repo
stringlengths 1
152
⌀ | file
stringlengths 14
221
| code
stringlengths 501
25k
| file_length
int64 501
25k
| avg_line_length
float64 20
99.5
| max_line_length
int64 21
134
| extension_type
stringclasses 2
values |
---|---|---|---|---|---|---|
openssl | openssl-master/crypto/bn/bn_shift.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <assert.h>
#include "internal/cryptlib.h"
#include "bn_local.h"
int BN_lshift1(BIGNUM *r, const BIGNUM *a)
{
register BN_ULONG *ap, *rp, t, c;
int i;
bn_check_top(r);
bn_check_top(a);
if (r != a) {
r->neg = a->neg;
if (bn_wexpand(r, a->top + 1) == NULL)
return 0;
r->top = a->top;
} else {
if (bn_wexpand(r, a->top + 1) == NULL)
return 0;
}
ap = a->d;
rp = r->d;
c = 0;
for (i = 0; i < a->top; i++) {
t = *(ap++);
*(rp++) = ((t << 1) | c) & BN_MASK2;
c = t >> (BN_BITS2 - 1);
}
*rp = c;
r->top += c;
bn_check_top(r);
return 1;
}
int BN_rshift1(BIGNUM *r, const BIGNUM *a)
{
BN_ULONG *ap, *rp, t, c;
int i;
bn_check_top(r);
bn_check_top(a);
if (BN_is_zero(a)) {
BN_zero(r);
return 1;
}
i = a->top;
ap = a->d;
if (a != r) {
if (bn_wexpand(r, i) == NULL)
return 0;
r->neg = a->neg;
}
rp = r->d;
r->top = i;
t = ap[--i];
rp[i] = t >> 1;
c = t << (BN_BITS2 - 1);
r->top -= (t == 1);
while (i > 0) {
t = ap[--i];
rp[i] = ((t >> 1) & BN_MASK2) | c;
c = t << (BN_BITS2 - 1);
}
if (!r->top)
r->neg = 0; /* don't allow negative zero */
bn_check_top(r);
return 1;
}
int BN_lshift(BIGNUM *r, const BIGNUM *a, int n)
{
int ret;
if (n < 0) {
ERR_raise(ERR_LIB_BN, BN_R_INVALID_SHIFT);
return 0;
}
ret = bn_lshift_fixed_top(r, a, n);
bn_correct_top(r);
bn_check_top(r);
return ret;
}
/*
* In respect to shift factor the execution time is invariant of
* |n % BN_BITS2|, but not |n / BN_BITS2|. Or in other words pre-condition
* for constant-time-ness is |n < BN_BITS2| or |n / BN_BITS2| being
* non-secret.
*/
int bn_lshift_fixed_top(BIGNUM *r, const BIGNUM *a, int n)
{
int i, nw;
unsigned int lb, rb;
BN_ULONG *t, *f;
BN_ULONG l, m, rmask = 0;
assert(n >= 0);
bn_check_top(r);
bn_check_top(a);
nw = n / BN_BITS2;
if (bn_wexpand(r, a->top + nw + 1) == NULL)
return 0;
if (a->top != 0) {
lb = (unsigned int)n % BN_BITS2;
rb = BN_BITS2 - lb;
rb %= BN_BITS2; /* say no to undefined behaviour */
rmask = (BN_ULONG)0 - rb; /* rmask = 0 - (rb != 0) */
rmask |= rmask >> 8;
f = &(a->d[0]);
t = &(r->d[nw]);
l = f[a->top - 1];
t[a->top] = (l >> rb) & rmask;
for (i = a->top - 1; i > 0; i--) {
m = l << lb;
l = f[i - 1];
t[i] = (m | ((l >> rb) & rmask)) & BN_MASK2;
}
t[0] = (l << lb) & BN_MASK2;
} else {
/* shouldn't happen, but formally required */
r->d[nw] = 0;
}
if (nw != 0)
memset(r->d, 0, sizeof(*t) * nw);
r->neg = a->neg;
r->top = a->top + nw + 1;
r->flags |= BN_FLG_FIXED_TOP;
return 1;
}
int BN_rshift(BIGNUM *r, const BIGNUM *a, int n)
{
int ret = 0;
if (n < 0) {
ERR_raise(ERR_LIB_BN, BN_R_INVALID_SHIFT);
return 0;
}
ret = bn_rshift_fixed_top(r, a, n);
bn_correct_top(r);
bn_check_top(r);
return ret;
}
/*
* In respect to shift factor the execution time is invariant of
* |n % BN_BITS2|, but not |n / BN_BITS2|. Or in other words pre-condition
* for constant-time-ness for sufficiently[!] zero-padded inputs is
* |n < BN_BITS2| or |n / BN_BITS2| being non-secret.
*/
int bn_rshift_fixed_top(BIGNUM *r, const BIGNUM *a, int n)
{
int i, top, nw;
unsigned int lb, rb;
BN_ULONG *t, *f;
BN_ULONG l, m, mask;
bn_check_top(r);
bn_check_top(a);
assert(n >= 0);
nw = n / BN_BITS2;
if (nw >= a->top) {
/* shouldn't happen, but formally required */
BN_zero(r);
return 1;
}
rb = (unsigned int)n % BN_BITS2;
lb = BN_BITS2 - rb;
lb %= BN_BITS2; /* say no to undefined behaviour */
mask = (BN_ULONG)0 - lb; /* mask = 0 - (lb != 0) */
mask |= mask >> 8;
top = a->top - nw;
if (r != a && bn_wexpand(r, top) == NULL)
return 0;
t = &(r->d[0]);
f = &(a->d[nw]);
l = f[0];
for (i = 0; i < top - 1; i++) {
m = f[i + 1];
t[i] = (l >> rb) | ((m << lb) & mask);
l = m;
}
t[i] = l >> rb;
r->neg = a->neg;
r->top = top;
r->flags |= BN_FLG_FIXED_TOP;
return 1;
}
| 4,826 | 21.24424 | 74 | c |
openssl | openssl-master/crypto/bn/bn_sparc.c | /*
* Copyright 2005-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdlib.h>
#include <openssl/bn.h>
#include "internal/cryptlib.h"
#include "crypto/sparc_arch.h"
#include "bn_local.h" /* for definition of bn_mul_mont */
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
const BN_ULONG *np, const BN_ULONG *n0, int num)
{
int bn_mul_mont_vis3(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
const BN_ULONG *np, const BN_ULONG *n0, int num);
int bn_mul_mont_fpu(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
const BN_ULONG *np, const BN_ULONG *n0, int num);
int bn_mul_mont_int(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
const BN_ULONG *np, const BN_ULONG *n0, int num);
if (!(num & 1) && num >= 6) {
if ((num & 15) == 0 && num <= 64 &&
(OPENSSL_sparcv9cap_P[1] & (CFR_MONTMUL | CFR_MONTSQR)) ==
(CFR_MONTMUL | CFR_MONTSQR)) {
typedef int (*bn_mul_mont_f) (BN_ULONG *rp, const BN_ULONG *ap,
const BN_ULONG *bp,
const BN_ULONG *np,
const BN_ULONG *n0);
int bn_mul_mont_t4_8(BN_ULONG *rp, const BN_ULONG *ap,
const BN_ULONG *bp, const BN_ULONG *np,
const BN_ULONG *n0);
int bn_mul_mont_t4_16(BN_ULONG *rp, const BN_ULONG *ap,
const BN_ULONG *bp, const BN_ULONG *np,
const BN_ULONG *n0);
int bn_mul_mont_t4_24(BN_ULONG *rp, const BN_ULONG *ap,
const BN_ULONG *bp, const BN_ULONG *np,
const BN_ULONG *n0);
int bn_mul_mont_t4_32(BN_ULONG *rp, const BN_ULONG *ap,
const BN_ULONG *bp, const BN_ULONG *np,
const BN_ULONG *n0);
static const bn_mul_mont_f funcs[4] = {
bn_mul_mont_t4_8, bn_mul_mont_t4_16,
bn_mul_mont_t4_24, bn_mul_mont_t4_32
};
bn_mul_mont_f worker = funcs[num / 16 - 1];
if ((*worker) (rp, ap, bp, np, n0))
return 1;
/* retry once and fall back */
if ((*worker) (rp, ap, bp, np, n0))
return 1;
return bn_mul_mont_vis3(rp, ap, bp, np, n0, num);
}
if ((OPENSSL_sparcv9cap_P[0] & SPARCV9_VIS3))
return bn_mul_mont_vis3(rp, ap, bp, np, n0, num);
else if (num >= 8 &&
/*
* bn_mul_mont_fpu doesn't use FMADD, we just use the
* flag to detect when FPU path is preferable in cases
* when current heuristics is unreliable. [it works
* out because FMADD-capable processors where FPU
* code path is undesirable are also VIS3-capable and
* VIS3 code path takes precedence.]
*/
( (OPENSSL_sparcv9cap_P[0] & SPARCV9_FMADD) ||
(OPENSSL_sparcv9cap_P[0] &
(SPARCV9_PREFER_FPU | SPARCV9_VIS1)) ==
(SPARCV9_PREFER_FPU | SPARCV9_VIS1) ))
return bn_mul_mont_fpu(rp, ap, bp, np, n0, num);
}
return bn_mul_mont_int(rp, ap, bp, np, n0, num);
}
| 3,774 | 47.397436 | 78 | c |
openssl | openssl-master/crypto/bn/bn_sqr.c | /*
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "internal/cryptlib.h"
#include "bn_local.h"
/* r must not be a */
/*
* I've just gone over this and it is now %20 faster on x86 - eay - 27 Jun 96
*/
int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
{
int ret = bn_sqr_fixed_top(r, a, ctx);
bn_correct_top(r);
bn_check_top(r);
return ret;
}
int bn_sqr_fixed_top(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
{
int max, al;
int ret = 0;
BIGNUM *tmp, *rr;
bn_check_top(a);
al = a->top;
if (al <= 0) {
r->top = 0;
r->neg = 0;
return 1;
}
BN_CTX_start(ctx);
rr = (a != r) ? r : BN_CTX_get(ctx);
tmp = BN_CTX_get(ctx);
if (rr == NULL || tmp == NULL)
goto err;
max = 2 * al; /* Non-zero (from above) */
if (bn_wexpand(rr, max) == NULL)
goto err;
if (al == 4) {
#ifndef BN_SQR_COMBA
BN_ULONG t[8];
bn_sqr_normal(rr->d, a->d, 4, t);
#else
bn_sqr_comba4(rr->d, a->d);
#endif
} else if (al == 8) {
#ifndef BN_SQR_COMBA
BN_ULONG t[16];
bn_sqr_normal(rr->d, a->d, 8, t);
#else
bn_sqr_comba8(rr->d, a->d);
#endif
} else {
#if defined(BN_RECURSION)
if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) {
BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2];
bn_sqr_normal(rr->d, a->d, al, t);
} else {
int j, k;
j = BN_num_bits_word((BN_ULONG)al);
j = 1 << (j - 1);
k = j + j;
if (al == j) {
if (bn_wexpand(tmp, k * 2) == NULL)
goto err;
bn_sqr_recursive(rr->d, a->d, al, tmp->d);
} else {
if (bn_wexpand(tmp, max) == NULL)
goto err;
bn_sqr_normal(rr->d, a->d, al, tmp->d);
}
}
#else
if (bn_wexpand(tmp, max) == NULL)
goto err;
bn_sqr_normal(rr->d, a->d, al, tmp->d);
#endif
}
rr->neg = 0;
rr->top = max;
rr->flags |= BN_FLG_FIXED_TOP;
if (r != rr && BN_copy(r, rr) == NULL)
goto err;
ret = 1;
err:
bn_check_top(rr);
bn_check_top(tmp);
BN_CTX_end(ctx);
return ret;
}
/* tmp must have 2*n words */
void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp)
{
int i, j, max;
const BN_ULONG *ap;
BN_ULONG *rp;
max = n * 2;
ap = a;
rp = r;
rp[0] = rp[max - 1] = 0;
rp++;
j = n;
if (--j > 0) {
ap++;
rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
rp += 2;
}
for (i = n - 2; i > 0; i--) {
j--;
ap++;
rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]);
rp += 2;
}
bn_add_words(r, r, r, max);
/* There will not be a carry */
bn_sqr_words(tmp, a, n);
bn_add_words(r, r, tmp, max);
}
#ifdef BN_RECURSION
/*-
* r is 2*n words in size,
* a and b are both n words in size. (There's not actually a 'b' here ...)
* n must be a power of 2.
* We multiply and return the result.
* t must be 2*n words in size
* We calculate
* a[0]*b[0]
* a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
* a[1]*b[1]
*/
void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t)
{
int n = n2 / 2;
int zero, c1;
BN_ULONG ln, lo, *p;
if (n2 == 4) {
# ifndef BN_SQR_COMBA
bn_sqr_normal(r, a, 4, t);
# else
bn_sqr_comba4(r, a);
# endif
return;
} else if (n2 == 8) {
# ifndef BN_SQR_COMBA
bn_sqr_normal(r, a, 8, t);
# else
bn_sqr_comba8(r, a);
# endif
return;
}
if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) {
bn_sqr_normal(r, a, n2, t);
return;
}
/* r=(a[0]-a[1])*(a[1]-a[0]) */
c1 = bn_cmp_words(a, &(a[n]), n);
zero = 0;
if (c1 > 0)
bn_sub_words(t, a, &(a[n]), n);
else if (c1 < 0)
bn_sub_words(t, &(a[n]), a, n);
else
zero = 1;
/* The result will always be negative unless it is zero */
p = &(t[n2 * 2]);
if (!zero)
bn_sqr_recursive(&(t[n2]), t, n, p);
else
memset(&t[n2], 0, sizeof(*t) * n2);
bn_sqr_recursive(r, a, n, p);
bn_sqr_recursive(&(r[n2]), &(a[n]), n, p);
/*-
* t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero
* r[10] holds (a[0]*b[0])
* r[32] holds (b[1]*b[1])
*/
c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
/* t[32] is negative */
c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
/*-
* t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1])
* r[10] holds (a[0]*a[0])
* r[32] holds (a[1]*a[1])
* c1 holds the carry bits
*/
c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
if (c1) {
p = &(r[n + n2]);
lo = *p;
ln = (lo + c1) & BN_MASK2;
*p = ln;
/*
* The overflow will stop before we over write words we should not
* overwrite
*/
if (ln < (BN_ULONG)c1) {
do {
p++;
lo = *p;
ln = (lo + 1) & BN_MASK2;
*p = ln;
} while (ln == 0);
}
}
}
#endif
| 5,505 | 21.941667 | 77 | c |
openssl | openssl-master/crypto/bn/bn_sqrt.c | /*
* Copyright 2000-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "internal/cryptlib.h"
#include "bn_local.h"
BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
/*
* Returns 'ret' such that ret^2 == a (mod p), using the Tonelli/Shanks
* algorithm (cf. Henri Cohen, "A Course in Algebraic Computational Number
* Theory", algorithm 1.5.1). 'p' must be prime, otherwise an error or
* an incorrect "result" will be returned.
*/
{
BIGNUM *ret = in;
int err = 1;
int r;
BIGNUM *A, *b, *q, *t, *x, *y;
int e, i, j;
int used_ctx = 0;
if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
if (BN_abs_is_word(p, 2)) {
if (ret == NULL)
ret = BN_new();
if (ret == NULL)
goto end;
if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
if (ret != in)
BN_free(ret);
return NULL;
}
bn_check_top(ret);
return ret;
}
ERR_raise(ERR_LIB_BN, BN_R_P_IS_NOT_PRIME);
return NULL;
}
if (BN_is_zero(a) || BN_is_one(a)) {
if (ret == NULL)
ret = BN_new();
if (ret == NULL)
goto end;
if (!BN_set_word(ret, BN_is_one(a))) {
if (ret != in)
BN_free(ret);
return NULL;
}
bn_check_top(ret);
return ret;
}
BN_CTX_start(ctx);
used_ctx = 1;
A = BN_CTX_get(ctx);
b = BN_CTX_get(ctx);
q = BN_CTX_get(ctx);
t = BN_CTX_get(ctx);
x = BN_CTX_get(ctx);
y = BN_CTX_get(ctx);
if (y == NULL)
goto end;
if (ret == NULL)
ret = BN_new();
if (ret == NULL)
goto end;
/* A = a mod p */
if (!BN_nnmod(A, a, p, ctx))
goto end;
/* now write |p| - 1 as 2^e*q where q is odd */
e = 1;
while (!BN_is_bit_set(p, e))
e++;
/* we'll set q later (if needed) */
if (e == 1) {
/*-
* The easy case: (|p|-1)/2 is odd, so 2 has an inverse
* modulo (|p|-1)/2, and square roots can be computed
* directly by modular exponentiation.
* We have
* 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2),
* so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1.
*/
if (!BN_rshift(q, p, 2))
goto end;
q->neg = 0;
if (!BN_add_word(q, 1))
goto end;
if (!BN_mod_exp(ret, A, q, p, ctx))
goto end;
err = 0;
goto vrfy;
}
if (e == 2) {
/*-
* |p| == 5 (mod 8)
*
* In this case 2 is always a non-square since
* Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime.
* So if a really is a square, then 2*a is a non-square.
* Thus for
* b := (2*a)^((|p|-5)/8),
* i := (2*a)*b^2
* we have
* i^2 = (2*a)^((1 + (|p|-5)/4)*2)
* = (2*a)^((p-1)/2)
* = -1;
* so if we set
* x := a*b*(i-1),
* then
* x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
* = a^2 * b^2 * (-2*i)
* = a*(-i)*(2*a*b^2)
* = a*(-i)*i
* = a.
*
* (This is due to A.O.L. Atkin,
* Subject: Square Roots and Cognate Matters modulo p=8n+5.
* URL: https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind9211&L=NMBRTHRY&P=4026
* November 1992.)
*/
/* t := 2*a */
if (!BN_mod_lshift1_quick(t, A, p))
goto end;
/* b := (2*a)^((|p|-5)/8) */
if (!BN_rshift(q, p, 3))
goto end;
q->neg = 0;
if (!BN_mod_exp(b, t, q, p, ctx))
goto end;
/* y := b^2 */
if (!BN_mod_sqr(y, b, p, ctx))
goto end;
/* t := (2*a)*b^2 - 1 */
if (!BN_mod_mul(t, t, y, p, ctx))
goto end;
if (!BN_sub_word(t, 1))
goto end;
/* x = a*b*t */
if (!BN_mod_mul(x, A, b, p, ctx))
goto end;
if (!BN_mod_mul(x, x, t, p, ctx))
goto end;
if (!BN_copy(ret, x))
goto end;
err = 0;
goto vrfy;
}
/*
* e > 2, so we really have to use the Tonelli/Shanks algorithm. First,
* find some y that is not a square.
*/
if (!BN_copy(q, p))
goto end; /* use 'q' as temp */
q->neg = 0;
i = 2;
do {
/*
* For efficiency, try small numbers first; if this fails, try random
* numbers.
*/
if (i < 22) {
if (!BN_set_word(y, i))
goto end;
} else {
if (!BN_priv_rand_ex(y, BN_num_bits(p), 0, 0, 0, ctx))
goto end;
if (BN_ucmp(y, p) >= 0) {
if (!(p->neg ? BN_add : BN_sub) (y, y, p))
goto end;
}
/* now 0 <= y < |p| */
if (BN_is_zero(y))
if (!BN_set_word(y, i))
goto end;
}
r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
if (r < -1)
goto end;
if (r == 0) {
/* m divides p */
ERR_raise(ERR_LIB_BN, BN_R_P_IS_NOT_PRIME);
goto end;
}
}
while (r == 1 && ++i < 82);
if (r != -1) {
/*
* Many rounds and still no non-square -- this is more likely a bug
* than just bad luck. Even if p is not prime, we should have found
* some y such that r == -1.
*/
ERR_raise(ERR_LIB_BN, BN_R_TOO_MANY_ITERATIONS);
goto end;
}
/* Here's our actual 'q': */
if (!BN_rshift(q, q, e))
goto end;
/*
* Now that we have some non-square, we can find an element of order 2^e
* by computing its q'th power.
*/
if (!BN_mod_exp(y, y, q, p, ctx))
goto end;
if (BN_is_one(y)) {
ERR_raise(ERR_LIB_BN, BN_R_P_IS_NOT_PRIME);
goto end;
}
/*-
* Now we know that (if p is indeed prime) there is an integer
* k, 0 <= k < 2^e, such that
*
* a^q * y^k == 1 (mod p).
*
* As a^q is a square and y is not, k must be even.
* q+1 is even, too, so there is an element
*
* X := a^((q+1)/2) * y^(k/2),
*
* and it satisfies
*
* X^2 = a^q * a * y^k
* = a,
*
* so it is the square root that we are looking for.
*/
/* t := (q-1)/2 (note that q is odd) */
if (!BN_rshift1(t, q))
goto end;
/* x := a^((q-1)/2) */
if (BN_is_zero(t)) { /* special case: p = 2^e + 1 */
if (!BN_nnmod(t, A, p, ctx))
goto end;
if (BN_is_zero(t)) {
/* special case: a == 0 (mod p) */
BN_zero(ret);
err = 0;
goto end;
} else if (!BN_one(x))
goto end;
} else {
if (!BN_mod_exp(x, A, t, p, ctx))
goto end;
if (BN_is_zero(x)) {
/* special case: a == 0 (mod p) */
BN_zero(ret);
err = 0;
goto end;
}
}
/* b := a*x^2 (= a^q) */
if (!BN_mod_sqr(b, x, p, ctx))
goto end;
if (!BN_mod_mul(b, b, A, p, ctx))
goto end;
/* x := a*x (= a^((q+1)/2)) */
if (!BN_mod_mul(x, x, A, p, ctx))
goto end;
while (1) {
/*-
* Now b is a^q * y^k for some even k (0 <= k < 2^E
* where E refers to the original value of e, which we
* don't keep in a variable), and x is a^((q+1)/2) * y^(k/2).
*
* We have a*b = x^2,
* y^2^(e-1) = -1,
* b^2^(e-1) = 1.
*/
if (BN_is_one(b)) {
if (!BN_copy(ret, x))
goto end;
err = 0;
goto vrfy;
}
/* Find the smallest i, 0 < i < e, such that b^(2^i) = 1. */
for (i = 1; i < e; i++) {
if (i == 1) {
if (!BN_mod_sqr(t, b, p, ctx))
goto end;
} else {
if (!BN_mod_mul(t, t, t, p, ctx))
goto end;
}
if (BN_is_one(t))
break;
}
/* If not found, a is not a square or p is not prime. */
if (i >= e) {
ERR_raise(ERR_LIB_BN, BN_R_NOT_A_SQUARE);
goto end;
}
/* t := y^2^(e - i - 1) */
if (!BN_copy(t, y))
goto end;
for (j = e - i - 1; j > 0; j--) {
if (!BN_mod_sqr(t, t, p, ctx))
goto end;
}
if (!BN_mod_mul(y, t, t, p, ctx))
goto end;
if (!BN_mod_mul(x, x, t, p, ctx))
goto end;
if (!BN_mod_mul(b, b, y, p, ctx))
goto end;
e = i;
}
vrfy:
if (!err) {
/*
* verify the result -- the input might have been not a square (test
* added in 0.9.8)
*/
if (!BN_mod_sqr(x, ret, p, ctx))
err = 1;
if (!err && 0 != BN_cmp(x, A)) {
ERR_raise(ERR_LIB_BN, BN_R_NOT_A_SQUARE);
err = 1;
}
}
end:
if (err) {
if (ret != in)
BN_clear_free(ret);
ret = NULL;
}
if (used_ctx)
BN_CTX_end(ctx);
bn_check_top(ret);
return ret;
}
| 9,803 | 25.569106 | 86 | c |
openssl | openssl-master/crypto/bn/bn_srp.c | /*
* Copyright 2014-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "bn_local.h"
#include "internal/nelem.h"
#ifndef OPENSSL_NO_SRP
#include <openssl/srp.h>
#include "crypto/bn_srp.h"
# if (BN_BYTES == 8)
# if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32__)
# define bn_pack4(a1,a2,a3,a4) ((a1##UI64<<48)|(a2##UI64<<32)|(a3##UI64<<16)|a4##UI64)
# elif defined(__arch64__)
# define bn_pack4(a1,a2,a3,a4) ((a1##UL<<48)|(a2##UL<<32)|(a3##UL<<16)|a4##UL)
# else
# define bn_pack4(a1,a2,a3,a4) ((a1##ULL<<48)|(a2##ULL<<32)|(a3##ULL<<16)|a4##ULL)
# endif
# elif (BN_BYTES == 4)
# define bn_pack4(a1,a2,a3,a4) ((a3##UL<<16)|a4##UL), ((a1##UL<<16)|a2##UL)
# else
# error "unsupported BN_BYTES"
# endif
static const BN_ULONG bn_group_1024_value[] = {
bn_pack4(0x9FC6, 0x1D2F, 0xC0EB, 0x06E3),
bn_pack4(0xFD51, 0x38FE, 0x8376, 0x435B),
bn_pack4(0x2FD4, 0xCBF4, 0x976E, 0xAA9A),
bn_pack4(0x68ED, 0xBC3C, 0x0572, 0x6CC0),
bn_pack4(0xC529, 0xF566, 0x660E, 0x57EC),
bn_pack4(0x8255, 0x9B29, 0x7BCF, 0x1885),
bn_pack4(0xCE8E, 0xF4AD, 0x69B1, 0x5D49),
bn_pack4(0x5DC7, 0xD7B4, 0x6154, 0xD6B6),
bn_pack4(0x8E49, 0x5C1D, 0x6089, 0xDAD1),
bn_pack4(0xE0D5, 0xD8E2, 0x50B9, 0x8BE4),
bn_pack4(0x383B, 0x4813, 0xD692, 0xC6E0),
bn_pack4(0xD674, 0xDF74, 0x96EA, 0x81D3),
bn_pack4(0x9EA2, 0x314C, 0x9C25, 0x6576),
bn_pack4(0x6072, 0x6187, 0x75FF, 0x3C0B),
bn_pack4(0x9C33, 0xF80A, 0xFA8F, 0xC5E8),
bn_pack4(0xEEAF, 0x0AB9, 0xADB3, 0x8DD6)
};
const BIGNUM ossl_bn_group_1024 = {
(BN_ULONG *)bn_group_1024_value,
OSSL_NELEM(bn_group_1024_value),
OSSL_NELEM(bn_group_1024_value),
0,
BN_FLG_STATIC_DATA
};
static const BN_ULONG bn_group_1536_value[] = {
bn_pack4(0xCF76, 0xE3FE, 0xD135, 0xF9BB),
bn_pack4(0x1518, 0x0F93, 0x499A, 0x234D),
bn_pack4(0x8CE7, 0xA28C, 0x2442, 0xC6F3),
bn_pack4(0x5A02, 0x1FFF, 0x5E91, 0x479E),
bn_pack4(0x7F8A, 0x2FE9, 0xB8B5, 0x292E),
bn_pack4(0x837C, 0x264A, 0xE3A9, 0xBEB8),
bn_pack4(0xE442, 0x734A, 0xF7CC, 0xB7AE),
bn_pack4(0x6577, 0x2E43, 0x7D6C, 0x7F8C),
bn_pack4(0xDB2F, 0xD53D, 0x24B7, 0xC486),
bn_pack4(0x6EDF, 0x0195, 0x3934, 0x9627),
bn_pack4(0x158B, 0xFD3E, 0x2B9C, 0x8CF5),
bn_pack4(0x764E, 0x3F4B, 0x53DD, 0x9DA1),
bn_pack4(0x4754, 0x8381, 0xDBC5, 0xB1FC),
bn_pack4(0x9B60, 0x9E0B, 0xE3BA, 0xB63D),
bn_pack4(0x8134, 0xB1C8, 0xB979, 0x8914),
bn_pack4(0xDF02, 0x8A7C, 0xEC67, 0xF0D0),
bn_pack4(0x80B6, 0x55BB, 0x9A22, 0xE8DC),
bn_pack4(0x1558, 0x903B, 0xA0D0, 0xF843),
bn_pack4(0x51C6, 0xA94B, 0xE460, 0x7A29),
bn_pack4(0x5F4F, 0x5F55, 0x6E27, 0xCBDE),
bn_pack4(0xBEEE, 0xA961, 0x4B19, 0xCC4D),
bn_pack4(0xDBA5, 0x1DF4, 0x99AC, 0x4C80),
bn_pack4(0xB1F1, 0x2A86, 0x17A4, 0x7BBB),
bn_pack4(0x9DEF, 0x3CAF, 0xB939, 0x277A)
};
const BIGNUM ossl_bn_group_1536 = {
(BN_ULONG *)bn_group_1536_value,
OSSL_NELEM(bn_group_1536_value),
OSSL_NELEM(bn_group_1536_value),
0,
BN_FLG_STATIC_DATA
};
static const BN_ULONG bn_group_2048_value[] = {
bn_pack4(0x0FA7, 0x111F, 0x9E4A, 0xFF73),
bn_pack4(0x9B65, 0xE372, 0xFCD6, 0x8EF2),
bn_pack4(0x35DE, 0x236D, 0x525F, 0x5475),
bn_pack4(0x94B5, 0xC803, 0xD89F, 0x7AE4),
bn_pack4(0x71AE, 0x35F8, 0xE9DB, 0xFBB6),
bn_pack4(0x2A56, 0x98F3, 0xA8D0, 0xC382),
bn_pack4(0x9CCC, 0x041C, 0x7BC3, 0x08D8),
bn_pack4(0xAF87, 0x4E73, 0x03CE, 0x5329),
bn_pack4(0x6160, 0x2790, 0x04E5, 0x7AE6),
bn_pack4(0x032C, 0xFBDB, 0xF52F, 0xB378),
bn_pack4(0x5EA7, 0x7A27, 0x75D2, 0xECFA),
bn_pack4(0x5445, 0x23B5, 0x24B0, 0xD57D),
bn_pack4(0x5B9D, 0x32E6, 0x88F8, 0x7748),
bn_pack4(0xF1D2, 0xB907, 0x8717, 0x461A),
bn_pack4(0x76BD, 0x207A, 0x436C, 0x6481),
bn_pack4(0xCA97, 0xB43A, 0x23FB, 0x8016),
bn_pack4(0x1D28, 0x1E44, 0x6B14, 0x773B),
bn_pack4(0x7359, 0xD041, 0xD5C3, 0x3EA7),
bn_pack4(0xA80D, 0x740A, 0xDBF4, 0xFF74),
bn_pack4(0x55F9, 0x7993, 0xEC97, 0x5EEA),
bn_pack4(0x2918, 0xA996, 0x2F0B, 0x93B8),
bn_pack4(0x661A, 0x05FB, 0xD5FA, 0xAAE8),
bn_pack4(0xCF60, 0x9517, 0x9A16, 0x3AB3),
bn_pack4(0xE808, 0x3969, 0xEDB7, 0x67B0),
bn_pack4(0xCD7F, 0x48A9, 0xDA04, 0xFD50),
bn_pack4(0xD523, 0x12AB, 0x4B03, 0x310D),
bn_pack4(0x8193, 0xE075, 0x7767, 0xA13D),
bn_pack4(0xA373, 0x29CB, 0xB4A0, 0x99ED),
bn_pack4(0xFC31, 0x9294, 0x3DB5, 0x6050),
bn_pack4(0xAF72, 0xB665, 0x1987, 0xEE07),
bn_pack4(0xF166, 0xDE5E, 0x1389, 0x582F),
bn_pack4(0xAC6B, 0xDB41, 0x324A, 0x9A9B)
};
const BIGNUM ossl_bn_group_2048 = {
(BN_ULONG *)bn_group_2048_value,
OSSL_NELEM(bn_group_2048_value),
OSSL_NELEM(bn_group_2048_value),
0,
BN_FLG_STATIC_DATA
};
static const BN_ULONG bn_group_3072_value[] = {
bn_pack4(0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF),
bn_pack4(0x4B82, 0xD120, 0xA93A, 0xD2CA),
bn_pack4(0x43DB, 0x5BFC, 0xE0FD, 0x108E),
bn_pack4(0x08E2, 0x4FA0, 0x74E5, 0xAB31),
bn_pack4(0x7709, 0x88C0, 0xBAD9, 0x46E2),
bn_pack4(0xBBE1, 0x1757, 0x7A61, 0x5D6C),
bn_pack4(0x521F, 0x2B18, 0x177B, 0x200C),
bn_pack4(0xD876, 0x0273, 0x3EC8, 0x6A64),
bn_pack4(0xF12F, 0xFA06, 0xD98A, 0x0864),
bn_pack4(0xCEE3, 0xD226, 0x1AD2, 0xEE6B),
bn_pack4(0x1E8C, 0x94E0, 0x4A25, 0x619D),
bn_pack4(0xABF5, 0xAE8C, 0xDB09, 0x33D7),
bn_pack4(0xB397, 0x0F85, 0xA6E1, 0xE4C7),
bn_pack4(0x8AEA, 0x7157, 0x5D06, 0x0C7D),
bn_pack4(0xECFB, 0x8504, 0x58DB, 0xEF0A),
bn_pack4(0xA855, 0x21AB, 0xDF1C, 0xBA64),
bn_pack4(0xAD33, 0x170D, 0x0450, 0x7A33),
bn_pack4(0x1572, 0x8E5A, 0x8AAA, 0xC42D),
bn_pack4(0x15D2, 0x2618, 0x98FA, 0x0510),
bn_pack4(0x3995, 0x497C, 0xEA95, 0x6AE5),
bn_pack4(0xDE2B, 0xCBF6, 0x9558, 0x1718),
bn_pack4(0xB5C5, 0x5DF0, 0x6F4C, 0x52C9),
bn_pack4(0x9B27, 0x83A2, 0xEC07, 0xA28F),
bn_pack4(0xE39E, 0x772C, 0x180E, 0x8603),
bn_pack4(0x3290, 0x5E46, 0x2E36, 0xCE3B),
bn_pack4(0xF174, 0x6C08, 0xCA18, 0x217C),
bn_pack4(0x670C, 0x354E, 0x4ABC, 0x9804),
bn_pack4(0x9ED5, 0x2907, 0x7096, 0x966D),
bn_pack4(0x1C62, 0xF356, 0x2085, 0x52BB),
bn_pack4(0x8365, 0x5D23, 0xDCA3, 0xAD96),
bn_pack4(0x6916, 0x3FA8, 0xFD24, 0xCF5F),
bn_pack4(0x98DA, 0x4836, 0x1C55, 0xD39A),
bn_pack4(0xC200, 0x7CB8, 0xA163, 0xBF05),
bn_pack4(0x4928, 0x6651, 0xECE4, 0x5B3D),
bn_pack4(0xAE9F, 0x2411, 0x7C4B, 0x1FE6),
bn_pack4(0xEE38, 0x6BFB, 0x5A89, 0x9FA5),
bn_pack4(0x0BFF, 0x5CB6, 0xF406, 0xB7ED),
bn_pack4(0xF44C, 0x42E9, 0xA637, 0xED6B),
bn_pack4(0xE485, 0xB576, 0x625E, 0x7EC6),
bn_pack4(0x4FE1, 0x356D, 0x6D51, 0xC245),
bn_pack4(0x302B, 0x0A6D, 0xF25F, 0x1437),
bn_pack4(0xEF95, 0x19B3, 0xCD3A, 0x431B),
bn_pack4(0x514A, 0x0879, 0x8E34, 0x04DD),
bn_pack4(0x020B, 0xBEA6, 0x3B13, 0x9B22),
bn_pack4(0x2902, 0x4E08, 0x8A67, 0xCC74),
bn_pack4(0xC4C6, 0x628B, 0x80DC, 0x1CD1),
bn_pack4(0xC90F, 0xDAA2, 0x2168, 0xC234),
bn_pack4(0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF)
};
const BIGNUM ossl_bn_group_3072 = {
(BN_ULONG *)bn_group_3072_value,
OSSL_NELEM(bn_group_3072_value),
OSSL_NELEM(bn_group_3072_value),
0,
BN_FLG_STATIC_DATA
};
static const BN_ULONG bn_group_4096_value[] = {
bn_pack4(0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF),
bn_pack4(0x4DF4, 0x35C9, 0x3406, 0x3199),
bn_pack4(0x86FF, 0xB7DC, 0x90A6, 0xC08F),
bn_pack4(0x93B4, 0xEA98, 0x8D8F, 0xDDC1),
bn_pack4(0xD006, 0x9127, 0xD5B0, 0x5AA9),
bn_pack4(0xB81B, 0xDD76, 0x2170, 0x481C),
bn_pack4(0x1F61, 0x2970, 0xCEE2, 0xD7AF),
bn_pack4(0x233B, 0xA186, 0x515B, 0xE7ED),
bn_pack4(0x99B2, 0x964F, 0xA090, 0xC3A2),
bn_pack4(0x287C, 0x5947, 0x4E6B, 0xC05D),
bn_pack4(0x2E8E, 0xFC14, 0x1FBE, 0xCAA6),
bn_pack4(0xDBBB, 0xC2DB, 0x04DE, 0x8EF9),
bn_pack4(0x2583, 0xE9CA, 0x2AD4, 0x4CE8),
bn_pack4(0x1A94, 0x6834, 0xB615, 0x0BDA),
bn_pack4(0x99C3, 0x2718, 0x6AF4, 0xE23C),
bn_pack4(0x8871, 0x9A10, 0xBDBA, 0x5B26),
bn_pack4(0x1A72, 0x3C12, 0xA787, 0xE6D7),
bn_pack4(0x4B82, 0xD120, 0xA921, 0x0801),
bn_pack4(0x43DB, 0x5BFC, 0xE0FD, 0x108E),
bn_pack4(0x08E2, 0x4FA0, 0x74E5, 0xAB31),
bn_pack4(0x7709, 0x88C0, 0xBAD9, 0x46E2),
bn_pack4(0xBBE1, 0x1757, 0x7A61, 0x5D6C),
bn_pack4(0x521F, 0x2B18, 0x177B, 0x200C),
bn_pack4(0xD876, 0x0273, 0x3EC8, 0x6A64),
bn_pack4(0xF12F, 0xFA06, 0xD98A, 0x0864),
bn_pack4(0xCEE3, 0xD226, 0x1AD2, 0xEE6B),
bn_pack4(0x1E8C, 0x94E0, 0x4A25, 0x619D),
bn_pack4(0xABF5, 0xAE8C, 0xDB09, 0x33D7),
bn_pack4(0xB397, 0x0F85, 0xA6E1, 0xE4C7),
bn_pack4(0x8AEA, 0x7157, 0x5D06, 0x0C7D),
bn_pack4(0xECFB, 0x8504, 0x58DB, 0xEF0A),
bn_pack4(0xA855, 0x21AB, 0xDF1C, 0xBA64),
bn_pack4(0xAD33, 0x170D, 0x0450, 0x7A33),
bn_pack4(0x1572, 0x8E5A, 0x8AAA, 0xC42D),
bn_pack4(0x15D2, 0x2618, 0x98FA, 0x0510),
bn_pack4(0x3995, 0x497C, 0xEA95, 0x6AE5),
bn_pack4(0xDE2B, 0xCBF6, 0x9558, 0x1718),
bn_pack4(0xB5C5, 0x5DF0, 0x6F4C, 0x52C9),
bn_pack4(0x9B27, 0x83A2, 0xEC07, 0xA28F),
bn_pack4(0xE39E, 0x772C, 0x180E, 0x8603),
bn_pack4(0x3290, 0x5E46, 0x2E36, 0xCE3B),
bn_pack4(0xF174, 0x6C08, 0xCA18, 0x217C),
bn_pack4(0x670C, 0x354E, 0x4ABC, 0x9804),
bn_pack4(0x9ED5, 0x2907, 0x7096, 0x966D),
bn_pack4(0x1C62, 0xF356, 0x2085, 0x52BB),
bn_pack4(0x8365, 0x5D23, 0xDCA3, 0xAD96),
bn_pack4(0x6916, 0x3FA8, 0xFD24, 0xCF5F),
bn_pack4(0x98DA, 0x4836, 0x1C55, 0xD39A),
bn_pack4(0xC200, 0x7CB8, 0xA163, 0xBF05),
bn_pack4(0x4928, 0x6651, 0xECE4, 0x5B3D),
bn_pack4(0xAE9F, 0x2411, 0x7C4B, 0x1FE6),
bn_pack4(0xEE38, 0x6BFB, 0x5A89, 0x9FA5),
bn_pack4(0x0BFF, 0x5CB6, 0xF406, 0xB7ED),
bn_pack4(0xF44C, 0x42E9, 0xA637, 0xED6B),
bn_pack4(0xE485, 0xB576, 0x625E, 0x7EC6),
bn_pack4(0x4FE1, 0x356D, 0x6D51, 0xC245),
bn_pack4(0x302B, 0x0A6D, 0xF25F, 0x1437),
bn_pack4(0xEF95, 0x19B3, 0xCD3A, 0x431B),
bn_pack4(0x514A, 0x0879, 0x8E34, 0x04DD),
bn_pack4(0x020B, 0xBEA6, 0x3B13, 0x9B22),
bn_pack4(0x2902, 0x4E08, 0x8A67, 0xCC74),
bn_pack4(0xC4C6, 0x628B, 0x80DC, 0x1CD1),
bn_pack4(0xC90F, 0xDAA2, 0x2168, 0xC234),
bn_pack4(0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF)
};
const BIGNUM ossl_bn_group_4096 = {
(BN_ULONG *)bn_group_4096_value,
OSSL_NELEM(bn_group_4096_value),
OSSL_NELEM(bn_group_4096_value),
0,
BN_FLG_STATIC_DATA
};
static const BN_ULONG bn_group_6144_value[] = {
bn_pack4(0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF),
bn_pack4(0xE694, 0xF91E, 0x6DCC, 0x4024),
bn_pack4(0x12BF, 0x2D5B, 0x0B74, 0x74D6),
bn_pack4(0x043E, 0x8F66, 0x3F48, 0x60EE),
bn_pack4(0x387F, 0xE8D7, 0x6E3C, 0x0468),
bn_pack4(0xDA56, 0xC9EC, 0x2EF2, 0x9632),
bn_pack4(0xEB19, 0xCCB1, 0xA313, 0xD55C),
bn_pack4(0xF550, 0xAA3D, 0x8A1F, 0xBFF0),
bn_pack4(0x06A1, 0xD58B, 0xB7C5, 0xDA76),
bn_pack4(0xA797, 0x15EE, 0xF29B, 0xE328),
bn_pack4(0x14CC, 0x5ED2, 0x0F80, 0x37E0),
bn_pack4(0xCC8F, 0x6D7E, 0xBF48, 0xE1D8),
bn_pack4(0x4BD4, 0x07B2, 0x2B41, 0x54AA),
bn_pack4(0x0F1D, 0x45B7, 0xFF58, 0x5AC5),
bn_pack4(0x23A9, 0x7A7E, 0x36CC, 0x88BE),
bn_pack4(0x59E7, 0xC97F, 0xBEC7, 0xE8F3),
bn_pack4(0xB5A8, 0x4031, 0x900B, 0x1C9E),
bn_pack4(0xD55E, 0x702F, 0x4698, 0x0C82),
bn_pack4(0xF482, 0xD7CE, 0x6E74, 0xFEF6),
bn_pack4(0xF032, 0xEA15, 0xD172, 0x1D03),
bn_pack4(0x5983, 0xCA01, 0xC64B, 0x92EC),
bn_pack4(0x6FB8, 0xF401, 0x378C, 0xD2BF),
bn_pack4(0x3320, 0x5151, 0x2BD7, 0xAF42),
bn_pack4(0xDB7F, 0x1447, 0xE6CC, 0x254B),
bn_pack4(0x44CE, 0x6CBA, 0xCED4, 0xBB1B),
bn_pack4(0xDA3E, 0xDBEB, 0xCF9B, 0x14ED),
bn_pack4(0x1797, 0x27B0, 0x865A, 0x8918),
bn_pack4(0xB06A, 0x53ED, 0x9027, 0xD831),
bn_pack4(0xE5DB, 0x382F, 0x4130, 0x01AE),
bn_pack4(0xF8FF, 0x9406, 0xAD9E, 0x530E),
bn_pack4(0xC975, 0x1E76, 0x3DBA, 0x37BD),
bn_pack4(0xC1D4, 0xDCB2, 0x6026, 0x46DE),
bn_pack4(0x36C3, 0xFAB4, 0xD27C, 0x7026),
bn_pack4(0x4DF4, 0x35C9, 0x3402, 0x8492),
bn_pack4(0x86FF, 0xB7DC, 0x90A6, 0xC08F),
bn_pack4(0x93B4, 0xEA98, 0x8D8F, 0xDDC1),
bn_pack4(0xD006, 0x9127, 0xD5B0, 0x5AA9),
bn_pack4(0xB81B, 0xDD76, 0x2170, 0x481C),
bn_pack4(0x1F61, 0x2970, 0xCEE2, 0xD7AF),
bn_pack4(0x233B, 0xA186, 0x515B, 0xE7ED),
bn_pack4(0x99B2, 0x964F, 0xA090, 0xC3A2),
bn_pack4(0x287C, 0x5947, 0x4E6B, 0xC05D),
bn_pack4(0x2E8E, 0xFC14, 0x1FBE, 0xCAA6),
bn_pack4(0xDBBB, 0xC2DB, 0x04DE, 0x8EF9),
bn_pack4(0x2583, 0xE9CA, 0x2AD4, 0x4CE8),
bn_pack4(0x1A94, 0x6834, 0xB615, 0x0BDA),
bn_pack4(0x99C3, 0x2718, 0x6AF4, 0xE23C),
bn_pack4(0x8871, 0x9A10, 0xBDBA, 0x5B26),
bn_pack4(0x1A72, 0x3C12, 0xA787, 0xE6D7),
bn_pack4(0x4B82, 0xD120, 0xA921, 0x0801),
bn_pack4(0x43DB, 0x5BFC, 0xE0FD, 0x108E),
bn_pack4(0x08E2, 0x4FA0, 0x74E5, 0xAB31),
bn_pack4(0x7709, 0x88C0, 0xBAD9, 0x46E2),
bn_pack4(0xBBE1, 0x1757, 0x7A61, 0x5D6C),
bn_pack4(0x521F, 0x2B18, 0x177B, 0x200C),
bn_pack4(0xD876, 0x0273, 0x3EC8, 0x6A64),
bn_pack4(0xF12F, 0xFA06, 0xD98A, 0x0864),
bn_pack4(0xCEE3, 0xD226, 0x1AD2, 0xEE6B),
bn_pack4(0x1E8C, 0x94E0, 0x4A25, 0x619D),
bn_pack4(0xABF5, 0xAE8C, 0xDB09, 0x33D7),
bn_pack4(0xB397, 0x0F85, 0xA6E1, 0xE4C7),
bn_pack4(0x8AEA, 0x7157, 0x5D06, 0x0C7D),
bn_pack4(0xECFB, 0x8504, 0x58DB, 0xEF0A),
bn_pack4(0xA855, 0x21AB, 0xDF1C, 0xBA64),
bn_pack4(0xAD33, 0x170D, 0x0450, 0x7A33),
bn_pack4(0x1572, 0x8E5A, 0x8AAA, 0xC42D),
bn_pack4(0x15D2, 0x2618, 0x98FA, 0x0510),
bn_pack4(0x3995, 0x497C, 0xEA95, 0x6AE5),
bn_pack4(0xDE2B, 0xCBF6, 0x9558, 0x1718),
bn_pack4(0xB5C5, 0x5DF0, 0x6F4C, 0x52C9),
bn_pack4(0x9B27, 0x83A2, 0xEC07, 0xA28F),
bn_pack4(0xE39E, 0x772C, 0x180E, 0x8603),
bn_pack4(0x3290, 0x5E46, 0x2E36, 0xCE3B),
bn_pack4(0xF174, 0x6C08, 0xCA18, 0x217C),
bn_pack4(0x670C, 0x354E, 0x4ABC, 0x9804),
bn_pack4(0x9ED5, 0x2907, 0x7096, 0x966D),
bn_pack4(0x1C62, 0xF356, 0x2085, 0x52BB),
bn_pack4(0x8365, 0x5D23, 0xDCA3, 0xAD96),
bn_pack4(0x6916, 0x3FA8, 0xFD24, 0xCF5F),
bn_pack4(0x98DA, 0x4836, 0x1C55, 0xD39A),
bn_pack4(0xC200, 0x7CB8, 0xA163, 0xBF05),
bn_pack4(0x4928, 0x6651, 0xECE4, 0x5B3D),
bn_pack4(0xAE9F, 0x2411, 0x7C4B, 0x1FE6),
bn_pack4(0xEE38, 0x6BFB, 0x5A89, 0x9FA5),
bn_pack4(0x0BFF, 0x5CB6, 0xF406, 0xB7ED),
bn_pack4(0xF44C, 0x42E9, 0xA637, 0xED6B),
bn_pack4(0xE485, 0xB576, 0x625E, 0x7EC6),
bn_pack4(0x4FE1, 0x356D, 0x6D51, 0xC245),
bn_pack4(0x302B, 0x0A6D, 0xF25F, 0x1437),
bn_pack4(0xEF95, 0x19B3, 0xCD3A, 0x431B),
bn_pack4(0x514A, 0x0879, 0x8E34, 0x04DD),
bn_pack4(0x020B, 0xBEA6, 0x3B13, 0x9B22),
bn_pack4(0x2902, 0x4E08, 0x8A67, 0xCC74),
bn_pack4(0xC4C6, 0x628B, 0x80DC, 0x1CD1),
bn_pack4(0xC90F, 0xDAA2, 0x2168, 0xC234),
bn_pack4(0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF)
};
const BIGNUM ossl_bn_group_6144 = {
(BN_ULONG *)bn_group_6144_value,
OSSL_NELEM(bn_group_6144_value),
OSSL_NELEM(bn_group_6144_value),
0,
BN_FLG_STATIC_DATA
};
static const BN_ULONG bn_group_8192_value[] = {
bn_pack4(0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF),
bn_pack4(0x60C9, 0x80DD, 0x98ED, 0xD3DF),
bn_pack4(0xC81F, 0x56E8, 0x80B9, 0x6E71),
bn_pack4(0x9E30, 0x50E2, 0x7656, 0x94DF),
bn_pack4(0x9558, 0xE447, 0x5677, 0xE9AA),
bn_pack4(0xC919, 0x0DA6, 0xFC02, 0x6E47),
bn_pack4(0x889A, 0x002E, 0xD5EE, 0x382B),
bn_pack4(0x4009, 0x438B, 0x481C, 0x6CD7),
bn_pack4(0x3590, 0x46F4, 0xEB87, 0x9F92),
bn_pack4(0xFAF3, 0x6BC3, 0x1ECF, 0xA268),
bn_pack4(0xB1D5, 0x10BD, 0x7EE7, 0x4D73),
bn_pack4(0xF9AB, 0x4819, 0x5DED, 0x7EA1),
bn_pack4(0x64F3, 0x1CC5, 0x0846, 0x851D),
bn_pack4(0x4597, 0xE899, 0xA025, 0x5DC1),
bn_pack4(0xDF31, 0x0EE0, 0x74AB, 0x6A36),
bn_pack4(0x6D2A, 0x13F8, 0x3F44, 0xF82D),
bn_pack4(0x062B, 0x3CF5, 0xB3A2, 0x78A6),
bn_pack4(0x7968, 0x3303, 0xED5B, 0xDD3A),
bn_pack4(0xFA9D, 0x4B7F, 0xA2C0, 0x87E8),
bn_pack4(0x4BCB, 0xC886, 0x2F83, 0x85DD),
bn_pack4(0x3473, 0xFC64, 0x6CEA, 0x306B),
bn_pack4(0x13EB, 0x57A8, 0x1A23, 0xF0C7),
bn_pack4(0x2222, 0x2E04, 0xA403, 0x7C07),
bn_pack4(0xE3FD, 0xB8BE, 0xFC84, 0x8AD9),
bn_pack4(0x238F, 0x16CB, 0xE39D, 0x652D),
bn_pack4(0x3423, 0xB474, 0x2BF1, 0xC978),
bn_pack4(0x3AAB, 0x639C, 0x5AE4, 0xF568),
bn_pack4(0x2576, 0xF693, 0x6BA4, 0x2466),
bn_pack4(0x741F, 0xA7BF, 0x8AFC, 0x47ED),
bn_pack4(0x3BC8, 0x32B6, 0x8D9D, 0xD300),
bn_pack4(0xD8BE, 0xC4D0, 0x73B9, 0x31BA),
bn_pack4(0x3877, 0x7CB6, 0xA932, 0xDF8C),
bn_pack4(0x74A3, 0x926F, 0x12FE, 0xE5E4),
bn_pack4(0xE694, 0xF91E, 0x6DBE, 0x1159),
bn_pack4(0x12BF, 0x2D5B, 0x0B74, 0x74D6),
bn_pack4(0x043E, 0x8F66, 0x3F48, 0x60EE),
bn_pack4(0x387F, 0xE8D7, 0x6E3C, 0x0468),
bn_pack4(0xDA56, 0xC9EC, 0x2EF2, 0x9632),
bn_pack4(0xEB19, 0xCCB1, 0xA313, 0xD55C),
bn_pack4(0xF550, 0xAA3D, 0x8A1F, 0xBFF0),
bn_pack4(0x06A1, 0xD58B, 0xB7C5, 0xDA76),
bn_pack4(0xA797, 0x15EE, 0xF29B, 0xE328),
bn_pack4(0x14CC, 0x5ED2, 0x0F80, 0x37E0),
bn_pack4(0xCC8F, 0x6D7E, 0xBF48, 0xE1D8),
bn_pack4(0x4BD4, 0x07B2, 0x2B41, 0x54AA),
bn_pack4(0x0F1D, 0x45B7, 0xFF58, 0x5AC5),
bn_pack4(0x23A9, 0x7A7E, 0x36CC, 0x88BE),
bn_pack4(0x59E7, 0xC97F, 0xBEC7, 0xE8F3),
bn_pack4(0xB5A8, 0x4031, 0x900B, 0x1C9E),
bn_pack4(0xD55E, 0x702F, 0x4698, 0x0C82),
bn_pack4(0xF482, 0xD7CE, 0x6E74, 0xFEF6),
bn_pack4(0xF032, 0xEA15, 0xD172, 0x1D03),
bn_pack4(0x5983, 0xCA01, 0xC64B, 0x92EC),
bn_pack4(0x6FB8, 0xF401, 0x378C, 0xD2BF),
bn_pack4(0x3320, 0x5151, 0x2BD7, 0xAF42),
bn_pack4(0xDB7F, 0x1447, 0xE6CC, 0x254B),
bn_pack4(0x44CE, 0x6CBA, 0xCED4, 0xBB1B),
bn_pack4(0xDA3E, 0xDBEB, 0xCF9B, 0x14ED),
bn_pack4(0x1797, 0x27B0, 0x865A, 0x8918),
bn_pack4(0xB06A, 0x53ED, 0x9027, 0xD831),
bn_pack4(0xE5DB, 0x382F, 0x4130, 0x01AE),
bn_pack4(0xF8FF, 0x9406, 0xAD9E, 0x530E),
bn_pack4(0xC975, 0x1E76, 0x3DBA, 0x37BD),
bn_pack4(0xC1D4, 0xDCB2, 0x6026, 0x46DE),
bn_pack4(0x36C3, 0xFAB4, 0xD27C, 0x7026),
bn_pack4(0x4DF4, 0x35C9, 0x3402, 0x8492),
bn_pack4(0x86FF, 0xB7DC, 0x90A6, 0xC08F),
bn_pack4(0x93B4, 0xEA98, 0x8D8F, 0xDDC1),
bn_pack4(0xD006, 0x9127, 0xD5B0, 0x5AA9),
bn_pack4(0xB81B, 0xDD76, 0x2170, 0x481C),
bn_pack4(0x1F61, 0x2970, 0xCEE2, 0xD7AF),
bn_pack4(0x233B, 0xA186, 0x515B, 0xE7ED),
bn_pack4(0x99B2, 0x964F, 0xA090, 0xC3A2),
bn_pack4(0x287C, 0x5947, 0x4E6B, 0xC05D),
bn_pack4(0x2E8E, 0xFC14, 0x1FBE, 0xCAA6),
bn_pack4(0xDBBB, 0xC2DB, 0x04DE, 0x8EF9),
bn_pack4(0x2583, 0xE9CA, 0x2AD4, 0x4CE8),
bn_pack4(0x1A94, 0x6834, 0xB615, 0x0BDA),
bn_pack4(0x99C3, 0x2718, 0x6AF4, 0xE23C),
bn_pack4(0x8871, 0x9A10, 0xBDBA, 0x5B26),
bn_pack4(0x1A72, 0x3C12, 0xA787, 0xE6D7),
bn_pack4(0x4B82, 0xD120, 0xA921, 0x0801),
bn_pack4(0x43DB, 0x5BFC, 0xE0FD, 0x108E),
bn_pack4(0x08E2, 0x4FA0, 0x74E5, 0xAB31),
bn_pack4(0x7709, 0x88C0, 0xBAD9, 0x46E2),
bn_pack4(0xBBE1, 0x1757, 0x7A61, 0x5D6C),
bn_pack4(0x521F, 0x2B18, 0x177B, 0x200C),
bn_pack4(0xD876, 0x0273, 0x3EC8, 0x6A64),
bn_pack4(0xF12F, 0xFA06, 0xD98A, 0x0864),
bn_pack4(0xCEE3, 0xD226, 0x1AD2, 0xEE6B),
bn_pack4(0x1E8C, 0x94E0, 0x4A25, 0x619D),
bn_pack4(0xABF5, 0xAE8C, 0xDB09, 0x33D7),
bn_pack4(0xB397, 0x0F85, 0xA6E1, 0xE4C7),
bn_pack4(0x8AEA, 0x7157, 0x5D06, 0x0C7D),
bn_pack4(0xECFB, 0x8504, 0x58DB, 0xEF0A),
bn_pack4(0xA855, 0x21AB, 0xDF1C, 0xBA64),
bn_pack4(0xAD33, 0x170D, 0x0450, 0x7A33),
bn_pack4(0x1572, 0x8E5A, 0x8AAA, 0xC42D),
bn_pack4(0x15D2, 0x2618, 0x98FA, 0x0510),
bn_pack4(0x3995, 0x497C, 0xEA95, 0x6AE5),
bn_pack4(0xDE2B, 0xCBF6, 0x9558, 0x1718),
bn_pack4(0xB5C5, 0x5DF0, 0x6F4C, 0x52C9),
bn_pack4(0x9B27, 0x83A2, 0xEC07, 0xA28F),
bn_pack4(0xE39E, 0x772C, 0x180E, 0x8603),
bn_pack4(0x3290, 0x5E46, 0x2E36, 0xCE3B),
bn_pack4(0xF174, 0x6C08, 0xCA18, 0x217C),
bn_pack4(0x670C, 0x354E, 0x4ABC, 0x9804),
bn_pack4(0x9ED5, 0x2907, 0x7096, 0x966D),
bn_pack4(0x1C62, 0xF356, 0x2085, 0x52BB),
bn_pack4(0x8365, 0x5D23, 0xDCA3, 0xAD96),
bn_pack4(0x6916, 0x3FA8, 0xFD24, 0xCF5F),
bn_pack4(0x98DA, 0x4836, 0x1C55, 0xD39A),
bn_pack4(0xC200, 0x7CB8, 0xA163, 0xBF05),
bn_pack4(0x4928, 0x6651, 0xECE4, 0x5B3D),
bn_pack4(0xAE9F, 0x2411, 0x7C4B, 0x1FE6),
bn_pack4(0xEE38, 0x6BFB, 0x5A89, 0x9FA5),
bn_pack4(0x0BFF, 0x5CB6, 0xF406, 0xB7ED),
bn_pack4(0xF44C, 0x42E9, 0xA637, 0xED6B),
bn_pack4(0xE485, 0xB576, 0x625E, 0x7EC6),
bn_pack4(0x4FE1, 0x356D, 0x6D51, 0xC245),
bn_pack4(0x302B, 0x0A6D, 0xF25F, 0x1437),
bn_pack4(0xEF95, 0x19B3, 0xCD3A, 0x431B),
bn_pack4(0x514A, 0x0879, 0x8E34, 0x04DD),
bn_pack4(0x020B, 0xBEA6, 0x3B13, 0x9B22),
bn_pack4(0x2902, 0x4E08, 0x8A67, 0xCC74),
bn_pack4(0xC4C6, 0x628B, 0x80DC, 0x1CD1),
bn_pack4(0xC90F, 0xDAA2, 0x2168, 0xC234),
bn_pack4(0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF)
};
const BIGNUM ossl_bn_group_8192 = {
(BN_ULONG *)bn_group_8192_value,
OSSL_NELEM(bn_group_8192_value),
OSSL_NELEM(bn_group_8192_value),
0,
BN_FLG_STATIC_DATA
};
static const BN_ULONG bn_generator_19_value[] = { 19 };
const BIGNUM ossl_bn_generator_19 = {
(BN_ULONG *)bn_generator_19_value,
1,
1,
0,
BN_FLG_STATIC_DATA
};
static const BN_ULONG bn_generator_5_value[] = { 5 };
const BIGNUM ossl_bn_generator_5 = {
(BN_ULONG *)bn_generator_5_value,
1,
1,
0,
BN_FLG_STATIC_DATA
};
static const BN_ULONG bn_generator_2_value[] = { 2 };
const BIGNUM ossl_bn_generator_2 = {
(BN_ULONG *)bn_generator_2_value,
1,
1,
0,
BN_FLG_STATIC_DATA
};
#endif
| 21,938 | 39.181319 | 88 | c |
openssl | openssl-master/crypto/bn/bn_word.c | /*
* Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "internal/cryptlib.h"
#include "bn_local.h"
BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w)
{
#ifndef BN_LLONG
BN_ULONG ret = 0;
#else
BN_ULLONG ret = 0;
#endif
int i;
if (w == 0)
return (BN_ULONG)-1;
#ifndef BN_LLONG
/*
* If |w| is too long and we don't have BN_ULLONG then we need to fall
* back to using BN_div_word
*/
if (w > ((BN_ULONG)1 << BN_BITS4)) {
BIGNUM *tmp = BN_dup(a);
if (tmp == NULL)
return (BN_ULONG)-1;
ret = BN_div_word(tmp, w);
BN_free(tmp);
return ret;
}
#endif
bn_check_top(a);
w &= BN_MASK2;
for (i = a->top - 1; i >= 0; i--) {
#ifndef BN_LLONG
/*
* We can assume here that | w <= ((BN_ULONG)1 << BN_BITS4) | and so
* | ret < ((BN_ULONG)1 << BN_BITS4) | and therefore the shifts here are
* safe and will not overflow
*/
ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w;
ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w;
#else
ret = (BN_ULLONG) (((ret << (BN_ULLONG) BN_BITS2) | a->d[i]) %
(BN_ULLONG) w);
#endif
}
return (BN_ULONG)ret;
}
BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w)
{
BN_ULONG ret = 0;
int i, j;
bn_check_top(a);
w &= BN_MASK2;
if (!w)
/* actually this an error (division by zero) */
return (BN_ULONG)-1;
if (a->top == 0)
return 0;
/* normalize input (so bn_div_words doesn't complain) */
j = BN_BITS2 - BN_num_bits_word(w);
w <<= j;
if (!BN_lshift(a, a, j))
return (BN_ULONG)-1;
for (i = a->top - 1; i >= 0; i--) {
BN_ULONG l, d;
l = a->d[i];
d = bn_div_words(ret, l, w);
ret = (l - ((d * w) & BN_MASK2)) & BN_MASK2;
a->d[i] = d;
}
if ((a->top > 0) && (a->d[a->top - 1] == 0))
a->top--;
ret >>= j;
if (!a->top)
a->neg = 0; /* don't allow negative zero */
bn_check_top(a);
return ret;
}
int BN_add_word(BIGNUM *a, BN_ULONG w)
{
BN_ULONG l;
int i;
bn_check_top(a);
w &= BN_MASK2;
/* degenerate case: w is zero */
if (!w)
return 1;
/* degenerate case: a is zero */
if (BN_is_zero(a))
return BN_set_word(a, w);
/* handle 'a' when negative */
if (a->neg) {
a->neg = 0;
i = BN_sub_word(a, w);
if (!BN_is_zero(a))
a->neg = !(a->neg);
return i;
}
for (i = 0; w != 0 && i < a->top; i++) {
a->d[i] = l = (a->d[i] + w) & BN_MASK2;
w = (w > l) ? 1 : 0;
}
if (w && i == a->top) {
if (bn_wexpand(a, a->top + 1) == NULL)
return 0;
a->top++;
a->d[i] = w;
}
bn_check_top(a);
return 1;
}
int BN_sub_word(BIGNUM *a, BN_ULONG w)
{
int i;
bn_check_top(a);
w &= BN_MASK2;
/* degenerate case: w is zero */
if (!w)
return 1;
/* degenerate case: a is zero */
if (BN_is_zero(a)) {
i = BN_set_word(a, w);
if (i != 0)
BN_set_negative(a, 1);
return i;
}
/* handle 'a' when negative */
if (a->neg) {
a->neg = 0;
i = BN_add_word(a, w);
a->neg = 1;
return i;
}
if ((a->top == 1) && (a->d[0] < w)) {
a->d[0] = w - a->d[0];
a->neg = 1;
return 1;
}
i = 0;
for (;;) {
if (a->d[i] >= w) {
a->d[i] -= w;
break;
} else {
a->d[i] = (a->d[i] - w) & BN_MASK2;
i++;
w = 1;
}
}
if ((a->d[i] == 0) && (i == (a->top - 1)))
a->top--;
bn_check_top(a);
return 1;
}
int BN_mul_word(BIGNUM *a, BN_ULONG w)
{
BN_ULONG ll;
bn_check_top(a);
w &= BN_MASK2;
if (a->top) {
if (w == 0)
BN_zero(a);
else {
ll = bn_mul_words(a->d, a->d, a->top, w);
if (ll) {
if (bn_wexpand(a, a->top + 1) == NULL)
return 0;
a->d[a->top++] = ll;
}
}
}
bn_check_top(a);
return 1;
}
| 4,512 | 21.341584 | 80 | c |
openssl | openssl-master/crypto/bn/bn_x931p.c | /*
* Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#define OPENSSL_SUPPRESS_DEPRECATED
#include <stdio.h>
#include <openssl/bn.h>
#include "bn_local.h"
/* X9.31 routines for prime derivation */
/*
* X9.31 prime derivation. This is used to generate the primes pi (p1, p2,
* q1, q2) from a parameter Xpi by checking successive odd integers.
*/
static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx,
BN_GENCB *cb)
{
int i = 0, is_prime;
if (!BN_copy(pi, Xpi))
return 0;
if (!BN_is_odd(pi) && !BN_add_word(pi, 1))
return 0;
for (;;) {
i++;
BN_GENCB_call(cb, 0, i);
/* NB 27 MR is specified in X9.31 */
is_prime = BN_check_prime(pi, ctx, cb);
if (is_prime < 0)
return 0;
if (is_prime)
break;
if (!BN_add_word(pi, 2))
return 0;
}
BN_GENCB_call(cb, 2, i);
return 1;
}
/*
* This is the main X9.31 prime derivation function. From parameters Xp1, Xp2
* and Xp derive the prime p. If the parameters p1 or p2 are not NULL they
* will be returned too: this is needed for testing.
*/
int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
const BIGNUM *Xp, const BIGNUM *Xp1,
const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx,
BN_GENCB *cb)
{
int ret = 0;
BIGNUM *t, *p1p2, *pm1;
/* Only even e supported */
if (!BN_is_odd(e))
return 0;
BN_CTX_start(ctx);
if (p1 == NULL)
p1 = BN_CTX_get(ctx);
if (p2 == NULL)
p2 = BN_CTX_get(ctx);
t = BN_CTX_get(ctx);
p1p2 = BN_CTX_get(ctx);
pm1 = BN_CTX_get(ctx);
if (pm1 == NULL)
goto err;
if (!bn_x931_derive_pi(p1, Xp1, ctx, cb))
goto err;
if (!bn_x931_derive_pi(p2, Xp2, ctx, cb))
goto err;
if (!BN_mul(p1p2, p1, p2, ctx))
goto err;
/* First set p to value of Rp */
if (!BN_mod_inverse(p, p2, p1, ctx))
goto err;
if (!BN_mul(p, p, p2, ctx))
goto err;
if (!BN_mod_inverse(t, p1, p2, ctx))
goto err;
if (!BN_mul(t, t, p1, ctx))
goto err;
if (!BN_sub(p, p, t))
goto err;
if (p->neg && !BN_add(p, p, p1p2))
goto err;
/* p now equals Rp */
if (!BN_mod_sub(p, p, Xp, p1p2, ctx))
goto err;
if (!BN_add(p, p, Xp))
goto err;
/* p now equals Yp0 */
for (;;) {
int i = 1;
BN_GENCB_call(cb, 0, i++);
if (!BN_copy(pm1, p))
goto err;
if (!BN_sub_word(pm1, 1))
goto err;
if (!BN_gcd(t, pm1, e, ctx))
goto err;
if (BN_is_one(t)) {
/*
* X9.31 specifies 8 MR and 1 Lucas test or any prime test
* offering similar or better guarantees 50 MR is considerably
* better.
*/
int r = BN_check_prime(p, ctx, cb);
if (r < 0)
goto err;
if (r)
break;
}
if (!BN_add(p, p, p1p2))
goto err;
}
BN_GENCB_call(cb, 3, 0);
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
/*
* Generate pair of parameters Xp, Xq for X9.31 prime generation. Note: nbits
* parameter is sum of number of bits in both.
*/
int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx)
{
BIGNUM *t;
int i;
/*
* Number of bits for each prime is of the form 512+128s for s = 0, 1,
* ...
*/
if ((nbits < 1024) || (nbits & 0xff))
return 0;
nbits >>= 1;
/*
* The random value Xp must be between sqrt(2) * 2^(nbits-1) and 2^nbits
* - 1. By setting the top two bits we ensure that the lower bound is
* exceeded.
*/
if (!BN_priv_rand_ex(Xp, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY, 0,
ctx))
return 0;
BN_CTX_start(ctx);
t = BN_CTX_get(ctx);
if (t == NULL)
goto err;
for (i = 0; i < 1000; i++) {
if (!BN_priv_rand_ex(Xq, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY, 0,
ctx))
goto err;
/* Check that |Xp - Xq| > 2^(nbits - 100) */
if (!BN_sub(t, Xp, Xq))
goto err;
if (BN_num_bits(t) > (nbits - 100))
break;
}
BN_CTX_end(ctx);
if (i < 1000)
return 1;
return 0;
err:
BN_CTX_end(ctx);
return 0;
}
/*
* Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1 and
* Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL the
* relevant parameter will be stored in it. Due to the fact that |Xp - Xq| >
* 2^(nbits - 100) must be satisfied Xp and Xq are generated using the
* previous function and supplied as input.
*/
int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
BIGNUM *Xp1, BIGNUM *Xp2,
const BIGNUM *Xp,
const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
{
int ret = 0;
BN_CTX_start(ctx);
if (Xp1 == NULL)
Xp1 = BN_CTX_get(ctx);
if (Xp2 == NULL)
Xp2 = BN_CTX_get(ctx);
if (Xp1 == NULL || Xp2 == NULL)
goto error;
if (!BN_priv_rand_ex(Xp1, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY, 0, ctx))
goto error;
if (!BN_priv_rand_ex(Xp2, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY, 0, ctx))
goto error;
if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb))
goto error;
ret = 1;
error:
BN_CTX_end(ctx);
return ret;
}
| 5,975 | 23 | 80 | c |
openssl | openssl-master/crypto/bn/rsaz_exp.c | /*
* Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2012, Intel Corporation. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*
* Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1)
* (1) Intel Corporation, Israel Development Center, Haifa, Israel
* (2) University of Haifa, Israel
*/
#include <openssl/opensslconf.h>
#include "rsaz_exp.h"
#ifndef RSAZ_ENABLED
NON_EMPTY_TRANSLATION_UNIT
#else
/*
* See crypto/bn/asm/rsaz-avx2.pl for further details.
*/
void rsaz_1024_norm2red_avx2(void *red, const void *norm);
void rsaz_1024_mul_avx2(void *ret, const void *a, const void *b,
const void *n, BN_ULONG k);
void rsaz_1024_sqr_avx2(void *ret, const void *a, const void *n, BN_ULONG k,
int cnt);
void rsaz_1024_scatter5_avx2(void *tbl, const void *val, int i);
void rsaz_1024_gather5_avx2(void *val, const void *tbl, int i);
void rsaz_1024_red2norm_avx2(void *norm, const void *red);
#if defined(__GNUC__)
# define ALIGN64 __attribute__((aligned(64)))
#elif defined(_MSC_VER)
# define ALIGN64 __declspec(align(64))
#elif defined(__SUNPRO_C)
# define ALIGN64
# pragma align 64(one,two80)
#else
/* not fatal, might hurt performance a little */
# define ALIGN64
#endif
ALIGN64 static const BN_ULONG one[40] = {
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
ALIGN64 static const BN_ULONG two80[40] = {
0, 0, 1 << 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
void RSAZ_1024_mod_exp_avx2(BN_ULONG result_norm[16],
const BN_ULONG base_norm[16],
const BN_ULONG exponent[16],
const BN_ULONG m_norm[16], const BN_ULONG RR[16],
BN_ULONG k0)
{
unsigned char storage[320 * 3 + 32 * 9 * 16 + 64]; /* 5.5KB */
unsigned char *p_str = storage + (64 - ((size_t)storage % 64));
unsigned char *a_inv, *m, *result;
unsigned char *table_s = p_str + 320 * 3;
unsigned char *R2 = table_s; /* borrow */
int index;
int wvalue;
BN_ULONG tmp[16];
if ((((size_t)p_str & 4095) + 320) >> 12) {
result = p_str;
a_inv = p_str + 320;
m = p_str + 320 * 2; /* should not cross page */
} else {
m = p_str; /* should not cross page */
result = p_str + 320;
a_inv = p_str + 320 * 2;
}
rsaz_1024_norm2red_avx2(m, m_norm);
rsaz_1024_norm2red_avx2(a_inv, base_norm);
rsaz_1024_norm2red_avx2(R2, RR);
rsaz_1024_mul_avx2(R2, R2, R2, m, k0);
rsaz_1024_mul_avx2(R2, R2, two80, m, k0);
/* table[0] = 1 */
rsaz_1024_mul_avx2(result, R2, one, m, k0);
/* table[1] = a_inv^1 */
rsaz_1024_mul_avx2(a_inv, a_inv, R2, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 0);
rsaz_1024_scatter5_avx2(table_s, a_inv, 1);
/* table[2] = a_inv^2 */
rsaz_1024_sqr_avx2(result, a_inv, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 2);
#if 0
/* this is almost 2x smaller and less than 1% slower */
for (index = 3; index < 32; index++) {
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, index);
}
#else
/* table[4] = a_inv^4 */
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 4);
/* table[8] = a_inv^8 */
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 8);
/* table[16] = a_inv^16 */
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 16);
/* table[17] = a_inv^17 */
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 17);
/* table[3] */
rsaz_1024_gather5_avx2(result, table_s, 2);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 3);
/* table[6] */
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 6);
/* table[12] */
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 12);
/* table[24] */
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 24);
/* table[25] */
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 25);
/* table[5] */
rsaz_1024_gather5_avx2(result, table_s, 4);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 5);
/* table[10] */
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 10);
/* table[20] */
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 20);
/* table[21] */
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 21);
/* table[7] */
rsaz_1024_gather5_avx2(result, table_s, 6);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 7);
/* table[14] */
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 14);
/* table[28] */
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 28);
/* table[29] */
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 29);
/* table[9] */
rsaz_1024_gather5_avx2(result, table_s, 8);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 9);
/* table[18] */
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 18);
/* table[19] */
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 19);
/* table[11] */
rsaz_1024_gather5_avx2(result, table_s, 10);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 11);
/* table[22] */
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 22);
/* table[23] */
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 23);
/* table[13] */
rsaz_1024_gather5_avx2(result, table_s, 12);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 13);
/* table[26] */
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 26);
/* table[27] */
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 27);
/* table[15] */
rsaz_1024_gather5_avx2(result, table_s, 14);
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 15);
/* table[30] */
rsaz_1024_sqr_avx2(result, result, m, k0, 1);
rsaz_1024_scatter5_avx2(table_s, result, 30);
/* table[31] */
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
rsaz_1024_scatter5_avx2(table_s, result, 31);
#endif
/* load first window */
p_str = (unsigned char *)exponent;
wvalue = p_str[127] >> 3;
rsaz_1024_gather5_avx2(result, table_s, wvalue);
index = 1014;
while (index > -1) { /* loop for the remaining 127 windows */
rsaz_1024_sqr_avx2(result, result, m, k0, 5);
wvalue = (p_str[(index / 8) + 1] << 8) | p_str[index / 8];
wvalue = (wvalue >> (index % 8)) & 31;
index -= 5;
rsaz_1024_gather5_avx2(a_inv, table_s, wvalue); /* borrow a_inv */
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
}
/* square four times */
rsaz_1024_sqr_avx2(result, result, m, k0, 4);
wvalue = p_str[0] & 15;
rsaz_1024_gather5_avx2(a_inv, table_s, wvalue); /* borrow a_inv */
rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
/* from Montgomery */
rsaz_1024_mul_avx2(result, result, one, m, k0);
rsaz_1024_red2norm_avx2(result_norm, result);
bn_reduce_once_in_place(result_norm, /*carry=*/0, m_norm, tmp, 16);
OPENSSL_cleanse(storage, sizeof(storage));
OPENSSL_cleanse(tmp, sizeof(tmp));
}
/*
* See crypto/bn/rsaz-x86_64.pl for further details.
*/
void rsaz_512_mul(void *ret, const void *a, const void *b, const void *n,
BN_ULONG k);
void rsaz_512_mul_scatter4(void *ret, const void *a, const void *n,
BN_ULONG k, const void *tbl, unsigned int power);
void rsaz_512_mul_gather4(void *ret, const void *a, const void *tbl,
const void *n, BN_ULONG k, unsigned int power);
void rsaz_512_mul_by_one(void *ret, const void *a, const void *n, BN_ULONG k);
void rsaz_512_sqr(void *ret, const void *a, const void *n, BN_ULONG k,
int cnt);
void rsaz_512_scatter4(void *tbl, const BN_ULONG *val, int power);
void rsaz_512_gather4(BN_ULONG *val, const void *tbl, int power);
void RSAZ_512_mod_exp(BN_ULONG result[8],
const BN_ULONG base[8], const BN_ULONG exponent[8],
const BN_ULONG m[8], BN_ULONG k0, const BN_ULONG RR[8])
{
unsigned char storage[16 * 8 * 8 + 64 * 2 + 64]; /* 1.2KB */
unsigned char *table = storage + (64 - ((size_t)storage % 64));
BN_ULONG *a_inv = (BN_ULONG *)(table + 16 * 8 * 8);
BN_ULONG *temp = (BN_ULONG *)(table + 16 * 8 * 8 + 8 * 8);
unsigned char *p_str = (unsigned char *)exponent;
int index;
unsigned int wvalue;
BN_ULONG tmp[8];
/* table[0] = 1_inv */
temp[0] = 0 - m[0];
temp[1] = ~m[1];
temp[2] = ~m[2];
temp[3] = ~m[3];
temp[4] = ~m[4];
temp[5] = ~m[5];
temp[6] = ~m[6];
temp[7] = ~m[7];
rsaz_512_scatter4(table, temp, 0);
/* table [1] = a_inv^1 */
rsaz_512_mul(a_inv, base, RR, m, k0);
rsaz_512_scatter4(table, a_inv, 1);
/* table [2] = a_inv^2 */
rsaz_512_sqr(temp, a_inv, m, k0, 1);
rsaz_512_scatter4(table, temp, 2);
for (index = 3; index < 16; index++)
rsaz_512_mul_scatter4(temp, a_inv, m, k0, table, index);
/* load first window */
wvalue = p_str[63];
rsaz_512_gather4(temp, table, wvalue >> 4);
rsaz_512_sqr(temp, temp, m, k0, 4);
rsaz_512_mul_gather4(temp, temp, table, m, k0, wvalue & 0xf);
for (index = 62; index >= 0; index--) {
wvalue = p_str[index];
rsaz_512_sqr(temp, temp, m, k0, 4);
rsaz_512_mul_gather4(temp, temp, table, m, k0, wvalue >> 4);
rsaz_512_sqr(temp, temp, m, k0, 4);
rsaz_512_mul_gather4(temp, temp, table, m, k0, wvalue & 0x0f);
}
/* from Montgomery */
rsaz_512_mul_by_one(result, temp, m, k0);
bn_reduce_once_in_place(result, /*carry=*/0, m, tmp, 8);
OPENSSL_cleanse(storage, sizeof(storage));
OPENSSL_cleanse(tmp, sizeof(tmp));
}
#endif
| 11,282 | 33.824074 | 78 | c |
openssl | openssl-master/crypto/bn/rsaz_exp.h | /*
* Copyright 2013-2021 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2020, Intel Corporation. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*
* Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1)
* (1) Intel Corporation, Israel Development Center, Haifa, Israel
* (2) University of Haifa, Israel
*/
#ifndef OSSL_CRYPTO_BN_RSAZ_EXP_H
# define OSSL_CRYPTO_BN_RSAZ_EXP_H
# undef RSAZ_ENABLED
# if defined(OPENSSL_BN_ASM_MONT) && \
(defined(__x86_64) || defined(__x86_64__) || \
defined(_M_AMD64) || defined(_M_X64))
# define RSAZ_ENABLED
# include <openssl/bn.h>
# include "internal/constant_time.h"
# include "bn_local.h"
void RSAZ_1024_mod_exp_avx2(BN_ULONG result[16],
const BN_ULONG base_norm[16],
const BN_ULONG exponent[16],
const BN_ULONG m_norm[16], const BN_ULONG RR[16],
BN_ULONG k0);
int rsaz_avx2_eligible(void);
void RSAZ_512_mod_exp(BN_ULONG result[8],
const BN_ULONG base_norm[8], const BN_ULONG exponent[8],
const BN_ULONG m_norm[8], BN_ULONG k0,
const BN_ULONG RR[8]);
int ossl_rsaz_avx512ifma_eligible(void);
int ossl_rsaz_mod_exp_avx512_x2(BN_ULONG *res1,
const BN_ULONG *base1,
const BN_ULONG *exponent1,
const BN_ULONG *m1,
const BN_ULONG *RR1,
BN_ULONG k0_1,
BN_ULONG *res2,
const BN_ULONG *base2,
const BN_ULONG *exponent2,
const BN_ULONG *m2,
const BN_ULONG *RR2,
BN_ULONG k0_2,
int factor_size);
static ossl_inline void bn_select_words(BN_ULONG *r, BN_ULONG mask,
const BN_ULONG *a,
const BN_ULONG *b, size_t num)
{
size_t i;
for (i = 0; i < num; i++) {
r[i] = constant_time_select_64(mask, a[i], b[i]);
}
}
static ossl_inline BN_ULONG bn_reduce_once_in_place(BN_ULONG *r,
BN_ULONG carry,
const BN_ULONG *m,
BN_ULONG *tmp, size_t num)
{
carry -= bn_sub_words(tmp, r, m, num);
bn_select_words(r, carry, r /* tmp < 0 */, tmp /* tmp >= 0 */, num);
return carry;
}
# endif
#endif
| 2,933 | 35.222222 | 78 | h |
openssl | openssl-master/crypto/bn/rsaz_exp_x2.c | /*
* Copyright 2020-2021 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2020-2021, Intel Corporation. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*
*
* Originally written by Sergey Kirillov and Andrey Matyukov.
* Special thanks to Ilya Albrekht for his valuable hints.
* Intel Corporation
*
*/
#include <openssl/opensslconf.h>
#include <openssl/crypto.h>
#include "rsaz_exp.h"
#ifndef RSAZ_ENABLED
NON_EMPTY_TRANSLATION_UNIT
#else
# include <assert.h>
# include <string.h>
# define ALIGN_OF(ptr, boundary) \
((unsigned char *)(ptr) + (boundary - (((size_t)(ptr)) & (boundary - 1))))
/* Internal radix */
# define DIGIT_SIZE (52)
/* 52-bit mask */
# define DIGIT_MASK ((uint64_t)0xFFFFFFFFFFFFF)
# define BITS2WORD8_SIZE(x) (((x) + 7) >> 3)
# define BITS2WORD64_SIZE(x) (((x) + 63) >> 6)
/* Number of registers required to hold |digits_num| amount of qword digits */
# define NUMBER_OF_REGISTERS(digits_num, register_size) \
(((digits_num) * 64 + (register_size) - 1) / (register_size))
static ossl_inline uint64_t get_digit(const uint8_t *in, int in_len);
static ossl_inline void put_digit(uint8_t *out, int out_len, uint64_t digit);
static void to_words52(BN_ULONG *out, int out_len, const BN_ULONG *in,
int in_bitsize);
static void from_words52(BN_ULONG *bn_out, int out_bitsize, const BN_ULONG *in);
static ossl_inline void set_bit(BN_ULONG *a, int idx);
/* Number of |digit_size|-bit digits in |bitsize|-bit value */
static ossl_inline int number_of_digits(int bitsize, int digit_size)
{
return (bitsize + digit_size - 1) / digit_size;
}
/*
* For details of the methods declared below please refer to
* crypto/bn/asm/rsaz-avx512.pl
*
* Naming conventions:
* amm = Almost Montgomery Multiplication
* ams = Almost Montgomery Squaring
* 52xZZ - data represented as array of ZZ digits in 52-bit radix
* _x1_/_x2_ - 1 or 2 independent inputs/outputs
* _ifma256 - uses 256-bit wide IFMA ISA (AVX512_IFMA256)
*/
void ossl_rsaz_amm52x20_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
const BN_ULONG *b, const BN_ULONG *m,
BN_ULONG k0);
void ossl_rsaz_amm52x20_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
const BN_ULONG *b, const BN_ULONG *m,
const BN_ULONG k0[2]);
void ossl_extract_multiplier_2x20_win5(BN_ULONG *red_Y,
const BN_ULONG *red_table,
int red_table_idx1, int red_table_idx2);
void ossl_rsaz_amm52x30_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
const BN_ULONG *b, const BN_ULONG *m,
BN_ULONG k0);
void ossl_rsaz_amm52x30_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
const BN_ULONG *b, const BN_ULONG *m,
const BN_ULONG k0[2]);
void ossl_extract_multiplier_2x30_win5(BN_ULONG *red_Y,
const BN_ULONG *red_table,
int red_table_idx1, int red_table_idx2);
void ossl_rsaz_amm52x40_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
const BN_ULONG *b, const BN_ULONG *m,
BN_ULONG k0);
void ossl_rsaz_amm52x40_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
const BN_ULONG *b, const BN_ULONG *m,
const BN_ULONG k0[2]);
void ossl_extract_multiplier_2x40_win5(BN_ULONG *red_Y,
const BN_ULONG *red_table,
int red_table_idx1, int red_table_idx2);
static int RSAZ_mod_exp_x2_ifma256(BN_ULONG *res, const BN_ULONG *base,
const BN_ULONG *exp[2], const BN_ULONG *m,
const BN_ULONG *rr, const BN_ULONG k0[2],
int modulus_bitsize);
/*
* Dual Montgomery modular exponentiation using prime moduli of the
* same bit size, optimized with AVX512 ISA.
