f = -log(f);
} else
f = 0.0;
z = 1.0 / (x * x);
return (f + (x-0.5) * log(x) - x + 0.918938533204673 +
(((-0.000595238095238 * z + 0.000793650793651) * z -
0.002777777777778) * z + 0.083333333333333) / x);
}
/*
* Compute the incomplete Gamma ratio for [0..x], where p is the shape
* parameter, and ln_gamma_p is ln_gamma(p).
*
* This implementation is based on:
*
* Bhattacharjee, G.P. (1970) Algorithm AS 32: The incomplete Gamma integral.
* Applied Statistics 19:285-287.
*/
JEMALLOC_INLINE double
i_gamma(double x, double p, double ln_gamma_p)
{
double acu, factor, oflo, gin, term, rn, a, b, an, dif;
double pn[6];
unsigned i;
assert(p > 0.0);
assert(x >= 0.0);
if (x == 0.0)
return (0.0);
acu = 1.0e-10;
oflo = 1.0e30;
gin = 0.0;
factor = exp(p * log(x) - x - ln_gamma_p);
if (x <= 1.0 || x < p) {
/* Calculation by series expansion. */
gin = 1.0;
term = 1.0;
rn = p;
while (true) {
rn += 1.0;
term *= x / rn;
gin += term;
if (term <= acu) {
gin *= factor / p;
return (gin);
}
}
} else {
/* Calculation by continued fraction. */
a = 1.0 - p;
b = a + x + 1.0;
term = 0.0;
pn[0] = 1.0;
pn[1] = x;
pn[2] = x + 1.0;
pn[3] = x * b;
gin = pn[2] / pn[3];
while (true) {
a += 1.0;
b += 2.0;
term += 1.0;
an = a * term;
for (i = 0; i < 2; i++)
pn[i+4] = b * pn[i+2] - an * pn[i];
if (pn[5] != 0.0) {
rn = pn[4] / pn[5];
dif = fabs(gin - rn);
if (dif <= acu && dif <= acu * rn) {
gin = 1.0 - factor * gin;
return (gin);
}
gin = rn;
}
for (i = 0; i < 4; i++)
pn[i] = pn[i+2];
if (fabs(pn[4]) >= oflo) {
for (i = 0; i < 4; i++)
pn[i] /= oflo;
}
}
}
}
/*
* Given a value p in [0..1] of the lower tail area of the normal distribution,
* compute the limit on the definite integral from [-inf..z] that satisfies p,
* accurate to 16 decimal places.
*
* This implementation is based on:
*
* Wichura, M.J. (1988) Algorithm AS 241: The percentage points of the normal
* distribution. Applied Statistics 37(3):477-484.
*/
JEMALLOC_INLINE double
pt_norm(double p)
{
double q, r, ret;
assert(p > 0.0 && p < 1.0);
q = p - 0.5;
if (fabs(q) <= 0.425) {
/* p close to 1/2. */
r = 0.180625 - q * q;
return (q * (((((((2.5090809287301226727e3 * r +
3.3430575583588128105e4) * r + 6.7265770927008700853e4) * r
+ 4.5921953931549871457e4) * r + 1.3731693765509461125e4) *
r + 1.9715909503065514427e3) * r + 1.3314166789178437745e2)
* r + 3.3871328727963666080e0) /
(((((((5.2264952788528545610e3 * r +
2.8729085735721942674e4) * r + 3.9307895800092710610e4) * r
+ 2.1213794301586595867e4) * r + 5.3941960214247511077e3) *
r + 6.8718700749205790830e2) * r + 4.2313330701600911252e1)
* r + 1.0));
} else {
if (q < 0.0)
r = p;
else
r = 1.0 - p;
assert(r > 0.0);
r = sqrt(-log(r));
if (r <= 5.0) {
/* p neither close to 1/2 nor 0 or 1. */
r -= 1.6;
ret = ((((((((7.74545014278341407640e-4 * r +
2.27238449892691845833e-2) * r +
2.41780725177450611770e-1) * r +
1.27045825245236838258e0) * r +
3.64784832476320460504e0) * r +
5.76949722146069140550e0) * r +
4.63033784615654529590e0) * r +
1.42343711074968357734e0) /
(((((((1.05075007164441684324e-9 * r +
5.47593808499534494600e-4) * r +
1.51986665636164571966e-2)
* r + 1.48103976427480074590e-1) * r +
6.89767334985100004550e-1) * r +
1.67638483018380384940e0) * r +
2.05319162663775882187e0) * r + 1.0));
} else {
/* p near 0 or 1. */
r -= 5.0;
ret = ((((((((2.01033439929228813265e-7 * r +
2.71155556874348757815e-5) * r +
1.24266094738807843860e-3) * r +
2.65321895265761230930e-2) * r +
2.96560571828504891230e-1) * r +
1.78482653991729133580e0) * r +
5.46378491116411436990e0) * r +
6.65790464350110377720e0) /
(((((((2.04426310338993978564e-15 * r +
1.42151175831644588870e-7) * r +
1.84631831751005468180e-5) * r +
7.86869131145613259100e-4) * r +
1.48753612908506148525e-2) * r +
1.36929880922735805310e-1) * r +
5.99832206555887937690e-1)
* r + 1.0));
}
if (q < 0.0)
ret = -ret;
return (ret);
}
}
/*
* Given a value p in [0..1] of the lower tail area of the Chi^2 distribution
* with df degrees of freedom, where ln_gamma_df_2 is ln_gamma(df/2.0), compute
* the upper limit on the definite integral from [0..z] that satisfies p,
* accurate to 12 decimal places.