*
* Input and output parameters for each exponentiation are independent and
* denoted here by index |i|, i = 1..2.
*
* Input and output are all in regular 2^64 radix.
*
* Each moduli shall be |factor_size| bit size.
*
* Supported cases:
* - 2x1024
* - 2x1536
* - 2x2048
*
* [out] res|i| - result of modular exponentiation: array of qword values
* in regular (2^64) radix. Size of array shall be enough
* to hold |factor_size| bits.
* [in] base|i| - base
* [in] exp|i| - exponent
* [in] m|i| - moduli
* [in] rr|i| - Montgomery parameter RR = R^2 mod m|i|
* [in] k0_|i| - Montgomery parameter k0 = -1/m|i| mod 2^64
* [in] factor_size - moduli bit size
*
* \return 0 in case of failure,
* 1 in case of success.
*/
int ossl_rsaz_mod_exp_avx512_x2(BN_ULONG *res1,
const BN_ULONG *base1,
const BN_ULONG *exp1,
const BN_ULONG *m1,
const BN_ULONG *rr1,
BN_ULONG k0_1,
BN_ULONG *res2,
const BN_ULONG *base2,
const BN_ULONG *exp2,
const BN_ULONG *m2,
const BN_ULONG *rr2,
BN_ULONG k0_2,
int factor_size)
{
typedef void (*AMM)(BN_ULONG *res, const BN_ULONG *a,
const BN_ULONG *b, const BN_ULONG *m, BN_ULONG k0);
int ret = 0;
/*
* Number of word-size (BN_ULONG) digits to store exponent in redundant
* representation.
*/
int exp_digits = number_of_digits(factor_size + 2, DIGIT_SIZE);
int coeff_pow = 4 * (DIGIT_SIZE * exp_digits - factor_size);
/* Number of YMM registers required to store exponent's digits */
int ymm_regs_num = NUMBER_OF_REGISTERS(exp_digits, 256 /* ymm bit size */);
/* Capacity of the register set (in qwords) to store exponent */
int regs_capacity = ymm_regs_num * 4;
BN_ULONG *base1_red, *m1_red, *rr1_red;
BN_ULONG *base2_red, *m2_red, *rr2_red;
BN_ULONG *coeff_red;
BN_ULONG *storage = NULL;
BN_ULONG *storage_aligned = NULL;
int storage_len_bytes = 7 * regs_capacity * sizeof(BN_ULONG)
+ 64 /* alignment */;
const BN_ULONG *exp[2] = {0};
BN_ULONG k0[2] = {0};
/* AMM = Almost Montgomery Multiplication */
AMM amm = NULL;
switch (factor_size) {
case 1024:
amm = ossl_rsaz_amm52x20_x1_ifma256;
break;
case 1536:
amm = ossl_rsaz_amm52x30_x1_ifma256;
break;
case 2048:
amm = ossl_rsaz_amm52x40_x1_ifma256;
break;
default:
goto err;
}
storage = (BN_ULONG *)OPENSSL_malloc(storage_len_bytes);
if (storage == NULL)
goto err;
storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
/* Memory layout for red(undant) representations */
base1_red = storage_aligned;
base2_red = storage_aligned + 1 * regs_capacity;
m1_red = storage_aligned + 2 * regs_capacity;
m2_red = storage_aligned + 3 * regs_capacity;
rr1_red = storage_aligned + 4 * regs_capacity;
rr2_red = storage_aligned + 5 * regs_capacity;
coeff_red = storage_aligned + 6 * regs_capacity;
/* Convert base_i, m_i, rr_i, from regular to 52-bit radix */
to_words52(base1_red, regs_capacity, base1, factor_size);
to_words52(base2_red, regs_capacity, base2, factor_size);
to_words52(m1_red, regs_capacity, m1, factor_size);
to_words52(m2_red, regs_capacity, m2, factor_size);
to_words52(rr1_red, regs_capacity, rr1, factor_size);
to_words52(rr2_red, regs_capacity, rr2, factor_size);
/*
* Compute target domain Montgomery converters RR' for each modulus
* based on precomputed original domain's RR.
*
* RR -> RR' transformation steps:
* (1) coeff = 2^k
* (2) t = AMM(RR,RR) = RR^2 / R' mod m
* (3) RR' = AMM(t, coeff) = RR^2 * 2^k / R'^2 mod m
* where
* k = 4 * (52 * digits52 - modlen)
* R = 2^(64 * ceil(modlen/64)) mod m
* RR = R^2 mod m
* R' = 2^(52 * ceil(modlen/52)) mod m
*
* EX/ modlen = 1024: k = 64, RR = 2^2048 mod m, RR' = 2^2080 mod m
*/
memset(coeff_red, 0, exp_digits * sizeof(BN_ULONG));
/* (1) in reduced domain representation */
set_bit(coeff_red, 64 * (int)(coeff_pow / 52) + coeff_pow % 52);
amm(rr1_red, rr1_red, rr1_red, m1_red, k0_1); /* (2) for m1 */
amm(rr1_red, rr1_red, coeff_red, m1_red, k0_1); /* (3) for m1 */
amm(rr2_red, rr2_red, rr2_red, m2_red, k0_2); /* (2) for m2 */
amm(rr2_red, rr2_red, coeff_red, m2_red, k0_2); /* (3) for m2 */
exp[0] = exp1;
exp[1] = exp2;
k0[0] = k0_1;
k0[1] = k0_2;
/* Dual (2-exps in parallel) exponentiation */
ret = RSAZ_mod_exp_x2_ifma256(rr1_red, base1_red, exp, m1_red, rr1_red,
k0, factor_size);
if (!ret)
goto err;
/* Convert rr_i back to regular radix */
from_words52(res1, factor_size, rr1_red);
from_words52(res2, factor_size, rr2_red);
/* bn_reduce_once_in_place expects number of BN_ULONG, not bit size */
factor_size /= sizeof(BN_ULONG) * 8;
bn_reduce_once_in_place(res1, /*carry=*/0, m1, storage, factor_size);
bn_reduce_once_in_place(res2, /*carry=*/0, m2, storage, factor_size);
err:
if (storage != NULL) {
OPENSSL_cleanse(storage, storage_len_bytes);
OPENSSL_free(storage);
}
return ret;
}
/*
* Dual {1024,1536,2048}-bit w-ary modular exponentiation using prime moduli of
* the same bit size using Almost Montgomery Multiplication, optimized with
* AVX512_IFMA256 ISA.
*
* The parameter w (window size) = 5.
*
* [out] res - result of modular exponentiation: 2x{20,30,40} qword
* values in 2^52 radix.
* [in] base - base (2x{20,30,40} qword values in 2^52 radix)
* [in] exp - array of 2 pointers to {16,24,32} qword values in 2^64 radix.
* Exponent is not converted to redundant representation.
* [in] m - moduli (2x{20,30,40} qword values in 2^52 radix)
* [in] rr - Montgomery parameter for 2 moduli:
* RR(1024) = 2^2080 mod m.
* RR(1536) = 2^3120 mod m.
* RR(2048) = 2^4160 mod m.
* (2x{20,30,40} qword values in 2^52 radix)
* [in] k0 - Montgomery parameter for 2 moduli: k0 = -1/m mod 2^64
*
* \return (void).
*/
int RSAZ_mod_exp_x2_ifma256(BN_ULONG *out,
const BN_ULONG *base,
const BN_ULONG *exp[2],
const BN_ULONG *m,
const BN_ULONG *rr,
const BN_ULONG k0[2],
int modulus_bitsize)
{
typedef void (*DAMM)(BN_ULONG *res, const BN_ULONG *a,
const BN_ULONG *b, const BN_ULONG *m,
const BN_ULONG k0[2]);
typedef void (*DEXTRACT)(BN_ULONG *res, const BN_ULONG *red_table,
int red_table_idx, int tbl_idx);
int ret = 0;
int idx;
/* Exponent window size */
int exp_win_size = 5;
int exp_win_mask = (1U << exp_win_size) - 1;
/*
* Number of digits (64-bit words) in redundant representation to handle
* modulus bits
*/
int red_digits = 0;
int exp_digits = 0;
BN_ULONG *storage = NULL;
BN_ULONG *storage_aligned = NULL;
int storage_len_bytes = 0;
/* Red(undant) result Y and multiplier X */
BN_ULONG *red_Y = NULL; /* [2][red_digits] */
BN_ULONG *red_X = NULL; /* [2][red_digits] */
/* Pre-computed table of base powers */
BN_ULONG *red_table = NULL; /* [1U << exp_win_size][2][red_digits] */
/* Expanded exponent */
BN_ULONG *expz = NULL; /* [2][exp_digits + 1] */
/* Dual AMM */
DAMM damm = NULL;
/* Extractor from red_table */
DEXTRACT extract = NULL;
/*
* Squaring is done using multiplication now. That can be a subject of
* optimization in future.
*/
# define DAMS(r,a,m,k0) damm((r),(a),(a),(m),(k0))
switch (modulus_bitsize) {
case 1024:
red_digits = 20;
exp_digits = 16;
damm = ossl_rsaz_amm52x20_x2_ifma256;
extract = ossl_extract_multiplier_2x20_win5;
break;
case 1536:
/* Extended with 2 digits padding to avoid mask ops in high YMM register */
red_digits = 30 + 2;
exp_digits = 24;
damm = ossl_rsaz_amm52x30_x2_ifma256;
extract = ossl_extract_multiplier_2x30_win5;
break;
case 2048:
red_digits = 40;
exp_digits = 32;
damm = ossl_rsaz_amm52x40_x2_ifma256;
extract = ossl_extract_multiplier_2x40_win5;
break;
default:
goto err;
}
storage_len_bytes = (2 * red_digits /* red_Y */
+ 2 * red_digits /* red_X */
+ 2 * red_digits * (1U << exp_win_size) /* red_table */
+ 2 * (exp_digits + 1)) /* expz */
* sizeof(BN_ULONG)
+ 64; /* alignment */
storage = (BN_ULONG *)OPENSSL_zalloc(storage_len_bytes);
if (storage == NULL)
goto err;
storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
red_Y = storage_aligned;
red_X = red_Y + 2 * red_digits;
red_table = red_X + 2 * red_digits;
expz = red_table + 2 * red_digits * (1U << exp_win_size);
/*
* Compute table of powers base^i, i = 0, ..., (2^EXP_WIN_SIZE) - 1
* table[0] = mont(x^0) = mont(1)
* table[1] = mont(x^1) = mont(x)
*/
red_X[0 * red_digits] = 1;
red_X[1 * red_digits] = 1;
damm(&red_table[0 * 2 * red_digits], (const BN_ULONG*)red_X, rr, m, k0);
damm(&red_table[1 * 2 * red_digits], base, rr, m, k0);
for (idx = 1; idx < (int)((1U << exp_win_size) / 2); idx++) {
DAMS(&red_table[(2 * idx + 0) * 2 * red_digits],
&red_table[(1 * idx) * 2 * red_digits], m, k0);
damm(&red_table[(2 * idx + 1) * 2 * red_digits],
&red_table[(2 * idx) * 2 * red_digits],
&red_table[1 * 2 * red_digits], m, k0);
}
/* Copy and expand exponents */
memcpy(&expz[0 * (exp_digits + 1)], exp[0], exp_digits * sizeof(BN_ULONG));
expz[1 * (exp_digits + 1) - 1] = 0;
memcpy(&expz[1 * (exp_digits + 1)], exp[1], exp_digits * sizeof(BN_ULONG));
expz[2 * (exp_digits + 1) - 1] = 0;
/* Exponentiation */
{
const int rem = modulus_bitsize % exp_win_size;
const BN_ULONG table_idx_mask = exp_win_mask;
int exp_bit_no = modulus_bitsize - rem;
int exp_chunk_no = exp_bit_no / 64;
int exp_chunk_shift = exp_bit_no % 64;
BN_ULONG red_table_idx_0, red_table_idx_1;
/*
* If rem == 0, then
* exp_bit_no = modulus_bitsize - exp_win_size
* However, this isn't possible because rem is { 1024, 1536, 2048 } % 5
* which is { 4, 1, 3 } respectively.
*
* If this assertion ever fails the fix above is easy.
*/
OPENSSL_assert(rem != 0);
/* Process 1-st exp window - just init result */
red_table_idx_0 = expz[exp_chunk_no + 0 * (exp_digits + 1)];
red_table_idx_1 = expz[exp_chunk_no + 1 * (exp_digits + 1)];
/*
* The function operates with fixed moduli sizes divisible by 64,
* thus table index here is always in supported range [0, EXP_WIN_SIZE).
*/
red_table_idx_0 >>= exp_chunk_shift;
red_table_idx_1 >>= exp_chunk_shift;
extract(&red_Y[0 * red_digits], (const BN_ULONG*)red_table, (int)red_table_idx_0, (int)red_table_idx_1);
/* Process other exp windows */
for (exp_bit_no -= exp_win_size; exp_bit_no >= 0; exp_bit_no -= exp_win_size) {
/* Extract pre-computed multiplier from the table */
{
BN_ULONG T;
exp_chunk_no = exp_bit_no / 64;
exp_chunk_shift = exp_bit_no % 64;
{
red_table_idx_0 = expz[exp_chunk_no + 0 * (exp_digits + 1)];
T = expz[exp_chunk_no + 1 + 0 * (exp_digits + 1)];
red_table_idx_0 >>= exp_chunk_shift;
/*
* Get additional bits from then next quadword
* when 64-bit boundaries are crossed.
*/
if (exp_chunk_shift > 64 - exp_win_size) {
T <<= (64 - exp_chunk_shift);
red_table_idx_0 ^= T;
}
red_table_idx_0 &= table_idx_mask;
}
{
red_table_idx_1 = expz[exp_chunk_no + 1 * (exp_digits + 1)];
T = expz[exp_chunk_no + 1 + 1 * (exp_digits + 1)];
red_table_idx_1 >>= exp_chunk_shift;
/*
* Get additional bits from then next quadword
* when 64-bit boundaries are crossed.
*/
if (exp_chunk_shift > 64 - exp_win_size) {
T <<= (64 - exp_chunk_shift);
red_table_idx_1 ^= T;
}
red_table_idx_1 &= table_idx_mask;
}
extract(&red_X[0 * red_digits], (const BN_ULONG*)red_table, (int)red_table_idx_0, (int)red_table_idx_1);
}
/* Series of squaring */
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
damm((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
}
}
/*
*
* NB: After the last AMM of exponentiation in Montgomery domain, the result
* may be (modulus_bitsize + 1), but the conversion out of Montgomery domain
* performs an AMM(x,1) which guarantees that the final result is less than
* |m|, so no conditional subtraction is needed here. See [1] for details.
*
* [1] Gueron, S. Efficient software implementations of modular exponentiation.
* DOI: 10.1007/s13389-012-0031-5
*/
/* Convert result back in regular 2^52 domain */
memset(red_X, 0, 2 * red_digits * sizeof(BN_ULONG));
red_X[0 * red_digits] = 1;
red_X[1 * red_digits] = 1;
damm(out, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
ret = 1;
err:
if (storage != NULL) {
/* Clear whole storage */
OPENSSL_cleanse(storage, storage_len_bytes);
OPENSSL_free(storage);
}
#undef DAMS
return ret;
}
static ossl_inline uint64_t get_digit(const uint8_t *in, int in_len)
{
uint64_t digit = 0;
assert(in != NULL);
assert(in_len <= 8);
for (; in_len > 0; in_len--) {
digit <<= 8;
digit += (uint64_t)(in[in_len - 1]);
}
return digit;
}
/*
* Convert array of words in regular (base=2^64) representation to array of
* words in redundant (base=2^52) one.
*/
static void to_words52(BN_ULONG *out, int out_len,
const BN_ULONG *in, int in_bitsize)
{
uint8_t *in_str = NULL;
assert(out != NULL);
assert(in != NULL);
/* Check destination buffer capacity */
assert(out_len >= number_of_digits(in_bitsize, DIGIT_SIZE));
in_str = (uint8_t *)in;
for (; in_bitsize >= (2 * DIGIT_SIZE); in_bitsize -= (2 * DIGIT_SIZE), out += 2) {
uint64_t digit;
memcpy(&digit, in_str, sizeof(digit));
out[0] = digit & DIGIT_MASK;
in_str += 6;
memcpy(&digit, in_str, sizeof(digit));
out[1] = (digit >> 4) & DIGIT_MASK;
in_str += 7;
out_len -= 2;
}
if (in_bitsize > DIGIT_SIZE) {
uint64_t digit = get_digit(in_str, 7);
out[0] = digit & DIGIT_MASK;
in_str += 6;
in_bitsize -= DIGIT_SIZE;
digit = get_digit(in_str, BITS2WORD8_SIZE(in_bitsize));
out[1] = digit >> 4;
out += 2;
out_len -= 2;
} else if (in_bitsize > 0) {
out[0] = get_digit(in_str, BITS2WORD8_SIZE(in_bitsize));
out++;
out_len--;
}
while (out_len > 0) {
*out = 0;
out_len--;
out++;
}
}
static ossl_inline void put_digit(uint8_t *out, int out_len, uint64_t digit)
{
assert(out != NULL);
assert(out_len <= 8);
for (; out_len > 0; out_len--) {
*out++ = (uint8_t)(digit & 0xFF);
digit >>= 8;
}
}
/*
* Convert array of words in redundant (base=2^52) representation to array of
* words in regular (base=2^64) one.
*/
static void from_words52(BN_ULONG *out, int out_bitsize, const BN_ULONG *in)
{
int i;
int out_len = BITS2WORD64_SIZE(out_bitsize);
assert(out != NULL);
assert(in != NULL);
for (i = 0; i < out_len; i++)
out[i] = 0;
{
uint8_t *out_str = (uint8_t *)out;
for (; out_bitsize >= (2 * DIGIT_SIZE);
out_bitsize -= (2 * DIGIT_SIZE), in += 2) {
uint64_t digit;
digit = in[0];
memcpy(out_str, &digit, sizeof(digit));
out_str += 6;
digit = digit >> 48 | in[1] << 4;
memcpy(out_str, &digit, sizeof(digit));
out_str += 7;
}
if (out_bitsize > DIGIT_SIZE) {
put_digit(out_str, 7, in[0]);
out_str += 6;
out_bitsize -= DIGIT_SIZE;
put_digit(out_str, BITS2WORD8_SIZE(out_bitsize),
(in[1] << 4 | in[0] >> 48));
} else if (out_bitsize) {
put_digit(out_str, BITS2WORD8_SIZE(out_bitsize), in[0]);
}
}
}
/*
* Set bit at index |idx| in the words array |a|.
* It does not do any boundaries checks, make sure the index is valid before
* calling the function.
*/
static ossl_inline void set_bit(BN_ULONG *a, int idx)
{
assert(a != NULL);
{
int i, j;
i = idx / BN_BITS2;
j = idx % BN_BITS2;
a[i] |= (((BN_ULONG)1) << j);
}
}
#endif
| 23,186 | 34.238602 | 120 | c |
openssl | openssl-master/crypto/bn/asm/x86_64-gcc.c | /*
* Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "../bn_local.h"
#if !(defined(__GNUC__) && __GNUC__>=2)
# include "../bn_asm.c" /* kind of dirty hack for Sun Studio */
#else
/*-
* x86_64 BIGNUM accelerator version 0.1, December 2002.
*
* Implemented by Andy Polyakov <[email protected]> for the OpenSSL
* project.
*
* Rights for redistribution and usage in source and binary forms are
* granted according to the License. Warranty of any kind is disclaimed.
*
* Q. Version 0.1? It doesn't sound like Andy, he used to assign real
* versions, like 1.0...
* A. Well, that's because this code is basically a quick-n-dirty
* proof-of-concept hack. As you can see it's implemented with
* inline assembler, which means that you're bound to GCC and that
* there might be enough room for further improvement.
*
* Q. Why inline assembler?
* A. x86_64 features own ABI which I'm not familiar with. This is
* why I decided to let the compiler take care of subroutine
* prologue/epilogue as well as register allocation. For reference.
* Win64 implements different ABI for AMD64, different from Linux.
*
* Q. How much faster does it get?
* A. 'apps/openssl speed rsa dsa' output with no-asm:
*
* sign verify sign/s verify/s
* rsa 512 bits 0.0006s 0.0001s 1683.8 18456.2
* rsa 1024 bits 0.0028s 0.0002s 356.0 6407.0
* rsa 2048 bits 0.0172s 0.0005s 58.0 1957.8
* rsa 4096 bits 0.1155s 0.0018s 8.7 555.6
* sign verify sign/s verify/s
* dsa 512 bits 0.0005s 0.0006s 2100.8 1768.3
* dsa 1024 bits 0.0014s 0.0018s 692.3 559.2
* dsa 2048 bits 0.0049s 0.0061s 204.7 165.0
*
* 'apps/openssl speed rsa dsa' output with this module:
*
* sign verify sign/s verify/s
* rsa 512 bits 0.0004s 0.0000s 2767.1 33297.9
* rsa 1024 bits 0.0012s 0.0001s 867.4 14674.7
* rsa 2048 bits 0.0061s 0.0002s 164.0 5270.0
* rsa 4096 bits 0.0384s 0.0006s 26.1 1650.8
* sign verify sign/s verify/s
* dsa 512 bits 0.0002s 0.0003s 4442.2 3786.3
* dsa 1024 bits 0.0005s 0.0007s 1835.1 1497.4
* dsa 2048 bits 0.0016s 0.0020s 620.4 504.6
*
* For the reference. IA-32 assembler implementation performs
* very much like 64-bit code compiled with no-asm on the same
* machine.
*/
# undef mul
# undef mul_add
/*-
* "m"(a), "+m"(r) is the way to favor DirectPath µ-code;
* "g"(0) let the compiler to decide where does it
* want to keep the value of zero;
*/
# define mul_add(r,a,word,carry) do { \
register BN_ULONG high,low; \
asm ("mulq %3" \
: "=a"(low),"=d"(high) \
: "a"(word),"m"(a) \
: "cc"); \
asm ("addq %2,%0; adcq %3,%1" \
: "+r"(carry),"+d"(high)\
: "a"(low),"g"(0) \
: "cc"); \
asm ("addq %2,%0; adcq %3,%1" \
: "+m"(r),"+d"(high) \
: "r"(carry),"g"(0) \
: "cc"); \
carry=high; \
} while (0)
# define mul(r,a,word,carry) do { \
register BN_ULONG high,low; \
asm ("mulq %3" \
: "=a"(low),"=d"(high) \
: "a"(word),"g"(a) \
: "cc"); \
asm ("addq %2,%0; adcq %3,%1" \
: "+r"(carry),"+d"(high)\
: "a"(low),"g"(0) \
: "cc"); \
(r)=carry, carry=high; \
} while (0)
# undef sqr
# define sqr(r0,r1,a) \
asm ("mulq %2" \
: "=a"(r0),"=d"(r1) \
: "a"(a) \
: "cc");
BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
BN_ULONG w)
{
BN_ULONG c1 = 0;
if (num <= 0)
return c1;
while (num & ~3) {
mul_add(rp[0], ap[0], w, c1);
mul_add(rp[1], ap[1], w, c1);
mul_add(rp[2], ap[2], w, c1);
mul_add(rp[3], ap[3], w, c1);
ap += 4;
rp += 4;
num -= 4;
}
if (num) {
mul_add(rp[0], ap[0], w, c1);
if (--num == 0)
return c1;
mul_add(rp[1], ap[1], w, c1);
if (--num == 0)
return c1;
mul_add(rp[2], ap[2], w, c1);
return c1;
}
return c1;
}
BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
{
BN_ULONG c1 = 0;
if (num <= 0)
return c1;
while (num & ~3) {
mul(rp[0], ap[0], w, c1);
mul(rp[1], ap[1], w, c1);
mul(rp[2], ap[2], w, c1);
mul(rp[3], ap[3], w, c1);
ap += 4;
rp += 4;
num -= 4;
}
if (num) {
mul(rp[0], ap[0], w, c1);
if (--num == 0)
return c1;
mul(rp[1], ap[1], w, c1);
if (--num == 0)
return c1;
mul(rp[2], ap[2], w, c1);
}
return c1;
}
void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
{
if (n <= 0)
return;
while (n & ~3) {
sqr(r[0], r[1], a[0]);
sqr(r[2], r[3], a[1]);
sqr(r[4], r[5], a[2]);
sqr(r[6], r[7], a[3]);
a += 4;
r += 8;
n -= 4;
}
if (n) {
sqr(r[0], r[1], a[0]);
if (--n == 0)
return;
sqr(r[2], r[3], a[1]);
if (--n == 0)
return;
sqr(r[4], r[5], a[2]);
}
}
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
{
BN_ULONG ret, waste;
asm("divq %4":"=a"(ret), "=d"(waste)
: "a"(l), "d"(h), "r"(d)
: "cc");
return ret;
}
BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
int n)
{
BN_ULONG ret;
size_t i = 0;
if (n <= 0)
return 0;
asm volatile (" subq %0,%0 \n" /* clear carry */
" jmp 1f \n"
".p2align 4 \n"
"1: movq (%4,%2,8),%0 \n"
" adcq (%5,%2,8),%0 \n"
" movq %0,(%3,%2,8) \n"
" lea 1(%2),%2 \n"
" dec %1 \n"
" jnz 1b \n"
" sbbq %0,%0 \n"
:"=&r" (ret), "+c"(n), "+r"(i)
:"r"(rp), "r"(ap), "r"(bp)
:"cc", "memory");
return ret & 1;
}
# ifndef SIMICS
BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
int n)
{
BN_ULONG ret;
size_t i = 0;
if (n <= 0)
return 0;
asm volatile (" subq %0,%0 \n" /* clear borrow */
" jmp 1f \n"
".p2align 4 \n"
"1: movq (%4,%2,8),%0 \n"
" sbbq (%5,%2,8),%0 \n"
" movq %0,(%3,%2,8) \n"
" lea 1(%2),%2 \n"
" dec %1 \n"
" jnz 1b \n"
" sbbq %0,%0 \n"
:"=&r" (ret), "+c"(n), "+r"(i)
:"r"(rp), "r"(ap), "r"(bp)
:"cc", "memory");
return ret & 1;
}
# else
/* Simics 1.4<7 has buggy sbbq:-( */
# define BN_MASK2 0xffffffffffffffffL
BN_ULONG bn_sub_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
{
BN_ULONG t1, t2;
int c = 0;
if (n <= 0)
return (BN_ULONG)0;
for (;;) {
t1 = a[0];
t2 = b[0];
r[0] = (t1 - t2 - c) & BN_MASK2;
if (t1 != t2)
c = (t1 < t2);
if (--n <= 0)
break;
t1 = a[1];
t2 = b[1];
r[1] = (t1 - t2 - c) & BN_MASK2;
if (t1 != t2)
c = (t1 < t2);
if (--n <= 0)
break;
t1 = a[2];
t2 = b[2];
r[2] = (t1 - t2 - c) & BN_MASK2;
if (t1 != t2)
c = (t1 < t2);
if (--n <= 0)
break;
t1 = a[3];
t2 = b[3];
r[3] = (t1 - t2 - c) & BN_MASK2;
if (t1 != t2)
c = (t1 < t2);
if (--n <= 0)
break;
a += 4;
b += 4;
r += 4;
}
return c;
}
# endif
/* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */
/* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
/* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
/*
* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number
* c=(c2,c1,c0)
*/
/*
* Keep in mind that carrying into high part of multiplication result
* can not overflow, because it cannot be all-ones.
*/
# if 0
/* original macros are kept for reference purposes */
# define mul_add_c(a,b,c0,c1,c2) do { \
BN_ULONG ta = (a), tb = (b); \
BN_ULONG lo, hi; \
BN_UMULT_LOHI(lo,hi,ta,tb); \
c0 += lo; hi += (c0<lo)?1:0; \
c1 += hi; c2 += (c1<hi)?1:0; \
} while(0)
# define mul_add_c2(a,b,c0,c1,c2) do { \
BN_ULONG ta = (a), tb = (b); \
BN_ULONG lo, hi, tt; \
BN_UMULT_LOHI(lo,hi,ta,tb); \
c0 += lo; tt = hi+((c0<lo)?1:0); \
c1 += tt; c2 += (c1<tt)?1:0; \
c0 += lo; hi += (c0<lo)?1:0; \
c1 += hi; c2 += (c1<hi)?1:0; \
} while(0)
# define sqr_add_c(a,i,c0,c1,c2) do { \
BN_ULONG ta = (a)[i]; \
BN_ULONG lo, hi; \
BN_UMULT_LOHI(lo,hi,ta,ta); \
c0 += lo; hi += (c0<lo)?1:0; \
c1 += hi; c2 += (c1<hi)?1:0; \
} while(0)
# else
# define mul_add_c(a,b,c0,c1,c2) do { \
BN_ULONG t1,t2; \
asm ("mulq %3" \
: "=a"(t1),"=d"(t2) \
: "a"(a),"m"(b) \
: "cc"); \
asm ("addq %3,%0; adcq %4,%1; adcq %5,%2" \
: "+r"(c0),"+r"(c1),"+r"(c2) \
: "r"(t1),"r"(t2),"g"(0) \
: "cc"); \
} while (0)
# define sqr_add_c(a,i,c0,c1,c2) do { \
BN_ULONG t1,t2; \
asm ("mulq %2" \
: "=a"(t1),"=d"(t2) \
: "a"(a[i]) \
: "cc"); \
asm ("addq %3,%0; adcq %4,%1; adcq %5,%2" \
: "+r"(c0),"+r"(c1),"+r"(c2) \
: "r"(t1),"r"(t2),"g"(0) \
: "cc"); \
} while (0)
# define mul_add_c2(a,b,c0,c1,c2) do { \
BN_ULONG t1,t2; \
asm ("mulq %3" \
: "=a"(t1),"=d"(t2) \
: "a"(a),"m"(b) \
: "cc"); \
asm ("addq %3,%0; adcq %4,%1; adcq %5,%2" \
: "+r"(c0),"+r"(c1),"+r"(c2) \
: "r"(t1),"r"(t2),"g"(0) \
: "cc"); \
asm ("addq %3,%0; adcq %4,%1; adcq %5,%2" \
: "+r"(c0),"+r"(c1),"+r"(c2) \
: "r"(t1),"r"(t2),"g"(0) \
: "cc"); \
} while (0)
# endif
# define sqr_add_c2(a,i,j,c0,c1,c2) \
mul_add_c2((a)[i],(a)[j],c0,c1,c2)
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
{
BN_ULONG c1, c2, c3;
c1 = 0;
c2 = 0;
c3 = 0;
mul_add_c(a[0], b[0], c1, c2, c3);
r[0] = c1;
c1 = 0;
mul_add_c(a[0], b[1], c2, c3, c1);
mul_add_c(a[1], b[0], c2, c3, c1);
r[1] = c2;
c2 = 0;
mul_add_c(a[2], b[0], c3, c1, c2);
mul_add_c(a[1], b[1], c3, c1, c2);
mul_add_c(a[0], b[2], c3, c1, c2);
r[2] = c3;
c3 = 0;
mul_add_c(a[0], b[3], c1, c2, c3);
mul_add_c(a[1], b[2], c1, c2, c3);
mul_add_c(a[2], b[1], c1, c2, c3);
mul_add_c(a[3], b[0], c1, c2, c3);
r[3] = c1;
c1 = 0;
mul_add_c(a[4], b[0], c2, c3, c1);
mul_add_c(a[3], b[1], c2, c3, c1);
mul_add_c(a[2], b[2], c2, c3, c1);
mul_add_c(a[1], b[3], c2, c3, c1);
mul_add_c(a[0], b[4], c2, c3, c1);
r[4] = c2;
c2 = 0;
mul_add_c(a[0], b[5], c3, c1, c2);
mul_add_c(a[1], b[4], c3, c1, c2);
mul_add_c(a[2], b[3], c3, c1, c2);
mul_add_c(a[3], b[2], c3, c1, c2);
mul_add_c(a[4], b[1], c3, c1, c2);
mul_add_c(a[5], b[0], c3, c1, c2);
r[5] = c3;
c3 = 0;
mul_add_c(a[6], b[0], c1, c2, c3);
mul_add_c(a[5], b[1], c1, c2, c3);
mul_add_c(a[4], b[2], c1, c2, c3);
mul_add_c(a[3], b[3], c1, c2, c3);
mul_add_c(a[2], b[4], c1, c2, c3);
mul_add_c(a[1], b[5], c1, c2, c3);
mul_add_c(a[0], b[6], c1, c2, c3);
r[6] = c1;
c1 = 0;
mul_add_c(a[0], b[7], c2, c3, c1);
mul_add_c(a[1], b[6], c2, c3, c1);
mul_add_c(a[2], b[5], c2, c3, c1);
mul_add_c(a[3], b[4], c2, c3, c1);
mul_add_c(a[4], b[3], c2, c3, c1);
mul_add_c(a[5], b[2], c2, c3, c1);
mul_add_c(a[6], b[1], c2, c3, c1);
mul_add_c(a[7], b[0], c2, c3, c1);
r[7] = c2;
c2 = 0;
mul_add_c(a[7], b[1], c3, c1, c2);
mul_add_c(a[6], b[2], c3, c1, c2);
mul_add_c(a[5], b[3], c3, c1, c2);
mul_add_c(a[4], b[4], c3, c1, c2);
mul_add_c(a[3], b[5], c3, c1, c2);
mul_add_c(a[2], b[6], c3, c1, c2);
mul_add_c(a[1], b[7], c3, c1, c2);
r[8] = c3;
c3 = 0;
mul_add_c(a[2], b[7], c1, c2, c3);
mul_add_c(a[3], b[6], c1, c2, c3);
mul_add_c(a[4], b[5], c1, c2, c3);
mul_add_c(a[5], b[4], c1, c2, c3);
mul_add_c(a[6], b[3], c1, c2, c3);
mul_add_c(a[7], b[2], c1, c2, c3);
r[9] = c1;
c1 = 0;
mul_add_c(a[7], b[3], c2, c3, c1);
mul_add_c(a[6], b[4], c2, c3, c1);
mul_add_c(a[5], b[5], c2, c3, c1);
mul_add_c(a[4], b[6], c2, c3, c1);
mul_add_c(a[3], b[7], c2, c3, c1);
r[10] = c2;
c2 = 0;
mul_add_c(a[4], b[7], c3, c1, c2);
mul_add_c(a[5], b[6], c3, c1, c2);
mul_add_c(a[6], b[5], c3, c1, c2);
mul_add_c(a[7], b[4], c3, c1, c2);
r[11] = c3;
c3 = 0;
mul_add_c(a[7], b[5], c1, c2, c3);
mul_add_c(a[6], b[6], c1, c2, c3);
mul_add_c(a[5], b[7], c1, c2, c3);
r[12] = c1;
c1 = 0;
mul_add_c(a[6], b[7], c2, c3, c1);
mul_add_c(a[7], b[6], c2, c3, c1);
r[13] = c2;
c2 = 0;
mul_add_c(a[7], b[7], c3, c1, c2);
r[14] = c3;
r[15] = c1;
}
void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
{
BN_ULONG c1, c2, c3;
c1 = 0;
c2 = 0;
c3 = 0;
mul_add_c(a[0], b[0], c1, c2, c3);
r[0] = c1;
c1 = 0;
mul_add_c(a[0], b[1], c2, c3, c1);
mul_add_c(a[1], b[0], c2, c3, c1);
r[1] = c2;
c2 = 0;
mul_add_c(a[2], b[0], c3, c1, c2);
mul_add_c(a[1], b[1], c3, c1, c2);
mul_add_c(a[0], b[2], c3, c1, c2);
r[2] = c3;
c3 = 0;
mul_add_c(a[0], b[3], c1, c2, c3);
mul_add_c(a[1], b[2], c1, c2, c3);
mul_add_c(a[2], b[1], c1, c2, c3);
mul_add_c(a[3], b[0], c1, c2, c3);
r[3] = c1;
c1 = 0;
mul_add_c(a[3], b[1], c2, c3, c1);
mul_add_c(a[2], b[2], c2, c3, c1);
mul_add_c(a[1], b[3], c2, c3, c1);
r[4] = c2;
c2 = 0;
mul_add_c(a[2], b[3], c3, c1, c2);
mul_add_c(a[3], b[2], c3, c1, c2);
r[5] = c3;
c3 = 0;
mul_add_c(a[3], b[3], c1, c2, c3);
r[6] = c1;
r[7] = c2;
}
void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
{
BN_ULONG c1, c2, c3;
c1 = 0;
c2 = 0;
c3 = 0;
sqr_add_c(a, 0, c1, c2, c3);
r[0] = c1;
c1 = 0;
sqr_add_c2(a, 1, 0, c2, c3, c1);
r[1] = c2;
c2 = 0;
sqr_add_c(a, 1, c3, c1, c2);
sqr_add_c2(a, 2, 0, c3, c1, c2);
r[2] = c3;
c3 = 0;
sqr_add_c2(a, 3, 0, c1, c2, c3);
sqr_add_c2(a, 2, 1, c1, c2, c3);
r[3] = c1;
c1 = 0;
sqr_add_c(a, 2, c2, c3, c1);
sqr_add_c2(a, 3, 1, c2, c3, c1);
sqr_add_c2(a, 4, 0, c2, c3, c1);
r[4] = c2;
c2 = 0;
sqr_add_c2(a, 5, 0, c3, c1, c2);
sqr_add_c2(a, 4, 1, c3, c1, c2);
sqr_add_c2(a, 3, 2, c3, c1, c2);
r[5] = c3;
c3 = 0;
sqr_add_c(a, 3, c1, c2, c3);
sqr_add_c2(a, 4, 2, c1, c2, c3);
sqr_add_c2(a, 5, 1, c1, c2, c3);
sqr_add_c2(a, 6, 0, c1, c2, c3);
r[6] = c1;
c1 = 0;
sqr_add_c2(a, 7, 0, c2, c3, c1);
sqr_add_c2(a, 6, 1, c2, c3, c1);
sqr_add_c2(a, 5, 2, c2, c3, c1);
sqr_add_c2(a, 4, 3, c2, c3, c1);
r[7] = c2;
c2 = 0;
sqr_add_c(a, 4, c3, c1, c2);
sqr_add_c2(a, 5, 3, c3, c1, c2);
sqr_add_c2(a, 6, 2, c3, c1, c2);
sqr_add_c2(a, 7, 1, c3, c1, c2);
r[8] = c3;
c3 = 0;
sqr_add_c2(a, 7, 2, c1, c2, c3);
sqr_add_c2(a, 6, 3, c1, c2, c3);
sqr_add_c2(a, 5, 4, c1, c2, c3);
r[9] = c1;
c1 = 0;
sqr_add_c(a, 5, c2, c3, c1);
sqr_add_c2(a, 6, 4, c2, c3, c1);
sqr_add_c2(a, 7, 3, c2, c3, c1);
r[10] = c2;
c2 = 0;
sqr_add_c2(a, 7, 4, c3, c1, c2);
sqr_add_c2(a, 6, 5, c3, c1, c2);
r[11] = c3;
c3 = 0;
sqr_add_c(a, 6, c1, c2, c3);
sqr_add_c2(a, 7, 5, c1, c2, c3);
r[12] = c1;
c1 = 0;
sqr_add_c2(a, 7, 6, c2, c3, c1);
r[13] = c2;
c2 = 0;
sqr_add_c(a, 7, c3, c1, c2);
r[14] = c3;
r[15] = c1;
}
void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
{
BN_ULONG c1, c2, c3;
c1 = 0;
c2 = 0;
c3 = 0;
sqr_add_c(a, 0, c1, c2, c3);
r[0] = c1;
c1 = 0;
sqr_add_c2(a, 1, 0, c2, c3, c1);
r[1] = c2;
c2 = 0;
sqr_add_c(a, 1, c3, c1, c2);
sqr_add_c2(a, 2, 0, c3, c1, c2);
r[2] = c3;
c3 = 0;
sqr_add_c2(a, 3, 0, c1, c2, c3);
sqr_add_c2(a, 2, 1, c1, c2, c3);
r[3] = c1;
c1 = 0;
sqr_add_c(a, 2, c2, c3, c1);
sqr_add_c2(a, 3, 1, c2, c3, c1);
r[4] = c2;
c2 = 0;
sqr_add_c2(a, 3, 2, c3, c1, c2);
r[5] = c3;
c3 = 0;
sqr_add_c(a, 3, c1, c2, c3);
r[6] = c1;
r[7] = c2;
}
#endif
| 19,041 | 28.614308 | 78 | c |
openssl | openssl-master/crypto/buffer/buf_err.c | /*
* Generated by util/mkerr.pl DO NOT EDIT
* Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/err.h>
#include <openssl/buffererr.h>
#include "crypto/buffererr.h"
#ifndef OPENSSL_NO_ERR
static const ERR_STRING_DATA BUF_str_reasons[] = {
{0, NULL}
};
#endif
int ossl_err_load_BUF_strings(void)
{
#ifndef OPENSSL_NO_ERR
if (ERR_reason_error_string(BUF_str_reasons[0].error) == NULL)
ERR_load_strings_const(BUF_str_reasons);
#endif
return 1;
}
| 767 | 23.774194 | 74 | c |
openssl | openssl-master/crypto/buffer/buffer.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include "internal/cryptlib.h"
#include <openssl/buffer.h>
/*
* LIMIT_BEFORE_EXPANSION is the maximum n such that (n+3)/3*4 < 2**31. That
* function is applied in several functions in this file and this limit
* ensures that the result fits in an int.
*/
#define LIMIT_BEFORE_EXPANSION 0x5ffffffc
BUF_MEM *BUF_MEM_new_ex(unsigned long flags)
{
BUF_MEM *ret;
ret = BUF_MEM_new();
if (ret != NULL)
ret->flags = flags;
return ret;
}
BUF_MEM *BUF_MEM_new(void)
{
BUF_MEM *ret;
ret = OPENSSL_zalloc(sizeof(*ret));
if (ret == NULL)
return NULL;
return ret;
}
void BUF_MEM_free(BUF_MEM *a)
{
if (a == NULL)
return;
if (a->data != NULL) {
if (a->flags & BUF_MEM_FLAG_SECURE)
OPENSSL_secure_clear_free(a->data, a->max);
else
OPENSSL_clear_free(a->data, a->max);
}
OPENSSL_free(a);
}
/* Allocate a block of secure memory; copy over old data if there
* was any, and then free it. */
static char *sec_alloc_realloc(BUF_MEM *str, size_t len)
{
char *ret;
ret = OPENSSL_secure_malloc(len);
if (str->data != NULL) {
if (ret != NULL) {
memcpy(ret, str->data, str->length);
OPENSSL_secure_clear_free(str->data, str->length);
str->data = NULL;
}
}
return ret;
}
size_t BUF_MEM_grow(BUF_MEM *str, size_t len)
{
char *ret;
size_t n;
if (str->length >= len) {
str->length = len;
return len;
}
if (str->max >= len) {
if (str->data != NULL)
memset(&str->data[str->length], 0, len - str->length);
str->length = len;
return len;
}
/* This limit is sufficient to ensure (len+3)/3*4 < 2**31 */
if (len > LIMIT_BEFORE_EXPANSION) {
ERR_raise(ERR_LIB_BUF, ERR_R_PASSED_INVALID_ARGUMENT);
return 0;
}
n = (len + 3) / 3 * 4;
if ((str->flags & BUF_MEM_FLAG_SECURE))
ret = sec_alloc_realloc(str, n);
else
ret = OPENSSL_realloc(str->data, n);
if (ret == NULL) {
len = 0;
} else {
str->data = ret;
str->max = n;
memset(&str->data[str->length], 0, len - str->length);
str->length = len;
}
return len;
}
size_t BUF_MEM_grow_clean(BUF_MEM *str, size_t len)
{
char *ret;
size_t n;
if (str->length >= len) {
if (str->data != NULL)
memset(&str->data[len], 0, str->length - len);
str->length = len;
return len;
}
if (str->max >= len) {
memset(&str->data[str->length], 0, len - str->length);
str->length = len;
return len;
}
/* This limit is sufficient to ensure (len+3)/3*4 < 2**31 */
if (len > LIMIT_BEFORE_EXPANSION) {
ERR_raise(ERR_LIB_BUF, ERR_R_PASSED_INVALID_ARGUMENT);
return 0;
}
n = (len + 3) / 3 * 4;
if ((str->flags & BUF_MEM_FLAG_SECURE))
ret = sec_alloc_realloc(str, n);
else
ret = OPENSSL_clear_realloc(str->data, str->max, n);
if (ret == NULL) {
len = 0;
} else {
str->data = ret;
str->max = n;
memset(&str->data[str->length], 0, len - str->length);
str->length = len;
}
return len;
}
void BUF_reverse(unsigned char *out, const unsigned char *in, size_t size)
{
size_t i;
if (in) {
out += size - 1;
for (i = 0; i < size; i++)
*out-- = *in++;
} else {
unsigned char *q;
char c;
q = out + size - 1;
for (i = 0; i < size / 2; i++) {
c = *q;
*q-- = *out;
*out++ = c;
}
}
}
| 4,002 | 23.709877 | 76 | c |
openssl | openssl-master/crypto/camellia/cmll_cbc.c | /*
* Copyright 2006-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* Camellia low level APIs are deprecated for public use, but still ok for
* internal use.
*/
#include "internal/deprecated.h"
#include <openssl/camellia.h>
#include <openssl/modes.h>
void Camellia_cbc_encrypt(const unsigned char *in, unsigned char *out,
size_t len, const CAMELLIA_KEY *key,
unsigned char *ivec, const int enc)
{
if (enc)
CRYPTO_cbc128_encrypt(in, out, len, key, ivec,
(block128_f) Camellia_encrypt);
else
CRYPTO_cbc128_decrypt(in, out, len, key, ivec,
(block128_f) Camellia_decrypt);
}
| 985 | 30.806452 | 74 | c |
openssl | openssl-master/crypto/camellia/cmll_cfb.c | /*
* Copyright 2006-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* Camellia low level APIs are deprecated for public use, but still ok for
* internal use.
*/
#include "internal/deprecated.h"
#include <openssl/camellia.h>
#include <openssl/modes.h>
/*
* The input and output encrypted as though 128bit cfb mode is being used.
* The extra state information to record how much of the 128bit block we have
* used is contained in *num;
*/
void Camellia_cfb128_encrypt(const unsigned char *in, unsigned char *out,
size_t length, const CAMELLIA_KEY *key,
unsigned char *ivec, int *num, const int enc)
{
CRYPTO_cfb128_encrypt(in, out, length, key, ivec, num, enc,
(block128_f) Camellia_encrypt);
}
/* N.B. This expects the input to be packed, MS bit first */
void Camellia_cfb1_encrypt(const unsigned char *in, unsigned char *out,
size_t length, const CAMELLIA_KEY *key,
unsigned char *ivec, int *num, const int enc)
{
CRYPTO_cfb128_1_encrypt(in, out, length, key, ivec, num, enc,
(block128_f) Camellia_encrypt);
}
void Camellia_cfb8_encrypt(const unsigned char *in, unsigned char *out,
size_t length, const CAMELLIA_KEY *key,
unsigned char *ivec, int *num, const int enc)
{
CRYPTO_cfb128_8_encrypt(in, out, length, key, ivec, num, enc,
(block128_f) Camellia_encrypt);
}
| 1,811 | 35.24 | 77 | c |
openssl | openssl-master/crypto/camellia/cmll_ctr.c | /*
* Copyright 2006-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* Camellia low level APIs are deprecated for public use, but still ok for
* internal use.
*/
#include "internal/deprecated.h"
#include <openssl/camellia.h>
#include <openssl/modes.h>
void Camellia_ctr128_encrypt(const unsigned char *in, unsigned char *out,
size_t length, const CAMELLIA_KEY *key,
unsigned char ivec[CAMELLIA_BLOCK_SIZE],
unsigned char ecount_buf[CAMELLIA_BLOCK_SIZE],
unsigned int *num)
{
CRYPTO_ctr128_encrypt(in, out, length, key, ivec, ecount_buf, num,
(block128_f) Camellia_encrypt);
}
| 999 | 33.482759 | 75 | c |
openssl | openssl-master/crypto/camellia/cmll_ecb.c | /*
* Copyright 2006-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* Camellia low level APIs are deprecated for public use, but still ok for
* internal use.
*/
#include "internal/deprecated.h"
#include <openssl/camellia.h>
#include "cmll_local.h"
void Camellia_ecb_encrypt(const unsigned char *in, unsigned char *out,
const CAMELLIA_KEY *key, const int enc)
{
if (CAMELLIA_ENCRYPT == enc)
Camellia_encrypt(in, out, key);
else
Camellia_decrypt(in, out, key);
}
| 788 | 28.222222 | 74 | c |
openssl | openssl-master/crypto/camellia/cmll_local.h | /*
* Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* ====================================================================
* Copyright 2006 NTT (Nippon Telegraph and Telephone Corporation) .
* ALL RIGHTS RESERVED.
*
* Intellectual Property information for Camellia:
* http://info.isl.ntt.co.jp/crypt/eng/info/chiteki.html
*
* News Release for Announcement of Camellia open source:
* http://www.ntt.co.jp/news/news06e/0604/060413a.html
*
* The Camellia Code included herein is developed by
* NTT (Nippon Telegraph and Telephone Corporation), and is contributed
* to the OpenSSL project.
*/
#ifndef OSSL_CRYPTO_CAMELLIA_CMLL_LOCAL_H
# define OSSL_CRYPTO_CAMELLIA_CMLL_LOCAL_H
typedef unsigned int u32;
typedef unsigned char u8;
int Camellia_Ekeygen(int keyBitLength, const u8 *rawKey,
KEY_TABLE_TYPE keyTable);
void Camellia_EncryptBlock_Rounds(int grandRounds, const u8 plaintext[],
const KEY_TABLE_TYPE keyTable,
u8 ciphertext[]);
void Camellia_DecryptBlock_Rounds(int grandRounds, const u8 ciphertext[],
const KEY_TABLE_TYPE keyTable,
u8 plaintext[]);
void Camellia_EncryptBlock(int keyBitLength, const u8 plaintext[],
const KEY_TABLE_TYPE keyTable, u8 ciphertext[]);
void Camellia_DecryptBlock(int keyBitLength, const u8 ciphertext[],
const KEY_TABLE_TYPE keyTable, u8 plaintext[]);
#endif /* #ifndef OSSL_CRYPTO_CAMELLIA_CMLL_LOCAL_H */
| 1,886 | 41.886364 | 79 | h |
openssl | openssl-master/crypto/camellia/cmll_misc.c | /*
* Copyright 2006-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* Camellia low level APIs are deprecated for public use, but still ok for
* internal use.
*/
#include "internal/deprecated.h"
#include <openssl/opensslv.h>
#include <openssl/camellia.h>
#include "cmll_local.h"
int Camellia_set_key(const unsigned char *userKey, const int bits,
CAMELLIA_KEY *key)
{
if (!userKey || !key)
return -1;
if (bits != 128 && bits != 192 && bits != 256)
return -2;
key->grand_rounds = Camellia_Ekeygen(bits, userKey, key->u.rd_key);
return 0;
}
void Camellia_encrypt(const unsigned char *in, unsigned char *out,
const CAMELLIA_KEY *key)
{
Camellia_EncryptBlock_Rounds(key->grand_rounds, in, key->u.rd_key, out);
}
void Camellia_decrypt(const unsigned char *in, unsigned char *out,
const CAMELLIA_KEY *key)
{
Camellia_DecryptBlock_Rounds(key->grand_rounds, in, key->u.rd_key, out);
}
| 1,259 | 29 | 76 | c |
openssl | openssl-master/crypto/camellia/cmll_ofb.c | /*
* Copyright 2006-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* Camellia low level APIs are deprecated for public use, but still ok for
* internal use.
*/
#include "internal/deprecated.h"
#include <openssl/camellia.h>
#include <openssl/modes.h>
/*
* The input and output encrypted as though 128bit ofb mode is being used.
* The extra state information to record how much of the 128bit block we have
* used is contained in *num;
*/
void Camellia_ofb128_encrypt(const unsigned char *in, unsigned char *out,
size_t length, const CAMELLIA_KEY *key,
unsigned char *ivec, int *num)
{
CRYPTO_ofb128_encrypt(in, out, length, key, ivec, num,
(block128_f) Camellia_encrypt);
}
| 1,042 | 32.645161 | 77 | c |
openssl | openssl-master/crypto/cast/c_cfb64.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* CAST low level APIs are deprecated for public use, but still ok for
* internal use.
*/
#include "internal/deprecated.h"
#include <openssl/cast.h>
#include "cast_local.h"
/*
* The input and output encrypted as though 64bit cfb mode is being used.
* The extra state information to record how much of the 64bit block we have
* used is contained in *num;
*/
void CAST_cfb64_encrypt(const unsigned char *in, unsigned char *out,
long length, const CAST_KEY *schedule,
unsigned char *ivec, int *num, int enc)
{
register CAST_LONG v0, v1, t;
register int n = *num;
register long l = length;
CAST_LONG ti[2];
unsigned char *iv, c, cc;
iv = ivec;
if (enc) {
while (l--) {
if (n == 0) {
n2l(iv, v0);
ti[0] = v0;
n2l(iv, v1);
ti[1] = v1;
CAST_encrypt((CAST_LONG *)ti, schedule);
iv = ivec;
t = ti[0];
l2n(t, iv);
t = ti[1];
l2n(t, iv);
iv = ivec;
}
c = *(in++) ^ iv[n];
*(out++) = c;
iv[n] = c;
n = (n + 1) & 0x07;
}
} else {
while (l--) {
if (n == 0) {
n2l(iv, v0);
ti[0] = v0;
n2l(iv, v1);
ti[1] = v1;
CAST_encrypt((CAST_LONG *)ti, schedule);
iv = ivec;
t = ti[0];
l2n(t, iv);
t = ti[1];
l2n(t, iv);
iv = ivec;
}
cc = *(in++);
c = iv[n];
iv[n] = cc;
*(out++) = c ^ cc;
n = (n + 1) & 0x07;
}
}
v0 = v1 = ti[0] = ti[1] = t = c = cc = 0;
*num = n;
}
| 2,222 | 26.444444 | 76 | c |
openssl | openssl-master/crypto/cast/c_ecb.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* CAST low level APIs are deprecated for public use, but still ok for
* internal use.
*/
#include "internal/deprecated.h"
#include <openssl/cast.h>
#include "cast_local.h"
#include <openssl/opensslv.h>
void CAST_ecb_encrypt(const unsigned char *in, unsigned char *out,
const CAST_KEY *ks, int enc)
{
CAST_LONG l, d[2];
n2l(in, l);
d[0] = l;
n2l(in, l);
d[1] = l;
if (enc)
CAST_encrypt(d, ks);
else
CAST_decrypt(d, ks);
l = d[0];
l2n(l, out);
l = d[1];
l2n(l, out);
l = d[0] = d[1] = 0;
}
| 920 | 22.615385 | 74 | c |
openssl | openssl-master/crypto/cast/c_enc.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* CAST low level APIs are deprecated for public use, but still ok for
* internal use.
*/
#include "internal/deprecated.h"
#include <openssl/cast.h>
#include "cast_local.h"
void CAST_encrypt(CAST_LONG *data, const CAST_KEY *key)
{
CAST_LONG l, r, t;
const CAST_LONG *k;
k = &(key->data[0]);
l = data[0];
r = data[1];
E_CAST(0, k, l, r, +, ^, -);
E_CAST(1, k, r, l, ^, -, +);
E_CAST(2, k, l, r, -, +, ^);
E_CAST(3, k, r, l, +, ^, -);
E_CAST(4, k, l, r, ^, -, +);
E_CAST(5, k, r, l, -, +, ^);
E_CAST(6, k, l, r, +, ^, -);
E_CAST(7, k, r, l, ^, -, +);
E_CAST(8, k, l, r, -, +, ^);
E_CAST(9, k, r, l, +, ^, -);
E_CAST(10, k, l, r, ^, -, +);
E_CAST(11, k, r, l, -, +, ^);
if (!key->short_key) {
E_CAST(12, k, l, r, +, ^, -);
E_CAST(13, k, r, l, ^, -, +);
E_CAST(14, k, l, r, -, +, ^);
E_CAST(15, k, r, l, +, ^, -);
}
data[1] = l & 0xffffffffL;
data[0] = r & 0xffffffffL;
}
void CAST_decrypt(CAST_LONG *data, const CAST_KEY *key)
{
CAST_LONG l, r, t;
const CAST_LONG *k;
k = &(key->data[0]);
l = data[0];
r = data[1];
if (!key->short_key) {
E_CAST(15, k, l, r, +, ^, -);
E_CAST(14, k, r, l, -, +, ^);
E_CAST(13, k, l, r, ^, -, +);
E_CAST(12, k, r, l, +, ^, -);
}
E_CAST(11, k, l, r, -, +, ^);
E_CAST(10, k, r, l, ^, -, +);
E_CAST(9, k, l, r, +, ^, -);
E_CAST(8, k, r, l, -, +, ^);
E_CAST(7, k, l, r, ^, -, +);
E_CAST(6, k, r, l, +, ^, -);
E_CAST(5, k, l, r, -, +, ^);
E_CAST(4, k, r, l, ^, -, +);
E_CAST(3, k, l, r, +, ^, -);
E_CAST(2, k, r, l, -, +, ^);
E_CAST(1, k, l, r, ^, -, +);
E_CAST(0, k, r, l, +, ^, -);
data[1] = l & 0xffffffffL;
data[0] = r & 0xffffffffL;
}
void CAST_cbc_encrypt(const unsigned char *in, unsigned char *out,
long length, const CAST_KEY *ks, unsigned char *iv,
int enc)
{
register CAST_LONG tin0, tin1;
register CAST_LONG tout0, tout1, xor0, xor1;
register long l = length;
CAST_LONG tin[2];
if (enc) {
n2l(iv, tout0);
n2l(iv, tout1);
iv -= 8;
for (l -= 8; l >= 0; l -= 8) {
n2l(in, tin0);
n2l(in, tin1);
tin0 ^= tout0;
tin1 ^= tout1;
tin[0] = tin0;
tin[1] = tin1;
CAST_encrypt(tin, ks);
tout0 = tin[0];
tout1 = tin[1];
l2n(tout0, out);
l2n(tout1, out);
}
if (l != -8) {
n2ln(in, tin0, tin1, l + 8);
tin0 ^= tout0;
tin1 ^= tout1;
tin[0] = tin0;
tin[1] = tin1;
CAST_encrypt(tin, ks);
tout0 = tin[0];
tout1 = tin[1];
l2n(tout0, out);
l2n(tout1, out);
}
l2n(tout0, iv);
l2n(tout1, iv);
} else {
n2l(iv, xor0);
n2l(iv, xor1);
iv -= 8;
for (l -= 8; l >= 0; l -= 8) {
n2l(in, tin0);
n2l(in, tin1);
tin[0] = tin0;
tin[1] = tin1;
CAST_decrypt(tin, ks);
tout0 = tin[0] ^ xor0;
tout1 = tin[1] ^ xor1;
l2n(tout0, out);
l2n(tout1, out);
xor0 = tin0;
xor1 = tin1;
}
if (l != -8) {
n2l(in, tin0);
n2l(in, tin1);
tin[0] = tin0;
tin[1] = tin1;
CAST_decrypt(tin, ks);
tout0 = tin[0] ^ xor0;
tout1 = tin[1] ^ xor1;
l2nn(tout0, tout1, out, l + 8);
xor0 = tin0;
xor1 = tin1;
}
l2n(xor0, iv);
l2n(xor1, iv);
}
tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0;
tin[0] = tin[1] = 0;
}
| 4,193 | 25.544304 | 74 | c |
openssl | openssl-master/crypto/cast/c_ofb64.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* CAST low level APIs are deprecated for public use, but still ok for
* internal use.
*/
#include "internal/deprecated.h"
#include <openssl/cast.h>
#include "cast_local.h"
/*
* The input and output encrypted as though 64bit ofb mode is being used.
* The extra state information to record how much of the 64bit block we have
* used is contained in *num;
*/
void CAST_ofb64_encrypt(const unsigned char *in, unsigned char *out,
long length, const CAST_KEY *schedule,
unsigned char *ivec, int *num)
{
register CAST_LONG v0, v1, t;
register int n = *num;
register long l = length;
unsigned char d[8];
register char *dp;
CAST_LONG ti[2];
unsigned char *iv;
int save = 0;
iv = ivec;
n2l(iv, v0);
n2l(iv, v1);
ti[0] = v0;
ti[1] = v1;
dp = (char *)d;
l2n(v0, dp);
l2n(v1, dp);
while (l--) {
if (n == 0) {
CAST_encrypt((CAST_LONG *)ti, schedule);
dp = (char *)d;
t = ti[0];
l2n(t, dp);
t = ti[1];
l2n(t, dp);
save++;
}
*(out++) = *(in++) ^ d[n];
n = (n + 1) & 0x07;
}
if (save) {
v0 = ti[0];
v1 = ti[1];
iv = ivec;
l2n(v0, iv);
l2n(v1, iv);
}
t = v0 = v1 = ti[0] = ti[1] = 0;
*num = n;
}
| 1,720 | 24.308824 | 76 | c |
openssl | openssl-master/crypto/cast/c_skey.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* CAST low level APIs are deprecated for public use, but still ok for
* internal use.
*/
#include "internal/deprecated.h"
#include <openssl/cast.h>
#include "cast_local.h"
#include "cast_s.h"
#define CAST_exp(l,A,a,n) \
A[n/4]=l; \
a[n+3]=(l )&0xff; \
a[n+2]=(l>> 8)&0xff; \
a[n+1]=(l>>16)&0xff; \
a[n+0]=(l>>24)&0xff;
#define S4 CAST_S_table4
#define S5 CAST_S_table5
#define S6 CAST_S_table6
#define S7 CAST_S_table7
void CAST_set_key(CAST_KEY *key, int len, const unsigned char *data)
{
CAST_LONG x[16];
CAST_LONG z[16];
CAST_LONG k[32];
CAST_LONG X[4], Z[4];
CAST_LONG l, *K;
int i;
for (i = 0; i < 16; i++)
x[i] = 0;
if (len > 16)
len = 16;
for (i = 0; i < len; i++)
x[i] = data[i];
if (len <= 10)
key->short_key = 1;
else
key->short_key = 0;
K = &k[0];
X[0] = ((x[0] << 24) | (x[1] << 16) | (x[2] << 8) | x[3]) & 0xffffffffL;
X[1] = ((x[4] << 24) | (x[5] << 16) | (x[6] << 8) | x[7]) & 0xffffffffL;
X[2] = ((x[8] << 24) | (x[9] << 16) | (x[10] << 8) | x[11]) & 0xffffffffL;
X[3] =
((x[12] << 24) | (x[13] << 16) | (x[14] << 8) | x[15]) & 0xffffffffL;
for (;;) {
l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]];
CAST_exp(l, Z, z, 0);
l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]];
CAST_exp(l, Z, z, 4);
l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]];
CAST_exp(l, Z, z, 8);
l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]];
CAST_exp(l, Z, z, 12);
K[0] = S4[z[8]] ^ S5[z[9]] ^ S6[z[7]] ^ S7[z[6]] ^ S4[z[2]];
K[1] = S4[z[10]] ^ S5[z[11]] ^ S6[z[5]] ^ S7[z[4]] ^ S5[z[6]];
K[2] = S4[z[12]] ^ S5[z[13]] ^ S6[z[3]] ^ S7[z[2]] ^ S6[z[9]];
K[3] = S4[z[14]] ^ S5[z[15]] ^ S6[z[1]] ^ S7[z[0]] ^ S7[z[12]];
l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]];
CAST_exp(l, X, x, 0);
l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]];
CAST_exp(l, X, x, 4);
l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]];
CAST_exp(l, X, x, 8);
l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]];
CAST_exp(l, X, x, 12);
K[4] = S4[x[3]] ^ S5[x[2]] ^ S6[x[12]] ^ S7[x[13]] ^ S4[x[8]];
K[5] = S4[x[1]] ^ S5[x[0]] ^ S6[x[14]] ^ S7[x[15]] ^ S5[x[13]];
K[6] = S4[x[7]] ^ S5[x[6]] ^ S6[x[8]] ^ S7[x[9]] ^ S6[x[3]];
K[7] = S4[x[5]] ^ S5[x[4]] ^ S6[x[10]] ^ S7[x[11]] ^ S7[x[7]];
l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]];
CAST_exp(l, Z, z, 0);
l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]];
CAST_exp(l, Z, z, 4);
l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]];
CAST_exp(l, Z, z, 8);
l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]];
CAST_exp(l, Z, z, 12);
K[8] = S4[z[3]] ^ S5[z[2]] ^ S6[z[12]] ^ S7[z[13]] ^ S4[z[9]];
K[9] = S4[z[1]] ^ S5[z[0]] ^ S6[z[14]] ^ S7[z[15]] ^ S5[z[12]];
K[10] = S4[z[7]] ^ S5[z[6]] ^ S6[z[8]] ^ S7[z[9]] ^ S6[z[2]];
K[11] = S4[z[5]] ^ S5[z[4]] ^ S6[z[10]] ^ S7[z[11]] ^ S7[z[6]];
l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]];
CAST_exp(l, X, x, 0);
l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]];
CAST_exp(l, X, x, 4);
l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]];
CAST_exp(l, X, x, 8);
l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]];
CAST_exp(l, X, x, 12);
K[12] = S4[x[8]] ^ S5[x[9]] ^ S6[x[7]] ^ S7[x[6]] ^ S4[x[3]];
K[13] = S4[x[10]] ^ S5[x[11]] ^ S6[x[5]] ^ S7[x[4]] ^ S5[x[7]];
K[14] = S4[x[12]] ^ S5[x[13]] ^ S6[x[3]] ^ S7[x[2]] ^ S6[x[8]];
K[15] = S4[x[14]] ^ S5[x[15]] ^ S6[x[1]] ^ S7[x[0]] ^ S7[x[13]];
if (K != k)
break;
K += 16;
}
for (i = 0; i < 16; i++) {
key->data[i * 2] = k[i];
key->data[i * 2 + 1] = ((k[i + 16]) + 16) & 0x1f;
}
}
| 4,587 | 35.704 | 78 | c |
openssl | openssl-master/crypto/cast/cast_local.h | /*
* Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#ifdef OPENSSL_SYS_WIN32
# include <stdlib.h>
#endif
/* NOTE - c is not incremented as per n2l */
#define n2ln(c,l1,l2,n) { \
c+=n; \
l1=l2=0; \
switch (n) { \
case 8: l2 =((unsigned long)(*(--(c)))) ; \
/* fall through */ \
case 7: l2|=((unsigned long)(*(--(c))))<< 8; \
/* fall through */ \
case 6: l2|=((unsigned long)(*(--(c))))<<16; \
/* fall through */ \
case 5: l2|=((unsigned long)(*(--(c))))<<24; \
/* fall through */ \
case 4: l1 =((unsigned long)(*(--(c)))) ; \
/* fall through */ \
case 3: l1|=((unsigned long)(*(--(c))))<< 8; \
/* fall through */ \
case 2: l1|=((unsigned long)(*(--(c))))<<16; \
/* fall through */ \
case 1: l1|=((unsigned long)(*(--(c))))<<24; \
} \
}
/* NOTE - c is not incremented as per l2n */
#define l2nn(l1,l2,c,n) { \
c+=n; \
switch (n) { \
case 8: *(--(c))=(unsigned char)(((l2) )&0xff); \
/* fall through */ \
case 7: *(--(c))=(unsigned char)(((l2)>> 8)&0xff); \
/* fall through */ \
case 6: *(--(c))=(unsigned char)(((l2)>>16)&0xff); \
/* fall through */ \
case 5: *(--(c))=(unsigned char)(((l2)>>24)&0xff); \
/* fall through */ \
case 4: *(--(c))=(unsigned char)(((l1) )&0xff); \
/* fall through */ \
case 3: *(--(c))=(unsigned char)(((l1)>> 8)&0xff); \
/* fall through */ \
case 2: *(--(c))=(unsigned char)(((l1)>>16)&0xff); \
/* fall through */ \
case 1: *(--(c))=(unsigned char)(((l1)>>24)&0xff); \
} \
}
#undef n2l
#define n2l(c,l) (l =((unsigned long)(*((c)++)))<<24L, \
l|=((unsigned long)(*((c)++)))<<16L, \
l|=((unsigned long)(*((c)++)))<< 8L, \
l|=((unsigned long)(*((c)++))))
#undef l2n
#define l2n(l,c) (*((c)++)=(unsigned char)(((l)>>24L)&0xff), \
*((c)++)=(unsigned char)(((l)>>16L)&0xff), \
*((c)++)=(unsigned char)(((l)>> 8L)&0xff), \
*((c)++)=(unsigned char)(((l) )&0xff))
#if defined(OPENSSL_SYS_WIN32) && defined(_MSC_VER)
# define ROTL(a,n) (_lrotl(a,n))
#else
# define ROTL(a,n) ((((a)<<(n))&0xffffffffL)|((a)>>((32-(n))&31)))
#endif
#define C_M 0x3fc
#define C_0 22L
#define C_1 14L
#define C_2 6L
#define C_3 2L /* left shift */
/* The rotate has an extra 16 added to it to help the x86 asm */
#if defined(CAST_PTR)
# define E_CAST(n,key,L,R,OP1,OP2,OP3) \
{ \
int i; \
t=(key[n*2] OP1 R)&0xffffffffL; \
i=key[n*2+1]; \
t=ROTL(t,i); \
L^= (((((*(CAST_LONG *)((unsigned char *) \
CAST_S_table0+((t>>C_2)&C_M)) OP2 \
*(CAST_LONG *)((unsigned char *) \
CAST_S_table1+((t<<C_3)&C_M)))&0xffffffffL) OP3 \
*(CAST_LONG *)((unsigned char *) \
CAST_S_table2+((t>>C_0)&C_M)))&0xffffffffL) OP1 \
*(CAST_LONG *)((unsigned char *) \
CAST_S_table3+((t>>C_1)&C_M)))&0xffffffffL; \
}
#elif defined(CAST_PTR2)
# define E_CAST(n,key,L,R,OP1,OP2,OP3) \
{ \
int i; \
CAST_LONG u,v,w; \
w=(key[n*2] OP1 R)&0xffffffffL; \
i=key[n*2+1]; \
w=ROTL(w,i); \
u=w>>C_2; \
v=w<<C_3; \
u&=C_M; \
v&=C_M; \
t= *(CAST_LONG *)((unsigned char *)CAST_S_table0+u); \
u=w>>C_0; \
t=(t OP2 *(CAST_LONG *)((unsigned char *)CAST_S_table1+v))&0xffffffffL;\
v=w>>C_1; \
u&=C_M; \
v&=C_M; \
t=(t OP3 *(CAST_LONG *)((unsigned char *)CAST_S_table2+u)&0xffffffffL);\
t=(t OP1 *(CAST_LONG *)((unsigned char *)CAST_S_table3+v)&0xffffffffL);\
L^=(t&0xffffffff); \
}
#else
# define E_CAST(n,key,L,R,OP1,OP2,OP3) \
{ \
CAST_LONG a,b,c,d; \
t=(key[n*2] OP1 R)&0xffffffff; \
t=ROTL(t,(key[n*2+1])); \
a=CAST_S_table0[(t>> 8)&0xff]; \
b=CAST_S_table1[(t )&0xff]; \
c=CAST_S_table2[(t>>24)&0xff]; \
d=CAST_S_table3[(t>>16)&0xff]; \
L^=(((((a OP2 b)&0xffffffffL) OP3 c)&0xffffffffL) OP1 d)&0xffffffffL; \
}
#endif
extern const CAST_LONG CAST_S_table0[256];
extern const CAST_LONG CAST_S_table1[256];
extern const CAST_LONG CAST_S_table2[256];
extern const CAST_LONG CAST_S_table3[256];
extern const CAST_LONG CAST_S_table4[256];
extern const CAST_LONG CAST_S_table5[256];
extern const CAST_LONG CAST_S_table6[256];
extern const CAST_LONG CAST_S_table7[256];
| 6,171 | 41.861111 | 80 | h |
openssl | openssl-master/crypto/chacha/chacha_enc.c | /*
* Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* Adapted from the public domain code by D. Bernstein from SUPERCOP. */
#include <string.h>
#include "internal/endian.h"
#include "crypto/chacha.h"
#include "crypto/ctype.h"
typedef unsigned int u32;
typedef unsigned char u8;
typedef union {
u32 u[16];
u8 c[64];
} chacha_buf;
# define ROTATE(v, n) (((v) << (n)) | ((v) >> (32 - (n))))
# ifndef PEDANTIC
# if defined(__GNUC__) && __GNUC__>=2 && \
!defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
# if defined(__riscv_zbb) || defined(__riscv_zbkb)
# if __riscv_xlen == 64
# undef ROTATE
# define ROTATE(x, n) ({ u32 ret; \
asm ("roriw %0, %1, %2" \
: "=r"(ret) \
: "r"(x), "i"(32 - (n))); ret;})
# endif
# if __riscv_xlen == 32
# undef ROTATE
# define ROTATE(x, n) ({ u32 ret; \
asm ("rori %0, %1, %2" \
: "=r"(ret) \
: "r"(x), "i"(32 - (n))); ret;})
# endif
# endif
# endif
# endif
# define U32TO8_LITTLE(p, v) do { \
(p)[0] = (u8)(v >> 0); \
(p)[1] = (u8)(v >> 8); \
(p)[2] = (u8)(v >> 16); \
(p)[3] = (u8)(v >> 24); \
} while(0)
/* QUARTERROUND updates a, b, c, d with a ChaCha "quarter" round. */
# define QUARTERROUND(a,b,c,d) ( \
x[a] += x[b], x[d] = ROTATE((x[d] ^ x[a]),16), \
x[c] += x[d], x[b] = ROTATE((x[b] ^ x[c]),12), \
x[a] += x[b], x[d] = ROTATE((x[d] ^ x[a]), 8), \
x[c] += x[d], x[b] = ROTATE((x[b] ^ x[c]), 7) )
/* chacha_core performs 20 rounds of ChaCha on the input words in
* |input| and writes the 64 output bytes to |output|. */
static void chacha20_core(chacha_buf *output, const u32 input[16])
{
u32 x[16];
int i;
DECLARE_IS_ENDIAN;
memcpy(x, input, sizeof(x));
for (i = 20; i > 0; i -= 2) {
QUARTERROUND(0, 4, 8, 12);
QUARTERROUND(1, 5, 9, 13);
QUARTERROUND(2, 6, 10, 14);
QUARTERROUND(3, 7, 11, 15);
QUARTERROUND(0, 5, 10, 15);
QUARTERROUND(1, 6, 11, 12);
QUARTERROUND(2, 7, 8, 13);
QUARTERROUND(3, 4, 9, 14);
}
if (IS_LITTLE_ENDIAN) {
for (i = 0; i < 16; ++i)
output->u[i] = x[i] + input[i];
} else {
for (i = 0; i < 16; ++i)
U32TO8_LITTLE(output->c + 4 * i, (x[i] + input[i]));
}
}
void ChaCha20_ctr32(unsigned char *out, const unsigned char *inp,
size_t len, const unsigned int key[8],
const unsigned int counter[4])
{
u32 input[16];
chacha_buf buf;
size_t todo, i;
/* sigma constant "expand 32-byte k" in little-endian encoding */
input[0] = ((u32)ossl_toascii('e')) | ((u32)ossl_toascii('x') << 8)
| ((u32)ossl_toascii('p') << 16)
| ((u32)ossl_toascii('a') << 24);
input[1] = ((u32)ossl_toascii('n')) | ((u32)ossl_toascii('d') << 8)
| ((u32)ossl_toascii(' ') << 16)
| ((u32)ossl_toascii('3') << 24);
input[2] = ((u32)ossl_toascii('2')) | ((u32)ossl_toascii('-') << 8)
| ((u32)ossl_toascii('b') << 16)
| ((u32)ossl_toascii('y') << 24);
input[3] = ((u32)ossl_toascii('t')) | ((u32)ossl_toascii('e') << 8)
| ((u32)ossl_toascii(' ') << 16)
| ((u32)ossl_toascii('k') << 24);
input[4] = key[0];
input[5] = key[1];
input[6] = key[2];
input[7] = key[3];
input[8] = key[4];
input[9] = key[5];
input[10] = key[6];
input[11] = key[7];
input[12] = counter[0];
input[13] = counter[1];
input[14] = counter[2];
input[15] = counter[3];
while (len > 0) {
todo = sizeof(buf);
if (len < todo)
todo = len;
chacha20_core(&buf, input);
for (i = 0; i < todo; i++)
out[i] = inp[i] ^ buf.c[i];
out += todo;
inp += todo;
len -= todo;
/*
* Advance 32-bit counter. Note that as subroutine is so to
* say nonce-agnostic, this limited counter width doesn't
* prevent caller from implementing wider counter. It would
* simply take two calls split on counter overflow...
*/
input[12]++;
}
}
| 4,844 | 31.086093 | 74 | c |
openssl | openssl-master/crypto/chacha/chacha_ppc.c | /*
* Copyright 2009-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdlib.h>
#include <string.h>
#include <openssl/opensslconf.h>
#include "crypto/chacha.h"
#include "crypto/ppc_arch.h"
void ChaCha20_ctr32_int(unsigned char *out, const unsigned char *inp,
size_t len, const unsigned int key[8],
const unsigned int counter[4]);
void ChaCha20_ctr32_vmx(unsigned char *out, const unsigned char *inp,
size_t len, const unsigned int key[8],
const unsigned int counter[4]);
void ChaCha20_ctr32_vsx(unsigned char *out, const unsigned char *inp,
size_t len, const unsigned int key[8],
const unsigned int counter[4]);
void ChaCha20_ctr32_vsx_p10(unsigned char *out, const unsigned char *inp,
size_t len, const unsigned int key[8],
const unsigned int counter[4]);
void ChaCha20_ctr32(unsigned char *out, const unsigned char *inp,
size_t len, const unsigned int key[8],
const unsigned int counter[4])
{
#if !defined(OPENSSL_SYS_AIX) && !defined(OPENSSL_SYS_MACOSX)
OPENSSL_ppccap_P & PPC_BRD31
? ChaCha20_ctr32_vsx_p10(out, inp, len, key, counter) :
#endif
OPENSSL_ppccap_P & PPC_CRYPTO207
? ChaCha20_ctr32_vsx(out, inp, len, key, counter)
: OPENSSL_ppccap_P & PPC_ALTIVEC
? ChaCha20_ctr32_vmx(out, inp, len, key, counter)
: ChaCha20_ctr32_int(out, inp, len, key, counter);
}
| 1,859 | 42.255814 | 74 | c |
openssl | openssl-master/crypto/cmac/cmac.c | /*
* Copyright 2010-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* CMAC low level APIs are deprecated for public use, but still ok for internal
* use.
*/
#include "internal/deprecated.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "internal/cryptlib.h"
#include <openssl/cmac.h>
#include <openssl/err.h>
#define LOCAL_BUF_SIZE 2048
struct CMAC_CTX_st {
/* Cipher context to use */
EVP_CIPHER_CTX *cctx;
/* Keys k1 and k2 */
unsigned char k1[EVP_MAX_BLOCK_LENGTH];
unsigned char k2[EVP_MAX_BLOCK_LENGTH];
/* Temporary block */
unsigned char tbl[EVP_MAX_BLOCK_LENGTH];
/* Last (possibly partial) block */
unsigned char last_block[EVP_MAX_BLOCK_LENGTH];
/* Number of bytes in last block: -1 means context not initialised */
int nlast_block;
};
/* Make temporary keys K1 and K2 */
static void make_kn(unsigned char *k1, const unsigned char *l, int bl)
{
int i;
unsigned char c = l[0], carry = c >> 7, cnext;
/* Shift block to left, including carry */
for (i = 0; i < bl - 1; i++, c = cnext)
k1[i] = (c << 1) | ((cnext = l[i + 1]) >> 7);
/* If MSB set fixup with R */
k1[i] = (c << 1) ^ ((0 - carry) & (bl == 16 ? 0x87 : 0x1b));
}
CMAC_CTX *CMAC_CTX_new(void)
{
CMAC_CTX *ctx;
if ((ctx = OPENSSL_malloc(sizeof(*ctx))) == NULL)
return NULL;
ctx->cctx = EVP_CIPHER_CTX_new();
if (ctx->cctx == NULL) {
OPENSSL_free(ctx);
return NULL;
}
ctx->nlast_block = -1;
return ctx;
}
void CMAC_CTX_cleanup(CMAC_CTX *ctx)
{
EVP_CIPHER_CTX_reset(ctx->cctx);
OPENSSL_cleanse(ctx->tbl, EVP_MAX_BLOCK_LENGTH);
OPENSSL_cleanse(ctx->k1, EVP_MAX_BLOCK_LENGTH);
OPENSSL_cleanse(ctx->k2, EVP_MAX_BLOCK_LENGTH);
OPENSSL_cleanse(ctx->last_block, EVP_MAX_BLOCK_LENGTH);
ctx->nlast_block = -1;
}
EVP_CIPHER_CTX *CMAC_CTX_get0_cipher_ctx(CMAC_CTX *ctx)
{
return ctx->cctx;
}
void CMAC_CTX_free(CMAC_CTX *ctx)
{
if (!ctx)
return;
CMAC_CTX_cleanup(ctx);
EVP_CIPHER_CTX_free(ctx->cctx);
OPENSSL_free(ctx);
}
int CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in)
{
int bl;
if (in->nlast_block == -1)
return 0;
if ((bl = EVP_CIPHER_CTX_get_block_size(in->cctx)) < 0)
return 0;
if (!EVP_CIPHER_CTX_copy(out->cctx, in->cctx))
return 0;
memcpy(out->k1, in->k1, bl);
memcpy(out->k2, in->k2, bl);
memcpy(out->tbl, in->tbl, bl);
memcpy(out->last_block, in->last_block, bl);
out->nlast_block = in->nlast_block;
return 1;
}
int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t keylen,
const EVP_CIPHER *cipher, ENGINE *impl)
{
static const unsigned char zero_iv[EVP_MAX_BLOCK_LENGTH] = { 0 };
/* All zeros means restart */
if (!key && !cipher && !impl && keylen == 0) {
/* Not initialised */
if (ctx->nlast_block == -1)
return 0;
if (!EVP_EncryptInit_ex(ctx->cctx, NULL, NULL, NULL, zero_iv))
return 0;
memset(ctx->tbl, 0, EVP_CIPHER_CTX_get_block_size(ctx->cctx));
ctx->nlast_block = 0;
return 1;
}
/* Initialise context */
if (cipher != NULL) {
/* Ensure we can't use this ctx until we also have a key */
ctx->nlast_block = -1;
if (!EVP_EncryptInit_ex(ctx->cctx, cipher, impl, NULL, NULL))
return 0;
}
/* Non-NULL key means initialisation complete */
if (key != NULL) {
int bl;
/* If anything fails then ensure we can't use this ctx */
ctx->nlast_block = -1;
if (EVP_CIPHER_CTX_get0_cipher(ctx->cctx) == NULL)
return 0;
if (EVP_CIPHER_CTX_set_key_length(ctx->cctx, keylen) <= 0)
return 0;
if (!EVP_EncryptInit_ex(ctx->cctx, NULL, NULL, key, zero_iv))
return 0;
if ((bl = EVP_CIPHER_CTX_get_block_size(ctx->cctx)) < 0)
return 0;
if (EVP_Cipher(ctx->cctx, ctx->tbl, zero_iv, bl) <= 0)
return 0;
make_kn(ctx->k1, ctx->tbl, bl);
make_kn(ctx->k2, ctx->k1, bl);
OPENSSL_cleanse(ctx->tbl, bl);
/* Reset context again ready for first data block */
if (!EVP_EncryptInit_ex(ctx->cctx, NULL, NULL, NULL, zero_iv))
return 0;
/* Zero tbl so resume works */
memset(ctx->tbl, 0, bl);
ctx->nlast_block = 0;
}
return 1;
}
int CMAC_Update(CMAC_CTX *ctx, const void *in, size_t dlen)
{
const unsigned char *data = in;
int bl;
size_t max_burst_blocks, cipher_blocks;
unsigned char buf[LOCAL_BUF_SIZE];
if (ctx->nlast_block == -1)
return 0;
if (dlen == 0)
return 1;
if ((bl = EVP_CIPHER_CTX_get_block_size(ctx->cctx)) < 0)
return 0;
/* Copy into partial block if we need to */
if (ctx->nlast_block > 0) {
size_t nleft;
nleft = bl - ctx->nlast_block;
if (dlen < nleft)
nleft = dlen;
memcpy(ctx->last_block + ctx->nlast_block, data, nleft);
dlen -= nleft;
ctx->nlast_block += nleft;
/* If no more to process return */
if (dlen == 0)
return 1;
data += nleft;
/* Else not final block so encrypt it */
if (EVP_Cipher(ctx->cctx, ctx->tbl, ctx->last_block, bl) <= 0)
return 0;
}
/* Encrypt all but one of the complete blocks left */
max_burst_blocks = LOCAL_BUF_SIZE / bl;
cipher_blocks = (dlen - 1) / bl;
if (max_burst_blocks == 0) {
/*
* When block length is greater than local buffer size,
* use ctx->tbl as cipher output.