*
* This implementation is based on:
*
* Best, D.J., D.E. Roberts (1975) Algorithm AS 91: The percentage points of
* the Chi^2 distribution. Applied Statistics 24(3):385-388.
*
* Shea, B.L. (1991) Algorithm AS R85: A remark on AS 91: The percentage
* points of the Chi^2 distribution. Applied Statistics 40(1):233-235.
*/
JEMALLOC_INLINE double
pt_chi2(double p, double df, double ln_gamma_df_2)
{
double e, aa, xx, c, ch, a, q, p1, p2, t, x, b, s1, s2, s3, s4, s5, s6;
unsigned i;
assert(p >= 0.0 && p < 1.0);
assert(df > 0.0);
e = 5.0e-7;
aa = 0.6931471805;
xx = 0.5 * df;
c = xx - 1.0;
if (df < -1.24 * log(p)) {
/* Starting approximation for small Chi^2. */
ch = pow(p * xx * exp(ln_gamma_df_2 + xx * aa), 1.0 / xx);
if (ch - e < 0.0)
return (ch);
} else {
if (df > 0.32) {
x = pt_norm(p);
/*
* Starting approximation using Wilson and Hilferty
* estimate.
*/
p1 = 0.222222 / df;
ch = df * pow(x * sqrt(p1) + 1.0 - p1, 3.0);
/* Starting approximation for p tending to 1. */
if (ch > 2.2 * df + 6.0) {
ch = -2.0 * (log(1.0 - p) - c * log(0.5 * ch) +
ln_gamma_df_2);
}
} else {
ch = 0.4;
a = log(1.0 - p);
while (true) {
q = ch;
p1 = 1.0 + ch * (4.67 + ch);
p2 = ch * (6.73 + ch * (6.66 + ch));
t = -0.5 + (4.67 + 2.0 * ch) / p1 - (6.73 + ch
* (13.32 + 3.0 * ch)) / p2;
ch -= (1.0 - exp(a + ln_gamma_df_2 + 0.5 * ch +
c * aa) * p2 / p1) / t;
if (fabs(q / ch - 1.0) - 0.01 <= 0.0)
break;
}
}
}
for (i = 0; i < 20; i++) {
/* Calculation of seven-term Taylor series. */
q = ch;
p1 = 0.5 * ch;
if (p1 < 0.0)
return (-1.0);
p2 = p - i_gamma(p1, xx, ln_gamma_df_2);
t = p2 * exp(xx * aa + ln_gamma_df_2 + p1 - c * log(ch));
b = t / ch;
a = 0.5 * t - b * c;
s1 = (210.0 + a * (140.0 + a * (105.0 + a * (84.0 + a * (70.0 +
60.0 * a))))) / 420.0;
s2 = (420.0 + a * (735.0 + a * (966.0 + a * (1141.0 + 1278.0 *
a)))) / 2520.0;
s3 = (210.0 + a * (462.0 + a * (707.0 + 932.0 * a))) / 2520.0;
s4 = (252.0 + a * (672.0 + 1182.0 * a) + c * (294.0 + a *
(889.0 + 1740.0 * a))) / 5040.0;
s5 = (84.0 + 264.0 * a + c * (175.0 + 606.0 * a)) / 2520.0;
s6 = (120.0 + c * (346.0 + 127.0 * c)) / 5040.0;
ch += t * (1.0 + 0.5 * t * s1 - b * c * (s1 - b * (s2 - b * (s3
- b * (s4 - b * (s5 - b * s6))))));
if (fabs(q / ch - 1.0) <= e)
break;
}
return (ch);
}
/*
* Given a value p in [0..1] and Gamma distribution shape and scale parameters,
* compute the upper limit on the definite integral from [0..z] that satisfies
* p.
*/
JEMALLOC_INLINE double
pt_gamma(double p, double shape, double scale, double ln_gamma_shape)
{
return (pt_chi2(p, shape * 2.0, ln_gamma_shape) * 0.5 * scale);
}
#endif
| 8,172 | 25.195513 | 79 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/include/test/mtx.h | /*
* mtx is a slightly simplified version of malloc_mutex. This code duplication
* is unfortunate, but there are allocator bootstrapping considerations that
* would leak into the test infrastructure if malloc_mutex were used directly
* in tests.