*/
while (dlen > (size_t)bl) {
if (EVP_Cipher(ctx->cctx, ctx->tbl, data, bl) <= 0)
return 0;
dlen -= bl;
data += bl;
}
} else {
while (cipher_blocks > max_burst_blocks) {
if (EVP_Cipher(ctx->cctx, buf, data, max_burst_blocks * bl) <= 0)
return 0;
dlen -= max_burst_blocks * bl;
data += max_burst_blocks * bl;
cipher_blocks -= max_burst_blocks;
}
if (cipher_blocks > 0) {
if (EVP_Cipher(ctx->cctx, buf, data, cipher_blocks * bl) <= 0)
return 0;
dlen -= cipher_blocks * bl;
data += cipher_blocks * bl;
memcpy(ctx->tbl, &buf[(cipher_blocks - 1) * bl], bl);
}
}
/* Copy any data left to last block buffer */
memcpy(ctx->last_block, data, dlen);
ctx->nlast_block = dlen;
return 1;
}
int CMAC_Final(CMAC_CTX *ctx, unsigned char *out, size_t *poutlen)
{
int i, bl, lb;
if (ctx->nlast_block == -1)
return 0;
if ((bl = EVP_CIPHER_CTX_get_block_size(ctx->cctx)) < 0)
return 0;
if (poutlen != NULL)
*poutlen = (size_t)bl;
if (!out)
return 1;
lb = ctx->nlast_block;
/* Is last block complete? */
if (lb == bl) {
for (i = 0; i < bl; i++)
out[i] = ctx->last_block[i] ^ ctx->k1[i];
} else {
ctx->last_block[lb] = 0x80;
if (bl - lb > 1)
memset(ctx->last_block + lb + 1, 0, bl - lb - 1);
for (i = 0; i < bl; i++)
out[i] = ctx->last_block[i] ^ ctx->k2[i];
}
if (EVP_Cipher(ctx->cctx, out, out, bl) <= 0) {
OPENSSL_cleanse(out, bl);
return 0;
}
return 1;
}
int CMAC_resume(CMAC_CTX *ctx)
{
if (ctx->nlast_block == -1)
return 0;
/*
* The buffer "tbl" contains the last fully encrypted block which is the
* last IV (or all zeroes if no last encrypted block). The last block has
* not been modified since CMAC_final(). So reinitialising using the last
* decrypted block will allow CMAC to continue after calling
* CMAC_Final().
*/
return EVP_EncryptInit_ex(ctx->cctx, NULL, NULL, NULL, ctx->tbl);
}
| 8,174 | 28.727273 | 79 | c |
openssl | openssl-master/crypto/cmp/cmp_asn.c | /*
* Copyright 2007-2021 The OpenSSL Project Authors. All Rights Reserved.
* Copyright Nokia 2007-2019
* Copyright Siemens AG 2015-2019
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/asn1t.h>
#include "cmp_local.h"
/* explicit #includes not strictly needed since implied by the above: */
#include <openssl/cmp.h>
#include <openssl/crmf.h>
/* ASN.1 declarations from RFC4210 */
ASN1_SEQUENCE(OSSL_CMP_REVANNCONTENT) = {
/* OSSL_CMP_PKISTATUS is effectively ASN1_INTEGER so it is used directly */
ASN1_SIMPLE(OSSL_CMP_REVANNCONTENT, status, ASN1_INTEGER),
ASN1_SIMPLE(OSSL_CMP_REVANNCONTENT, certId, OSSL_CRMF_CERTID),
ASN1_SIMPLE(OSSL_CMP_REVANNCONTENT, willBeRevokedAt, ASN1_GENERALIZEDTIME),
ASN1_SIMPLE(OSSL_CMP_REVANNCONTENT, badSinceDate, ASN1_GENERALIZEDTIME),
ASN1_OPT(OSSL_CMP_REVANNCONTENT, crlDetails, X509_EXTENSIONS)
} ASN1_SEQUENCE_END(OSSL_CMP_REVANNCONTENT)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CMP_REVANNCONTENT)
ASN1_SEQUENCE(OSSL_CMP_CHALLENGE) = {
ASN1_OPT(OSSL_CMP_CHALLENGE, owf, X509_ALGOR),
ASN1_SIMPLE(OSSL_CMP_CHALLENGE, witness, ASN1_OCTET_STRING),
ASN1_SIMPLE(OSSL_CMP_CHALLENGE, challenge, ASN1_OCTET_STRING)
} ASN1_SEQUENCE_END(OSSL_CMP_CHALLENGE)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CMP_CHALLENGE)
ASN1_ITEM_TEMPLATE(OSSL_CMP_POPODECKEYCHALLCONTENT) =
ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
OSSL_CMP_POPODECKEYCHALLCONTENT, OSSL_CMP_CHALLENGE)
ASN1_ITEM_TEMPLATE_END(OSSL_CMP_POPODECKEYCHALLCONTENT)
ASN1_ITEM_TEMPLATE(OSSL_CMP_POPODECKEYRESPCONTENT) =
ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
OSSL_CMP_POPODECKEYRESPCONTENT, ASN1_INTEGER)
ASN1_ITEM_TEMPLATE_END(OSSL_CMP_POPODECKEYRESPCONTENT)
ASN1_SEQUENCE(OSSL_CMP_CAKEYUPDANNCONTENT) = {
/* OSSL_CMP_CMPCERTIFICATE is effectively X509 so it is used directly */
ASN1_SIMPLE(OSSL_CMP_CAKEYUPDANNCONTENT, oldWithNew, X509),
/* OSSL_CMP_CMPCERTIFICATE is effectively X509 so it is used directly */
ASN1_SIMPLE(OSSL_CMP_CAKEYUPDANNCONTENT, newWithOld, X509),
/* OSSL_CMP_CMPCERTIFICATE is effectively X509 so it is used directly */
ASN1_SIMPLE(OSSL_CMP_CAKEYUPDANNCONTENT, newWithNew, X509)
} ASN1_SEQUENCE_END(OSSL_CMP_CAKEYUPDANNCONTENT)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CMP_CAKEYUPDANNCONTENT)
ASN1_SEQUENCE(OSSL_CMP_ERRORMSGCONTENT) = {
ASN1_SIMPLE(OSSL_CMP_ERRORMSGCONTENT, pKIStatusInfo, OSSL_CMP_PKISI),
ASN1_OPT(OSSL_CMP_ERRORMSGCONTENT, errorCode, ASN1_INTEGER),
/*
* OSSL_CMP_PKIFREETEXT is effectively a sequence of ASN1_UTF8STRING
* so it is used directly
*
*/
ASN1_SEQUENCE_OF_OPT(OSSL_CMP_ERRORMSGCONTENT, errorDetails,
ASN1_UTF8STRING)
} ASN1_SEQUENCE_END(OSSL_CMP_ERRORMSGCONTENT)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CMP_ERRORMSGCONTENT)
ASN1_ADB_TEMPLATE(infotypeandvalue_default) = ASN1_OPT(OSSL_CMP_ITAV,
infoValue.other,
ASN1_ANY);
/* ITAV means InfoTypeAndValue */
ASN1_ADB(OSSL_CMP_ITAV) = {
/* OSSL_CMP_CMPCERTIFICATE is effectively X509 so it is used directly */
ADB_ENTRY(NID_id_it_caProtEncCert, ASN1_OPT(OSSL_CMP_ITAV,
infoValue.caProtEncCert, X509)),
ADB_ENTRY(NID_id_it_signKeyPairTypes,
ASN1_SEQUENCE_OF_OPT(OSSL_CMP_ITAV,
infoValue.signKeyPairTypes, X509_ALGOR)),
ADB_ENTRY(NID_id_it_encKeyPairTypes,
ASN1_SEQUENCE_OF_OPT(OSSL_CMP_ITAV,
infoValue.encKeyPairTypes, X509_ALGOR)),
ADB_ENTRY(NID_id_it_preferredSymmAlg,
ASN1_OPT(OSSL_CMP_ITAV, infoValue.preferredSymmAlg,
X509_ALGOR)),
ADB_ENTRY(NID_id_it_caKeyUpdateInfo,
ASN1_OPT(OSSL_CMP_ITAV, infoValue.caKeyUpdateInfo,
OSSL_CMP_CAKEYUPDANNCONTENT)),
ADB_ENTRY(NID_id_it_currentCRL,
ASN1_OPT(OSSL_CMP_ITAV, infoValue.currentCRL, X509_CRL)),
ADB_ENTRY(NID_id_it_unsupportedOIDs,
ASN1_SEQUENCE_OF_OPT(OSSL_CMP_ITAV,
infoValue.unsupportedOIDs, ASN1_OBJECT)),
ADB_ENTRY(NID_id_it_keyPairParamReq,
ASN1_OPT(OSSL_CMP_ITAV, infoValue.keyPairParamReq,
ASN1_OBJECT)),
ADB_ENTRY(NID_id_it_keyPairParamRep,
ASN1_OPT(OSSL_CMP_ITAV, infoValue.keyPairParamRep,
X509_ALGOR)),
ADB_ENTRY(NID_id_it_revPassphrase,
ASN1_OPT(OSSL_CMP_ITAV, infoValue.revPassphrase,
OSSL_CRMF_ENCRYPTEDVALUE)),
ADB_ENTRY(NID_id_it_implicitConfirm,
ASN1_OPT(OSSL_CMP_ITAV, infoValue.implicitConfirm,
ASN1_NULL)),
ADB_ENTRY(NID_id_it_confirmWaitTime,
ASN1_OPT(OSSL_CMP_ITAV, infoValue.confirmWaitTime,
ASN1_GENERALIZEDTIME)),
ADB_ENTRY(NID_id_it_origPKIMessage,
ASN1_OPT(OSSL_CMP_ITAV, infoValue.origPKIMessage,
OSSL_CMP_MSGS)),
ADB_ENTRY(NID_id_it_suppLangTags,
ASN1_SEQUENCE_OF_OPT(OSSL_CMP_ITAV, infoValue.suppLangTagsValue,
ASN1_UTF8STRING)),
ADB_ENTRY(NID_id_it_caCerts,
ASN1_SEQUENCE_OF_OPT(OSSL_CMP_ITAV, infoValue.caCerts, X509)),
ADB_ENTRY(NID_id_it_rootCaCert,
ASN1_OPT(OSSL_CMP_ITAV, infoValue.rootCaCert, X509)),
ADB_ENTRY(NID_id_it_rootCaKeyUpdate,
ASN1_OPT(OSSL_CMP_ITAV, infoValue.rootCaKeyUpdate,
OSSL_CMP_ROOTCAKEYUPDATE)),
} ASN1_ADB_END(OSSL_CMP_ITAV, 0, infoType, 0,
&infotypeandvalue_default_tt, NULL);
ASN1_SEQUENCE(OSSL_CMP_ITAV) = {
ASN1_SIMPLE(OSSL_CMP_ITAV, infoType, ASN1_OBJECT),
ASN1_ADB_OBJECT(OSSL_CMP_ITAV)
} ASN1_SEQUENCE_END(OSSL_CMP_ITAV)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CMP_ITAV)
IMPLEMENT_ASN1_DUP_FUNCTION(OSSL_CMP_ITAV)
ASN1_SEQUENCE(OSSL_CMP_ROOTCAKEYUPDATE) = {
/* OSSL_CMP_CMPCERTIFICATE is effectively X509 so it is used directly */
ASN1_SIMPLE(OSSL_CMP_ROOTCAKEYUPDATE, newWithNew, X509),
ASN1_EXP_OPT(OSSL_CMP_ROOTCAKEYUPDATE, newWithOld, X509, 0),
ASN1_EXP_OPT(OSSL_CMP_ROOTCAKEYUPDATE, oldWithNew, X509, 1)
} ASN1_SEQUENCE_END(OSSL_CMP_ROOTCAKEYUPDATE)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CMP_ROOTCAKEYUPDATE)
OSSL_CMP_ITAV *OSSL_CMP_ITAV_create(ASN1_OBJECT *type, ASN1_TYPE *value)
{
OSSL_CMP_ITAV *itav;
if (type == NULL || (itav = OSSL_CMP_ITAV_new()) == NULL)
return NULL;
OSSL_CMP_ITAV_set0(itav, type, value);
return itav;
}
void OSSL_CMP_ITAV_set0(OSSL_CMP_ITAV *itav, ASN1_OBJECT *type,
ASN1_TYPE *value)
{
itav->infoType = type;
itav->infoValue.other = value;
}
ASN1_OBJECT *OSSL_CMP_ITAV_get0_type(const OSSL_CMP_ITAV *itav)
{
if (itav == NULL)
return NULL;
return itav->infoType;
}
ASN1_TYPE *OSSL_CMP_ITAV_get0_value(const OSSL_CMP_ITAV *itav)
{
if (itav == NULL)
return NULL;
return itav->infoValue.other;
}
int OSSL_CMP_ITAV_push0_stack_item(STACK_OF(OSSL_CMP_ITAV) **itav_sk_p,
OSSL_CMP_ITAV *itav)
{
int created = 0;
if (itav_sk_p == NULL || itav == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_NULL_ARGUMENT);
goto err;
}
if (*itav_sk_p == NULL) {
if ((*itav_sk_p = sk_OSSL_CMP_ITAV_new_null()) == NULL)
goto err;
created = 1;
}
if (!sk_OSSL_CMP_ITAV_push(*itav_sk_p, itav))
goto err;
return 1;
err:
if (created != 0) {
sk_OSSL_CMP_ITAV_free(*itav_sk_p);
*itav_sk_p = NULL;
}
return 0;
}
OSSL_CMP_ITAV *OSSL_CMP_ITAV_new_caCerts(const STACK_OF(X509) *caCerts)
{
OSSL_CMP_ITAV *itav = OSSL_CMP_ITAV_new();
if (itav == NULL)
return NULL;
if (sk_X509_num(caCerts) > 0
&& (itav->infoValue.caCerts =
sk_X509_deep_copy(caCerts, X509_dup, X509_free)) == NULL) {
OSSL_CMP_ITAV_free(itav);
return NULL;
}
itav->infoType = OBJ_nid2obj(NID_id_it_caCerts);
return itav;
}
int OSSL_CMP_ITAV_get0_caCerts(const OSSL_CMP_ITAV *itav, STACK_OF(X509) **out)
{
if (itav == NULL || out == NULL) {
ERR_raise(ERR_LIB_CMP, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (OBJ_obj2nid(itav->infoType) != NID_id_it_caCerts) {
ERR_raise(ERR_LIB_CMP, ERR_R_PASSED_INVALID_ARGUMENT);
return 0;
}
*out = sk_X509_num(itav->infoValue.caCerts) > 0
? itav->infoValue.caCerts : NULL;
return 1;
}
OSSL_CMP_ITAV *OSSL_CMP_ITAV_new_rootCaCert(const X509 *rootCaCert)
{
OSSL_CMP_ITAV *itav = OSSL_CMP_ITAV_new();
if (itav == NULL)
return NULL;
if (rootCaCert != NULL
&& (itav->infoValue.rootCaCert = X509_dup(rootCaCert)) == NULL) {
OSSL_CMP_ITAV_free(itav);
return NULL;
}
itav->infoType = OBJ_nid2obj(NID_id_it_rootCaCert);
return itav;
}
int OSSL_CMP_ITAV_get0_rootCaCert(const OSSL_CMP_ITAV *itav, X509 **out)
{
if (itav == NULL || out == NULL) {
ERR_raise(ERR_LIB_CMP, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (OBJ_obj2nid(itav->infoType) != NID_id_it_rootCaCert) {
ERR_raise(ERR_LIB_CMP, ERR_R_PASSED_INVALID_ARGUMENT);
return 0;
}
*out = itav->infoValue.rootCaCert;
return 1;
}
OSSL_CMP_ITAV *OSSL_CMP_ITAV_new_rootCaKeyUpdate(const X509 *newWithNew,
const X509 *newWithOld,
const X509 *oldWithNew)
{
OSSL_CMP_ITAV *itav;
OSSL_CMP_ROOTCAKEYUPDATE *upd = OSSL_CMP_ROOTCAKEYUPDATE_new();
if (upd == NULL)
return NULL;
if (newWithNew != NULL && (upd->newWithNew = X509_dup(newWithNew)) == NULL)
goto err;
if (newWithOld != NULL && (upd->newWithOld = X509_dup(newWithOld)) == NULL)
goto err;
if (oldWithNew != NULL && (upd->oldWithNew = X509_dup(oldWithNew)) == NULL)
goto err;
if ((itav = OSSL_CMP_ITAV_new()) == NULL)
goto err;
itav->infoType = OBJ_nid2obj(NID_id_it_rootCaKeyUpdate);
itav->infoValue.rootCaKeyUpdate = upd;
return itav;
err:
OSSL_CMP_ROOTCAKEYUPDATE_free(upd);
return NULL;
}
int OSSL_CMP_ITAV_get0_rootCaKeyUpdate(const OSSL_CMP_ITAV *itav,
X509 **newWithNew,
X509 **newWithOld,
X509 **oldWithNew)
{
OSSL_CMP_ROOTCAKEYUPDATE *upd;
if (itav == NULL || newWithNew == NULL) {
ERR_raise(ERR_LIB_CMP, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (OBJ_obj2nid(itav->infoType) != NID_id_it_rootCaKeyUpdate) {
ERR_raise(ERR_LIB_CMP, ERR_R_PASSED_INVALID_ARGUMENT);
return 0;
}
upd = itav->infoValue.rootCaKeyUpdate;
*newWithNew = upd->newWithNew;
if (newWithOld != NULL)
*newWithOld = upd->newWithOld;
if (oldWithNew != NULL)
*oldWithNew = upd->oldWithNew;
return 1;
}
/* get ASN.1 encoded integer, return -1 on error */
int ossl_cmp_asn1_get_int(const ASN1_INTEGER *a)
{
int64_t res;
if (!ASN1_INTEGER_get_int64(&res, a)) {
ERR_raise(ERR_LIB_CMP, ASN1_R_INVALID_NUMBER);
return -1;
}
if (res < INT_MIN) {
ERR_raise(ERR_LIB_CMP, ASN1_R_TOO_SMALL);
return -1;
}
if (res > INT_MAX) {
ERR_raise(ERR_LIB_CMP, ASN1_R_TOO_LARGE);
return -1;
}
return (int)res;
}
static int ossl_cmp_msg_cb(int operation, ASN1_VALUE **pval,
const ASN1_ITEM *it, void *exarg)
{
OSSL_CMP_MSG *msg = (OSSL_CMP_MSG *)*pval;
switch (operation) {
case ASN1_OP_FREE_POST:
OPENSSL_free(msg->propq);
break;
case ASN1_OP_DUP_POST:
{
OSSL_CMP_MSG *old = exarg;
if (!ossl_cmp_msg_set0_libctx(msg, old->libctx, old->propq))
return 0;
}
break;
case ASN1_OP_GET0_LIBCTX:
{
OSSL_LIB_CTX **libctx = exarg;
*libctx = msg->libctx;
}
break;
case ASN1_OP_GET0_PROPQ:
{
const char **propq = exarg;
*propq = msg->propq;
}
break;
default:
break;
}
return 1;
}
ASN1_CHOICE(OSSL_CMP_CERTORENCCERT) = {
/* OSSL_CMP_CMPCERTIFICATE is effectively X509 so it is used directly */
ASN1_EXP(OSSL_CMP_CERTORENCCERT, value.certificate, X509, 0),
ASN1_EXP(OSSL_CMP_CERTORENCCERT, value.encryptedCert,
OSSL_CRMF_ENCRYPTEDVALUE, 1),
} ASN1_CHOICE_END(OSSL_CMP_CERTORENCCERT)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CMP_CERTORENCCERT)
ASN1_SEQUENCE(OSSL_CMP_CERTIFIEDKEYPAIR) = {
ASN1_SIMPLE(OSSL_CMP_CERTIFIEDKEYPAIR, certOrEncCert,
OSSL_CMP_CERTORENCCERT),
ASN1_EXP_OPT(OSSL_CMP_CERTIFIEDKEYPAIR, privateKey,
OSSL_CRMF_ENCRYPTEDVALUE, 0),
ASN1_EXP_OPT(OSSL_CMP_CERTIFIEDKEYPAIR, publicationInfo,
OSSL_CRMF_PKIPUBLICATIONINFO, 1)
} ASN1_SEQUENCE_END(OSSL_CMP_CERTIFIEDKEYPAIR)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CMP_CERTIFIEDKEYPAIR)
ASN1_SEQUENCE(OSSL_CMP_REVDETAILS) = {
ASN1_SIMPLE(OSSL_CMP_REVDETAILS, certDetails, OSSL_CRMF_CERTTEMPLATE),
ASN1_OPT(OSSL_CMP_REVDETAILS, crlEntryDetails, X509_EXTENSIONS)
} ASN1_SEQUENCE_END(OSSL_CMP_REVDETAILS)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CMP_REVDETAILS)
ASN1_ITEM_TEMPLATE(OSSL_CMP_REVREQCONTENT) =
ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, OSSL_CMP_REVREQCONTENT,
OSSL_CMP_REVDETAILS)
ASN1_ITEM_TEMPLATE_END(OSSL_CMP_REVREQCONTENT)
ASN1_SEQUENCE(OSSL_CMP_REVREPCONTENT) = {
ASN1_SEQUENCE_OF(OSSL_CMP_REVREPCONTENT, status, OSSL_CMP_PKISI),
ASN1_EXP_SEQUENCE_OF_OPT(OSSL_CMP_REVREPCONTENT, revCerts, OSSL_CRMF_CERTID,
0),
ASN1_EXP_SEQUENCE_OF_OPT(OSSL_CMP_REVREPCONTENT, crls, X509_CRL, 1)
} ASN1_SEQUENCE_END(OSSL_CMP_REVREPCONTENT)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CMP_REVREPCONTENT)
ASN1_SEQUENCE(OSSL_CMP_KEYRECREPCONTENT) = {
ASN1_SIMPLE(OSSL_CMP_KEYRECREPCONTENT, status, OSSL_CMP_PKISI),
ASN1_EXP_OPT(OSSL_CMP_KEYRECREPCONTENT, newSigCert, X509, 0),
ASN1_EXP_SEQUENCE_OF_OPT(OSSL_CMP_KEYRECREPCONTENT, caCerts, X509, 1),
ASN1_EXP_SEQUENCE_OF_OPT(OSSL_CMP_KEYRECREPCONTENT, keyPairHist,
OSSL_CMP_CERTIFIEDKEYPAIR, 2)
} ASN1_SEQUENCE_END(OSSL_CMP_KEYRECREPCONTENT)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CMP_KEYRECREPCONTENT)
ASN1_ITEM_TEMPLATE(OSSL_CMP_PKISTATUS) =
ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_UNIVERSAL, 0, status, ASN1_INTEGER)
ASN1_ITEM_TEMPLATE_END(OSSL_CMP_PKISTATUS)
ASN1_SEQUENCE(OSSL_CMP_PKISI) = {
ASN1_SIMPLE(OSSL_CMP_PKISI, status, OSSL_CMP_PKISTATUS),
/*
* CMP_PKIFREETEXT is effectively a sequence of ASN1_UTF8STRING
* so it is used directly
*/
ASN1_SEQUENCE_OF_OPT(OSSL_CMP_PKISI, statusString, ASN1_UTF8STRING),
/*
* OSSL_CMP_PKIFAILUREINFO is effectively ASN1_BIT_STRING so used directly
*/
ASN1_OPT(OSSL_CMP_PKISI, failInfo, ASN1_BIT_STRING)
} ASN1_SEQUENCE_END(OSSL_CMP_PKISI)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CMP_PKISI)
IMPLEMENT_ASN1_DUP_FUNCTION(OSSL_CMP_PKISI)
ASN1_SEQUENCE(OSSL_CMP_CERTSTATUS) = {
ASN1_SIMPLE(OSSL_CMP_CERTSTATUS, certHash, ASN1_OCTET_STRING),
ASN1_SIMPLE(OSSL_CMP_CERTSTATUS, certReqId, ASN1_INTEGER),
ASN1_OPT(OSSL_CMP_CERTSTATUS, statusInfo, OSSL_CMP_PKISI),
ASN1_EXP_OPT(OSSL_CMP_CERTSTATUS, hashAlg, X509_ALGOR, 0)
} ASN1_SEQUENCE_END(OSSL_CMP_CERTSTATUS)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CMP_CERTSTATUS)
ASN1_ITEM_TEMPLATE(OSSL_CMP_CERTCONFIRMCONTENT) =
ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, OSSL_CMP_CERTCONFIRMCONTENT,
OSSL_CMP_CERTSTATUS)
ASN1_ITEM_TEMPLATE_END(OSSL_CMP_CERTCONFIRMCONTENT)
ASN1_SEQUENCE(OSSL_CMP_CERTRESPONSE) = {
ASN1_SIMPLE(OSSL_CMP_CERTRESPONSE, certReqId, ASN1_INTEGER),
ASN1_SIMPLE(OSSL_CMP_CERTRESPONSE, status, OSSL_CMP_PKISI),
ASN1_OPT(OSSL_CMP_CERTRESPONSE, certifiedKeyPair,
OSSL_CMP_CERTIFIEDKEYPAIR),
ASN1_OPT(OSSL_CMP_CERTRESPONSE, rspInfo, ASN1_OCTET_STRING)
} ASN1_SEQUENCE_END(OSSL_CMP_CERTRESPONSE)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CMP_CERTRESPONSE)
ASN1_SEQUENCE(OSSL_CMP_POLLREQ) = {
ASN1_SIMPLE(OSSL_CMP_POLLREQ, certReqId, ASN1_INTEGER)
} ASN1_SEQUENCE_END(OSSL_CMP_POLLREQ)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CMP_POLLREQ)
ASN1_ITEM_TEMPLATE(OSSL_CMP_POLLREQCONTENT) =
ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, OSSL_CMP_POLLREQCONTENT,
OSSL_CMP_POLLREQ)
ASN1_ITEM_TEMPLATE_END(OSSL_CMP_POLLREQCONTENT)
ASN1_SEQUENCE(OSSL_CMP_POLLREP) = {
ASN1_SIMPLE(OSSL_CMP_POLLREP, certReqId, ASN1_INTEGER),
ASN1_SIMPLE(OSSL_CMP_POLLREP, checkAfter, ASN1_INTEGER),
ASN1_SEQUENCE_OF_OPT(OSSL_CMP_POLLREP, reason, ASN1_UTF8STRING),
} ASN1_SEQUENCE_END(OSSL_CMP_POLLREP)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CMP_POLLREP)
ASN1_ITEM_TEMPLATE(OSSL_CMP_POLLREPCONTENT) =
ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
OSSL_CMP_POLLREPCONTENT,
OSSL_CMP_POLLREP)
ASN1_ITEM_TEMPLATE_END(OSSL_CMP_POLLREPCONTENT)
ASN1_SEQUENCE(OSSL_CMP_CERTREPMESSAGE) = {
/* OSSL_CMP_CMPCERTIFICATE is effectively X509 so it is used directly */
ASN1_EXP_SEQUENCE_OF_OPT(OSSL_CMP_CERTREPMESSAGE, caPubs, X509, 1),
ASN1_SEQUENCE_OF(OSSL_CMP_CERTREPMESSAGE, response, OSSL_CMP_CERTRESPONSE)
} ASN1_SEQUENCE_END(OSSL_CMP_CERTREPMESSAGE)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CMP_CERTREPMESSAGE)
ASN1_ITEM_TEMPLATE(OSSL_CMP_GENMSGCONTENT) =
ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, OSSL_CMP_GENMSGCONTENT,
OSSL_CMP_ITAV)
ASN1_ITEM_TEMPLATE_END(OSSL_CMP_GENMSGCONTENT)
ASN1_ITEM_TEMPLATE(OSSL_CMP_GENREPCONTENT) =
ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, OSSL_CMP_GENREPCONTENT,
OSSL_CMP_ITAV)
ASN1_ITEM_TEMPLATE_END(OSSL_CMP_GENREPCONTENT)
ASN1_ITEM_TEMPLATE(OSSL_CMP_CRLANNCONTENT) =
ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
OSSL_CMP_CRLANNCONTENT, X509_CRL)
ASN1_ITEM_TEMPLATE_END(OSSL_CMP_CRLANNCONTENT)
ASN1_CHOICE(OSSL_CMP_PKIBODY) = {
ASN1_EXP(OSSL_CMP_PKIBODY, value.ir, OSSL_CRMF_MSGS, 0),
ASN1_EXP(OSSL_CMP_PKIBODY, value.ip, OSSL_CMP_CERTREPMESSAGE, 1),
ASN1_EXP(OSSL_CMP_PKIBODY, value.cr, OSSL_CRMF_MSGS, 2),
ASN1_EXP(OSSL_CMP_PKIBODY, value.cp, OSSL_CMP_CERTREPMESSAGE, 3),
ASN1_EXP(OSSL_CMP_PKIBODY, value.p10cr, X509_REQ, 4),
ASN1_EXP(OSSL_CMP_PKIBODY, value.popdecc,
OSSL_CMP_POPODECKEYCHALLCONTENT, 5),
ASN1_EXP(OSSL_CMP_PKIBODY, value.popdecr,
OSSL_CMP_POPODECKEYRESPCONTENT, 6),
ASN1_EXP(OSSL_CMP_PKIBODY, value.kur, OSSL_CRMF_MSGS, 7),
ASN1_EXP(OSSL_CMP_PKIBODY, value.kup, OSSL_CMP_CERTREPMESSAGE, 8),
ASN1_EXP(OSSL_CMP_PKIBODY, value.krr, OSSL_CRMF_MSGS, 9),
ASN1_EXP(OSSL_CMP_PKIBODY, value.krp, OSSL_CMP_KEYRECREPCONTENT, 10),
ASN1_EXP(OSSL_CMP_PKIBODY, value.rr, OSSL_CMP_REVREQCONTENT, 11),
ASN1_EXP(OSSL_CMP_PKIBODY, value.rp, OSSL_CMP_REVREPCONTENT, 12),
ASN1_EXP(OSSL_CMP_PKIBODY, value.ccr, OSSL_CRMF_MSGS, 13),
ASN1_EXP(OSSL_CMP_PKIBODY, value.ccp, OSSL_CMP_CERTREPMESSAGE, 14),
ASN1_EXP(OSSL_CMP_PKIBODY, value.ckuann, OSSL_CMP_CAKEYUPDANNCONTENT, 15),
ASN1_EXP(OSSL_CMP_PKIBODY, value.cann, X509, 16),
ASN1_EXP(OSSL_CMP_PKIBODY, value.rann, OSSL_CMP_REVANNCONTENT, 17),
ASN1_EXP(OSSL_CMP_PKIBODY, value.crlann, OSSL_CMP_CRLANNCONTENT, 18),
ASN1_EXP(OSSL_CMP_PKIBODY, value.pkiconf, ASN1_ANY, 19),
ASN1_EXP(OSSL_CMP_PKIBODY, value.nested, OSSL_CMP_MSGS, 20),
ASN1_EXP(OSSL_CMP_PKIBODY, value.genm, OSSL_CMP_GENMSGCONTENT, 21),
ASN1_EXP(OSSL_CMP_PKIBODY, value.genp, OSSL_CMP_GENREPCONTENT, 22),
ASN1_EXP(OSSL_CMP_PKIBODY, value.error, OSSL_CMP_ERRORMSGCONTENT, 23),
ASN1_EXP(OSSL_CMP_PKIBODY, value.certConf, OSSL_CMP_CERTCONFIRMCONTENT, 24),
ASN1_EXP(OSSL_CMP_PKIBODY, value.pollReq, OSSL_CMP_POLLREQCONTENT, 25),
ASN1_EXP(OSSL_CMP_PKIBODY, value.pollRep, OSSL_CMP_POLLREPCONTENT, 26),
} ASN1_CHOICE_END(OSSL_CMP_PKIBODY)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CMP_PKIBODY)
ASN1_SEQUENCE(OSSL_CMP_PKIHEADER) = {
ASN1_SIMPLE(OSSL_CMP_PKIHEADER, pvno, ASN1_INTEGER),
ASN1_SIMPLE(OSSL_CMP_PKIHEADER, sender, GENERAL_NAME),
ASN1_SIMPLE(OSSL_CMP_PKIHEADER, recipient, GENERAL_NAME),
ASN1_EXP_OPT(OSSL_CMP_PKIHEADER, messageTime, ASN1_GENERALIZEDTIME, 0),
ASN1_EXP_OPT(OSSL_CMP_PKIHEADER, protectionAlg, X509_ALGOR, 1),
ASN1_EXP_OPT(OSSL_CMP_PKIHEADER, senderKID, ASN1_OCTET_STRING, 2),
ASN1_EXP_OPT(OSSL_CMP_PKIHEADER, recipKID, ASN1_OCTET_STRING, 3),
ASN1_EXP_OPT(OSSL_CMP_PKIHEADER, transactionID, ASN1_OCTET_STRING, 4),
ASN1_EXP_OPT(OSSL_CMP_PKIHEADER, senderNonce, ASN1_OCTET_STRING, 5),
ASN1_EXP_OPT(OSSL_CMP_PKIHEADER, recipNonce, ASN1_OCTET_STRING, 6),
/*
* OSSL_CMP_PKIFREETEXT is effectively a sequence of ASN1_UTF8STRING
* so it is used directly
*/
ASN1_EXP_SEQUENCE_OF_OPT(OSSL_CMP_PKIHEADER, freeText, ASN1_UTF8STRING, 7),
ASN1_EXP_SEQUENCE_OF_OPT(OSSL_CMP_PKIHEADER, generalInfo,
OSSL_CMP_ITAV, 8)
} ASN1_SEQUENCE_END(OSSL_CMP_PKIHEADER)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CMP_PKIHEADER)
ASN1_SEQUENCE(OSSL_CMP_PROTECTEDPART) = {
ASN1_SIMPLE(OSSL_CMP_MSG, header, OSSL_CMP_PKIHEADER),
ASN1_SIMPLE(OSSL_CMP_MSG, body, OSSL_CMP_PKIBODY)
} ASN1_SEQUENCE_END(OSSL_CMP_PROTECTEDPART)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CMP_PROTECTEDPART)
ASN1_SEQUENCE_cb(OSSL_CMP_MSG, ossl_cmp_msg_cb) = {
ASN1_SIMPLE(OSSL_CMP_MSG, header, OSSL_CMP_PKIHEADER),
ASN1_SIMPLE(OSSL_CMP_MSG, body, OSSL_CMP_PKIBODY),
ASN1_EXP_OPT(OSSL_CMP_MSG, protection, ASN1_BIT_STRING, 0),
/* OSSL_CMP_CMPCERTIFICATE is effectively X509 so it is used directly */
ASN1_EXP_SEQUENCE_OF_OPT(OSSL_CMP_MSG, extraCerts, X509, 1)
} ASN1_SEQUENCE_END_cb(OSSL_CMP_MSG, OSSL_CMP_MSG)
IMPLEMENT_ASN1_DUP_FUNCTION(OSSL_CMP_MSG)
ASN1_ITEM_TEMPLATE(OSSL_CMP_MSGS) =
ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, OSSL_CMP_MSGS,
OSSL_CMP_MSG)
ASN1_ITEM_TEMPLATE_END(OSSL_CMP_MSGS)
| 22,557 | 38.368237 | 80 | c |
openssl | openssl-master/crypto/cmp/cmp_err.c | /*
* Generated by util/mkerr.pl DO NOT EDIT
* Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/err.h>
#include <openssl/cmperr.h>
#include "crypto/cmperr.h"
#ifndef OPENSSL_NO_CMP
# ifndef OPENSSL_NO_ERR
static const ERR_STRING_DATA CMP_str_reasons[] = {
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ALGORITHM_NOT_SUPPORTED),
"algorithm not supported"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_BAD_CHECKAFTER_IN_POLLREP),
"bad checkafter in pollrep"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_BAD_REQUEST_ID), "bad request id"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_CERTHASH_UNMATCHED), "certhash unmatched"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_CERTID_NOT_FOUND), "certid not found"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_CERTIFICATE_NOT_ACCEPTED),
"certificate not accepted"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_CERTIFICATE_NOT_FOUND),
"certificate not found"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_CERTREQMSG_NOT_FOUND),
"certreqmsg not found"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_CERTRESPONSE_NOT_FOUND),
"certresponse not found"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_CERT_AND_KEY_DO_NOT_MATCH),
"cert and key do not match"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_CHECKAFTER_OUT_OF_RANGE),
"checkafter out of range"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ENCOUNTERED_KEYUPDATEWARNING),
"encountered keyupdatewarning"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ENCOUNTERED_WAITING),
"encountered waiting"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ERROR_CALCULATING_PROTECTION),
"error calculating protection"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ERROR_CREATING_CERTCONF),
"error creating certconf"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ERROR_CREATING_CERTREP),
"error creating certrep"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ERROR_CREATING_CERTREQ),
"error creating certreq"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ERROR_CREATING_ERROR),
"error creating error"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ERROR_CREATING_GENM),
"error creating genm"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ERROR_CREATING_GENP),
"error creating genp"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ERROR_CREATING_PKICONF),
"error creating pkiconf"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ERROR_CREATING_POLLREP),
"error creating pollrep"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ERROR_CREATING_POLLREQ),
"error creating pollreq"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ERROR_CREATING_RP), "error creating rp"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ERROR_CREATING_RR), "error creating rr"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ERROR_PARSING_PKISTATUS),
"error parsing pkistatus"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ERROR_PROCESSING_MESSAGE),
"error processing message"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ERROR_PROTECTING_MESSAGE),
"error protecting message"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ERROR_SETTING_CERTHASH),
"error setting certhash"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ERROR_UNEXPECTED_CERTCONF),
"error unexpected certconf"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ERROR_VALIDATING_PROTECTION),
"error validating protection"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_ERROR_VALIDATING_SIGNATURE),
"error validating signature"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_FAILED_BUILDING_OWN_CHAIN),
"failed building own chain"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_FAILED_EXTRACTING_PUBKEY),
"failed extracting pubkey"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_FAILURE_OBTAINING_RANDOM),
"failure obtaining random"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_FAIL_INFO_OUT_OF_RANGE),
"fail info out of range"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_GETTING_GENP), "getting genp"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_INVALID_ARGS), "invalid args"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_INVALID_GENP), "invalid genp"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_INVALID_OPTION), "invalid option"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_INVALID_ROOTCAKEYUPDATE),
"invalid rootcakeyupdate"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_MISSING_CERTID), "missing certid"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_MISSING_KEY_INPUT_FOR_CREATING_PROTECTION),
"missing key input for creating protection"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_MISSING_KEY_USAGE_DIGITALSIGNATURE),
"missing key usage digitalsignature"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_MISSING_P10CSR), "missing p10csr"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_MISSING_PBM_SECRET), "missing pbm secret"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_MISSING_PRIVATE_KEY),
"missing private key"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_MISSING_PRIVATE_KEY_FOR_POPO),
"missing private key for popo"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_MISSING_PROTECTION), "missing protection"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_MISSING_PUBLIC_KEY), "missing public key"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_MISSING_REFERENCE_CERT),
"missing reference cert"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_MISSING_SECRET), "missing secret"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_MISSING_SENDER_IDENTIFICATION),
"missing sender identification"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_MISSING_TRUST_ANCHOR),
"missing trust anchor"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_MISSING_TRUST_STORE),
"missing trust store"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_MULTIPLE_REQUESTS_NOT_SUPPORTED),
"multiple requests not supported"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_MULTIPLE_RESPONSES_NOT_SUPPORTED),
"multiple responses not supported"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_MULTIPLE_SAN_SOURCES),
"multiple san sources"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_NO_STDIO), "no stdio"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_NO_SUITABLE_SENDER_CERT),
"no suitable sender cert"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_NULL_ARGUMENT), "null argument"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_PKIBODY_ERROR), "pkibody error"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_PKISTATUSINFO_NOT_FOUND),
"pkistatusinfo not found"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_POLLING_FAILED), "polling failed"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_POTENTIALLY_INVALID_CERTIFICATE),
"potentially invalid certificate"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_RECEIVED_ERROR), "received error"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_RECIPNONCE_UNMATCHED),
"recipnonce unmatched"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_REQUEST_NOT_ACCEPTED),
"request not accepted"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_REQUEST_REJECTED_BY_SERVER),
"request rejected by server"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_SENDER_GENERALNAME_TYPE_NOT_SUPPORTED),
"sender generalname type not supported"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_SRVCERT_DOES_NOT_VALIDATE_MSG),
"srvcert does not validate msg"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_TOTAL_TIMEOUT), "total timeout"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_TRANSACTIONID_UNMATCHED),
"transactionid unmatched"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_TRANSFER_ERROR), "transfer error"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_UNCLEAN_CTX), "unclean ctx"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_UNEXPECTED_PKIBODY), "unexpected pkibody"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_UNEXPECTED_PKISTATUS),
"unexpected pkistatus"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_UNEXPECTED_PVNO), "unexpected pvno"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_UNKNOWN_ALGORITHM_ID),
"unknown algorithm id"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_UNKNOWN_CERT_TYPE), "unknown cert type"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_UNKNOWN_PKISTATUS), "unknown pkistatus"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_UNSUPPORTED_ALGORITHM),
"unsupported algorithm"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_UNSUPPORTED_KEY_TYPE),
"unsupported key type"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_UNSUPPORTED_PROTECTION_ALG_DHBASEDMAC),
"unsupported protection alg dhbasedmac"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_VALUE_TOO_LARGE), "value too large"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_VALUE_TOO_SMALL), "value too small"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_WRONG_ALGORITHM_OID),
"wrong algorithm oid"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_WRONG_CERTID), "wrong certid"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_WRONG_CERTID_IN_RP), "wrong certid in rp"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_WRONG_PBM_VALUE), "wrong pbm value"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_WRONG_RP_COMPONENT_COUNT),
"wrong rp component count"},
{ERR_PACK(ERR_LIB_CMP, 0, CMP_R_WRONG_SERIAL_IN_RP), "wrong serial in rp"},
{0, NULL}
};
# endif
int ossl_err_load_CMP_strings(void)
{
# ifndef OPENSSL_NO_ERR
if (ERR_reason_error_string(CMP_str_reasons[0].error) == NULL)
ERR_load_strings_const(CMP_str_reasons);
# endif
return 1;
}
#else
NON_EMPTY_TRANSLATION_UNIT
#endif
| 8,942 | 46.823529 | 79 | c |
openssl | openssl-master/crypto/cmp/cmp_genm.c | /*
* Copyright 2022 The OpenSSL Project Authors. All Rights Reserved.
* Copyright Siemens AG 2022
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "cmp_local.h"
#include <openssl/cmp_util.h>
static const X509_VERIFY_PARAM *get0_trustedStore_vpm(const OSSL_CMP_CTX *ctx)
{
const X509_STORE *ts = OSSL_CMP_CTX_get0_trustedStore(ctx);
return ts == NULL ? NULL : X509_STORE_get0_param(ts);
}
static void cert_msg(const char *func, const char *file, int lineno,
OSSL_CMP_severity level, OSSL_CMP_CTX *ctx,
const char *source, X509 *cert, const char *msg)
{
char *subj = X509_NAME_oneline(X509_get_subject_name(cert), NULL, 0);
ossl_cmp_print_log(level, ctx, func, file, lineno,
level == OSSL_CMP_LOG_WARNING ? "WARN" : "ERR",
"certificate from '%s' with subject '%s' %s",
source, subj, msg);
OPENSSL_free(subj);
}
/* use |type_CA| -1 (no CA type check) or 0 (must be EE) or 1 (must be CA) */
static int ossl_X509_check(OSSL_CMP_CTX *ctx, const char *source, X509 *cert,
int type_CA, const X509_VERIFY_PARAM *vpm)
{
uint32_t ex_flags = X509_get_extension_flags(cert);
int res = X509_cmp_timeframe(vpm, X509_get0_notBefore(cert),
X509_get0_notAfter(cert));
int ret = res == 0;
OSSL_CMP_severity level =
vpm == NULL ? OSSL_CMP_LOG_WARNING : OSSL_CMP_LOG_ERR;
if (!ret)
cert_msg(OPENSSL_FUNC, OPENSSL_FILE, OPENSSL_LINE, level, ctx,
source, cert, res > 0 ? "has expired" : "not yet valid");
if (type_CA >= 0 && (ex_flags & EXFLAG_V1) == 0) {
int is_CA = (ex_flags & EXFLAG_CA) != 0;
if ((type_CA != 0) != is_CA) {
cert_msg(OPENSSL_FUNC, OPENSSL_FILE, OPENSSL_LINE, level, ctx,
source, cert,
is_CA ? "is not an EE cert" : "is not a CA cert");
ret = 0;
}
}
return ret;
}
static int ossl_X509_check_all(OSSL_CMP_CTX *ctx, const char *source,
STACK_OF(X509) *certs,
int type_CA, const X509_VERIFY_PARAM *vpm)
{
int i;
int ret = 1;
for (i = 0; i < sk_X509_num(certs /* may be NULL */); i++)
ret = ossl_X509_check(ctx, source,
sk_X509_value(certs, i), type_CA, vpm)
&& ret; /* Having 'ret' after the '&&', all certs are checked. */
return ret;
}
static OSSL_CMP_ITAV *get_genm_itav(OSSL_CMP_CTX *ctx,
OSSL_CMP_ITAV *req, /* gets consumed */
int expected, const char *desc)
{
STACK_OF(OSSL_CMP_ITAV) *itavs = NULL;
int i, n;
if (ctx == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_NULL_ARGUMENT);
goto err;
}
if (OSSL_CMP_CTX_get_status(ctx) != OSSL_CMP_PKISTATUS_unspecified) {
ERR_raise_data(ERR_LIB_CMP, CMP_R_UNCLEAN_CTX,
"client context in unsuitable state; should call CMPclient_reinit() before");
goto err;
}
if (!OSSL_CMP_CTX_push0_genm_ITAV(ctx, req))
goto err;
req = NULL;
itavs = OSSL_CMP_exec_GENM_ses(ctx);
if (itavs == NULL) {
if (OSSL_CMP_CTX_get_status(ctx) != OSSL_CMP_PKISTATUS_request)
ERR_raise_data(ERR_LIB_CMP, CMP_R_GETTING_GENP,
"with infoType %s", desc);
return NULL;
}
if ((n = sk_OSSL_CMP_ITAV_num(itavs)) <= 0) {
ERR_raise_data(ERR_LIB_CMP, CMP_R_INVALID_GENP,
"response on genm requesting infoType %s does not include suitable value", desc);
sk_OSSL_CMP_ITAV_free(itavs);
return NULL;
}
if (n > 1)
ossl_cmp_log2(WARN, ctx,
"response on genm contains %d ITAVs; will use the first ITAV with infoType id-it-%s",
n, desc);
for (i = 0; i < n; i++) {
OSSL_CMP_ITAV *itav = sk_OSSL_CMP_ITAV_shift(itavs);
ASN1_OBJECT *obj = OSSL_CMP_ITAV_get0_type(itav);
char name[128] = "genp contains InfoType '";
size_t offset = strlen(name);
if (OBJ_obj2nid(obj) == expected) {
for (i++; i < n; i++)
OSSL_CMP_ITAV_free(sk_OSSL_CMP_ITAV_shift(itavs));
sk_OSSL_CMP_ITAV_free(itavs);
return itav;
}
if (OBJ_obj2txt(name + offset, sizeof(name) - offset, obj, 0) < 0)
strcat(name, "<unknown>");
ossl_cmp_log2(WARN, ctx, "%s' while expecting 'id-it-%s'", name, desc);
OSSL_CMP_ITAV_free(itav);
}
ERR_raise_data(ERR_LIB_CMP, CMP_R_INVALID_GENP,
"could not find any ITAV for %s", desc);
err:
sk_OSSL_CMP_ITAV_free(itavs);
OSSL_CMP_ITAV_free(req);
return NULL;
}
int OSSL_CMP_get1_caCerts(OSSL_CMP_CTX *ctx, STACK_OF(X509) **out)
{
OSSL_CMP_ITAV *req, *itav;
STACK_OF(X509) *certs = NULL;
int ret = 0;
if (out == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_NULL_ARGUMENT);
return 0;
}
*out = NULL;
if ((req = OSSL_CMP_ITAV_new_caCerts(NULL)) == NULL)
return 0;
if ((itav = get_genm_itav(ctx, req, NID_id_it_caCerts, "caCerts")) == NULL)
return 0;
if (!OSSL_CMP_ITAV_get0_caCerts(itav, &certs))
goto end;
ret = 1;
if (certs == NULL) /* no CA certificate available */
goto end;
if (!ossl_X509_check_all(ctx, "genp", certs, 1 /* CA */,
get0_trustedStore_vpm(ctx))) {
ret = 0;
goto end;
}
*out = sk_X509_new_reserve(NULL, sk_X509_num(certs));
if (!X509_add_certs(*out, certs,
X509_ADD_FLAG_UP_REF | X509_ADD_FLAG_NO_DUP)) {
sk_X509_pop_free(*out, X509_free);
*out = NULL;
ret = 0;
}
end:
OSSL_CMP_ITAV_free(itav);
return ret;
}
static int selfsigned_verify_cb(int ok, X509_STORE_CTX *store_ctx)
{
if (ok == 0 && store_ctx != NULL
&& X509_STORE_CTX_get_error_depth(store_ctx) == 0
&& X509_STORE_CTX_get_error(store_ctx)
== X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT) {
/* in this case, custom chain building */
int i;
STACK_OF(X509) *trust;
STACK_OF(X509) *chain = X509_STORE_CTX_get0_chain(store_ctx);
STACK_OF(X509) *untrusted = X509_STORE_CTX_get0_untrusted(store_ctx);
X509_STORE_CTX_check_issued_fn check_issued =
X509_STORE_CTX_get_check_issued(store_ctx);
X509 *cert = sk_X509_value(chain, 0); /* target cert */
X509 *issuer;
for (i = 0; i < sk_X509_num(untrusted); i++) {
cert = sk_X509_value(untrusted, i);
if (!X509_add_cert(chain, cert, X509_ADD_FLAG_UP_REF))
return 0;
}
trust = X509_STORE_get1_all_certs(X509_STORE_CTX_get0_store(store_ctx));
for (i = 0; i < sk_X509_num(trust); i++) {
issuer = sk_X509_value(trust, i);
if ((*check_issued)(store_ctx, cert, issuer)) {
if (X509_add_cert(chain, cert, X509_ADD_FLAG_UP_REF))
ok = 1;
break;
}
}
sk_X509_pop_free(trust, X509_free);
return ok;
} else {
X509_STORE *ts = X509_STORE_CTX_get0_store(store_ctx);
X509_STORE_CTX_verify_cb verify_cb;
if (ts == NULL || (verify_cb = X509_STORE_get_verify_cb(ts)) == NULL)
return ok;
return (*verify_cb)(ok, store_ctx);
}
}
/* vanilla X509_verify_cert() does not support self-signed certs as target */
static int verify_ss_cert(OSSL_LIB_CTX *libctx, const char *propq,
X509_STORE *ts, STACK_OF(X509) *untrusted,
X509 *target)
{
X509_STORE_CTX *csc = NULL;
int ok = 0;
if (ts == NULL || target == NULL) {
ERR_raise(ERR_LIB_CMP, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if ((csc = X509_STORE_CTX_new_ex(libctx, propq)) == NULL
|| !X509_STORE_CTX_init(csc, ts, target, untrusted))
goto err;
X509_STORE_CTX_set_verify_cb(csc, selfsigned_verify_cb);
ok = X509_verify_cert(csc) > 0;
err:
X509_STORE_CTX_free(csc);
return ok;
}
static int
verify_ss_cert_trans(OSSL_CMP_CTX *ctx, X509 *trusted /* may be NULL */,
X509 *trans /* the only untrusted cert, may be NULL */,
X509 *target, const char *desc)
{
X509_STORE *ts = OSSL_CMP_CTX_get0_trusted(ctx);
STACK_OF(X509) *untrusted = NULL;
int res = 0;
if (trusted != NULL) {
X509_VERIFY_PARAM *vpm = X509_STORE_get0_param(ts);
if ((ts = X509_STORE_new()) == NULL)
return 0;
if (!X509_STORE_set1_param(ts, vpm)
|| !X509_STORE_add_cert(ts, trusted))
goto err;
}
if (trans != NULL
&& !ossl_x509_add_cert_new(&untrusted, trans, X509_ADD_FLAG_UP_REF))
goto err;
res = verify_ss_cert(OSSL_CMP_CTX_get0_libctx(ctx),
OSSL_CMP_CTX_get0_propq(ctx),
ts, untrusted, target);
if (!res)
ERR_raise_data(ERR_LIB_CMP, CMP_R_INVALID_ROOTCAKEYUPDATE,
"failed to validate %s certificate received in genp %s",
desc, trusted == NULL ? "using trust store"
: "with given certificate as trust anchor");
err:
sk_X509_pop_free(untrusted, X509_free);
if (trusted != NULL)
X509_STORE_free(ts);
return res;
}
int OSSL_CMP_get1_rootCaKeyUpdate(OSSL_CMP_CTX *ctx,
const X509 *oldWithOld, X509 **newWithNew,
X509 **newWithOld, X509 **oldWithNew)
{
X509 *oldWithOld_copy = NULL, *my_newWithOld, *my_oldWithNew;
OSSL_CMP_ITAV *req, *itav;
int res = 0;
if (newWithNew == NULL) {
ERR_raise(ERR_LIB_CMP, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
*newWithNew = NULL;
if ((req = OSSL_CMP_ITAV_new_rootCaCert(oldWithOld)) == NULL)
return 0;
itav = get_genm_itav(ctx, req, NID_id_it_rootCaKeyUpdate, "rootCaKeyUpdate");
if (itav == NULL)
return 0;
if (!OSSL_CMP_ITAV_get0_rootCaKeyUpdate(itav, newWithNew,
&my_newWithOld, &my_oldWithNew))
goto end;
if (*newWithNew == NULL) /* no root CA cert update available */
goto end;
if ((oldWithOld_copy = X509_dup(oldWithOld)) == NULL && oldWithOld != NULL)
goto end;
if (!verify_ss_cert_trans(ctx, oldWithOld_copy, my_newWithOld,
*newWithNew, "newWithNew")) {
ERR_raise(ERR_LIB_CMP, CMP_R_INVALID_ROOTCAKEYUPDATE);
goto end;
}
if (oldWithOld != NULL && my_oldWithNew != NULL
&& !verify_ss_cert_trans(ctx, *newWithNew, my_oldWithNew,
oldWithOld_copy, "oldWithOld")) {
ERR_raise(ERR_LIB_CMP, CMP_R_INVALID_ROOTCAKEYUPDATE);
goto end;
}
if (!X509_up_ref(*newWithNew))
goto end;
if (newWithOld != NULL &&
(*newWithOld = my_newWithOld) != NULL && !X509_up_ref(*newWithOld))
goto free;
if (oldWithNew == NULL ||
(*oldWithNew = my_oldWithNew) == NULL || X509_up_ref(*oldWithNew)) {
res = 1;
goto end;
}
if (newWithOld != NULL)
X509_free(*newWithOld);
free:
X509_free(*newWithNew);
end:
OSSL_CMP_ITAV_free(itav);
X509_free(oldWithOld_copy);
return res;
}
| 11,833 | 33.103746 | 107 | c |
openssl | openssl-master/crypto/cmp/cmp_hdr.c | /*
* Copyright 2007-2022 The OpenSSL Project Authors. All Rights Reserved.
* Copyright Nokia 2007-2019
* Copyright Siemens AG 2015-2019
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* CMP functions for PKIHeader handling */
#include "cmp_local.h"
#include <openssl/rand.h>
/* explicit #includes not strictly needed since implied by the above: */
#include <openssl/asn1t.h>
#include <openssl/cmp.h>
#include <openssl/err.h>
int ossl_cmp_hdr_set_pvno(OSSL_CMP_PKIHEADER *hdr, int pvno)
{
if (!ossl_assert(hdr != NULL))
return 0;
return ASN1_INTEGER_set(hdr->pvno, pvno);
}
int ossl_cmp_hdr_get_pvno(const OSSL_CMP_PKIHEADER *hdr)
{
int64_t pvno;
if (!ossl_assert(hdr != NULL))
return -1;
if (!ASN1_INTEGER_get_int64(&pvno, hdr->pvno) || pvno < 0 || pvno > INT_MAX)
return -1;
return (int)pvno;
}
int ossl_cmp_hdr_get_protection_nid(const OSSL_CMP_PKIHEADER *hdr)
{
if (!ossl_assert(hdr != NULL)
|| hdr->protectionAlg == NULL)
return NID_undef;
return OBJ_obj2nid(hdr->protectionAlg->algorithm);
}
ASN1_OCTET_STRING *OSSL_CMP_HDR_get0_transactionID(const
OSSL_CMP_PKIHEADER *hdr)
{
if (hdr == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_NULL_ARGUMENT);
return NULL;
}
return hdr->transactionID;
}
ASN1_OCTET_STRING *ossl_cmp_hdr_get0_senderNonce(const OSSL_CMP_PKIHEADER *hdr)
{
if (!ossl_assert(hdr != NULL))
return NULL;
return hdr->senderNonce;
}
ASN1_OCTET_STRING *OSSL_CMP_HDR_get0_recipNonce(const OSSL_CMP_PKIHEADER *hdr)
{
if (hdr == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_NULL_ARGUMENT);
return NULL;
}
return hdr->recipNonce;
}
/* a NULL-DN as an empty sequence of RDNs */
int ossl_cmp_general_name_is_NULL_DN(GENERAL_NAME *name)
{
return name == NULL
|| (name->type == GEN_DIRNAME && IS_NULL_DN(name->d.directoryName));
}
/* assign to *tgt a copy of src (which may be NULL to indicate an empty DN) */
static int set1_general_name(GENERAL_NAME **tgt, const X509_NAME *src)
{
GENERAL_NAME *name;
if (!ossl_assert(tgt != NULL))
return 0;
if ((name = GENERAL_NAME_new()) == NULL)
goto err;
name->type = GEN_DIRNAME;
if (src == NULL) { /* NULL-DN */
if ((name->d.directoryName = X509_NAME_new()) == NULL)
goto err;
} else if (!X509_NAME_set(&name->d.directoryName, src)) {
goto err;
}
GENERAL_NAME_free(*tgt);
*tgt = name;
return 1;
err:
GENERAL_NAME_free(name);
return 0;
}
/*
* Set the sender name in PKIHeader.
* when nm is NULL, sender is set to an empty string
* returns 1 on success, 0 on error
*/
int ossl_cmp_hdr_set1_sender(OSSL_CMP_PKIHEADER *hdr, const X509_NAME *nm)
{
if (!ossl_assert(hdr != NULL))
return 0;
return set1_general_name(&hdr->sender, nm);
}
int ossl_cmp_hdr_set1_recipient(OSSL_CMP_PKIHEADER *hdr, const X509_NAME *nm)
{
if (!ossl_assert(hdr != NULL))
return 0;
return set1_general_name(&hdr->recipient, nm);
}
int ossl_cmp_hdr_update_messageTime(OSSL_CMP_PKIHEADER *hdr)
{
if (!ossl_assert(hdr != NULL))
return 0;
if (hdr->messageTime == NULL
&& (hdr->messageTime = ASN1_GENERALIZEDTIME_new()) == NULL)
return 0;
return ASN1_GENERALIZEDTIME_set(hdr->messageTime, time(NULL)) != NULL;
}
/* assign to *tgt a random byte array of given length */
static int set_random(ASN1_OCTET_STRING **tgt, OSSL_CMP_CTX *ctx, size_t len)
{
unsigned char *bytes = OPENSSL_malloc(len);
int res = 0;
if (bytes == NULL || RAND_bytes_ex(ctx->libctx, bytes, len, 0) <= 0)
ERR_raise(ERR_LIB_CMP, CMP_R_FAILURE_OBTAINING_RANDOM);
else
res = ossl_cmp_asn1_octet_string_set1_bytes(tgt, bytes, len);
OPENSSL_free(bytes);
return res;
}
int ossl_cmp_hdr_set1_senderKID(OSSL_CMP_PKIHEADER *hdr,
const ASN1_OCTET_STRING *senderKID)
{
if (!ossl_assert(hdr != NULL))
return 0;
return ossl_cmp_asn1_octet_string_set1(&hdr->senderKID, senderKID);
}
/* push the given text string to the given PKIFREETEXT ft */
int ossl_cmp_hdr_push0_freeText(OSSL_CMP_PKIHEADER *hdr, ASN1_UTF8STRING *text)
{
if (!ossl_assert(hdr != NULL && text != NULL))
return 0;
if (hdr->freeText == NULL
&& (hdr->freeText = sk_ASN1_UTF8STRING_new_null()) == NULL)
return 0;
return sk_ASN1_UTF8STRING_push(hdr->freeText, text);
}
int ossl_cmp_hdr_push1_freeText(OSSL_CMP_PKIHEADER *hdr, ASN1_UTF8STRING *text)
{
if (!ossl_assert(hdr != NULL && text != NULL))
return 0;
if (hdr->freeText == NULL
&& (hdr->freeText = sk_ASN1_UTF8STRING_new_null()) == NULL)
return 0;
return
ossl_cmp_sk_ASN1_UTF8STRING_push_str(hdr->freeText, (char *)text->data,
text->length);
}
int ossl_cmp_hdr_generalInfo_push0_item(OSSL_CMP_PKIHEADER *hdr,
OSSL_CMP_ITAV *itav)
{
if (!ossl_assert(hdr != NULL && itav != NULL))
return 0;
return OSSL_CMP_ITAV_push0_stack_item(&hdr->generalInfo, itav);
}
int ossl_cmp_hdr_generalInfo_push1_items(OSSL_CMP_PKIHEADER *hdr,
const STACK_OF(OSSL_CMP_ITAV) *itavs)
{
int i;
OSSL_CMP_ITAV *itav;
if (!ossl_assert(hdr != NULL))
return 0;
for (i = 0; i < sk_OSSL_CMP_ITAV_num(itavs); i++) {
itav = OSSL_CMP_ITAV_dup(sk_OSSL_CMP_ITAV_value(itavs, i));
if (itav == NULL)
return 0;
if (!ossl_cmp_hdr_generalInfo_push0_item(hdr, itav)) {
OSSL_CMP_ITAV_free(itav);
return 0;
}
}
return 1;
}
int ossl_cmp_hdr_set_implicitConfirm(OSSL_CMP_PKIHEADER *hdr)
{
OSSL_CMP_ITAV *itav;
ASN1_TYPE *asn1null;
if (!ossl_assert(hdr != NULL))
return 0;
asn1null = (ASN1_TYPE *)ASN1_NULL_new();
if (asn1null == NULL)
return 0;
if ((itav = OSSL_CMP_ITAV_create(OBJ_nid2obj(NID_id_it_implicitConfirm),
asn1null)) == NULL)
goto err;
if (!ossl_cmp_hdr_generalInfo_push0_item(hdr, itav))
goto err;
return 1;
err:
ASN1_TYPE_free(asn1null);
OSSL_CMP_ITAV_free(itav);
return 0;
}
/* return 1 if implicitConfirm in the generalInfo field of the header is set */
int ossl_cmp_hdr_has_implicitConfirm(const OSSL_CMP_PKIHEADER *hdr)
{
int itavCount;
int i;
OSSL_CMP_ITAV *itav;
if (!ossl_assert(hdr != NULL))
return 0;
itavCount = sk_OSSL_CMP_ITAV_num(hdr->generalInfo);
for (i = 0; i < itavCount; i++) {
itav = sk_OSSL_CMP_ITAV_value(hdr->generalInfo, i);
if (itav != NULL
&& OBJ_obj2nid(itav->infoType) == NID_id_it_implicitConfirm)
return 1;
}
return 0;
}
/*
* set ctx->transactionID in CMP header
* if ctx->transactionID is NULL, a random one is created with 128 bit
* according to section 5.1.1:
*
* It is RECOMMENDED that the clients fill the transactionID field with
* 128 bits of (pseudo-) random data for the start of a transaction to
* reduce the probability of having the transactionID in use at the server.
*/
int ossl_cmp_hdr_set_transactionID(OSSL_CMP_CTX *ctx, OSSL_CMP_PKIHEADER *hdr)
{
if (ctx->transactionID == NULL) {
char *tid;
if (!set_random(&ctx->transactionID, ctx,
OSSL_CMP_TRANSACTIONID_LENGTH))
return 0;
tid = i2s_ASN1_OCTET_STRING(NULL, ctx->transactionID);
if (tid != NULL)
ossl_cmp_log1(DEBUG, ctx,
"Starting new transaction with ID=%s", tid);
OPENSSL_free(tid);
}
return ossl_cmp_asn1_octet_string_set1(&hdr->transactionID,
ctx->transactionID);
}
/* fill in all fields of the hdr according to the info given in ctx */
int ossl_cmp_hdr_init(OSSL_CMP_CTX *ctx, OSSL_CMP_PKIHEADER *hdr)
{
const X509_NAME *sender;
const X509_NAME *rcp = NULL;
if (!ossl_assert(ctx != NULL && hdr != NULL))
return 0;
/* set the CMP version */
if (!ossl_cmp_hdr_set_pvno(hdr, OSSL_CMP_PVNO))
return 0;
/*
* If no protection cert nor oldCert nor CSR nor subject is given,
* sender name is not known to the client and thus set to NULL-DN
*/
sender = ctx->cert != NULL ? X509_get_subject_name(ctx->cert) :
ctx->oldCert != NULL ? X509_get_subject_name(ctx->oldCert) :
ctx->p10CSR != NULL ? X509_REQ_get_subject_name(ctx->p10CSR) :
ctx->subjectName;
if (!ossl_cmp_hdr_set1_sender(hdr, sender))
return 0;
/* determine recipient entry in PKIHeader */
if (ctx->recipient != NULL)
rcp = ctx->recipient;
else if (ctx->srvCert != NULL)
rcp = X509_get_subject_name(ctx->srvCert);
else if (ctx->issuer != NULL)
rcp = ctx->issuer;
else if (ctx->oldCert != NULL)
rcp = X509_get_issuer_name(ctx->oldCert);
else if (ctx->cert != NULL)
rcp = X509_get_issuer_name(ctx->cert);
if (!ossl_cmp_hdr_set1_recipient(hdr, rcp))
return 0;
/* set current time as message time */
if (!ossl_cmp_hdr_update_messageTime(hdr))
return 0;
if (ctx->recipNonce != NULL
&& !ossl_cmp_asn1_octet_string_set1(&hdr->recipNonce,
ctx->recipNonce))
return 0;
if (!ossl_cmp_hdr_set_transactionID(ctx, hdr))
return 0;
/*-
* set random senderNonce
* according to section 5.1.1:
*
* senderNonce present
* -- 128 (pseudo-)random bits
* The senderNonce and recipNonce fields protect the PKIMessage against
* replay attacks. The senderNonce will typically be 128 bits of
* (pseudo-) random data generated by the sender, whereas the recipNonce
* is copied from the senderNonce of the previous message in the
* transaction.
*/
if (!set_random(&hdr->senderNonce, ctx, OSSL_CMP_SENDERNONCE_LENGTH))
return 0;
/* store senderNonce - for cmp with recipNonce in next outgoing msg */
if (!OSSL_CMP_CTX_set1_senderNonce(ctx, hdr->senderNonce))
return 0;
/*-
* freeText [7] PKIFreeText OPTIONAL,
* -- this may be used to indicate context-specific instructions
* -- (this field is intended for human consumption)
*/
if (ctx->freeText != NULL
&& !ossl_cmp_hdr_push1_freeText(hdr, ctx->freeText))
return 0;
return 1;
}
| 10,891 | 28.437838 | 80 | c |
openssl | openssl-master/crypto/cmp/cmp_http.c | /*
* Copyright 2007-2021 The OpenSSL Project Authors. All Rights Reserved.
* Copyright Nokia 2007-2019
* Copyright Siemens AG 2015-2019
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <string.h>
#include <stdio.h>
#include <openssl/asn1t.h>
#include <openssl/http.h>
#include <openssl/cmp.h>
#include "cmp_local.h"
/* explicit #includes not strictly needed since implied by the above: */
#include <ctype.h>
#include <fcntl.h>
#include <stdlib.h>
#include <openssl/bio.h>
#include <openssl/buffer.h>
#include <openssl/err.h>
static int keep_alive(int keep_alive, int body_type)
{
if (keep_alive != 0
/*
* Ask for persistent connection only if may need more round trips.
* Do so even with disableConfirm because polling might be needed.
*/
&& body_type != OSSL_CMP_PKIBODY_IR
&& body_type != OSSL_CMP_PKIBODY_CR
&& body_type != OSSL_CMP_PKIBODY_P10CR
&& body_type != OSSL_CMP_PKIBODY_KUR
&& body_type != OSSL_CMP_PKIBODY_POLLREQ)
keep_alive = 0;
return keep_alive;
}
/*
* Send the PKIMessage req and on success return the response, else NULL.
*/
OSSL_CMP_MSG *OSSL_CMP_MSG_http_perform(OSSL_CMP_CTX *ctx,
const OSSL_CMP_MSG *req)
{
char server_port[32] = { '\0' };
STACK_OF(CONF_VALUE) *headers = NULL;
const char content_type_pkix[] = "application/pkixcmp";
int tls_used;
const ASN1_ITEM *it = ASN1_ITEM_rptr(OSSL_CMP_MSG);
BIO *req_mem, *rsp;
OSSL_CMP_MSG *res = NULL;
if (ctx == NULL || req == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_NULL_ARGUMENT);
return NULL;
}
if (!X509V3_add_value("Pragma", "no-cache", &headers))
return NULL;
if ((req_mem = ASN1_item_i2d_mem_bio(it, (const ASN1_VALUE *)req)) == NULL)
goto err;
if (ctx->serverPort != 0)
BIO_snprintf(server_port, sizeof(server_port), "%d", ctx->serverPort);
tls_used = OSSL_CMP_CTX_get_http_cb_arg(ctx) != NULL;
if (ctx->http_ctx == NULL)
ossl_cmp_log3(DEBUG, ctx, "connecting to CMP server %s:%s%s",
ctx->server, server_port, tls_used ? " using TLS" : "");
rsp = OSSL_HTTP_transfer(&ctx->http_ctx, ctx->server, server_port,
ctx->serverPath, tls_used,
ctx->proxy, ctx->no_proxy,
NULL /* bio */, NULL /* rbio */,
ctx->http_cb, OSSL_CMP_CTX_get_http_cb_arg(ctx),
0 /* buf_size */, headers,
content_type_pkix, req_mem,
content_type_pkix, 1 /* expect_asn1 */,
OSSL_HTTP_DEFAULT_MAX_RESP_LEN,
ctx->msg_timeout,
keep_alive(ctx->keep_alive, req->body->type));
BIO_free(req_mem);
res = (OSSL_CMP_MSG *)ASN1_item_d2i_bio(it, rsp, NULL);
BIO_free(rsp);
if (ctx->http_ctx == NULL)
ossl_cmp_debug(ctx, "disconnected from CMP server");
/*
* Note that on normal successful end of the transaction the connection
* is not closed at this level, but this will be done by the CMP client
* application via OSSL_CMP_CTX_free() or OSSL_CMP_CTX_reinit().
*/
if (res != NULL)
ossl_cmp_debug(ctx, "finished reading response from CMP server");
err:
sk_CONF_VALUE_pop_free(headers, X509V3_conf_free);
return res;
}
| 3,721 | 34.788462 | 79 | c |
openssl | openssl-master/crypto/cmp/cmp_protect.c | /*
* Copyright 2007-2022 The OpenSSL Project Authors. All Rights Reserved.
* Copyright Nokia 2007-2019
* Copyright Siemens AG 2015-2019
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "cmp_local.h"
#include "crypto/asn1.h"
/* explicit #includes not strictly needed since implied by the above: */
#include <openssl/asn1t.h>
#include <openssl/cmp.h>
#include <openssl/crmf.h>
#include <openssl/err.h>
#include <openssl/x509.h>
/*
* This function is also used by the internal verify_PBMAC() in cmp_vfy.c.
*
* Calculate protection for given PKImessage according to
* the algorithm and parameters in the message header's protectionAlg
* using the credentials, library context, and property criteria in the ctx.
*
* returns ASN1_BIT_STRING representing the protection on success, else NULL
*/
ASN1_BIT_STRING *ossl_cmp_calc_protection(const OSSL_CMP_CTX *ctx,
const OSSL_CMP_MSG *msg)
{
ASN1_BIT_STRING *prot = NULL;
OSSL_CMP_PROTECTEDPART prot_part;
const ASN1_OBJECT *algorOID = NULL;
const void *ppval = NULL;
int pptype = 0;
if (!ossl_assert(ctx != NULL && msg != NULL))
return NULL;
/* construct data to be signed */
prot_part.header = msg->header;
prot_part.body = msg->body;
if (msg->header->protectionAlg == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_UNKNOWN_ALGORITHM_ID);
return NULL;
}
X509_ALGOR_get0(&algorOID, &pptype, &ppval, msg->header->protectionAlg);
if (OBJ_obj2nid(algorOID) == NID_id_PasswordBasedMAC) {
int len;
size_t prot_part_der_len;
unsigned char *prot_part_der = NULL;
size_t sig_len;
unsigned char *protection = NULL;
OSSL_CRMF_PBMPARAMETER *pbm = NULL;
ASN1_STRING *pbm_str = NULL;
const unsigned char *pbm_str_uc = NULL;
if (ctx->secretValue == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_MISSING_PBM_SECRET);
return NULL;
}
if (ppval == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_ERROR_CALCULATING_PROTECTION);
return NULL;
}
len = i2d_OSSL_CMP_PROTECTEDPART(&prot_part, &prot_part_der);
if (len < 0 || prot_part_der == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_ERROR_CALCULATING_PROTECTION);
goto end;
}
prot_part_der_len = (size_t)len;
pbm_str = (ASN1_STRING *)ppval;
pbm_str_uc = pbm_str->data;
pbm = d2i_OSSL_CRMF_PBMPARAMETER(NULL, &pbm_str_uc, pbm_str->length);
if (pbm == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_WRONG_ALGORITHM_OID);
goto end;
}
if (!OSSL_CRMF_pbm_new(ctx->libctx, ctx->propq,
pbm, prot_part_der, prot_part_der_len,
ctx->secretValue->data, ctx->secretValue->length,
&protection, &sig_len))
goto end;
if ((prot = ASN1_BIT_STRING_new()) == NULL)
goto end;
/* OpenSSL by default encodes all bit strings as ASN.1 NamedBitList */
ossl_asn1_string_set_bits_left(prot, 0);
if (!ASN1_BIT_STRING_set(prot, protection, sig_len)) {
ASN1_BIT_STRING_free(prot);
prot = NULL;
}
end:
OSSL_CRMF_PBMPARAMETER_free(pbm);
OPENSSL_free(protection);
OPENSSL_free(prot_part_der);
return prot;
} else {
int md_nid;
const EVP_MD *md = NULL;
if (ctx->pkey == NULL) {
ERR_raise(ERR_LIB_CMP,
CMP_R_MISSING_KEY_INPUT_FOR_CREATING_PROTECTION);
return NULL;
}
if (!OBJ_find_sigid_algs(OBJ_obj2nid(algorOID), &md_nid, NULL)
|| (md = EVP_get_digestbynid(md_nid)) == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_UNKNOWN_ALGORITHM_ID);
return NULL;
}
if ((prot = ASN1_BIT_STRING_new()) == NULL)
return NULL;
if (ASN1_item_sign_ex(ASN1_ITEM_rptr(OSSL_CMP_PROTECTEDPART), NULL,
NULL, prot, &prot_part, NULL, ctx->pkey, md,
ctx->libctx, ctx->propq))
return prot;
ASN1_BIT_STRING_free(prot);
return NULL;
}
}
/* ctx is not const just because ctx->chain may get adapted */
int ossl_cmp_msg_add_extraCerts(OSSL_CMP_CTX *ctx, OSSL_CMP_MSG *msg)
{
if (!ossl_assert(ctx != NULL && msg != NULL))
return 0;
/* Add first ctx->cert and its chain if using signature-based protection */
if (!ctx->unprotectedSend && ctx->secretValue == NULL
&& ctx->cert != NULL && ctx->pkey != NULL) {
int prepend = X509_ADD_FLAG_UP_REF | X509_ADD_FLAG_NO_DUP
| X509_ADD_FLAG_PREPEND | X509_ADD_FLAG_NO_SS;
/* if not yet done try to build chain using available untrusted certs */
if (ctx->chain == NULL) {
ossl_cmp_debug(ctx,
"trying to build chain for own CMP signer cert");
ctx->chain = X509_build_chain(ctx->cert, ctx->untrusted, NULL, 0,
ctx->libctx, ctx->propq);
if (ctx->chain != NULL) {
ossl_cmp_debug(ctx,
"success building chain for own CMP signer cert");
} else {
/* dump errors to avoid confusion when printing further ones */
OSSL_CMP_CTX_print_errors(ctx);
ossl_cmp_warn(ctx,
"could not build chain for own CMP signer cert");
}
}
if (ctx->chain != NULL) {
if (!ossl_x509_add_certs_new(&msg->extraCerts, ctx->chain, prepend))
return 0;
} else {
/* make sure that at least our own signer cert is included first */
if (!ossl_x509_add_cert_new(&msg->extraCerts, ctx->cert, prepend))
return 0;
ossl_cmp_debug(ctx, "fallback: adding just own CMP signer cert");
}
}
/* add any additional certificates from ctx->extraCertsOut */
if (!ossl_x509_add_certs_new(&msg->extraCerts, ctx->extraCertsOut,
X509_ADD_FLAG_UP_REF | X509_ADD_FLAG_NO_DUP))
return 0;
/* in case extraCerts are empty list avoid empty ASN.1 sequence */
if (sk_X509_num(msg->extraCerts) == 0) {
sk_X509_free(msg->extraCerts);
msg->extraCerts = NULL;
}
return 1;
}
/*
* Create an X509_ALGOR structure for PasswordBasedMAC protection based on
* the pbm settings in the context
*/
static X509_ALGOR *pbmac_algor(const OSSL_CMP_CTX *ctx)
{
OSSL_CRMF_PBMPARAMETER *pbm = NULL;
unsigned char *pbm_der = NULL;
int pbm_der_len;
ASN1_STRING *pbm_str = NULL;
X509_ALGOR *alg = NULL;
if (!ossl_assert(ctx != NULL))
return NULL;
pbm = OSSL_CRMF_pbmp_new(ctx->libctx, ctx->pbm_slen,
EVP_MD_get_type(ctx->pbm_owf), ctx->pbm_itercnt,
ctx->pbm_mac);
pbm_str = ASN1_STRING_new();
if (pbm == NULL || pbm_str == NULL)
goto err;
if ((pbm_der_len = i2d_OSSL_CRMF_PBMPARAMETER(pbm, &pbm_der)) < 0)
goto err;
if (!ASN1_STRING_set(pbm_str, pbm_der, pbm_der_len))
goto err;
alg = ossl_X509_ALGOR_from_nid(NID_id_PasswordBasedMAC,
V_ASN1_SEQUENCE, pbm_str);
err:
if (alg == NULL)
ASN1_STRING_free(pbm_str);
OPENSSL_free(pbm_der);
OSSL_CRMF_PBMPARAMETER_free(pbm);
return alg;
}
static X509_ALGOR *sig_algor(const OSSL_CMP_CTX *ctx)
{
int nid = 0;
if (!OBJ_find_sigid_by_algs(&nid, EVP_MD_get_type(ctx->digest),
EVP_PKEY_get_id(ctx->pkey))) {
ERR_raise(ERR_LIB_CMP, CMP_R_UNSUPPORTED_KEY_TYPE);
return 0;
}
return ossl_X509_ALGOR_from_nid(nid, V_ASN1_UNDEF, NULL);
}
static int set_senderKID(const OSSL_CMP_CTX *ctx, OSSL_CMP_MSG *msg,
const ASN1_OCTET_STRING *id)
{
if (id == NULL)
id = ctx->referenceValue; /* standard for PBM, fallback for sig-based */
return id == NULL || ossl_cmp_hdr_set1_senderKID(msg->header, id);
}
/* ctx is not const just because ctx->chain may get adapted */
int ossl_cmp_msg_protect(OSSL_CMP_CTX *ctx, OSSL_CMP_MSG *msg)
{
if (!ossl_assert(ctx != NULL && msg != NULL))
return 0;
/*
* For the case of re-protection remove pre-existing protection.
* Does not remove any pre-existing extraCerts.
*/
X509_ALGOR_free(msg->header->protectionAlg);
msg->header->protectionAlg = NULL;
ASN1_BIT_STRING_free(msg->protection);
msg->protection = NULL;
if (ctx->unprotectedSend) {
if (!set_senderKID(ctx, msg, NULL))
goto err;
} else if (ctx->secretValue != NULL) {
/* use PasswordBasedMac according to 5.1.3.1 if secretValue is given */
if ((msg->header->protectionAlg = pbmac_algor(ctx)) == NULL)
goto err;
if (!set_senderKID(ctx, msg, NULL))
goto err;
/*
* will add any additional certificates from ctx->extraCertsOut
* while not needed to validate the protection certificate,
* the option to do this might be handy for certain use cases
*/
} else if (ctx->cert != NULL && ctx->pkey != NULL) {
/* use MSG_SIG_ALG according to 5.1.3.3 if client cert and key given */
/* make sure that key and certificate match */
if (!X509_check_private_key(ctx->cert, ctx->pkey)) {
ERR_raise(ERR_LIB_CMP, CMP_R_CERT_AND_KEY_DO_NOT_MATCH);
goto err;
}
if ((msg->header->protectionAlg = sig_algor(ctx)) == NULL)
goto err;
/* set senderKID to keyIdentifier of the cert according to 5.1.1 */
if (!set_senderKID(ctx, msg, X509_get0_subject_key_id(ctx->cert)))
goto err;
/*
* will add ctx->cert followed, if possible, by its chain built
* from ctx->untrusted, and then ctx->extraCertsOut
*/
} else {
ERR_raise(ERR_LIB_CMP,
CMP_R_MISSING_KEY_INPUT_FOR_CREATING_PROTECTION);
goto err;
}
if (!ctx->unprotectedSend
&& ((msg->protection = ossl_cmp_calc_protection(ctx, msg)) == NULL))
goto err;
/*
* For signature-based protection add ctx->cert followed by its chain.
* Finally add any additional certificates from ctx->extraCertsOut;
* even if not needed to validate the protection
* the option to do this might be handy for certain use cases.
*/
if (!ossl_cmp_msg_add_extraCerts(ctx, msg))
goto err;
/*
* As required by RFC 4210 section 5.1.1., if the sender name is not known
* to the client it set to NULL-DN. In this case for identification at least
* the senderKID must be set, where we took the referenceValue as fallback.
*/
if (!(ossl_cmp_general_name_is_NULL_DN(msg->header->sender)
&& msg->header->senderKID == NULL))
return 1;
ERR_raise(ERR_LIB_CMP, CMP_R_MISSING_SENDER_IDENTIFICATION);
err:
ERR_raise(ERR_LIB_CMP, CMP_R_ERROR_PROTECTING_MESSAGE);
return 0;
}
| 11,492 | 34.915625 | 81 | c |
openssl | openssl-master/crypto/cmp/cmp_server.c | /*
* Copyright 2007-2021 The OpenSSL Project Authors. All Rights Reserved.