*/
typedef struct {
#ifdef _WIN32
CRITICAL_SECTION lock;
#elif (defined(JEMALLOC_OS_UNFAIR_LOCK))
os_unfair_lock lock;
#elif (defined(JEMALLOC_OSSPIN))
OSSpinLock lock;
#else
pthread_mutex_t lock;
#endif
} mtx_t;
bool mtx_init(mtx_t *mtx);
void mtx_fini(mtx_t *mtx);
void mtx_lock(mtx_t *mtx);
void mtx_unlock(mtx_t *mtx);
| 584 | 23.375 | 79 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/include/test/SFMT-params2281.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_PARAMS2281_H
#define SFMT_PARAMS2281_H
#define POS1 12
#define SL1 19
#define SL2 1
#define SR1 5
#define SR2 1
#define MSK1 0xbff7ffbfU
#define MSK2 0xfdfffffeU
#define MSK3 0xf7ffef7fU
#define MSK4 0xf2f7cbbfU
#define PARITY1 0x00000001U
#define PARITY2 0x00000000U
#define PARITY3 0x00000000U
#define PARITY4 0x41dfa600U
/* PARAMETERS FOR ALTIVEC */
#if defined(__APPLE__) /* For OSX */
#define ALTI_SL1 (vector unsigned int)(SL1, SL1, SL1, SL1)
#define ALTI_SR1 (vector unsigned int)(SR1, SR1, SR1, SR1)
#define ALTI_MSK (vector unsigned int)(MSK1, MSK2, MSK3, MSK4)
#define ALTI_MSK64 \
(vector unsigned int)(MSK2, MSK1, MSK4, MSK3)
#define ALTI_SL2_PERM \
(vector unsigned char)(1,2,3,23,5,6,7,0,9,10,11,4,13,14,15,8)
#define ALTI_SL2_PERM64 \
(vector unsigned char)(1,2,3,4,5,6,7,31,9,10,11,12,13,14,15,0)
#define ALTI_SR2_PERM \
(vector unsigned char)(7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14)
#define ALTI_SR2_PERM64 \
(vector unsigned char)(15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14)
#else /* For OTHER OSs(Linux?) */
#define ALTI_SL1 {SL1, SL1, SL1, SL1}
#define ALTI_SR1 {SR1, SR1, SR1, SR1}
#define ALTI_MSK {MSK1, MSK2, MSK3, MSK4}
#define ALTI_MSK64 {MSK2, MSK1, MSK4, MSK3}
#define ALTI_SL2_PERM {1,2,3,23,5,6,7,0,9,10,11,4,13,14,15,8}
#define ALTI_SL2_PERM64 {1,2,3,4,5,6,7,31,9,10,11,12,13,14,15,0}
#define ALTI_SR2_PERM {7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14}
#define ALTI_SR2_PERM64 {15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14}
#endif /* For OSX */
#define IDSTR "SFMT-2281:12-19-1-5-1:bff7ffbf-fdfffffe-f7ffef7f-f2f7cbbf"
#endif /* SFMT_PARAMS2281_H */
| 3,552 | 42.329268 | 79 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/include/test/SFMT-params19937.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_PARAMS19937_H
#define SFMT_PARAMS19937_H
#define POS1 122
#define SL1 18
#define SL2 1
#define SR1 11
#define SR2 1
#define MSK1 0xdfffffefU
#define MSK2 0xddfecb7fU
#define MSK3 0xbffaffffU
#define MSK4 0xbffffff6U
#define PARITY1 0x00000001U
#define PARITY2 0x00000000U
#define PARITY3 0x00000000U
#define PARITY4 0x13c9e684U
/* PARAMETERS FOR ALTIVEC */
#if defined(__APPLE__) /* For OSX */
#define ALTI_SL1 (vector unsigned int)(SL1, SL1, SL1, SL1)
#define ALTI_SR1 (vector unsigned int)(SR1, SR1, SR1, SR1)
#define ALTI_MSK (vector unsigned int)(MSK1, MSK2, MSK3, MSK4)
#define ALTI_MSK64 \
(vector unsigned int)(MSK2, MSK1, MSK4, MSK3)
#define ALTI_SL2_PERM \
(vector unsigned char)(1,2,3,23,5,6,7,0,9,10,11,4,13,14,15,8)
#define ALTI_SL2_PERM64 \
(vector unsigned char)(1,2,3,4,5,6,7,31,9,10,11,12,13,14,15,0)
#define ALTI_SR2_PERM \
(vector unsigned char)(7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14)
#define ALTI_SR2_PERM64 \
(vector unsigned char)(15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14)
#else /* For OTHER OSs(Linux?) */
#define ALTI_SL1 {SL1, SL1, SL1, SL1}
#define ALTI_SR1 {SR1, SR1, SR1, SR1}
#define ALTI_MSK {MSK1, MSK2, MSK3, MSK4}
#define ALTI_MSK64 {MSK2, MSK1, MSK4, MSK3}