* Copyright Nokia 2007-2019
* Copyright Siemens AG 2015-2019
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* general CMP server functions */
#include <openssl/asn1t.h>
#include "cmp_local.h"
/* explicit #includes not strictly needed since implied by the above: */
#include <openssl/cmp.h>
#include <openssl/err.h>
/* the context for the generic CMP server */
struct ossl_cmp_srv_ctx_st
{
void *custom_ctx; /* pointer to application-specific server context */
OSSL_CMP_CTX *ctx; /* Client CMP context, reusing transactionID etc. */
int certReqId; /* id of last ir/cr/kur, OSSL_CMP_CERTREQID_NONE for p10cr */
OSSL_CMP_SRV_cert_request_cb_t process_cert_request;
OSSL_CMP_SRV_rr_cb_t process_rr;
OSSL_CMP_SRV_genm_cb_t process_genm;
OSSL_CMP_SRV_error_cb_t process_error;
OSSL_CMP_SRV_certConf_cb_t process_certConf;
OSSL_CMP_SRV_pollReq_cb_t process_pollReq;
int sendUnprotectedErrors; /* Send error and rejection msgs unprotected */
int acceptUnprotected; /* Accept requests with no/invalid prot. */
int acceptRAVerified; /* Accept ir/cr/kur with POPO RAVerified */
int grantImplicitConfirm; /* Grant implicit confirmation if requested */
}; /* OSSL_CMP_SRV_CTX */
void OSSL_CMP_SRV_CTX_free(OSSL_CMP_SRV_CTX *srv_ctx)
{
if (srv_ctx == NULL)
return;
OSSL_CMP_CTX_free(srv_ctx->ctx);
OPENSSL_free(srv_ctx);
}
OSSL_CMP_SRV_CTX *OSSL_CMP_SRV_CTX_new(OSSL_LIB_CTX *libctx, const char *propq)
{
OSSL_CMP_SRV_CTX *ctx = OPENSSL_zalloc(sizeof(OSSL_CMP_SRV_CTX));
if (ctx == NULL)
goto err;
if ((ctx->ctx = OSSL_CMP_CTX_new(libctx, propq)) == NULL)
goto err;
ctx->certReqId = OSSL_CMP_CERTREQID_INVALID;
/* all other elements are initialized to 0 or NULL, respectively */
return ctx;
err:
OSSL_CMP_SRV_CTX_free(ctx);
return NULL;
}
int OSSL_CMP_SRV_CTX_init(OSSL_CMP_SRV_CTX *srv_ctx, void *custom_ctx,
OSSL_CMP_SRV_cert_request_cb_t process_cert_request,
OSSL_CMP_SRV_rr_cb_t process_rr,
OSSL_CMP_SRV_genm_cb_t process_genm,
OSSL_CMP_SRV_error_cb_t process_error,
OSSL_CMP_SRV_certConf_cb_t process_certConf,
OSSL_CMP_SRV_pollReq_cb_t process_pollReq)
{
if (srv_ctx == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_NULL_ARGUMENT);
return 0;
}
srv_ctx->custom_ctx = custom_ctx;
srv_ctx->process_cert_request = process_cert_request;
srv_ctx->process_rr = process_rr;
srv_ctx->process_genm = process_genm;
srv_ctx->process_error = process_error;
srv_ctx->process_certConf = process_certConf;
srv_ctx->process_pollReq = process_pollReq;
return 1;
}
OSSL_CMP_CTX *OSSL_CMP_SRV_CTX_get0_cmp_ctx(const OSSL_CMP_SRV_CTX *srv_ctx)
{
if (srv_ctx == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_NULL_ARGUMENT);
return NULL;
}
return srv_ctx->ctx;
}
void *OSSL_CMP_SRV_CTX_get0_custom_ctx(const OSSL_CMP_SRV_CTX *srv_ctx)
{
if (srv_ctx == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_NULL_ARGUMENT);
return NULL;
}
return srv_ctx->custom_ctx;
}
int OSSL_CMP_SRV_CTX_set_send_unprotected_errors(OSSL_CMP_SRV_CTX *srv_ctx,
int val)
{
if (srv_ctx == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_NULL_ARGUMENT);
return 0;
}
srv_ctx->sendUnprotectedErrors = val != 0;
return 1;
}
int OSSL_CMP_SRV_CTX_set_accept_unprotected(OSSL_CMP_SRV_CTX *srv_ctx, int val)
{
if (srv_ctx == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_NULL_ARGUMENT);
return 0;
}
srv_ctx->acceptUnprotected = val != 0;
return 1;
}
int OSSL_CMP_SRV_CTX_set_accept_raverified(OSSL_CMP_SRV_CTX *srv_ctx, int val)
{
if (srv_ctx == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_NULL_ARGUMENT);
return 0;
}
srv_ctx->acceptRAVerified = val != 0;
return 1;
}
int OSSL_CMP_SRV_CTX_set_grant_implicit_confirm(OSSL_CMP_SRV_CTX *srv_ctx,
int val)
{
if (srv_ctx == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_NULL_ARGUMENT);
return 0;
}
srv_ctx->grantImplicitConfirm = val != 0;
return 1;
}
/*
* Processes an ir/cr/p10cr/kur and returns a certification response.
* Only handles the first certification request contained in req
* returns an ip/cp/kup on success and NULL on error
*/
static OSSL_CMP_MSG *process_cert_request(OSSL_CMP_SRV_CTX *srv_ctx,
const OSSL_CMP_MSG *req)
{
OSSL_CMP_MSG *msg = NULL;
OSSL_CMP_PKISI *si = NULL;
X509 *certOut = NULL;
STACK_OF(X509) *chainOut = NULL, *caPubs = NULL;
const OSSL_CRMF_MSG *crm = NULL;
const X509_REQ *p10cr = NULL;
int bodytype;
int certReqId;
if (!ossl_assert(srv_ctx != NULL && srv_ctx->ctx != NULL && req != NULL))
return NULL;
switch (OSSL_CMP_MSG_get_bodytype(req)) {
case OSSL_CMP_PKIBODY_P10CR:
case OSSL_CMP_PKIBODY_CR:
bodytype = OSSL_CMP_PKIBODY_CP;
break;
case OSSL_CMP_PKIBODY_IR:
bodytype = OSSL_CMP_PKIBODY_IP;
break;
case OSSL_CMP_PKIBODY_KUR:
bodytype = OSSL_CMP_PKIBODY_KUP;
break;
default:
ERR_raise(ERR_LIB_CMP, CMP_R_UNEXPECTED_PKIBODY);
return NULL;
}
if (OSSL_CMP_MSG_get_bodytype(req) == OSSL_CMP_PKIBODY_P10CR) {
certReqId = OSSL_CMP_CERTREQID_NONE; /* p10cr does not include an Id */
p10cr = req->body->value.p10cr;
} else {
OSSL_CRMF_MSGS *reqs = req->body->value.ir; /* same for cr and kur */
if (sk_OSSL_CRMF_MSG_num(reqs) != 1) {
ERR_raise(ERR_LIB_CMP, CMP_R_MULTIPLE_REQUESTS_NOT_SUPPORTED);
return NULL;
}
if ((crm = sk_OSSL_CRMF_MSG_value(reqs, OSSL_CMP_CERTREQID)) == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_CERTREQMSG_NOT_FOUND);
return NULL;
}
certReqId = OSSL_CRMF_MSG_get_certReqId(crm);
if (certReqId != OSSL_CMP_CERTREQID) {
ERR_raise(ERR_LIB_CMP, CMP_R_BAD_REQUEST_ID);
return 0;
}
}
srv_ctx->certReqId = certReqId;
if (!ossl_cmp_verify_popo(srv_ctx->ctx, req, srv_ctx->acceptRAVerified)) {
/* Proof of possession could not be verified */
si = OSSL_CMP_STATUSINFO_new(OSSL_CMP_PKISTATUS_rejection,
1 << OSSL_CMP_PKIFAILUREINFO_badPOP,
ERR_reason_error_string(ERR_peek_error()));
if (si == NULL)
return NULL;
} else {
OSSL_CMP_PKIHEADER *hdr = OSSL_CMP_MSG_get0_header(req);
si = srv_ctx->process_cert_request(srv_ctx, req, certReqId, crm, p10cr,
&certOut, &chainOut, &caPubs);
if (si == NULL)
goto err;
/* set OSSL_CMP_OPT_IMPLICIT_CONFIRM if and only if transaction ends */
if (!OSSL_CMP_CTX_set_option(srv_ctx->ctx,
OSSL_CMP_OPT_IMPLICIT_CONFIRM,
ossl_cmp_hdr_has_implicitConfirm(hdr)
&& srv_ctx->grantImplicitConfirm
/* do not set if polling starts: */
&& certOut != NULL))
goto err;
}
msg = ossl_cmp_certrep_new(srv_ctx->ctx, bodytype, certReqId, si,
certOut, NULL /* enc */, chainOut, caPubs,
srv_ctx->sendUnprotectedErrors);
/* When supporting OSSL_CRMF_POPO_KEYENC, "enc" will need to be set */
if (msg == NULL)
ERR_raise(ERR_LIB_CMP, CMP_R_ERROR_CREATING_CERTREP);
err:
OSSL_CMP_PKISI_free(si);
X509_free(certOut);
OSSL_STACK_OF_X509_free(chainOut);
OSSL_STACK_OF_X509_free(caPubs);
return msg;
}
static OSSL_CMP_MSG *process_rr(OSSL_CMP_SRV_CTX *srv_ctx,
const OSSL_CMP_MSG *req)
{
OSSL_CMP_MSG *msg = NULL;
OSSL_CMP_REVDETAILS *details;
OSSL_CRMF_CERTID *certId = NULL;
OSSL_CRMF_CERTTEMPLATE *tmpl;
const X509_NAME *issuer;
const ASN1_INTEGER *serial;
OSSL_CMP_PKISI *si;
if (!ossl_assert(srv_ctx != NULL && srv_ctx->ctx != NULL && req != NULL))
return NULL;
if (sk_OSSL_CMP_REVDETAILS_num(req->body->value.rr) != 1) {
ERR_raise(ERR_LIB_CMP, CMP_R_MULTIPLE_REQUESTS_NOT_SUPPORTED);
return NULL;
}
if ((details = sk_OSSL_CMP_REVDETAILS_value(req->body->value.rr,
OSSL_CMP_REVREQSID)) == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_ERROR_PROCESSING_MESSAGE);
return NULL;
}
tmpl = details->certDetails;
issuer = OSSL_CRMF_CERTTEMPLATE_get0_issuer(tmpl);
serial = OSSL_CRMF_CERTTEMPLATE_get0_serialNumber(tmpl);
if (issuer != NULL && serial != NULL
&& (certId = OSSL_CRMF_CERTID_gen(issuer, serial)) == NULL)
return NULL;
if ((si = srv_ctx->process_rr(srv_ctx, req, issuer, serial)) == NULL)
goto err;
if ((msg = ossl_cmp_rp_new(srv_ctx->ctx, si, certId,
srv_ctx->sendUnprotectedErrors)) == NULL)
ERR_raise(ERR_LIB_CMP, CMP_R_ERROR_CREATING_RR);
err:
OSSL_CRMF_CERTID_free(certId);
OSSL_CMP_PKISI_free(si);
return msg;
}
/*
* Processes genm and creates a genp message mirroring the contents of the
* incoming message
*/
static OSSL_CMP_MSG *process_genm(OSSL_CMP_SRV_CTX *srv_ctx,
const OSSL_CMP_MSG *req)
{
OSSL_CMP_GENMSGCONTENT *itavs;
OSSL_CMP_MSG *msg;
if (!ossl_assert(srv_ctx != NULL && srv_ctx->ctx != NULL && req != NULL))
return NULL;
if (!srv_ctx->process_genm(srv_ctx, req, req->body->value.genm, &itavs))
return NULL;
msg = ossl_cmp_genp_new(srv_ctx->ctx, itavs);
sk_OSSL_CMP_ITAV_pop_free(itavs, OSSL_CMP_ITAV_free);
return msg;
}
static OSSL_CMP_MSG *process_error(OSSL_CMP_SRV_CTX *srv_ctx,
const OSSL_CMP_MSG *req)
{
OSSL_CMP_ERRORMSGCONTENT *errorContent;
OSSL_CMP_MSG *msg;
if (!ossl_assert(srv_ctx != NULL && srv_ctx->ctx != NULL && req != NULL))
return NULL;
errorContent = req->body->value.error;
srv_ctx->process_error(srv_ctx, req, errorContent->pKIStatusInfo,
errorContent->errorCode, errorContent->errorDetails);
if ((msg = ossl_cmp_pkiconf_new(srv_ctx->ctx)) == NULL)
ERR_raise(ERR_LIB_CMP, CMP_R_ERROR_CREATING_PKICONF);
return msg;
}
static OSSL_CMP_MSG *process_certConf(OSSL_CMP_SRV_CTX *srv_ctx,
const OSSL_CMP_MSG *req)
{
OSSL_CMP_CTX *ctx;
OSSL_CMP_CERTCONFIRMCONTENT *ccc;
int num;
OSSL_CMP_MSG *msg = NULL;
OSSL_CMP_CERTSTATUS *status = NULL;
if (!ossl_assert(srv_ctx != NULL && srv_ctx->ctx != NULL && req != NULL))
return NULL;
ctx = srv_ctx->ctx;
ccc = req->body->value.certConf;
num = sk_OSSL_CMP_CERTSTATUS_num(ccc);
if (OSSL_CMP_CTX_get_option(ctx, OSSL_CMP_OPT_IMPLICIT_CONFIRM) == 1
|| ctx->status != OSSL_CMP_PKISTATUS_trans) {
ERR_raise(ERR_LIB_CMP, CMP_R_ERROR_UNEXPECTED_CERTCONF);
return NULL;
}
if (num == 0) {
ossl_cmp_err(ctx, "certificate rejected by client");
} else {
if (num > 1)
ossl_cmp_warn(ctx, "All CertStatus but the first will be ignored");
status = sk_OSSL_CMP_CERTSTATUS_value(ccc, OSSL_CMP_CERTREQID);
}
if (status != NULL) {
int certReqId = ossl_cmp_asn1_get_int(status->certReqId);
ASN1_OCTET_STRING *certHash = status->certHash;
OSSL_CMP_PKISI *si = status->statusInfo;
if (certReqId != srv_ctx->certReqId) {
ERR_raise(ERR_LIB_CMP, CMP_R_BAD_REQUEST_ID);
return NULL;
}
if (!srv_ctx->process_certConf(srv_ctx, req, certReqId, certHash, si))
return NULL; /* reason code may be: CMP_R_CERTHASH_UNMATCHED */
if (si != NULL
&& ossl_cmp_pkisi_get_status(si) != OSSL_CMP_PKISTATUS_accepted) {
int pki_status = ossl_cmp_pkisi_get_status(si);
const char *str = ossl_cmp_PKIStatus_to_string(pki_status);
ossl_cmp_log2(INFO, ctx, "certificate rejected by client %s %s",
str == NULL ? "without" : "with",
str == NULL ? "PKIStatus" : str);
}
}
if ((msg = ossl_cmp_pkiconf_new(ctx)) == NULL)
ERR_raise(ERR_LIB_CMP, CMP_R_ERROR_CREATING_PKICONF);
return msg;
}
static OSSL_CMP_MSG *process_pollReq(OSSL_CMP_SRV_CTX *srv_ctx,
const OSSL_CMP_MSG *req)
{
OSSL_CMP_POLLREQCONTENT *prc;
OSSL_CMP_POLLREQ *pr;
int certReqId;
OSSL_CMP_MSG *certReq;
int64_t check_after = 0;
OSSL_CMP_MSG *msg = NULL;
if (!ossl_assert(srv_ctx != NULL && srv_ctx->ctx != NULL && req != NULL))
return NULL;
prc = req->body->value.pollReq;
if (sk_OSSL_CMP_POLLREQ_num(prc) != 1) {
ERR_raise(ERR_LIB_CMP, CMP_R_MULTIPLE_REQUESTS_NOT_SUPPORTED);
return NULL;
}
pr = sk_OSSL_CMP_POLLREQ_value(prc, OSSL_CMP_CERTREQID);
certReqId = ossl_cmp_asn1_get_int(pr->certReqId);
if (certReqId != srv_ctx->certReqId) {
ERR_raise(ERR_LIB_CMP, CMP_R_BAD_REQUEST_ID);
return NULL;
}
if (!srv_ctx->process_pollReq(srv_ctx, req, certReqId,
&certReq, &check_after))
return NULL;
if (certReq != NULL) {
msg = process_cert_request(srv_ctx, certReq);
OSSL_CMP_MSG_free(certReq);
} else {
if ((msg = ossl_cmp_pollRep_new(srv_ctx->ctx, certReqId,
check_after)) == NULL)
ERR_raise(ERR_LIB_CMP, CMP_R_ERROR_CREATING_POLLREP);
}
return msg;
}
/*
* Determine whether missing/invalid protection of request message is allowed.
* Return 1 on acceptance, 0 on rejection, or -1 on (internal) error.
*/
static int unprotected_exception(const OSSL_CMP_CTX *ctx,
const OSSL_CMP_MSG *req,
int invalid_protection,
int accept_unprotected_requests)
{
if (!ossl_assert(ctx != NULL && req != NULL))
return -1;
if (accept_unprotected_requests) {
ossl_cmp_log1(WARN, ctx, "ignoring %s protection of request message",
invalid_protection ? "invalid" : "missing");
return 1;
}
if (OSSL_CMP_MSG_get_bodytype(req) == OSSL_CMP_PKIBODY_ERROR
&& OSSL_CMP_CTX_get_option(ctx, OSSL_CMP_OPT_UNPROTECTED_ERRORS) == 1) {
ossl_cmp_warn(ctx, "ignoring missing protection of error message");
return 1;
}
return 0;
}
/*
* returns created message and NULL on internal error
*/
OSSL_CMP_MSG *OSSL_CMP_SRV_process_request(OSSL_CMP_SRV_CTX *srv_ctx,
const OSSL_CMP_MSG *req)
{
OSSL_CMP_CTX *ctx;
ASN1_OCTET_STRING *backup_secret;
OSSL_CMP_PKIHEADER *hdr;
int req_type, rsp_type;
int req_verified = 0;
OSSL_CMP_MSG *rsp = NULL;
if (srv_ctx == NULL || srv_ctx->ctx == NULL
|| req == NULL || req->body == NULL
|| (hdr = OSSL_CMP_MSG_get0_header(req)) == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_NULL_ARGUMENT);
return 0;
}
ctx = srv_ctx->ctx;
backup_secret = ctx->secretValue;
req_type = OSSL_CMP_MSG_get_bodytype(req);
ossl_cmp_log1(DEBUG, ctx,
"received %s", ossl_cmp_bodytype_to_string(req_type));
/*
* Some things need to be done already before validating the message in
* order to be able to send an error message as far as needed and possible.
*/
if (hdr->sender->type != GEN_DIRNAME) {
ERR_raise(ERR_LIB_CMP, CMP_R_SENDER_GENERALNAME_TYPE_NOT_SUPPORTED);
goto err;
}
if (!OSSL_CMP_CTX_set1_recipient(ctx, hdr->sender->d.directoryName))
goto err;
switch (req_type) {
case OSSL_CMP_PKIBODY_IR:
case OSSL_CMP_PKIBODY_CR:
case OSSL_CMP_PKIBODY_P10CR:
case OSSL_CMP_PKIBODY_KUR:
case OSSL_CMP_PKIBODY_RR:
case OSSL_CMP_PKIBODY_GENM:
case OSSL_CMP_PKIBODY_ERROR:
if (ctx->transactionID != NULL) {
char *tid = i2s_ASN1_OCTET_STRING(NULL, ctx->transactionID);
if (tid != NULL)
ossl_cmp_log1(WARN, ctx,
"Assuming that last transaction with ID=%s got aborted",
tid);
OPENSSL_free(tid);
}
/* start of a new transaction, reset transactionID and senderNonce */
if (!OSSL_CMP_CTX_set1_transactionID(ctx, NULL)
|| !OSSL_CMP_CTX_set1_senderNonce(ctx, NULL))
goto err;
break;
default:
/* transactionID should be already initialized */
if (ctx->transactionID == NULL) {
#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
ERR_raise(ERR_LIB_CMP, CMP_R_UNEXPECTED_PKIBODY);
goto err;
#endif
}
}
req_verified = ossl_cmp_msg_check_update(ctx, req, unprotected_exception,
srv_ctx->acceptUnprotected);
if (ctx->secretValue != NULL && ctx->pkey != NULL
&& ossl_cmp_hdr_get_protection_nid(hdr) != NID_id_PasswordBasedMAC)
ctx->secretValue = NULL; /* use MSG_SIG_ALG when protecting rsp */
if (!req_verified)
goto err;
switch (req_type) {
case OSSL_CMP_PKIBODY_IR:
case OSSL_CMP_PKIBODY_CR:
case OSSL_CMP_PKIBODY_P10CR:
case OSSL_CMP_PKIBODY_KUR:
if (srv_ctx->process_cert_request == NULL)
ERR_raise(ERR_LIB_CMP, CMP_R_UNEXPECTED_PKIBODY);
else
rsp = process_cert_request(srv_ctx, req);
break;
case OSSL_CMP_PKIBODY_RR:
if (srv_ctx->process_rr == NULL)
ERR_raise(ERR_LIB_CMP, CMP_R_UNEXPECTED_PKIBODY);
else
rsp = process_rr(srv_ctx, req);
break;
case OSSL_CMP_PKIBODY_GENM:
if (srv_ctx->process_genm == NULL)
ERR_raise(ERR_LIB_CMP, CMP_R_UNEXPECTED_PKIBODY);
else
rsp = process_genm(srv_ctx, req);
break;
case OSSL_CMP_PKIBODY_ERROR:
if (srv_ctx->process_error == NULL)
ERR_raise(ERR_LIB_CMP, CMP_R_UNEXPECTED_PKIBODY);
else
rsp = process_error(srv_ctx, req);
break;
case OSSL_CMP_PKIBODY_CERTCONF:
if (srv_ctx->process_certConf == NULL)
ERR_raise(ERR_LIB_CMP, CMP_R_UNEXPECTED_PKIBODY);
else
rsp = process_certConf(srv_ctx, req);
break;
case OSSL_CMP_PKIBODY_POLLREQ:
if (srv_ctx->process_pollReq == NULL)
ERR_raise(ERR_LIB_CMP, CMP_R_UNEXPECTED_PKIBODY);
else
rsp = process_pollReq(srv_ctx, req);
break;
default:
/* Other request message types are not supported */
ERR_raise(ERR_LIB_CMP, CMP_R_UNEXPECTED_PKIBODY);
break;
}
err:
if (rsp == NULL) {
/* on error, try to respond with CMP error message to client */
const char *data = NULL, *reason = NULL;
int flags = 0;
unsigned long err = ERR_peek_error_data(&data, &flags);
int fail_info = 1 << OSSL_CMP_PKIFAILUREINFO_badRequest;
/* fail_info is not very specific */
OSSL_CMP_PKISI *si = NULL;
if (!req_verified) {
/*
* Above ossl_cmp_msg_check_update() was not successfully executed,
* which normally would set ctx->transactionID and ctx->recipNonce.
* So anyway try to provide the right transactionID and recipNonce,
* while ignoring any (extra) error in next two function calls.
*/
if (ctx->transactionID == NULL)
(void)OSSL_CMP_CTX_set1_transactionID(ctx, hdr->transactionID);
(void)ossl_cmp_ctx_set1_recipNonce(ctx, hdr->senderNonce);
}
if ((flags & ERR_TXT_STRING) == 0 || *data == '\0')
data = NULL;
reason = ERR_reason_error_string(err);
if ((si = OSSL_CMP_STATUSINFO_new(OSSL_CMP_PKISTATUS_rejection,
fail_info, reason)) != NULL) {
rsp = ossl_cmp_error_new(srv_ctx->ctx, si, err,
data, srv_ctx->sendUnprotectedErrors);
OSSL_CMP_PKISI_free(si);
}
}
OSSL_CMP_CTX_print_errors(ctx);
ctx->secretValue = backup_secret;
rsp_type =
rsp != NULL ? OSSL_CMP_MSG_get_bodytype(rsp) : OSSL_CMP_PKIBODY_ERROR;
if (rsp != NULL)
ossl_cmp_log1(DEBUG, ctx,
"sending %s", ossl_cmp_bodytype_to_string(rsp_type));
else
ossl_cmp_log(ERR, ctx, "cannot send proper CMP response");
/* determine whether to keep the transaction open or not */
ctx->status = OSSL_CMP_PKISTATUS_trans;
switch (rsp_type) {
case OSSL_CMP_PKIBODY_IP:
case OSSL_CMP_PKIBODY_CP:
case OSSL_CMP_PKIBODY_KUP:
if (OSSL_CMP_CTX_get_option(ctx, OSSL_CMP_OPT_IMPLICIT_CONFIRM) == 0)
break;
/* fall through */
case OSSL_CMP_PKIBODY_RP:
case OSSL_CMP_PKIBODY_PKICONF:
case OSSL_CMP_PKIBODY_GENP:
case OSSL_CMP_PKIBODY_ERROR:
/* Other terminating response message types are not supported */
/* Prepare for next transaction, ignoring any errors here: */
(void)OSSL_CMP_CTX_set1_transactionID(ctx, NULL);
(void)OSSL_CMP_CTX_set1_senderNonce(ctx, NULL);
ctx->status = OSSL_CMP_PKISTATUS_unspecified; /* transaction closed */
default: /* not closing transaction in other cases */
break;
}
return rsp;
}
/*
* Server interface that may substitute OSSL_CMP_MSG_http_perform at the client.
* The OSSL_CMP_SRV_CTX must be set as client_ctx->transfer_cb_arg.
* returns received message on success, else NULL and pushes an element on the
* error stack.
*/
OSSL_CMP_MSG *OSSL_CMP_CTX_server_perform(OSSL_CMP_CTX *client_ctx,
const OSSL_CMP_MSG *req)
{
OSSL_CMP_SRV_CTX *srv_ctx = NULL;
if (client_ctx == NULL || req == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_NULL_ARGUMENT);
return NULL;
}
if ((srv_ctx = OSSL_CMP_CTX_get_transfer_cb_arg(client_ctx)) == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_TRANSFER_ERROR);
return NULL;
}
return OSSL_CMP_SRV_process_request(srv_ctx, req);
}
| 23,113 | 33.550075 | 86 | c |
openssl | openssl-master/crypto/cmp/cmp_status.c | /*
* Copyright 2007-2021 The OpenSSL Project Authors. All Rights Reserved.
* Copyright Nokia 2007-2019
* Copyright Siemens AG 2015-2019
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* CMP functions for PKIStatusInfo handling and PKIMessage decomposition */
#include <string.h>
#include "cmp_local.h"
/* explicit #includes not strictly needed since implied by the above: */
#include <time.h>
#include <openssl/cmp.h>
#include <openssl/crmf.h>
#include <openssl/err.h> /* needed in case config no-deprecated */
#include <openssl/engine.h>
#include <openssl/evp.h>
#include <openssl/objects.h>
#include <openssl/x509.h>
#include <openssl/asn1err.h> /* for ASN1_R_TOO_SMALL and ASN1_R_TOO_LARGE */
/* CMP functions related to PKIStatus */
int ossl_cmp_pkisi_get_status(const OSSL_CMP_PKISI *si)
{
if (!ossl_assert(si != NULL && si->status != NULL))
return -1;
return ossl_cmp_asn1_get_int(si->status);
}
const char *ossl_cmp_PKIStatus_to_string(int status)
{
switch (status) {
case OSSL_CMP_PKISTATUS_accepted:
return "PKIStatus: accepted";
case OSSL_CMP_PKISTATUS_grantedWithMods:
return "PKIStatus: granted with modifications";
case OSSL_CMP_PKISTATUS_rejection:
return "PKIStatus: rejection";
case OSSL_CMP_PKISTATUS_waiting:
return "PKIStatus: waiting";
case OSSL_CMP_PKISTATUS_revocationWarning:
return "PKIStatus: revocation warning - a revocation of the cert is imminent";
case OSSL_CMP_PKISTATUS_revocationNotification:
return "PKIStatus: revocation notification - a revocation of the cert has occurred";
case OSSL_CMP_PKISTATUS_keyUpdateWarning:
return "PKIStatus: key update warning - update already done for the cert";
default:
ERR_raise_data(ERR_LIB_CMP, CMP_R_ERROR_PARSING_PKISTATUS,
"PKIStatus: invalid=%d", status);
return NULL;
}
}
OSSL_CMP_PKIFREETEXT *ossl_cmp_pkisi_get0_statusString(const OSSL_CMP_PKISI *si)
{
if (!ossl_assert(si != NULL))
return NULL;
return si->statusString;
}
int ossl_cmp_pkisi_get_pkifailureinfo(const OSSL_CMP_PKISI *si)
{
int i;
int res = 0;
if (!ossl_assert(si != NULL))
return -1;
if (si->failInfo != NULL)
for (i = 0; i <= OSSL_CMP_PKIFAILUREINFO_MAX; i++)
if (ASN1_BIT_STRING_get_bit(si->failInfo, i))
res |= 1 << i;
return res;
}
/*-
* convert PKIFailureInfo number to human-readable string
* returns pointer to static string, or NULL on error
*/
static const char *CMP_PKIFAILUREINFO_to_string(int number)
{
switch (number) {
case OSSL_CMP_PKIFAILUREINFO_badAlg:
return "badAlg";
case OSSL_CMP_PKIFAILUREINFO_badMessageCheck:
return "badMessageCheck";
case OSSL_CMP_PKIFAILUREINFO_badRequest:
return "badRequest";
case OSSL_CMP_PKIFAILUREINFO_badTime:
return "badTime";
case OSSL_CMP_PKIFAILUREINFO_badCertId:
return "badCertId";
case OSSL_CMP_PKIFAILUREINFO_badDataFormat:
return "badDataFormat";
case OSSL_CMP_PKIFAILUREINFO_wrongAuthority:
return "wrongAuthority";
case OSSL_CMP_PKIFAILUREINFO_incorrectData:
return "incorrectData";
case OSSL_CMP_PKIFAILUREINFO_missingTimeStamp:
return "missingTimeStamp";
case OSSL_CMP_PKIFAILUREINFO_badPOP:
return "badPOP";
case OSSL_CMP_PKIFAILUREINFO_certRevoked:
return "certRevoked";
case OSSL_CMP_PKIFAILUREINFO_certConfirmed:
return "certConfirmed";
case OSSL_CMP_PKIFAILUREINFO_wrongIntegrity:
return "wrongIntegrity";
case OSSL_CMP_PKIFAILUREINFO_badRecipientNonce:
return "badRecipientNonce";
case OSSL_CMP_PKIFAILUREINFO_timeNotAvailable:
return "timeNotAvailable";
case OSSL_CMP_PKIFAILUREINFO_unacceptedPolicy:
return "unacceptedPolicy";
case OSSL_CMP_PKIFAILUREINFO_unacceptedExtension:
return "unacceptedExtension";
case OSSL_CMP_PKIFAILUREINFO_addInfoNotAvailable:
return "addInfoNotAvailable";
case OSSL_CMP_PKIFAILUREINFO_badSenderNonce:
return "badSenderNonce";
case OSSL_CMP_PKIFAILUREINFO_badCertTemplate:
return "badCertTemplate";
case OSSL_CMP_PKIFAILUREINFO_signerNotTrusted:
return "signerNotTrusted";
case OSSL_CMP_PKIFAILUREINFO_transactionIdInUse:
return "transactionIdInUse";
case OSSL_CMP_PKIFAILUREINFO_unsupportedVersion:
return "unsupportedVersion";
case OSSL_CMP_PKIFAILUREINFO_notAuthorized:
return "notAuthorized";
case OSSL_CMP_PKIFAILUREINFO_systemUnavail:
return "systemUnavail";
case OSSL_CMP_PKIFAILUREINFO_systemFailure:
return "systemFailure";
case OSSL_CMP_PKIFAILUREINFO_duplicateCertReq:
return "duplicateCertReq";
default:
return NULL; /* illegal failure number */
}
}
int ossl_cmp_pkisi_check_pkifailureinfo(const OSSL_CMP_PKISI *si, int bit_index)
{
if (!ossl_assert(si != NULL && si->failInfo != NULL))
return -1;
if (bit_index < 0 || bit_index > OSSL_CMP_PKIFAILUREINFO_MAX) {
ERR_raise(ERR_LIB_CMP, CMP_R_INVALID_ARGS);
return -1;
}
return ASN1_BIT_STRING_get_bit(si->failInfo, bit_index);
}
/*-
* place human-readable error string created from PKIStatusInfo in given buffer
* returns pointer to the same buffer containing the string, or NULL on error
*/
static
char *snprint_PKIStatusInfo_parts(int status, int fail_info,
const OSSL_CMP_PKIFREETEXT *status_strings,
char *buf, size_t bufsize)
{
int failure;
const char *status_string, *failure_string;
ASN1_UTF8STRING *text;
int i;
int printed_chars;
int failinfo_found = 0;
int n_status_strings;
char *write_ptr = buf;
if (buf == NULL
|| status < 0
|| (status_string = ossl_cmp_PKIStatus_to_string(status)) == NULL)
return NULL;
#define ADVANCE_BUFFER \
if (printed_chars < 0 || (size_t)printed_chars >= bufsize) \
return NULL; \
write_ptr += printed_chars; \
bufsize -= printed_chars;
printed_chars = BIO_snprintf(write_ptr, bufsize, "%s", status_string);
ADVANCE_BUFFER;
/*
* failInfo is optional and may be empty;
* if present, print failInfo before statusString because it is more concise
*/
if (fail_info != -1 && fail_info != 0) {
printed_chars = BIO_snprintf(write_ptr, bufsize, "; PKIFailureInfo: ");
ADVANCE_BUFFER;
for (failure = 0; failure <= OSSL_CMP_PKIFAILUREINFO_MAX; failure++) {
if ((fail_info & (1 << failure)) != 0) {
failure_string = CMP_PKIFAILUREINFO_to_string(failure);
if (failure_string != NULL) {
printed_chars = BIO_snprintf(write_ptr, bufsize, "%s%s",
failinfo_found ? ", " : "",
failure_string);
ADVANCE_BUFFER;
failinfo_found = 1;
}
}
}
}
if (!failinfo_found && status != OSSL_CMP_PKISTATUS_accepted
&& status != OSSL_CMP_PKISTATUS_grantedWithMods) {
printed_chars = BIO_snprintf(write_ptr, bufsize, "; <no failure info>");
ADVANCE_BUFFER;
}
/* statusString sequence is optional and may be empty */
n_status_strings = sk_ASN1_UTF8STRING_num(status_strings);
if (n_status_strings > 0) {
printed_chars = BIO_snprintf(write_ptr, bufsize, "; StatusString%s: ",
n_status_strings > 1 ? "s" : "");
ADVANCE_BUFFER;
for (i = 0; i < n_status_strings; i++) {
text = sk_ASN1_UTF8STRING_value(status_strings, i);
printed_chars = BIO_snprintf(write_ptr, bufsize, "\"%.*s\"%s",
ASN1_STRING_length(text),
ASN1_STRING_get0_data(text),
i < n_status_strings - 1 ? ", " : "");
ADVANCE_BUFFER;
}
}
#undef ADVANCE_BUFFER
return buf;
}
char *OSSL_CMP_snprint_PKIStatusInfo(const OSSL_CMP_PKISI *statusInfo,
char *buf, size_t bufsize)
{
int failure_info;
if (statusInfo == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_NULL_ARGUMENT);
return NULL;
}
failure_info = ossl_cmp_pkisi_get_pkifailureinfo(statusInfo);
return snprint_PKIStatusInfo_parts(ASN1_INTEGER_get(statusInfo->status),
failure_info,
statusInfo->statusString, buf, bufsize);
}
char *OSSL_CMP_CTX_snprint_PKIStatus(const OSSL_CMP_CTX *ctx, char *buf,
size_t bufsize)
{
if (ctx == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_NULL_ARGUMENT);
return NULL;
}
return snprint_PKIStatusInfo_parts(OSSL_CMP_CTX_get_status(ctx),
OSSL_CMP_CTX_get_failInfoCode(ctx),
OSSL_CMP_CTX_get0_statusString(ctx),
buf, bufsize);
}
/*-
* Creates a new PKIStatusInfo structure and fills it in
* returns a pointer to the structure on success, NULL on error
* note: strongly overlaps with TS_RESP_CTX_set_status_info()
* and TS_RESP_CTX_add_failure_info() in ../ts/ts_rsp_sign.c
*/
OSSL_CMP_PKISI *OSSL_CMP_STATUSINFO_new(int status, int fail_info,
const char *text)
{
OSSL_CMP_PKISI *si = OSSL_CMP_PKISI_new();
ASN1_UTF8STRING *utf8_text = NULL;
int failure;
if (si == NULL)
goto err;
if (!ASN1_INTEGER_set(si->status, status))
goto err;
if (text != NULL) {
if ((utf8_text = ASN1_UTF8STRING_new()) == NULL
|| !ASN1_STRING_set(utf8_text, text, -1))
goto err;
if ((si->statusString = sk_ASN1_UTF8STRING_new_null()) == NULL)
goto err;
if (!sk_ASN1_UTF8STRING_push(si->statusString, utf8_text))
goto err;
/* Ownership is lost. */
utf8_text = NULL;
}
for (failure = 0; failure <= OSSL_CMP_PKIFAILUREINFO_MAX; failure++) {
if ((fail_info & (1 << failure)) != 0) {
if (si->failInfo == NULL
&& (si->failInfo = ASN1_BIT_STRING_new()) == NULL)
goto err;
if (!ASN1_BIT_STRING_set_bit(si->failInfo, failure, 1))
goto err;
}
}
return si;
err:
OSSL_CMP_PKISI_free(si);
ASN1_UTF8STRING_free(utf8_text);
return NULL;
}
| 10,963 | 33.806349 | 92 | c |
openssl | openssl-master/crypto/cmp/cmp_util.c | /*
* Copyright 2007-2021 The OpenSSL Project Authors. All Rights Reserved.
* Copyright Nokia 2007-2019
* Copyright Siemens AG 2015-2019
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <string.h>
#include <openssl/cmp_util.h>
#include "cmp_local.h" /* just for decls of internal functions defined here */
#include <openssl/cmperr.h>
#include <openssl/err.h> /* should be implied by cmperr.h */
#include <openssl/x509v3.h>
/*
* use trace API for CMP-specific logging, prefixed by "CMP " and severity
*/
int OSSL_CMP_log_open(void) /* is designed to be idempotent */
{
#ifdef OPENSSL_NO_TRACE
return 1;
#else
# ifndef OPENSSL_NO_STDIO
BIO *bio = BIO_new_fp(stdout, BIO_NOCLOSE);
if (bio != NULL && OSSL_trace_set_channel(OSSL_TRACE_CATEGORY_CMP, bio))
return 1;
BIO_free(bio);
# endif
ERR_raise(ERR_LIB_CMP, CMP_R_NO_STDIO);
return 0;
#endif
}
void OSSL_CMP_log_close(void) /* is designed to be idempotent */
{
(void)OSSL_trace_set_channel(OSSL_TRACE_CATEGORY_CMP, NULL);
}
/* return >= 0 if level contains logging level, possibly preceded by "CMP " */
#define max_level_len 5 /* = max length of the below strings, e.g., "EMERG" */
static OSSL_CMP_severity parse_level(const char *level)
{
const char *end_level = strchr(level, ':');
int len;
char level_copy[max_level_len + 1];
if (end_level == NULL)
return -1;
if (HAS_PREFIX(level, OSSL_CMP_LOG_PREFIX))
level += strlen(OSSL_CMP_LOG_PREFIX);
len = end_level - level;
if (len > max_level_len)
return -1;
OPENSSL_strlcpy(level_copy, level, len + 1);
return
strcmp(level_copy, "EMERG") == 0 ? OSSL_CMP_LOG_EMERG :
strcmp(level_copy, "ALERT") == 0 ? OSSL_CMP_LOG_ALERT :
strcmp(level_copy, "CRIT") == 0 ? OSSL_CMP_LOG_CRIT :
strcmp(level_copy, "ERROR") == 0 ? OSSL_CMP_LOG_ERR :
strcmp(level_copy, "WARN") == 0 ? OSSL_CMP_LOG_WARNING :
strcmp(level_copy, "NOTE") == 0 ? OSSL_CMP_LOG_NOTICE :
strcmp(level_copy, "INFO") == 0 ? OSSL_CMP_LOG_INFO :
strcmp(level_copy, "DEBUG") == 0 ? OSSL_CMP_LOG_DEBUG :
-1;
}
const char *ossl_cmp_log_parse_metadata(const char *buf,
OSSL_CMP_severity *level,
char **func, char **file, int *line)
{
const char *p_func = buf;
const char *p_file = buf == NULL ? NULL : strchr(buf, ':');
const char *p_level = buf;
const char *msg = buf;
*level = -1;
*func = NULL;
*file = NULL;
*line = 0;
if (p_file != NULL) {
const char *p_line = strchr(++p_file, ':');
if ((*level = parse_level(buf)) < 0 && p_line != NULL) {
/* check if buf contains location info and logging level */
char *p_level_tmp = (char *)p_level;
const long line_number = strtol(++p_line, &p_level_tmp, 10);
p_level = p_level_tmp;
if (p_level > p_line && *(p_level++) == ':') {
if ((*level = parse_level(p_level)) >= 0) {
*func = OPENSSL_strndup(p_func, p_file - 1 - p_func);
*file = OPENSSL_strndup(p_file, p_line - 1 - p_file);
/* no real problem if OPENSSL_strndup() returns NULL */
*line = (int)line_number;
msg = strchr(p_level, ':');
if (msg != NULL && *++msg == ' ')
msg++;
}
}
}
}
return msg;
}
#define UNKNOWN_FUNC "(unknown function)" /* the default for OPENSSL_FUNC */
/*
* substitute fallback if component/function name is NULL or empty or contains
* just pseudo-information "(unknown function)" due to -pedantic and macros.h
*/
static const char *improve_location_name(const char *func, const char *fallback)
{
if (fallback == NULL)
return func == NULL ? UNKNOWN_FUNC : func;
return func == NULL || *func == '\0' || strcmp(func, UNKNOWN_FUNC) == 0
? fallback : func;
}
int OSSL_CMP_print_to_bio(BIO *bio, const char *component, const char *file,
int line, OSSL_CMP_severity level, const char *msg)
{
const char *level_string =
level == OSSL_CMP_LOG_EMERG ? "EMERG" :
level == OSSL_CMP_LOG_ALERT ? "ALERT" :
level == OSSL_CMP_LOG_CRIT ? "CRIT" :
level == OSSL_CMP_LOG_ERR ? "error" :
level == OSSL_CMP_LOG_WARNING ? "warning" :
level == OSSL_CMP_LOG_NOTICE ? "NOTE" :
level == OSSL_CMP_LOG_INFO ? "info" :
level == OSSL_CMP_LOG_DEBUG ? "DEBUG" : "(unknown level)";
#ifndef NDEBUG
if (BIO_printf(bio, "%s:%s:%d:", improve_location_name(component, "CMP"),
file, line) < 0)
return 0;
#endif
return BIO_printf(bio, OSSL_CMP_LOG_PREFIX"%s: %s\n",
level_string, msg) >= 0;
}
#define ERR_PRINT_BUF_SIZE 4096
/* this is similar to ERR_print_errors_cb, but uses the CMP-specific cb type */
void OSSL_CMP_print_errors_cb(OSSL_CMP_log_cb_t log_fn)
{
unsigned long err;
char msg[ERR_PRINT_BUF_SIZE];
const char *file = NULL, *func = NULL, *data = NULL;
int line, flags;
while ((err = ERR_get_error_all(&file, &line, &func, &data, &flags)) != 0) {
const char *component =
improve_location_name(func, ERR_lib_error_string(err));
unsigned long reason = ERR_GET_REASON(err);
const char *rs = NULL;
char rsbuf[256];
#ifndef OPENSSL_NO_ERR
if (ERR_SYSTEM_ERROR(err)) {
if (openssl_strerror_r(reason, rsbuf, sizeof(rsbuf)))
rs = rsbuf;
} else {
rs = ERR_reason_error_string(err);
}
#endif
if (rs == NULL) {
BIO_snprintf(rsbuf, sizeof(rsbuf), "reason(%lu)", reason);
rs = rsbuf;
}
if (data != NULL && (flags & ERR_TXT_STRING) != 0)
BIO_snprintf(msg, sizeof(msg), "%s:%s", rs, data);
else
BIO_snprintf(msg, sizeof(msg), "%s", rs);
if (log_fn == NULL) {
#ifndef OPENSSL_NO_STDIO
BIO *bio = BIO_new_fp(stderr, BIO_NOCLOSE);
if (bio != NULL) {
OSSL_CMP_print_to_bio(bio, component, file, line,
OSSL_CMP_LOG_ERR, msg);
BIO_free(bio);
}
#else
/* ERR_raise(..., CMP_R_NO_STDIO) would make no sense here */
#endif
} else {
if (log_fn(component, file, line, OSSL_CMP_LOG_ERR, msg) <= 0)
break; /* abort outputting the error report */
}
}
}
int ossl_cmp_X509_STORE_add1_certs(X509_STORE *store, STACK_OF(X509) *certs,
int only_self_signed)
{
int i;
if (store == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_NULL_ARGUMENT);
return 0;
}
if (certs == NULL)
return 1;
for (i = 0; i < sk_X509_num(certs); i++) {
X509 *cert = sk_X509_value(certs, i);
if (!only_self_signed || X509_self_signed(cert, 0) == 1)
if (!X509_STORE_add_cert(store, cert)) /* ups cert ref counter */
return 0;
}
return 1;
}
int ossl_cmp_sk_ASN1_UTF8STRING_push_str(STACK_OF(ASN1_UTF8STRING) *sk,
const char *text, int len)
{
ASN1_UTF8STRING *utf8string;
if (!ossl_assert(sk != NULL && text != NULL))
return 0;
if ((utf8string = ASN1_UTF8STRING_new()) == NULL)
return 0;
if (!ASN1_STRING_set(utf8string, text, len))
goto err;
if (!sk_ASN1_UTF8STRING_push(sk, utf8string))
goto err;
return 1;
err:
ASN1_UTF8STRING_free(utf8string);
return 0;
}
int ossl_cmp_asn1_octet_string_set1(ASN1_OCTET_STRING **tgt,
const ASN1_OCTET_STRING *src)
{
ASN1_OCTET_STRING *new;
if (tgt == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_NULL_ARGUMENT);
return 0;
}
if (*tgt == src) /* self-assignment */
return 1;
if (src != NULL) {
if ((new = ASN1_OCTET_STRING_dup(src)) == NULL)
return 0;
} else {
new = NULL;
}
ASN1_OCTET_STRING_free(*tgt);
*tgt = new;
return 1;
}
int ossl_cmp_asn1_octet_string_set1_bytes(ASN1_OCTET_STRING **tgt,
const unsigned char *bytes, int len)
{
ASN1_OCTET_STRING *new = NULL;
if (tgt == NULL) {
ERR_raise(ERR_LIB_CMP, CMP_R_NULL_ARGUMENT);
return 0;
}
if (bytes != NULL) {
if ((new = ASN1_OCTET_STRING_new()) == NULL
|| !(ASN1_OCTET_STRING_set(new, bytes, len))) {
ASN1_OCTET_STRING_free(new);
return 0;
}
}
ASN1_OCTET_STRING_free(*tgt);
*tgt = new;
return 1;
}
| 9,036 | 30.487805 | 80 | c |
openssl | openssl-master/crypto/cms/cms_asn1.c | /*
* Copyright 2008-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/asn1t.h>
#include <openssl/pem.h>
#include <openssl/x509v3.h>
#include <openssl/cms.h>
#include "cms_local.h"
ASN1_SEQUENCE(CMS_IssuerAndSerialNumber) = {
ASN1_SIMPLE(CMS_IssuerAndSerialNumber, issuer, X509_NAME),
ASN1_SIMPLE(CMS_IssuerAndSerialNumber, serialNumber, ASN1_INTEGER)
} ASN1_SEQUENCE_END(CMS_IssuerAndSerialNumber)
ASN1_SEQUENCE(CMS_OtherCertificateFormat) = {
ASN1_SIMPLE(CMS_OtherCertificateFormat, otherCertFormat, ASN1_OBJECT),
ASN1_OPT(CMS_OtherCertificateFormat, otherCert, ASN1_ANY)
} static_ASN1_SEQUENCE_END(CMS_OtherCertificateFormat)
ASN1_CHOICE(CMS_CertificateChoices) = {
ASN1_SIMPLE(CMS_CertificateChoices, d.certificate, X509),
ASN1_IMP(CMS_CertificateChoices, d.extendedCertificate, ASN1_SEQUENCE, 0),
ASN1_IMP(CMS_CertificateChoices, d.v1AttrCert, ASN1_SEQUENCE, 1),
ASN1_IMP(CMS_CertificateChoices, d.v2AttrCert, ASN1_SEQUENCE, 2),
ASN1_IMP(CMS_CertificateChoices, d.other, CMS_OtherCertificateFormat, 3)
} ASN1_CHOICE_END(CMS_CertificateChoices)
ASN1_CHOICE(CMS_SignerIdentifier) = {
ASN1_SIMPLE(CMS_SignerIdentifier, d.issuerAndSerialNumber, CMS_IssuerAndSerialNumber),
ASN1_IMP(CMS_SignerIdentifier, d.subjectKeyIdentifier, ASN1_OCTET_STRING, 0)
} static_ASN1_CHOICE_END(CMS_SignerIdentifier)
ASN1_NDEF_SEQUENCE(CMS_EncapsulatedContentInfo) = {
ASN1_SIMPLE(CMS_EncapsulatedContentInfo, eContentType, ASN1_OBJECT),
ASN1_NDEF_EXP_OPT(CMS_EncapsulatedContentInfo, eContent, ASN1_OCTET_STRING_NDEF, 0)
} static_ASN1_NDEF_SEQUENCE_END(CMS_EncapsulatedContentInfo)
/* Minor tweak to operation: free up signer key, cert */
static int cms_si_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
void *exarg)
{
if (operation == ASN1_OP_FREE_POST) {
CMS_SignerInfo *si = (CMS_SignerInfo *)*pval;
EVP_PKEY_free(si->pkey);
X509_free(si->signer);
EVP_MD_CTX_free(si->mctx);
}
return 1;
}
ASN1_SEQUENCE_cb(CMS_SignerInfo, cms_si_cb) = {
ASN1_EMBED(CMS_SignerInfo, version, INT32),
ASN1_SIMPLE(CMS_SignerInfo, sid, CMS_SignerIdentifier),
ASN1_SIMPLE(CMS_SignerInfo, digestAlgorithm, X509_ALGOR),
ASN1_IMP_SET_OF_OPT(CMS_SignerInfo, signedAttrs, X509_ATTRIBUTE, 0),
ASN1_SIMPLE(CMS_SignerInfo, signatureAlgorithm, X509_ALGOR),
ASN1_SIMPLE(CMS_SignerInfo, signature, ASN1_OCTET_STRING),
ASN1_IMP_SET_OF_OPT(CMS_SignerInfo, unsignedAttrs, X509_ATTRIBUTE, 1)
} ASN1_SEQUENCE_END_cb(CMS_SignerInfo, CMS_SignerInfo)
ASN1_SEQUENCE(CMS_OtherRevocationInfoFormat) = {
ASN1_SIMPLE(CMS_OtherRevocationInfoFormat, otherRevInfoFormat, ASN1_OBJECT),
ASN1_OPT(CMS_OtherRevocationInfoFormat, otherRevInfo, ASN1_ANY)
} static_ASN1_SEQUENCE_END(CMS_OtherRevocationInfoFormat)
ASN1_CHOICE(CMS_RevocationInfoChoice) = {
ASN1_SIMPLE(CMS_RevocationInfoChoice, d.crl, X509_CRL),
ASN1_IMP(CMS_RevocationInfoChoice, d.other, CMS_OtherRevocationInfoFormat, 1)
} ASN1_CHOICE_END(CMS_RevocationInfoChoice)
ASN1_NDEF_SEQUENCE(CMS_SignedData) = {
ASN1_EMBED(CMS_SignedData, version, INT32),
ASN1_SET_OF(CMS_SignedData, digestAlgorithms, X509_ALGOR),
ASN1_SIMPLE(CMS_SignedData, encapContentInfo, CMS_EncapsulatedContentInfo),
ASN1_IMP_SET_OF_OPT(CMS_SignedData, certificates, CMS_CertificateChoices, 0),
ASN1_IMP_SET_OF_OPT(CMS_SignedData, crls, CMS_RevocationInfoChoice, 1),
ASN1_SET_OF(CMS_SignedData, signerInfos, CMS_SignerInfo)
} ASN1_NDEF_SEQUENCE_END(CMS_SignedData)
IMPLEMENT_ASN1_ALLOC_FUNCTIONS(CMS_SignedData)
ASN1_SEQUENCE(CMS_OriginatorInfo) = {
ASN1_IMP_SET_OF_OPT(CMS_OriginatorInfo, certificates, CMS_CertificateChoices, 0),
ASN1_IMP_SET_OF_OPT(CMS_OriginatorInfo, crls, CMS_RevocationInfoChoice, 1)
} static_ASN1_SEQUENCE_END(CMS_OriginatorInfo)
ASN1_NDEF_SEQUENCE(CMS_EncryptedContentInfo) = {
ASN1_SIMPLE(CMS_EncryptedContentInfo, contentType, ASN1_OBJECT),
ASN1_SIMPLE(CMS_EncryptedContentInfo, contentEncryptionAlgorithm, X509_ALGOR),
ASN1_IMP_OPT(CMS_EncryptedContentInfo, encryptedContent, ASN1_OCTET_STRING_NDEF, 0)
} static_ASN1_NDEF_SEQUENCE_END(CMS_EncryptedContentInfo)
ASN1_SEQUENCE(CMS_KeyTransRecipientInfo) = {
ASN1_EMBED(CMS_KeyTransRecipientInfo, version, INT32),
ASN1_SIMPLE(CMS_KeyTransRecipientInfo, rid, CMS_SignerIdentifier),
ASN1_SIMPLE(CMS_KeyTransRecipientInfo, keyEncryptionAlgorithm, X509_ALGOR),
ASN1_SIMPLE(CMS_KeyTransRecipientInfo, encryptedKey, ASN1_OCTET_STRING)
} ASN1_SEQUENCE_END(CMS_KeyTransRecipientInfo)
ASN1_SEQUENCE(CMS_OtherKeyAttribute) = {
ASN1_SIMPLE(CMS_OtherKeyAttribute, keyAttrId, ASN1_OBJECT),
ASN1_OPT(CMS_OtherKeyAttribute, keyAttr, ASN1_ANY)
} ASN1_SEQUENCE_END(CMS_OtherKeyAttribute)
ASN1_SEQUENCE(CMS_RecipientKeyIdentifier) = {
ASN1_SIMPLE(CMS_RecipientKeyIdentifier, subjectKeyIdentifier, ASN1_OCTET_STRING),
ASN1_OPT(CMS_RecipientKeyIdentifier, date, ASN1_GENERALIZEDTIME),
ASN1_OPT(CMS_RecipientKeyIdentifier, other, CMS_OtherKeyAttribute)
} ASN1_SEQUENCE_END(CMS_RecipientKeyIdentifier)
ASN1_CHOICE(CMS_KeyAgreeRecipientIdentifier) = {
ASN1_SIMPLE(CMS_KeyAgreeRecipientIdentifier, d.issuerAndSerialNumber, CMS_IssuerAndSerialNumber),
ASN1_IMP(CMS_KeyAgreeRecipientIdentifier, d.rKeyId, CMS_RecipientKeyIdentifier, 0)
} static_ASN1_CHOICE_END(CMS_KeyAgreeRecipientIdentifier)
static int cms_rek_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
void *exarg)
{
CMS_RecipientEncryptedKey *rek = (CMS_RecipientEncryptedKey *)*pval;
if (operation == ASN1_OP_FREE_POST) {
EVP_PKEY_free(rek->pkey);
}
return 1;
}
ASN1_SEQUENCE_cb(CMS_RecipientEncryptedKey, cms_rek_cb) = {
ASN1_SIMPLE(CMS_RecipientEncryptedKey, rid, CMS_KeyAgreeRecipientIdentifier),
ASN1_SIMPLE(CMS_RecipientEncryptedKey, encryptedKey, ASN1_OCTET_STRING)
} ASN1_SEQUENCE_END_cb(CMS_RecipientEncryptedKey, CMS_RecipientEncryptedKey)
ASN1_SEQUENCE(CMS_OriginatorPublicKey) = {
ASN1_SIMPLE(CMS_OriginatorPublicKey, algorithm, X509_ALGOR),
ASN1_SIMPLE(CMS_OriginatorPublicKey, publicKey, ASN1_BIT_STRING)
} ASN1_SEQUENCE_END(CMS_OriginatorPublicKey)
ASN1_CHOICE(CMS_OriginatorIdentifierOrKey) = {
ASN1_SIMPLE(CMS_OriginatorIdentifierOrKey, d.issuerAndSerialNumber, CMS_IssuerAndSerialNumber),
ASN1_IMP(CMS_OriginatorIdentifierOrKey, d.subjectKeyIdentifier, ASN1_OCTET_STRING, 0),
ASN1_IMP(CMS_OriginatorIdentifierOrKey, d.originatorKey, CMS_OriginatorPublicKey, 1)
} static_ASN1_CHOICE_END(CMS_OriginatorIdentifierOrKey)
static int cms_kari_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
void *exarg)
{
CMS_KeyAgreeRecipientInfo *kari = (CMS_KeyAgreeRecipientInfo *)*pval;
if (operation == ASN1_OP_NEW_POST) {
kari->ctx = EVP_CIPHER_CTX_new();
if (kari->ctx == NULL)
return 0;
EVP_CIPHER_CTX_set_flags(kari->ctx, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW);
kari->pctx = NULL;
} else if (operation == ASN1_OP_FREE_POST) {
EVP_PKEY_CTX_free(kari->pctx);
EVP_CIPHER_CTX_free(kari->ctx);
}
return 1;
}
ASN1_SEQUENCE_cb(CMS_KeyAgreeRecipientInfo, cms_kari_cb) = {
ASN1_EMBED(CMS_KeyAgreeRecipientInfo, version, INT32),
ASN1_EXP(CMS_KeyAgreeRecipientInfo, originator, CMS_OriginatorIdentifierOrKey, 0),
ASN1_EXP_OPT(CMS_KeyAgreeRecipientInfo, ukm, ASN1_OCTET_STRING, 1),
ASN1_SIMPLE(CMS_KeyAgreeRecipientInfo, keyEncryptionAlgorithm, X509_ALGOR),
ASN1_SEQUENCE_OF(CMS_KeyAgreeRecipientInfo, recipientEncryptedKeys, CMS_RecipientEncryptedKey)
} ASN1_SEQUENCE_END_cb(CMS_KeyAgreeRecipientInfo, CMS_KeyAgreeRecipientInfo)
ASN1_SEQUENCE(CMS_KEKIdentifier) = {
ASN1_SIMPLE(CMS_KEKIdentifier, keyIdentifier, ASN1_OCTET_STRING),
ASN1_OPT(CMS_KEKIdentifier, date, ASN1_GENERALIZEDTIME),
ASN1_OPT(CMS_KEKIdentifier, other, CMS_OtherKeyAttribute)
} static_ASN1_SEQUENCE_END(CMS_KEKIdentifier)
ASN1_SEQUENCE(CMS_KEKRecipientInfo) = {
ASN1_EMBED(CMS_KEKRecipientInfo, version, INT32),
ASN1_SIMPLE(CMS_KEKRecipientInfo, kekid, CMS_KEKIdentifier),
ASN1_SIMPLE(CMS_KEKRecipientInfo, keyEncryptionAlgorithm, X509_ALGOR),
ASN1_SIMPLE(CMS_KEKRecipientInfo, encryptedKey, ASN1_OCTET_STRING)
} ASN1_SEQUENCE_END(CMS_KEKRecipientInfo)
ASN1_SEQUENCE(CMS_PasswordRecipientInfo) = {
ASN1_EMBED(CMS_PasswordRecipientInfo, version, INT32),
ASN1_IMP_OPT(CMS_PasswordRecipientInfo, keyDerivationAlgorithm, X509_ALGOR, 0),
ASN1_SIMPLE(CMS_PasswordRecipientInfo, keyEncryptionAlgorithm, X509_ALGOR),
ASN1_SIMPLE(CMS_PasswordRecipientInfo, encryptedKey, ASN1_OCTET_STRING)
} ASN1_SEQUENCE_END(CMS_PasswordRecipientInfo)
ASN1_SEQUENCE(CMS_OtherRecipientInfo) = {
ASN1_SIMPLE(CMS_OtherRecipientInfo, oriType, ASN1_OBJECT),
ASN1_OPT(CMS_OtherRecipientInfo, oriValue, ASN1_ANY)
} static_ASN1_SEQUENCE_END(CMS_OtherRecipientInfo)
/* Free up RecipientInfo additional data */
static int cms_ri_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
void *exarg)
{
if (operation == ASN1_OP_FREE_PRE) {
CMS_RecipientInfo *ri = (CMS_RecipientInfo *)*pval;
if (ri->type == CMS_RECIPINFO_TRANS) {
CMS_KeyTransRecipientInfo *ktri = ri->d.ktri;
EVP_PKEY_free(ktri->pkey);
X509_free(ktri->recip);
EVP_PKEY_CTX_free(ktri->pctx);
} else if (ri->type == CMS_RECIPINFO_KEK) {
CMS_KEKRecipientInfo *kekri = ri->d.kekri;
OPENSSL_clear_free(kekri->key, kekri->keylen);
} else if (ri->type == CMS_RECIPINFO_PASS) {
CMS_PasswordRecipientInfo *pwri = ri->d.pwri;
OPENSSL_clear_free(pwri->pass, pwri->passlen);
}
}
return 1;
}
ASN1_CHOICE_cb(CMS_RecipientInfo, cms_ri_cb) = {
ASN1_SIMPLE(CMS_RecipientInfo, d.ktri, CMS_KeyTransRecipientInfo),
ASN1_IMP(CMS_RecipientInfo, d.kari, CMS_KeyAgreeRecipientInfo, 1),
ASN1_IMP(CMS_RecipientInfo, d.kekri, CMS_KEKRecipientInfo, 2),
ASN1_IMP(CMS_RecipientInfo, d.pwri, CMS_PasswordRecipientInfo, 3),
ASN1_IMP(CMS_RecipientInfo, d.ori, CMS_OtherRecipientInfo, 4)
} ASN1_CHOICE_END_cb(CMS_RecipientInfo, CMS_RecipientInfo, type)
ASN1_NDEF_SEQUENCE(CMS_EnvelopedData) = {
ASN1_EMBED(CMS_EnvelopedData, version, INT32),
ASN1_IMP_OPT(CMS_EnvelopedData, originatorInfo, CMS_OriginatorInfo, 0),
ASN1_SET_OF(CMS_EnvelopedData, recipientInfos, CMS_RecipientInfo),
ASN1_SIMPLE(CMS_EnvelopedData, encryptedContentInfo, CMS_EncryptedContentInfo),
ASN1_IMP_SET_OF_OPT(CMS_EnvelopedData, unprotectedAttrs, X509_ATTRIBUTE, 1)
} ASN1_NDEF_SEQUENCE_END(CMS_EnvelopedData)
ASN1_NDEF_SEQUENCE(CMS_DigestedData) = {
ASN1_EMBED(CMS_DigestedData, version, INT32),
ASN1_SIMPLE(CMS_DigestedData, digestAlgorithm, X509_ALGOR),
ASN1_SIMPLE(CMS_DigestedData, encapContentInfo, CMS_EncapsulatedContentInfo),
ASN1_SIMPLE(CMS_DigestedData, digest, ASN1_OCTET_STRING)
} ASN1_NDEF_SEQUENCE_END(CMS_DigestedData)
ASN1_NDEF_SEQUENCE(CMS_EncryptedData) = {
ASN1_EMBED(CMS_EncryptedData, version, INT32),
ASN1_SIMPLE(CMS_EncryptedData, encryptedContentInfo, CMS_EncryptedContentInfo),
ASN1_IMP_SET_OF_OPT(CMS_EncryptedData, unprotectedAttrs, X509_ATTRIBUTE, 1)
} ASN1_NDEF_SEQUENCE_END(CMS_EncryptedData)
/* Defined in RFC 5083 - Section 2.1. AuthEnvelopedData Type */
ASN1_NDEF_SEQUENCE(CMS_AuthEnvelopedData) = {
ASN1_EMBED(CMS_AuthEnvelopedData, version, INT32),
ASN1_IMP_OPT(CMS_AuthEnvelopedData, originatorInfo, CMS_OriginatorInfo, 0),
ASN1_SET_OF(CMS_AuthEnvelopedData, recipientInfos, CMS_RecipientInfo),
ASN1_SIMPLE(CMS_AuthEnvelopedData, authEncryptedContentInfo, CMS_EncryptedContentInfo),
ASN1_IMP_SET_OF_OPT(CMS_AuthEnvelopedData, authAttrs, X509_ALGOR, 2),
ASN1_SIMPLE(CMS_AuthEnvelopedData, mac, ASN1_OCTET_STRING),
ASN1_IMP_SET_OF_OPT(CMS_AuthEnvelopedData, unauthAttrs, X509_ALGOR, 3)
} ASN1_NDEF_SEQUENCE_END(CMS_AuthEnvelopedData)
ASN1_NDEF_SEQUENCE(CMS_AuthenticatedData) = {
ASN1_EMBED(CMS_AuthenticatedData, version, INT32),
ASN1_IMP_OPT(CMS_AuthenticatedData, originatorInfo, CMS_OriginatorInfo, 0),
ASN1_SET_OF(CMS_AuthenticatedData, recipientInfos, CMS_RecipientInfo),
ASN1_SIMPLE(CMS_AuthenticatedData, macAlgorithm, X509_ALGOR),
ASN1_IMP(CMS_AuthenticatedData, digestAlgorithm, X509_ALGOR, 1),
ASN1_SIMPLE(CMS_AuthenticatedData, encapContentInfo, CMS_EncapsulatedContentInfo),
ASN1_IMP_SET_OF_OPT(CMS_AuthenticatedData, authAttrs, X509_ALGOR, 2),
ASN1_SIMPLE(CMS_AuthenticatedData, mac, ASN1_OCTET_STRING),
ASN1_IMP_SET_OF_OPT(CMS_AuthenticatedData, unauthAttrs, X509_ALGOR, 3)
} static_ASN1_NDEF_SEQUENCE_END(CMS_AuthenticatedData)
ASN1_NDEF_SEQUENCE(CMS_CompressedData) = {
ASN1_EMBED(CMS_CompressedData, version, INT32),
ASN1_SIMPLE(CMS_CompressedData, compressionAlgorithm, X509_ALGOR),
ASN1_SIMPLE(CMS_CompressedData, encapContentInfo, CMS_EncapsulatedContentInfo),
} ASN1_NDEF_SEQUENCE_END(CMS_CompressedData)
/* This is the ANY DEFINED BY table for the top level ContentInfo structure */
ASN1_ADB_TEMPLATE(cms_default) = ASN1_EXP(CMS_ContentInfo, d.other, ASN1_ANY, 0);
ASN1_ADB(CMS_ContentInfo) = {
ADB_ENTRY(NID_pkcs7_data, ASN1_NDEF_EXP(CMS_ContentInfo, d.data, ASN1_OCTET_STRING_NDEF, 0)),
ADB_ENTRY(NID_pkcs7_signed, ASN1_NDEF_EXP(CMS_ContentInfo, d.signedData, CMS_SignedData, 0)),
ADB_ENTRY(NID_pkcs7_enveloped, ASN1_NDEF_EXP(CMS_ContentInfo, d.envelopedData, CMS_EnvelopedData, 0)),
ADB_ENTRY(NID_pkcs7_digest, ASN1_NDEF_EXP(CMS_ContentInfo, d.digestedData, CMS_DigestedData, 0)),
ADB_ENTRY(NID_pkcs7_encrypted, ASN1_NDEF_EXP(CMS_ContentInfo, d.encryptedData, CMS_EncryptedData, 0)),
ADB_ENTRY(NID_id_smime_ct_authEnvelopedData, ASN1_NDEF_EXP(CMS_ContentInfo, d.authEnvelopedData, CMS_AuthEnvelopedData, 0)),
ADB_ENTRY(NID_id_smime_ct_authData, ASN1_NDEF_EXP(CMS_ContentInfo, d.authenticatedData, CMS_AuthenticatedData, 0)),
ADB_ENTRY(NID_id_smime_ct_compressedData, ASN1_NDEF_EXP(CMS_ContentInfo, d.compressedData, CMS_CompressedData, 0)),
} ASN1_ADB_END(CMS_ContentInfo, 0, contentType, 0, &cms_default_tt, NULL);
/* CMS streaming support */
static int cms_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
void *exarg)
{
ASN1_STREAM_ARG *sarg = exarg;
CMS_ContentInfo *cms = NULL;
if (pval)
cms = (CMS_ContentInfo *)*pval;
else
return 1;
switch (operation) {
case ASN1_OP_STREAM_PRE:
if (CMS_stream(&sarg->boundary, cms) <= 0)
return 0;
/* fall through */
case ASN1_OP_DETACHED_PRE:
sarg->ndef_bio = CMS_dataInit(cms, sarg->out);
if (!sarg->ndef_bio)
return 0;
break;
case ASN1_OP_STREAM_POST:
case ASN1_OP_DETACHED_POST:
if (CMS_dataFinal(cms, sarg->ndef_bio) <= 0)
return 0;
break;
}
return 1;
}
ASN1_NDEF_SEQUENCE_cb(CMS_ContentInfo, cms_cb) = {
ASN1_SIMPLE(CMS_ContentInfo, contentType, ASN1_OBJECT),
ASN1_ADB_OBJECT(CMS_ContentInfo)
} ASN1_NDEF_SEQUENCE_END_cb(CMS_ContentInfo, CMS_ContentInfo)
/* Specials for signed attributes */
/*
* When signing attributes we want to reorder them to match the sorted
* encoding.
*/
ASN1_ITEM_TEMPLATE(CMS_Attributes_Sign) =
ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SET_ORDER, 0, CMS_ATTRIBUTES, X509_ATTRIBUTE)
ASN1_ITEM_TEMPLATE_END(CMS_Attributes_Sign)
/*
* When verifying attributes we need to use the received order. So we use
* SEQUENCE OF and tag it to SET OF
*/
ASN1_ITEM_TEMPLATE(CMS_Attributes_Verify) =
ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF | ASN1_TFLG_IMPTAG | ASN1_TFLG_UNIVERSAL,
V_ASN1_SET, CMS_ATTRIBUTES, X509_ATTRIBUTE)
ASN1_ITEM_TEMPLATE_END(CMS_Attributes_Verify)
ASN1_CHOICE(CMS_ReceiptsFrom) = {
ASN1_IMP_EMBED(CMS_ReceiptsFrom, d.allOrFirstTier, INT32, 0),
ASN1_IMP_SEQUENCE_OF(CMS_ReceiptsFrom, d.receiptList, GENERAL_NAMES, 1)
} static_ASN1_CHOICE_END(CMS_ReceiptsFrom)
ASN1_SEQUENCE(CMS_ReceiptRequest) = {
ASN1_SIMPLE(CMS_ReceiptRequest, signedContentIdentifier, ASN1_OCTET_STRING),
ASN1_SIMPLE(CMS_ReceiptRequest, receiptsFrom, CMS_ReceiptsFrom),
ASN1_SEQUENCE_OF(CMS_ReceiptRequest, receiptsTo, GENERAL_NAMES)
} ASN1_SEQUENCE_END(CMS_ReceiptRequest)
ASN1_SEQUENCE(CMS_Receipt) = {
ASN1_EMBED(CMS_Receipt, version, INT32),
ASN1_SIMPLE(CMS_Receipt, contentType, ASN1_OBJECT),
ASN1_SIMPLE(CMS_Receipt, signedContentIdentifier, ASN1_OCTET_STRING),
ASN1_SIMPLE(CMS_Receipt, originatorSignatureValue, ASN1_OCTET_STRING)
} ASN1_SEQUENCE_END(CMS_Receipt)
/*
* Utilities to encode the CMS_SharedInfo structure used during key
* derivation.
*/
typedef struct {
X509_ALGOR *keyInfo;
ASN1_OCTET_STRING *entityUInfo;
ASN1_OCTET_STRING *suppPubInfo;
} CMS_SharedInfo;
ASN1_SEQUENCE(CMS_SharedInfo) = {
ASN1_SIMPLE(CMS_SharedInfo, keyInfo, X509_ALGOR),
ASN1_EXP_OPT(CMS_SharedInfo, entityUInfo, ASN1_OCTET_STRING, 0),
ASN1_EXP_OPT(CMS_SharedInfo, suppPubInfo, ASN1_OCTET_STRING, 2),
} static_ASN1_SEQUENCE_END(CMS_SharedInfo)
int CMS_SharedInfo_encode(unsigned char **pder, X509_ALGOR *kekalg,
ASN1_OCTET_STRING *ukm, int keylen)
{
union {
CMS_SharedInfo *pecsi;
ASN1_VALUE *a;
} intsi = {
NULL
};
ASN1_OCTET_STRING oklen;
unsigned char kl[4];
CMS_SharedInfo ecsi;
keylen <<= 3;
kl[0] = (keylen >> 24) & 0xff;
kl[1] = (keylen >> 16) & 0xff;
kl[2] = (keylen >> 8) & 0xff;
kl[3] = keylen & 0xff;
oklen.length = 4;
oklen.data = kl;
oklen.type = V_ASN1_OCTET_STRING;
oklen.flags = 0;
ecsi.keyInfo = kekalg;
ecsi.entityUInfo = ukm;
ecsi.suppPubInfo = &oklen;
intsi.pecsi = &ecsi;
return ASN1_item_i2d(intsi.a, pder, ASN1_ITEM_rptr(CMS_SharedInfo));
}
| 18,604 | 43.616307 | 132 | c |
openssl | openssl-master/crypto/cms/cms_att.c | /*
* Copyright 2008-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/asn1t.h>
#include <openssl/pem.h>
#include <openssl/x509v3.h>
#include <openssl/err.h>
#include <openssl/cms.h>
#include "cms_local.h"
#include "internal/nelem.h"
/*-
* Attribute flags.
* CMS attribute restrictions are discussed in
* - RFC 5652 Section 11.
* ESS attribute restrictions are discussed in
* - RFC 2634 Section 1.3.4 AND
* - RFC 5035 Section 5.4
*/
/* This is a signed attribute */
#define CMS_ATTR_F_SIGNED 0x01
/* This is an unsigned attribute */
#define CMS_ATTR_F_UNSIGNED 0x02
/* Must be present if there are any other attributes of the same type */
#define CMS_ATTR_F_REQUIRED_COND 0x10
/* There can only be one instance of this attribute */
#define CMS_ATTR_F_ONLY_ONE 0x20
/* The Attribute's value must have exactly one entry */
#define CMS_ATTR_F_ONE_ATTR_VALUE 0x40
/* Attributes rules for different attributes */
static const struct {
int nid; /* The attribute id */
int flags;
} cms_attribute_properties[] = {
/* See RFC Section 11 */
{ NID_pkcs9_contentType, CMS_ATTR_F_SIGNED
| CMS_ATTR_F_ONLY_ONE
| CMS_ATTR_F_ONE_ATTR_VALUE
| CMS_ATTR_F_REQUIRED_COND },
{ NID_pkcs9_messageDigest, CMS_ATTR_F_SIGNED
| CMS_ATTR_F_ONLY_ONE
| CMS_ATTR_F_ONE_ATTR_VALUE
| CMS_ATTR_F_REQUIRED_COND },
{ NID_pkcs9_signingTime, CMS_ATTR_F_SIGNED
| CMS_ATTR_F_ONLY_ONE
| CMS_ATTR_F_ONE_ATTR_VALUE },
{ NID_pkcs9_countersignature, CMS_ATTR_F_UNSIGNED },
/* ESS */
{ NID_id_smime_aa_signingCertificate, CMS_ATTR_F_SIGNED
| CMS_ATTR_F_ONLY_ONE
| CMS_ATTR_F_ONE_ATTR_VALUE },
{ NID_id_smime_aa_signingCertificateV2, CMS_ATTR_F_SIGNED
| CMS_ATTR_F_ONLY_ONE
| CMS_ATTR_F_ONE_ATTR_VALUE },
{ NID_id_smime_aa_receiptRequest, CMS_ATTR_F_SIGNED
| CMS_ATTR_F_ONLY_ONE
| CMS_ATTR_F_ONE_ATTR_VALUE }
};
/* CMS SignedData Attribute utilities */
int CMS_signed_get_attr_count(const CMS_SignerInfo *si)
{
return X509at_get_attr_count(si->signedAttrs);
}
int CMS_signed_get_attr_by_NID(const CMS_SignerInfo *si, int nid, int lastpos)
{
return X509at_get_attr_by_NID(si->signedAttrs, nid, lastpos);
}
int CMS_signed_get_attr_by_OBJ(const CMS_SignerInfo *si, const ASN1_OBJECT *obj,
int lastpos)
{
return X509at_get_attr_by_OBJ(si->signedAttrs, obj, lastpos);
}
X509_ATTRIBUTE *CMS_signed_get_attr(const CMS_SignerInfo *si, int loc)
{
return X509at_get_attr(si->signedAttrs, loc);
}
X509_ATTRIBUTE *CMS_signed_delete_attr(CMS_SignerInfo *si, int loc)
{
return X509at_delete_attr(si->signedAttrs, loc);
}
int CMS_signed_add1_attr(CMS_SignerInfo *si, X509_ATTRIBUTE *attr)
{
if (X509at_add1_attr(&si->signedAttrs, attr))
return 1;
return 0;
}
int CMS_signed_add1_attr_by_OBJ(CMS_SignerInfo *si,
const ASN1_OBJECT *obj, int type,
const void *bytes, int len)
{
if (X509at_add1_attr_by_OBJ(&si->signedAttrs, obj, type, bytes, len))
return 1;
return 0;
}
int CMS_signed_add1_attr_by_NID(CMS_SignerInfo *si,
int nid, int type, const void *bytes, int len)
{
if (X509at_add1_attr_by_NID(&si->signedAttrs, nid, type, bytes, len))
return 1;
return 0;
}
int CMS_signed_add1_attr_by_txt(CMS_SignerInfo *si,
const char *attrname, int type,
const void *bytes, int len)
{
if (X509at_add1_attr_by_txt(&si->signedAttrs, attrname, type, bytes, len))
return 1;
return 0;
}
void *CMS_signed_get0_data_by_OBJ(const CMS_SignerInfo *si,
const ASN1_OBJECT *oid,
int lastpos, int type)
{
return X509at_get0_data_by_OBJ(si->signedAttrs, oid, lastpos, type);
}
int CMS_unsigned_get_attr_count(const CMS_SignerInfo *si)
{
return X509at_get_attr_count(si->unsignedAttrs);
}
int CMS_unsigned_get_attr_by_NID(const CMS_SignerInfo *si, int nid,
int lastpos)
{
return X509at_get_attr_by_NID(si->unsignedAttrs, nid, lastpos);
}
int CMS_unsigned_get_attr_by_OBJ(const CMS_SignerInfo *si,
const ASN1_OBJECT *obj, int lastpos)
{
return X509at_get_attr_by_OBJ(si->unsignedAttrs, obj, lastpos);
}
X509_ATTRIBUTE *CMS_unsigned_get_attr(const CMS_SignerInfo *si, int loc)
{
return X509at_get_attr(si->unsignedAttrs, loc);
}
X509_ATTRIBUTE *CMS_unsigned_delete_attr(CMS_SignerInfo *si, int loc)
{
return X509at_delete_attr(si->unsignedAttrs, loc);
}
int CMS_unsigned_add1_attr(CMS_SignerInfo *si, X509_ATTRIBUTE *attr)
{
if (X509at_add1_attr(&si->unsignedAttrs, attr))
return 1;
return 0;
}
int CMS_unsigned_add1_attr_by_OBJ(CMS_SignerInfo *si,
const ASN1_OBJECT *obj, int type,
const void *bytes, int len)
{
if (X509at_add1_attr_by_OBJ(&si->unsignedAttrs, obj, type, bytes, len))
return 1;
return 0;
}
int CMS_unsigned_add1_attr_by_NID(CMS_SignerInfo *si,
int nid, int type,
const void *bytes, int len)
{
if (X509at_add1_attr_by_NID(&si->unsignedAttrs, nid, type, bytes, len))
return 1;
return 0;
}
int CMS_unsigned_add1_attr_by_txt(CMS_SignerInfo *si,
const char *attrname, int type,
const void *bytes, int len)
{
if (X509at_add1_attr_by_txt(&si->unsignedAttrs, attrname,
type, bytes, len))
return 1;
return 0;
}
void *CMS_unsigned_get0_data_by_OBJ(CMS_SignerInfo *si, ASN1_OBJECT *oid,
int lastpos, int type)
{
return X509at_get0_data_by_OBJ(si->unsignedAttrs, oid, lastpos, type);
}
/*
* Retrieve an attribute by nid from a stack of attributes starting at index
* *lastpos + 1.
* Returns the attribute or NULL if there is no attribute.
* If an attribute was found *lastpos returns the index of the found attribute.
*/
static X509_ATTRIBUTE *cms_attrib_get(int nid,
const STACK_OF(X509_ATTRIBUTE) *attrs,
int *lastpos)
{
X509_ATTRIBUTE *at;
int loc;
loc = X509at_get_attr_by_NID(attrs, nid, *lastpos);
if (loc < 0)
return NULL;
at = X509at_get_attr(attrs, loc);
*lastpos = loc;
return at;
}
static int cms_check_attribute(int nid, int flags, int type,
const STACK_OF(X509_ATTRIBUTE) *attrs,
int have_attrs)
{
int lastpos = -1;
X509_ATTRIBUTE *at = cms_attrib_get(nid, attrs, &lastpos);
if (at != NULL) {
int count = X509_ATTRIBUTE_count(at);
/* Is this attribute allowed? */
if (((flags & type) == 0)
/* check if multiple attributes of the same type are allowed */
|| (((flags & CMS_ATTR_F_ONLY_ONE) != 0)
&& cms_attrib_get(nid, attrs, &lastpos) != NULL)
/* Check if attribute should have exactly one value in its set */
|| (((flags & CMS_ATTR_F_ONE_ATTR_VALUE) != 0)
&& count != 1)
/* There should be at least one value */
|| count == 0)
return 0;
} else {
/* fail if a required attribute is missing */
if (have_attrs
&& ((flags & CMS_ATTR_F_REQUIRED_COND) != 0)
&& (flags & type) != 0)
return 0;
}
return 1;
}
/*
* Check that the signerinfo attributes obey the attribute rules which includes
* the following checks
* - If any signed attributes exist then there must be a Content Type
* and Message Digest attribute in the signed attributes.
* - The countersignature attribute is an optional unsigned attribute only.
* - Content Type, Message Digest, and Signing time attributes are signed
* attributes. Only one instance of each is allowed, with each of these
* attributes containing a single attribute value in its set.
*/
int ossl_cms_si_check_attributes(const CMS_SignerInfo *si)
{
int i;
int have_signed_attrs = (CMS_signed_get_attr_count(si) > 0);
int have_unsigned_attrs = (CMS_unsigned_get_attr_count(si) > 0);
for (i = 0; i < (int)OSSL_NELEM(cms_attribute_properties); ++i) {
int nid = cms_attribute_properties[i].nid;
int flags = cms_attribute_properties[i].flags;
if (!cms_check_attribute(nid, flags, CMS_ATTR_F_SIGNED,
si->signedAttrs, have_signed_attrs)
|| !cms_check_attribute(nid, flags, CMS_ATTR_F_UNSIGNED,
si->unsignedAttrs, have_unsigned_attrs)) {
ERR_raise(ERR_LIB_CMS, CMS_R_ATTRIBUTE_ERROR);
return 0;
}
}
return 1;
}
| 9,679 | 32.846154 | 80 | c |
openssl | openssl-master/crypto/cms/cms_cd.c | /*
* Copyright 2008-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "internal/cryptlib.h"
#include <openssl/asn1t.h>
#include <openssl/pem.h>
#include <openssl/x509v3.h>
#include <openssl/err.h>
#include <openssl/cms.h>
#include <openssl/bio.h>
#include <openssl/comp.h>
#include "cms_local.h"
#ifndef OPENSSL_NO_ZLIB
/* CMS CompressedData Utilities */
CMS_ContentInfo *ossl_cms_CompressedData_create(int comp_nid,
OSSL_LIB_CTX *libctx,
const char *propq)
{
CMS_ContentInfo *cms;
CMS_CompressedData *cd;
/*
* Will need something cleverer if there is ever more than one
* compression algorithm or parameters have some meaning...
*/
if (comp_nid != NID_zlib_compression) {
ERR_raise(ERR_LIB_CMS, CMS_R_UNSUPPORTED_COMPRESSION_ALGORITHM);
return NULL;
}
cms = CMS_ContentInfo_new_ex(libctx, propq);
if (cms == NULL)
return NULL;
cd = M_ASN1_new_of(CMS_CompressedData);
if (cd == NULL)
goto err;
cms->contentType = OBJ_nid2obj(NID_id_smime_ct_compressedData);
cms->d.compressedData = cd;
cd->version = 0;
(void)X509_ALGOR_set0(cd->compressionAlgorithm,
OBJ_nid2obj(NID_zlib_compression),
V_ASN1_UNDEF, NULL); /* cannot fail */
cd->encapContentInfo->eContentType = OBJ_nid2obj(NID_pkcs7_data);
return cms;
err:
CMS_ContentInfo_free(cms);
return NULL;
}
BIO *ossl_cms_CompressedData_init_bio(const CMS_ContentInfo *cms)
{
CMS_CompressedData *cd;
const ASN1_OBJECT *compoid;
if (OBJ_obj2nid(cms->contentType) != NID_id_smime_ct_compressedData) {
ERR_raise(ERR_LIB_CMS, CMS_R_CONTENT_TYPE_NOT_COMPRESSED_DATA);
return NULL;
}
cd = cms->d.compressedData;
X509_ALGOR_get0(&compoid, NULL, NULL, cd->compressionAlgorithm);
if (OBJ_obj2nid(compoid) != NID_zlib_compression) {
ERR_raise(ERR_LIB_CMS, CMS_R_UNSUPPORTED_COMPRESSION_ALGORITHM);
return NULL;
}
return BIO_new(BIO_f_zlib());
}
#endif
| 2,407 | 27.329412 | 74 | c |
openssl | openssl-master/crypto/cms/cms_dd.c | /*
* Copyright 2008-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "internal/cryptlib.h"
#include <openssl/asn1t.h>
#include <openssl/pem.h>
#include <openssl/x509v3.h>
#include <openssl/err.h>
#include <openssl/cms.h>
#include "cms_local.h"
/* CMS DigestedData Utilities */
CMS_ContentInfo *ossl_cms_DigestedData_create(const EVP_MD *md,
OSSL_LIB_CTX *libctx,
const char *propq)
{
CMS_ContentInfo *cms;
CMS_DigestedData *dd;
cms = CMS_ContentInfo_new_ex(libctx, propq);
if (cms == NULL)
return NULL;
dd = M_ASN1_new_of(CMS_DigestedData);
if (dd == NULL)
goto err;
cms->contentType = OBJ_nid2obj(NID_pkcs7_digest);
cms->d.digestedData = dd;
dd->version = 0;
dd->encapContentInfo->eContentType = OBJ_nid2obj(NID_pkcs7_data);
X509_ALGOR_set_md(dd->digestAlgorithm, md);
return cms;
err:
CMS_ContentInfo_free(cms);
return NULL;
}
BIO *ossl_cms_DigestedData_init_bio(const CMS_ContentInfo *cms)
{
CMS_DigestedData *dd = cms->d.digestedData;
return ossl_cms_DigestAlgorithm_init_bio(dd->digestAlgorithm,
ossl_cms_get0_cmsctx(cms));
}
int ossl_cms_DigestedData_do_final(const CMS_ContentInfo *cms, BIO *chain,
int verify)
{
EVP_MD_CTX *mctx = EVP_MD_CTX_new();
unsigned char md[EVP_MAX_MD_SIZE];
unsigned int mdlen;
int r = 0;
CMS_DigestedData *dd;
if (mctx == NULL) {
ERR_raise(ERR_LIB_CMS, ERR_R_EVP_LIB);
goto err;
}
dd = cms->d.digestedData;
if (!ossl_cms_DigestAlgorithm_find_ctx(mctx, chain, dd->digestAlgorithm))
goto err;
if (EVP_DigestFinal_ex(mctx, md, &mdlen) <= 0)
goto err;
if (verify) {
if (mdlen != (unsigned int)dd->digest->length) {
ERR_raise(ERR_LIB_CMS, CMS_R_MESSAGEDIGEST_WRONG_LENGTH);
goto err;
}
if (memcmp(md, dd->digest->data, mdlen))
ERR_raise(ERR_LIB_CMS, CMS_R_VERIFICATION_FAILURE);
else
r = 1;
} else {
if (!ASN1_STRING_set(dd->digest, md, mdlen))
goto err;
r = 1;
}
err:
EVP_MD_CTX_free(mctx);
return r;
}
| 2,587 | 24.126214 | 77 | c |
openssl | openssl-master/crypto/cms/cms_dh.c | /*
* Copyright 2006-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <assert.h>
#include <openssl/cms.h>
#include <openssl/dh.h>
#include <openssl/err.h>
#include <openssl/core_names.h>
#include "internal/sizes.h"
#include "crypto/asn1.h"
#include "crypto/evp.h"
#include "cms_local.h"
static int dh_cms_set_peerkey(EVP_PKEY_CTX *pctx,
X509_ALGOR *alg, ASN1_BIT_STRING *pubkey)
{
const ASN1_OBJECT *aoid;
int atype;
const void *aval;
ASN1_INTEGER *public_key = NULL;
int rv = 0;
EVP_PKEY *pkpeer = NULL, *pk = NULL;
BIGNUM *bnpub = NULL;
const unsigned char *p;
unsigned char *buf = NULL;
int plen;
X509_ALGOR_get0(&aoid, &atype, &aval, alg);
if (OBJ_obj2nid(aoid) != NID_dhpublicnumber)
goto err;
/* Only absent parameters allowed in RFC XXXX */
if (atype != V_ASN1_UNDEF && atype == V_ASN1_NULL)
goto err;
pk = EVP_PKEY_CTX_get0_pkey(pctx);
if (pk == NULL || !EVP_PKEY_is_a(pk, "DHX"))
goto err;
/* Get public key */
plen = ASN1_STRING_length(pubkey);
p = ASN1_STRING_get0_data(pubkey);
if (p == NULL || plen == 0)
goto err;
if ((public_key = d2i_ASN1_INTEGER(NULL, &p, plen)) == NULL)
goto err;
/*
* Pad to full p parameter size as that is checked by
* EVP_PKEY_set1_encoded_public_key()
*/
plen = EVP_PKEY_get_size(pk);
if ((bnpub = ASN1_INTEGER_to_BN(public_key, NULL)) == NULL)
goto err;
if ((buf = OPENSSL_malloc(plen)) == NULL)
goto err;
if (BN_bn2binpad(bnpub, buf, plen) < 0)
goto err;
pkpeer = EVP_PKEY_new();
if (pkpeer == NULL
|| !EVP_PKEY_copy_parameters(pkpeer, pk)
|| !EVP_PKEY_set1_encoded_public_key(pkpeer, buf, plen))
goto err;
if (EVP_PKEY_derive_set_peer(pctx, pkpeer) > 0)
rv = 1;
err:
ASN1_INTEGER_free(public_key);
BN_free(bnpub);
OPENSSL_free(buf);
EVP_PKEY_free(pkpeer);
return rv;
}
static int dh_cms_set_shared_info(EVP_PKEY_CTX *pctx, CMS_RecipientInfo *ri)
{
int rv = 0;
X509_ALGOR *alg, *kekalg = NULL;
ASN1_OCTET_STRING *ukm;
const unsigned char *p;
unsigned char *dukm = NULL;
size_t dukmlen = 0;
int keylen, plen;
EVP_CIPHER *kekcipher = NULL;
EVP_CIPHER_CTX *kekctx;
char name[OSSL_MAX_NAME_SIZE];
if (!CMS_RecipientInfo_kari_get0_alg(ri, &alg, &ukm))
goto err;
/*
* For DH we only have one OID permissible. If ever any more get defined
* we will need something cleverer.
*/
if (OBJ_obj2nid(alg->algorithm) != NID_id_smime_alg_ESDH) {
ERR_raise(ERR_LIB_CMS, CMS_R_KDF_PARAMETER_ERROR);
goto err;
}
if (EVP_PKEY_CTX_set_dh_kdf_type(pctx, EVP_PKEY_DH_KDF_X9_42) <= 0
|| EVP_PKEY_CTX_set_dh_kdf_md(pctx, EVP_sha1()) <= 0)
goto err;
if (alg->parameter->type != V_ASN1_SEQUENCE)
goto err;
p = alg->parameter->value.sequence->data;
plen = alg->parameter->value.sequence->length;
kekalg = d2i_X509_ALGOR(NULL, &p, plen);
if (kekalg == NULL)
goto err;
kekctx = CMS_RecipientInfo_kari_get0_ctx(ri);
if (kekctx == NULL)
goto err;
if (OBJ_obj2txt(name, sizeof(name), kekalg->algorithm, 0) <= 0)
goto err;
kekcipher = EVP_CIPHER_fetch(pctx->libctx, name, pctx->propquery);
if (kekcipher == NULL
|| EVP_CIPHER_get_mode(kekcipher) != EVP_CIPH_WRAP_MODE)
goto err;
if (!EVP_EncryptInit_ex(kekctx, kekcipher, NULL, NULL, NULL))
goto err;
if (EVP_CIPHER_asn1_to_param(kekctx, kekalg->parameter) <= 0)
goto err;
keylen = EVP_CIPHER_CTX_get_key_length(kekctx);
if (EVP_PKEY_CTX_set_dh_kdf_outlen(pctx, keylen) <= 0)
goto err;
/* Use OBJ_nid2obj to ensure we use built in OID that isn't freed */
if (EVP_PKEY_CTX_set0_dh_kdf_oid(pctx,
OBJ_nid2obj(EVP_CIPHER_get_type(kekcipher)))
<= 0)
goto err;
if (ukm != NULL) {
dukmlen = ASN1_STRING_length(ukm);
dukm = OPENSSL_memdup(ASN1_STRING_get0_data(ukm), dukmlen);
if (dukm == NULL)
goto err;
}
if (EVP_PKEY_CTX_set0_dh_kdf_ukm(pctx, dukm, dukmlen) <= 0)
goto err;
dukm = NULL;
rv = 1;
err:
X509_ALGOR_free(kekalg);
EVP_CIPHER_free(kekcipher);
OPENSSL_free(dukm);
return rv;
}
static int dh_cms_decrypt(CMS_RecipientInfo *ri)
{
EVP_PKEY_CTX *pctx = CMS_RecipientInfo_get0_pkey_ctx(ri);
if (pctx == NULL)
return 0;
/* See if we need to set peer key */
if (!EVP_PKEY_CTX_get0_peerkey(pctx)) {
X509_ALGOR *alg;
ASN1_BIT_STRING *pubkey;
if (!CMS_RecipientInfo_kari_get0_orig_id(ri, &alg, &pubkey,
NULL, NULL, NULL))
return 0;
if (alg == NULL || pubkey == NULL)
return 0;
if (!dh_cms_set_peerkey(pctx, alg, pubkey)) {
ERR_raise(ERR_LIB_CMS, CMS_R_PEER_KEY_ERROR);
return 0;
}
}
/* Set DH derivation parameters and initialise unwrap context */
if (!dh_cms_set_shared_info(pctx, ri)) {
ERR_raise(ERR_LIB_CMS, CMS_R_SHARED_INFO_ERROR);
return 0;
}
return 1;
}
static int dh_cms_encrypt(CMS_RecipientInfo *ri)
{
EVP_PKEY_CTX *pctx;
EVP_PKEY *pkey;
EVP_CIPHER_CTX *ctx;
int keylen;
X509_ALGOR *talg, *wrap_alg = NULL;
const ASN1_OBJECT *aoid;
ASN1_BIT_STRING *pubkey;
ASN1_STRING *wrap_str;
ASN1_OCTET_STRING *ukm;
unsigned char *penc = NULL, *dukm = NULL;
int penclen;
size_t dukmlen = 0;
int rv = 0;
int kdf_type, wrap_nid;
const EVP_MD *kdf_md;
pctx = CMS_RecipientInfo_get0_pkey_ctx(ri);
if (pctx == NULL)
return 0;
/* Get ephemeral key */
pkey = EVP_PKEY_CTX_get0_pkey(pctx);
if (!CMS_RecipientInfo_kari_get0_orig_id(ri, &talg, &pubkey,
NULL, NULL, NULL))
goto err;
/* Is everything uninitialised? */
X509_ALGOR_get0(&aoid, NULL, NULL, talg);
if (aoid == OBJ_nid2obj(NID_undef)) {
BIGNUM *bn_pub_key = NULL;
ASN1_INTEGER *pubk;
if (!EVP_PKEY_get_bn_param(pkey, OSSL_PKEY_PARAM_PUB_KEY, &bn_pub_key))
goto err;
pubk = BN_to_ASN1_INTEGER(bn_pub_key, NULL);
BN_free(bn_pub_key);
if (pubk == NULL)
goto err;
/* Set the key */
penclen = i2d_ASN1_INTEGER(pubk, &penc);
ASN1_INTEGER_free(pubk);
if (penclen <= 0)
goto err;
ASN1_STRING_set0(pubkey, penc, penclen);
ossl_asn1_string_set_bits_left(pubkey, 0);
penc = NULL;
(void)X509_ALGOR_set0(talg, OBJ_nid2obj(NID_dhpublicnumber),
V_ASN1_UNDEF, NULL); /* cannot fail */
}
/* See if custom parameters set */
kdf_type = EVP_PKEY_CTX_get_dh_kdf_type(pctx);
if (kdf_type <= 0 || EVP_PKEY_CTX_get_dh_kdf_md(pctx, &kdf_md) <= 0)
goto err;
if (kdf_type == EVP_PKEY_DH_KDF_NONE) {
kdf_type = EVP_PKEY_DH_KDF_X9_42;
if (EVP_PKEY_CTX_set_dh_kdf_type(pctx, kdf_type) <= 0)
goto err;
} else if (kdf_type != EVP_PKEY_DH_KDF_X9_42)
/* Unknown KDF */
goto err;
if (kdf_md == NULL) {
/* Only SHA1 supported */
kdf_md = EVP_sha1();
if (EVP_PKEY_CTX_set_dh_kdf_md(pctx, kdf_md) <= 0)
goto err;
} else if (EVP_MD_get_type(kdf_md) != NID_sha1)
/* Unsupported digest */
goto err;
if (!CMS_RecipientInfo_kari_get0_alg(ri, &talg, &ukm))
goto err;
/* Get wrap NID */
ctx = CMS_RecipientInfo_kari_get0_ctx(ri);
wrap_nid = EVP_CIPHER_CTX_get_type(ctx);
if (EVP_PKEY_CTX_set0_dh_kdf_oid(pctx, OBJ_nid2obj(wrap_nid)) <= 0)
goto err;
keylen = EVP_CIPHER_CTX_get_key_length(ctx);
/* Package wrap algorithm in an AlgorithmIdentifier */
wrap_alg = X509_ALGOR_new();
if (wrap_alg == NULL)
goto err;
wrap_alg->algorithm = OBJ_nid2obj(wrap_nid);
wrap_alg->parameter = ASN1_TYPE_new();
if (wrap_alg->parameter == NULL)
goto err;
if (EVP_CIPHER_param_to_asn1(ctx, wrap_alg->parameter) <= 0)
goto err;
if (ASN1_TYPE_get(wrap_alg->parameter) == NID_undef) {
ASN1_TYPE_free(wrap_alg->parameter);
wrap_alg->parameter = NULL;
}
if (EVP_PKEY_CTX_set_dh_kdf_outlen(pctx, keylen) <= 0)
goto err;
if (ukm != NULL) {
dukmlen = ASN1_STRING_length(ukm);
dukm = OPENSSL_memdup(ASN1_STRING_get0_data(ukm), dukmlen);
if (dukm == NULL)
goto err;
}
if (EVP_PKEY_CTX_set0_dh_kdf_ukm(pctx, dukm, dukmlen) <= 0)
goto err;
dukm = NULL;
/*
* Now need to wrap encoding of wrap AlgorithmIdentifier into parameter
* of another AlgorithmIdentifier.
*/
penc = NULL;
penclen = i2d_X509_ALGOR(wrap_alg, &penc);
if (penclen <= 0)
goto err;
wrap_str = ASN1_STRING_new();
if (wrap_str == NULL)
goto err;
ASN1_STRING_set0(wrap_str, penc, penclen);
penc = NULL;
rv = X509_ALGOR_set0(talg, OBJ_nid2obj(NID_id_smime_alg_ESDH),
V_ASN1_SEQUENCE, wrap_str);
if (!rv)
ASN1_STRING_free(wrap_str);
err:
OPENSSL_free(penc);
X509_ALGOR_free(wrap_alg);
OPENSSL_free(dukm);
return rv;
}
int ossl_cms_dh_envelope(CMS_RecipientInfo *ri, int decrypt)
{
assert(decrypt == 0 || decrypt == 1);
if (decrypt == 1)
return dh_cms_decrypt(ri);
if (decrypt == 0)
return dh_cms_encrypt(ri);
ERR_raise(ERR_LIB_CMS, CMS_R_NOT_SUPPORTED_FOR_THIS_KEY_TYPE);
return 0;
}
| 10,084 | 28.31686 | 81 | c |
openssl | openssl-master/crypto/cms/cms_ec.c | /*
* Copyright 2006-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <assert.h>
#include <limits.h>
#include <openssl/cms.h>
#include <openssl/err.h>
#include <openssl/decoder.h>
#include "internal/sizes.h"
#include "crypto/asn1.h"
#include "crypto/evp.h"
#include "cms_local.h"
static EVP_PKEY *pkey_type2param(int ptype, const void *pval,
OSSL_LIB_CTX *libctx, const char *propq)
{
EVP_PKEY *pkey = NULL;
EVP_PKEY_CTX *pctx = NULL;
OSSL_DECODER_CTX *ctx = NULL;
if (ptype == V_ASN1_SEQUENCE) {
const ASN1_STRING *pstr = pval;
const unsigned char *pm = pstr->data;
size_t pmlen = (size_t)pstr->length;
int selection = OSSL_KEYMGMT_SELECT_ALL_PARAMETERS;
ctx = OSSL_DECODER_CTX_new_for_pkey(&pkey, "DER", NULL, "EC",
selection, libctx, propq);
if (ctx == NULL)
goto err;
if (!OSSL_DECODER_from_data(ctx, &pm, &pmlen)) {
ERR_raise(ERR_LIB_CMS, CMS_R_DECODE_ERROR);
goto err;
}
OSSL_DECODER_CTX_free(ctx);
return pkey;
} else if (ptype == V_ASN1_OBJECT) {
const ASN1_OBJECT *poid = pval;
char groupname[OSSL_MAX_NAME_SIZE];
/* type == V_ASN1_OBJECT => the parameters are given by an asn1 OID */
pctx = EVP_PKEY_CTX_new_from_name(libctx, "EC", propq);
if (pctx == NULL || EVP_PKEY_paramgen_init(pctx) <= 0)
goto err;
if (OBJ_obj2txt(groupname, sizeof(groupname), poid, 0) <= 0
|| EVP_PKEY_CTX_set_group_name(pctx, groupname) <= 0) {
ERR_raise(ERR_LIB_CMS, CMS_R_DECODE_ERROR);
goto err;
}
if (EVP_PKEY_paramgen(pctx, &pkey) <= 0)
goto err;
EVP_PKEY_CTX_free(pctx);
return pkey;
}
ERR_raise(ERR_LIB_CMS, CMS_R_DECODE_ERROR);
return NULL;
err:
EVP_PKEY_free(pkey);
EVP_PKEY_CTX_free(pctx);
OSSL_DECODER_CTX_free(ctx);
return NULL;
}
static int ecdh_cms_set_peerkey(EVP_PKEY_CTX *pctx,
X509_ALGOR *alg, ASN1_BIT_STRING *pubkey)
{
const ASN1_OBJECT *aoid;
int atype;
const void *aval;
int rv = 0;
EVP_PKEY *pkpeer = NULL;
const unsigned char *p;
int plen;
X509_ALGOR_get0(&aoid, &atype, &aval, alg);
if (OBJ_obj2nid(aoid) != NID_X9_62_id_ecPublicKey)
goto err;
/* If absent parameters get group from main key */
if (atype == V_ASN1_UNDEF || atype == V_ASN1_NULL) {
EVP_PKEY *pk;
pk = EVP_PKEY_CTX_get0_pkey(pctx);
if (pk == NULL)
goto err;
pkpeer = EVP_PKEY_new();
if (pkpeer == NULL)
goto err;
if (!EVP_PKEY_copy_parameters(pkpeer, pk))
goto err;
} else {
pkpeer = pkey_type2param(atype, aval,
EVP_PKEY_CTX_get0_libctx(pctx),
EVP_PKEY_CTX_get0_propq(pctx));
if (pkpeer == NULL)
goto err;
}
/* We have parameters now set public key */
plen = ASN1_STRING_length(pubkey);
p = ASN1_STRING_get0_data(pubkey);
if (p == NULL || plen == 0)
goto err;
if (!EVP_PKEY_set1_encoded_public_key(pkpeer, p, plen))
goto err;
if (EVP_PKEY_derive_set_peer(pctx, pkpeer) > 0)
rv = 1;
err:
EVP_PKEY_free(pkpeer);
return rv;
}
/* Set KDF parameters based on KDF NID */
static int ecdh_cms_set_kdf_param(EVP_PKEY_CTX *pctx, int eckdf_nid)
{
int kdf_nid, kdfmd_nid, cofactor;
const EVP_MD *kdf_md;
if (eckdf_nid == NID_undef)
return 0;
/* Lookup KDF type, cofactor mode and digest */
if (!OBJ_find_sigid_algs(eckdf_nid, &kdfmd_nid, &kdf_nid))
return 0;
if (kdf_nid == NID_dh_std_kdf)
cofactor = 0;
else if (kdf_nid == NID_dh_cofactor_kdf)
cofactor = 1;
else
return 0;
if (EVP_PKEY_CTX_set_ecdh_cofactor_mode(pctx, cofactor) <= 0)
return 0;
if (EVP_PKEY_CTX_set_ecdh_kdf_type(pctx, EVP_PKEY_ECDH_KDF_X9_63) <= 0)
return 0;
kdf_md = EVP_get_digestbynid(kdfmd_nid);
if (!kdf_md)
return 0;
if (EVP_PKEY_CTX_set_ecdh_kdf_md(pctx, kdf_md) <= 0)
return 0;
return 1;
}
static int ecdh_cms_set_shared_info(EVP_PKEY_CTX *pctx, CMS_RecipientInfo *ri)
{
int rv = 0;
X509_ALGOR *alg, *kekalg = NULL;
ASN1_OCTET_STRING *ukm;
const unsigned char *p;
unsigned char *der = NULL;
int plen, keylen;
EVP_CIPHER *kekcipher = NULL;
EVP_CIPHER_CTX *kekctx;
char name[OSSL_MAX_NAME_SIZE];
if (!CMS_RecipientInfo_kari_get0_alg(ri, &alg, &ukm))
return 0;
if (!ecdh_cms_set_kdf_param(pctx, OBJ_obj2nid(alg->algorithm))) {
ERR_raise(ERR_LIB_CMS, CMS_R_KDF_PARAMETER_ERROR);
return 0;
}
if (alg->parameter->type != V_ASN1_SEQUENCE)
return 0;
p = alg->parameter->value.sequence->data;
plen = alg->parameter->value.sequence->length;
kekalg = d2i_X509_ALGOR(NULL, &p, plen);
if (kekalg == NULL)
goto err;
kekctx = CMS_RecipientInfo_kari_get0_ctx(ri);
if (kekctx == NULL)
goto err;
OBJ_obj2txt(name, sizeof(name), kekalg->algorithm, 0);
kekcipher = EVP_CIPHER_fetch(pctx->libctx, name, pctx->propquery);
if (kekcipher == NULL || EVP_CIPHER_get_mode(kekcipher) != EVP_CIPH_WRAP_MODE)
goto err;
if (!EVP_EncryptInit_ex(kekctx, kekcipher, NULL, NULL, NULL))
goto err;
if (EVP_CIPHER_asn1_to_param(kekctx, kekalg->parameter) <= 0)
goto err;
keylen = EVP_CIPHER_CTX_get_key_length(kekctx);
if (EVP_PKEY_CTX_set_ecdh_kdf_outlen(pctx, keylen) <= 0)
goto err;
plen = CMS_SharedInfo_encode(&der, kekalg, ukm, keylen);
if (plen <= 0)
goto err;
if (EVP_PKEY_CTX_set0_ecdh_kdf_ukm(pctx, der, plen) <= 0)
goto err;
der = NULL;
rv = 1;
err:
EVP_CIPHER_free(kekcipher);
X509_ALGOR_free(kekalg);
OPENSSL_free(der);
return rv;
}
static int ecdh_cms_decrypt(CMS_RecipientInfo *ri)
{
EVP_PKEY_CTX *pctx;
pctx = CMS_RecipientInfo_get0_pkey_ctx(ri);
if (pctx == NULL)
return 0;
/* See if we need to set peer key */
if (!EVP_PKEY_CTX_get0_peerkey(pctx)) {
X509_ALGOR *alg;
ASN1_BIT_STRING *pubkey;
if (!CMS_RecipientInfo_kari_get0_orig_id(ri, &alg, &pubkey,
NULL, NULL, NULL))
return 0;
if (alg == NULL || pubkey == NULL)
return 0;
if (!ecdh_cms_set_peerkey(pctx, alg, pubkey)) {
ERR_raise(ERR_LIB_CMS, CMS_R_PEER_KEY_ERROR);
return 0;
}
}
/* Set ECDH derivation parameters and initialise unwrap context */
if (!ecdh_cms_set_shared_info(pctx, ri)) {
ERR_raise(ERR_LIB_CMS, CMS_R_SHARED_INFO_ERROR);
return 0;
}
return 1;
}
static int ecdh_cms_encrypt(CMS_RecipientInfo *ri)
{
EVP_PKEY_CTX *pctx;
EVP_PKEY *pkey;
EVP_CIPHER_CTX *ctx;
int keylen;
X509_ALGOR *talg, *wrap_alg = NULL;
const ASN1_OBJECT *aoid;
ASN1_BIT_STRING *pubkey;
ASN1_STRING *wrap_str;
ASN1_OCTET_STRING *ukm;
unsigned char *penc = NULL;
int penclen;
int rv = 0;
int ecdh_nid, kdf_type, kdf_nid, wrap_nid;
const EVP_MD *kdf_md;
pctx = CMS_RecipientInfo_get0_pkey_ctx(ri);
if (pctx == NULL)
return 0;
/* Get ephemeral key */
pkey = EVP_PKEY_CTX_get0_pkey(pctx);
if (!CMS_RecipientInfo_kari_get0_orig_id(ri, &talg, &pubkey,
NULL, NULL, NULL))
goto err;
X509_ALGOR_get0(&aoid, NULL, NULL, talg);
/* Is everything uninitialised? */
if (aoid == OBJ_nid2obj(NID_undef)) {
/* Set the key */
size_t enckeylen;
enckeylen = EVP_PKEY_get1_encoded_public_key(pkey, &penc);
if (enckeylen > INT_MAX || enckeylen == 0)
goto err;
ASN1_STRING_set0(pubkey, penc, (int)enckeylen);
ossl_asn1_string_set_bits_left(pubkey, 0);
penc = NULL;
(void)X509_ALGOR_set0(talg, OBJ_nid2obj(NID_X9_62_id_ecPublicKey),
V_ASN1_UNDEF, NULL); /* cannot fail */
}
/* See if custom parameters set */
kdf_type = EVP_PKEY_CTX_get_ecdh_kdf_type(pctx);
if (kdf_type <= 0)
goto err;
if (EVP_PKEY_CTX_get_ecdh_kdf_md(pctx, &kdf_md) <= 0)
goto err;
ecdh_nid = EVP_PKEY_CTX_get_ecdh_cofactor_mode(pctx);
if (ecdh_nid < 0)
goto err;
else if (ecdh_nid == 0)
ecdh_nid = NID_dh_std_kdf;
else if (ecdh_nid == 1)
ecdh_nid = NID_dh_cofactor_kdf;
if (kdf_type == EVP_PKEY_ECDH_KDF_NONE) {
kdf_type = EVP_PKEY_ECDH_KDF_X9_63;
if (EVP_PKEY_CTX_set_ecdh_kdf_type(pctx, kdf_type) <= 0)
goto err;
} else
/* Unknown KDF */
goto err;
if (kdf_md == NULL) {
/* Fixme later for better MD */
kdf_md = EVP_sha1();
if (EVP_PKEY_CTX_set_ecdh_kdf_md(pctx, kdf_md) <= 0)
goto err;
}
if (!CMS_RecipientInfo_kari_get0_alg(ri, &talg, &ukm))
goto err;
/* Lookup NID for KDF+cofactor+digest */
if (!OBJ_find_sigid_by_algs(&kdf_nid, EVP_MD_get_type(kdf_md), ecdh_nid))
goto err;
/* Get wrap NID */
ctx = CMS_RecipientInfo_kari_get0_ctx(ri);
wrap_nid = EVP_CIPHER_CTX_get_type(ctx);
keylen = EVP_CIPHER_CTX_get_key_length(ctx);
/* Package wrap algorithm in an AlgorithmIdentifier */
wrap_alg = X509_ALGOR_new();
if (wrap_alg == NULL)
goto err;
wrap_alg->algorithm = OBJ_nid2obj(wrap_nid);
wrap_alg->parameter = ASN1_TYPE_new();
if (wrap_alg->parameter == NULL)
goto err;
if (EVP_CIPHER_param_to_asn1(ctx, wrap_alg->parameter) <= 0)
goto err;
if (ASN1_TYPE_get(wrap_alg->parameter) == NID_undef) {
ASN1_TYPE_free(wrap_alg->parameter);
wrap_alg->parameter = NULL;
}
if (EVP_PKEY_CTX_set_ecdh_kdf_outlen(pctx, keylen) <= 0)
goto err;
penclen = CMS_SharedInfo_encode(&penc, wrap_alg, ukm, keylen);
if (penclen <= 0)
goto err;
if (EVP_PKEY_CTX_set0_ecdh_kdf_ukm(pctx, penc, penclen) <= 0)
goto err;
penc = NULL;
/*
* Now need to wrap encoding of wrap AlgorithmIdentifier into parameter
* of another AlgorithmIdentifier.
*/
penclen = i2d_X509_ALGOR(wrap_alg, &penc);
if (penclen <= 0)
goto err;
wrap_str = ASN1_STRING_new();
if (wrap_str == NULL)
goto err;
ASN1_STRING_set0(wrap_str, penc, penclen);
penc = NULL;
rv = X509_ALGOR_set0(talg, OBJ_nid2obj(kdf_nid), V_ASN1_SEQUENCE, wrap_str);
if (!rv)
ASN1_STRING_free(wrap_str);
err:
OPENSSL_free(penc);
X509_ALGOR_free(wrap_alg);
return rv;
}
int ossl_cms_ecdh_envelope(CMS_RecipientInfo *ri, int decrypt)
{
assert(decrypt == 0 || decrypt == 1);
if (decrypt == 1)
return ecdh_cms_decrypt(ri);
if (decrypt == 0)
return ecdh_cms_encrypt(ri);
ERR_raise(ERR_LIB_CMS, CMS_R_NOT_SUPPORTED_FOR_THIS_KEY_TYPE);
return 0;
}
| 11,498 | 28.111392 | 82 | c |
openssl | openssl-master/crypto/cms/cms_enc.c | /*
* Copyright 2008-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "internal/cryptlib.h"
#include <openssl/asn1t.h>
#include <openssl/pem.h>
#include <openssl/x509v3.h>
#include <openssl/err.h>
#include <openssl/cms.h>
#include <openssl/rand.h>
#include "crypto/evp.h"
#include "cms_local.h"
/* CMS EncryptedData Utilities */
/* Return BIO based on EncryptedContentInfo and key */
BIO *ossl_cms_EncryptedContent_init_bio(CMS_EncryptedContentInfo *ec,
const CMS_CTX *cms_ctx)
{
BIO *b;
EVP_CIPHER_CTX *ctx;
EVP_CIPHER *fetched_ciph = NULL;
const EVP_CIPHER *cipher = NULL;
X509_ALGOR *calg = ec->contentEncryptionAlgorithm;
evp_cipher_aead_asn1_params aparams;
unsigned char iv[EVP_MAX_IV_LENGTH], *piv = NULL;
unsigned char *tkey = NULL;
int len;
int ivlen = 0;
size_t tkeylen = 0;
int ok = 0;
int enc, keep_key = 0;
OSSL_LIB_CTX *libctx = ossl_cms_ctx_get0_libctx(cms_ctx);
const char *propq = ossl_cms_ctx_get0_propq(cms_ctx);
enc = ec->cipher ? 1 : 0;
b = BIO_new(BIO_f_cipher());
if (b == NULL) {
ERR_raise(ERR_LIB_CMS, ERR_R_BIO_LIB);
return NULL;
}
BIO_get_cipher_ctx(b, &ctx);
(void)ERR_set_mark();
if (enc) {
cipher = ec->cipher;
/*
* If not keeping key set cipher to NULL so subsequent calls decrypt.
*/
if (ec->key != NULL)
ec->cipher = NULL;
} else {
cipher = EVP_get_cipherbyobj(calg->algorithm);
}
if (cipher != NULL) {
fetched_ciph = EVP_CIPHER_fetch(libctx, EVP_CIPHER_get0_name(cipher),
propq);
if (fetched_ciph != NULL)
cipher = fetched_ciph;
}
if (cipher == NULL) {
(void)ERR_clear_last_mark();
ERR_raise(ERR_LIB_CMS, CMS_R_UNKNOWN_CIPHER);
goto err;
}
(void)ERR_pop_to_mark();
if (EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, enc) <= 0) {
ERR_raise(ERR_LIB_CMS, CMS_R_CIPHER_INITIALISATION_ERROR);
goto err;
}
if (enc) {
calg->algorithm = OBJ_nid2obj(EVP_CIPHER_CTX_get_type(ctx));
if (calg->algorithm == NULL) {
ERR_raise(ERR_LIB_CMS, CMS_R_UNSUPPORTED_CONTENT_ENCRYPTION_ALGORITHM);
goto err;
}
/* Generate a random IV if we need one */
ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
if (ivlen < 0) {
ERR_raise(ERR_LIB_CMS, ERR_R_EVP_LIB);
goto err;
}
if (ivlen > 0) {
if (RAND_bytes_ex(libctx, iv, ivlen, 0) <= 0)
goto err;
piv = iv;
}
} else {
if (evp_cipher_asn1_to_param_ex(ctx, calg->parameter, &aparams) <= 0) {
ERR_raise(ERR_LIB_CMS, CMS_R_CIPHER_PARAMETER_INITIALISATION_ERROR);
goto err;
}
if ((EVP_CIPHER_get_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)) {
piv = aparams.iv;
if (ec->taglen > 0
&& EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
ec->taglen, ec->tag) <= 0) {
ERR_raise(ERR_LIB_CMS, CMS_R_CIPHER_AEAD_SET_TAG_ERROR);
goto err;
}
}
}
len = EVP_CIPHER_CTX_get_key_length(ctx);
if (len <= 0)
goto err;
tkeylen = (size_t)len;
/* Generate random session key */
if (!enc || !ec->key) {
tkey = OPENSSL_malloc(tkeylen);
if (tkey == NULL)
goto err;
if (EVP_CIPHER_CTX_rand_key(ctx, tkey) <= 0)
goto err;
}
if (!ec->key) {
ec->key = tkey;
ec->keylen = tkeylen;
tkey = NULL;
if (enc)
keep_key = 1;
else
ERR_clear_error();
}
if (ec->keylen != tkeylen) {
/* If necessary set key length */
if (EVP_CIPHER_CTX_set_key_length(ctx, ec->keylen) <= 0) {
/*
* Only reveal failure if debugging so we don't leak information
* which may be useful in MMA.
*/
if (enc || ec->debug) {
ERR_raise(ERR_LIB_CMS, CMS_R_INVALID_KEY_LENGTH);
goto err;
} else {
/* Use random key */
OPENSSL_clear_free(ec->key, ec->keylen);
ec->key = tkey;
ec->keylen = tkeylen;
tkey = NULL;
ERR_clear_error();
}
}
}
if (EVP_CipherInit_ex(ctx, NULL, NULL, ec->key, piv, enc) <= 0) {
ERR_raise(ERR_LIB_CMS, CMS_R_CIPHER_INITIALISATION_ERROR);
goto err;
}
if (enc) {
calg->parameter = ASN1_TYPE_new();
if (calg->parameter == NULL) {
ERR_raise(ERR_LIB_CMS, ERR_R_ASN1_LIB);
goto err;
}
if ((EVP_CIPHER_get_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)) {
memcpy(aparams.iv, piv, ivlen);
aparams.iv_len = ivlen;
aparams.tag_len = EVP_CIPHER_CTX_get_tag_length(ctx);
if (aparams.tag_len <= 0)
goto err;
}
if (evp_cipher_param_to_asn1_ex(ctx, calg->parameter, &aparams) <= 0) {
ERR_raise(ERR_LIB_CMS, CMS_R_CIPHER_PARAMETER_INITIALISATION_ERROR);
goto err;
}
/* If parameter type not set omit parameter */
if (calg->parameter->type == V_ASN1_UNDEF) {
ASN1_TYPE_free(calg->parameter);
calg->parameter = NULL;
}
}
ok = 1;
err:
EVP_CIPHER_free(fetched_ciph);
if (!keep_key || !ok) {
OPENSSL_clear_free(ec->key, ec->keylen);
ec->key = NULL;
}
OPENSSL_clear_free(tkey, tkeylen);
if (ok)
return b;
BIO_free(b);
return NULL;
}
int ossl_cms_EncryptedContent_init(CMS_EncryptedContentInfo *ec,
const EVP_CIPHER *cipher,
const unsigned char *key, size_t keylen,
const CMS_CTX *cms_ctx)
{
ec->cipher = cipher;
if (key) {
if ((ec->key = OPENSSL_malloc(keylen)) == NULL)
return 0;
memcpy(ec->key, key, keylen);
}
ec->keylen = keylen;
if (cipher != NULL)
ec->contentType = OBJ_nid2obj(NID_pkcs7_data);
return 1;
}
int CMS_EncryptedData_set1_key(CMS_ContentInfo *cms, const EVP_CIPHER *ciph,
const unsigned char *key, size_t keylen)
{
CMS_EncryptedContentInfo *ec;
if (!key || !keylen) {
ERR_raise(ERR_LIB_CMS, CMS_R_NO_KEY);
return 0;
}
if (ciph) {
cms->d.encryptedData = M_ASN1_new_of(CMS_EncryptedData);
if (!cms->d.encryptedData) {
ERR_raise(ERR_LIB_CMS, ERR_R_ASN1_LIB);
return 0;
}
cms->contentType = OBJ_nid2obj(NID_pkcs7_encrypted);
cms->d.encryptedData->version = 0;
} else if (OBJ_obj2nid(cms->contentType) != NID_pkcs7_encrypted) {
ERR_raise(ERR_LIB_CMS, CMS_R_NOT_ENCRYPTED_DATA);
return 0;
}
ec = cms->d.encryptedData->encryptedContentInfo;
return ossl_cms_EncryptedContent_init(ec, ciph, key, keylen,
ossl_cms_get0_cmsctx(cms));
}
BIO *ossl_cms_EncryptedData_init_bio(const CMS_ContentInfo *cms)
{
CMS_EncryptedData *enc = cms->d.encryptedData;
if (enc->encryptedContentInfo->cipher && enc->unprotectedAttrs)
enc->version = 2;
return ossl_cms_EncryptedContent_init_bio(enc->encryptedContentInfo,
ossl_cms_get0_cmsctx(cms));
}
| 7,953 | 30.192157 | 83 | c |
openssl | openssl-master/crypto/cms/cms_err.c | /*
* Generated by util/mkerr.pl DO NOT EDIT
* Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/err.h>
#include <openssl/cmserr.h>
#include "crypto/cmserr.h"
#ifndef OPENSSL_NO_CMS
# ifndef OPENSSL_NO_ERR
static const ERR_STRING_DATA CMS_str_reasons[] = {
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_ADD_SIGNER_ERROR), "add signer error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_ATTRIBUTE_ERROR), "attribute error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CERTIFICATE_ALREADY_PRESENT),
"certificate already present"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CERTIFICATE_HAS_NO_KEYID),
"certificate has no keyid"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CERTIFICATE_VERIFY_ERROR),
"certificate verify error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CIPHER_AEAD_SET_TAG_ERROR),
"cipher aead set tag error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CIPHER_GET_TAG), "cipher get tag"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CIPHER_INITIALISATION_ERROR),
"cipher initialisation error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CIPHER_PARAMETER_INITIALISATION_ERROR),
"cipher parameter initialisation error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CMS_DATAFINAL_ERROR),
"cms datafinal error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CMS_LIB), "cms lib"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CONTENTIDENTIFIER_MISMATCH),
"contentidentifier mismatch"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CONTENT_NOT_FOUND), "content not found"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CONTENT_TYPE_MISMATCH),
"content type mismatch"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CONTENT_TYPE_NOT_COMPRESSED_DATA),
"content type not compressed data"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CONTENT_TYPE_NOT_ENVELOPED_DATA),
"content type not enveloped data"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CONTENT_TYPE_NOT_SIGNED_DATA),
"content type not signed data"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CONTENT_VERIFY_ERROR),
"content verify error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CTRL_ERROR), "ctrl error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_CTRL_FAILURE), "ctrl failure"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_DECODE_ERROR), "decode error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_DECRYPT_ERROR), "decrypt error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_ERROR_GETTING_PUBLIC_KEY),
"error getting public key"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_ERROR_READING_MESSAGEDIGEST_ATTRIBUTE),
"error reading messagedigest attribute"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_ERROR_SETTING_KEY), "error setting key"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_ERROR_SETTING_RECIPIENTINFO),
"error setting recipientinfo"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_ESS_SIGNING_CERTID_MISMATCH_ERROR),
"ess signing certid mismatch error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_INVALID_ENCRYPTED_KEY_LENGTH),
"invalid encrypted key length"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_INVALID_KEY_ENCRYPTION_PARAMETER),
"invalid key encryption parameter"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_INVALID_KEY_LENGTH), "invalid key length"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_INVALID_LABEL), "invalid label"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_INVALID_OAEP_PARAMETERS),
"invalid oaep parameters"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_KDF_PARAMETER_ERROR),
"kdf parameter error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_MD_BIO_INIT_ERROR), "md bio init error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_MESSAGEDIGEST_ATTRIBUTE_WRONG_LENGTH),
"messagedigest attribute wrong length"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_MESSAGEDIGEST_WRONG_LENGTH),
"messagedigest wrong length"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_MSGSIGDIGEST_ERROR), "msgsigdigest error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_MSGSIGDIGEST_VERIFICATION_FAILURE),
"msgsigdigest verification failure"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_MSGSIGDIGEST_WRONG_LENGTH),
"msgsigdigest wrong length"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NEED_ONE_SIGNER), "need one signer"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NOT_A_SIGNED_RECEIPT),
"not a signed receipt"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NOT_ENCRYPTED_DATA), "not encrypted data"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NOT_KEK), "not kek"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NOT_KEY_AGREEMENT), "not key agreement"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NOT_KEY_TRANSPORT), "not key transport"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NOT_PWRI), "not pwri"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NOT_SUPPORTED_FOR_THIS_KEY_TYPE),
"not supported for this key type"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_CIPHER), "no cipher"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_CONTENT), "no content"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_CONTENT_TYPE), "no content type"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_DEFAULT_DIGEST), "no default digest"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_DIGEST_SET), "no digest set"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_KEY), "no key"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_KEY_OR_CERT), "no key or cert"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_MATCHING_DIGEST), "no matching digest"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_MATCHING_RECIPIENT),
"no matching recipient"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_MATCHING_SIGNATURE),
"no matching signature"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_MSGSIGDIGEST), "no msgsigdigest"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_PASSWORD), "no password"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_PRIVATE_KEY), "no private key"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_PUBLIC_KEY), "no public key"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_RECEIPT_REQUEST), "no receipt request"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_NO_SIGNERS), "no signers"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_OPERATION_UNSUPPORTED),
"operation unsupported"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_PEER_KEY_ERROR), "peer key error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE),
"private key does not match certificate"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_RECEIPT_DECODE_ERROR),
"receipt decode error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_RECIPIENT_ERROR), "recipient error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_SHARED_INFO_ERROR), "shared info error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_SIGNER_CERTIFICATE_NOT_FOUND),
"signer certificate not found"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_SIGNFINAL_ERROR), "signfinal error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_SMIME_TEXT_ERROR), "smime text error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_STORE_INIT_ERROR), "store init error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_TYPE_NOT_COMPRESSED_DATA),
"type not compressed data"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_TYPE_NOT_DATA), "type not data"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_TYPE_NOT_DIGESTED_DATA),
"type not digested data"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_TYPE_NOT_ENCRYPTED_DATA),
"type not encrypted data"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_TYPE_NOT_ENVELOPED_DATA),
"type not enveloped data"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNABLE_TO_FINALIZE_CONTEXT),
"unable to finalize context"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNKNOWN_CIPHER), "unknown cipher"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNKNOWN_DIGEST_ALGORITHM),
"unknown digest algorithm"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNKNOWN_ID), "unknown id"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNSUPPORTED_COMPRESSION_ALGORITHM),
"unsupported compression algorithm"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNSUPPORTED_CONTENT_ENCRYPTION_ALGORITHM),
"unsupported content encryption algorithm"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNSUPPORTED_CONTENT_TYPE),
"unsupported content type"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNSUPPORTED_ENCRYPTION_TYPE),
"unsupported encryption type"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNSUPPORTED_KEK_ALGORITHM),
"unsupported kek algorithm"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNSUPPORTED_KEY_ENCRYPTION_ALGORITHM),
"unsupported key encryption algorithm"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNSUPPORTED_LABEL_SOURCE),
"unsupported label source"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNSUPPORTED_RECIPIENTINFO_TYPE),
"unsupported recipientinfo type"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNSUPPORTED_RECIPIENT_TYPE),
"unsupported recipient type"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNSUPPORTED_TYPE), "unsupported type"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNWRAP_ERROR), "unwrap error"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_UNWRAP_FAILURE), "unwrap failure"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_VERIFICATION_FAILURE),
"verification failure"},
{ERR_PACK(ERR_LIB_CMS, 0, CMS_R_WRAP_ERROR), "wrap error"},
{0, NULL}
};
# endif
int ossl_err_load_CMS_strings(void)
{
# ifndef OPENSSL_NO_ERR
if (ERR_reason_error_string(CMS_str_reasons[0].error) == NULL)
ERR_load_strings_const(CMS_str_reasons);
# endif
return 1;
}
#else
NON_EMPTY_TRANSLATION_UNIT
#endif
| 9,163 | 49.629834 | 79 | c |
openssl | openssl-master/crypto/cms/cms_ess.c | /*
* Copyright 2008-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "internal/cryptlib.h"
#include <openssl/asn1t.h>
#include <openssl/pem.h>
#include <openssl/rand.h>
#include <openssl/x509v3.h>
#include <openssl/err.h>
#include <openssl/cms.h>
#include <openssl/ess.h>
#include "crypto/ess.h"
#include "crypto/x509.h"
#include "cms_local.h"
IMPLEMENT_ASN1_FUNCTIONS(CMS_ReceiptRequest)
/* ESS services */
int CMS_get1_ReceiptRequest(CMS_SignerInfo *si, CMS_ReceiptRequest **prr)
{
ASN1_STRING *str;
CMS_ReceiptRequest *rr;
ASN1_OBJECT *obj = OBJ_nid2obj(NID_id_smime_aa_receiptRequest);
if (prr != NULL)
*prr = NULL;
str = CMS_signed_get0_data_by_OBJ(si, obj, -3, V_ASN1_SEQUENCE);
if (str == NULL)
return 0;
rr = ASN1_item_unpack(str, ASN1_ITEM_rptr(CMS_ReceiptRequest));
if (rr == NULL)
return -1;
if (prr != NULL)
*prr = rr;
else
CMS_ReceiptRequest_free(rr);
return 1;
}
/*
* Returns 0 if attribute is not found, 1 if found,
* or -1 on attribute parsing failure.
*/
static int ossl_cms_signerinfo_get_signing_cert(const CMS_SignerInfo *si,
ESS_SIGNING_CERT **psc)
{
ASN1_STRING *str;
ESS_SIGNING_CERT *sc;
ASN1_OBJECT *obj = OBJ_nid2obj(NID_id_smime_aa_signingCertificate);
if (psc != NULL)
*psc = NULL;
str = CMS_signed_get0_data_by_OBJ(si, obj, -3, V_ASN1_SEQUENCE);
if (str == NULL)
return 0;
sc = ASN1_item_unpack(str, ASN1_ITEM_rptr(ESS_SIGNING_CERT));
if (sc == NULL)
return -1;
if (psc != NULL)
*psc = sc;
else
ESS_SIGNING_CERT_free(sc);
return 1;
}
/*
* Returns 0 if attribute is not found, 1 if found,
* or -1 on attribute parsing failure.
*/
static int ossl_cms_signerinfo_get_signing_cert_v2(const CMS_SignerInfo *si,
ESS_SIGNING_CERT_V2 **psc)
{
ASN1_STRING *str;
ESS_SIGNING_CERT_V2 *sc;
ASN1_OBJECT *obj = OBJ_nid2obj(NID_id_smime_aa_signingCertificateV2);
if (psc != NULL)
*psc = NULL;
str = CMS_signed_get0_data_by_OBJ(si, obj, -3, V_ASN1_SEQUENCE);
if (str == NULL)
return 0;
sc = ASN1_item_unpack(str, ASN1_ITEM_rptr(ESS_SIGNING_CERT_V2));
if (sc == NULL)
return -1;
if (psc != NULL)
*psc = sc;
else
ESS_SIGNING_CERT_V2_free(sc);
return 1;
}
int ossl_cms_check_signing_certs(const CMS_SignerInfo *si,
const STACK_OF(X509) *chain)
{
ESS_SIGNING_CERT *ss = NULL;
ESS_SIGNING_CERT_V2 *ssv2 = NULL;
int ret = ossl_cms_signerinfo_get_signing_cert(si, &ss) >= 0
&& ossl_cms_signerinfo_get_signing_cert_v2(si, &ssv2) >= 0
&& OSSL_ESS_check_signing_certs(ss, ssv2, chain, 1) > 0;
ESS_SIGNING_CERT_free(ss);
ESS_SIGNING_CERT_V2_free(ssv2);
return ret;
}
CMS_ReceiptRequest *CMS_ReceiptRequest_create0_ex(
unsigned char *id, int idlen, int allorfirst,
STACK_OF(GENERAL_NAMES) *receiptList, STACK_OF(GENERAL_NAMES) *receiptsTo,
OSSL_LIB_CTX *libctx)
{
CMS_ReceiptRequest *rr;
rr = CMS_ReceiptRequest_new();
if (rr == NULL) {
ERR_raise(ERR_LIB_CMS, ERR_R_CMS_LIB);
goto err;
}
if (id)
ASN1_STRING_set0(rr->signedContentIdentifier, id, idlen);
else {
if (!ASN1_STRING_set(rr->signedContentIdentifier, NULL, 32)) {
ERR_raise(ERR_LIB_CMS, ERR_R_ASN1_LIB);
goto err;
}
if (RAND_bytes_ex(libctx, rr->signedContentIdentifier->data, 32,
0) <= 0)
goto err;
}
sk_GENERAL_NAMES_pop_free(rr->receiptsTo, GENERAL_NAMES_free);
rr->receiptsTo = receiptsTo;
if (receiptList != NULL) {
rr->receiptsFrom->type = 1;
rr->receiptsFrom->d.receiptList = receiptList;
} else {
rr->receiptsFrom->type = 0;
rr->receiptsFrom->d.allOrFirstTier = allorfirst;
}
return rr;
err:
CMS_ReceiptRequest_free(rr);
return NULL;
}
CMS_ReceiptRequest *CMS_ReceiptRequest_create0(
unsigned char *id, int idlen, int allorfirst,
STACK_OF(GENERAL_NAMES) *receiptList, STACK_OF(GENERAL_NAMES) *receiptsTo)
{
return CMS_ReceiptRequest_create0_ex(id, idlen, allorfirst, receiptList,
receiptsTo, NULL);
}
int CMS_add1_ReceiptRequest(CMS_SignerInfo *si, CMS_ReceiptRequest *rr)
{
unsigned char *rrder = NULL;
int rrderlen, r = 0;
rrderlen = i2d_CMS_ReceiptRequest(rr, &rrder);
if (rrderlen < 0) {
ERR_raise(ERR_LIB_CMS, ERR_R_CMS_LIB);
goto err;
}
if (!CMS_signed_add1_attr_by_NID(si, NID_id_smime_aa_receiptRequest,
V_ASN1_SEQUENCE, rrder, rrderlen)) {
ERR_raise(ERR_LIB_CMS, ERR_R_CMS_LIB);
goto err;
}
r = 1;
err:
OPENSSL_free(rrder);
return r;
}
void CMS_ReceiptRequest_get0_values(CMS_ReceiptRequest *rr,
ASN1_STRING **pcid,
int *pallorfirst,
STACK_OF(GENERAL_NAMES) **plist,
STACK_OF(GENERAL_NAMES) **prto)
{
if (pcid != NULL)
*pcid = rr->signedContentIdentifier;
if (rr->receiptsFrom->type == 0) {
if (pallorfirst != NULL)
*pallorfirst = (int)rr->receiptsFrom->d.allOrFirstTier;
if (plist != NULL)
*plist = NULL;
} else {
if (pallorfirst != NULL)
*pallorfirst = -1;
if (plist != NULL)
*plist = rr->receiptsFrom->d.receiptList;
}
if (prto != NULL)
*prto = rr->receiptsTo;
}
/* Digest a SignerInfo structure for msgSigDigest attribute processing */
static int cms_msgSigDigest(CMS_SignerInfo *si,
unsigned char *dig, unsigned int *diglen)
{
const EVP_MD *md = EVP_get_digestbyobj(si->digestAlgorithm->algorithm);
if (md == NULL)
return 0;
if (!ossl_asn1_item_digest_ex(ASN1_ITEM_rptr(CMS_Attributes_Verify), md,
si->signedAttrs, dig, diglen,
ossl_cms_ctx_get0_libctx(si->cms_ctx),
ossl_cms_ctx_get0_propq(si->cms_ctx)))
return 0;
return 1;
}
/* Add a msgSigDigest attribute to a SignerInfo */
int ossl_cms_msgSigDigest_add1(CMS_SignerInfo *dest, CMS_SignerInfo *src)
{
unsigned char dig[EVP_MAX_MD_SIZE];
unsigned int diglen;
if (!cms_msgSigDigest(src, dig, &diglen)) {
ERR_raise(ERR_LIB_CMS, CMS_R_MSGSIGDIGEST_ERROR);
return 0;
}
if (!CMS_signed_add1_attr_by_NID(dest, NID_id_smime_aa_msgSigDigest,
V_ASN1_OCTET_STRING, dig, diglen)) {
ERR_raise(ERR_LIB_CMS, ERR_R_CMS_LIB);
return 0;
}
return 1;
}
/* Verify signed receipt after it has already passed normal CMS verify */
int ossl_cms_Receipt_verify(CMS_ContentInfo *cms, CMS_ContentInfo *req_cms)
{
int r = 0, i;
CMS_ReceiptRequest *rr = NULL;
CMS_Receipt *rct = NULL;
STACK_OF(CMS_SignerInfo) *sis, *osis;
CMS_SignerInfo *si, *osi = NULL;
ASN1_OCTET_STRING *msig, **pcont;
ASN1_OBJECT *octype;
unsigned char dig[EVP_MAX_MD_SIZE];
unsigned int diglen;
/* Get SignerInfos, also checks SignedData content type */
osis = CMS_get0_SignerInfos(req_cms);
sis = CMS_get0_SignerInfos(cms);
if (!osis || !sis)
goto err;
if (sk_CMS_SignerInfo_num(sis) != 1) {
ERR_raise(ERR_LIB_CMS, CMS_R_NEED_ONE_SIGNER);
goto err;
}
/* Check receipt content type */
if (OBJ_obj2nid(CMS_get0_eContentType(cms)) != NID_id_smime_ct_receipt) {
ERR_raise(ERR_LIB_CMS, CMS_R_NOT_A_SIGNED_RECEIPT);
goto err;
}
/* Extract and decode receipt content */
pcont = CMS_get0_content(cms);
if (pcont == NULL || *pcont == NULL) {
ERR_raise(ERR_LIB_CMS, CMS_R_NO_CONTENT);
goto err;
}
rct = ASN1_item_unpack(*pcont, ASN1_ITEM_rptr(CMS_Receipt));
if (!rct) {
ERR_raise(ERR_LIB_CMS, CMS_R_RECEIPT_DECODE_ERROR);
goto err;
}
/* Locate original request */
for (i = 0; i < sk_CMS_SignerInfo_num(osis); i++) {
osi = sk_CMS_SignerInfo_value(osis, i);
if (!ASN1_STRING_cmp(osi->signature, rct->originatorSignatureValue))
break;
}
if (i == sk_CMS_SignerInfo_num(osis)) {
ERR_raise(ERR_LIB_CMS, CMS_R_NO_MATCHING_SIGNATURE);
goto err;
}
si = sk_CMS_SignerInfo_value(sis, 0);
/* Get msgSigDigest value and compare */
msig = CMS_signed_get0_data_by_OBJ(si,
OBJ_nid2obj
(NID_id_smime_aa_msgSigDigest), -3,
V_ASN1_OCTET_STRING);
if (!msig) {
ERR_raise(ERR_LIB_CMS, CMS_R_NO_MSGSIGDIGEST);
goto err;
}
if (!cms_msgSigDigest(osi, dig, &diglen)) {
ERR_raise(ERR_LIB_CMS, CMS_R_MSGSIGDIGEST_ERROR);
goto err;
}
if (diglen != (unsigned int)msig->length) {
ERR_raise(ERR_LIB_CMS, CMS_R_MSGSIGDIGEST_WRONG_LENGTH);
goto err;
}
if (memcmp(dig, msig->data, diglen)) {
ERR_raise(ERR_LIB_CMS, CMS_R_MSGSIGDIGEST_VERIFICATION_FAILURE);
goto err;
}
/* Compare content types */
octype = CMS_signed_get0_data_by_OBJ(osi,
OBJ_nid2obj(NID_pkcs9_contentType),
-3, V_ASN1_OBJECT);
if (!octype) {
ERR_raise(ERR_LIB_CMS, CMS_R_NO_CONTENT_TYPE);
goto err;
}
/* Compare details in receipt request */
if (OBJ_cmp(octype, rct->contentType)) {
ERR_raise(ERR_LIB_CMS, CMS_R_CONTENT_TYPE_MISMATCH);
goto err;
}
/* Get original receipt request details */
if (CMS_get1_ReceiptRequest(osi, &rr) <= 0) {
ERR_raise(ERR_LIB_CMS, CMS_R_NO_RECEIPT_REQUEST);
goto err;
}
if (ASN1_STRING_cmp(rr->signedContentIdentifier,
rct->signedContentIdentifier)) {
ERR_raise(ERR_LIB_CMS, CMS_R_CONTENTIDENTIFIER_MISMATCH);
goto err;
}
r = 1;
err:
CMS_ReceiptRequest_free(rr);
M_ASN1_free_of(rct, CMS_Receipt);
return r;
}
/*
* Encode a Receipt into an OCTET STRING read for including into content of a
* SignedData ContentInfo.
*/
ASN1_OCTET_STRING *ossl_cms_encode_Receipt(CMS_SignerInfo *si)
{
CMS_Receipt rct;
CMS_ReceiptRequest *rr = NULL;
ASN1_OBJECT *ctype;
ASN1_OCTET_STRING *os = NULL;
/* Get original receipt request */
/* Get original receipt request details */
if (CMS_get1_ReceiptRequest(si, &rr) <= 0) {
ERR_raise(ERR_LIB_CMS, CMS_R_NO_RECEIPT_REQUEST);
goto err;
}
/* Get original content type */
ctype = CMS_signed_get0_data_by_OBJ(si,
OBJ_nid2obj(NID_pkcs9_contentType),
-3, V_ASN1_OBJECT);
if (!ctype) {
ERR_raise(ERR_LIB_CMS, CMS_R_NO_CONTENT_TYPE);
goto err;
}
rct.version = 1;
rct.contentType = ctype;
rct.signedContentIdentifier = rr->signedContentIdentifier;
rct.originatorSignatureValue = si->signature;
os = ASN1_item_pack(&rct, ASN1_ITEM_rptr(CMS_Receipt), NULL);
err:
CMS_ReceiptRequest_free(rr);
return os;
}
| 11,821 | 27.147619 | 78 | c |
openssl | openssl-master/crypto/cms/cms_io.c | /*
* Copyright 2008-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/asn1t.h>
#include <openssl/x509.h>
#include <openssl/err.h>
#include <openssl/pem.h>
#include <openssl/cms.h>
#include "cms_local.h"
/* unfortunately cannot constify BIO_new_NDEF() due to this and PKCS7_stream() */
int CMS_stream(unsigned char ***boundary, CMS_ContentInfo *cms)
{
ASN1_OCTET_STRING **pos;
pos = CMS_get0_content(cms);
if (pos == NULL)
return 0;
if (*pos == NULL)
*pos = ASN1_OCTET_STRING_new();
if (*pos != NULL) {
(*pos)->flags |= ASN1_STRING_FLAG_NDEF;
(*pos)->flags &= ~ASN1_STRING_FLAG_CONT;
*boundary = &(*pos)->data;
return 1;
}
ERR_raise(ERR_LIB_CMS, ERR_R_CMS_LIB);
return 0;
}
CMS_ContentInfo *d2i_CMS_bio(BIO *bp, CMS_ContentInfo **cms)
{
CMS_ContentInfo *ci;
const CMS_CTX *ctx = ossl_cms_get0_cmsctx(cms == NULL ? NULL : *cms);
ci = ASN1_item_d2i_bio_ex(ASN1_ITEM_rptr(CMS_ContentInfo), bp, cms,
ossl_cms_ctx_get0_libctx(ctx),
ossl_cms_ctx_get0_propq(ctx));
if (ci != NULL) {
ERR_set_mark();
ossl_cms_resolve_libctx(ci);
ERR_pop_to_mark();
}
return ci;
}
int i2d_CMS_bio(BIO *bp, CMS_ContentInfo *cms)
{
return ASN1_item_i2d_bio(ASN1_ITEM_rptr(CMS_ContentInfo), bp, cms);
}
IMPLEMENT_PEM_rw(CMS, CMS_ContentInfo, PEM_STRING_CMS, CMS_ContentInfo)
BIO *BIO_new_CMS(BIO *out, CMS_ContentInfo *cms)
{
return BIO_new_NDEF(out, (ASN1_VALUE *)cms,
ASN1_ITEM_rptr(CMS_ContentInfo));
}
/* CMS wrappers round generalised stream and MIME routines */
int i2d_CMS_bio_stream(BIO *out, CMS_ContentInfo *cms, BIO *in, int flags)
{
return i2d_ASN1_bio_stream(out, (ASN1_VALUE *)cms, in, flags,
ASN1_ITEM_rptr(CMS_ContentInfo));
}
int PEM_write_bio_CMS_stream(BIO *out, CMS_ContentInfo *cms, BIO *in,
int flags)
{
return PEM_write_bio_ASN1_stream(out, (ASN1_VALUE *)cms, in, flags,
"CMS", ASN1_ITEM_rptr(CMS_ContentInfo));
}
int SMIME_write_CMS(BIO *bio, CMS_ContentInfo *cms, BIO *data, int flags)
{
STACK_OF(X509_ALGOR) *mdalgs;
int ctype_nid = OBJ_obj2nid(cms->contentType);
int econt_nid = OBJ_obj2nid(CMS_get0_eContentType(cms));
const CMS_CTX *ctx = ossl_cms_get0_cmsctx(cms);
if (ctype_nid == NID_pkcs7_signed)
mdalgs = cms->d.signedData->digestAlgorithms;
else
mdalgs = NULL;
return SMIME_write_ASN1_ex(bio, (ASN1_VALUE *)cms, data, flags, ctype_nid,
econt_nid, mdalgs,
ASN1_ITEM_rptr(CMS_ContentInfo),
ossl_cms_ctx_get0_libctx(ctx),
ossl_cms_ctx_get0_propq(ctx));
}
CMS_ContentInfo *SMIME_read_CMS_ex(BIO *bio, int flags, BIO **bcont,
CMS_ContentInfo **cms)
{
CMS_ContentInfo *ci;
const CMS_CTX *ctx = ossl_cms_get0_cmsctx(cms == NULL ? NULL : *cms);
ci = (CMS_ContentInfo *)SMIME_read_ASN1_ex(bio, flags, bcont,
ASN1_ITEM_rptr(CMS_ContentInfo),
(ASN1_VALUE **)cms,
ossl_cms_ctx_get0_libctx(ctx),
ossl_cms_ctx_get0_propq(ctx));
if (ci != NULL) {
ERR_set_mark();
ossl_cms_resolve_libctx(ci);
ERR_pop_to_mark();
}
return ci;
}
CMS_ContentInfo *SMIME_read_CMS(BIO *bio, BIO **bcont)
{
return SMIME_read_CMS_ex(bio, 0, bcont, NULL);
}
| 3,991 | 31.455285 | 81 | c |
openssl | openssl-master/crypto/cms/cms_kari.c | /*
* Copyright 2013-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* Low level key APIs (DH etc) are deprecated for public use, but still ok for
* internal use.
*/
#include "internal/deprecated.h"
#include "internal/cryptlib.h"
#include <openssl/asn1t.h>
#include <openssl/pem.h>
#include <openssl/x509v3.h>
#include <openssl/err.h>
#include <openssl/cms.h>
#include <openssl/aes.h>
#include "cms_local.h"
#include "crypto/asn1.h"
/* Key Agreement Recipient Info (KARI) routines */
int CMS_RecipientInfo_kari_get0_alg(CMS_RecipientInfo *ri,
X509_ALGOR **palg,
ASN1_OCTET_STRING **pukm)
{
if (ri->type != CMS_RECIPINFO_AGREE) {
ERR_raise(ERR_LIB_CMS, CMS_R_NOT_KEY_AGREEMENT);
return 0;
}
if (palg)
*palg = ri->d.kari->keyEncryptionAlgorithm;
if (pukm)
*pukm = ri->d.kari->ukm;
return 1;
}
/* Retrieve recipient encrypted keys from a kari */
STACK_OF(CMS_RecipientEncryptedKey)
*CMS_RecipientInfo_kari_get0_reks(CMS_RecipientInfo *ri)
{
if (ri->type != CMS_RECIPINFO_AGREE) {
ERR_raise(ERR_LIB_CMS, CMS_R_NOT_KEY_AGREEMENT);
return NULL;
}
return ri->d.kari->recipientEncryptedKeys;
}
int CMS_RecipientInfo_kari_get0_orig_id(CMS_RecipientInfo *ri,
X509_ALGOR **pubalg,
ASN1_BIT_STRING **pubkey,
ASN1_OCTET_STRING **keyid,
X509_NAME **issuer,
ASN1_INTEGER **sno)
{
CMS_OriginatorIdentifierOrKey *oik;
if (ri->type != CMS_RECIPINFO_AGREE) {
ERR_raise(ERR_LIB_CMS, CMS_R_NOT_KEY_AGREEMENT);
return 0;
}
oik = ri->d.kari->originator;
if (issuer)
*issuer = NULL;
if (sno)
*sno = NULL;
if (keyid)
*keyid = NULL;
if (pubalg)
*pubalg = NULL;
if (pubkey)
*pubkey = NULL;
if (oik->type == CMS_OIK_ISSUER_SERIAL) {
if (issuer)
*issuer = oik->d.issuerAndSerialNumber->issuer;
if (sno)
*sno = oik->d.issuerAndSerialNumber->serialNumber;
} else if (oik->type == CMS_OIK_KEYIDENTIFIER) {
if (keyid)
*keyid = oik->d.subjectKeyIdentifier;
} else if (oik->type == CMS_OIK_PUBKEY) {
if (pubalg)
*pubalg = oik->d.originatorKey->algorithm;
if (pubkey)
*pubkey = oik->d.originatorKey->publicKey;
} else
return 0;
return 1;
}
int CMS_RecipientInfo_kari_orig_id_cmp(CMS_RecipientInfo *ri, X509 *cert)
{
CMS_OriginatorIdentifierOrKey *oik;
if (ri->type != CMS_RECIPINFO_AGREE) {
ERR_raise(ERR_LIB_CMS, CMS_R_NOT_KEY_AGREEMENT);
return -2;
}
oik = ri->d.kari->originator;
if (oik->type == CMS_OIK_ISSUER_SERIAL)
return ossl_cms_ias_cert_cmp(oik->d.issuerAndSerialNumber, cert);
else if (oik->type == CMS_OIK_KEYIDENTIFIER)
return ossl_cms_keyid_cert_cmp(oik->d.subjectKeyIdentifier, cert);
return -1;
}
int CMS_RecipientEncryptedKey_get0_id(CMS_RecipientEncryptedKey *rek,
ASN1_OCTET_STRING **keyid,
ASN1_GENERALIZEDTIME **tm,
CMS_OtherKeyAttribute **other,
X509_NAME **issuer, ASN1_INTEGER **sno)
{
CMS_KeyAgreeRecipientIdentifier *rid = rek->rid;
if (rid->type == CMS_REK_ISSUER_SERIAL) {
if (issuer)
*issuer = rid->d.issuerAndSerialNumber->issuer;
if (sno)
*sno = rid->d.issuerAndSerialNumber->serialNumber;
if (keyid)
*keyid = NULL;
if (tm)
*tm = NULL;
if (other)
*other = NULL;
} else if (rid->type == CMS_REK_KEYIDENTIFIER) {
if (keyid)
*keyid = rid->d.rKeyId->subjectKeyIdentifier;
if (tm)
*tm = rid->d.rKeyId->date;
if (other)
*other = rid->d.rKeyId->other;
if (issuer)
*issuer = NULL;
if (sno)
*sno = NULL;
} else
return 0;
return 1;
}
int CMS_RecipientEncryptedKey_cert_cmp(CMS_RecipientEncryptedKey *rek,
X509 *cert)
{
CMS_KeyAgreeRecipientIdentifier *rid = rek->rid;
if (rid->type == CMS_REK_ISSUER_SERIAL)
return ossl_cms_ias_cert_cmp(rid->d.issuerAndSerialNumber, cert);
else if (rid->type == CMS_REK_KEYIDENTIFIER)
return ossl_cms_keyid_cert_cmp(rid->d.rKeyId->subjectKeyIdentifier,
cert);
else
return -1;
}
int CMS_RecipientInfo_kari_set0_pkey_and_peer(CMS_RecipientInfo *ri,
EVP_PKEY *pk, X509 *peer)
{
EVP_PKEY_CTX *pctx;
CMS_KeyAgreeRecipientInfo *kari = ri->d.kari;
EVP_PKEY_CTX_free(kari->pctx);
kari->pctx = NULL;
if (pk == NULL)
return 1;
pctx = EVP_PKEY_CTX_new_from_pkey(ossl_cms_ctx_get0_libctx(kari->cms_ctx),
pk,
ossl_cms_ctx_get0_propq(kari->cms_ctx));
if (pctx == NULL || EVP_PKEY_derive_init(pctx) <= 0)
goto err;
if (peer != NULL) {
EVP_PKEY *pub_pkey = X509_get0_pubkey(peer);
if (EVP_PKEY_derive_set_peer(pctx, pub_pkey) <= 0)
goto err;
}
kari->pctx = pctx;
return 1;
err:
EVP_PKEY_CTX_free(pctx);
return 0;
}
int CMS_RecipientInfo_kari_set0_pkey(CMS_RecipientInfo *ri, EVP_PKEY *pk)
{
return CMS_RecipientInfo_kari_set0_pkey_and_peer(ri, pk, NULL);
}
EVP_CIPHER_CTX *CMS_RecipientInfo_kari_get0_ctx(CMS_RecipientInfo *ri)
{
if (ri->type == CMS_RECIPINFO_AGREE)
return ri->d.kari->ctx;
return NULL;
}
/*
* Derive KEK and decrypt/encrypt with it to produce either the original CEK
* or the encrypted CEK.
*/
static int cms_kek_cipher(unsigned char **pout, size_t *poutlen,
const unsigned char *in, size_t inlen,
CMS_KeyAgreeRecipientInfo *kari, int enc)
{
/* Key encryption key */
unsigned char kek[EVP_MAX_KEY_LENGTH];
size_t keklen;
int rv = 0;
unsigned char *out = NULL;
int outlen;
keklen = EVP_CIPHER_CTX_get_key_length(kari->ctx);
if (keklen > EVP_MAX_KEY_LENGTH)
return 0;
/* Derive KEK */
if (EVP_PKEY_derive(kari->pctx, kek, &keklen) <= 0)
goto err;
/* Set KEK in context */
if (!EVP_CipherInit_ex(kari->ctx, NULL, NULL, kek, NULL, enc))
goto err;
/* obtain output length of ciphered key */
if (!EVP_CipherUpdate(kari->ctx, NULL, &outlen, in, inlen))
goto err;
out = OPENSSL_malloc(outlen);
if (out == NULL)
goto err;
if (!EVP_CipherUpdate(kari->ctx, out, &outlen, in, inlen))
goto err;
*pout = out;
*poutlen = (size_t)outlen;
rv = 1;
err:
OPENSSL_cleanse(kek, keklen);
if (!rv)
OPENSSL_free(out);
EVP_CIPHER_CTX_reset(kari->ctx);
/* FIXME: WHY IS kari->pctx freed here? /RL */
EVP_PKEY_CTX_free(kari->pctx);
kari->pctx = NULL;
return rv;
}
int CMS_RecipientInfo_kari_decrypt(CMS_ContentInfo *cms,
CMS_RecipientInfo *ri,
CMS_RecipientEncryptedKey *rek)
{
int rv = 0;
unsigned char *enckey = NULL, *cek = NULL;
size_t enckeylen;
size_t ceklen;
CMS_EncryptedContentInfo *ec;
enckeylen = rek->encryptedKey->length;
enckey = rek->encryptedKey->data;
/* Setup all parameters to derive KEK */
if (!ossl_cms_env_asn1_ctrl(ri, 1))
goto err;
/* Attempt to decrypt CEK */
if (!cms_kek_cipher(&cek, &ceklen, enckey, enckeylen, ri->d.kari, 0))
goto err;
ec = ossl_cms_get0_env_enc_content(cms);
OPENSSL_clear_free(ec->key, ec->keylen);
ec->key = cek;
ec->keylen = ceklen;
cek = NULL;
rv = 1;
err:
OPENSSL_free(cek);
return rv;
}
/* Create ephemeral key and initialise context based on it */
static int cms_kari_create_ephemeral_key(CMS_KeyAgreeRecipientInfo *kari,
EVP_PKEY *pk)
{
EVP_PKEY_CTX *pctx = NULL;
EVP_PKEY *ekey = NULL;
int rv = 0;
const CMS_CTX *ctx = kari->cms_ctx;
OSSL_LIB_CTX *libctx = ossl_cms_ctx_get0_libctx(ctx);
const char *propq = ossl_cms_ctx_get0_propq(ctx);
pctx = EVP_PKEY_CTX_new_from_pkey(libctx, pk, propq);
if (pctx == NULL)
goto err;
if (EVP_PKEY_keygen_init(pctx) <= 0)
goto err;
if (EVP_PKEY_keygen(pctx, &ekey) <= 0)
goto err;
EVP_PKEY_CTX_free(pctx);
pctx = EVP_PKEY_CTX_new_from_pkey(libctx, ekey, propq);
if (pctx == NULL)
goto err;
if (EVP_PKEY_derive_init(pctx) <= 0)
goto err;
kari->pctx = pctx;
rv = 1;
err:
if (!rv)
EVP_PKEY_CTX_free(pctx);
EVP_PKEY_free(ekey);
return rv;
}
/* Set originator private key and initialise context based on it */
static int cms_kari_set_originator_private_key(CMS_KeyAgreeRecipientInfo *kari,
EVP_PKEY *originatorPrivKey )
{
EVP_PKEY_CTX *pctx = NULL;
int rv = 0;
const CMS_CTX *ctx = kari->cms_ctx;
pctx = EVP_PKEY_CTX_new_from_pkey(ossl_cms_ctx_get0_libctx(ctx),
originatorPrivKey,
ossl_cms_ctx_get0_propq(ctx));
if (pctx == NULL)
goto err;
if (EVP_PKEY_derive_init(pctx) <= 0)
goto err;
kari->pctx = pctx;
rv = 1;
err:
if (rv == 0)
EVP_PKEY_CTX_free(pctx);
return rv;
}
/* Initialise a kari based on passed certificate and key */
int ossl_cms_RecipientInfo_kari_init(CMS_RecipientInfo *ri, X509 *recip,
EVP_PKEY *recipPubKey, X509 *originator,
EVP_PKEY *originatorPrivKey,
unsigned int flags, const CMS_CTX *ctx)
{
CMS_KeyAgreeRecipientInfo *kari;
CMS_RecipientEncryptedKey *rek = NULL;
ri->d.kari = M_ASN1_new_of(CMS_KeyAgreeRecipientInfo);
if (ri->d.kari == NULL)
return 0;
ri->type = CMS_RECIPINFO_AGREE;
kari = ri->d.kari;
kari->version = 3;
kari->cms_ctx = ctx;
rek = M_ASN1_new_of(CMS_RecipientEncryptedKey);
if (rek == NULL)
return 0;
if (!sk_CMS_RecipientEncryptedKey_push(kari->recipientEncryptedKeys, rek)) {
M_ASN1_free_of(rek, CMS_RecipientEncryptedKey);
return 0;
}
if (flags & CMS_USE_KEYID) {
rek->rid->type = CMS_REK_KEYIDENTIFIER;
rek->rid->d.rKeyId = M_ASN1_new_of(CMS_RecipientKeyIdentifier);
if (rek->rid->d.rKeyId == NULL)
return 0;
if (!ossl_cms_set1_keyid(&rek->rid->d.rKeyId->subjectKeyIdentifier, recip))
return 0;
} else {
rek->rid->type = CMS_REK_ISSUER_SERIAL;
if (!ossl_cms_set1_ias(&rek->rid->d.issuerAndSerialNumber, recip))
return 0;
}
if (originatorPrivKey == NULL && originator == NULL) {
/* Create ephemeral key */
if (!cms_kari_create_ephemeral_key(kari, recipPubKey))
return 0;
} else {
/* Use originator key */
CMS_OriginatorIdentifierOrKey *oik = ri->d.kari->originator;
if (originatorPrivKey == NULL || originator == NULL)
return 0;
if (flags & CMS_USE_ORIGINATOR_KEYID) {
oik->type = CMS_OIK_KEYIDENTIFIER;
oik->d.subjectKeyIdentifier = ASN1_OCTET_STRING_new();
if (oik->d.subjectKeyIdentifier == NULL)
return 0;
if (!ossl_cms_set1_keyid(&oik->d.subjectKeyIdentifier, originator))
return 0;
} else {
oik->type = CMS_REK_ISSUER_SERIAL;
if (!ossl_cms_set1_ias(&oik->d.issuerAndSerialNumber, originator))
return 0;
}
if (!cms_kari_set_originator_private_key(kari, originatorPrivKey))
return 0;
}
EVP_PKEY_up_ref(recipPubKey);
rek->pkey = recipPubKey;
return 1;
}
static int cms_wrap_init(CMS_KeyAgreeRecipientInfo *kari,
const EVP_CIPHER *cipher)
{
const CMS_CTX *cms_ctx = kari->cms_ctx;
EVP_CIPHER_CTX *ctx = kari->ctx;
const EVP_CIPHER *kekcipher;
EVP_CIPHER *fetched_kekcipher;
const char *kekcipher_name;
int keylen;
int ret;
/* If a suitable wrap algorithm is already set nothing to do */
kekcipher = EVP_CIPHER_CTX_get0_cipher(ctx);
if (kekcipher != NULL) {
if (EVP_CIPHER_CTX_get_mode(ctx) != EVP_CIPH_WRAP_MODE)
return 0;
return 1;
}
if (cipher == NULL)
return 0;
keylen = EVP_CIPHER_get_key_length(cipher);
if ((EVP_CIPHER_get_flags(cipher) & EVP_CIPH_FLAG_GET_WRAP_CIPHER) != 0) {
ret = EVP_CIPHER_meth_get_ctrl(cipher)(NULL, EVP_CTRL_GET_WRAP_CIPHER,
0, &kekcipher);
if (ret <= 0)
return 0;
if (kekcipher != NULL) {
if (EVP_CIPHER_get_mode(kekcipher) != EVP_CIPH_WRAP_MODE)
return 0;
kekcipher_name = EVP_CIPHER_get0_name(kekcipher);
goto enc;
}
}
/*
* Pick a cipher based on content encryption cipher. If it is DES3 use
* DES3 wrap otherwise use AES wrap similar to key size.
*/
#ifndef OPENSSL_NO_DES
if (EVP_CIPHER_get_type(cipher) == NID_des_ede3_cbc)
kekcipher_name = SN_id_smime_alg_CMS3DESwrap;
else
#endif
if (keylen <= 16)
kekcipher_name = SN_id_aes128_wrap;
else if (keylen <= 24)
kekcipher_name = SN_id_aes192_wrap;
else
kekcipher_name = SN_id_aes256_wrap;
enc:
fetched_kekcipher = EVP_CIPHER_fetch(ossl_cms_ctx_get0_libctx(cms_ctx),
kekcipher_name,
ossl_cms_ctx_get0_propq(cms_ctx));
if (fetched_kekcipher == NULL)
return 0;
ret = EVP_EncryptInit_ex(ctx, fetched_kekcipher, NULL, NULL, NULL);
EVP_CIPHER_free(fetched_kekcipher);
return ret;
}
/* Encrypt content key in key agreement recipient info */
int ossl_cms_RecipientInfo_kari_encrypt(const CMS_ContentInfo *cms,
CMS_RecipientInfo *ri)
{
CMS_KeyAgreeRecipientInfo *kari;
CMS_EncryptedContentInfo *ec;
CMS_RecipientEncryptedKey *rek;
STACK_OF(CMS_RecipientEncryptedKey) *reks;
int i;
if (ri->type != CMS_RECIPINFO_AGREE) {
ERR_raise(ERR_LIB_CMS, CMS_R_NOT_KEY_AGREEMENT);
return 0;
}
kari = ri->d.kari;
reks = kari->recipientEncryptedKeys;
ec = ossl_cms_get0_env_enc_content(cms);
/* Initialise wrap algorithm parameters */
if (!cms_wrap_init(kari, ec->cipher))
return 0;
/*
* If no originator key set up initialise for ephemeral key the public key
* ASN1 structure will set the actual public key value.