#define ALTI_SL2_PERM {1,2,3,23,5,6,7,0,9,10,11,4,13,14,15,8}
#define ALTI_SL2_PERM64 {1,2,3,4,5,6,7,31,9,10,11,12,13,14,15,0}
#define ALTI_SR2_PERM {7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14}
#define ALTI_SR2_PERM64 {15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14}
#endif /* For OSX */
#define IDSTR "SFMT-19937:122-18-1-11-1:dfffffef-ddfecb7f-bffaffff-bffffff6"
#endif /* SFMT_PARAMS19937_H */
| 3,560 | 42.426829 | 79 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/include/test/test.h | #define ASSERT_BUFSIZE 256
#define assert_cmp(t, a, b, cmp, neg_cmp, pri, ...) do { \
t a_ = (a); \
t b_ = (b); \
if (!(a_ cmp b_)) { \
char prefix[ASSERT_BUFSIZE]; \
char message[ASSERT_BUFSIZE]; \
malloc_snprintf(prefix, sizeof(prefix), \
"%s:%s:%d: Failed assertion: " \
"(%s) "#cmp" (%s) --> " \
"%"pri" "#neg_cmp" %"pri": ", \
__func__, __FILE__, __LINE__, \
#a, #b, a_, b_); \
malloc_snprintf(message, sizeof(message), __VA_ARGS__); \
p_test_fail(prefix, message); \
} \
} while (0)
#define assert_ptr_eq(a, b, ...) assert_cmp(void *, a, b, ==, \
!=, "p", __VA_ARGS__)
#define assert_ptr_ne(a, b, ...) assert_cmp(void *, a, b, !=, \
==, "p", __VA_ARGS__)
#define assert_ptr_null(a, ...) assert_cmp(void *, a, NULL, ==, \
!=, "p", __VA_ARGS__)
#define assert_ptr_not_null(a, ...) assert_cmp(void *, a, NULL, !=, \
==, "p", __VA_ARGS__)
#define assert_c_eq(a, b, ...) assert_cmp(char, a, b, ==, !=, "c", __VA_ARGS__)
#define assert_c_ne(a, b, ...) assert_cmp(char, a, b, !=, ==, "c", __VA_ARGS__)
#define assert_c_lt(a, b, ...) assert_cmp(char, a, b, <, >=, "c", __VA_ARGS__)
#define assert_c_le(a, b, ...) assert_cmp(char, a, b, <=, >, "c", __VA_ARGS__)
#define assert_c_ge(a, b, ...) assert_cmp(char, a, b, >=, <, "c", __VA_ARGS__)
#define assert_c_gt(a, b, ...) assert_cmp(char, a, b, >, <=, "c", __VA_ARGS__)
#define assert_x_eq(a, b, ...) assert_cmp(int, a, b, ==, !=, "#x", __VA_ARGS__)
#define assert_x_ne(a, b, ...) assert_cmp(int, a, b, !=, ==, "#x", __VA_ARGS__)
#define assert_x_lt(a, b, ...) assert_cmp(int, a, b, <, >=, "#x", __VA_ARGS__)
#define assert_x_le(a, b, ...) assert_cmp(int, a, b, <=, >, "#x", __VA_ARGS__)
#define assert_x_ge(a, b, ...) assert_cmp(int, a, b, >=, <, "#x", __VA_ARGS__)
#define assert_x_gt(a, b, ...) assert_cmp(int, a, b, >, <=, "#x", __VA_ARGS__)
#define assert_d_eq(a, b, ...) assert_cmp(int, a, b, ==, !=, "d", __VA_ARGS__)
#define assert_d_ne(a, b, ...) assert_cmp(int, a, b, !=, ==, "d", __VA_ARGS__)
#define assert_d_lt(a, b, ...) assert_cmp(int, a, b, <, >=, "d", __VA_ARGS__)
#define assert_d_le(a, b, ...) assert_cmp(int, a, b, <=, >, "d", __VA_ARGS__)
#define assert_d_ge(a, b, ...) assert_cmp(int, a, b, >=, <, "d", __VA_ARGS__)
#define assert_d_gt(a, b, ...) assert_cmp(int, a, b, >, <=, "d", __VA_ARGS__)
#define assert_u_eq(a, b, ...) assert_cmp(int, a, b, ==, !=, "u", __VA_ARGS__)
#define assert_u_ne(a, b, ...) assert_cmp(int, a, b, !=, ==, "u", __VA_ARGS__)
#define assert_u_lt(a, b, ...) assert_cmp(int, a, b, <, >=, "u", __VA_ARGS__)
#define assert_u_le(a, b, ...) assert_cmp(int, a, b, <=, >, "u", __VA_ARGS__)
#define assert_u_ge(a, b, ...) assert_cmp(int, a, b, >=, <, "u", __VA_ARGS__)
#define assert_u_gt(a, b, ...) assert_cmp(int, a, b, >, <=, "u", __VA_ARGS__)
#define assert_ld_eq(a, b, ...) assert_cmp(long, a, b, ==, \
!=, "ld", __VA_ARGS__)
#define assert_ld_ne(a, b, ...) assert_cmp(long, a, b, !=, \
==, "ld", __VA_ARGS__)
#define assert_ld_lt(a, b, ...) assert_cmp(long, a, b, <, \