*/
if (kari->originator->type == -1) {
CMS_OriginatorIdentifierOrKey *oik = kari->originator;
oik->type = CMS_OIK_PUBKEY;
oik->d.originatorKey = M_ASN1_new_of(CMS_OriginatorPublicKey);
if (!oik->d.originatorKey)
return 0;
}
/* Initialise KDF algorithm */
if (!ossl_cms_env_asn1_ctrl(ri, 0))
return 0;
/* For each rek, derive KEK, encrypt CEK */
for (i = 0; i < sk_CMS_RecipientEncryptedKey_num(reks); i++) {
unsigned char *enckey;
size_t enckeylen;
rek = sk_CMS_RecipientEncryptedKey_value(reks, i);
if (EVP_PKEY_derive_set_peer(kari->pctx, rek->pkey) <= 0)
return 0;
if (!cms_kek_cipher(&enckey, &enckeylen, ec->key, ec->keylen,
kari, 1))
return 0;
ASN1_STRING_set0(rek->encryptedKey, enckey, enckeylen);
}
return 1;
}
| 16,372 | 30.246183 | 83 | c |
openssl | openssl-master/crypto/cms/cms_lib.c | /*
* Copyright 2008-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/asn1t.h>
#include <openssl/x509v3.h>
#include <openssl/err.h>
#include <openssl/pem.h>
#include <openssl/bio.h>
#include <openssl/asn1.h>
#include <openssl/cms.h>
#include "internal/sizes.h"
#include "crypto/x509.h"
#include "cms_local.h"
static STACK_OF(CMS_CertificateChoices)
**cms_get0_certificate_choices(CMS_ContentInfo *cms);
IMPLEMENT_ASN1_PRINT_FUNCTION(CMS_ContentInfo)
CMS_ContentInfo *d2i_CMS_ContentInfo(CMS_ContentInfo **a,
const unsigned char **in, long len)
{
CMS_ContentInfo *ci;
const CMS_CTX *ctx = ossl_cms_get0_cmsctx(a == NULL ? NULL : *a);
ci = (CMS_ContentInfo *)ASN1_item_d2i_ex((ASN1_VALUE **)a, in, len,
(CMS_ContentInfo_it()),
ossl_cms_ctx_get0_libctx(ctx),
ossl_cms_ctx_get0_propq(ctx));
if (ci != NULL) {
ERR_set_mark();
ossl_cms_resolve_libctx(ci);
ERR_pop_to_mark();
}
return ci;
}
int i2d_CMS_ContentInfo(const CMS_ContentInfo *a, unsigned char **out)
{
return ASN1_item_i2d((const ASN1_VALUE *)a, out, (CMS_ContentInfo_it()));
}
CMS_ContentInfo *CMS_ContentInfo_new_ex(OSSL_LIB_CTX *libctx, const char *propq)
{
CMS_ContentInfo *ci;
ci = (CMS_ContentInfo *)ASN1_item_new_ex(ASN1_ITEM_rptr(CMS_ContentInfo),
libctx, propq);
if (ci != NULL) {
ci->ctx.libctx = libctx;
ci->ctx.propq = NULL;
if (propq != NULL) {
ci->ctx.propq = OPENSSL_strdup(propq);
if (ci->ctx.propq == NULL) {
CMS_ContentInfo_free(ci);
ci = NULL;
}
}
}
return ci;
}
CMS_ContentInfo *CMS_ContentInfo_new(void)
{
return CMS_ContentInfo_new_ex(NULL, NULL);
}
void CMS_ContentInfo_free(CMS_ContentInfo *cms)
{
if (cms != NULL) {
CMS_EncryptedContentInfo *ec = ossl_cms_get0_env_enc_content(cms);
if (ec != NULL)
OPENSSL_clear_free(ec->key, ec->keylen);
OPENSSL_free(cms->ctx.propq);
ASN1_item_free((ASN1_VALUE *)cms, ASN1_ITEM_rptr(CMS_ContentInfo));
}
}
const CMS_CTX *ossl_cms_get0_cmsctx(const CMS_ContentInfo *cms)
{
return cms != NULL ? &cms->ctx : NULL;
}
OSSL_LIB_CTX *ossl_cms_ctx_get0_libctx(const CMS_CTX *ctx)
{
return ctx != NULL ? ctx->libctx : NULL;
}
const char *ossl_cms_ctx_get0_propq(const CMS_CTX *ctx)
{
return ctx != NULL ? ctx->propq : NULL;
}
void ossl_cms_resolve_libctx(CMS_ContentInfo *ci)
{
int i;
CMS_CertificateChoices *cch;
STACK_OF(CMS_CertificateChoices) **pcerts;
const CMS_CTX *ctx = ossl_cms_get0_cmsctx(ci);
OSSL_LIB_CTX *libctx = ossl_cms_ctx_get0_libctx(ctx);
const char *propq = ossl_cms_ctx_get0_propq(ctx);
ossl_cms_SignerInfos_set_cmsctx(ci);
ossl_cms_RecipientInfos_set_cmsctx(ci);
pcerts = cms_get0_certificate_choices(ci);
if (pcerts != NULL) {
for (i = 0; i < sk_CMS_CertificateChoices_num(*pcerts); i++) {
cch = sk_CMS_CertificateChoices_value(*pcerts, i);
if (cch->type == CMS_CERTCHOICE_CERT)
ossl_x509_set0_libctx(cch->d.certificate, libctx, propq);
}
}
}
const ASN1_OBJECT *CMS_get0_type(const CMS_ContentInfo *cms)
{
return cms->contentType;
}
CMS_ContentInfo *ossl_cms_Data_create(OSSL_LIB_CTX *libctx, const char *propq)
{
CMS_ContentInfo *cms = CMS_ContentInfo_new_ex(libctx, propq);
if (cms != NULL) {
cms->contentType = OBJ_nid2obj(NID_pkcs7_data);
/* Never detached */
CMS_set_detached(cms, 0);
}
return cms;
}
BIO *ossl_cms_content_bio(CMS_ContentInfo *cms)
{
ASN1_OCTET_STRING **pos = CMS_get0_content(cms);
if (pos == NULL)
return NULL;
/* If content detached data goes nowhere: create NULL BIO */
if (*pos == NULL)
return BIO_new(BIO_s_null());
/*
* If content not detached and created return memory BIO
*/
if (*pos == NULL || ((*pos)->flags == ASN1_STRING_FLAG_CONT))
return BIO_new(BIO_s_mem());
/* Else content was read in: return read only BIO for it */
return BIO_new_mem_buf((*pos)->data, (*pos)->length);
}
BIO *CMS_dataInit(CMS_ContentInfo *cms, BIO *icont)
{
BIO *cmsbio, *cont;
if (icont)
cont = icont;
else
cont = ossl_cms_content_bio(cms);
if (!cont) {
ERR_raise(ERR_LIB_CMS, CMS_R_NO_CONTENT);
return NULL;
}
switch (OBJ_obj2nid(cms->contentType)) {
case NID_pkcs7_data:
return cont;
case NID_pkcs7_signed:
cmsbio = ossl_cms_SignedData_init_bio(cms);
break;
case NID_pkcs7_digest:
cmsbio = ossl_cms_DigestedData_init_bio(cms);
break;
#ifndef OPENSSL_NO_ZLIB
case NID_id_smime_ct_compressedData:
cmsbio = ossl_cms_CompressedData_init_bio(cms);
break;
#endif
case NID_pkcs7_encrypted:
cmsbio = ossl_cms_EncryptedData_init_bio(cms);
break;
case NID_pkcs7_enveloped:
cmsbio = ossl_cms_EnvelopedData_init_bio(cms);
break;
case NID_id_smime_ct_authEnvelopedData:
cmsbio = ossl_cms_AuthEnvelopedData_init_bio(cms);
break;
default:
ERR_raise(ERR_LIB_CMS, CMS_R_UNSUPPORTED_TYPE);
goto err;
}
if (cmsbio)
return BIO_push(cmsbio, cont);
err:
if (!icont)
BIO_free(cont);
return NULL;
}
/* unfortunately cannot constify SMIME_write_ASN1() due to this function */
int CMS_dataFinal(CMS_ContentInfo *cms, BIO *cmsbio)
{
return ossl_cms_DataFinal(cms, cmsbio, NULL, 0);
}
int ossl_cms_DataFinal(CMS_ContentInfo *cms, BIO *cmsbio,
const unsigned char *precomp_md,
unsigned int precomp_mdlen)
{
ASN1_OCTET_STRING **pos = CMS_get0_content(cms);
if (pos == NULL)
return 0;
/* If embedded content find memory BIO and set content */
if (*pos && ((*pos)->flags & ASN1_STRING_FLAG_CONT)) {
BIO *mbio;
unsigned char *cont;
long contlen;
mbio = BIO_find_type(cmsbio, BIO_TYPE_MEM);
if (!mbio) {
ERR_raise(ERR_LIB_CMS, CMS_R_CONTENT_NOT_FOUND);
return 0;
}
contlen = BIO_get_mem_data(mbio, &cont);
/* Set bio as read only so its content can't be clobbered */
BIO_set_flags(mbio, BIO_FLAGS_MEM_RDONLY);
BIO_set_mem_eof_return(mbio, 0);
ASN1_STRING_set0(*pos, cont, contlen);
(*pos)->flags &= ~ASN1_STRING_FLAG_CONT;
}
switch (OBJ_obj2nid(cms->contentType)) {
case NID_pkcs7_data:
case NID_pkcs7_encrypted:
case NID_id_smime_ct_compressedData:
/* Nothing to do */
return 1;
case NID_pkcs7_enveloped:
return ossl_cms_EnvelopedData_final(cms, cmsbio);
case NID_id_smime_ct_authEnvelopedData:
return ossl_cms_AuthEnvelopedData_final(cms, cmsbio);
case NID_pkcs7_signed:
return ossl_cms_SignedData_final(cms, cmsbio, precomp_md, precomp_mdlen);
case NID_pkcs7_digest:
return ossl_cms_DigestedData_do_final(cms, cmsbio, 0);
default:
ERR_raise(ERR_LIB_CMS, CMS_R_UNSUPPORTED_TYPE);
return 0;
}
}
/*
* Return an OCTET STRING pointer to content. This allows it to be accessed
* or set later.
*/
ASN1_OCTET_STRING **CMS_get0_content(CMS_ContentInfo *cms)
{
switch (OBJ_obj2nid(cms->contentType)) {
case NID_pkcs7_data:
return &cms->d.data;
case NID_pkcs7_signed:
return &cms->d.signedData->encapContentInfo->eContent;
case NID_pkcs7_enveloped:
return &cms->d.envelopedData->encryptedContentInfo->encryptedContent;
case NID_pkcs7_digest:
return &cms->d.digestedData->encapContentInfo->eContent;
case NID_pkcs7_encrypted:
return &cms->d.encryptedData->encryptedContentInfo->encryptedContent;
case NID_id_smime_ct_authEnvelopedData:
return &cms->d.authEnvelopedData->authEncryptedContentInfo
->encryptedContent;
case NID_id_smime_ct_authData:
return &cms->d.authenticatedData->encapContentInfo->eContent;
case NID_id_smime_ct_compressedData:
return &cms->d.compressedData->encapContentInfo->eContent;
default:
if (cms->d.other->type == V_ASN1_OCTET_STRING)
return &cms->d.other->value.octet_string;
ERR_raise(ERR_LIB_CMS, CMS_R_UNSUPPORTED_CONTENT_TYPE);
return NULL;
}
}
/*
* Return an ASN1_OBJECT pointer to content type. This allows it to be
* accessed or set later.
*/
static ASN1_OBJECT **cms_get0_econtent_type(CMS_ContentInfo *cms)
{
switch (OBJ_obj2nid(cms->contentType)) {
case NID_pkcs7_signed:
return &cms->d.signedData->encapContentInfo->eContentType;
case NID_pkcs7_enveloped:
return &cms->d.envelopedData->encryptedContentInfo->contentType;
case NID_pkcs7_digest:
return &cms->d.digestedData->encapContentInfo->eContentType;
case NID_pkcs7_encrypted:
return &cms->d.encryptedData->encryptedContentInfo->contentType;
case NID_id_smime_ct_authEnvelopedData:
return &cms->d.authEnvelopedData->authEncryptedContentInfo
->contentType;
case NID_id_smime_ct_authData:
return &cms->d.authenticatedData->encapContentInfo->eContentType;
case NID_id_smime_ct_compressedData:
return &cms->d.compressedData->encapContentInfo->eContentType;
default:
ERR_raise(ERR_LIB_CMS, CMS_R_UNSUPPORTED_CONTENT_TYPE);
return NULL;
}
}
const ASN1_OBJECT *CMS_get0_eContentType(CMS_ContentInfo *cms)
{
ASN1_OBJECT **petype;
petype = cms_get0_econtent_type(cms);
if (petype)
return *petype;
return NULL;
}
int CMS_set1_eContentType(CMS_ContentInfo *cms, const ASN1_OBJECT *oid)
{
ASN1_OBJECT **petype, *etype;
petype = cms_get0_econtent_type(cms);
if (petype == NULL)
return 0;
if (oid == NULL)
return 1;
etype = OBJ_dup(oid);
if (etype == NULL)
return 0;
ASN1_OBJECT_free(*petype);
*petype = etype;
return 1;
}
int CMS_is_detached(CMS_ContentInfo *cms)
{
ASN1_OCTET_STRING **pos;
pos = CMS_get0_content(cms);
if (pos == NULL)
return -1;
if (*pos != NULL)
return 0;
return 1;
}
int CMS_set_detached(CMS_ContentInfo *cms, int detached)
{
ASN1_OCTET_STRING **pos;
pos = CMS_get0_content(cms);
if (pos == NULL)
return 0;
if (detached) {
ASN1_OCTET_STRING_free(*pos);
*pos = NULL;
return 1;
}
if (*pos == NULL)
*pos = ASN1_OCTET_STRING_new();
if (*pos != NULL) {
/*
* NB: special flag to show content is created and not read in.
*/
(*pos)->flags |= ASN1_STRING_FLAG_CONT;
return 1;
}
ERR_raise(ERR_LIB_CMS, ERR_R_ASN1_LIB);
return 0;
}
/* Create a digest BIO from an X509_ALGOR structure */
BIO *ossl_cms_DigestAlgorithm_init_bio(X509_ALGOR *digestAlgorithm,
const CMS_CTX *ctx)
{
BIO *mdbio = NULL;
const ASN1_OBJECT *digestoid;
const EVP_MD *digest = NULL;
EVP_MD *fetched_digest = NULL;
char alg[OSSL_MAX_NAME_SIZE];
X509_ALGOR_get0(&digestoid, NULL, NULL, digestAlgorithm);
OBJ_obj2txt(alg, sizeof(alg), digestoid, 0);
(void)ERR_set_mark();
fetched_digest = EVP_MD_fetch(ossl_cms_ctx_get0_libctx(ctx), alg,
ossl_cms_ctx_get0_propq(ctx));
if (fetched_digest != NULL)
digest = fetched_digest;
else
digest = EVP_get_digestbyobj(digestoid);
if (digest == NULL) {
(void)ERR_clear_last_mark();
ERR_raise(ERR_LIB_CMS, CMS_R_UNKNOWN_DIGEST_ALGORITHM);
goto err;
}
(void)ERR_pop_to_mark();
mdbio = BIO_new(BIO_f_md());
if (mdbio == NULL || BIO_set_md(mdbio, digest) <= 0) {
ERR_raise(ERR_LIB_CMS, CMS_R_MD_BIO_INIT_ERROR);
goto err;
}
EVP_MD_free(fetched_digest);
return mdbio;
err:
EVP_MD_free(fetched_digest);
BIO_free(mdbio);
return NULL;
}
/* Locate a message digest content from a BIO chain based on SignerInfo */
int ossl_cms_DigestAlgorithm_find_ctx(EVP_MD_CTX *mctx, BIO *chain,
X509_ALGOR *mdalg)
{
int nid;
const ASN1_OBJECT *mdoid;
X509_ALGOR_get0(&mdoid, NULL, NULL, mdalg);
nid = OBJ_obj2nid(mdoid);
/* Look for digest type to match signature */
for (;;) {
EVP_MD_CTX *mtmp;
chain = BIO_find_type(chain, BIO_TYPE_MD);
if (chain == NULL) {
ERR_raise(ERR_LIB_CMS, CMS_R_NO_MATCHING_DIGEST);
return 0;
}
BIO_get_md_ctx(chain, &mtmp);
if (EVP_MD_CTX_get_type(mtmp) == nid
/*
* Workaround for broken implementations that use signature
* algorithm OID instead of digest.
*/
|| EVP_MD_get_pkey_type(EVP_MD_CTX_get0_md(mtmp)) == nid)
return EVP_MD_CTX_copy_ex(mctx, mtmp);
chain = BIO_next(chain);
}
}
static STACK_OF(CMS_CertificateChoices)
**cms_get0_certificate_choices(CMS_ContentInfo *cms)
{
switch (OBJ_obj2nid(cms->contentType)) {
case NID_pkcs7_signed:
return &cms->d.signedData->certificates;
case NID_pkcs7_enveloped:
if (cms->d.envelopedData->originatorInfo == NULL)
return NULL;
return &cms->d.envelopedData->originatorInfo->certificates;
case NID_id_smime_ct_authEnvelopedData:
if (cms->d.authEnvelopedData->originatorInfo == NULL)
return NULL;
return &cms->d.authEnvelopedData->originatorInfo->certificates;
default:
ERR_raise(ERR_LIB_CMS, CMS_R_UNSUPPORTED_CONTENT_TYPE);
return NULL;
}
}
CMS_CertificateChoices *CMS_add0_CertificateChoices(CMS_ContentInfo *cms)
{
STACK_OF(CMS_CertificateChoices) **pcerts;
CMS_CertificateChoices *cch;
pcerts = cms_get0_certificate_choices(cms);
if (pcerts == NULL)
return NULL;
if (*pcerts == NULL)
*pcerts = sk_CMS_CertificateChoices_new_null();
if (*pcerts == NULL)
return NULL;
cch = M_ASN1_new_of(CMS_CertificateChoices);
if (!cch)
return NULL;
if (!sk_CMS_CertificateChoices_push(*pcerts, cch)) {
M_ASN1_free_of(cch, CMS_CertificateChoices);
return NULL;
}
return cch;
}
int CMS_add0_cert(CMS_ContentInfo *cms, X509 *cert)
{
CMS_CertificateChoices *cch;
STACK_OF(CMS_CertificateChoices) **pcerts;
int i;
pcerts = cms_get0_certificate_choices(cms);
if (pcerts == NULL)
return 0;
for (i = 0; i < sk_CMS_CertificateChoices_num(*pcerts); i++) {
cch = sk_CMS_CertificateChoices_value(*pcerts, i);
if (cch->type == CMS_CERTCHOICE_CERT) {
if (X509_cmp(cch->d.certificate, cert) == 0) {
X509_free(cert);
return 1; /* cert already present */
}
}
}
cch = CMS_add0_CertificateChoices(cms);
if (!cch)
return 0;
cch->type = CMS_CERTCHOICE_CERT;
cch->d.certificate = cert;
return 1;
}
int CMS_add1_cert(CMS_ContentInfo *cms, X509 *cert)
{
if (!X509_up_ref(cert))
return 0;
if (CMS_add0_cert(cms, cert))
return 1;
X509_free(cert);
return 0;
}
static STACK_OF(CMS_RevocationInfoChoice)
**cms_get0_revocation_choices(CMS_ContentInfo *cms)
{
switch (OBJ_obj2nid(cms->contentType)) {
case NID_pkcs7_signed:
return &cms->d.signedData->crls;
case NID_pkcs7_enveloped:
if (cms->d.envelopedData->originatorInfo == NULL)
return NULL;
return &cms->d.envelopedData->originatorInfo->crls;
case NID_id_smime_ct_authEnvelopedData:
if (cms->d.authEnvelopedData->originatorInfo == NULL)
return NULL;
return &cms->d.authEnvelopedData->originatorInfo->crls;
default:
ERR_raise(ERR_LIB_CMS, CMS_R_UNSUPPORTED_CONTENT_TYPE);
return NULL;
}
}
CMS_RevocationInfoChoice *CMS_add0_RevocationInfoChoice(CMS_ContentInfo *cms)
{
STACK_OF(CMS_RevocationInfoChoice) **pcrls;
CMS_RevocationInfoChoice *rch;
pcrls = cms_get0_revocation_choices(cms);
if (pcrls == NULL)
return NULL;
if (*pcrls == NULL)
*pcrls = sk_CMS_RevocationInfoChoice_new_null();
if (*pcrls == NULL)
return NULL;
rch = M_ASN1_new_of(CMS_RevocationInfoChoice);
if (rch == NULL)
return NULL;
if (!sk_CMS_RevocationInfoChoice_push(*pcrls, rch)) {
M_ASN1_free_of(rch, CMS_RevocationInfoChoice);
return NULL;
}
return rch;
}
int CMS_add0_crl(CMS_ContentInfo *cms, X509_CRL *crl)
{
CMS_RevocationInfoChoice *rch = CMS_add0_RevocationInfoChoice(cms);
if (rch == NULL)
return 0;
rch->type = CMS_REVCHOICE_CRL;
rch->d.crl = crl;
return 1;
}
int CMS_add1_crl(CMS_ContentInfo *cms, X509_CRL *crl)
{
if (!X509_CRL_up_ref(crl))
return 0;
if (CMS_add0_crl(cms, crl))
return 1;
X509_CRL_free(crl);
return 0;
}
STACK_OF(X509) *CMS_get1_certs(CMS_ContentInfo *cms)
{
STACK_OF(X509) *certs = NULL;
CMS_CertificateChoices *cch;
STACK_OF(CMS_CertificateChoices) **pcerts;
int i;
pcerts = cms_get0_certificate_choices(cms);
if (pcerts == NULL)
return NULL;
for (i = 0; i < sk_CMS_CertificateChoices_num(*pcerts); i++) {
cch = sk_CMS_CertificateChoices_value(*pcerts, i);
if (cch->type == 0) {
if (!ossl_x509_add_cert_new(&certs, cch->d.certificate,
X509_ADD_FLAG_UP_REF)) {
OSSL_STACK_OF_X509_free(certs);
return NULL;
}
}
}
return certs;
}
STACK_OF(X509_CRL) *CMS_get1_crls(CMS_ContentInfo *cms)
{
STACK_OF(X509_CRL) *crls = NULL;
STACK_OF(CMS_RevocationInfoChoice) **pcrls;
CMS_RevocationInfoChoice *rch;
int i;
pcrls = cms_get0_revocation_choices(cms);
if (pcrls == NULL)
return NULL;
for (i = 0; i < sk_CMS_RevocationInfoChoice_num(*pcrls); i++) {
rch = sk_CMS_RevocationInfoChoice_value(*pcrls, i);
if (rch->type == 0) {
if (crls == NULL) {
if ((crls = sk_X509_CRL_new_null()) == NULL)
return NULL;
}
if (!sk_X509_CRL_push(crls, rch->d.crl)
|| !X509_CRL_up_ref(rch->d.crl)) {
sk_X509_CRL_pop_free(crls, X509_CRL_free);
return NULL;
}
}
}
return crls;
}
int ossl_cms_ias_cert_cmp(CMS_IssuerAndSerialNumber *ias, X509 *cert)
{
int ret;
ret = X509_NAME_cmp(ias->issuer, X509_get_issuer_name(cert));
if (ret)
return ret;
return ASN1_INTEGER_cmp(ias->serialNumber, X509_get0_serialNumber(cert));
}
int ossl_cms_keyid_cert_cmp(ASN1_OCTET_STRING *keyid, X509 *cert)
{
const ASN1_OCTET_STRING *cert_keyid = X509_get0_subject_key_id(cert);
if (cert_keyid == NULL)
return -1;
return ASN1_OCTET_STRING_cmp(keyid, cert_keyid);
}
int ossl_cms_set1_ias(CMS_IssuerAndSerialNumber **pias, X509 *cert)
{
CMS_IssuerAndSerialNumber *ias;
ias = M_ASN1_new_of(CMS_IssuerAndSerialNumber);
if (!ias) {
ERR_raise(ERR_LIB_CMS, ERR_R_ASN1_LIB);
goto err;
}
if (!X509_NAME_set(&ias->issuer, X509_get_issuer_name(cert))) {
ERR_raise(ERR_LIB_CMS, ERR_R_X509_LIB);
goto err;
}
if (!ASN1_STRING_copy(ias->serialNumber, X509_get0_serialNumber(cert))) {
ERR_raise(ERR_LIB_CMS, ERR_R_ASN1_LIB);
goto err;
}
M_ASN1_free_of(*pias, CMS_IssuerAndSerialNumber);
*pias = ias;
return 1;
err:
M_ASN1_free_of(ias, CMS_IssuerAndSerialNumber);
return 0;
}
int ossl_cms_set1_keyid(ASN1_OCTET_STRING **pkeyid, X509 *cert)
{
ASN1_OCTET_STRING *keyid = NULL;
const ASN1_OCTET_STRING *cert_keyid;
cert_keyid = X509_get0_subject_key_id(cert);
if (cert_keyid == NULL) {
ERR_raise(ERR_LIB_CMS, CMS_R_CERTIFICATE_HAS_NO_KEYID);
return 0;
}
keyid = ASN1_STRING_dup(cert_keyid);
if (!keyid) {
ERR_raise(ERR_LIB_CMS, ERR_R_ASN1_LIB);
return 0;
}
ASN1_OCTET_STRING_free(*pkeyid);
*pkeyid = keyid;
return 1;
}
| 20,834 | 26.891566 | 81 | c |
openssl | openssl-master/crypto/cms/cms_local.h | /*
* Copyright 2008-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#ifndef OSSL_CRYPTO_CMS_LOCAL_H
# define OSSL_CRYPTO_CMS_LOCAL_H
# include <openssl/x509.h>
/*
* Cryptographic message syntax (CMS) structures: taken from RFC3852
*/
/* Forward references */
typedef struct CMS_IssuerAndSerialNumber_st CMS_IssuerAndSerialNumber;
typedef struct CMS_EncapsulatedContentInfo_st CMS_EncapsulatedContentInfo;
typedef struct CMS_SignerIdentifier_st CMS_SignerIdentifier;
typedef struct CMS_OtherRevocationInfoFormat_st CMS_OtherRevocationInfoFormat;
typedef struct CMS_OriginatorInfo_st CMS_OriginatorInfo;
typedef struct CMS_EncryptedContentInfo_st CMS_EncryptedContentInfo;
typedef struct CMS_DigestedData_st CMS_DigestedData;
typedef struct CMS_EncryptedData_st CMS_EncryptedData;
typedef struct CMS_AuthenticatedData_st CMS_AuthenticatedData;
typedef struct CMS_AuthEnvelopedData_st CMS_AuthEnvelopedData;
typedef struct CMS_CompressedData_st CMS_CompressedData;
typedef struct CMS_OtherCertificateFormat_st CMS_OtherCertificateFormat;
typedef struct CMS_KeyTransRecipientInfo_st CMS_KeyTransRecipientInfo;
typedef struct CMS_OriginatorPublicKey_st CMS_OriginatorPublicKey;
typedef struct CMS_OriginatorIdentifierOrKey_st CMS_OriginatorIdentifierOrKey;
typedef struct CMS_KeyAgreeRecipientInfo_st CMS_KeyAgreeRecipientInfo;
typedef struct CMS_RecipientKeyIdentifier_st CMS_RecipientKeyIdentifier;
typedef struct CMS_KeyAgreeRecipientIdentifier_st
CMS_KeyAgreeRecipientIdentifier;
typedef struct CMS_KEKIdentifier_st CMS_KEKIdentifier;
typedef struct CMS_KEKRecipientInfo_st CMS_KEKRecipientInfo;
typedef struct CMS_PasswordRecipientInfo_st CMS_PasswordRecipientInfo;
typedef struct CMS_OtherRecipientInfo_st CMS_OtherRecipientInfo;
typedef struct CMS_ReceiptsFrom_st CMS_ReceiptsFrom;
typedef struct CMS_CTX_st CMS_CTX;
struct CMS_CTX_st {
OSSL_LIB_CTX *libctx;
char *propq;
};
struct CMS_ContentInfo_st {
ASN1_OBJECT *contentType;
union {
ASN1_OCTET_STRING *data;
CMS_SignedData *signedData;
CMS_EnvelopedData *envelopedData;
CMS_DigestedData *digestedData;
CMS_EncryptedData *encryptedData;
CMS_AuthEnvelopedData *authEnvelopedData;
CMS_AuthenticatedData *authenticatedData;
CMS_CompressedData *compressedData;
ASN1_TYPE *other;
/* Other types ... */
void *otherData;
} d;
CMS_CTX ctx;
};
DEFINE_STACK_OF(CMS_CertificateChoices)
struct CMS_SignedData_st {
int32_t version;
STACK_OF(X509_ALGOR) *digestAlgorithms;
CMS_EncapsulatedContentInfo *encapContentInfo;
STACK_OF(CMS_CertificateChoices) *certificates;
STACK_OF(CMS_RevocationInfoChoice) *crls;
STACK_OF(CMS_SignerInfo) *signerInfos;
};
struct CMS_EncapsulatedContentInfo_st {
ASN1_OBJECT *eContentType;
ASN1_OCTET_STRING *eContent;
/* Set to 1 if incomplete structure only part set up */
int partial;
};
struct CMS_SignerInfo_st {
int32_t version;
CMS_SignerIdentifier *sid;
X509_ALGOR *digestAlgorithm;
STACK_OF(X509_ATTRIBUTE) *signedAttrs;
X509_ALGOR *signatureAlgorithm;
ASN1_OCTET_STRING *signature;
STACK_OF(X509_ATTRIBUTE) *unsignedAttrs;
/* Signing certificate and key */
X509 *signer;
EVP_PKEY *pkey;
/* Digest and public key context for alternative parameters */
EVP_MD_CTX *mctx;
EVP_PKEY_CTX *pctx;
const CMS_CTX *cms_ctx;
};
struct CMS_SignerIdentifier_st {
int type;
union {
CMS_IssuerAndSerialNumber *issuerAndSerialNumber;
ASN1_OCTET_STRING *subjectKeyIdentifier;
} d;
};
struct CMS_EnvelopedData_st {
int32_t version;
CMS_OriginatorInfo *originatorInfo;
STACK_OF(CMS_RecipientInfo) *recipientInfos;
CMS_EncryptedContentInfo *encryptedContentInfo;
STACK_OF(X509_ATTRIBUTE) *unprotectedAttrs;
};
struct CMS_OriginatorInfo_st {
STACK_OF(CMS_CertificateChoices) *certificates;
STACK_OF(CMS_RevocationInfoChoice) *crls;
};
struct CMS_EncryptedContentInfo_st {
ASN1_OBJECT *contentType;
X509_ALGOR *contentEncryptionAlgorithm;
ASN1_OCTET_STRING *encryptedContent;
/* Content encryption algorithm, key and tag */
const EVP_CIPHER *cipher;
unsigned char *key;
size_t keylen;
unsigned char *tag;
size_t taglen;
/* Set to 1 if we are debugging decrypt and don't fake keys for MMA */
int debug;
/* Set to 1 if we have no cert and need extra safety measures for MMA */
int havenocert;
};
struct CMS_RecipientInfo_st {
int type;
union {
CMS_KeyTransRecipientInfo *ktri;
CMS_KeyAgreeRecipientInfo *kari;
CMS_KEKRecipientInfo *kekri;
CMS_PasswordRecipientInfo *pwri;
CMS_OtherRecipientInfo *ori;
} d;
};
typedef CMS_SignerIdentifier CMS_RecipientIdentifier;
struct CMS_KeyTransRecipientInfo_st {
int32_t version;
CMS_RecipientIdentifier *rid;
X509_ALGOR *keyEncryptionAlgorithm;
ASN1_OCTET_STRING *encryptedKey;
/* Recipient Key and cert */
X509 *recip;
EVP_PKEY *pkey;
/* Public key context for this operation */
EVP_PKEY_CTX *pctx;
const CMS_CTX *cms_ctx;
};
struct CMS_KeyAgreeRecipientInfo_st {
int32_t version;
CMS_OriginatorIdentifierOrKey *originator;
ASN1_OCTET_STRING *ukm;
X509_ALGOR *keyEncryptionAlgorithm;
STACK_OF(CMS_RecipientEncryptedKey) *recipientEncryptedKeys;
/* Public key context associated with current operation */
EVP_PKEY_CTX *pctx;
/* Cipher context for CEK wrapping */
EVP_CIPHER_CTX *ctx;
const CMS_CTX *cms_ctx;
};
struct CMS_OriginatorIdentifierOrKey_st {
int type;
union {
CMS_IssuerAndSerialNumber *issuerAndSerialNumber;
ASN1_OCTET_STRING *subjectKeyIdentifier;
CMS_OriginatorPublicKey *originatorKey;
} d;
};
struct CMS_OriginatorPublicKey_st {
X509_ALGOR *algorithm;
ASN1_BIT_STRING *publicKey;
};
struct CMS_RecipientEncryptedKey_st {
CMS_KeyAgreeRecipientIdentifier *rid;
ASN1_OCTET_STRING *encryptedKey;
/* Public key associated with this recipient */
EVP_PKEY *pkey;
};
struct CMS_KeyAgreeRecipientIdentifier_st {
int type;
union {
CMS_IssuerAndSerialNumber *issuerAndSerialNumber;
CMS_RecipientKeyIdentifier *rKeyId;
} d;
};
struct CMS_RecipientKeyIdentifier_st {
ASN1_OCTET_STRING *subjectKeyIdentifier;
ASN1_GENERALIZEDTIME *date;
CMS_OtherKeyAttribute *other;
};
struct CMS_KEKRecipientInfo_st {
int32_t version;
CMS_KEKIdentifier *kekid;
X509_ALGOR *keyEncryptionAlgorithm;
ASN1_OCTET_STRING *encryptedKey;
/* Extra info: symmetric key to use */
unsigned char *key;
size_t keylen;
const CMS_CTX *cms_ctx;
};
struct CMS_KEKIdentifier_st {
ASN1_OCTET_STRING *keyIdentifier;
ASN1_GENERALIZEDTIME *date;
CMS_OtherKeyAttribute *other;
};
struct CMS_PasswordRecipientInfo_st {
int32_t version;
X509_ALGOR *keyDerivationAlgorithm;
X509_ALGOR *keyEncryptionAlgorithm;
ASN1_OCTET_STRING *encryptedKey;
/* Extra info: password to use */
unsigned char *pass;
size_t passlen;
const CMS_CTX *cms_ctx;
};
struct CMS_OtherRecipientInfo_st {
ASN1_OBJECT *oriType;
ASN1_TYPE *oriValue;
};
struct CMS_DigestedData_st {
int32_t version;
X509_ALGOR *digestAlgorithm;
CMS_EncapsulatedContentInfo *encapContentInfo;
ASN1_OCTET_STRING *digest;
};
struct CMS_EncryptedData_st {
int32_t version;
CMS_EncryptedContentInfo *encryptedContentInfo;
STACK_OF(X509_ATTRIBUTE) *unprotectedAttrs;
};
struct CMS_AuthenticatedData_st {
int32_t version;
CMS_OriginatorInfo *originatorInfo;
STACK_OF(CMS_RecipientInfo) *recipientInfos;
X509_ALGOR *macAlgorithm;
X509_ALGOR *digestAlgorithm;
CMS_EncapsulatedContentInfo *encapContentInfo;
STACK_OF(X509_ATTRIBUTE) *authAttrs;
ASN1_OCTET_STRING *mac;
STACK_OF(X509_ATTRIBUTE) *unauthAttrs;
};
struct CMS_AuthEnvelopedData_st {
int32_t version;
CMS_OriginatorInfo *originatorInfo;
STACK_OF(CMS_RecipientInfo) *recipientInfos;
CMS_EncryptedContentInfo *authEncryptedContentInfo;
STACK_OF(X509_ATTRIBUTE) *authAttrs;
ASN1_OCTET_STRING *mac;
STACK_OF(X509_ATTRIBUTE) *unauthAttrs;
};
struct CMS_CompressedData_st {
int32_t version;
X509_ALGOR *compressionAlgorithm;
STACK_OF(CMS_RecipientInfo) *recipientInfos;
CMS_EncapsulatedContentInfo *encapContentInfo;
};
struct CMS_RevocationInfoChoice_st {
int type;
union {
X509_CRL *crl;
CMS_OtherRevocationInfoFormat *other;
} d;
};
# define CMS_REVCHOICE_CRL 0
# define CMS_REVCHOICE_OTHER 1
struct CMS_OtherRevocationInfoFormat_st {
ASN1_OBJECT *otherRevInfoFormat;
ASN1_TYPE *otherRevInfo;
};
struct CMS_CertificateChoices {
int type;
union {
X509 *certificate;
ASN1_STRING *extendedCertificate; /* Obsolete */
ASN1_STRING *v1AttrCert; /* Left encoded for now */
ASN1_STRING *v2AttrCert; /* Left encoded for now */
CMS_OtherCertificateFormat *other;
} d;
};
# define CMS_CERTCHOICE_CERT 0
# define CMS_CERTCHOICE_EXCERT 1
# define CMS_CERTCHOICE_V1ACERT 2
# define CMS_CERTCHOICE_V2ACERT 3
# define CMS_CERTCHOICE_OTHER 4
struct CMS_OtherCertificateFormat_st {
ASN1_OBJECT *otherCertFormat;
ASN1_TYPE *otherCert;
};
/*
* This is also defined in pkcs7.h but we duplicate it to allow the CMS code
* to be independent of PKCS#7
*/
struct CMS_IssuerAndSerialNumber_st {
X509_NAME *issuer;
ASN1_INTEGER *serialNumber;
};
struct CMS_OtherKeyAttribute_st {
ASN1_OBJECT *keyAttrId;
ASN1_TYPE *keyAttr;
};
/* ESS structures */
struct CMS_ReceiptRequest_st {
ASN1_OCTET_STRING *signedContentIdentifier;
CMS_ReceiptsFrom *receiptsFrom;
STACK_OF(GENERAL_NAMES) *receiptsTo;
};
struct CMS_ReceiptsFrom_st {
int type;
union {
int32_t allOrFirstTier;
STACK_OF(GENERAL_NAMES) *receiptList;
} d;
};
struct CMS_Receipt_st {
int32_t version;
ASN1_OBJECT *contentType;
ASN1_OCTET_STRING *signedContentIdentifier;
ASN1_OCTET_STRING *originatorSignatureValue;
};
DECLARE_ASN1_FUNCTIONS(CMS_ContentInfo)
DECLARE_ASN1_ITEM(CMS_SignerInfo)
DECLARE_ASN1_ITEM(CMS_IssuerAndSerialNumber)
DECLARE_ASN1_ITEM(CMS_Attributes_Sign)
DECLARE_ASN1_ITEM(CMS_Attributes_Verify)
DECLARE_ASN1_ITEM(CMS_RecipientInfo)
DECLARE_ASN1_ITEM(CMS_PasswordRecipientInfo)
DECLARE_ASN1_ALLOC_FUNCTIONS(CMS_IssuerAndSerialNumber)
# define CMS_SIGNERINFO_ISSUER_SERIAL 0
# define CMS_SIGNERINFO_KEYIDENTIFIER 1
# define CMS_RECIPINFO_ISSUER_SERIAL 0
# define CMS_RECIPINFO_KEYIDENTIFIER 1
# define CMS_REK_ISSUER_SERIAL 0
# define CMS_REK_KEYIDENTIFIER 1
# define CMS_OIK_ISSUER_SERIAL 0
# define CMS_OIK_KEYIDENTIFIER 1
# define CMS_OIK_PUBKEY 2
BIO *ossl_cms_content_bio(CMS_ContentInfo *cms);
const CMS_CTX *ossl_cms_get0_cmsctx(const CMS_ContentInfo *cms);
OSSL_LIB_CTX *ossl_cms_ctx_get0_libctx(const CMS_CTX *ctx);
const char *ossl_cms_ctx_get0_propq(const CMS_CTX *ctx);
void ossl_cms_resolve_libctx(CMS_ContentInfo *ci);
CMS_ContentInfo *ossl_cms_Data_create(OSSL_LIB_CTX *ctx, const char *propq);
int ossl_cms_DataFinal(CMS_ContentInfo *cms, BIO *cmsbio,
const unsigned char *precomp_md,
unsigned int precomp_mdlen);
CMS_ContentInfo *ossl_cms_DigestedData_create(const EVP_MD *md,
OSSL_LIB_CTX *libctx,
const char *propq);
BIO *ossl_cms_DigestedData_init_bio(const CMS_ContentInfo *cms);
int ossl_cms_DigestedData_do_final(const CMS_ContentInfo *cms,
BIO *chain, int verify);
BIO *ossl_cms_SignedData_init_bio(CMS_ContentInfo *cms);
int ossl_cms_SignedData_final(CMS_ContentInfo *cms, BIO *chain,
const unsigned char *precomp_md,
unsigned int precomp_mdlen);
int ossl_cms_set1_SignerIdentifier(CMS_SignerIdentifier *sid, X509 *cert,
int type, const CMS_CTX *ctx);
int ossl_cms_SignerIdentifier_get0_signer_id(CMS_SignerIdentifier *sid,
ASN1_OCTET_STRING **keyid,
X509_NAME **issuer,
ASN1_INTEGER **sno);
int ossl_cms_SignerIdentifier_cert_cmp(CMS_SignerIdentifier *sid, X509 *cert);
CMS_ContentInfo *ossl_cms_CompressedData_create(int comp_nid,
OSSL_LIB_CTX *libctx,
const char *propq);
BIO *ossl_cms_CompressedData_init_bio(const CMS_ContentInfo *cms);
BIO *ossl_cms_DigestAlgorithm_init_bio(X509_ALGOR *digestAlgorithm,
const CMS_CTX *ctx);
int ossl_cms_DigestAlgorithm_find_ctx(EVP_MD_CTX *mctx, BIO *chain,
X509_ALGOR *mdalg);
int ossl_cms_ias_cert_cmp(CMS_IssuerAndSerialNumber *ias, X509 *cert);
int ossl_cms_keyid_cert_cmp(ASN1_OCTET_STRING *keyid, X509 *cert);
int ossl_cms_set1_ias(CMS_IssuerAndSerialNumber **pias, X509 *cert);
int ossl_cms_set1_keyid(ASN1_OCTET_STRING **pkeyid, X509 *cert);
BIO *ossl_cms_EncryptedContent_init_bio(CMS_EncryptedContentInfo *ec,
const CMS_CTX *ctx);
BIO *ossl_cms_EncryptedData_init_bio(const CMS_ContentInfo *cms);
int ossl_cms_EncryptedContent_init(CMS_EncryptedContentInfo *ec,
const EVP_CIPHER *cipher,
const unsigned char *key, size_t keylen,
const CMS_CTX *ctx);
int ossl_cms_Receipt_verify(CMS_ContentInfo *cms, CMS_ContentInfo *req_cms);
int ossl_cms_msgSigDigest_add1(CMS_SignerInfo *dest, CMS_SignerInfo *src);
ASN1_OCTET_STRING *ossl_cms_encode_Receipt(CMS_SignerInfo *si);
BIO *ossl_cms_EnvelopedData_init_bio(CMS_ContentInfo *cms);
int ossl_cms_EnvelopedData_final(CMS_ContentInfo *cms, BIO *chain);
BIO *ossl_cms_AuthEnvelopedData_init_bio(CMS_ContentInfo *cms);
int ossl_cms_AuthEnvelopedData_final(CMS_ContentInfo *cms, BIO *cmsbio);
CMS_EnvelopedData *ossl_cms_get0_enveloped(CMS_ContentInfo *cms);
CMS_AuthEnvelopedData *ossl_cms_get0_auth_enveloped(CMS_ContentInfo *cms);
CMS_EncryptedContentInfo *ossl_cms_get0_env_enc_content(const CMS_ContentInfo *cms);
/* RecipientInfo routines */
int ossl_cms_env_asn1_ctrl(CMS_RecipientInfo *ri, int cmd);
int ossl_cms_pkey_get_ri_type(EVP_PKEY *pk);
int ossl_cms_pkey_is_ri_type_supported(EVP_PKEY *pk, int ri_type);
void ossl_cms_RecipientInfos_set_cmsctx(CMS_ContentInfo *cms);
/* KARI routines */
int ossl_cms_RecipientInfo_kari_init(CMS_RecipientInfo *ri, X509 *recip,
EVP_PKEY *recipPubKey, X509 *originator,
EVP_PKEY *originatorPrivKey,
unsigned int flags,
const CMS_CTX *ctx);
int ossl_cms_RecipientInfo_kari_encrypt(const CMS_ContentInfo *cms,
CMS_RecipientInfo *ri);
/* PWRI routines */
int ossl_cms_RecipientInfo_pwri_crypt(const CMS_ContentInfo *cms,
CMS_RecipientInfo *ri, int en_de);
/* SignerInfo routines */
int ossl_cms_si_check_attributes(const CMS_SignerInfo *si);
void ossl_cms_SignerInfos_set_cmsctx(CMS_ContentInfo *cms);
/* ESS routines */
int ossl_cms_check_signing_certs(const CMS_SignerInfo *si,
const STACK_OF(X509) *chain);
int ossl_cms_dh_envelope(CMS_RecipientInfo *ri, int decrypt);
int ossl_cms_ecdh_envelope(CMS_RecipientInfo *ri, int decrypt);
int ossl_cms_rsa_envelope(CMS_RecipientInfo *ri, int decrypt);
int ossl_cms_rsa_sign(CMS_SignerInfo *si, int verify);
DECLARE_ASN1_ITEM(CMS_CertificateChoices)
DECLARE_ASN1_ITEM(CMS_DigestedData)
DECLARE_ASN1_ITEM(CMS_EncryptedData)
DECLARE_ASN1_ITEM(CMS_EnvelopedData)
DECLARE_ASN1_ITEM(CMS_AuthEnvelopedData)
DECLARE_ASN1_ITEM(CMS_KEKRecipientInfo)
DECLARE_ASN1_ITEM(CMS_KeyAgreeRecipientInfo)
DECLARE_ASN1_ITEM(CMS_KeyTransRecipientInfo)
DECLARE_ASN1_ITEM(CMS_OriginatorPublicKey)
DECLARE_ASN1_ITEM(CMS_OtherKeyAttribute)
DECLARE_ASN1_ITEM(CMS_Receipt)
DECLARE_ASN1_ITEM(CMS_ReceiptRequest)
DECLARE_ASN1_ITEM(CMS_RecipientEncryptedKey)
DECLARE_ASN1_ITEM(CMS_RecipientKeyIdentifier)
DECLARE_ASN1_ITEM(CMS_RevocationInfoChoice)
DECLARE_ASN1_ITEM(CMS_SignedData)
DECLARE_ASN1_ITEM(CMS_CompressedData)
#endif
| 16,985 | 32.56917 | 84 | h |
openssl | openssl-master/crypto/cms/cms_pwri.c | /*
* Copyright 2009-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "internal/cryptlib.h"
#include <openssl/asn1t.h>
#include <openssl/pem.h>
#include <openssl/x509v3.h>
#include <openssl/err.h>
#include <openssl/cms.h>
#include <openssl/rand.h>
#include <openssl/aes.h>
#include "internal/sizes.h"
#include "crypto/asn1.h"
#include "cms_local.h"
int CMS_RecipientInfo_set0_password(CMS_RecipientInfo *ri,
unsigned char *pass, ossl_ssize_t passlen)
{
CMS_PasswordRecipientInfo *pwri;
if (ri->type != CMS_RECIPINFO_PASS) {
ERR_raise(ERR_LIB_CMS, CMS_R_NOT_PWRI);
return 0;
}
pwri = ri->d.pwri;
pwri->pass = pass;
if (pass && passlen < 0)
passlen = strlen((char *)pass);
pwri->passlen = passlen;
return 1;
}
CMS_RecipientInfo *CMS_add0_recipient_password(CMS_ContentInfo *cms,
int iter, int wrap_nid,
int pbe_nid,
unsigned char *pass,
ossl_ssize_t passlen,
const EVP_CIPHER *kekciph)
{
STACK_OF(CMS_RecipientInfo) *ris;
CMS_RecipientInfo *ri = NULL;
CMS_EncryptedContentInfo *ec;
CMS_PasswordRecipientInfo *pwri;
EVP_CIPHER_CTX *ctx = NULL;
X509_ALGOR *encalg = NULL;
unsigned char iv[EVP_MAX_IV_LENGTH];
int ivlen;
const CMS_CTX *cms_ctx = ossl_cms_get0_cmsctx(cms);
ec = ossl_cms_get0_env_enc_content(cms);
if (ec == NULL)
return NULL;
ris = CMS_get0_RecipientInfos(cms);
if (ris == NULL)
return NULL;
if (wrap_nid <= 0)
wrap_nid = NID_id_alg_PWRI_KEK;
if (pbe_nid <= 0)
pbe_nid = NID_id_pbkdf2;
/* Get from enveloped data */
if (kekciph == NULL)
kekciph = ec->cipher;
if (kekciph == NULL) {
ERR_raise(ERR_LIB_CMS, CMS_R_NO_CIPHER);
return NULL;
}
if (wrap_nid != NID_id_alg_PWRI_KEK) {
ERR_raise(ERR_LIB_CMS, CMS_R_UNSUPPORTED_KEY_ENCRYPTION_ALGORITHM);
return NULL;
}
/* Setup algorithm identifier for cipher */
encalg = X509_ALGOR_new();
if (encalg == NULL) {
ERR_raise(ERR_LIB_CMS, ERR_R_ASN1_LIB);
goto err;
}
ctx = EVP_CIPHER_CTX_new();
if (ctx == NULL) {
ERR_raise(ERR_LIB_CMS, ERR_R_EVP_LIB);
goto err;
}
if (EVP_EncryptInit_ex(ctx, kekciph, NULL, NULL, NULL) <= 0) {
ERR_raise(ERR_LIB_CMS, ERR_R_EVP_LIB);
goto err;
}
ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
if (ivlen < 0) {
ERR_raise(ERR_LIB_CMS, ERR_R_EVP_LIB);
goto err;
}
if (ivlen > 0) {
if (RAND_bytes_ex(ossl_cms_ctx_get0_libctx(cms_ctx), iv, ivlen, 0) <= 0)
goto err;
if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0) {
ERR_raise(ERR_LIB_CMS, ERR_R_EVP_LIB);
goto err;
}
encalg->parameter = ASN1_TYPE_new();
if (!encalg->parameter) {
ERR_raise(ERR_LIB_CMS, ERR_R_ASN1_LIB);
goto err;
}
if (EVP_CIPHER_param_to_asn1(ctx, encalg->parameter) <= 0) {
ERR_raise(ERR_LIB_CMS, CMS_R_CIPHER_PARAMETER_INITIALISATION_ERROR);
goto err;
}
}
encalg->algorithm = OBJ_nid2obj(EVP_CIPHER_CTX_get_type(ctx));
EVP_CIPHER_CTX_free(ctx);
ctx = NULL;
/* Initialize recipient info */
ri = M_ASN1_new_of(CMS_RecipientInfo);
if (ri == NULL) {
ERR_raise(ERR_LIB_CMS, ERR_R_ASN1_LIB);
goto err;
}
ri->d.pwri = M_ASN1_new_of(CMS_PasswordRecipientInfo);
if (ri->d.pwri == NULL) {
ERR_raise(ERR_LIB_CMS, ERR_R_ASN1_LIB);
goto err;
}
ri->type = CMS_RECIPINFO_PASS;
pwri = ri->d.pwri;
pwri->cms_ctx = cms_ctx;
/* Since this is overwritten, free up empty structure already there */
X509_ALGOR_free(pwri->keyEncryptionAlgorithm);
pwri->keyEncryptionAlgorithm = X509_ALGOR_new();
if (pwri->keyEncryptionAlgorithm == NULL) {
ERR_raise(ERR_LIB_CMS, ERR_R_ASN1_LIB);
goto err;
}
pwri->keyEncryptionAlgorithm->algorithm = OBJ_nid2obj(wrap_nid);
pwri->keyEncryptionAlgorithm->parameter = ASN1_TYPE_new();
if (pwri->keyEncryptionAlgorithm->parameter == NULL) {
ERR_raise(ERR_LIB_CMS, ERR_R_ASN1_LIB);
goto err;
}
if (!ASN1_item_pack(encalg, ASN1_ITEM_rptr(X509_ALGOR),
&pwri->keyEncryptionAlgorithm->parameter->
value.sequence)) {
ERR_raise(ERR_LIB_CMS, ERR_R_ASN1_LIB);
goto err;
}
pwri->keyEncryptionAlgorithm->parameter->type = V_ASN1_SEQUENCE;
X509_ALGOR_free(encalg);
encalg = NULL;
/* Setup PBE algorithm */
pwri->keyDerivationAlgorithm = PKCS5_pbkdf2_set(iter, NULL, 0, -1, -1);
if (pwri->keyDerivationAlgorithm == NULL)
goto err;
CMS_RecipientInfo_set0_password(ri, pass, passlen);
pwri->version = 0;
if (!sk_CMS_RecipientInfo_push(ris, ri)) {
ERR_raise(ERR_LIB_CMS, ERR_R_CRYPTO_LIB);
goto err;
}
return ri;
err:
EVP_CIPHER_CTX_free(ctx);
if (ri)
M_ASN1_free_of(ri, CMS_RecipientInfo);
X509_ALGOR_free(encalg);
return NULL;
}
/*
* This is an implementation of the key wrapping mechanism in RFC3211, at
* some point this should go into EVP.
*/
static int kek_unwrap_key(unsigned char *out, size_t *outlen,
const unsigned char *in, size_t inlen,
EVP_CIPHER_CTX *ctx)
{
size_t blocklen = EVP_CIPHER_CTX_get_block_size(ctx);
unsigned char *tmp;
int outl, rv = 0;
if (inlen < 2 * blocklen) {
/* too small */
return 0;
}
if (inlen % blocklen) {
/* Invalid size */
return 0;
}
if ((tmp = OPENSSL_malloc(inlen)) == NULL)
return 0;
/* setup IV by decrypting last two blocks */
if (!EVP_DecryptUpdate(ctx, tmp + inlen - 2 * blocklen, &outl,
in + inlen - 2 * blocklen, blocklen * 2)
/*
* Do a decrypt of last decrypted block to set IV to correct value
* output it to start of buffer so we don't corrupt decrypted block
* this works because buffer is at least two block lengths long.
*/
|| !EVP_DecryptUpdate(ctx, tmp, &outl,
tmp + inlen - blocklen, blocklen)
/* Can now decrypt first n - 1 blocks */
|| !EVP_DecryptUpdate(ctx, tmp, &outl, in, inlen - blocklen)
/* Reset IV to original value */
|| !EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, NULL)
/* Decrypt again */
|| !EVP_DecryptUpdate(ctx, tmp, &outl, tmp, inlen))
goto err;
/* Check check bytes */
if (((tmp[1] ^ tmp[4]) & (tmp[2] ^ tmp[5]) & (tmp[3] ^ tmp[6])) != 0xff) {
/* Check byte failure */
goto err;
}
if (inlen < (size_t)(tmp[0] - 4)) {
/* Invalid length value */
goto err;
}
*outlen = (size_t)tmp[0];
memcpy(out, tmp + 4, *outlen);
rv = 1;
err:
OPENSSL_clear_free(tmp, inlen);
return rv;
}
static int kek_wrap_key(unsigned char *out, size_t *outlen,
const unsigned char *in, size_t inlen,
EVP_CIPHER_CTX *ctx, const CMS_CTX *cms_ctx)
{
size_t blocklen = EVP_CIPHER_CTX_get_block_size(ctx);
size_t olen;
int dummy;
/*
* First decide length of output buffer: need header and round up to
* multiple of block length.
*/
olen = (inlen + 4 + blocklen - 1) / blocklen;
olen *= blocklen;
if (olen < 2 * blocklen) {
/* Key too small */
return 0;
}
if (inlen > 0xFF) {
/* Key too large */
return 0;
}
if (out) {
/* Set header */
out[0] = (unsigned char)inlen;
out[1] = in[0] ^ 0xFF;
out[2] = in[1] ^ 0xFF;
out[3] = in[2] ^ 0xFF;
memcpy(out + 4, in, inlen);
/* Add random padding to end */
if (olen > inlen + 4
&& RAND_bytes_ex(ossl_cms_ctx_get0_libctx(cms_ctx), out + 4 + inlen,
olen - 4 - inlen, 0) <= 0)
return 0;
/* Encrypt twice */
if (!EVP_EncryptUpdate(ctx, out, &dummy, out, olen)
|| !EVP_EncryptUpdate(ctx, out, &dummy, out, olen))
return 0;
}
*outlen = olen;
return 1;
}
/* Encrypt/Decrypt content key in PWRI recipient info */
int ossl_cms_RecipientInfo_pwri_crypt(const CMS_ContentInfo *cms,
CMS_RecipientInfo *ri, int en_de)
{
CMS_EncryptedContentInfo *ec;
CMS_PasswordRecipientInfo *pwri;
int r = 0;
X509_ALGOR *algtmp, *kekalg = NULL;
EVP_CIPHER_CTX *kekctx = NULL;
char name[OSSL_MAX_NAME_SIZE];
EVP_CIPHER *kekcipher;
unsigned char *key = NULL;
size_t keylen;
const CMS_CTX *cms_ctx = ossl_cms_get0_cmsctx(cms);
ec = ossl_cms_get0_env_enc_content(cms);
pwri = ri->d.pwri;
if (pwri->pass == NULL) {
ERR_raise(ERR_LIB_CMS, CMS_R_NO_PASSWORD);
return 0;
}
algtmp = pwri->keyEncryptionAlgorithm;
if (!algtmp || OBJ_obj2nid(algtmp->algorithm) != NID_id_alg_PWRI_KEK) {
ERR_raise(ERR_LIB_CMS, CMS_R_UNSUPPORTED_KEY_ENCRYPTION_ALGORITHM);
return 0;
}
kekalg = ASN1_TYPE_unpack_sequence(ASN1_ITEM_rptr(X509_ALGOR),
algtmp->parameter);
if (kekalg == NULL) {
ERR_raise(ERR_LIB_CMS, CMS_R_INVALID_KEY_ENCRYPTION_PARAMETER);
return 0;
}
OBJ_obj2txt(name, sizeof(name), kekalg->algorithm, 0);
kekcipher = EVP_CIPHER_fetch(ossl_cms_ctx_get0_libctx(cms_ctx), name,
ossl_cms_ctx_get0_propq(cms_ctx));
if (kekcipher == NULL) {
ERR_raise(ERR_LIB_CMS, CMS_R_UNKNOWN_CIPHER);
goto err;
}
kekctx = EVP_CIPHER_CTX_new();
if (kekctx == NULL) {
ERR_raise(ERR_LIB_CMS, ERR_R_EVP_LIB);
goto err;
}
/* Fixup cipher based on AlgorithmIdentifier to set IV etc */
if (!EVP_CipherInit_ex(kekctx, kekcipher, NULL, NULL, NULL, en_de))
goto err;
EVP_CIPHER_CTX_set_padding(kekctx, 0);
if (EVP_CIPHER_asn1_to_param(kekctx, kekalg->parameter) <= 0) {
ERR_raise(ERR_LIB_CMS, CMS_R_CIPHER_PARAMETER_INITIALISATION_ERROR);
goto err;
}
algtmp = pwri->keyDerivationAlgorithm;
/* Finish password based key derivation to setup key in "ctx" */
if (EVP_PBE_CipherInit(algtmp->algorithm,
(char *)pwri->pass, pwri->passlen,
algtmp->parameter, kekctx, en_de) < 0) {
ERR_raise(ERR_LIB_CMS, ERR_R_EVP_LIB);
goto err;
}
/* Finally wrap/unwrap the key */
if (en_de) {
if (!kek_wrap_key(NULL, &keylen, ec->key, ec->keylen, kekctx, cms_ctx))
goto err;
key = OPENSSL_malloc(keylen);
if (key == NULL)
goto err;
if (!kek_wrap_key(key, &keylen, ec->key, ec->keylen, kekctx, cms_ctx))
goto err;
pwri->encryptedKey->data = key;
pwri->encryptedKey->length = keylen;
} else {
key = OPENSSL_malloc(pwri->encryptedKey->length);
if (key == NULL)
goto err;
if (!kek_unwrap_key(key, &keylen,
pwri->encryptedKey->data,
pwri->encryptedKey->length, kekctx)) {
ERR_raise(ERR_LIB_CMS, CMS_R_UNWRAP_FAILURE);
goto err;
}
OPENSSL_clear_free(ec->key, ec->keylen);
ec->key = key;
ec->keylen = keylen;
}
r = 1;
err:
EVP_CIPHER_free(kekcipher);
EVP_CIPHER_CTX_free(kekctx);
if (!r)
OPENSSL_free(key);
X509_ALGOR_free(kekalg);
return r;
}
| 12,262 | 28.478365 | 80 | c |
openssl | openssl-master/crypto/cms/cms_rsa.c | /*
* Copyright 2006-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <assert.h>
#include <openssl/cms.h>
#include <openssl/err.h>
#include <openssl/core_names.h>
#include "crypto/asn1.h"
#include "crypto/rsa.h"
#include "crypto/evp.h"
#include "cms_local.h"
static RSA_OAEP_PARAMS *rsa_oaep_decode(const X509_ALGOR *alg)
{
RSA_OAEP_PARAMS *oaep;
oaep = ASN1_TYPE_unpack_sequence(ASN1_ITEM_rptr(RSA_OAEP_PARAMS),
alg->parameter);
if (oaep == NULL)
return NULL;
if (oaep->maskGenFunc != NULL) {
oaep->maskHash = ossl_x509_algor_mgf1_decode(oaep->maskGenFunc);
if (oaep->maskHash == NULL) {
RSA_OAEP_PARAMS_free(oaep);
return NULL;
}
}
return oaep;
}
static int rsa_cms_decrypt(CMS_RecipientInfo *ri)
{
EVP_PKEY_CTX *pkctx;
X509_ALGOR *cmsalg;
int nid;
int rv = -1;
unsigned char *label = NULL;
int labellen = 0;
const EVP_MD *mgf1md = NULL, *md = NULL;
RSA_OAEP_PARAMS *oaep;
pkctx = CMS_RecipientInfo_get0_pkey_ctx(ri);
if (pkctx == NULL)
return 0;
if (!CMS_RecipientInfo_ktri_get0_algs(ri, NULL, NULL, &cmsalg))
return -1;
nid = OBJ_obj2nid(cmsalg->algorithm);
if (nid == NID_rsaEncryption)
return 1;
if (nid != NID_rsaesOaep) {
ERR_raise(ERR_LIB_CMS, CMS_R_UNSUPPORTED_ENCRYPTION_TYPE);
return -1;
}
/* Decode OAEP parameters */
oaep = rsa_oaep_decode(cmsalg);
if (oaep == NULL) {
ERR_raise(ERR_LIB_CMS, CMS_R_INVALID_OAEP_PARAMETERS);
goto err;
}
mgf1md = ossl_x509_algor_get_md(oaep->maskHash);
if (mgf1md == NULL)
goto err;
md = ossl_x509_algor_get_md(oaep->hashFunc);
if (md == NULL)
goto err;
if (oaep->pSourceFunc != NULL) {
X509_ALGOR *plab = oaep->pSourceFunc;
if (OBJ_obj2nid(plab->algorithm) != NID_pSpecified) {
ERR_raise(ERR_LIB_CMS, CMS_R_UNSUPPORTED_LABEL_SOURCE);
goto err;
}
if (plab->parameter->type != V_ASN1_OCTET_STRING) {
ERR_raise(ERR_LIB_CMS, CMS_R_INVALID_LABEL);
goto err;
}
label = plab->parameter->value.octet_string->data;
/* Stop label being freed when OAEP parameters are freed */
plab->parameter->value.octet_string->data = NULL;
labellen = plab->parameter->value.octet_string->length;
}
if (EVP_PKEY_CTX_set_rsa_padding(pkctx, RSA_PKCS1_OAEP_PADDING) <= 0)
goto err;
if (EVP_PKEY_CTX_set_rsa_oaep_md(pkctx, md) <= 0)
goto err;
if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkctx, mgf1md) <= 0)
goto err;
if (label != NULL
&& EVP_PKEY_CTX_set0_rsa_oaep_label(pkctx, label, labellen) <= 0)
goto err;
/* Carry on */
rv = 1;
err:
RSA_OAEP_PARAMS_free(oaep);
return rv;
}
static int rsa_cms_encrypt(CMS_RecipientInfo *ri)
{
const EVP_MD *md, *mgf1md;
RSA_OAEP_PARAMS *oaep = NULL;
ASN1_STRING *os = NULL;
X509_ALGOR *alg;
EVP_PKEY_CTX *pkctx = CMS_RecipientInfo_get0_pkey_ctx(ri);
int pad_mode = RSA_PKCS1_PADDING, rv = 0, labellen;
unsigned char *label;
if (CMS_RecipientInfo_ktri_get0_algs(ri, NULL, NULL, &alg) <= 0)
return 0;
if (pkctx != NULL) {
if (EVP_PKEY_CTX_get_rsa_padding(pkctx, &pad_mode) <= 0)
return 0;
}
if (pad_mode == RSA_PKCS1_PADDING)
return X509_ALGOR_set0(alg, OBJ_nid2obj(NID_rsaEncryption),
V_ASN1_NULL, NULL);
/* Not supported */
if (pad_mode != RSA_PKCS1_OAEP_PADDING)
return 0;
if (EVP_PKEY_CTX_get_rsa_oaep_md(pkctx, &md) <= 0)
goto err;
if (EVP_PKEY_CTX_get_rsa_mgf1_md(pkctx, &mgf1md) <= 0)
goto err;
labellen = EVP_PKEY_CTX_get0_rsa_oaep_label(pkctx, &label);
if (labellen < 0)
goto err;
oaep = RSA_OAEP_PARAMS_new();
if (oaep == NULL)
goto err;
if (!ossl_x509_algor_new_from_md(&oaep->hashFunc, md))
goto err;
if (!ossl_x509_algor_md_to_mgf1(&oaep->maskGenFunc, mgf1md))
goto err;
if (labellen > 0) {
ASN1_OCTET_STRING *los = ASN1_OCTET_STRING_new();
if (los == NULL)
goto err;
if (!ASN1_OCTET_STRING_set(los, label, labellen)) {
ASN1_OCTET_STRING_free(los);
goto err;
}
oaep->pSourceFunc = ossl_X509_ALGOR_from_nid(NID_pSpecified,
V_ASN1_OCTET_STRING, los);
if (oaep->pSourceFunc == NULL)
goto err;
}
/* create string with pss parameter encoding. */
if (!ASN1_item_pack(oaep, ASN1_ITEM_rptr(RSA_OAEP_PARAMS), &os))
goto err;
if (!X509_ALGOR_set0(alg, OBJ_nid2obj(NID_rsaesOaep), V_ASN1_SEQUENCE, os))
goto err;
os = NULL;
rv = 1;
err:
RSA_OAEP_PARAMS_free(oaep);
ASN1_STRING_free(os);
return rv;
}
int ossl_cms_rsa_envelope(CMS_RecipientInfo *ri, int decrypt)
{
assert(decrypt == 0 || decrypt == 1);
if (decrypt == 1)
return rsa_cms_decrypt(ri);
if (decrypt == 0)
return rsa_cms_encrypt(ri);
ERR_raise(ERR_LIB_CMS, CMS_R_NOT_SUPPORTED_FOR_THIS_KEY_TYPE);
return 0;
}
static int rsa_cms_sign(CMS_SignerInfo *si)
{
int pad_mode = RSA_PKCS1_PADDING;
X509_ALGOR *alg;
EVP_PKEY_CTX *pkctx = CMS_SignerInfo_get0_pkey_ctx(si);
unsigned char aid[128];
const unsigned char *pp = aid;
size_t aid_len = 0;
OSSL_PARAM params[2];
CMS_SignerInfo_get0_algs(si, NULL, NULL, NULL, &alg);
if (pkctx != NULL) {
if (EVP_PKEY_CTX_get_rsa_padding(pkctx, &pad_mode) <= 0)
return 0;
}
if (pad_mode == RSA_PKCS1_PADDING)
return X509_ALGOR_set0(alg, OBJ_nid2obj(NID_rsaEncryption),
V_ASN1_NULL, NULL);
/* We don't support it */
if (pad_mode != RSA_PKCS1_PSS_PADDING)
return 0;
if (evp_pkey_ctx_is_legacy(pkctx)) {
/* No provider -> we cannot query it for algorithm ID. */
ASN1_STRING *os = NULL;
os = ossl_rsa_ctx_to_pss_string(pkctx);
if (os == NULL)
return 0;
return X509_ALGOR_set0(alg, OBJ_nid2obj(EVP_PKEY_RSA_PSS), V_ASN1_SEQUENCE, os);
}
params[0] = OSSL_PARAM_construct_octet_string(
OSSL_SIGNATURE_PARAM_ALGORITHM_ID, aid, sizeof(aid));
params[1] = OSSL_PARAM_construct_end();
if (EVP_PKEY_CTX_get_params(pkctx, params) <= 0)
return 0;
if ((aid_len = params[0].return_size) == 0)
return 0;
if (d2i_X509_ALGOR(&alg, &pp, aid_len) == NULL)
return 0;
return 1;
}
static int rsa_cms_verify(CMS_SignerInfo *si)
{
int nid, nid2;
X509_ALGOR *alg;
EVP_PKEY_CTX *pkctx = CMS_SignerInfo_get0_pkey_ctx(si);
EVP_PKEY *pkey = EVP_PKEY_CTX_get0_pkey(pkctx);
CMS_SignerInfo_get0_algs(si, NULL, NULL, NULL, &alg);
nid = OBJ_obj2nid(alg->algorithm);
if (nid == EVP_PKEY_RSA_PSS)
return ossl_rsa_pss_to_ctx(NULL, pkctx, alg, NULL) > 0;
/* Only PSS allowed for PSS keys */
if (EVP_PKEY_is_a(pkey, "RSA-PSS")) {
ERR_raise(ERR_LIB_RSA, RSA_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE);
return 0;
}
if (nid == NID_rsaEncryption)
return 1;
/* Workaround for some implementation that use a signature OID */
if (OBJ_find_sigid_algs(nid, NULL, &nid2)) {
if (nid2 == NID_rsaEncryption)
return 1;
}
return 0;
}
int ossl_cms_rsa_sign(CMS_SignerInfo *si, int verify)
{
assert(verify == 0 || verify == 1);
if (verify == 1)
return rsa_cms_verify(si);
if (verify == 0)
return rsa_cms_sign(si);
ERR_raise(ERR_LIB_CMS, CMS_R_NOT_SUPPORTED_FOR_THIS_KEY_TYPE);
return 0;
}
| 8,090 | 28.421818 | 88 | c |
openssl | openssl-master/crypto/comp/c_zlib.c | /*
* Copyright 1998-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/objects.h>
#include "internal/comp.h"
#include <openssl/err.h>
#include "crypto/cryptlib.h"
#include "internal/bio.h"
#include "internal/thread_once.h"
#include "comp_local.h"
COMP_METHOD *COMP_zlib(void);
#ifdef OPENSSL_NO_ZLIB
# undef ZLIB_SHARED
#else
# include <zlib.h>
static int zlib_stateful_init(COMP_CTX *ctx);
static void zlib_stateful_finish(COMP_CTX *ctx);
static ossl_ssize_t zlib_stateful_compress_block(COMP_CTX *ctx, unsigned char *out,
size_t olen, unsigned char *in,
size_t ilen);
static ossl_ssize_t zlib_stateful_expand_block(COMP_CTX *ctx, unsigned char *out,
size_t olen, unsigned char *in,
size_t ilen);
/* memory allocations functions for zlib initialisation */
static void *zlib_zalloc(void *opaque, unsigned int no, unsigned int size)
{
void *p;
p = OPENSSL_zalloc(no * size);
return p;
}
static void zlib_zfree(void *opaque, void *address)
{
OPENSSL_free(address);
}
static COMP_METHOD zlib_stateful_method = {
NID_zlib_compression,
LN_zlib_compression,
zlib_stateful_init,
zlib_stateful_finish,
zlib_stateful_compress_block,
zlib_stateful_expand_block
};
/*
* When OpenSSL is built on Windows, we do not want to require that
* the ZLIB.DLL be available in order for the OpenSSL DLLs to
* work. Therefore, all ZLIB routines are loaded at run time
* and we do not link to a .LIB file when ZLIB_SHARED is set.
*/
# if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32)
# include <windows.h>
# endif /* !(OPENSSL_SYS_WINDOWS ||
* OPENSSL_SYS_WIN32) */
# ifdef ZLIB_SHARED
# include "internal/dso.h"
/* Function pointers */
typedef int (*compress_ft) (Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen);
typedef int (*uncompress_ft) (Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen);
typedef int (*inflateEnd_ft) (z_streamp strm);
typedef int (*inflate_ft) (z_streamp strm, int flush);
typedef int (*inflateInit__ft) (z_streamp strm,
const char *version, int stream_size);
typedef int (*deflateEnd_ft) (z_streamp strm);
typedef int (*deflate_ft) (z_streamp strm, int flush);
typedef int (*deflateInit__ft) (z_streamp strm, int level,
const char *version, int stream_size);
typedef const char *(*zError__ft) (int err);
static compress_ft p_compress = NULL;
static uncompress_ft p_uncompress = NULL;
static inflateEnd_ft p_inflateEnd = NULL;
static inflate_ft p_inflate = NULL;
static inflateInit__ft p_inflateInit_ = NULL;
static deflateEnd_ft p_deflateEnd = NULL;
static deflate_ft p_deflate = NULL;
static deflateInit__ft p_deflateInit_ = NULL;
static zError__ft p_zError = NULL;
static DSO *zlib_dso = NULL;
# define compress p_compress
# define uncompress p_uncompress
# define inflateEnd p_inflateEnd
# define inflate p_inflate
# define inflateInit_ p_inflateInit_
# define deflateEnd p_deflateEnd
# define deflate p_deflate
# define deflateInit_ p_deflateInit_
# define zError p_zError
# endif /* ZLIB_SHARED */
struct zlib_state {
z_stream istream;
z_stream ostream;
};
static int zlib_stateful_init(COMP_CTX *ctx)
{
int err;
struct zlib_state *state = OPENSSL_zalloc(sizeof(*state));
if (state == NULL)
goto err;
state->istream.zalloc = zlib_zalloc;
state->istream.zfree = zlib_zfree;
state->istream.opaque = Z_NULL;
state->istream.next_in = Z_NULL;
state->istream.next_out = Z_NULL;
err = inflateInit_(&state->istream, ZLIB_VERSION, sizeof(z_stream));
if (err != Z_OK)
goto err;
state->ostream.zalloc = zlib_zalloc;
state->ostream.zfree = zlib_zfree;
state->ostream.opaque = Z_NULL;
state->ostream.next_in = Z_NULL;
state->ostream.next_out = Z_NULL;
err = deflateInit_(&state->ostream, Z_DEFAULT_COMPRESSION,
ZLIB_VERSION, sizeof(z_stream));
if (err != Z_OK)
goto err;
ctx->data = state;
return 1;
err:
OPENSSL_free(state);
return 0;
}
static void zlib_stateful_finish(COMP_CTX *ctx)
{
struct zlib_state *state = ctx->data;
inflateEnd(&state->istream);
deflateEnd(&state->ostream);
OPENSSL_free(state);
}
static ossl_ssize_t zlib_stateful_compress_block(COMP_CTX *ctx, unsigned char *out,
size_t olen, unsigned char *in,
size_t ilen)
{
int err = Z_OK;
struct zlib_state *state = ctx->data;
if (state == NULL)
return -1;
state->ostream.next_in = in;
state->ostream.avail_in = ilen;
state->ostream.next_out = out;
state->ostream.avail_out = olen;
if (ilen > 0)
err = deflate(&state->ostream, Z_SYNC_FLUSH);
if (err != Z_OK)
return -1;
if (state->ostream.avail_out > olen)
return -1;
return (ossl_ssize_t)(olen - state->ostream.avail_out);
}
static ossl_ssize_t zlib_stateful_expand_block(COMP_CTX *ctx, unsigned char *out,
size_t olen, unsigned char *in,
size_t ilen)
{
int err = Z_OK;
struct zlib_state *state = ctx->data;
if (state == NULL)
return 0;
state->istream.next_in = in;
state->istream.avail_in = ilen;
state->istream.next_out = out;
state->istream.avail_out = olen;
if (ilen > 0)
err = inflate(&state->istream, Z_SYNC_FLUSH);
if (err != Z_OK)
return -1;
if (state->istream.avail_out > olen)
return -1;
return (ossl_ssize_t)(olen - state->istream.avail_out);
}
/* ONESHOT COMPRESSION/DECOMPRESSION */
static int zlib_oneshot_init(COMP_CTX *ctx)
{
return 1;
}
static void zlib_oneshot_finish(COMP_CTX *ctx)
{
}
static ossl_ssize_t zlib_oneshot_compress_block(COMP_CTX *ctx, unsigned char *out,
size_t olen, unsigned char *in,
size_t ilen)
{
uLongf out_size;
if (ilen == 0)
return 0;
/* zlib's uLongf defined as unsigned long FAR */
if (olen > ULONG_MAX)
return -1;
out_size = (uLongf)olen;
if (compress(out, &out_size, in, ilen) != Z_OK)
return -1;
if (out_size > OSSL_SSIZE_MAX)
return -1;
return (ossl_ssize_t)out_size;
}
static ossl_ssize_t zlib_oneshot_expand_block(COMP_CTX *ctx, unsigned char *out,
size_t olen, unsigned char *in,
size_t ilen)
{
uLongf out_size;
if (ilen == 0)
return 0;
/* zlib's uLongf defined as unsigned long FAR */
if (olen > ULONG_MAX)
return -1;
out_size = (uLongf)olen;
if (uncompress(out, &out_size, in, ilen) != Z_OK)
return -1;
if (out_size > OSSL_SSIZE_MAX)
return -1;
return (ossl_ssize_t)out_size;
}
static COMP_METHOD zlib_oneshot_method = {
NID_zlib_compression,
LN_zlib_compression,
zlib_oneshot_init,
zlib_oneshot_finish,
zlib_oneshot_compress_block,
zlib_oneshot_expand_block
};
static CRYPTO_ONCE zlib_once = CRYPTO_ONCE_STATIC_INIT;
DEFINE_RUN_ONCE_STATIC(ossl_comp_zlib_init)
{
# ifdef ZLIB_SHARED
/* LIBZ may be externally defined, and we should respect that value */
# ifndef LIBZ
# if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32)
# define LIBZ "ZLIB1"
# elif defined(OPENSSL_SYS_VMS)
# define LIBZ "LIBZ"
# else
# define LIBZ "z"
# endif
# endif
zlib_dso = DSO_load(NULL, LIBZ, NULL, 0);
if (zlib_dso != NULL) {
p_compress = (compress_ft) DSO_bind_func(zlib_dso, "compress");
p_uncompress = (compress_ft) DSO_bind_func(zlib_dso, "uncompress");
p_inflateEnd = (inflateEnd_ft) DSO_bind_func(zlib_dso, "inflateEnd");
p_inflate = (inflate_ft) DSO_bind_func(zlib_dso, "inflate");
p_inflateInit_ = (inflateInit__ft) DSO_bind_func(zlib_dso, "inflateInit_");
p_deflateEnd = (deflateEnd_ft) DSO_bind_func(zlib_dso, "deflateEnd");
p_deflate = (deflate_ft) DSO_bind_func(zlib_dso, "deflate");
p_deflateInit_ = (deflateInit__ft) DSO_bind_func(zlib_dso, "deflateInit_");
p_zError = (zError__ft) DSO_bind_func(zlib_dso, "zError");
if (p_compress == NULL || p_uncompress == NULL || p_inflateEnd == NULL
|| p_inflate == NULL || p_inflateInit_ == NULL
|| p_deflateEnd == NULL || p_deflate == NULL
|| p_deflateInit_ == NULL || p_zError == NULL) {
ossl_comp_zlib_cleanup();
return 0;
}
}
# endif
return 1;
}
#endif
COMP_METHOD *COMP_zlib(void)
{
COMP_METHOD *meth = NULL;
#ifndef OPENSSL_NO_ZLIB
if (RUN_ONCE(&zlib_once, ossl_comp_zlib_init))
meth = &zlib_stateful_method;
#endif
return meth;
}
COMP_METHOD *COMP_zlib_oneshot(void)
{
COMP_METHOD *meth = NULL;
#ifndef OPENSSL_NO_ZLIB
if (RUN_ONCE(&zlib_once, ossl_comp_zlib_init))
meth = &zlib_oneshot_method;
#endif
return meth;
}
/* Also called from OPENSSL_cleanup() */
void ossl_comp_zlib_cleanup(void)
{
#ifdef ZLIB_SHARED
DSO_free(zlib_dso);
zlib_dso = NULL;
#endif
}
#ifndef OPENSSL_NO_ZLIB
/* Zlib based compression/decompression filter BIO */
typedef struct {
unsigned char *ibuf; /* Input buffer */
int ibufsize; /* Buffer size */
z_stream zin; /* Input decompress context */
unsigned char *obuf; /* Output buffer */
int obufsize; /* Output buffer size */
unsigned char *optr; /* Position in output buffer */
int ocount; /* Amount of data in output buffer */
int odone; /* deflate EOF */
int comp_level; /* Compression level to use */
z_stream zout; /* Output compression context */
} BIO_ZLIB_CTX;
# define ZLIB_DEFAULT_BUFSIZE 1024
static int bio_zlib_new(BIO *bi);
static int bio_zlib_free(BIO *bi);
static int bio_zlib_read(BIO *b, char *out, int outl);
static int bio_zlib_write(BIO *b, const char *in, int inl);
static long bio_zlib_ctrl(BIO *b, int cmd, long num, void *ptr);
static long bio_zlib_callback_ctrl(BIO *b, int cmd, BIO_info_cb *fp);
static const BIO_METHOD bio_meth_zlib = {
BIO_TYPE_COMP,
"zlib",
bwrite_conv,
bio_zlib_write,
bread_conv,
bio_zlib_read,
NULL, /* bio_zlib_puts, */
NULL, /* bio_zlib_gets, */
bio_zlib_ctrl,
bio_zlib_new,
bio_zlib_free,
bio_zlib_callback_ctrl
};
#endif
const BIO_METHOD *BIO_f_zlib(void)
{
#ifndef OPENSSL_NO_ZLIB
if (RUN_ONCE(&zlib_once, ossl_comp_zlib_init))
return &bio_meth_zlib;
#endif
return NULL;
}
#ifndef OPENSSL_NO_ZLIB
static int bio_zlib_new(BIO *bi)
{
BIO_ZLIB_CTX *ctx;
# ifdef ZLIB_SHARED
if (!RUN_ONCE(&zlib_once, ossl_comp_zlib_init)) {
ERR_raise(ERR_LIB_COMP, COMP_R_ZLIB_NOT_SUPPORTED);
return 0;
}
# endif
ctx = OPENSSL_zalloc(sizeof(*ctx));
if (ctx == NULL)
return 0;
ctx->ibufsize = ZLIB_DEFAULT_BUFSIZE;
ctx->obufsize = ZLIB_DEFAULT_BUFSIZE;
ctx->zin.zalloc = Z_NULL;
ctx->zin.zfree = Z_NULL;
ctx->zout.zalloc = Z_NULL;
ctx->zout.zfree = Z_NULL;
ctx->comp_level = Z_DEFAULT_COMPRESSION;
BIO_set_init(bi, 1);
BIO_set_data(bi, ctx);
return 1;
}
static int bio_zlib_free(BIO *bi)
{
BIO_ZLIB_CTX *ctx;
if (!bi)
return 0;
ctx = BIO_get_data(bi);
if (ctx->ibuf) {
/* Destroy decompress context */
inflateEnd(&ctx->zin);
OPENSSL_free(ctx->ibuf);
}
if (ctx->obuf) {
/* Destroy compress context */
deflateEnd(&ctx->zout);
OPENSSL_free(ctx->obuf);
}
OPENSSL_free(ctx);
BIO_set_data(bi, NULL);
BIO_set_init(bi, 0);
return 1;
}
static int bio_zlib_read(BIO *b, char *out, int outl)
{
BIO_ZLIB_CTX *ctx;
int ret;
z_stream *zin;
BIO *next = BIO_next(b);
if (!out || !outl)
return 0;
ctx = BIO_get_data(b);
zin = &ctx->zin;
BIO_clear_retry_flags(b);
if (!ctx->ibuf) {
ctx->ibuf = OPENSSL_malloc(ctx->ibufsize);
if (ctx->ibuf == NULL)
return 0;
if ((ret = inflateInit(zin)) != Z_OK) {
ERR_raise_data(ERR_LIB_COMP, COMP_R_ZLIB_INFLATE_ERROR,
"zlib error: %s", zError(ret));
return 0;
}
zin->next_in = ctx->ibuf;
zin->avail_in = 0;
}
/* Copy output data directly to supplied buffer */
zin->next_out = (unsigned char *)out;
zin->avail_out = (unsigned int)outl;
for (;;) {
/* Decompress while data available */
while (zin->avail_in) {
ret = inflate(zin, 0);
if ((ret != Z_OK) && (ret != Z_STREAM_END)) {
ERR_raise_data(ERR_LIB_COMP, COMP_R_ZLIB_INFLATE_ERROR,
"zlib error: %s", zError(ret));
return 0;
}
/* If EOF or we've read everything then return */
if ((ret == Z_STREAM_END) || !zin->avail_out)
return outl - zin->avail_out;
}
/*
* No data in input buffer try to read some in, if an error then
* return the total data read.
*/
ret = BIO_read(next, ctx->ibuf, ctx->ibufsize);
if (ret <= 0) {
/* Total data read */
int tot = outl - zin->avail_out;
BIO_copy_next_retry(b);
if (ret < 0)
return (tot > 0) ? tot : ret;
return tot;
}
zin->avail_in = ret;
zin->next_in = ctx->ibuf;
}
}
static int bio_zlib_write(BIO *b, const char *in, int inl)
{
BIO_ZLIB_CTX *ctx;
int ret;
z_stream *zout;
BIO *next = BIO_next(b);
if (!in || !inl)
return 0;
ctx = BIO_get_data(b);
if (ctx->odone)
return 0;
zout = &ctx->zout;
BIO_clear_retry_flags(b);
if (!ctx->obuf) {
ctx->obuf = OPENSSL_malloc(ctx->obufsize);
/* Need error here */
if (ctx->obuf == NULL)
return 0;
ctx->optr = ctx->obuf;
ctx->ocount = 0;
if ((ret = deflateInit(zout, ctx->comp_level)) != Z_OK) {
ERR_raise_data(ERR_LIB_COMP, COMP_R_ZLIB_DEFLATE_ERROR,
"zlib error: %s", zError(ret));
return 0;
}
zout->next_out = ctx->obuf;
zout->avail_out = ctx->obufsize;
}
/* Obtain input data directly from supplied buffer */
zout->next_in = (void *)in;
zout->avail_in = inl;
for (;;) {
/* If data in output buffer write it first */
while (ctx->ocount) {
ret = BIO_write(next, ctx->optr, ctx->ocount);
if (ret <= 0) {
/* Total data written */
int tot = inl - zout->avail_in;
BIO_copy_next_retry(b);
if (ret < 0)
return (tot > 0) ? tot : ret;
return tot;
}
ctx->optr += ret;
ctx->ocount -= ret;
}
/* Have we consumed all supplied data? */
if (!zout->avail_in)
return inl;
/* Compress some more */
/* Reset buffer */
ctx->optr = ctx->obuf;
zout->next_out = ctx->obuf;
zout->avail_out = ctx->obufsize;
/* Compress some more */
ret = deflate(zout, 0);
if (ret != Z_OK) {
ERR_raise_data(ERR_LIB_COMP, COMP_R_ZLIB_DEFLATE_ERROR,
"zlib error: %s", zError(ret));
return 0;
}
ctx->ocount = ctx->obufsize - zout->avail_out;
}
}
static int bio_zlib_flush(BIO *b)
{
BIO_ZLIB_CTX *ctx;
int ret;
z_stream *zout;
BIO *next = BIO_next(b);
ctx = BIO_get_data(b);
/* If no data written or already flush show success */
if (!ctx->obuf || (ctx->odone && !ctx->ocount))
return 1;
zout = &ctx->zout;
BIO_clear_retry_flags(b);
/* No more input data */
zout->next_in = NULL;
zout->avail_in = 0;
for (;;) {
/* If data in output buffer write it first */
while (ctx->ocount) {
ret = BIO_write(next, ctx->optr, ctx->ocount);
if (ret <= 0) {
BIO_copy_next_retry(b);
return ret;
}
ctx->optr += ret;
ctx->ocount -= ret;
}
if (ctx->odone)
return 1;
/* Compress some more */
/* Reset buffer */
ctx->optr = ctx->obuf;
zout->next_out = ctx->obuf;
zout->avail_out = ctx->obufsize;
/* Compress some more */
ret = deflate(zout, Z_FINISH);
if (ret == Z_STREAM_END)
ctx->odone = 1;
else if (ret != Z_OK) {
ERR_raise_data(ERR_LIB_COMP, COMP_R_ZLIB_DEFLATE_ERROR,
"zlib error: %s", zError(ret));
return 0;
}
ctx->ocount = ctx->obufsize - zout->avail_out;
}
}
static long bio_zlib_ctrl(BIO *b, int cmd, long num, void *ptr)
{
BIO_ZLIB_CTX *ctx;
int ret, *ip;
int ibs, obs;
BIO *next = BIO_next(b);
if (next == NULL)
return 0;
ctx = BIO_get_data(b);
switch (cmd) {
case BIO_CTRL_RESET:
ctx->ocount = 0;
ctx->odone = 0;
ret = 1;
break;
case BIO_CTRL_FLUSH:
ret = bio_zlib_flush(b);
if (ret > 0)
ret = BIO_flush(next);
break;
case BIO_C_SET_BUFF_SIZE:
ibs = -1;
obs = -1;
if (ptr != NULL) {
ip = ptr;
if (*ip == 0)
ibs = (int)num;
else
obs = (int)num;
} else {
ibs = (int)num;
obs = ibs;
}
if (ibs != -1) {
OPENSSL_free(ctx->ibuf);
ctx->ibuf = NULL;
ctx->ibufsize = ibs;
}
if (obs != -1) {
OPENSSL_free(ctx->obuf);
ctx->obuf = NULL;
ctx->obufsize = obs;
}
ret = 1;
break;
case BIO_C_DO_STATE_MACHINE:
BIO_clear_retry_flags(b);
ret = BIO_ctrl(next, cmd, num, ptr);
BIO_copy_next_retry(b);
break;
case BIO_CTRL_WPENDING:
if (ctx->obuf == NULL)
return 0;
if (ctx->odone) {
ret = ctx->ocount;
} else {
ret = ctx->ocount;
if (ret == 0)
/* Unknown amount pending but we are not finished */
ret = 1;
}
if (ret == 0)
ret = BIO_ctrl(next, cmd, num, ptr);
break;
case BIO_CTRL_PENDING:
ret = ctx->zin.avail_in;
if (ret == 0)
ret = BIO_ctrl(next, cmd, num, ptr);
break;
default:
ret = BIO_ctrl(next, cmd, num, ptr);
break;
}
return ret;
}
static long bio_zlib_callback_ctrl(BIO *b, int cmd, BIO_info_cb *fp)
{
BIO *next = BIO_next(b);
if (next == NULL)
return 0;
return BIO_callback_ctrl(next, cmd, fp);
}
#endif
| 20,101 | 26.842105 | 83 | c |
openssl | openssl-master/crypto/comp/c_zstd.c | /*
* Copyright 1998-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*
* Uses zstd compression library from https://github.com/facebook/zstd
* Requires version 1.4.x (latest as of this writing is 1.4.5)
* Using custom free functions require static linking, so that is disabled when
* using the shared library.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/objects.h>
#include "internal/comp.h"
#include <openssl/err.h>
#include "crypto/cryptlib.h"
#include "internal/bio.h"
#include "internal/thread_once.h"
#include "comp_local.h"
COMP_METHOD *COMP_zstd(void);
#ifdef OPENSSL_NO_ZSTD
# undef ZSTD_SHARED
#else
# ifndef ZSTD_SHARED
# define ZSTD_STATIC_LINKING_ONLY
# endif
# include <zstd.h>
/* Note: There is also a linux zstd.h file in the kernel source */
# ifndef ZSTD_H_235446
# error Wrong (i.e. linux) zstd.h included.
# endif
# if ZSTD_VERSION_MAJOR != 1 && ZSTD_VERSION_MINOR < 4
# error Expecting version 1.4 or greater of ZSTD
# endif
# ifndef ZSTD_SHARED
/* memory allocations functions for zstd initialisation */
static void *zstd_alloc(void *opaque, size_t size)
{
return OPENSSL_zalloc(size);
}
static void zstd_free(void *opaque, void *address)
{
OPENSSL_free(address);
}
static ZSTD_customMem zstd_mem_funcs = {
zstd_alloc,
zstd_free,
NULL
};
# endif
/*
* When OpenSSL is built on Windows, we do not want to require that
* the LIBZSTD.DLL be available in order for the OpenSSL DLLs to
* work. Therefore, all ZSTD routines are loaded at run time
* and we do not link to a .LIB file when ZSTD_SHARED is set.