>=, "ld", __VA_ARGS__)
#define assert_ld_le(a, b, ...) assert_cmp(long, a, b, <=, \
>, "ld", __VA_ARGS__)
#define assert_ld_ge(a, b, ...) assert_cmp(long, a, b, >=, \
<, "ld", __VA_ARGS__)
#define assert_ld_gt(a, b, ...) assert_cmp(long, a, b, >, \
<=, "ld", __VA_ARGS__)
#define assert_lu_eq(a, b, ...) assert_cmp(unsigned long, \
a, b, ==, !=, "lu", __VA_ARGS__)
#define assert_lu_ne(a, b, ...) assert_cmp(unsigned long, \
a, b, !=, ==, "lu", __VA_ARGS__)
#define assert_lu_lt(a, b, ...) assert_cmp(unsigned long, \
a, b, <, >=, "lu", __VA_ARGS__)
#define assert_lu_le(a, b, ...) assert_cmp(unsigned long, \
a, b, <=, >, "lu", __VA_ARGS__)
#define assert_lu_ge(a, b, ...) assert_cmp(unsigned long, \
a, b, >=, <, "lu", __VA_ARGS__)
#define assert_lu_gt(a, b, ...) assert_cmp(unsigned long, \
a, b, >, <=, "lu", __VA_ARGS__)
#define assert_qd_eq(a, b, ...) assert_cmp(long long, a, b, ==, \
!=, "qd", __VA_ARGS__)
#define assert_qd_ne(a, b, ...) assert_cmp(long long, a, b, !=, \
==, "qd", __VA_ARGS__)
#define assert_qd_lt(a, b, ...) assert_cmp(long long, a, b, <, \
>=, "qd", __VA_ARGS__)
#define assert_qd_le(a, b, ...) assert_cmp(long long, a, b, <=, \
>, "qd", __VA_ARGS__)
#define assert_qd_ge(a, b, ...) assert_cmp(long long, a, b, >=, \
<, "qd", __VA_ARGS__)
#define assert_qd_gt(a, b, ...) assert_cmp(long long, a, b, >, \
<=, "qd", __VA_ARGS__)
#define assert_qu_eq(a, b, ...) assert_cmp(unsigned long long, \
a, b, ==, !=, "qu", __VA_ARGS__)
#define assert_qu_ne(a, b, ...) assert_cmp(unsigned long long, \
a, b, !=, ==, "qu", __VA_ARGS__)
#define assert_qu_lt(a, b, ...) assert_cmp(unsigned long long, \
a, b, <, >=, "qu", __VA_ARGS__)
#define assert_qu_le(a, b, ...) assert_cmp(unsigned long long, \
a, b, <=, >, "qu", __VA_ARGS__)
#define assert_qu_ge(a, b, ...) assert_cmp(unsigned long long, \
a, b, >=, <, "qu", __VA_ARGS__)
#define assert_qu_gt(a, b, ...) assert_cmp(unsigned long long, \
a, b, >, <=, "qu", __VA_ARGS__)
#define assert_jd_eq(a, b, ...) assert_cmp(intmax_t, a, b, ==, \
!=, "jd", __VA_ARGS__)
#define assert_jd_ne(a, b, ...) assert_cmp(intmax_t, a, b, !=, \
==, "jd", __VA_ARGS__)
#define assert_jd_lt(a, b, ...) assert_cmp(intmax_t, a, b, <, \
>=, "jd", __VA_ARGS__)
#define assert_jd_le(a, b, ...) assert_cmp(intmax_t, a, b, <=, \
>, "jd", __VA_ARGS__)
#define assert_jd_ge(a, b, ...) assert_cmp(intmax_t, a, b, >=, \
<, "jd", __VA_ARGS__)
#define assert_jd_gt(a, b, ...) assert_cmp(intmax_t, a, b, >, \
<=, "jd", __VA_ARGS__)
#define assert_ju_eq(a, b, ...) assert_cmp(uintmax_t, a, b, ==, \
!=, "ju", __VA_ARGS__)
#define assert_ju_ne(a, b, ...) assert_cmp(uintmax_t, a, b, !=, \
==, "ju", __VA_ARGS__)
#define assert_ju_lt(a, b, ...) assert_cmp(uintmax_t, a, b, <, \
>=, "ju", __VA_ARGS__)
#define assert_ju_le(a, b, ...) assert_cmp(uintmax_t, a, b, <=, \
>, "ju", __VA_ARGS__)
#define assert_ju_ge(a, b, ...) assert_cmp(uintmax_t, a, b, >=, \
<, "ju", __VA_ARGS__)
#define assert_ju_gt(a, b, ...) assert_cmp(uintmax_t, a, b, >, \
<=, "ju", __VA_ARGS__)
#define assert_zd_eq(a, b, ...) assert_cmp(ssize_t, a, b, ==, \
!=, "zd", __VA_ARGS__)
#define assert_zd_ne(a, b, ...) assert_cmp(ssize_t, a, b, !=, \
==, "zd", __VA_ARGS__)
#define assert_zd_lt(a, b, ...) assert_cmp(ssize_t, a, b, <, \
>=, "zd", __VA_ARGS__)
#define assert_zd_le(a, b, ...) assert_cmp(ssize_t, a, b, <=, \
>, "zd", __VA_ARGS__)
#define assert_zd_ge(a, b, ...) assert_cmp(ssize_t, a, b, >=, \
<, "zd", __VA_ARGS__)
#define assert_zd_gt(a, b, ...) assert_cmp(ssize_t, a, b, >, \
<=, "zd", __VA_ARGS__)
#define assert_zu_eq(a, b, ...) assert_cmp(size_t, a, b, ==, \
!=, "zu", __VA_ARGS__)
#define assert_zu_ne(a, b, ...) assert_cmp(size_t, a, b, !=, \
==, "zu", __VA_ARGS__)
#define assert_zu_lt(a, b, ...) assert_cmp(size_t, a, b, <, \
>=, "zu", __VA_ARGS__)
#define assert_zu_le(a, b, ...) assert_cmp(size_t, a, b, <=, \
>, "zu", __VA_ARGS__)
#define assert_zu_ge(a, b, ...) assert_cmp(size_t, a, b, >=, \
<, "zu", __VA_ARGS__)
#define assert_zu_gt(a, b, ...) assert_cmp(size_t, a, b, >, \
<=, "zu", __VA_ARGS__)
#define assert_d32_eq(a, b, ...) assert_cmp(int32_t, a, b, ==, \
!=, FMTd32, __VA_ARGS__)
#define assert_d32_ne(a, b, ...) assert_cmp(int32_t, a, b, !=, \
==, FMTd32, __VA_ARGS__)
#define assert_d32_lt(a, b, ...) assert_cmp(int32_t, a, b, <, \
>=, FMTd32, __VA_ARGS__)
#define assert_d32_le(a, b, ...) assert_cmp(int32_t, a, b, <=, \
>, FMTd32, __VA_ARGS__)
#define assert_d32_ge(a, b, ...) assert_cmp(int32_t, a, b, >=, \
<, FMTd32, __VA_ARGS__)
#define assert_d32_gt(a, b, ...) assert_cmp(int32_t, a, b, >, \
<=, FMTd32, __VA_ARGS__)
#define assert_u32_eq(a, b, ...) assert_cmp(uint32_t, a, b, ==, \
!=, FMTu32, __VA_ARGS__)
#define assert_u32_ne(a, b, ...) assert_cmp(uint32_t, a, b, !=, \
==, FMTu32, __VA_ARGS__)
#define assert_u32_lt(a, b, ...) assert_cmp(uint32_t, a, b, <, \
>=, FMTu32, __VA_ARGS__)
#define assert_u32_le(a, b, ...) assert_cmp(uint32_t, a, b, <=, \
>, FMTu32, __VA_ARGS__)
#define assert_u32_ge(a, b, ...) assert_cmp(uint32_t, a, b, >=, \
<, FMTu32, __VA_ARGS__)
#define assert_u32_gt(a, b, ...) assert_cmp(uint32_t, a, b, >, \
<=, FMTu32, __VA_ARGS__)
#define assert_d64_eq(a, b, ...) assert_cmp(int64_t, a, b, ==, \
!=, FMTd64, __VA_ARGS__)
#define assert_d64_ne(a, b, ...) assert_cmp(int64_t, a, b, !=, \
==, FMTd64, __VA_ARGS__)
#define assert_d64_lt(a, b, ...) assert_cmp(int64_t, a, b, <, \
>=, FMTd64, __VA_ARGS__)
#define assert_d64_le(a, b, ...) assert_cmp(int64_t, a, b, <=, \
>, FMTd64, __VA_ARGS__)
#define assert_d64_ge(a, b, ...) assert_cmp(int64_t, a, b, >=, \
<, FMTd64, __VA_ARGS__)
#define assert_d64_gt(a, b, ...) assert_cmp(int64_t, a, b, >, \
<=, FMTd64, __VA_ARGS__)
#define assert_u64_eq(a, b, ...) assert_cmp(uint64_t, a, b, ==, \
!=, FMTu64, __VA_ARGS__)
#define assert_u64_ne(a, b, ...) assert_cmp(uint64_t, a, b, !=, \
==, FMTu64, __VA_ARGS__)
#define assert_u64_lt(a, b, ...) assert_cmp(uint64_t, a, b, <, \
>=, FMTu64, __VA_ARGS__)
#define assert_u64_le(a, b, ...) assert_cmp(uint64_t, a, b, <=, \
>, FMTu64, __VA_ARGS__)
#define assert_u64_ge(a, b, ...) assert_cmp(uint64_t, a, b, >=, \
<, FMTu64, __VA_ARGS__)
#define assert_u64_gt(a, b, ...) assert_cmp(uint64_t, a, b, >, \
<=, FMTu64, __VA_ARGS__)
#define assert_b_eq(a, b, ...) do { \
bool a_ = (a); \
bool b_ = (b); \
if (!(a_ == b_)) { \
char prefix[ASSERT_BUFSIZE]; \
char message[ASSERT_BUFSIZE]; \
malloc_snprintf(prefix, sizeof(prefix), \
"%s:%s:%d: Failed assertion: " \
"(%s) == (%s) --> %s != %s: ", \
__func__, __FILE__, __LINE__, \
#a, #b, a_ ? "true" : "false", \
b_ ? "true" : "false"); \
malloc_snprintf(message, sizeof(message), __VA_ARGS__); \
p_test_fail(prefix, message); \
} \
} while (0)
#define assert_b_ne(a, b, ...) do { \
bool a_ = (a); \
bool b_ = (b); \
if (!(a_ != b_)) { \
char prefix[ASSERT_BUFSIZE]; \
char message[ASSERT_BUFSIZE]; \
malloc_snprintf(prefix, sizeof(prefix), \
"%s:%s:%d: Failed assertion: " \
"(%s) != (%s) --> %s == %s: ", \
__func__, __FILE__, __LINE__, \
#a, #b, a_ ? "true" : "false", \
b_ ? "true" : "false"); \