*/
# if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32)
# include <windows.h>
# endif
# ifdef ZSTD_SHARED
# include "internal/dso.h"
/* Function pointers */
typedef ZSTD_CStream* (*createCStream_ft)(void);
typedef size_t (*initCStream_ft)(ZSTD_CStream*, int);
typedef size_t (*freeCStream_ft)(ZSTD_CStream*);
typedef size_t (*compressStream2_ft)(ZSTD_CCtx*, ZSTD_outBuffer*, ZSTD_inBuffer*, ZSTD_EndDirective);
typedef size_t (*flushStream_ft)(ZSTD_CStream*, ZSTD_outBuffer*);
typedef size_t (*endStream_ft)(ZSTD_CStream*, ZSTD_outBuffer*);
typedef size_t (*compress_ft)(void*, size_t, const void*, size_t, int);
typedef ZSTD_DStream* (*createDStream_ft)(void);
typedef size_t (*initDStream_ft)(ZSTD_DStream*);
typedef size_t (*freeDStream_ft)(ZSTD_DStream*);
typedef size_t (*decompressStream_ft)(ZSTD_DStream*, ZSTD_outBuffer*, ZSTD_inBuffer*);
typedef size_t (*decompress_ft)(void*, size_t, const void*, size_t);
typedef unsigned (*isError_ft)(size_t);
typedef const char* (*getErrorName_ft)(size_t);
typedef size_t (*DStreamInSize_ft)(void);
typedef size_t (*CStreamInSize_ft)(void);
static createCStream_ft p_createCStream = NULL;
static initCStream_ft p_initCStream = NULL;
static freeCStream_ft p_freeCStream = NULL;
static compressStream2_ft p_compressStream2 = NULL;
static flushStream_ft p_flushStream = NULL;
static endStream_ft p_endStream = NULL;
static compress_ft p_compress = NULL;
static createDStream_ft p_createDStream = NULL;
static initDStream_ft p_initDStream = NULL;
static freeDStream_ft p_freeDStream = NULL;
static decompressStream_ft p_decompressStream = NULL;
static decompress_ft p_decompress = NULL;
static isError_ft p_isError = NULL;
static getErrorName_ft p_getErrorName = NULL;
static DStreamInSize_ft p_DStreamInSize = NULL;
static CStreamInSize_ft p_CStreamInSize = NULL;
static DSO *zstd_dso = NULL;
# define ZSTD_createCStream p_createCStream
# define ZSTD_initCStream p_initCStream
# define ZSTD_freeCStream p_freeCStream
# define ZSTD_compressStream2 p_compressStream2
# define ZSTD_flushStream p_flushStream
# define ZSTD_endStream p_endStream
# define ZSTD_compress p_compress
# define ZSTD_createDStream p_createDStream
# define ZSTD_initDStream p_initDStream
# define ZSTD_freeDStream p_freeDStream
# define ZSTD_decompressStream p_decompressStream
# define ZSTD_decompress p_decompress
# define ZSTD_isError p_isError
# define ZSTD_getErrorName p_getErrorName
# define ZSTD_DStreamInSize p_DStreamInSize
# define ZSTD_CStreamInSize p_CStreamInSize
# endif /* ifdef ZSTD_SHARED */
struct zstd_state {
ZSTD_CStream *compressor;
ZSTD_DStream *decompressor;
};
static int zstd_stateful_init(COMP_CTX *ctx)
{
struct zstd_state *state = OPENSSL_zalloc(sizeof(*state));
if (state == NULL)
return 0;
# ifdef ZSTD_SHARED
state->compressor = ZSTD_createCStream();
# else
state->compressor = ZSTD_createCStream_advanced(zstd_mem_funcs);
# endif
if (state->compressor == NULL)
goto err;
ZSTD_initCStream(state->compressor, ZSTD_CLEVEL_DEFAULT);
# ifdef ZSTD_SHARED
state->decompressor = ZSTD_createDStream();
# else
state->decompressor = ZSTD_createDStream_advanced(zstd_mem_funcs);
# endif
if (state->decompressor == NULL)
goto err;
ZSTD_initDStream(state->decompressor);
ctx->data = state;
return 1;
err:
ZSTD_freeCStream(state->compressor);
ZSTD_freeDStream(state->decompressor);
OPENSSL_free(state);
return 0;
}
static void zstd_stateful_finish(COMP_CTX *ctx)
{
struct zstd_state *state = ctx->data;
if (state != NULL) {
ZSTD_freeCStream(state->compressor);
ZSTD_freeDStream(state->decompressor);
OPENSSL_free(state);
ctx->data = NULL;
}
}
static ossl_ssize_t zstd_stateful_compress_block(COMP_CTX *ctx, unsigned char *out,
size_t olen, unsigned char *in,
size_t ilen)
{
ZSTD_inBuffer inbuf;
ZSTD_outBuffer outbuf;
size_t ret;
ossl_ssize_t fret;
struct zstd_state *state = ctx->data;
inbuf.src = in;
inbuf.size = ilen;
inbuf.pos = 0;
outbuf.dst = out;
outbuf.size = olen;
outbuf.pos = 0;
if (state == NULL)
return -1;
/* If input length is zero, end the stream/frame ? */
if (ilen == 0) {
ret = ZSTD_endStream(state->compressor, &outbuf);
if (ZSTD_isError(ret))
return -1;
goto end;
}
/*
* The finish API does not provide a final output buffer,
* so each compress operation has to be ended, if all
* the input data can't be accepted, or there is more output,
* this has to be considered an error, since there is no more
* output buffer space.
*/
do {
ret = ZSTD_compressStream2(state->compressor, &outbuf, &inbuf, ZSTD_e_continue);
if (ZSTD_isError(ret))
return -1;
/* do I need to check for ret == 0 ? */
} while (inbuf.pos < inbuf.size);
/* Did not consume all the data */
if (inbuf.pos < inbuf.size)
return -1;
ret = ZSTD_flushStream(state->compressor, &outbuf);
if (ZSTD_isError(ret))
return -1;
end:
if (outbuf.pos > OSSL_SSIZE_MAX)
return -1;
fret = (ossl_ssize_t)outbuf.pos;
if (fret < 0)
return -1;
return fret;
}
static ossl_ssize_t zstd_stateful_expand_block(COMP_CTX *ctx, unsigned char *out,
size_t olen, unsigned char *in,
size_t ilen)
{
ZSTD_inBuffer inbuf;
ZSTD_outBuffer outbuf;
size_t ret;
ossl_ssize_t fret;
struct zstd_state *state = ctx->data;
inbuf.src = in;
inbuf.size = ilen;
inbuf.pos = 0;
outbuf.dst = out;
outbuf.size = olen;
outbuf.pos = 0;
if (state == NULL)
return -1;
if (ilen == 0)
return 0;
do {
ret = ZSTD_decompressStream(state->decompressor, &outbuf, &inbuf);
if (ZSTD_isError(ret))
return -1;
/* If we completed a frame, and there's more data, try again */
} while (ret == 0 && inbuf.pos < inbuf.size);
/* Did not consume all the data */
if (inbuf.pos < inbuf.size)
return -1;
if (outbuf.pos > OSSL_SSIZE_MAX)
return -1;
fret = (ossl_ssize_t)outbuf.pos;
if (fret < 0)
return -1;
return fret;
}
static COMP_METHOD zstd_stateful_method = {
NID_zstd,
LN_zstd,
zstd_stateful_init,
zstd_stateful_finish,
zstd_stateful_compress_block,
zstd_stateful_expand_block
};
static int zstd_oneshot_init(COMP_CTX *ctx)
{
return 1;
}
static void zstd_oneshot_finish(COMP_CTX *ctx)
{
}
static ossl_ssize_t zstd_oneshot_compress_block(COMP_CTX *ctx, unsigned char *out,
size_t olen, unsigned char *in,
size_t ilen)
{
size_t out_size;
ossl_ssize_t ret;
if (ilen == 0)
return 0;
/* Note: uses STDLIB memory allocators */
out_size = ZSTD_compress(out, olen, in, ilen, ZSTD_CLEVEL_DEFAULT);
if (ZSTD_isError(out_size))
return -1;
if (out_size > OSSL_SSIZE_MAX)
return -1;
ret = (ossl_ssize_t)out_size;
if (ret < 0)
return -1;
return ret;
}
static ossl_ssize_t zstd_oneshot_expand_block(COMP_CTX *ctx, unsigned char *out,
size_t olen, unsigned char *in,
size_t ilen)
{
size_t out_size;
ossl_ssize_t ret;
if (ilen == 0)
return 0;
/* Note: uses STDLIB memory allocators */
out_size = ZSTD_decompress(out, olen, in, ilen);
if (ZSTD_isError(out_size))
return -1;
if (out_size > OSSL_SSIZE_MAX)
return -1;
ret = (ossl_ssize_t)out_size;
if (ret < 0)
return -1;
return ret;
}
static COMP_METHOD zstd_oneshot_method = {
NID_zstd,
LN_zstd,
zstd_oneshot_init,
zstd_oneshot_finish,
zstd_oneshot_compress_block,
zstd_oneshot_expand_block
};
static CRYPTO_ONCE zstd_once = CRYPTO_ONCE_STATIC_INIT;
DEFINE_RUN_ONCE_STATIC(ossl_comp_zstd_init)
{
# ifdef ZSTD_SHARED
# if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32)
# define LIBZSTD "LIBZSTD"
# else
# define LIBZSTD "zstd"
# endif
zstd_dso = DSO_load(NULL, LIBZSTD, NULL, 0);
if (zstd_dso != NULL) {
p_createCStream = (createCStream_ft)DSO_bind_func(zstd_dso, "ZSTD_createCStream");
p_initCStream = (initCStream_ft)DSO_bind_func(zstd_dso, "ZSTD_initCStream");
p_freeCStream = (freeCStream_ft)DSO_bind_func(zstd_dso, "ZSTD_freeCStream");
p_compressStream2 = (compressStream2_ft)DSO_bind_func(zstd_dso, "ZSTD_compressStream2");
p_flushStream = (flushStream_ft)DSO_bind_func(zstd_dso, "ZSTD_flushStream");
p_endStream = (endStream_ft)DSO_bind_func(zstd_dso, "ZSTD_endStream");
p_compress = (compress_ft)DSO_bind_func(zstd_dso, "ZSTD_compress");
p_createDStream = (createDStream_ft)DSO_bind_func(zstd_dso, "ZSTD_createDStream");
p_initDStream = (initDStream_ft)DSO_bind_func(zstd_dso, "ZSTD_initDStream");
p_freeDStream = (freeDStream_ft)DSO_bind_func(zstd_dso, "ZSTD_freeDStream");
p_decompressStream = (decompressStream_ft)DSO_bind_func(zstd_dso, "ZSTD_decompressStream");
p_decompress = (decompress_ft)DSO_bind_func(zstd_dso, "ZSTD_decompress");
p_isError = (isError_ft)DSO_bind_func(zstd_dso, "ZSTD_isError");
p_getErrorName = (getErrorName_ft)DSO_bind_func(zstd_dso, "ZSTD_getErrorName");
p_DStreamInSize = (DStreamInSize_ft)DSO_bind_func(zstd_dso, "ZSTD_DStreamInSize");
p_CStreamInSize = (CStreamInSize_ft)DSO_bind_func(zstd_dso, "ZSTD_CStreamInSize");
}
if (p_createCStream == NULL || p_initCStream == NULL || p_freeCStream == NULL
|| p_compressStream2 == NULL || p_flushStream == NULL || p_endStream == NULL
|| p_compress == NULL || p_createDStream == NULL || p_initDStream == NULL
|| p_freeDStream == NULL || p_decompressStream == NULL || p_decompress == NULL
|| p_isError == NULL || p_getErrorName == NULL || p_DStreamInSize == NULL
|| p_CStreamInSize == NULL) {
ossl_comp_zstd_cleanup();
return 0;
}
# endif
return 1;
}
#endif /* ifndef ZSTD / else */
COMP_METHOD *COMP_zstd(void)
{
COMP_METHOD *meth = NULL;
#ifndef OPENSSL_NO_ZSTD
if (RUN_ONCE(&zstd_once, ossl_comp_zstd_init))
meth = &zstd_stateful_method;
#endif
return meth;
}
COMP_METHOD *COMP_zstd_oneshot(void)
{
COMP_METHOD *meth = NULL;
#ifndef OPENSSL_NO_ZSTD
if (RUN_ONCE(&zstd_once, ossl_comp_zstd_init))
meth = &zstd_oneshot_method;
#endif
return meth;
}
/* Also called from OPENSSL_cleanup() */
void ossl_comp_zstd_cleanup(void)
{
#ifdef ZSTD_SHARED
DSO_free(zstd_dso);
zstd_dso = NULL;
p_createCStream = NULL;
p_initCStream = NULL;
p_freeCStream = NULL;
p_compressStream2 = NULL;
p_flushStream = NULL;
p_endStream = NULL;
p_compress = NULL;
p_createDStream = NULL;
p_initDStream = NULL;
p_freeDStream = NULL;
p_decompressStream = NULL;
p_decompress = NULL;
p_isError = NULL;
p_getErrorName = NULL;
p_DStreamInSize = NULL;
p_CStreamInSize = NULL;
#endif
}
#ifndef OPENSSL_NO_ZSTD
/* Zstd-based compression/decompression filter BIO */
typedef struct {
struct { /* input structure */
ZSTD_DStream *state;
ZSTD_inBuffer inbuf; /* has const src */
size_t bufsize;
void* buffer;
} decompress;
struct { /* output structure */
ZSTD_CStream *state;
ZSTD_outBuffer outbuf;
size_t bufsize;
size_t write_pos;
} compress;
} BIO_ZSTD_CTX;
# define ZSTD_DEFAULT_BUFSIZE 1024
static int bio_zstd_new(BIO *bi);
static int bio_zstd_free(BIO *bi);
static int bio_zstd_read(BIO *b, char *out, int outl);
static int bio_zstd_write(BIO *b, const char *in, int inl);
static long bio_zstd_ctrl(BIO *b, int cmd, long num, void *ptr);
static long bio_zstd_callback_ctrl(BIO *b, int cmd, BIO_info_cb *fp);
static const BIO_METHOD bio_meth_zstd = {
BIO_TYPE_COMP,
"zstd",
/* TODO: Convert to new style write function */
bwrite_conv,
bio_zstd_write,
/* TODO: Convert to new style read function */
bread_conv,
bio_zstd_read,
NULL, /* bio_zstd_puts, */
NULL, /* bio_zstd_gets, */
bio_zstd_ctrl,
bio_zstd_new,
bio_zstd_free,
bio_zstd_callback_ctrl
};
#endif
const BIO_METHOD *BIO_f_zstd(void)
{
#ifndef OPENSSL_NO_ZSTD
if (RUN_ONCE(&zstd_once, ossl_comp_zstd_init))
return &bio_meth_zstd;
#endif
return NULL;
}
#ifndef OPENSSL_NO_ZSTD
static int bio_zstd_new(BIO *bi)
{
BIO_ZSTD_CTX *ctx;
# ifdef ZSTD_SHARED
(void)COMP_zstd();
if (zstd_dso == NULL) {
ERR_raise(ERR_LIB_COMP, COMP_R_ZSTD_NOT_SUPPORTED);
return 0;
}
# endif
ctx = OPENSSL_zalloc(sizeof(*ctx));
if (ctx == NULL) {
ERR_raise(ERR_LIB_COMP, ERR_R_MALLOC_FAILURE);
return 0;
}
# ifdef ZSTD_SHARED
ctx->decompress.state = ZSTD_createDStream();
# else
ctx->decompress.state = ZSTD_createDStream_advanced(zstd_mem_funcs);
# endif
if (ctx->decompress.state == NULL)
goto err;
ZSTD_initDStream(ctx->decompress.state);
ctx->decompress.bufsize = ZSTD_DStreamInSize();
# ifdef ZSTD_SHARED
ctx->compress.state = ZSTD_createCStream();
# else
ctx->compress.state = ZSTD_createCStream_advanced(zstd_mem_funcs);
# endif
if (ctx->compress.state == NULL)
goto err;
ZSTD_initCStream(ctx->compress.state, ZSTD_CLEVEL_DEFAULT);
ctx->compress.bufsize = ZSTD_CStreamInSize();
BIO_set_init(bi, 1);
BIO_set_data(bi, ctx);
return 1;
err:
ERR_raise(ERR_LIB_COMP, ERR_R_MALLOC_FAILURE);
ZSTD_freeDStream(ctx->decompress.state);
ZSTD_freeCStream(ctx->compress.state);
OPENSSL_free(ctx);
return 0;
}
static int bio_zstd_free(BIO *bi)
{
BIO_ZSTD_CTX *ctx;
if (bi == NULL)
return 0;
ctx = BIO_get_data(bi);
if (ctx != NULL) {
ZSTD_freeDStream(ctx->decompress.state);
OPENSSL_free(ctx->decompress.buffer);
ZSTD_freeCStream(ctx->compress.state);
OPENSSL_free(ctx->compress.outbuf.dst);
OPENSSL_free(ctx);
}
BIO_set_data(bi, NULL);
BIO_set_init(bi, 0);
return 1;
}
static int bio_zstd_read(BIO *b, char *out, int outl)
{
BIO_ZSTD_CTX *ctx;
size_t zret;
int ret;
ZSTD_outBuffer outBuf;
BIO *next = BIO_next(b);
if (out == NULL || outl <= 0)
return 0;
ctx = BIO_get_data(b);
BIO_clear_retry_flags(b);
if (ctx->decompress.buffer == NULL) {
ctx->decompress.buffer = OPENSSL_malloc(ctx->decompress.bufsize);
if (ctx->decompress.buffer == NULL) {
ERR_raise(ERR_LIB_COMP, ERR_R_MALLOC_FAILURE);
return 0;
}
ctx->decompress.inbuf.src = ctx->decompress.buffer;
ctx->decompress.inbuf.size = 0;
ctx->decompress.inbuf.pos = 0;
}
/* Copy output data directly to supplied buffer */
outBuf.dst = out;
outBuf.size = (size_t)outl;
outBuf.pos = 0;
for (;;) {
/* Decompress while data available */
do {
zret = ZSTD_decompressStream(ctx->decompress.state, &outBuf, &ctx->decompress.inbuf);
if (ZSTD_isError(zret)) {
ERR_raise(ERR_LIB_COMP, COMP_R_ZSTD_DECOMPRESS_ERROR);
ERR_add_error_data(1, ZSTD_getErrorName(zret));
return -1;
}
/* No more output space */
if (outBuf.pos == outBuf.size)
return outBuf.pos;
} while (ctx->decompress.inbuf.pos < ctx->decompress.inbuf.size);
/*
* No data in input buffer try to read some in, if an error then
* return the total data read.
*/
ret = BIO_read(next, ctx->decompress.buffer, ctx->decompress.bufsize);
if (ret <= 0) {
BIO_copy_next_retry(b);
if (ret < 0 && outBuf.pos == 0)
return ret;
return outBuf.pos;
}
ctx->decompress.inbuf.size = ret;
ctx->decompress.inbuf.pos = 0;
}
}
static int bio_zstd_write(BIO *b, const char *in, int inl)
{
BIO_ZSTD_CTX *ctx;
size_t zret;
ZSTD_inBuffer inBuf;
int ret;
int done = 0;
BIO *next = BIO_next(b);
if (in == NULL || inl <= 0)
return 0;
ctx = BIO_get_data(b);
BIO_clear_retry_flags(b);
if (ctx->compress.outbuf.dst == NULL) {
ctx->compress.outbuf.dst = OPENSSL_malloc(ctx->compress.bufsize);
if (ctx->compress.outbuf.dst == NULL) {
ERR_raise(ERR_LIB_COMP, ERR_R_MALLOC_FAILURE);
return 0;
}
ctx->compress.outbuf.size = ctx->compress.bufsize;
ctx->compress.outbuf.pos = 0;
ctx->compress.write_pos = 0;
}
/* Obtain input data directly from supplied buffer */
inBuf.src = in;
inBuf.size = inl;
inBuf.pos = 0;
for (;;) {
/* If data in output buffer write it first */
while (ctx->compress.write_pos < ctx->compress.outbuf.pos) {
ret = BIO_write(next, (unsigned char*)ctx->compress.outbuf.dst + ctx->compress.write_pos,
ctx->compress.outbuf.pos - ctx->compress.write_pos);
if (ret <= 0) {
BIO_copy_next_retry(b);
if (ret < 0 && inBuf.pos == 0)
return ret;
return inBuf.pos;
}
ctx->compress.write_pos += ret;
}
/* Have we consumed all supplied data? */
if (done)
return inBuf.pos;
/* Reset buffer */
ctx->compress.outbuf.pos = 0;
ctx->compress.outbuf.size = ctx->compress.bufsize;
ctx->compress.write_pos = 0;
/* Compress some more */
zret = ZSTD_compressStream2(ctx->compress.state, &ctx->compress.outbuf, &inBuf, ZSTD_e_end);
if (ZSTD_isError(zret)) {
ERR_raise(ERR_LIB_COMP, COMP_R_ZSTD_COMPRESS_ERROR);
ERR_add_error_data(1, ZSTD_getErrorName(zret));
return 0;
} else if (zret == 0) {
done = 1;
}
}
}
static int bio_zstd_flush(BIO *b)
{
BIO_ZSTD_CTX *ctx;
size_t zret;
int ret;
BIO *next = BIO_next(b);
ctx = BIO_get_data(b);
/* If no data written or already flush show success */
if (ctx->compress.outbuf.dst == NULL)
return 1;
BIO_clear_retry_flags(b);
/* No more input data */
ctx->compress.outbuf.pos = 0;
ctx->compress.outbuf.size = ctx->compress.bufsize;
ctx->compress.write_pos = 0;
for (;;) {
/* If data in output buffer write it first */
while (ctx->compress.write_pos < ctx->compress.outbuf.pos) {
ret = BIO_write(next, (unsigned char*)ctx->compress.outbuf.dst + ctx->compress.write_pos,
ctx->compress.outbuf.pos - ctx->compress.write_pos);
if (ret <= 0) {
BIO_copy_next_retry(b);
return ret;
}
ctx->compress.write_pos += ret;
}
/* Reset buffer */
ctx->compress.outbuf.pos = 0;
ctx->compress.outbuf.size = ctx->compress.bufsize;
ctx->compress.write_pos = 0;
/* Compress some more */
zret = ZSTD_flushStream(ctx->compress.state, &ctx->compress.outbuf);
if (ZSTD_isError(zret)) {
ERR_raise(ERR_LIB_COMP, COMP_R_ZSTD_DECODE_ERROR);
ERR_add_error_data(1, ZSTD_getErrorName(zret));
return 0;
}
if (zret == 0)
return 1;
}
}
static long bio_zstd_ctrl(BIO *b, int cmd, long num, void *ptr)
{
BIO_ZSTD_CTX *ctx;
int ret = 0, *ip;
size_t ibs, obs;
unsigned char *tmp;
BIO *next = BIO_next(b);
if (next == NULL)
return 0;
ctx = BIO_get_data(b);
switch (cmd) {
case BIO_CTRL_RESET:
ctx->compress.write_pos = 0;
ctx->compress.bufsize = 0;
ret = 1;
break;
case BIO_CTRL_FLUSH:
ret = bio_zstd_flush(b);
if (ret > 0)
ret = BIO_flush(next);
break;
case BIO_C_SET_BUFF_SIZE:
ibs = ctx->decompress.bufsize;
obs = ctx->compress.bufsize;
if (ptr != NULL) {
ip = ptr;
if (*ip == 0)
ibs = (size_t)num;
else
obs = (size_t)num;
} else {
obs = ibs = (size_t)num;
}
if (ibs > 0 && ibs != ctx->decompress.bufsize) {
if (ctx->decompress.buffer != NULL) {
tmp = OPENSSL_realloc(ctx->decompress.buffer, ibs);
if (tmp == NULL)
return 0;
if (ctx->decompress.inbuf.src == ctx->decompress.buffer)
ctx->decompress.inbuf.src = tmp;
ctx->decompress.buffer = tmp;
}
ctx->decompress.bufsize = ibs;
}
if (obs > 0 && obs != ctx->compress.bufsize) {
if (ctx->compress.outbuf.dst != NULL) {
tmp = OPENSSL_realloc(ctx->compress.outbuf.dst, obs);
if (tmp == NULL)
return 0;
ctx->compress.outbuf.dst = tmp;
}
ctx->compress.bufsize = obs;
}
ret = 1;
break;
case BIO_C_DO_STATE_MACHINE:
BIO_clear_retry_flags(b);
ret = BIO_ctrl(next, cmd, num, ptr);
BIO_copy_next_retry(b);
break;
case BIO_CTRL_WPENDING:
if (ctx->compress.outbuf.pos < ctx->compress.outbuf.size)
ret = 1;
else
ret = BIO_ctrl(next, cmd, num, ptr);
break;
case BIO_CTRL_PENDING:
if (ctx->decompress.inbuf.pos < ctx->decompress.inbuf.size)
ret = 1;
else
ret = BIO_ctrl(next, cmd, num, ptr);
break;
default:
ret = BIO_ctrl(next, cmd, num, ptr);
break;
}
return ret;
}
static long bio_zstd_callback_ctrl(BIO *b, int cmd, BIO_info_cb *fp)
{
BIO *next = BIO_next(b);
if (next == NULL)
return 0;
return BIO_callback_ctrl(next, cmd, fp);
}
#endif
| 24,402 | 27.913507 | 101 | c |
openssl | openssl-master/crypto/comp/comp_err.c | /*
* Generated by util/mkerr.pl DO NOT EDIT
* Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/err.h>
#include <openssl/comperr.h>
#include "crypto/comperr.h"
#ifndef OPENSSL_NO_COMP
# ifndef OPENSSL_NO_ERR
static const ERR_STRING_DATA COMP_str_reasons[] = {
{ERR_PACK(ERR_LIB_COMP, 0, COMP_R_BROTLI_DECODE_ERROR),
"brotli decode error"},
{ERR_PACK(ERR_LIB_COMP, 0, COMP_R_BROTLI_ENCODE_ERROR),
"brotli encode error"},
{ERR_PACK(ERR_LIB_COMP, 0, COMP_R_BROTLI_NOT_SUPPORTED),
"brotli not supported"},
{ERR_PACK(ERR_LIB_COMP, 0, COMP_R_ZLIB_DEFLATE_ERROR),
"zlib deflate error"},
{ERR_PACK(ERR_LIB_COMP, 0, COMP_R_ZLIB_INFLATE_ERROR),
"zlib inflate error"},
{ERR_PACK(ERR_LIB_COMP, 0, COMP_R_ZLIB_NOT_SUPPORTED),
"zlib not supported"},
{ERR_PACK(ERR_LIB_COMP, 0, COMP_R_ZSTD_COMPRESS_ERROR),
"zstd compress error"},
{ERR_PACK(ERR_LIB_COMP, 0, COMP_R_ZSTD_DECODE_ERROR), "zstd decode error"},
{ERR_PACK(ERR_LIB_COMP, 0, COMP_R_ZSTD_DECOMPRESS_ERROR),
"zstd decompress error"},
{ERR_PACK(ERR_LIB_COMP, 0, COMP_R_ZSTD_NOT_SUPPORTED),
"zstd not supported"},
{0, NULL}
};
# endif
int ossl_err_load_COMP_strings(void)
{
# ifndef OPENSSL_NO_ERR
if (ERR_reason_error_string(COMP_str_reasons[0].error) == NULL)
ERR_load_strings_const(COMP_str_reasons);
# endif
return 1;
}
#else
NON_EMPTY_TRANSLATION_UNIT
#endif
| 1,706 | 30.036364 | 79 | c |
openssl | openssl-master/crypto/comp/comp_lib.c | /*
* Copyright 1998-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/objects.h>
#include <openssl/comp.h>
#include <openssl/err.h>
#include "comp_local.h"
COMP_CTX *COMP_CTX_new(COMP_METHOD *meth)
{
COMP_CTX *ret;
if (meth == NULL)
return NULL;
if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL)
return NULL;
ret->meth = meth;
if ((ret->meth->init != NULL) && !ret->meth->init(ret)) {
OPENSSL_free(ret);
ret = NULL;
}
return ret;
}
const COMP_METHOD *COMP_CTX_get_method(const COMP_CTX *ctx)
{
return ctx->meth;
}
int COMP_get_type(const COMP_METHOD *meth)
{
if (meth == NULL)
return NID_undef;
return meth->type;
}
const char *COMP_get_name(const COMP_METHOD *meth)
{
if (meth == NULL)
return NULL;
return meth->name;
}
void COMP_CTX_free(COMP_CTX *ctx)
{
if (ctx == NULL)
return;
if (ctx->meth->finish != NULL)
ctx->meth->finish(ctx);
OPENSSL_free(ctx);
}
int COMP_compress_block(COMP_CTX *ctx, unsigned char *out, int olen,
unsigned char *in, int ilen)
{
int ret;
if (ctx->meth->compress == NULL) {
return -1;
}
ret = ctx->meth->compress(ctx, out, olen, in, ilen);
if (ret > 0) {
ctx->compress_in += ilen;
ctx->compress_out += ret;
}
return ret;
}
int COMP_expand_block(COMP_CTX *ctx, unsigned char *out, int olen,
unsigned char *in, int ilen)
{
int ret;
if (ctx->meth->expand == NULL) {
return -1;
}
ret = ctx->meth->expand(ctx, out, olen, in, ilen);
if (ret > 0) {
ctx->expand_in += ilen;
ctx->expand_out += ret;
}
return ret;
}
int COMP_CTX_get_type(const COMP_CTX* comp)
{
return comp->meth ? comp->meth->type : NID_undef;
}
| 2,166 | 20.888889 | 74 | c |
openssl | openssl-master/crypto/comp/comp_local.h | /*
* Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
struct comp_method_st {
int type; /* NID for compression library */
const char *name; /* A text string to identify the library */
int (*init) (COMP_CTX *ctx);
void (*finish) (COMP_CTX *ctx);
ossl_ssize_t (*compress) (COMP_CTX *ctx,
unsigned char *out, size_t olen,
unsigned char *in, size_t ilen);
ossl_ssize_t (*expand) (COMP_CTX *ctx,
unsigned char *out, size_t olen,
unsigned char *in, size_t ilen);
};
struct comp_ctx_st {
struct comp_method_st *meth;
unsigned long compress_in;
unsigned long compress_out;
unsigned long expand_in;
unsigned long expand_out;
void* data;
};
| 1,105 | 34.677419 | 75 | h |
openssl | openssl-master/crypto/conf/conf_api.c | /*
* Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* Part of the code in here was originally in conf.c, which is now removed */
#include "internal/e_os.h"
#include "internal/cryptlib.h"
#include <stdlib.h>
#include <string.h>
#include <openssl/conf.h>
#include <openssl/conf_api.h>
#include "conf_local.h"
static void value_free_hash(const CONF_VALUE *a, LHASH_OF(CONF_VALUE) *conf);
static void value_free_stack_doall(CONF_VALUE *a);
CONF_VALUE *_CONF_get_section(const CONF *conf, const char *section)
{
CONF_VALUE vv;
if (conf == NULL || section == NULL)
return NULL;
vv.name = NULL;
vv.section = (char *)section;
return conf->data != NULL ? lh_CONF_VALUE_retrieve(conf->data, &vv) : NULL;
}
STACK_OF(CONF_VALUE) *_CONF_get_section_values(const CONF *conf,
const char *section)
{
CONF_VALUE *v;
v = _CONF_get_section(conf, section);
if (v == NULL)
return NULL;
return ((STACK_OF(CONF_VALUE) *)v->value);
}
int _CONF_add_string(CONF *conf, CONF_VALUE *section, CONF_VALUE *value)
{
CONF_VALUE *v = NULL;
STACK_OF(CONF_VALUE) *ts;
ts = (STACK_OF(CONF_VALUE) *)section->value;
value->section = section->section;
if (!sk_CONF_VALUE_push(ts, value))
return 0;
v = lh_CONF_VALUE_insert(conf->data, value);
if (v != NULL) {
(void)sk_CONF_VALUE_delete_ptr(ts, v);
OPENSSL_free(v->name);
OPENSSL_free(v->value);
OPENSSL_free(v);
}
return 1;
}
char *_CONF_get_string(const CONF *conf, const char *section,
const char *name)
{
CONF_VALUE *v, vv;
char *p;
if (name == NULL)
return NULL;
if (conf == NULL)
return ossl_safe_getenv(name);
if (conf->data == NULL)
return NULL;
if (section != NULL) {
vv.name = (char *)name;
vv.section = (char *)section;
v = lh_CONF_VALUE_retrieve(conf->data, &vv);
if (v != NULL)
return v->value;
if (strcmp(section, "ENV") == 0) {
p = ossl_safe_getenv(name);
if (p != NULL)
return p;
}
}
vv.section = "default";
vv.name = (char *)name;
v = lh_CONF_VALUE_retrieve(conf->data, &vv);
if (v == NULL)
return NULL;
return v->value;
}
static unsigned long conf_value_hash(const CONF_VALUE *v)
{
return (OPENSSL_LH_strhash(v->section) << 2) ^ OPENSSL_LH_strhash(v->name);
}
static int conf_value_cmp(const CONF_VALUE *a, const CONF_VALUE *b)
{
int i;
if (a->section != b->section) {
i = strcmp(a->section, b->section);
if (i != 0)
return i;
}
if (a->name != NULL && b->name != NULL)
return strcmp(a->name, b->name);
if (a->name == b->name)
return 0;
return (a->name == NULL) ? -1 : 1;
}
int _CONF_new_data(CONF *conf)
{
if (conf == NULL)
return 0;
if (conf->data == NULL) {
conf->data = lh_CONF_VALUE_new(conf_value_hash, conf_value_cmp);
if (conf->data == NULL)
return 0;
}
return 1;
}
typedef LHASH_OF(CONF_VALUE) LH_CONF_VALUE;
IMPLEMENT_LHASH_DOALL_ARG_CONST(CONF_VALUE, LH_CONF_VALUE);
void _CONF_free_data(CONF *conf)
{
if (conf == NULL)
return;
OPENSSL_free(conf->includedir);
if (conf->data == NULL)
return;
/* evil thing to make sure the 'OPENSSL_free()' works as expected */
lh_CONF_VALUE_set_down_load(conf->data, 0);
lh_CONF_VALUE_doall_LH_CONF_VALUE(conf->data, value_free_hash, conf->data);
/*
* We now have only 'section' entries in the hash table. Due to problems
* with
*/
lh_CONF_VALUE_doall(conf->data, value_free_stack_doall);
lh_CONF_VALUE_free(conf->data);
}
static void value_free_hash(const CONF_VALUE *a, LHASH_OF(CONF_VALUE) *conf)
{
if (a->name != NULL)
(void)lh_CONF_VALUE_delete(conf, a);
}
static void value_free_stack_doall(CONF_VALUE *a)
{
CONF_VALUE *vv;
STACK_OF(CONF_VALUE) *sk;
int i;
if (a->name != NULL)
return;
sk = (STACK_OF(CONF_VALUE) *)a->value;
for (i = sk_CONF_VALUE_num(sk) - 1; i >= 0; i--) {
vv = sk_CONF_VALUE_value(sk, i);
OPENSSL_free(vv->value);
OPENSSL_free(vv->name);
OPENSSL_free(vv);
}
sk_CONF_VALUE_free(sk);
OPENSSL_free(a->section);
OPENSSL_free(a);
}
CONF_VALUE *_CONF_new_section(CONF *conf, const char *section)
{
STACK_OF(CONF_VALUE) *sk = NULL;
int i;
CONF_VALUE *v = NULL, *vv;
if ((sk = sk_CONF_VALUE_new_null()) == NULL)
goto err;
if ((v = OPENSSL_malloc(sizeof(*v))) == NULL)
goto err;
i = strlen(section) + 1;
if ((v->section = OPENSSL_malloc(i)) == NULL)
goto err;
memcpy(v->section, section, i);
v->name = NULL;
v->value = (char *)sk;
vv = lh_CONF_VALUE_insert(conf->data, v);
if (vv != NULL || lh_CONF_VALUE_error(conf->data) > 0)
goto err;
return v;
err:
sk_CONF_VALUE_free(sk);
if (v != NULL)
OPENSSL_free(v->section);
OPENSSL_free(v);
return NULL;
}
| 5,429 | 24.255814 | 79 | c |
openssl | openssl-master/crypto/conf/conf_def.h | /*
* WARNING: do not edit!
* Generated by crypto/conf/keysets.pl
*
* Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#define CONF_NUMBER 1
#define CONF_UPPER 2
#define CONF_LOWER 4
#define CONF_UNDER 256
#define CONF_PUNCT 512
#define CONF_WS 16
#define CONF_ESC 32
#define CONF_QUOTE 64
#define CONF_DQUOTE 1024
#define CONF_COMMENT 128
#define CONF_FCOMMENT 2048
#define CONF_DOLLAR 4096
#define CONF_EOF 8
#define CONF_ALPHA (CONF_UPPER|CONF_LOWER)
#define CONF_ALNUM (CONF_ALPHA|CONF_NUMBER|CONF_UNDER)
#define CONF_ALNUM_PUNCT (CONF_ALPHA|CONF_NUMBER|CONF_UNDER|CONF_PUNCT)
#define IS_COMMENT(conf,c) is_keytype(conf, c, CONF_COMMENT)
#define IS_FCOMMENT(conf,c) is_keytype(conf, c, CONF_FCOMMENT)
#define IS_EOF(conf,c) is_keytype(conf, c, CONF_EOF)
#define IS_ESC(conf,c) is_keytype(conf, c, CONF_ESC)
#define IS_NUMBER(conf,c) is_keytype(conf, c, CONF_NUMBER)
#define IS_WS(conf,c) is_keytype(conf, c, CONF_WS)
#define IS_ALNUM(conf,c) is_keytype(conf, c, CONF_ALNUM)
#define IS_ALNUM_PUNCT(conf,c) is_keytype(conf, c, CONF_ALNUM_PUNCT)
#define IS_QUOTE(conf,c) is_keytype(conf, c, CONF_QUOTE)
#define IS_DQUOTE(conf,c) is_keytype(conf, c, CONF_DQUOTE)
#define IS_DOLLAR(conf,c) is_keytype(conf, c, CONF_DOLLAR)
static const unsigned short CONF_type_default[128] = {
0x0008, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0010, 0x0010, 0x0000, 0x0000, 0x0010, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0010, 0x0200, 0x0040, 0x0080, 0x1000, 0x0200, 0x0200, 0x0040,
0x0000, 0x0000, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200,
0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001,
0x0001, 0x0001, 0x0000, 0x0200, 0x0000, 0x0000, 0x0000, 0x0200,
0x0200, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002,
0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002,
0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002,
0x0002, 0x0002, 0x0002, 0x0000, 0x0020, 0x0000, 0x0200, 0x0100,
0x0040, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004,
0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004,
0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004,
0x0004, 0x0004, 0x0004, 0x0000, 0x0200, 0x0000, 0x0200, 0x0000,
};
#ifndef OPENSSL_NO_DEPRECATED_3_0
static const unsigned short CONF_type_win32[128] = {
0x0008, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0010, 0x0010, 0x0000, 0x0000, 0x0010, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0010, 0x0200, 0x0400, 0x0000, 0x1000, 0x0200, 0x0200, 0x0000,
0x0000, 0x0000, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200,
0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001,
0x0001, 0x0001, 0x0000, 0x0A00, 0x0000, 0x0000, 0x0000, 0x0200,
0x0200, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002,
0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002,
0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002,
0x0002, 0x0002, 0x0002, 0x0000, 0x0000, 0x0000, 0x0200, 0x0100,
0x0000, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004,
0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004,
0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004,
0x0004, 0x0004, 0x0004, 0x0000, 0x0200, 0x0000, 0x0200, 0x0000,
};
#endif
| 4,003 | 48.432099 | 74 | h |
openssl | openssl-master/crypto/conf/conf_err.c | /*
* Generated by util/mkerr.pl DO NOT EDIT
* Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/err.h>
#include <openssl/conferr.h>
#include "crypto/conferr.h"
#ifndef OPENSSL_NO_ERR
static const ERR_STRING_DATA CONF_str_reasons[] = {
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_ERROR_LOADING_DSO), "error loading dso"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_INVALID_PRAGMA), "invalid pragma"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_LIST_CANNOT_BE_NULL),
"list cannot be null"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_MANDATORY_BRACES_IN_VARIABLE_EXPANSION),
"mandatory braces in variable expansion"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_MISSING_CLOSE_SQUARE_BRACKET),
"missing close square bracket"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_MISSING_EQUAL_SIGN),
"missing equal sign"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_MISSING_INIT_FUNCTION),
"missing init function"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_MODULE_INITIALIZATION_ERROR),
"module initialization error"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_NO_CLOSE_BRACE), "no close brace"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_NO_CONF), "no conf"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_NO_CONF_OR_ENVIRONMENT_VARIABLE),
"no conf or environment variable"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_NO_SECTION), "no section"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_NO_SUCH_FILE), "no such file"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_NO_VALUE), "no value"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_NUMBER_TOO_LARGE), "number too large"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_OPENSSL_CONF_REFERENCES_MISSING_SECTION),
"openssl conf references missing section"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_RECURSIVE_DIRECTORY_INCLUDE),
"recursive directory include"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_RELATIVE_PATH), "relative path"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_SSL_COMMAND_SECTION_EMPTY),
"ssl command section empty"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_SSL_COMMAND_SECTION_NOT_FOUND),
"ssl command section not found"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_SSL_SECTION_EMPTY), "ssl section empty"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_SSL_SECTION_NOT_FOUND),
"ssl section not found"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_UNABLE_TO_CREATE_NEW_SECTION),
"unable to create new section"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_UNKNOWN_MODULE_NAME),
"unknown module name"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_VARIABLE_EXPANSION_TOO_LONG),
"variable expansion too long"},
{ERR_PACK(ERR_LIB_CONF, 0, CONF_R_VARIABLE_HAS_NO_VALUE),
"variable has no value"},
{0, NULL}
};
#endif
int ossl_err_load_CONF_strings(void)
{
#ifndef OPENSSL_NO_ERR
if (ERR_reason_error_string(CONF_str_reasons[0].error) == NULL)
ERR_load_strings_const(CONF_str_reasons);
#endif
return 1;
}
| 3,119 | 41.739726 | 79 | c |
openssl | openssl-master/crypto/conf/conf_lib.c | /*
* Copyright 2000-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "internal/e_os.h"
#include <stdio.h>
#include <string.h>
#include "internal/conf.h"
#include "crypto/ctype.h"
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/conf.h>
#include <openssl/conf_api.h>
#include "conf_local.h"
#include <openssl/lhash.h>
static CONF_METHOD *default_CONF_method = NULL;
/* Init a 'CONF' structure from an old LHASH */
void CONF_set_nconf(CONF *conf, LHASH_OF(CONF_VALUE) *hash)
{
if (default_CONF_method == NULL)
default_CONF_method = NCONF_default();
default_CONF_method->init(conf);
conf->data = hash;
}
/*
* The following section contains the "CONF classic" functions, rewritten in
* terms of the new CONF interface.
*/
int CONF_set_default_method(CONF_METHOD *meth)
{
default_CONF_method = meth;
return 1;
}
LHASH_OF(CONF_VALUE) *CONF_load(LHASH_OF(CONF_VALUE) *conf, const char *file,
long *eline)
{
LHASH_OF(CONF_VALUE) *ltmp;
BIO *in = NULL;
#ifdef OPENSSL_SYS_VMS
in = BIO_new_file(file, "r");
#else
in = BIO_new_file(file, "rb");
#endif
if (in == NULL) {
ERR_raise(ERR_LIB_CONF, ERR_R_SYS_LIB);
return NULL;
}
ltmp = CONF_load_bio(conf, in, eline);
BIO_free(in);
return ltmp;
}
#ifndef OPENSSL_NO_STDIO
LHASH_OF(CONF_VALUE) *CONF_load_fp(LHASH_OF(CONF_VALUE) *conf, FILE *fp,
long *eline)
{
BIO *btmp;
LHASH_OF(CONF_VALUE) *ltmp;
if ((btmp = BIO_new_fp(fp, BIO_NOCLOSE)) == NULL) {
ERR_raise(ERR_LIB_CONF, ERR_R_BUF_LIB);
return NULL;
}
ltmp = CONF_load_bio(conf, btmp, eline);
BIO_free(btmp);
return ltmp;
}
#endif
LHASH_OF(CONF_VALUE) *CONF_load_bio(LHASH_OF(CONF_VALUE) *conf, BIO *bp,
long *eline)
{
CONF ctmp;
int ret;
CONF_set_nconf(&ctmp, conf);
ret = NCONF_load_bio(&ctmp, bp, eline);
if (ret)
return ctmp.data;
return NULL;
}
STACK_OF(CONF_VALUE) *CONF_get_section(LHASH_OF(CONF_VALUE) *conf,
const char *section)
{
if (conf == NULL) {
return NULL;
} else {
CONF ctmp;
CONF_set_nconf(&ctmp, conf);
return NCONF_get_section(&ctmp, section);
}
}
char *CONF_get_string(LHASH_OF(CONF_VALUE) *conf, const char *group,
const char *name)
{
if (conf == NULL) {
return NCONF_get_string(NULL, group, name);
} else {
CONF ctmp;
CONF_set_nconf(&ctmp, conf);
return NCONF_get_string(&ctmp, group, name);
}
}
long CONF_get_number(LHASH_OF(CONF_VALUE) *conf, const char *group,
const char *name)
{
int status;
long result = 0;
ERR_set_mark();
if (conf == NULL) {
status = NCONF_get_number_e(NULL, group, name, &result);
} else {
CONF ctmp;
CONF_set_nconf(&ctmp, conf);
status = NCONF_get_number_e(&ctmp, group, name, &result);
}
ERR_pop_to_mark();
return status == 0 ? 0L : result;
}
void CONF_free(LHASH_OF(CONF_VALUE) *conf)
{
CONF ctmp;
CONF_set_nconf(&ctmp, conf);
NCONF_free_data(&ctmp);
}
#ifndef OPENSSL_NO_STDIO
int CONF_dump_fp(LHASH_OF(CONF_VALUE) *conf, FILE *out)
{
BIO *btmp;
int ret;
if ((btmp = BIO_new_fp(out, BIO_NOCLOSE)) == NULL) {
ERR_raise(ERR_LIB_CONF, ERR_R_BUF_LIB);
return 0;
}
ret = CONF_dump_bio(conf, btmp);
BIO_free(btmp);
return ret;
}
#endif
int CONF_dump_bio(LHASH_OF(CONF_VALUE) *conf, BIO *out)
{
CONF ctmp;
CONF_set_nconf(&ctmp, conf);
return NCONF_dump_bio(&ctmp, out);
}
/*
* The following section contains the "New CONF" functions. They are
* completely centralised around a new CONF structure that may contain
* basically anything, but at least a method pointer and a table of data.
* These functions are also written in terms of the bridge functions used by
* the "CONF classic" functions, for consistency.
*/
CONF *NCONF_new_ex(OSSL_LIB_CTX *libctx, CONF_METHOD *meth)
{
CONF *ret;
if (meth == NULL)
meth = NCONF_default();
ret = meth->create(meth);
if (ret == NULL) {
ERR_raise(ERR_LIB_CONF, ERR_R_CONF_LIB);
return NULL;
}
ret->libctx = libctx;
return ret;
}
CONF *NCONF_new(CONF_METHOD *meth)
{
return NCONF_new_ex(NULL, meth);
}
void NCONF_free(CONF *conf)
{
if (conf == NULL)
return;
conf->meth->destroy(conf);
}
void NCONF_free_data(CONF *conf)
{
if (conf == NULL)
return;
conf->meth->destroy_data(conf);
}
OSSL_LIB_CTX *NCONF_get0_libctx(const CONF *conf)
{
return conf->libctx;
}
typedef STACK_OF(OPENSSL_CSTRING) SECTION_NAMES;
IMPLEMENT_LHASH_DOALL_ARG_CONST(CONF_VALUE, SECTION_NAMES);
static void collect_section_name(const CONF_VALUE *v, SECTION_NAMES *names)
{
/* A section is a CONF_VALUE with name == NULL */
if (v->name == NULL)
sk_OPENSSL_CSTRING_push(names, v->section);
}
static int section_name_cmp(OPENSSL_CSTRING const *a, OPENSSL_CSTRING const *b)
{
return strcmp(*a, *b);
}
STACK_OF(OPENSSL_CSTRING) *NCONF_get_section_names(const CONF *cnf)
{
SECTION_NAMES *names;
if ((names = sk_OPENSSL_CSTRING_new(section_name_cmp)) == NULL)
return NULL;
lh_CONF_VALUE_doall_SECTION_NAMES(cnf->data, collect_section_name, names);
sk_OPENSSL_CSTRING_sort(names);
return names;
}
int NCONF_load(CONF *conf, const char *file, long *eline)
{
if (conf == NULL) {
ERR_raise(ERR_LIB_CONF, CONF_R_NO_CONF);
return 0;
}
return conf->meth->load(conf, file, eline);
}
#ifndef OPENSSL_NO_STDIO
int NCONF_load_fp(CONF *conf, FILE *fp, long *eline)
{
BIO *btmp;
int ret;
if ((btmp = BIO_new_fp(fp, BIO_NOCLOSE)) == NULL) {
ERR_raise(ERR_LIB_CONF, ERR_R_BUF_LIB);
return 0;
}
ret = NCONF_load_bio(conf, btmp, eline);
BIO_free(btmp);
return ret;
}
#endif
int NCONF_load_bio(CONF *conf, BIO *bp, long *eline)
{
if (conf == NULL) {
ERR_raise(ERR_LIB_CONF, CONF_R_NO_CONF);
return 0;
}
return conf->meth->load_bio(conf, bp, eline);
}
STACK_OF(CONF_VALUE) *NCONF_get_section(const CONF *conf, const char *section)
{
if (conf == NULL) {
ERR_raise(ERR_LIB_CONF, CONF_R_NO_CONF);
return NULL;
}
if (section == NULL) {
ERR_raise(ERR_LIB_CONF, CONF_R_NO_SECTION);
return NULL;
}
return _CONF_get_section_values(conf, section);
}
char *NCONF_get_string(const CONF *conf, const char *group, const char *name)
{
char *s = _CONF_get_string(conf, group, name);
/*
* Since we may get a value from an environment variable even if conf is
* NULL, let's check the value first
*/
if (s)
return s;
if (conf == NULL) {
ERR_raise(ERR_LIB_CONF, CONF_R_NO_CONF_OR_ENVIRONMENT_VARIABLE);
return NULL;
}
ERR_raise_data(ERR_LIB_CONF, CONF_R_NO_VALUE,
"group=%s name=%s", group, name);
return NULL;
}
static int default_is_number(const CONF *conf, char c)
{
return ossl_isdigit(c);
}
static int default_to_int(const CONF *conf, char c)
{
return (int)(c - '0');
}
int NCONF_get_number_e(const CONF *conf, const char *group, const char *name,
long *result)
{
char *str;
long res;
int (*is_number)(const CONF *, char) = &default_is_number;
int (*to_int)(const CONF *, char) = &default_to_int;
if (result == NULL) {
ERR_raise(ERR_LIB_CONF, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
str = NCONF_get_string(conf, group, name);
if (str == NULL)
return 0;
if (conf != NULL) {
if (conf->meth->is_number != NULL)
is_number = conf->meth->is_number;
if (conf->meth->to_int != NULL)
to_int = conf->meth->to_int;
}
for (res = 0; is_number(conf, *str); str++) {
const int d = to_int(conf, *str);
if (res > (LONG_MAX - d) / 10L) {
ERR_raise(ERR_LIB_CONF, CONF_R_NUMBER_TOO_LARGE);
return 0;
}
res = res * 10 + d;
}
*result = res;
return 1;
}
long _CONF_get_number(const CONF *conf, const char *section,
const char *name)
{
int status;
long result = 0;
ERR_set_mark();
status = NCONF_get_number_e(conf, section, name, &result);
ERR_pop_to_mark();
return status == 0 ? 0L : result;
}
#ifndef OPENSSL_NO_STDIO
int NCONF_dump_fp(const CONF *conf, FILE *out)
{
BIO *btmp;
int ret;
if ((btmp = BIO_new_fp(out, BIO_NOCLOSE)) == NULL) {
ERR_raise(ERR_LIB_CONF, ERR_R_BUF_LIB);
return 0;
}
ret = NCONF_dump_bio(conf, btmp);
BIO_free(btmp);
return ret;
}
#endif
int NCONF_dump_bio(const CONF *conf, BIO *out)
{
if (conf == NULL) {
ERR_raise(ERR_LIB_CONF, CONF_R_NO_CONF);
return 0;
}
return conf->meth->dump(conf, out);
}
/*
* These routines call the C malloc/free, to avoid intermixing with
* OpenSSL function pointers before the library is initialized.
*/
OPENSSL_INIT_SETTINGS *OPENSSL_INIT_new(void)
{
OPENSSL_INIT_SETTINGS *ret = malloc(sizeof(*ret));
if (ret == NULL)
return NULL;
memset(ret, 0, sizeof(*ret));
ret->flags = DEFAULT_CONF_MFLAGS;
return ret;
}
#ifndef OPENSSL_NO_STDIO
int OPENSSL_INIT_set_config_filename(OPENSSL_INIT_SETTINGS *settings,
const char *filename)
{
char *newfilename = NULL;
if (filename != NULL) {
newfilename = strdup(filename);
if (newfilename == NULL)
return 0;
}
free(settings->filename);
settings->filename = newfilename;
return 1;
}
void OPENSSL_INIT_set_config_file_flags(OPENSSL_INIT_SETTINGS *settings,
unsigned long flags)
{
settings->flags = flags;
}
int OPENSSL_INIT_set_config_appname(OPENSSL_INIT_SETTINGS *settings,
const char *appname)
{
char *newappname = NULL;
if (appname != NULL) {
newappname = strdup(appname);
if (newappname == NULL)
return 0;
}
free(settings->appname);
settings->appname = newappname;
return 1;
}
#endif
void OPENSSL_INIT_free(OPENSSL_INIT_SETTINGS *settings)
{
free(settings->filename);
free(settings->appname);
free(settings);
}
| 10,807 | 21.946921 | 79 | c |
openssl | openssl-master/crypto/conf/conf_mall.c | /*
* Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* We need to use some engine deprecated APIs */
#define OPENSSL_SUPPRESS_DEPRECATED
#include <stdio.h>
#include <openssl/crypto.h>
#include "internal/cryptlib.h"
#include <openssl/conf.h>
#include <openssl/x509.h>
#include <openssl/asn1.h>
#include <openssl/engine.h>
#include "internal/provider.h"
#include "crypto/rand.h"
#include "conf_local.h"
/* Load all OpenSSL builtin modules */
void OPENSSL_load_builtin_modules(void)
{
/* Add builtin modules here */
ASN1_add_oid_module();
ASN1_add_stable_module();
#ifndef OPENSSL_NO_ENGINE
ENGINE_add_conf_module();
#endif
EVP_add_alg_module();
ossl_config_add_ssl_module();
ossl_provider_add_conf_module();
ossl_random_add_conf_module();
}
| 1,059 | 26.179487 | 74 | c |
openssl | openssl-master/crypto/conf/conf_mod.c | /*
* Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* We need to use some engine deprecated APIs */
#define OPENSSL_SUPPRESS_DEPRECATED
#include "internal/cryptlib.h"
#include <stdio.h>
#include <ctype.h>
#include <openssl/crypto.h>
#include "internal/conf.h"
#include <openssl/conf_api.h>
#include "internal/dso.h"
#include "internal/thread_once.h"
#include <openssl/x509.h>
#include <openssl/trace.h>
#include <openssl/engine.h>
#include "conf_local.h"
DEFINE_STACK_OF(CONF_MODULE)
DEFINE_STACK_OF(CONF_IMODULE)
#define DSO_mod_init_name "OPENSSL_init"
#define DSO_mod_finish_name "OPENSSL_finish"
/*
* This structure contains a data about supported modules. entries in this
* table correspond to either dynamic or static modules.
*/
struct conf_module_st {
/* DSO of this module or NULL if static */
DSO *dso;
/* Name of the module */
char *name;
/* Init function */
conf_init_func *init;
/* Finish function */
conf_finish_func *finish;
/* Number of successfully initialized modules */
int links;
void *usr_data;
};
/*
* This structure contains information about modules that have been
* successfully initialized. There may be more than one entry for a given
* module.
*/
struct conf_imodule_st {
CONF_MODULE *pmod;
char *name;
char *value;
unsigned long flags;
void *usr_data;
};
static CRYPTO_ONCE init_module_list_lock = CRYPTO_ONCE_STATIC_INIT;
static CRYPTO_RWLOCK *module_list_lock = NULL;
static STACK_OF(CONF_MODULE) *supported_modules = NULL; /* protected by lock */
static STACK_OF(CONF_IMODULE) *initialized_modules = NULL; /* protected by lock */
static CRYPTO_ONCE load_builtin_modules = CRYPTO_ONCE_STATIC_INIT;
static void module_free(CONF_MODULE *md);
static void module_finish(CONF_IMODULE *imod);
static int module_run(const CONF *cnf, const char *name, const char *value,
unsigned long flags);
static CONF_MODULE *module_add(DSO *dso, const char *name,
conf_init_func *ifunc,
conf_finish_func *ffunc);
static CONF_MODULE *module_find(const char *name);
static int module_init(CONF_MODULE *pmod, const char *name, const char *value,
const CONF *cnf);
static CONF_MODULE *module_load_dso(const CONF *cnf, const char *name,
const char *value);
static int conf_modules_finish_int(void);
static void module_lists_free(void)
{
CRYPTO_THREAD_lock_free(module_list_lock);
module_list_lock = NULL;
sk_CONF_MODULE_free(supported_modules);
supported_modules = NULL;
sk_CONF_IMODULE_free(initialized_modules);
initialized_modules = NULL;
}
DEFINE_RUN_ONCE_STATIC(do_init_module_list_lock)
{
module_list_lock = CRYPTO_THREAD_lock_new();
if (module_list_lock == NULL) {
ERR_raise(ERR_LIB_CONF, ERR_R_CRYPTO_LIB);
return 0;
}
return 1;
}
static int conf_diagnostics(const CONF *cnf)
{
return _CONF_get_number(cnf, NULL, "config_diagnostics") != 0;
}
/* Main function: load modules from a CONF structure */
int CONF_modules_load(const CONF *cnf, const char *appname,
unsigned long flags)
{
STACK_OF(CONF_VALUE) *values;
CONF_VALUE *vl;
char *vsection = NULL;
int ret, i;
if (!cnf)
return 1;
if (conf_diagnostics(cnf))
flags &= ~(CONF_MFLAGS_IGNORE_ERRORS
| CONF_MFLAGS_IGNORE_RETURN_CODES
| CONF_MFLAGS_SILENT
| CONF_MFLAGS_IGNORE_MISSING_FILE);
ERR_set_mark();
if (appname)
vsection = NCONF_get_string(cnf, NULL, appname);
if (!appname || (!vsection && (flags & CONF_MFLAGS_DEFAULT_SECTION)))
vsection = NCONF_get_string(cnf, NULL, "openssl_conf");
if (!vsection) {
ERR_pop_to_mark();
return 1;
}
OSSL_TRACE1(CONF, "Configuration in section %s\n", vsection);
values = NCONF_get_section(cnf, vsection);
if (values == NULL) {
if (!(flags & CONF_MFLAGS_SILENT)) {
ERR_clear_last_mark();
ERR_raise_data(ERR_LIB_CONF,
CONF_R_OPENSSL_CONF_REFERENCES_MISSING_SECTION,
"openssl_conf=%s", vsection);
} else {
ERR_pop_to_mark();
}
return 0;
}
ERR_pop_to_mark();
for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
vl = sk_CONF_VALUE_value(values, i);
ERR_set_mark();
ret = module_run(cnf, vl->name, vl->value, flags);
OSSL_TRACE3(CONF, "Running module %s (%s) returned %d\n",
vl->name, vl->value, ret);
if (ret <= 0)
if (!(flags & CONF_MFLAGS_IGNORE_ERRORS)) {
ERR_clear_last_mark();
return ret;
}
ERR_pop_to_mark();
}
return 1;
}
int CONF_modules_load_file_ex(OSSL_LIB_CTX *libctx, const char *filename,
const char *appname, unsigned long flags)
{
char *file = NULL;
CONF *conf = NULL;
int ret = 0, diagnostics = 0;
ERR_set_mark();
if (filename == NULL) {
file = CONF_get1_default_config_file();
if (file == NULL)
goto err;
if (*file == '\0') {
/* Do not try to load an empty file name but do not error out */
ret = 1;
goto err;
}
} else {
file = (char *)filename;
}
conf = NCONF_new_ex(libctx, NULL);
if (conf == NULL)
goto err;
if (NCONF_load(conf, file, NULL) <= 0) {
if ((flags & CONF_MFLAGS_IGNORE_MISSING_FILE) &&
(ERR_GET_REASON(ERR_peek_last_error()) == CONF_R_NO_SUCH_FILE)) {
ret = 1;
}
goto err;
}
ret = CONF_modules_load(conf, appname, flags);
diagnostics = conf_diagnostics(conf);
err:
if (filename == NULL)
OPENSSL_free(file);
NCONF_free(conf);
if ((flags & CONF_MFLAGS_IGNORE_RETURN_CODES) != 0 && !diagnostics)
ret = 1;
if (ret > 0)
ERR_pop_to_mark();
else
ERR_clear_last_mark();
return ret;
}
int CONF_modules_load_file(const char *filename,
const char *appname, unsigned long flags)
{
return CONF_modules_load_file_ex(NULL, filename, appname, flags);
}
DEFINE_RUN_ONCE_STATIC(do_load_builtin_modules)
{
OPENSSL_load_builtin_modules();
#ifndef OPENSSL_NO_ENGINE
/* Need to load ENGINEs */
ENGINE_load_builtin_engines();
#endif
return 1;
}
static int module_run(const CONF *cnf, const char *name, const char *value,
unsigned long flags)
{
CONF_MODULE *md;
int ret;
if (!RUN_ONCE(&load_builtin_modules, do_load_builtin_modules))
return -1;
md = module_find(name);
/* Module not found: try to load DSO */
if (!md && !(flags & CONF_MFLAGS_NO_DSO))
md = module_load_dso(cnf, name, value);
if (!md) {
if (!(flags & CONF_MFLAGS_SILENT)) {
ERR_raise_data(ERR_LIB_CONF, CONF_R_UNKNOWN_MODULE_NAME,
"module=%s", name);
}
return -1;
}
ret = module_init(md, name, value, cnf);
if (ret <= 0) {
if (!(flags & CONF_MFLAGS_SILENT))
ERR_raise_data(ERR_LIB_CONF, CONF_R_MODULE_INITIALIZATION_ERROR,
"module=%s, value=%s retcode=%-8d",
name, value, ret);
}
return ret;
}
/* Load a module from a DSO */
static CONF_MODULE *module_load_dso(const CONF *cnf,
const char *name, const char *value)
{
DSO *dso = NULL;
conf_init_func *ifunc;
conf_finish_func *ffunc;
const char *path = NULL;
int errcode = 0;
CONF_MODULE *md;
/* Look for alternative path in module section */
path = _CONF_get_string(cnf, value, "path");
if (path == NULL) {
path = name;
}
dso = DSO_load(NULL, path, NULL, 0);
if (dso == NULL) {
errcode = CONF_R_ERROR_LOADING_DSO;
goto err;
}
ifunc = (conf_init_func *)DSO_bind_func(dso, DSO_mod_init_name);
if (ifunc == NULL) {
errcode = CONF_R_MISSING_INIT_FUNCTION;
goto err;
}
ffunc = (conf_finish_func *)DSO_bind_func(dso, DSO_mod_finish_name);
/* All OK, add module */
md = module_add(dso, name, ifunc, ffunc);
if (md == NULL)
goto err;
return md;
err:
DSO_free(dso);
ERR_raise_data(ERR_LIB_CONF, errcode, "module=%s, path=%s", name, path);
return NULL;
}
/* add module to list */
static CONF_MODULE *module_add(DSO *dso, const char *name,
conf_init_func *ifunc, conf_finish_func *ffunc)
{
CONF_MODULE *tmod = NULL;
if (!RUN_ONCE(&init_module_list_lock, do_init_module_list_lock))
return NULL;
if (!CRYPTO_THREAD_write_lock(module_list_lock))
return NULL;
if (supported_modules == NULL)
supported_modules = sk_CONF_MODULE_new_null();
if (supported_modules == NULL)
goto err;
if ((tmod = OPENSSL_zalloc(sizeof(*tmod))) == NULL)
goto err;
tmod->dso = dso;
tmod->name = OPENSSL_strdup(name);
tmod->init = ifunc;
tmod->finish = ffunc;
if (tmod->name == NULL)
goto err;
if (!sk_CONF_MODULE_push(supported_modules, tmod))
goto err;
CRYPTO_THREAD_unlock(module_list_lock);
return tmod;
err:
CRYPTO_THREAD_unlock(module_list_lock);
if (tmod != NULL) {
OPENSSL_free(tmod->name);
OPENSSL_free(tmod);
}
return NULL;
}
/*
* Find a module from the list. We allow module names of the form
* modname.XXXX to just search for modname to allow the same module to be
* initialized more than once.
*/
static CONF_MODULE *module_find(const char *name)
{
CONF_MODULE *tmod;
int i, nchar;
char *p;
p = strrchr(name, '.');
if (p)
nchar = p - name;
else
nchar = strlen(name);
if (!RUN_ONCE(&init_module_list_lock, do_init_module_list_lock))
return NULL;
if (!CRYPTO_THREAD_read_lock(module_list_lock))
return NULL;
for (i = 0; i < sk_CONF_MODULE_num(supported_modules); i++) {
tmod = sk_CONF_MODULE_value(supported_modules, i);
if (strncmp(tmod->name, name, nchar) == 0) {
CRYPTO_THREAD_unlock(module_list_lock);
return tmod;
}
}
CRYPTO_THREAD_unlock(module_list_lock);
return NULL;
}
/* initialize a module */
static int module_init(CONF_MODULE *pmod, const char *name, const char *value,
const CONF *cnf)
{
int ret = 1;
int init_called = 0;
CONF_IMODULE *imod = NULL;
/* Otherwise add initialized module to list */
imod = OPENSSL_malloc(sizeof(*imod));
if (imod == NULL)
goto err;
imod->pmod = pmod;
imod->name = OPENSSL_strdup(name);
imod->value = OPENSSL_strdup(value);
imod->usr_data = NULL;
if (!imod->name || !imod->value)
goto memerr;
/* Try to initialize module */
if (pmod->init) {
ret = pmod->init(imod, cnf);
init_called = 1;
/* Error occurred, exit */
if (ret <= 0)
goto err;
}
if (!RUN_ONCE(&init_module_list_lock, do_init_module_list_lock))
goto err;
if (!CRYPTO_THREAD_write_lock(module_list_lock))
goto err;
if (initialized_modules == NULL) {
initialized_modules = sk_CONF_IMODULE_new_null();
if (initialized_modules == NULL) {
CRYPTO_THREAD_unlock(module_list_lock);
ERR_raise(ERR_LIB_CONF, ERR_R_CRYPTO_LIB);
goto err;
}
}
if (!sk_CONF_IMODULE_push(initialized_modules, imod)) {
CRYPTO_THREAD_unlock(module_list_lock);
ERR_raise(ERR_LIB_CONF, ERR_R_CRYPTO_LIB);
goto err;
}
pmod->links++;
CRYPTO_THREAD_unlock(module_list_lock);
return ret;
err:
/* We've started the module so we'd better finish it */
if (pmod->finish && init_called)
pmod->finish(imod);
memerr:
if (imod) {
OPENSSL_free(imod->name);
OPENSSL_free(imod->value);
OPENSSL_free(imod);
}
return -1;
}
/*
* Unload any dynamic modules that have a link count of zero: i.e. have no
* active initialized modules. If 'all' is set then all modules are unloaded
* including static ones.
*/
void CONF_modules_unload(int all)
{
int i;
CONF_MODULE *md;
if (!conf_modules_finish_int()) /* also inits module list lock */
return;
if (!CRYPTO_THREAD_write_lock(module_list_lock))
return;
/* unload modules in reverse order */
for (i = sk_CONF_MODULE_num(supported_modules) - 1; i >= 0; i--) {
md = sk_CONF_MODULE_value(supported_modules, i);
/* If static or in use and 'all' not set ignore it */
if (((md->links > 0) || !md->dso) && !all)
continue;
/* Since we're working in reverse this is OK */
(void)sk_CONF_MODULE_delete(supported_modules, i);
module_free(md);
}
if (sk_CONF_MODULE_num(supported_modules) == 0) {
sk_CONF_MODULE_free(supported_modules);
supported_modules = NULL;
}
CRYPTO_THREAD_unlock(module_list_lock);
}
/* unload a single module */
static void module_free(CONF_MODULE *md)
{
DSO_free(md->dso);
OPENSSL_free(md->name);
OPENSSL_free(md);
}
/* finish and free up all modules instances */
static int conf_modules_finish_int(void)
{
CONF_IMODULE *imod;
if (!RUN_ONCE(&init_module_list_lock, do_init_module_list_lock))
return 0;
/* If module_list_lock is NULL here it means we were already unloaded */
if (module_list_lock == NULL
|| !CRYPTO_THREAD_write_lock(module_list_lock))
return 0;
while (sk_CONF_IMODULE_num(initialized_modules) > 0) {
imod = sk_CONF_IMODULE_pop(initialized_modules);
module_finish(imod);
}
sk_CONF_IMODULE_free(initialized_modules);
initialized_modules = NULL;
CRYPTO_THREAD_unlock(module_list_lock);
return 1;
}
void CONF_modules_finish(void)
{
conf_modules_finish_int();
}
/* finish a module instance */
static void module_finish(CONF_IMODULE *imod)
{
if (!imod)
return;
if (imod->pmod->finish)
imod->pmod->finish(imod);
imod->pmod->links--;
OPENSSL_free(imod->name);
OPENSSL_free(imod->value);
OPENSSL_free(imod);
}
/* Add a static module to OpenSSL */
int CONF_module_add(const char *name, conf_init_func *ifunc,
conf_finish_func *ffunc)
{
if (module_add(NULL, name, ifunc, ffunc))
return 1;
else
return 0;
}
void ossl_config_modules_free(void)
{
CONF_modules_unload(1); /* calls CONF_modules_finish */
module_lists_free();
}
/* Utility functions */
const char *CONF_imodule_get_name(const CONF_IMODULE *md)
{
return md->name;
}
const char *CONF_imodule_get_value(const CONF_IMODULE *md)
{
return md->value;
}
void *CONF_imodule_get_usr_data(const CONF_IMODULE *md)
{
return md->usr_data;
}
void CONF_imodule_set_usr_data(CONF_IMODULE *md, void *usr_data)
{
md->usr_data = usr_data;
}
CONF_MODULE *CONF_imodule_get_module(const CONF_IMODULE *md)
{
return md->pmod;
}
unsigned long CONF_imodule_get_flags(const CONF_IMODULE *md)
{
return md->flags;
}
void CONF_imodule_set_flags(CONF_IMODULE *md, unsigned long flags)
{
md->flags = flags;
}
void *CONF_module_get_usr_data(CONF_MODULE *pmod)
{
return pmod->usr_data;
}
void CONF_module_set_usr_data(CONF_MODULE *pmod, void *usr_data)
{
pmod->usr_data = usr_data;
}
/* Return default config file name */
char *CONF_get1_default_config_file(void)
{
const char *t;
char *file, *sep = "";
size_t size;
if ((file = ossl_safe_getenv("OPENSSL_CONF")) != NULL)
return OPENSSL_strdup(file);
t = X509_get_default_cert_area();
#ifndef OPENSSL_SYS_VMS
sep = "/";
#endif
size = strlen(t) + strlen(sep) + strlen(OPENSSL_CONF) + 1;
file = OPENSSL_malloc(size);
if (file == NULL)
return NULL;
BIO_snprintf(file, size, "%s%s%s", t, sep, OPENSSL_CONF);
return file;
}
/*
* This function takes a list separated by 'sep' and calls the callback
* function giving the start and length of each member optionally stripping
* leading and trailing whitespace. This can be used to parse comma separated
* lists for example.
*/
int CONF_parse_list(const char *list_, int sep, int nospc,
int (*list_cb) (const char *elem, int len, void *usr),
void *arg)
{
int ret;
const char *lstart, *tmpend, *p;
if (list_ == NULL) {
ERR_raise(ERR_LIB_CONF, CONF_R_LIST_CANNOT_BE_NULL);
return 0;
}
lstart = list_;
for (;;) {
if (nospc) {
while (*lstart && isspace((unsigned char)*lstart))
lstart++;
}
p = strchr(lstart, sep);
if (p == lstart || *lstart == '\0')
ret = list_cb(NULL, 0, arg);
else {
if (p)
tmpend = p - 1;
else
tmpend = lstart + strlen(lstart) - 1;
if (nospc) {
while (isspace((unsigned char)*tmpend))
tmpend--;
}
ret = list_cb(lstart, tmpend - lstart + 1, arg);
}
if (ret <= 0)
return ret;
if (p == NULL)
return 1;
lstart = p + 1;
}
}
| 17,832 | 24.548711 | 82 | c |
openssl | openssl-master/crypto/conf/conf_sap.c | /*
* Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <openssl/crypto.h>
#include "internal/cryptlib.h"
#include "internal/conf.h"
#include "conf_local.h"
#include <openssl/x509.h>
#include <openssl/asn1.h>
#include <openssl/engine.h>
#if defined(_WIN32) && !defined(__BORLANDC__)
# define strdup _strdup
#endif
/*
* This is the automatic configuration loader: it is called automatically by
* OpenSSL when any of a number of standard initialisation functions are
* called, unless this is overridden by calling OPENSSL_no_config()
*/
static int openssl_configured = 0;
#ifndef OPENSSL_NO_DEPRECATED_1_1_0
void OPENSSL_config(const char *appname)
{
OPENSSL_INIT_SETTINGS settings;
memset(&settings, 0, sizeof(settings));
if (appname != NULL)
settings.appname = strdup(appname);
settings.flags = DEFAULT_CONF_MFLAGS;
OPENSSL_init_crypto(OPENSSL_INIT_LOAD_CONFIG, &settings);
}
#endif
int ossl_config_int(const OPENSSL_INIT_SETTINGS *settings)
{
int ret = 0;
#if defined(OPENSSL_INIT_DEBUG) || !defined(OPENSSL_SYS_UEFI)
const char *filename;
const char *appname;
unsigned long flags;
#endif
if (openssl_configured)
return 1;
#if defined(OPENSSL_INIT_DEBUG) || !defined(OPENSSL_SYS_UEFI)
filename = settings ? settings->filename : NULL;
appname = settings ? settings->appname : NULL;
flags = settings ? settings->flags : DEFAULT_CONF_MFLAGS;
#endif
#ifdef OPENSSL_INIT_DEBUG
fprintf(stderr, "OPENSSL_INIT: ossl_config_int(%s, %s, %lu)\n",
filename, appname, flags);
#endif
#ifndef OPENSSL_SYS_UEFI
ret = CONF_modules_load_file(filename, appname, flags);
#else
ret = 1;
#endif
openssl_configured = 1;
return ret;
}
void ossl_no_config_int(void)
{
openssl_configured = 1;
}
| 2,098 | 25.2375 | 76 | c |
openssl | openssl-master/crypto/conf/conf_ssl.c | /*
* Copyright 2015-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <string.h>
#include <openssl/conf.h>
#include <openssl/err.h>
#include "internal/sslconf.h"
#include "conf_local.h"
/*
* SSL library configuration module placeholder. We load it here but defer
* all decisions about its contents to libssl.
*/
struct ssl_conf_name_st {
/* Name of this set of commands */
char *name;
/* List of commands */
SSL_CONF_CMD *cmds;
/* Number of commands */
size_t cmd_count;
};
struct ssl_conf_cmd_st {
/* Command */
char *cmd;
/* Argument */
char *arg;
};
static struct ssl_conf_name_st *ssl_names;
static size_t ssl_names_count;
static void ssl_module_free(CONF_IMODULE *md)
{
size_t i, j;
if (ssl_names == NULL)
return;
for (i = 0; i < ssl_names_count; i++) {
struct ssl_conf_name_st *tname = ssl_names + i;
OPENSSL_free(tname->name);
for (j = 0; j < tname->cmd_count; j++) {
OPENSSL_free(tname->cmds[j].cmd);
OPENSSL_free(tname->cmds[j].arg);
}
OPENSSL_free(tname->cmds);
}
OPENSSL_free(ssl_names);
ssl_names = NULL;
ssl_names_count = 0;
}
static int ssl_module_init(CONF_IMODULE *md, const CONF *cnf)
{
size_t i, j, cnt;
int rv = 0;
const char *ssl_conf_section;
STACK_OF(CONF_VALUE) *cmd_lists;
ssl_conf_section = CONF_imodule_get_value(md);
cmd_lists = NCONF_get_section(cnf, ssl_conf_section);
if (sk_CONF_VALUE_num(cmd_lists) <= 0) {
int rcode =
cmd_lists == NULL
? CONF_R_SSL_SECTION_NOT_FOUND
: CONF_R_SSL_SECTION_EMPTY;
ERR_raise_data(ERR_LIB_CONF, rcode, "section=%s", ssl_conf_section);
goto err;
}
cnt = sk_CONF_VALUE_num(cmd_lists);
ssl_module_free(md);
ssl_names = OPENSSL_zalloc(sizeof(*ssl_names) * cnt);
if (ssl_names == NULL)
goto err;
ssl_names_count = cnt;
for (i = 0; i < ssl_names_count; i++) {
struct ssl_conf_name_st *ssl_name = ssl_names + i;
CONF_VALUE *sect = sk_CONF_VALUE_value(cmd_lists, (int)i);
STACK_OF(CONF_VALUE) *cmds = NCONF_get_section(cnf, sect->value);
if (sk_CONF_VALUE_num(cmds) <= 0) {
int rcode =
cmds == NULL
? CONF_R_SSL_COMMAND_SECTION_NOT_FOUND
: CONF_R_SSL_COMMAND_SECTION_EMPTY;
ERR_raise_data(ERR_LIB_CONF, rcode,
"name=%s, value=%s", sect->name, sect->value);
goto err;
}
ssl_name->name = OPENSSL_strdup(sect->name);
if (ssl_name->name == NULL)
goto err;
cnt = sk_CONF_VALUE_num(cmds);
ssl_name->cmds = OPENSSL_zalloc(cnt * sizeof(struct ssl_conf_cmd_st));
if (ssl_name->cmds == NULL)
goto err;
ssl_name->cmd_count = cnt;
for (j = 0; j < cnt; j++) {
const char *name;
CONF_VALUE *cmd_conf = sk_CONF_VALUE_value(cmds, (int)j);
struct ssl_conf_cmd_st *cmd = ssl_name->cmds + j;
/* Skip any initial dot in name */
name = strchr(cmd_conf->name, '.');
if (name != NULL)
name++;
else
name = cmd_conf->name;
cmd->cmd = OPENSSL_strdup(name);
cmd->arg = OPENSSL_strdup(cmd_conf->value);
if (cmd->cmd == NULL || cmd->arg == NULL)
goto err;
}
}
rv = 1;
err:
if (rv == 0)
ssl_module_free(md);
return rv;
}
/*
* Returns the set of commands with index |idx| previously searched for via
* conf_ssl_name_find. Also stores the name of the set of commands in |*name|
* and the number of commands in the set in |*cnt|.
*/
const SSL_CONF_CMD *conf_ssl_get(size_t idx, const char **name, size_t *cnt)
{
*name = ssl_names[idx].name;
*cnt = ssl_names[idx].cmd_count;
return ssl_names[idx].cmds;
}
/*
* Search for the named set of commands given in |name|. On success return the
* index for the command set in |*idx|.
* Returns 1 on success or 0 on failure.
*/
int conf_ssl_name_find(const char *name, size_t *idx)
{
size_t i;
const struct ssl_conf_name_st *nm;
if (name == NULL)
return 0;
for (i = 0, nm = ssl_names; i < ssl_names_count; i++, nm++) {
if (strcmp(nm->name, name) == 0) {
*idx = i;
return 1;
}
}
return 0;
}
/*
* Given a command set |cmd|, return details on the command at index |idx| which
* must be less than the number of commands in the set (as returned by
* conf_ssl_get). The name of the command will be returned in |*cmdstr| and the
* argument is returned in |*arg|.
*/
void conf_ssl_get_cmd(const SSL_CONF_CMD *cmd, size_t idx, char **cmdstr,
char **arg)
{
*cmdstr = cmd[idx].cmd;
*arg = cmd[idx].arg;
}
void ossl_config_add_ssl_module(void)
{
CONF_module_add("ssl_conf", ssl_module_init, ssl_module_free);
}
| 5,302 | 27.978142 | 80 | c |
openssl | openssl-master/crypto/crmf/crmf_asn.c | /*-
* Copyright 2007-2021 The OpenSSL Project Authors. All Rights Reserved.
* Copyright Nokia 2007-2019
* Copyright Siemens AG 2015-2019
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*
* CRMF implementation by Martin Peylo, Miikka Viljanen, and David von Oheimb.