malloc_snprintf(message, sizeof(message), __VA_ARGS__); \
p_test_fail(prefix, message); \
} \
} while (0)
#define assert_true(a, ...) assert_b_eq(a, true, __VA_ARGS__)
#define assert_false(a, ...) assert_b_eq(a, false, __VA_ARGS__)
#define assert_str_eq(a, b, ...) do { \
if (strcmp((a), (b))) { \
char prefix[ASSERT_BUFSIZE]; \
char message[ASSERT_BUFSIZE]; \
malloc_snprintf(prefix, sizeof(prefix), \
"%s:%s:%d: Failed assertion: " \
"(%s) same as (%s) --> " \
"\"%s\" differs from \"%s\": ", \
__func__, __FILE__, __LINE__, #a, #b, a, b); \
malloc_snprintf(message, sizeof(message), __VA_ARGS__); \
p_test_fail(prefix, message); \
} \
} while (0)
#define assert_str_ne(a, b, ...) do { \
if (!strcmp((a), (b))) { \
char prefix[ASSERT_BUFSIZE]; \
char message[ASSERT_BUFSIZE]; \
malloc_snprintf(prefix, sizeof(prefix), \
"%s:%s:%d: Failed assertion: " \
"(%s) differs from (%s) --> " \
"\"%s\" same as \"%s\": ", \
__func__, __FILE__, __LINE__, #a, #b, a, b); \
malloc_snprintf(message, sizeof(message), __VA_ARGS__); \
p_test_fail(prefix, message); \
} \
} while (0)
#define assert_not_reached(...) do { \
char prefix[ASSERT_BUFSIZE]; \
char message[ASSERT_BUFSIZE]; \
malloc_snprintf(prefix, sizeof(prefix), \
"%s:%s:%d: Unreachable code reached: ", \
__func__, __FILE__, __LINE__); \
malloc_snprintf(message, sizeof(message), __VA_ARGS__); \
p_test_fail(prefix, message); \
} while (0)
/*
* If this enum changes, corresponding changes in test/test.sh.in are also
* necessary.
*/
typedef enum {
test_status_pass = 0,
test_status_skip = 1,
test_status_fail = 2,
test_status_count = 3
} test_status_t;
typedef void (test_t)(void);
#define TEST_BEGIN(f) \
static void \
f(void) \
{ \
p_test_init(#f);
#define TEST_END \
goto label_test_end; \
label_test_end: \
p_test_fini(); \
}
#define test(...) \
p_test(__VA_ARGS__, NULL)
#define test_no_malloc_init(...) \
p_test_no_malloc_init(__VA_ARGS__, NULL)
#define test_skip_if(e) do { \
if (e) { \
test_skip("%s:%s:%d: Test skipped: (%s)", \
__func__, __FILE__, __LINE__, #e); \
goto label_test_end; \
} \
} while (0)
void test_skip(const char *format, ...) JEMALLOC_FORMAT_PRINTF(1, 2);
void test_fail(const char *format, ...) JEMALLOC_FORMAT_PRINTF(1, 2);
/* For private use by macros. */
test_status_t p_test(test_t *t, ...);
test_status_t p_test_no_malloc_init(test_t *t, ...);
void p_test_init(const char *name);
void p_test_fini(void);
void p_test_fail(const char *prefix, const char *message);
| 13,310 | 38.853293 | 79 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/include/test/SFMT.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file SFMT.h
*
* @brief SIMD oriented Fast Mersenne Twister(SFMT) pseudorandom
* number generator
*
* @author Mutsuo Saito (Hiroshima University)
* @author Makoto Matsumoto (Hiroshima University)
*
* Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* The new BSD License is applied to this software.
* see LICENSE.txt
*
* @note We assume that your system has inttypes.h. If your system
* doesn't have inttypes.h, you have to typedef uint32_t and uint64_t,
* and you have to define PRIu64 and PRIx64 in this file as follows:
* @verbatim
typedef unsigned int uint32_t
typedef unsigned long long uint64_t
#define PRIu64 "llu"
#define PRIx64 "llx"
@endverbatim
* uint32_t must be exactly 32-bit unsigned integer type (no more, no
* less), and uint64_t must be exactly 64-bit unsigned integer type.
* PRIu64 and PRIx64 are used for printf function to print 64-bit
* unsigned int and 64-bit unsigned int in hexadecimal format.
*/
#ifndef SFMT_H
#define SFMT_H
typedef struct sfmt_s sfmt_t;
uint32_t gen_rand32(sfmt_t *ctx);
uint32_t gen_rand32_range(sfmt_t *ctx, uint32_t limit);
uint64_t gen_rand64(sfmt_t *ctx);
uint64_t gen_rand64_range(sfmt_t *ctx, uint64_t limit);
void fill_array32(sfmt_t *ctx, uint32_t *array, int size);
void fill_array64(sfmt_t *ctx, uint64_t *array, int size);
sfmt_t *init_gen_rand(uint32_t seed);
sfmt_t *init_by_array(uint32_t *init_key, int key_length);
void fini_gen_rand(sfmt_t *ctx);
const char *get_idstring(void);
int get_min_array_size32(void);
int get_min_array_size64(void);
#ifndef JEMALLOC_ENABLE_INLINE
double to_real1(uint32_t v);
double genrand_real1(sfmt_t *ctx);
double to_real2(uint32_t v);
double genrand_real2(sfmt_t *ctx);
double to_real3(uint32_t v);
double genrand_real3(sfmt_t *ctx);
double to_res53(uint64_t v);
double to_res53_mix(uint32_t x, uint32_t y);
double genrand_res53(sfmt_t *ctx);
double genrand_res53_mix(sfmt_t *ctx);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(SFMT_C_))
/* These real versions are due to Isaku Wada */
/** generates a random number on [0,1]-real-interval */
JEMALLOC_INLINE double to_real1(uint32_t v)
{
return v * (1.0/4294967295.0);
/* divided by 2^32-1 */
}
/** generates a random number on [0,1]-real-interval */
JEMALLOC_INLINE double genrand_real1(sfmt_t *ctx)
{
return to_real1(gen_rand32(ctx));
}
/** generates a random number on [0,1)-real-interval */
JEMALLOC_INLINE double to_real2(uint32_t v)
{
return v * (1.0/4294967296.0);
/* divided by 2^32 */
}
/** generates a random number on [0,1)-real-interval */
JEMALLOC_INLINE double genrand_real2(sfmt_t *ctx)
{
return to_real2(gen_rand32(ctx));
}
/** generates a random number on (0,1)-real-interval */
JEMALLOC_INLINE double to_real3(uint32_t v)
{
return (((double)v) + 0.5)*(1.0/4294967296.0);
/* divided by 2^32 */
}
/** generates a random number on (0,1)-real-interval */
JEMALLOC_INLINE double genrand_real3(sfmt_t *ctx)
{
return to_real3(gen_rand32(ctx));
}
/** These real versions are due to Isaku Wada */
/** generates a random number on [0,1) with 53-bit resolution*/
JEMALLOC_INLINE double to_res53(uint64_t v)
{
return v * (1.0/18446744073709551616.0L);
}
/** generates a random number on [0,1) with 53-bit resolution from two
* 32 bit integers */
JEMALLOC_INLINE double to_res53_mix(uint32_t x, uint32_t y)
{
return to_res53(x | ((uint64_t)y << 32));
}
/** generates a random number on [0,1) with 53-bit resolution
*/
JEMALLOC_INLINE double genrand_res53(sfmt_t *ctx)
{
return to_res53(gen_rand64(ctx));
}
/** generates a random number on [0,1) with 53-bit resolution
using 32bit integer.
*/
JEMALLOC_INLINE double genrand_res53_mix(sfmt_t *ctx)
{
uint32_t x, y;
x = gen_rand32(ctx);
y = gen_rand32(ctx);
return to_res53_mix(x, y);
}
#endif
#endif
| 5,805 | 32.755814 | 79 | h |
null | NearPMSW-main/nearpm/checkpointing/redis-NDP-chekpoint/deps/jemalloc/test/include/test/SFMT-params44497.h | /*
* This file derives from SFMT 1.3.3
* (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was
* released under the terms of the following license:
*
* Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Hiroshima University nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_PARAMS44497_H
#define SFMT_PARAMS44497_H
#define POS1 330
#define SL1 5
#define SL2 3
#define SR1 9
#define SR2 3
#define MSK1 0xeffffffbU
#define MSK2 0xdfbebfffU
#define MSK3 0xbfbf7befU
#define MSK4 0x9ffd7bffU
#define PARITY1 0x00000001U
#define PARITY2 0x00000000U
#define PARITY3 0xa3ac4000U
#define PARITY4 0xecc1327aU
/* PARAMETERS FOR ALTIVEC */
#if defined(__APPLE__) /* For OSX */
#define ALTI_SL1 (vector unsigned int)(SL1, SL1, SL1, SL1)
#define ALTI_SR1 (vector unsigned int)(SR1, SR1, SR1, SR1)
#define ALTI_MSK (vector unsigned int)(MSK1, MSK2, MSK3, MSK4)
#define ALTI_MSK64 \
(vector unsigned int)(MSK2, MSK1, MSK4, MSK3)
#define ALTI_SL2_PERM \
(vector unsigned char)(3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10)
#define ALTI_SL2_PERM64 \
(vector unsigned char)(3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2)
#define ALTI_SR2_PERM \
(vector unsigned char)(5,6,7,0,9,10,11,4,13,14,15,8,19,19,19,12)
#define ALTI_SR2_PERM64 \
(vector unsigned char)(13,14,15,0,1,2,3,4,19,19,19,8,9,10,11,12)
#else /* For OTHER OSs(Linux?) */
#define ALTI_SL1 {SL1, SL1, SL1, SL1}
#define ALTI_SR1 {SR1, SR1, SR1, SR1}
#define ALTI_MSK {MSK1, MSK2, MSK3, MSK4}
#define ALTI_MSK64 {MSK2, MSK1, MSK4, MSK3}
#define ALTI_SL2_PERM {3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10}
#define ALTI_SL2_PERM64 {3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2}
#define ALTI_SR2_PERM {5,6,7,0,9,10,11,4,13,14,15,8,19,19,19,12}
#define ALTI_SR2_PERM64 {13,14,15,0,1,2,3,4,19,19,19,8,9,10,11,12}
#endif /* For OSX */
#define IDSTR "SFMT-44497:330-5-3-9-3:effffffb-dfbebfff-bfbf7bef-9ffd7bff"
#endif /* SFMT_PARAMS44497_H */
| 3,566 | 42.5 | 79 | h |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.