*/
#include <openssl/asn1t.h>
#include "crmf_local.h"
/* explicit #includes not strictly needed since implied by the above: */
#include <openssl/crmf.h>
ASN1_SEQUENCE(OSSL_CRMF_PRIVATEKEYINFO) = {
ASN1_SIMPLE(OSSL_CRMF_PRIVATEKEYINFO, version, ASN1_INTEGER),
ASN1_SIMPLE(OSSL_CRMF_PRIVATEKEYINFO, privateKeyAlgorithm, X509_ALGOR),
ASN1_SIMPLE(OSSL_CRMF_PRIVATEKEYINFO, privateKey, ASN1_OCTET_STRING),
ASN1_IMP_SET_OF_OPT(OSSL_CRMF_PRIVATEKEYINFO, attributes, X509_ATTRIBUTE, 0)
} ASN1_SEQUENCE_END(OSSL_CRMF_PRIVATEKEYINFO)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CRMF_PRIVATEKEYINFO)
ASN1_CHOICE(OSSL_CRMF_ENCKEYWITHID_IDENTIFIER) = {
ASN1_SIMPLE(OSSL_CRMF_ENCKEYWITHID_IDENTIFIER,
value.string, ASN1_UTF8STRING),
ASN1_SIMPLE(OSSL_CRMF_ENCKEYWITHID_IDENTIFIER,
value.generalName, GENERAL_NAME)
} ASN1_CHOICE_END(OSSL_CRMF_ENCKEYWITHID_IDENTIFIER)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CRMF_ENCKEYWITHID_IDENTIFIER)
ASN1_SEQUENCE(OSSL_CRMF_ENCKEYWITHID) = {
ASN1_SIMPLE(OSSL_CRMF_ENCKEYWITHID, privateKey, OSSL_CRMF_PRIVATEKEYINFO),
ASN1_OPT(OSSL_CRMF_ENCKEYWITHID, identifier,
OSSL_CRMF_ENCKEYWITHID_IDENTIFIER)
} ASN1_SEQUENCE_END(OSSL_CRMF_ENCKEYWITHID)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CRMF_ENCKEYWITHID)
ASN1_SEQUENCE(OSSL_CRMF_CERTID) = {
ASN1_SIMPLE(OSSL_CRMF_CERTID, issuer, GENERAL_NAME),
ASN1_SIMPLE(OSSL_CRMF_CERTID, serialNumber, ASN1_INTEGER)
} ASN1_SEQUENCE_END(OSSL_CRMF_CERTID)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CRMF_CERTID)
IMPLEMENT_ASN1_DUP_FUNCTION(OSSL_CRMF_CERTID)
ASN1_SEQUENCE(OSSL_CRMF_ENCRYPTEDVALUE) = {
ASN1_IMP_OPT(OSSL_CRMF_ENCRYPTEDVALUE, intendedAlg, X509_ALGOR, 0),
ASN1_IMP_OPT(OSSL_CRMF_ENCRYPTEDVALUE, symmAlg, X509_ALGOR, 1),
ASN1_IMP_OPT(OSSL_CRMF_ENCRYPTEDVALUE, encSymmKey, ASN1_BIT_STRING, 2),
ASN1_IMP_OPT(OSSL_CRMF_ENCRYPTEDVALUE, keyAlg, X509_ALGOR, 3),
ASN1_IMP_OPT(OSSL_CRMF_ENCRYPTEDVALUE, valueHint, ASN1_OCTET_STRING, 4),
ASN1_SIMPLE(OSSL_CRMF_ENCRYPTEDVALUE, encValue, ASN1_BIT_STRING)
} ASN1_SEQUENCE_END(OSSL_CRMF_ENCRYPTEDVALUE)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CRMF_ENCRYPTEDVALUE)
ASN1_SEQUENCE(OSSL_CRMF_SINGLEPUBINFO) = {
ASN1_SIMPLE(OSSL_CRMF_SINGLEPUBINFO, pubMethod, ASN1_INTEGER),
ASN1_SIMPLE(OSSL_CRMF_SINGLEPUBINFO, pubLocation, GENERAL_NAME)
} ASN1_SEQUENCE_END(OSSL_CRMF_SINGLEPUBINFO)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CRMF_SINGLEPUBINFO)
ASN1_SEQUENCE(OSSL_CRMF_PKIPUBLICATIONINFO) = {
ASN1_SIMPLE(OSSL_CRMF_PKIPUBLICATIONINFO, action, ASN1_INTEGER),
ASN1_SEQUENCE_OF_OPT(OSSL_CRMF_PKIPUBLICATIONINFO, pubInfos,
OSSL_CRMF_SINGLEPUBINFO)
} ASN1_SEQUENCE_END(OSSL_CRMF_PKIPUBLICATIONINFO)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CRMF_PKIPUBLICATIONINFO)
IMPLEMENT_ASN1_DUP_FUNCTION(OSSL_CRMF_PKIPUBLICATIONINFO)
ASN1_SEQUENCE(OSSL_CRMF_PKMACVALUE) = {
ASN1_SIMPLE(OSSL_CRMF_PKMACVALUE, algId, X509_ALGOR),
ASN1_SIMPLE(OSSL_CRMF_PKMACVALUE, value, ASN1_BIT_STRING)
} ASN1_SEQUENCE_END(OSSL_CRMF_PKMACVALUE)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CRMF_PKMACVALUE)
ASN1_CHOICE(OSSL_CRMF_POPOPRIVKEY) = {
ASN1_IMP(OSSL_CRMF_POPOPRIVKEY, value.thisMessage, ASN1_BIT_STRING, 0),
ASN1_IMP(OSSL_CRMF_POPOPRIVKEY, value.subsequentMessage, ASN1_INTEGER, 1),
ASN1_IMP(OSSL_CRMF_POPOPRIVKEY, value.dhMAC, ASN1_BIT_STRING, 2),
ASN1_IMP(OSSL_CRMF_POPOPRIVKEY, value.agreeMAC, OSSL_CRMF_PKMACVALUE, 3),
ASN1_IMP(OSSL_CRMF_POPOPRIVKEY, value.encryptedKey, ASN1_NULL, 4),
/* When supported, ASN1_NULL needs to be replaced by CMS_ENVELOPEDDATA */
} ASN1_CHOICE_END(OSSL_CRMF_POPOPRIVKEY)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CRMF_POPOPRIVKEY)
ASN1_SEQUENCE(OSSL_CRMF_PBMPARAMETER) = {
ASN1_SIMPLE(OSSL_CRMF_PBMPARAMETER, salt, ASN1_OCTET_STRING),
ASN1_SIMPLE(OSSL_CRMF_PBMPARAMETER, owf, X509_ALGOR),
ASN1_SIMPLE(OSSL_CRMF_PBMPARAMETER, iterationCount, ASN1_INTEGER),
ASN1_SIMPLE(OSSL_CRMF_PBMPARAMETER, mac, X509_ALGOR)
} ASN1_SEQUENCE_END(OSSL_CRMF_PBMPARAMETER)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CRMF_PBMPARAMETER)
ASN1_CHOICE(OSSL_CRMF_POPOSIGNINGKEYINPUT_AUTHINFO) = {
ASN1_EXP(OSSL_CRMF_POPOSIGNINGKEYINPUT_AUTHINFO, value.sender,
GENERAL_NAME, 0),
ASN1_SIMPLE(OSSL_CRMF_POPOSIGNINGKEYINPUT_AUTHINFO, value.publicKeyMAC,
OSSL_CRMF_PKMACVALUE)
} ASN1_CHOICE_END(OSSL_CRMF_POPOSIGNINGKEYINPUT_AUTHINFO)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CRMF_POPOSIGNINGKEYINPUT_AUTHINFO)
ASN1_SEQUENCE(OSSL_CRMF_POPOSIGNINGKEYINPUT) = {
ASN1_SIMPLE(OSSL_CRMF_POPOSIGNINGKEYINPUT, authInfo,
OSSL_CRMF_POPOSIGNINGKEYINPUT_AUTHINFO),
ASN1_SIMPLE(OSSL_CRMF_POPOSIGNINGKEYINPUT, publicKey, X509_PUBKEY)
} ASN1_SEQUENCE_END(OSSL_CRMF_POPOSIGNINGKEYINPUT)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CRMF_POPOSIGNINGKEYINPUT)
ASN1_SEQUENCE(OSSL_CRMF_POPOSIGNINGKEY) = {
ASN1_IMP_OPT(OSSL_CRMF_POPOSIGNINGKEY, poposkInput,
OSSL_CRMF_POPOSIGNINGKEYINPUT, 0),
ASN1_SIMPLE(OSSL_CRMF_POPOSIGNINGKEY, algorithmIdentifier, X509_ALGOR),
ASN1_SIMPLE(OSSL_CRMF_POPOSIGNINGKEY, signature, ASN1_BIT_STRING)
} ASN1_SEQUENCE_END(OSSL_CRMF_POPOSIGNINGKEY)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CRMF_POPOSIGNINGKEY)
ASN1_CHOICE(OSSL_CRMF_POPO) = {
ASN1_IMP(OSSL_CRMF_POPO, value.raVerified, ASN1_NULL, 0),
ASN1_IMP(OSSL_CRMF_POPO, value.signature, OSSL_CRMF_POPOSIGNINGKEY, 1),
ASN1_EXP(OSSL_CRMF_POPO, value.keyEncipherment, OSSL_CRMF_POPOPRIVKEY, 2),
ASN1_EXP(OSSL_CRMF_POPO, value.keyAgreement, OSSL_CRMF_POPOPRIVKEY, 3)
} ASN1_CHOICE_END(OSSL_CRMF_POPO)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CRMF_POPO)
ASN1_ADB_TEMPLATE(attributetypeandvalue_default) =
ASN1_OPT(OSSL_CRMF_ATTRIBUTETYPEANDVALUE, value.other, ASN1_ANY);
ASN1_ADB(OSSL_CRMF_ATTRIBUTETYPEANDVALUE) = {
ADB_ENTRY(NID_id_regCtrl_regToken,
ASN1_SIMPLE(OSSL_CRMF_ATTRIBUTETYPEANDVALUE,
value.regToken, ASN1_UTF8STRING)),
ADB_ENTRY(NID_id_regCtrl_authenticator,
ASN1_SIMPLE(OSSL_CRMF_ATTRIBUTETYPEANDVALUE,
value.authenticator, ASN1_UTF8STRING)),
ADB_ENTRY(NID_id_regCtrl_pkiPublicationInfo,
ASN1_SIMPLE(OSSL_CRMF_ATTRIBUTETYPEANDVALUE,
value.pkiPublicationInfo,
OSSL_CRMF_PKIPUBLICATIONINFO)),
ADB_ENTRY(NID_id_regCtrl_oldCertID,
ASN1_SIMPLE(OSSL_CRMF_ATTRIBUTETYPEANDVALUE,
value.oldCertID, OSSL_CRMF_CERTID)),
ADB_ENTRY(NID_id_regCtrl_protocolEncrKey,
ASN1_SIMPLE(OSSL_CRMF_ATTRIBUTETYPEANDVALUE,
value.protocolEncrKey, X509_PUBKEY)),
ADB_ENTRY(NID_id_regInfo_utf8Pairs,
ASN1_SIMPLE(OSSL_CRMF_ATTRIBUTETYPEANDVALUE,
value.utf8Pairs, ASN1_UTF8STRING)),
ADB_ENTRY(NID_id_regInfo_certReq,
ASN1_SIMPLE(OSSL_CRMF_ATTRIBUTETYPEANDVALUE,
value.certReq, OSSL_CRMF_CERTREQUEST)),
} ASN1_ADB_END(OSSL_CRMF_ATTRIBUTETYPEANDVALUE, 0, type, 0,
&attributetypeandvalue_default_tt, NULL);
ASN1_SEQUENCE(OSSL_CRMF_ATTRIBUTETYPEANDVALUE) = {
ASN1_SIMPLE(OSSL_CRMF_ATTRIBUTETYPEANDVALUE, type, ASN1_OBJECT),
ASN1_ADB_OBJECT(OSSL_CRMF_ATTRIBUTETYPEANDVALUE)
} ASN1_SEQUENCE_END(OSSL_CRMF_ATTRIBUTETYPEANDVALUE)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CRMF_ATTRIBUTETYPEANDVALUE)
IMPLEMENT_ASN1_DUP_FUNCTION(OSSL_CRMF_ATTRIBUTETYPEANDVALUE)
ASN1_SEQUENCE(OSSL_CRMF_OPTIONALVALIDITY) = {
ASN1_EXP_OPT(OSSL_CRMF_OPTIONALVALIDITY, notBefore, ASN1_TIME, 0),
ASN1_EXP_OPT(OSSL_CRMF_OPTIONALVALIDITY, notAfter, ASN1_TIME, 1)
} ASN1_SEQUENCE_END(OSSL_CRMF_OPTIONALVALIDITY)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CRMF_OPTIONALVALIDITY)
ASN1_SEQUENCE(OSSL_CRMF_CERTTEMPLATE) = {
ASN1_IMP_OPT(OSSL_CRMF_CERTTEMPLATE, version, ASN1_INTEGER, 0),
/*
* serialNumber MUST be omitted. This field is assigned by the CA
* during certificate creation.
*/
ASN1_IMP_OPT(OSSL_CRMF_CERTTEMPLATE, serialNumber, ASN1_INTEGER, 1),
/*
* signingAlg MUST be omitted. This field is assigned by the CA
* during certificate creation.
*/
ASN1_IMP_OPT(OSSL_CRMF_CERTTEMPLATE, signingAlg, X509_ALGOR, 2),
ASN1_EXP_OPT(OSSL_CRMF_CERTTEMPLATE, issuer, X509_NAME, 3),
ASN1_IMP_OPT(OSSL_CRMF_CERTTEMPLATE, validity,
OSSL_CRMF_OPTIONALVALIDITY, 4),
ASN1_EXP_OPT(OSSL_CRMF_CERTTEMPLATE, subject, X509_NAME, 5),
ASN1_IMP_OPT(OSSL_CRMF_CERTTEMPLATE, publicKey, X509_PUBKEY, 6),
/* issuerUID is deprecated in version 2 */
ASN1_IMP_OPT(OSSL_CRMF_CERTTEMPLATE, issuerUID, ASN1_BIT_STRING, 7),
/* subjectUID is deprecated in version 2 */
ASN1_IMP_OPT(OSSL_CRMF_CERTTEMPLATE, subjectUID, ASN1_BIT_STRING, 8),
ASN1_IMP_SEQUENCE_OF_OPT(OSSL_CRMF_CERTTEMPLATE, extensions,
X509_EXTENSION, 9),
} ASN1_SEQUENCE_END(OSSL_CRMF_CERTTEMPLATE)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CRMF_CERTTEMPLATE)
ASN1_SEQUENCE(OSSL_CRMF_CERTREQUEST) = {
ASN1_SIMPLE(OSSL_CRMF_CERTREQUEST, certReqId, ASN1_INTEGER),
ASN1_SIMPLE(OSSL_CRMF_CERTREQUEST, certTemplate, OSSL_CRMF_CERTTEMPLATE),
ASN1_SEQUENCE_OF_OPT(OSSL_CRMF_CERTREQUEST, controls,
OSSL_CRMF_ATTRIBUTETYPEANDVALUE)
} ASN1_SEQUENCE_END(OSSL_CRMF_CERTREQUEST)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CRMF_CERTREQUEST)
IMPLEMENT_ASN1_DUP_FUNCTION(OSSL_CRMF_CERTREQUEST)
ASN1_SEQUENCE(OSSL_CRMF_MSG) = {
ASN1_SIMPLE(OSSL_CRMF_MSG, certReq, OSSL_CRMF_CERTREQUEST),
ASN1_OPT(OSSL_CRMF_MSG, popo, OSSL_CRMF_POPO),
ASN1_SEQUENCE_OF_OPT(OSSL_CRMF_MSG, regInfo,
OSSL_CRMF_ATTRIBUTETYPEANDVALUE)
} ASN1_SEQUENCE_END(OSSL_CRMF_MSG)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CRMF_MSG)
IMPLEMENT_ASN1_DUP_FUNCTION(OSSL_CRMF_MSG)
ASN1_ITEM_TEMPLATE(OSSL_CRMF_MSGS) =
ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
OSSL_CRMF_MSGS, OSSL_CRMF_MSG)
ASN1_ITEM_TEMPLATE_END(OSSL_CRMF_MSGS)
IMPLEMENT_ASN1_FUNCTIONS(OSSL_CRMF_MSGS)
| 10,429 | 46.19457 | 80 | c |
openssl | openssl-master/crypto/crmf/crmf_err.c | /*
* Generated by util/mkerr.pl DO NOT EDIT
* Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/err.h>
#include <openssl/crmferr.h>
#include "crypto/crmferr.h"
#ifndef OPENSSL_NO_CRMF
# ifndef OPENSSL_NO_ERR
static const ERR_STRING_DATA CRMF_str_reasons[] = {
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_BAD_PBM_ITERATIONCOUNT),
"bad pbm iterationcount"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_CRMFERROR), "crmferror"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_ERROR), "error"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_ERROR_DECODING_CERTIFICATE),
"error decoding certificate"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_ERROR_DECRYPTING_CERTIFICATE),
"error decrypting certificate"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_ERROR_DECRYPTING_SYMMETRIC_KEY),
"error decrypting symmetric key"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_FAILURE_OBTAINING_RANDOM),
"failure obtaining random"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_ITERATIONCOUNT_BELOW_100),
"iterationcount below 100"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_MALFORMED_IV), "malformed iv"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_NULL_ARGUMENT), "null argument"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_POPOSKINPUT_NOT_SUPPORTED),
"poposkinput not supported"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_POPO_INCONSISTENT_PUBLIC_KEY),
"popo inconsistent public key"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_POPO_MISSING), "popo missing"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_POPO_MISSING_PUBLIC_KEY),
"popo missing public key"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_POPO_MISSING_SUBJECT),
"popo missing subject"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_POPO_RAVERIFIED_NOT_ACCEPTED),
"popo raverified not accepted"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_SETTING_MAC_ALGOR_FAILURE),
"setting mac algor failure"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_SETTING_OWF_ALGOR_FAILURE),
"setting owf algor failure"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_UNSUPPORTED_ALGORITHM),
"unsupported algorithm"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_UNSUPPORTED_CIPHER),
"unsupported cipher"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_UNSUPPORTED_METHOD_FOR_CREATING_POPO),
"unsupported method for creating popo"},
{ERR_PACK(ERR_LIB_CRMF, 0, CRMF_R_UNSUPPORTED_POPO_METHOD),
"unsupported popo method"},
{0, NULL}
};
# endif
int ossl_err_load_CRMF_strings(void)
{
# ifndef OPENSSL_NO_ERR
if (ERR_reason_error_string(CRMF_str_reasons[0].error) == NULL)
ERR_load_strings_const(CRMF_str_reasons);
# endif
return 1;
}
#else
NON_EMPTY_TRANSLATION_UNIT
#endif
| 2,870 | 37.28 | 76 | c |
openssl | openssl-master/crypto/crmf/crmf_lib.c | /*-
* Copyright 2007-2021 The OpenSSL Project Authors. All Rights Reserved.
* Copyright Nokia 2007-2018
* Copyright Siemens AG 2015-2019
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*
* CRMF implementation by Martin Peylo, Miikka Viljanen, and David von Oheimb.
*/
/*
* This file contains the functions that handle the individual items inside
* the CRMF structures
*/
/*
* NAMING
*
* The 0 functions use the supplied structure pointer directly in the parent and
* it will be freed up when the parent is freed.
*
* The 1 functions use a copy of the supplied structure pointer (or in some
* cases increases its link count) in the parent and so both should be freed up.
*/
#include <openssl/asn1t.h>
#include "crmf_local.h"
#include "internal/sizes.h"
#include "crypto/evp.h"
#include "crypto/x509.h"
/* explicit #includes not strictly needed since implied by the above: */
#include <openssl/crmf.h>
#include <openssl/err.h>
#include <openssl/evp.h>
/*-
* atyp = Attribute Type
* valt = Value Type
* ctrlinf = "regCtrl" or "regInfo"
*/
#define IMPLEMENT_CRMF_CTRL_FUNC(atyp, valt, ctrlinf) \
valt *OSSL_CRMF_MSG_get0_##ctrlinf##_##atyp(const OSSL_CRMF_MSG *msg) \
{ \
int i; \
STACK_OF(OSSL_CRMF_ATTRIBUTETYPEANDVALUE) *controls; \
OSSL_CRMF_ATTRIBUTETYPEANDVALUE *atav = NULL; \
\
if (msg == NULL || msg->certReq == NULL) \
return NULL; \
controls = msg->certReq->controls; \
for (i = 0; i < sk_OSSL_CRMF_ATTRIBUTETYPEANDVALUE_num(controls); i++) { \
atav = sk_OSSL_CRMF_ATTRIBUTETYPEANDVALUE_value(controls, i); \
if (OBJ_obj2nid(atav->type) == NID_id_##ctrlinf##_##atyp) \
return atav->value.atyp; \
} \
return NULL; \
} \
\
int OSSL_CRMF_MSG_set1_##ctrlinf##_##atyp(OSSL_CRMF_MSG *msg, const valt *in) \
{ \
OSSL_CRMF_ATTRIBUTETYPEANDVALUE *atav = NULL; \
\
if (msg == NULL || in == NULL) \
goto err; \
if ((atav = OSSL_CRMF_ATTRIBUTETYPEANDVALUE_new()) == NULL) \
goto err; \
if ((atav->type = OBJ_nid2obj(NID_id_##ctrlinf##_##atyp)) == NULL) \
goto err; \
if ((atav->value.atyp = valt##_dup(in)) == NULL) \
goto err; \
if (!OSSL_CRMF_MSG_push0_##ctrlinf(msg, atav)) \
goto err; \
return 1; \
err: \
OSSL_CRMF_ATTRIBUTETYPEANDVALUE_free(atav); \
return 0; \
}
/*-
* Pushes the given control attribute into the controls stack of a CertRequest
* (section 6)
* returns 1 on success, 0 on error
*/
static int OSSL_CRMF_MSG_push0_regCtrl(OSSL_CRMF_MSG *crm,
OSSL_CRMF_ATTRIBUTETYPEANDVALUE *ctrl)
{
int new = 0;
if (crm == NULL || crm->certReq == NULL || ctrl == NULL) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_NULL_ARGUMENT);
return 0;
}
if (crm->certReq->controls == NULL) {
crm->certReq->controls = sk_OSSL_CRMF_ATTRIBUTETYPEANDVALUE_new_null();
if (crm->certReq->controls == NULL)
goto err;
new = 1;
}
if (!sk_OSSL_CRMF_ATTRIBUTETYPEANDVALUE_push(crm->certReq->controls, ctrl))
goto err;
return 1;
err:
if (new != 0) {
sk_OSSL_CRMF_ATTRIBUTETYPEANDVALUE_free(crm->certReq->controls);
crm->certReq->controls = NULL;
}
return 0;
}
/* id-regCtrl-regToken Control (section 6.1) */
IMPLEMENT_CRMF_CTRL_FUNC(regToken, ASN1_STRING, regCtrl)
/* id-regCtrl-authenticator Control (section 6.2) */
#define ASN1_UTF8STRING_dup ASN1_STRING_dup
IMPLEMENT_CRMF_CTRL_FUNC(authenticator, ASN1_UTF8STRING, regCtrl)
int OSSL_CRMF_MSG_set0_SinglePubInfo(OSSL_CRMF_SINGLEPUBINFO *spi,
int method, GENERAL_NAME *nm)
{
if (spi == NULL
|| method < OSSL_CRMF_PUB_METHOD_DONTCARE
|| method > OSSL_CRMF_PUB_METHOD_LDAP) {
ERR_raise(ERR_LIB_CRMF, ERR_R_PASSED_INVALID_ARGUMENT);
return 0;
}
if (!ASN1_INTEGER_set(spi->pubMethod, method))
return 0;
GENERAL_NAME_free(spi->pubLocation);
spi->pubLocation = nm;
return 1;
}
int
OSSL_CRMF_MSG_PKIPublicationInfo_push0_SinglePubInfo(OSSL_CRMF_PKIPUBLICATIONINFO *pi,
OSSL_CRMF_SINGLEPUBINFO *spi)
{
if (pi == NULL || spi == NULL) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_NULL_ARGUMENT);
return 0;
}
if (pi->pubInfos == NULL)
pi->pubInfos = sk_OSSL_CRMF_SINGLEPUBINFO_new_null();
if (pi->pubInfos == NULL)
return 0;
return sk_OSSL_CRMF_SINGLEPUBINFO_push(pi->pubInfos, spi);
}
int OSSL_CRMF_MSG_set_PKIPublicationInfo_action(OSSL_CRMF_PKIPUBLICATIONINFO *pi,
int action)
{
if (pi == NULL
|| action < OSSL_CRMF_PUB_ACTION_DONTPUBLISH
|| action > OSSL_CRMF_PUB_ACTION_PLEASEPUBLISH) {
ERR_raise(ERR_LIB_CRMF, ERR_R_PASSED_INVALID_ARGUMENT);
return 0;
}
return ASN1_INTEGER_set(pi->action, action);
}
/* id-regCtrl-pkiPublicationInfo Control (section 6.3) */
IMPLEMENT_CRMF_CTRL_FUNC(pkiPublicationInfo, OSSL_CRMF_PKIPUBLICATIONINFO,
regCtrl)
/* id-regCtrl-oldCertID Control (section 6.5) from the given */
IMPLEMENT_CRMF_CTRL_FUNC(oldCertID, OSSL_CRMF_CERTID, regCtrl)
OSSL_CRMF_CERTID *OSSL_CRMF_CERTID_gen(const X509_NAME *issuer,
const ASN1_INTEGER *serial)
{
OSSL_CRMF_CERTID *cid = NULL;
if (issuer == NULL || serial == NULL) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_NULL_ARGUMENT);
return NULL;
}
if ((cid = OSSL_CRMF_CERTID_new()) == NULL)
goto err;
if (!X509_NAME_set(&cid->issuer->d.directoryName, issuer))
goto err;
cid->issuer->type = GEN_DIRNAME;
ASN1_INTEGER_free(cid->serialNumber);
if ((cid->serialNumber = ASN1_INTEGER_dup(serial)) == NULL)
goto err;
return cid;
err:
OSSL_CRMF_CERTID_free(cid);
return NULL;
}
/*
* id-regCtrl-protocolEncrKey Control (section 6.6)
*/
IMPLEMENT_CRMF_CTRL_FUNC(protocolEncrKey, X509_PUBKEY, regCtrl)
/*-
* Pushes the attribute given in regInfo in to the CertReqMsg->regInfo stack.
* (section 7)
* returns 1 on success, 0 on error
*/
static int OSSL_CRMF_MSG_push0_regInfo(OSSL_CRMF_MSG *crm,
OSSL_CRMF_ATTRIBUTETYPEANDVALUE *ri)
{
STACK_OF(OSSL_CRMF_ATTRIBUTETYPEANDVALUE) *info = NULL;
if (crm == NULL || ri == NULL) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_NULL_ARGUMENT);
return 0;
}
if (crm->regInfo == NULL)
crm->regInfo = info = sk_OSSL_CRMF_ATTRIBUTETYPEANDVALUE_new_null();
if (crm->regInfo == NULL)
goto err;
if (!sk_OSSL_CRMF_ATTRIBUTETYPEANDVALUE_push(crm->regInfo, ri))
goto err;
return 1;
err:
if (info != NULL)
crm->regInfo = NULL;
sk_OSSL_CRMF_ATTRIBUTETYPEANDVALUE_free(info);
return 0;
}
/* id-regInfo-utf8Pairs to regInfo (section 7.1) */
IMPLEMENT_CRMF_CTRL_FUNC(utf8Pairs, ASN1_UTF8STRING, regInfo)
/* id-regInfo-certReq to regInfo (section 7.2) */
IMPLEMENT_CRMF_CTRL_FUNC(certReq, OSSL_CRMF_CERTREQUEST, regInfo)
/* retrieves the certificate template of crm */
OSSL_CRMF_CERTTEMPLATE *OSSL_CRMF_MSG_get0_tmpl(const OSSL_CRMF_MSG *crm)
{
if (crm == NULL || crm->certReq == NULL) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_NULL_ARGUMENT);
return NULL;
}
return crm->certReq->certTemplate;
}
int OSSL_CRMF_MSG_set0_validity(OSSL_CRMF_MSG *crm,
ASN1_TIME *notBefore, ASN1_TIME *notAfter)
{
OSSL_CRMF_OPTIONALVALIDITY *vld;
OSSL_CRMF_CERTTEMPLATE *tmpl = OSSL_CRMF_MSG_get0_tmpl(crm);
if (tmpl == NULL) { /* also crm == NULL implies this */
ERR_raise(ERR_LIB_CRMF, CRMF_R_NULL_ARGUMENT);
return 0;
}
if ((vld = OSSL_CRMF_OPTIONALVALIDITY_new()) == NULL)
return 0;
vld->notBefore = notBefore;
vld->notAfter = notAfter;
tmpl->validity = vld;
return 1;
}
int OSSL_CRMF_MSG_set_certReqId(OSSL_CRMF_MSG *crm, int rid)
{
if (crm == NULL || crm->certReq == NULL || crm->certReq->certReqId == NULL) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_NULL_ARGUMENT);
return 0;
}
return ASN1_INTEGER_set(crm->certReq->certReqId, rid);
}
/* get ASN.1 encoded integer, return -1 on error */
static int crmf_asn1_get_int(const ASN1_INTEGER *a)
{
int64_t res;
if (!ASN1_INTEGER_get_int64(&res, a)) {
ERR_raise(ERR_LIB_CRMF, ASN1_R_INVALID_NUMBER);
return -1;
}
if (res < INT_MIN) {
ERR_raise(ERR_LIB_CRMF, ASN1_R_TOO_SMALL);
return -1;
}
if (res > INT_MAX) {
ERR_raise(ERR_LIB_CRMF, ASN1_R_TOO_LARGE);
return -1;
}
return (int)res;
}
int OSSL_CRMF_MSG_get_certReqId(const OSSL_CRMF_MSG *crm)
{
if (crm == NULL || /* not really needed: */ crm->certReq == NULL) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_NULL_ARGUMENT);
return -1;
}
return crmf_asn1_get_int(crm->certReq->certReqId);
}
int OSSL_CRMF_MSG_set0_extensions(OSSL_CRMF_MSG *crm,
X509_EXTENSIONS *exts)
{
OSSL_CRMF_CERTTEMPLATE *tmpl = OSSL_CRMF_MSG_get0_tmpl(crm);
if (tmpl == NULL) { /* also crm == NULL implies this */
ERR_raise(ERR_LIB_CRMF, CRMF_R_NULL_ARGUMENT);
return 0;
}
if (sk_X509_EXTENSION_num(exts) == 0) {
sk_X509_EXTENSION_free(exts);
exts = NULL; /* do not include empty extensions list */
}
sk_X509_EXTENSION_pop_free(tmpl->extensions, X509_EXTENSION_free);
tmpl->extensions = exts;
return 1;
}
int OSSL_CRMF_MSG_push0_extension(OSSL_CRMF_MSG *crm,
X509_EXTENSION *ext)
{
int new = 0;
OSSL_CRMF_CERTTEMPLATE *tmpl = OSSL_CRMF_MSG_get0_tmpl(crm);
if (tmpl == NULL || ext == NULL) { /* also crm == NULL implies this */
ERR_raise(ERR_LIB_CRMF, CRMF_R_NULL_ARGUMENT);
return 0;
}
if (tmpl->extensions == NULL) {
if ((tmpl->extensions = sk_X509_EXTENSION_new_null()) == NULL)
goto err;
new = 1;
}
if (!sk_X509_EXTENSION_push(tmpl->extensions, ext))
goto err;
return 1;
err:
if (new != 0) {
sk_X509_EXTENSION_free(tmpl->extensions);
tmpl->extensions = NULL;
}
return 0;
}
static int create_popo_signature(OSSL_CRMF_POPOSIGNINGKEY *ps,
const OSSL_CRMF_CERTREQUEST *cr,
EVP_PKEY *pkey, const EVP_MD *digest,
OSSL_LIB_CTX *libctx, const char *propq)
{
char name[80] = "";
EVP_PKEY *pub;
if (ps == NULL || cr == NULL || pkey == NULL) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_NULL_ARGUMENT);
return 0;
}
pub = X509_PUBKEY_get0(cr->certTemplate->publicKey);
if (!ossl_x509_check_private_key(pub, pkey))
return 0;
if (ps->poposkInput != NULL) {
/* We do not support cases 1+2 defined in RFC 4211, section 4.1 */
ERR_raise(ERR_LIB_CRMF, CRMF_R_POPOSKINPUT_NOT_SUPPORTED);
return 0;
}
if (EVP_PKEY_get_default_digest_name(pkey, name, sizeof(name)) > 0
&& strcmp(name, "UNDEF") == 0) /* at least for Ed25519, Ed448 */
digest = NULL;
return ASN1_item_sign_ex(ASN1_ITEM_rptr(OSSL_CRMF_CERTREQUEST),
ps->algorithmIdentifier, NULL, ps->signature, cr,
NULL, pkey, digest, libctx, propq);
}
int OSSL_CRMF_MSG_create_popo(int meth, OSSL_CRMF_MSG *crm,
EVP_PKEY *pkey, const EVP_MD *digest,
OSSL_LIB_CTX *libctx, const char *propq)
{
OSSL_CRMF_POPO *pp = NULL;
ASN1_INTEGER *tag = NULL;
if (crm == NULL || (meth == OSSL_CRMF_POPO_SIGNATURE && pkey == NULL)) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_NULL_ARGUMENT);
return 0;
}
if (meth == OSSL_CRMF_POPO_NONE)
goto end;
if ((pp = OSSL_CRMF_POPO_new()) == NULL)
goto err;
pp->type = meth;
switch (meth) {
case OSSL_CRMF_POPO_RAVERIFIED:
if ((pp->value.raVerified = ASN1_NULL_new()) == NULL)
goto err;
break;
case OSSL_CRMF_POPO_SIGNATURE:
{
OSSL_CRMF_POPOSIGNINGKEY *ps = OSSL_CRMF_POPOSIGNINGKEY_new();
if (ps == NULL)
goto err;
if (!create_popo_signature(ps, crm->certReq, pkey, digest,
libctx, propq)) {
OSSL_CRMF_POPOSIGNINGKEY_free(ps);
goto err;
}
pp->value.signature = ps;
}
break;
case OSSL_CRMF_POPO_KEYENC:
if ((pp->value.keyEncipherment = OSSL_CRMF_POPOPRIVKEY_new()) == NULL)
goto err;
tag = ASN1_INTEGER_new();
pp->value.keyEncipherment->type =
OSSL_CRMF_POPOPRIVKEY_SUBSEQUENTMESSAGE;
pp->value.keyEncipherment->value.subsequentMessage = tag;
if (tag == NULL
|| !ASN1_INTEGER_set(tag, OSSL_CRMF_SUBSEQUENTMESSAGE_ENCRCERT))
goto err;
break;
default:
ERR_raise(ERR_LIB_CRMF, CRMF_R_UNSUPPORTED_METHOD_FOR_CREATING_POPO);
goto err;
}
end:
OSSL_CRMF_POPO_free(crm->popo);
crm->popo = pp;
return 1;
err:
OSSL_CRMF_POPO_free(pp);
return 0;
}
/* verifies the Proof-of-Possession of the request with the given rid in reqs */
int OSSL_CRMF_MSGS_verify_popo(const OSSL_CRMF_MSGS *reqs,
int rid, int acceptRAVerified,
OSSL_LIB_CTX *libctx, const char *propq)
{
OSSL_CRMF_MSG *req = NULL;
X509_PUBKEY *pubkey = NULL;
OSSL_CRMF_POPOSIGNINGKEY *sig = NULL;
const ASN1_ITEM *it;
void *asn;
if (reqs == NULL || (req = sk_OSSL_CRMF_MSG_value(reqs, rid)) == NULL) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_NULL_ARGUMENT);
return 0;
}
if (req->popo == NULL) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_POPO_MISSING);
return 0;
}
switch (req->popo->type) {
case OSSL_CRMF_POPO_RAVERIFIED:
if (!acceptRAVerified) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_POPO_RAVERIFIED_NOT_ACCEPTED);
return 0;
}
break;
case OSSL_CRMF_POPO_SIGNATURE:
pubkey = req->certReq->certTemplate->publicKey;
if (pubkey == NULL) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_POPO_MISSING_PUBLIC_KEY);
return 0;
}
sig = req->popo->value.signature;
if (sig->poposkInput != NULL) {
/*
* According to RFC 4211: publicKey contains a copy of
* the public key from the certificate template. This MUST be
* exactly the same value as contained in the certificate template.
*/
if (sig->poposkInput->publicKey == NULL) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_POPO_MISSING_PUBLIC_KEY);
return 0;
}
if (X509_PUBKEY_eq(pubkey, sig->poposkInput->publicKey) != 1) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_POPO_INCONSISTENT_PUBLIC_KEY);
return 0;
}
/*
* Should check at this point the contents of the authInfo sub-field
* as requested in FR #19807 according to RFC 4211 section 4.1.
*/
it = ASN1_ITEM_rptr(OSSL_CRMF_POPOSIGNINGKEYINPUT);
asn = sig->poposkInput;
} else {
if (req->certReq->certTemplate->subject == NULL) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_POPO_MISSING_SUBJECT);
return 0;
}
it = ASN1_ITEM_rptr(OSSL_CRMF_CERTREQUEST);
asn = req->certReq;
}
if (ASN1_item_verify_ex(it, sig->algorithmIdentifier, sig->signature,
asn, NULL, X509_PUBKEY_get0(pubkey), libctx,
propq) < 1)
return 0;
break;
case OSSL_CRMF_POPO_KEYENC:
/*
* When OSSL_CMP_certrep_new() supports encrypted certs,
* should return 1 if the type of req->popo->value.keyEncipherment
* is OSSL_CRMF_POPOPRIVKEY_SUBSEQUENTMESSAGE and
* its value.subsequentMessage == OSSL_CRMF_SUBSEQUENTMESSAGE_ENCRCERT
*/
case OSSL_CRMF_POPO_KEYAGREE:
default:
ERR_raise(ERR_LIB_CRMF, CRMF_R_UNSUPPORTED_POPO_METHOD);
return 0;
}
return 1;
}
X509_PUBKEY
*OSSL_CRMF_CERTTEMPLATE_get0_publicKey(const OSSL_CRMF_CERTTEMPLATE *tmpl)
{
return tmpl != NULL ? tmpl->publicKey : NULL;
}
const ASN1_INTEGER
*OSSL_CRMF_CERTTEMPLATE_get0_serialNumber(const OSSL_CRMF_CERTTEMPLATE *tmpl)
{
return tmpl != NULL ? tmpl->serialNumber : NULL;
}
const X509_NAME
*OSSL_CRMF_CERTTEMPLATE_get0_subject(const OSSL_CRMF_CERTTEMPLATE *tmpl)
{
return tmpl != NULL ? tmpl->subject : NULL;
}
const X509_NAME
*OSSL_CRMF_CERTTEMPLATE_get0_issuer(const OSSL_CRMF_CERTTEMPLATE *tmpl)
{
return tmpl != NULL ? tmpl->issuer : NULL;
}
X509_EXTENSIONS
*OSSL_CRMF_CERTTEMPLATE_get0_extensions(const OSSL_CRMF_CERTTEMPLATE *tmpl)
{
return tmpl != NULL ? tmpl->extensions : NULL;
}
const X509_NAME *OSSL_CRMF_CERTID_get0_issuer(const OSSL_CRMF_CERTID *cid)
{
return cid != NULL && cid->issuer->type == GEN_DIRNAME ?
cid->issuer->d.directoryName : NULL;
}
const ASN1_INTEGER *OSSL_CRMF_CERTID_get0_serialNumber(const OSSL_CRMF_CERTID
*cid)
{
return cid != NULL ? cid->serialNumber : NULL;
}
/*-
* Fill in the certificate template |tmpl|.
* Any other NULL argument will leave the respective field unchanged.
*/
int OSSL_CRMF_CERTTEMPLATE_fill(OSSL_CRMF_CERTTEMPLATE *tmpl,
EVP_PKEY *pubkey,
const X509_NAME *subject,
const X509_NAME *issuer,
const ASN1_INTEGER *serial)
{
if (tmpl == NULL) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_NULL_ARGUMENT);
return 0;
}
if (subject != NULL && !X509_NAME_set((X509_NAME **)&tmpl->subject, subject))
return 0;
if (issuer != NULL && !X509_NAME_set((X509_NAME **)&tmpl->issuer, issuer))
return 0;
if (serial != NULL) {
ASN1_INTEGER_free(tmpl->serialNumber);
if ((tmpl->serialNumber = ASN1_INTEGER_dup(serial)) == NULL)
return 0;
}
if (pubkey != NULL && !X509_PUBKEY_set(&tmpl->publicKey, pubkey))
return 0;
return 1;
}
/*-
* Decrypts the certificate in the given encryptedValue using private key pkey.
* This is needed for the indirect PoP method as in RFC 4210 section 5.2.8.2.
*
* returns a pointer to the decrypted certificate
* returns NULL on error or if no certificate available
*/
X509
*OSSL_CRMF_ENCRYPTEDVALUE_get1_encCert(const OSSL_CRMF_ENCRYPTEDVALUE *ecert,
OSSL_LIB_CTX *libctx, const char *propq,
EVP_PKEY *pkey)
{
X509 *cert = NULL; /* decrypted certificate */
EVP_CIPHER_CTX *evp_ctx = NULL; /* context for symmetric encryption */
unsigned char *ek = NULL; /* decrypted symmetric encryption key */
size_t eksize = 0; /* size of decrypted symmetric encryption key */
EVP_CIPHER *cipher = NULL; /* used cipher */
int cikeysize = 0; /* key size from cipher */
unsigned char *iv = NULL; /* initial vector for symmetric encryption */
unsigned char *outbuf = NULL; /* decryption output buffer */
const unsigned char *p = NULL; /* needed for decoding ASN1 */
int n, outlen = 0;
EVP_PKEY_CTX *pkctx = NULL; /* private key context */
char name[OSSL_MAX_NAME_SIZE];
if (ecert == NULL || ecert->symmAlg == NULL || ecert->encSymmKey == NULL
|| ecert->encValue == NULL || pkey == NULL) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_NULL_ARGUMENT);
return NULL;
}
/* select symmetric cipher based on algorithm given in message */
OBJ_obj2txt(name, sizeof(name), ecert->symmAlg->algorithm, 0);
(void)ERR_set_mark();
cipher = EVP_CIPHER_fetch(NULL, name, NULL);
if (cipher == NULL)
cipher = (EVP_CIPHER *)EVP_get_cipherbyname(name);
if (cipher == NULL) {
(void)ERR_clear_last_mark();
ERR_raise(ERR_LIB_CRMF, CRMF_R_UNSUPPORTED_CIPHER);
goto end;
}
(void)ERR_pop_to_mark();
cikeysize = EVP_CIPHER_get_key_length(cipher);
/* first the symmetric key needs to be decrypted */
pkctx = EVP_PKEY_CTX_new_from_pkey(libctx, pkey, propq);
if (pkctx == NULL || EVP_PKEY_decrypt_init(pkctx) <= 0
|| evp_pkey_decrypt_alloc(pkctx, &ek, &eksize, (size_t)cikeysize,
ecert->encSymmKey->data,
ecert->encSymmKey->length) <= 0)
goto end;
if ((iv = OPENSSL_malloc(EVP_CIPHER_get_iv_length(cipher))) == NULL)
goto end;
if (ASN1_TYPE_get_octetstring(ecert->symmAlg->parameter, iv,
EVP_CIPHER_get_iv_length(cipher))
!= EVP_CIPHER_get_iv_length(cipher)) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_MALFORMED_IV);
goto end;
}
/*
* d2i_X509 changes the given pointer, so use p for decoding the message and
* keep the original pointer in outbuf so the memory can be freed later
*/
if ((p = outbuf = OPENSSL_malloc(ecert->encValue->length +
EVP_CIPHER_get_block_size(cipher))) == NULL
|| (evp_ctx = EVP_CIPHER_CTX_new()) == NULL)
goto end;
EVP_CIPHER_CTX_set_padding(evp_ctx, 0);
if (!EVP_DecryptInit(evp_ctx, cipher, ek, iv)
|| !EVP_DecryptUpdate(evp_ctx, outbuf, &outlen,
ecert->encValue->data,
ecert->encValue->length)
|| !EVP_DecryptFinal(evp_ctx, outbuf + outlen, &n)) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_ERROR_DECRYPTING_CERTIFICATE);
goto end;
}
outlen += n;
/* convert decrypted certificate from DER to internal ASN.1 structure */
if ((cert = X509_new_ex(libctx, propq)) == NULL)
goto end;
if (d2i_X509(&cert, &p, outlen) == NULL)
ERR_raise(ERR_LIB_CRMF, CRMF_R_ERROR_DECODING_CERTIFICATE);
end:
EVP_PKEY_CTX_free(pkctx);
OPENSSL_free(outbuf);
EVP_CIPHER_CTX_free(evp_ctx);
EVP_CIPHER_free(cipher);
OPENSSL_clear_free(ek, eksize);
OPENSSL_free(iv);
return cert;
}
| 24,223 | 32.974755 | 86 | c |
openssl | openssl-master/crypto/crmf/crmf_local.h | /*-
* Copyright 2007-2021 The OpenSSL Project Authors. All Rights Reserved.
* Copyright Nokia 2007-2019
* Copyright Siemens AG 2015-2019
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*
* CRMF implementation by Martin Peylo, Miikka Viljanen, and David von Oheimb.
*/
#ifndef OSSL_CRYPTO_CRMF_LOCAL_H
# define OSSL_CRYPTO_CRMF_LOCAL_H
# include <openssl/crmf.h>
# include <openssl/err.h>
/* explicit #includes not strictly needed since implied by the above: */
# include <openssl/types.h>
# include <openssl/safestack.h>
# include <openssl/x509.h>
# include <openssl/x509v3.h>
/*-
* EncryptedValue ::= SEQUENCE {
* intendedAlg [0] AlgorithmIdentifier OPTIONAL,
* -- the intended algorithm for which the value will be used
* symmAlg [1] AlgorithmIdentifier OPTIONAL,
* -- the symmetric algorithm used to encrypt the value
* encSymmKey [2] BIT STRING OPTIONAL,
* -- the (encrypted) symmetric key used to encrypt the value
* keyAlg [3] AlgorithmIdentifier OPTIONAL,
* -- algorithm used to encrypt the symmetric key
* valueHint [4] OCTET STRING OPTIONAL,
* -- a brief description or identifier of the encValue content
* -- (may be meaningful only to the sending entity, and
* -- used only if EncryptedValue might be re-examined
* -- by the sending entity in the future)
* encValue BIT STRING
* -- the encrypted value itself
* }
*/
struct ossl_crmf_encryptedvalue_st {
X509_ALGOR *intendedAlg; /* 0 */
X509_ALGOR *symmAlg; /* 1 */
ASN1_BIT_STRING *encSymmKey; /* 2 */
X509_ALGOR *keyAlg; /* 3 */
ASN1_OCTET_STRING *valueHint; /* 4 */
ASN1_BIT_STRING *encValue;
} /* OSSL_CRMF_ENCRYPTEDVALUE */;
/*-
* Attributes ::= SET OF Attribute
* => X509_ATTRIBUTE
*
* PrivateKeyInfo ::= SEQUENCE {
* version INTEGER,
* privateKeyAlgorithm AlgorithmIdentifier,
* privateKey OCTET STRING,
* attributes [0] IMPLICIT Attributes OPTIONAL
* }
*/
typedef struct ossl_crmf_privatekeyinfo_st {
ASN1_INTEGER *version;
X509_ALGOR *privateKeyAlgorithm;
ASN1_OCTET_STRING *privateKey;
STACK_OF(X509_ATTRIBUTE) *attributes; /* [ 0 ] */
} OSSL_CRMF_PRIVATEKEYINFO;
DECLARE_ASN1_FUNCTIONS(OSSL_CRMF_PRIVATEKEYINFO)
/*-
* section 4.2.1 Private Key Info Content Type
* id-ct-encKeyWithID OBJECT IDENTIFIER ::= {id-ct 21}
*
* EncKeyWithID ::= SEQUENCE {
* privateKey PrivateKeyInfo,
* identifier CHOICE {
* string UTF8String,
* generalName GeneralName
* } OPTIONAL
* }
*/
typedef struct ossl_crmf_enckeywithid_identifier_st {
int type;
union {
ASN1_UTF8STRING *string;
GENERAL_NAME *generalName;
} value;
} OSSL_CRMF_ENCKEYWITHID_IDENTIFIER;
DECLARE_ASN1_FUNCTIONS(OSSL_CRMF_ENCKEYWITHID_IDENTIFIER)
typedef struct ossl_crmf_enckeywithid_st {
OSSL_CRMF_PRIVATEKEYINFO *privateKey;
/* [0] */
OSSL_CRMF_ENCKEYWITHID_IDENTIFIER *identifier;
} OSSL_CRMF_ENCKEYWITHID;
DECLARE_ASN1_FUNCTIONS(OSSL_CRMF_ENCKEYWITHID)
/*-
* CertId ::= SEQUENCE {
* issuer GeneralName,
* serialNumber INTEGER
* }
*/
struct ossl_crmf_certid_st {
GENERAL_NAME *issuer;
ASN1_INTEGER *serialNumber;
} /* OSSL_CRMF_CERTID */;
/*-
* SinglePubInfo ::= SEQUENCE {
* pubMethod INTEGER {
* dontCare (0),
* x500 (1),
* web (2),
* ldap (3) },
* pubLocation GeneralName OPTIONAL
* }
*/
struct ossl_crmf_singlepubinfo_st {
ASN1_INTEGER *pubMethod;
GENERAL_NAME *pubLocation;
} /* OSSL_CRMF_SINGLEPUBINFO */;
DEFINE_STACK_OF(OSSL_CRMF_SINGLEPUBINFO)
typedef STACK_OF(OSSL_CRMF_SINGLEPUBINFO) OSSL_CRMF_PUBINFOS;
/*-
* PKIPublicationInfo ::= SEQUENCE {
* action INTEGER {
* dontPublish (0),
* pleasePublish (1) },
* pubInfos SEQUENCE SIZE (1..MAX) OF SinglePubInfo OPTIONAL
* -- pubInfos MUST NOT be present if action is "dontPublish"
* -- (if action is "pleasePublish" and pubInfos is omitted,
* -- "dontCare" is assumed)
* }
*/
struct ossl_crmf_pkipublicationinfo_st {
ASN1_INTEGER *action;
OSSL_CRMF_PUBINFOS *pubInfos;
} /* OSSL_CRMF_PKIPUBLICATIONINFO */;
DECLARE_ASN1_DUP_FUNCTION(OSSL_CRMF_PKIPUBLICATIONINFO)
/*-
* PKMACValue ::= SEQUENCE {
* algId AlgorithmIdentifier,
* -- algorithm value shall be PasswordBasedMac {1 2 840 113533 7 66 13}
* -- parameter value is PBMParameter
* value BIT STRING
* }
*/
typedef struct ossl_crmf_pkmacvalue_st {
X509_ALGOR *algId;
ASN1_BIT_STRING *value;
} OSSL_CRMF_PKMACVALUE;
DECLARE_ASN1_FUNCTIONS(OSSL_CRMF_PKMACVALUE)
/*-
* SubsequentMessage ::= INTEGER {
* encrCert (0),
* -- requests that resulting certificate be encrypted for the
* -- end entity (following which, POP will be proven in a
* -- confirmation message)
* challengeResp (1)
* -- requests that CA engage in challenge-response exchange with
* -- end entity in order to prove private key possession
* }
*
* POPOPrivKey ::= CHOICE {
* thisMessage [0] BIT STRING, -- Deprecated
* -- possession is proven in this message (which contains the private
* -- key itself (encrypted for the CA))
* subsequentMessage [1] SubsequentMessage,
* -- possession will be proven in a subsequent message
* dhMAC [2] BIT STRING, -- Deprecated
* agreeMAC [3] PKMACValue,
* encryptedKey [4] EnvelopedData
* }
*/
typedef struct ossl_crmf_popoprivkey_st {
int type;
union {
ASN1_BIT_STRING *thisMessage; /* 0 */ /* Deprecated */
ASN1_INTEGER *subsequentMessage; /* 1 */
ASN1_BIT_STRING *dhMAC; /* 2 */ /* Deprecated */
OSSL_CRMF_PKMACVALUE *agreeMAC; /* 3 */
ASN1_NULL *encryptedKey; /* 4 */
/* When supported, ASN1_NULL needs to be replaced by CMS_ENVELOPEDDATA */
} value;
} OSSL_CRMF_POPOPRIVKEY;
DECLARE_ASN1_FUNCTIONS(OSSL_CRMF_POPOPRIVKEY)
/*-
* PBMParameter ::= SEQUENCE {
* salt OCTET STRING,
* owf AlgorithmIdentifier,
* -- AlgId for a One-Way Function (SHA-1 recommended)
* iterationCount INTEGER,
* -- number of times the OWF is applied
* mac AlgorithmIdentifier
* -- the MAC AlgId (e.g., DES-MAC, Triple-DES-MAC [PKCS11],
* -- or HMAC [HMAC, RFC2202])
* }
*/
struct ossl_crmf_pbmparameter_st {
ASN1_OCTET_STRING *salt;
X509_ALGOR *owf;
ASN1_INTEGER *iterationCount;
X509_ALGOR *mac;
} /* OSSL_CRMF_PBMPARAMETER */;
# define OSSL_CRMF_PBM_MAX_ITERATION_COUNT 100000 /* if too large allows DoS */
/*-
* POPOSigningKeyInput ::= SEQUENCE {
* authInfo CHOICE {
* sender [0] GeneralName,
* -- used only if an authenticated identity has been
* -- established for the sender (e.g., a DN from a
* -- previously-issued and currently-valid certificate)
* publicKeyMAC PKMACValue },
* -- used if no authenticated GeneralName currently exists for
* -- the sender; publicKeyMAC contains a password-based MAC
* -- on the DER-encoded value of publicKey
* publicKey SubjectPublicKeyInfo -- from CertTemplate
* }
*/
typedef struct ossl_crmf_poposigningkeyinput_authinfo_st {
int type;
union {
/* 0 */ GENERAL_NAME *sender;
/* 1 */ OSSL_CRMF_PKMACVALUE *publicKeyMAC;
} value;
} OSSL_CRMF_POPOSIGNINGKEYINPUT_AUTHINFO;
DECLARE_ASN1_FUNCTIONS(OSSL_CRMF_POPOSIGNINGKEYINPUT_AUTHINFO)
typedef struct ossl_crmf_poposigningkeyinput_st {
OSSL_CRMF_POPOSIGNINGKEYINPUT_AUTHINFO *authInfo;
X509_PUBKEY *publicKey;
} OSSL_CRMF_POPOSIGNINGKEYINPUT;
DECLARE_ASN1_FUNCTIONS(OSSL_CRMF_POPOSIGNINGKEYINPUT)
/*-
* POPOSigningKey ::= SEQUENCE {
* poposkInput [0] POPOSigningKeyInput OPTIONAL,
* algorithmIdentifier AlgorithmIdentifier,
* signature BIT STRING
* }
*/
struct ossl_crmf_poposigningkey_st {
OSSL_CRMF_POPOSIGNINGKEYINPUT *poposkInput;
X509_ALGOR *algorithmIdentifier;
ASN1_BIT_STRING *signature;
} /* OSSL_CRMF_POPOSIGNINGKEY */;
DECLARE_ASN1_FUNCTIONS(OSSL_CRMF_POPOSIGNINGKEY)
/*-
* ProofOfPossession ::= CHOICE {
* raVerified [0] NULL,
* -- used if the RA has already verified that the requester is in
* -- possession of the private key
* signature [1] POPOSigningKey,
* keyEncipherment [2] POPOPrivKey,
* keyAgreement [3] POPOPrivKey
* }
*/
typedef struct ossl_crmf_popo_st {
int type;
union {
ASN1_NULL *raVerified; /* 0 */
OSSL_CRMF_POPOSIGNINGKEY *signature; /* 1 */
OSSL_CRMF_POPOPRIVKEY *keyEncipherment; /* 2 */
OSSL_CRMF_POPOPRIVKEY *keyAgreement; /* 3 */
} value;
} OSSL_CRMF_POPO;
DECLARE_ASN1_FUNCTIONS(OSSL_CRMF_POPO)
/*-
* OptionalValidity ::= SEQUENCE {
* notBefore [0] Time OPTIONAL,
* notAfter [1] Time OPTIONAL -- at least one MUST be present
* }
*/
struct ossl_crmf_optionalvalidity_st {
/* 0 */ ASN1_TIME *notBefore;
/* 1 */ ASN1_TIME *notAfter;
} /* OSSL_CRMF_OPTIONALVALIDITY */;
DECLARE_ASN1_FUNCTIONS(OSSL_CRMF_OPTIONALVALIDITY)
/*-
* CertTemplate ::= SEQUENCE {
* version [0] Version OPTIONAL,
* serialNumber [1] INTEGER OPTIONAL,
* signingAlg [2] AlgorithmIdentifier OPTIONAL,
* issuer [3] Name OPTIONAL,
* validity [4] OptionalValidity OPTIONAL,
* subject [5] Name OPTIONAL,
* publicKey [6] SubjectPublicKeyInfo OPTIONAL,
* issuerUID [7] UniqueIdentifier OPTIONAL,
* subjectUID [8] UniqueIdentifier OPTIONAL,
* extensions [9] Extensions OPTIONAL
* }
*/
struct ossl_crmf_certtemplate_st {
ASN1_INTEGER *version;
ASN1_INTEGER *serialNumber; /* serialNumber MUST be omitted */
/* This field is assigned by the CA during certificate creation */
X509_ALGOR *signingAlg; /* signingAlg MUST be omitted */
/* This field is assigned by the CA during certificate creation */
const X509_NAME *issuer;
OSSL_CRMF_OPTIONALVALIDITY *validity;
const X509_NAME *subject;
X509_PUBKEY *publicKey;
ASN1_BIT_STRING *issuerUID; /* deprecated in version 2 */
/* According to rfc 3280: UniqueIdentifier ::= BIT STRING */
ASN1_BIT_STRING *subjectUID; /* deprecated in version 2 */
/* Could be X509_EXTENSION*S*, but that's only cosmetic */
STACK_OF(X509_EXTENSION) *extensions;
} /* OSSL_CRMF_CERTTEMPLATE */;
/*-
* CertRequest ::= SEQUENCE {
* certReqId INTEGER, -- ID for matching request and reply
* certTemplate CertTemplate, -- Selected fields of cert to be issued
* controls Controls OPTIONAL -- Attributes affecting issuance
* }
*/
struct ossl_crmf_certrequest_st {
ASN1_INTEGER *certReqId;
OSSL_CRMF_CERTTEMPLATE *certTemplate;
STACK_OF(OSSL_CRMF_ATTRIBUTETYPEANDVALUE /* Controls expanded */) *controls;
} /* OSSL_CRMF_CERTREQUEST */;
DECLARE_ASN1_FUNCTIONS(OSSL_CRMF_CERTREQUEST)
DECLARE_ASN1_DUP_FUNCTION(OSSL_CRMF_CERTREQUEST)
struct ossl_crmf_attributetypeandvalue_st {
ASN1_OBJECT *type;
union {
/* NID_id_regCtrl_regToken */
ASN1_UTF8STRING *regToken;
/* NID_id_regCtrl_authenticator */
ASN1_UTF8STRING *authenticator;
/* NID_id_regCtrl_pkiPublicationInfo */
OSSL_CRMF_PKIPUBLICATIONINFO *pkiPublicationInfo;
/* NID_id_regCtrl_oldCertID */
OSSL_CRMF_CERTID *oldCertID;
/* NID_id_regCtrl_protocolEncrKey */
X509_PUBKEY *protocolEncrKey;
/* NID_id_regInfo_utf8Pairs */
ASN1_UTF8STRING *utf8Pairs;
/* NID_id_regInfo_certReq */
OSSL_CRMF_CERTREQUEST *certReq;
ASN1_TYPE *other;
} value;
} /* OSSL_CRMF_ATTRIBUTETYPEANDVALUE */;
DECLARE_ASN1_FUNCTIONS(OSSL_CRMF_ATTRIBUTETYPEANDVALUE)
DEFINE_STACK_OF(OSSL_CRMF_ATTRIBUTETYPEANDVALUE)
DECLARE_ASN1_DUP_FUNCTION(OSSL_CRMF_ATTRIBUTETYPEANDVALUE)
/*-
* CertReqMessages ::= SEQUENCE SIZE (1..MAX) OF CertReqMsg
* CertReqMsg ::= SEQUENCE {
* certReq CertRequest,
* popo ProofOfPossession OPTIONAL,
* -- content depends upon key type
* regInfo SEQUENCE SIZE(1..MAX) OF AttributeTypeAndValue OPTIONAL
* }
*/
struct ossl_crmf_msg_st {
OSSL_CRMF_CERTREQUEST *certReq;
/* 0 */
OSSL_CRMF_POPO *popo;
/* 1 */
STACK_OF(OSSL_CRMF_ATTRIBUTETYPEANDVALUE) *regInfo;
} /* OSSL_CRMF_MSG */;
#endif
| 13,056 | 32.826425 | 81 | h |
openssl | openssl-master/crypto/crmf/crmf_pbm.c | /*-
* Copyright 2007-2021 The OpenSSL Project Authors. All Rights Reserved.
* Copyright Nokia 2007-2019
* Copyright Siemens AG 2015-2019
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*
* CRMF implementation by Martin Peylo, Miikka Viljanen, and David von Oheimb.
*/
#include <string.h>
#include <openssl/rand.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
/* explicit #includes not strictly needed since implied by the above: */
#include <openssl/asn1t.h>
#include <openssl/crmf.h>
#include <openssl/err.h>
#include <openssl/params.h>
#include <openssl/core_names.h>
#include "internal/sizes.h"
#include "crmf_local.h"
/*-
* creates and initializes OSSL_CRMF_PBMPARAMETER (section 4.4)
* |slen| SHOULD be at least 8 (16 is common)
* |owfnid| e.g., NID_sha256
* |itercnt| MUST be >= 100 (e.g., 500) and <= OSSL_CRMF_PBM_MAX_ITERATION_COUNT
* |macnid| e.g., NID_hmac_sha1
* returns pointer to OSSL_CRMF_PBMPARAMETER on success, NULL on error
*/
OSSL_CRMF_PBMPARAMETER *OSSL_CRMF_pbmp_new(OSSL_LIB_CTX *libctx, size_t slen,
int owfnid, size_t itercnt,
int macnid)
{
OSSL_CRMF_PBMPARAMETER *pbm = NULL;
unsigned char *salt = NULL;
if ((pbm = OSSL_CRMF_PBMPARAMETER_new()) == NULL)
goto err;
/*
* salt contains a randomly generated value used in computing the key
* of the MAC process. The salt SHOULD be at least 8 octets (64
* bits) long.
*/
if ((salt = OPENSSL_malloc(slen)) == NULL)
goto err;
if (RAND_bytes_ex(libctx, salt, slen, 0) <= 0) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_FAILURE_OBTAINING_RANDOM);
goto err;
}
if (!ASN1_OCTET_STRING_set(pbm->salt, salt, (int)slen))
goto err;
/*
* owf identifies the hash algorithm and associated parameters used to
* compute the key used in the MAC process. All implementations MUST
* support SHA-1.
*/
if (!X509_ALGOR_set0(pbm->owf, OBJ_nid2obj(owfnid), V_ASN1_UNDEF, NULL)) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_SETTING_OWF_ALGOR_FAILURE);
goto err;
}
/*
* iterationCount identifies the number of times the hash is applied
* during the key computation process. The iterationCount MUST be a
* minimum of 100. Many people suggest using values as high as 1000
* iterations as the minimum value. The trade off here is between
* protection of the password from attacks and the time spent by the
* server processing all of the different iterations in deriving
* passwords. Hashing is generally considered a cheap operation but
* this may not be true with all hash functions in the future.
*/
if (itercnt < 100) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_ITERATIONCOUNT_BELOW_100);
goto err;
}
if (itercnt > OSSL_CRMF_PBM_MAX_ITERATION_COUNT) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_BAD_PBM_ITERATIONCOUNT);
goto err;
}
if (!ASN1_INTEGER_set(pbm->iterationCount, itercnt)) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_CRMFERROR);
goto err;
}
/*
* mac identifies the algorithm and associated parameters of the MAC
* function to be used. All implementations MUST support HMAC-SHA1 [HMAC].
* All implementations SHOULD support DES-MAC and Triple-DES-MAC [PKCS11].
*/
if (!X509_ALGOR_set0(pbm->mac, OBJ_nid2obj(macnid), V_ASN1_UNDEF, NULL)) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_SETTING_MAC_ALGOR_FAILURE);
goto err;
}
OPENSSL_free(salt);
return pbm;
err:
OPENSSL_free(salt);
OSSL_CRMF_PBMPARAMETER_free(pbm);
return NULL;
}
/*-
* calculates the PBM based on the settings of the given OSSL_CRMF_PBMPARAMETER
* |pbmp| identifies the algorithms, salt to use
* |msg| message to apply the PBM for
* |msglen| length of the message
* |sec| key to use
* |seclen| length of the key
* |out| pointer to the computed mac, will be set on success
* |outlen| if not NULL, will set variable to the length of the mac on success
* returns 1 on success, 0 on error
*/
/* could be combined with other MAC calculations in the library */
int OSSL_CRMF_pbm_new(OSSL_LIB_CTX *libctx, const char *propq,
const OSSL_CRMF_PBMPARAMETER *pbmp,
const unsigned char *msg, size_t msglen,
const unsigned char *sec, size_t seclen,
unsigned char **out, size_t *outlen)
{
int mac_nid, hmac_md_nid = NID_undef;
char mdname[OSSL_MAX_NAME_SIZE];
char hmac_mdname[OSSL_MAX_NAME_SIZE];
EVP_MD *owf = NULL;
EVP_MD_CTX *ctx = NULL;
unsigned char basekey[EVP_MAX_MD_SIZE];
unsigned int bklen = EVP_MAX_MD_SIZE;
int64_t iterations;
unsigned char *mac_res = 0;
int ok = 0;
if (out == NULL || pbmp == NULL || pbmp->mac == NULL
|| pbmp->mac->algorithm == NULL || msg == NULL || sec == NULL) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_NULL_ARGUMENT);
goto err;
}
if ((mac_res = OPENSSL_malloc(EVP_MAX_MD_SIZE)) == NULL)
goto err;
/*
* owf identifies the hash algorithm and associated parameters used to
* compute the key used in the MAC process. All implementations MUST
* support SHA-1.
*/
OBJ_obj2txt(mdname, sizeof(mdname), pbmp->owf->algorithm, 0);
if ((owf = EVP_MD_fetch(libctx, mdname, propq)) == NULL) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_UNSUPPORTED_ALGORITHM);
goto err;
}
if ((ctx = EVP_MD_CTX_new()) == NULL)
goto err;
/* compute the basekey of the salted secret */
if (!EVP_DigestInit_ex(ctx, owf, NULL))
goto err;
/* first the secret */
if (!EVP_DigestUpdate(ctx, sec, seclen))
goto err;
/* then the salt */
if (!EVP_DigestUpdate(ctx, pbmp->salt->data, pbmp->salt->length))
goto err;
if (!EVP_DigestFinal_ex(ctx, basekey, &bklen))
goto err;
if (!ASN1_INTEGER_get_int64(&iterations, pbmp->iterationCount)
|| iterations < 100 /* min from RFC */
|| iterations > OSSL_CRMF_PBM_MAX_ITERATION_COUNT) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_BAD_PBM_ITERATIONCOUNT);
goto err;
}
/* the first iteration was already done above */
while (--iterations > 0) {
if (!EVP_DigestInit_ex(ctx, owf, NULL))
goto err;
if (!EVP_DigestUpdate(ctx, basekey, bklen))
goto err;
if (!EVP_DigestFinal_ex(ctx, basekey, &bklen))
goto err;
}
/*
* mac identifies the algorithm and associated parameters of the MAC
* function to be used. All implementations MUST support HMAC-SHA1 [HMAC].
* All implementations SHOULD support DES-MAC and Triple-DES-MAC [PKCS11].
*/
mac_nid = OBJ_obj2nid(pbmp->mac->algorithm);
if (!EVP_PBE_find(EVP_PBE_TYPE_PRF, mac_nid, NULL, &hmac_md_nid, NULL)
|| OBJ_obj2txt(hmac_mdname, sizeof(hmac_mdname),
OBJ_nid2obj(hmac_md_nid), 0) <= 0) {
ERR_raise(ERR_LIB_CRMF, CRMF_R_UNSUPPORTED_ALGORITHM);
goto err;
}
/* could be generalized to allow non-HMAC: */
if (EVP_Q_mac(libctx, "HMAC", propq, hmac_mdname, NULL, basekey, bklen,
msg, msglen, mac_res, EVP_MAX_MD_SIZE, outlen) == NULL)
goto err;
ok = 1;
err:
OPENSSL_cleanse(basekey, bklen);
EVP_MD_free(owf);
EVP_MD_CTX_free(ctx);
if (ok == 1) {
*out = mac_res;
return 1;
}
OPENSSL_free(mac_res);
if (pbmp != NULL && pbmp->mac != NULL) {
char buf[128];
if (OBJ_obj2txt(buf, sizeof(buf), pbmp->mac->algorithm, 0))
ERR_add_error_data(1, buf);
}
return 0;
}
| 7,940 | 32.935897 | 80 | c |
openssl | openssl-master/crypto/ct/ct_b64.c | /*
* Copyright 2016-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <limits.h>
#include <string.h>
#include <openssl/ct.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include "ct_local.h"
/*
* Decodes the base64 string |in| into |out|.
* A new string will be malloc'd and assigned to |out|. This will be owned by
* the caller. Do not provide a pre-allocated string in |out|.
*/
static int ct_base64_decode(const char *in, unsigned char **out)
{
size_t inlen = strlen(in);
int outlen, i;
unsigned char *outbuf = NULL;
if (inlen == 0) {
*out = NULL;
return 0;
}
outlen = (inlen / 4) * 3;
outbuf = OPENSSL_malloc(outlen);
if (outbuf == NULL)
goto err;
outlen = EVP_DecodeBlock(outbuf, (unsigned char *)in, inlen);
if (outlen < 0) {
ERR_raise(ERR_LIB_CT, CT_R_BASE64_DECODE_ERROR);
goto err;
}
/* Subtract padding bytes from |outlen|. Any more than 2 is malformed. */
i = 0;
while (in[--inlen] == '=') {
--outlen;
if (++i > 2)
goto err;
}
*out = outbuf;
return outlen;
err:
OPENSSL_free(outbuf);
return -1;
}
SCT *SCT_new_from_base64(unsigned char version, const char *logid_base64,
ct_log_entry_type_t entry_type, uint64_t timestamp,
const char *extensions_base64,
const char *signature_base64)
{
SCT *sct = SCT_new();
unsigned char *dec = NULL;
const unsigned char* p = NULL;
int declen;
if (sct == NULL) {
ERR_raise(ERR_LIB_CT, ERR_R_CT_LIB);
return NULL;
}
/*
* RFC6962 section 4.1 says we "MUST NOT expect this to be 0", but we
* can only construct SCT versions that have been defined.
*/
if (!SCT_set_version(sct, version)) {
ERR_raise(ERR_LIB_CT, CT_R_SCT_UNSUPPORTED_VERSION);
goto err;
}
declen = ct_base64_decode(logid_base64, &dec);
if (declen < 0) {
ERR_raise(ERR_LIB_CT, X509_R_BASE64_DECODE_ERROR);
goto err;
}
if (!SCT_set0_log_id(sct, dec, declen))
goto err;
dec = NULL;
declen = ct_base64_decode(extensions_base64, &dec);
if (declen < 0) {
ERR_raise(ERR_LIB_CT, X509_R_BASE64_DECODE_ERROR);
goto err;
}
SCT_set0_extensions(sct, dec, declen);
dec = NULL;
declen = ct_base64_decode(signature_base64, &dec);
if (declen < 0) {
ERR_raise(ERR_LIB_CT, X509_R_BASE64_DECODE_ERROR);
goto err;
}
p = dec;
if (o2i_SCT_signature(sct, &p, declen) <= 0)
goto err;
OPENSSL_free(dec);
dec = NULL;
SCT_set_timestamp(sct, timestamp);
if (!SCT_set_log_entry_type(sct, entry_type))
goto err;
return sct;
err:
OPENSSL_free(dec);
SCT_free(sct);
return NULL;
}
/*
* Allocate, build and returns a new |ct_log| from input |pkey_base64|
* It returns 1 on success,
* 0 on decoding failure, or invalid parameter if any
* -1 on internal (malloc) failure
*/
int CTLOG_new_from_base64_ex(CTLOG **ct_log, const char *pkey_base64,
const char *name, OSSL_LIB_CTX *libctx,
const char *propq)
{
unsigned char *pkey_der = NULL;
int pkey_der_len;
const unsigned char *p;
EVP_PKEY *pkey = NULL;
if (ct_log == NULL) {
ERR_raise(ERR_LIB_CT, ERR_R_PASSED_INVALID_ARGUMENT);
return 0;
}
pkey_der_len = ct_base64_decode(pkey_base64, &pkey_der);
if (pkey_der_len < 0) {
ERR_raise(ERR_LIB_CT, CT_R_LOG_CONF_INVALID_KEY);
return 0;
}
p = pkey_der;
pkey = d2i_PUBKEY_ex(NULL, &p, pkey_der_len, libctx, propq);
OPENSSL_free(pkey_der);
if (pkey == NULL) {
ERR_raise(ERR_LIB_CT, CT_R_LOG_CONF_INVALID_KEY);
return 0;
}
*ct_log = CTLOG_new_ex(pkey, name, libctx, propq);
if (*ct_log == NULL) {
EVP_PKEY_free(pkey);
return 0;
}
return 1;
}
int CTLOG_new_from_base64(CTLOG **ct_log, const char *pkey_base64,
const char *name)
{
return CTLOG_new_from_base64_ex(ct_log, pkey_base64, name, NULL, NULL);
}
| 4,473 | 24.565714 | 78 | c |
openssl | openssl-master/crypto/ct/ct_err.c | /*
* Generated by util/mkerr.pl DO NOT EDIT
* Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/err.h>
#include <openssl/cterr.h>
#include "crypto/cterr.h"
#ifndef OPENSSL_NO_CT
# ifndef OPENSSL_NO_ERR
static const ERR_STRING_DATA CT_str_reasons[] = {
{ERR_PACK(ERR_LIB_CT, 0, CT_R_BASE64_DECODE_ERROR), "base64 decode error"},
{ERR_PACK(ERR_LIB_CT, 0, CT_R_INVALID_LOG_ID_LENGTH),
"invalid log id length"},
{ERR_PACK(ERR_LIB_CT, 0, CT_R_LOG_CONF_INVALID), "log conf invalid"},
{ERR_PACK(ERR_LIB_CT, 0, CT_R_LOG_CONF_INVALID_KEY),
"log conf invalid key"},
{ERR_PACK(ERR_LIB_CT, 0, CT_R_LOG_CONF_MISSING_DESCRIPTION),
"log conf missing description"},
{ERR_PACK(ERR_LIB_CT, 0, CT_R_LOG_CONF_MISSING_KEY),
"log conf missing key"},
{ERR_PACK(ERR_LIB_CT, 0, CT_R_LOG_KEY_INVALID), "log key invalid"},
{ERR_PACK(ERR_LIB_CT, 0, CT_R_SCT_FUTURE_TIMESTAMP),
"sct future timestamp"},
{ERR_PACK(ERR_LIB_CT, 0, CT_R_SCT_INVALID), "sct invalid"},
{ERR_PACK(ERR_LIB_CT, 0, CT_R_SCT_INVALID_SIGNATURE),
"sct invalid signature"},
{ERR_PACK(ERR_LIB_CT, 0, CT_R_SCT_LIST_INVALID), "sct list invalid"},
{ERR_PACK(ERR_LIB_CT, 0, CT_R_SCT_LOG_ID_MISMATCH), "sct log id mismatch"},
{ERR_PACK(ERR_LIB_CT, 0, CT_R_SCT_NOT_SET), "sct not set"},
{ERR_PACK(ERR_LIB_CT, 0, CT_R_SCT_UNSUPPORTED_VERSION),
"sct unsupported version"},
{ERR_PACK(ERR_LIB_CT, 0, CT_R_UNRECOGNIZED_SIGNATURE_NID),
"unrecognized signature nid"},
{ERR_PACK(ERR_LIB_CT, 0, CT_R_UNSUPPORTED_ENTRY_TYPE),
"unsupported entry type"},
{ERR_PACK(ERR_LIB_CT, 0, CT_R_UNSUPPORTED_VERSION), "unsupported version"},
{0, NULL}
};
# endif
int ossl_err_load_CT_strings(void)
{
# ifndef OPENSSL_NO_ERR
if (ERR_reason_error_string(CT_str_reasons[0].error) == NULL)
ERR_load_strings_const(CT_str_reasons);
# endif
return 1;
}
#else
NON_EMPTY_TRANSLATION_UNIT
#endif
| 2,226 | 34.919355 | 79 | c |
openssl | openssl-master/crypto/ct/ct_local.h | /*
* Copyright 2015-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stddef.h>
#include <openssl/ct.h>
#include <openssl/evp.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
#include <openssl/safestack.h>
/*
* From RFC6962: opaque SerializedSCT<1..2^16-1>; struct { SerializedSCT
* sct_list <1..2^16-1>; } SignedCertificateTimestampList;
*/
# define MAX_SCT_SIZE 65535
# define MAX_SCT_LIST_SIZE MAX_SCT_SIZE
/*
* Macros to read and write integers in network-byte order.
*/
#define n2s(c,s) ((s=(((unsigned int)((c)[0]))<< 8)| \
(((unsigned int)((c)[1])) )),c+=2)
#define s2n(s,c) ((c[0]=(unsigned char)(((s)>> 8)&0xff), \
c[1]=(unsigned char)(((s) )&0xff)),c+=2)
#define l2n3(l,c) ((c[0]=(unsigned char)(((l)>>16)&0xff), \
c[1]=(unsigned char)(((l)>> 8)&0xff), \
c[2]=(unsigned char)(((l) )&0xff)),c+=3)
#define n2l8(c,l) (l =((uint64_t)(*((c)++)))<<56, \
l|=((uint64_t)(*((c)++)))<<48, \
l|=((uint64_t)(*((c)++)))<<40, \
l|=((uint64_t)(*((c)++)))<<32, \
l|=((uint64_t)(*((c)++)))<<24, \
l|=((uint64_t)(*((c)++)))<<16, \
l|=((uint64_t)(*((c)++)))<< 8, \
l|=((uint64_t)(*((c)++))))
#define l2n8(l,c) (*((c)++)=(unsigned char)(((l)>>56)&0xff), \
*((c)++)=(unsigned char)(((l)>>48)&0xff), \
*((c)++)=(unsigned char)(((l)>>40)&0xff), \
*((c)++)=(unsigned char)(((l)>>32)&0xff), \
*((c)++)=(unsigned char)(((l)>>24)&0xff), \
*((c)++)=(unsigned char)(((l)>>16)&0xff), \
*((c)++)=(unsigned char)(((l)>> 8)&0xff), \
*((c)++)=(unsigned char)(((l) )&0xff))
/* Signed Certificate Timestamp */
struct sct_st {
sct_version_t version;
/* If version is not SCT_VERSION_V1, this contains the encoded SCT */
unsigned char *sct;
size_t sct_len;
/* If version is SCT_VERSION_V1, fields below contain components of the SCT */
unsigned char *log_id;
size_t log_id_len;
/*
* Note, we cannot distinguish between an unset timestamp, and one
* that is set to 0. However since CT didn't exist in 1970, no real
* SCT should ever be set as such.
*/
uint64_t timestamp;
unsigned char *ext;
size_t ext_len;
unsigned char hash_alg;
unsigned char sig_alg;
unsigned char *sig;
size_t sig_len;
/* Log entry type */
ct_log_entry_type_t entry_type;
/* Where this SCT was found, e.g. certificate, OCSP response, etc. */
sct_source_t source;
/* The result of the last attempt to validate this SCT. */
sct_validation_status_t validation_status;
};
/* Miscellaneous data that is useful when verifying an SCT */
struct sct_ctx_st {
/* Public key */
EVP_PKEY *pkey;
/* Hash of public key */
unsigned char *pkeyhash;
size_t pkeyhashlen;
/* For pre-certificate: issuer public key hash */
unsigned char *ihash;
size_t ihashlen;
/* certificate encoding */
unsigned char *certder;
size_t certderlen;
/* pre-certificate encoding */
unsigned char *preder;
size_t prederlen;
/* milliseconds since epoch (to check that the SCT isn't from the future) */
uint64_t epoch_time_in_ms;
OSSL_LIB_CTX *libctx;
char *propq;
};
/* Context when evaluating whether a Certificate Transparency policy is met */
struct ct_policy_eval_ctx_st {
X509 *cert;
X509 *issuer;
CTLOG_STORE *log_store;
/* milliseconds since epoch (to check that SCTs aren't from the future) */
uint64_t epoch_time_in_ms;
OSSL_LIB_CTX *libctx;
char *propq;
};
/*
* Creates a new context for verifying an SCT.
*/
SCT_CTX *SCT_CTX_new(OSSL_LIB_CTX *ctx, const char *propq);
/*
* Deletes an SCT verification context.
*/
void SCT_CTX_free(SCT_CTX *sctx);
/*
* Sets the certificate that the SCT was created for.
* If *cert does not have a poison extension, presigner must be NULL.
* If *cert does not have a poison extension, it may have a single SCT
* (NID_ct_precert_scts) extension.
* If either *cert or *presigner have an AKID (NID_authority_key_identifier)
* extension, both must have one.
* Returns 1 on success, 0 on failure.
*/
__owur int SCT_CTX_set1_cert(SCT_CTX *sctx, X509 *cert, X509 *presigner);
/*
* Sets the issuer of the certificate that the SCT was created for.
* This is just a convenience method to save extracting the public key and
* calling SCT_CTX_set1_issuer_pubkey().
* Issuer must not be NULL.
* Returns 1 on success, 0 on failure.
*/
__owur int SCT_CTX_set1_issuer(SCT_CTX *sctx, const X509 *issuer);
/*
* Sets the public key of the issuer of the certificate that the SCT was created
* for.
* The public key must not be NULL.
* Returns 1 on success, 0 on failure.
*/
__owur int SCT_CTX_set1_issuer_pubkey(SCT_CTX *sctx, X509_PUBKEY *pubkey);
/*
* Sets the public key of the CT log that the SCT is from.
* Returns 1 on success, 0 on failure.
*/
__owur int SCT_CTX_set1_pubkey(SCT_CTX *sctx, X509_PUBKEY *pubkey);
/*
* Sets the time to evaluate the SCT against, in milliseconds since the Unix
* epoch. If the SCT's timestamp is after this time, it will be interpreted as
* having been issued in the future. RFC6962 states that "TLS clients MUST
* reject SCTs whose timestamp is in the future", so an SCT will not validate
* in this case.
*/
void SCT_CTX_set_time(SCT_CTX *sctx, uint64_t time_in_ms);
/*
* Verifies an SCT with the given context.
* Returns 1 if the SCT verifies successfully; any other value indicates
* failure. See EVP_DigestVerifyFinal() for the meaning of those values.
*/
__owur int SCT_CTX_verify(const SCT_CTX *sctx, const SCT *sct);
/*
* Does this SCT have the minimum fields populated to be usable?
* Returns 1 if so, 0 otherwise.
*/
__owur int SCT_is_complete(const SCT *sct);
/*
* Does this SCT have the signature-related fields populated?
* Returns 1 if so, 0 otherwise.
* This checks that the signature and hash algorithms are set to supported
* values and that the signature field is set.
*/
__owur int SCT_signature_is_complete(const SCT *sct);
/*
* Serialize (to TLS format) an |sct| signature and write it to |out|.
* If |out| is null, no signature will be output but the length will be returned.
* If |out| points to a null pointer, a string will be allocated to hold the
* TLS-format signature. It is the responsibility of the caller to free it.
* If |out| points to an allocated string, the signature will be written to it.
* The length of the signature in TLS format will be returned.
*/
__owur int i2o_SCT_signature(const SCT *sct, unsigned char **out);
/*
* Parses an SCT signature in TLS format and populates the |sct| with it.
* |in| should be a pointer to a string containing the TLS-format signature.
* |in| will be advanced to the end of the signature if parsing succeeds.
* |len| should be the length of the signature in |in|.
* Returns the number of bytes parsed, or a negative integer if an error occurs.
* If an error occurs, the SCT's signature NID may be updated whilst the
* signature field itself remains unset.
*/
__owur int o2i_SCT_signature(SCT *sct, const unsigned char **in, size_t len);
/*
* Handlers for Certificate Transparency X509v3/OCSP extensions
*/
extern const X509V3_EXT_METHOD ossl_v3_ct_scts[3];
| 7,873 | 35.119266 | 82 | h |
openssl | openssl-master/crypto/ct/ct_log.c | /*
* Copyright 2016-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdlib.h>
#include <string.h>
#include <openssl/conf.h>
#include <openssl/ct.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/safestack.h>
#include "internal/cryptlib.h"
/*
* Information about a CT log server.
*/
struct ctlog_st {
OSSL_LIB_CTX *libctx;
char *propq;
char *name;
uint8_t log_id[CT_V1_HASHLEN];
EVP_PKEY *public_key;
};
/*
* A store for multiple CTLOG instances.
* It takes ownership of any CTLOG instances added to it.
*/
struct ctlog_store_st {
OSSL_LIB_CTX *libctx;
char *propq;
STACK_OF(CTLOG) *logs;
};
/* The context when loading a CT log list from a CONF file. */
typedef struct ctlog_store_load_ctx_st {
CTLOG_STORE *log_store;
CONF *conf;
size_t invalid_log_entries;
} CTLOG_STORE_LOAD_CTX;
/*
* Creates an empty context for loading a CT log store.
* It should be populated before use.
*/
static CTLOG_STORE_LOAD_CTX *ctlog_store_load_ctx_new(void);
/*
* Deletes a CT log store load context.
* Does not delete any of the fields.
*/
static void ctlog_store_load_ctx_free(CTLOG_STORE_LOAD_CTX* ctx);
static CTLOG_STORE_LOAD_CTX *ctlog_store_load_ctx_new(void)
{
CTLOG_STORE_LOAD_CTX *ctx = OPENSSL_zalloc(sizeof(*ctx));
return ctx;
}
static void ctlog_store_load_ctx_free(CTLOG_STORE_LOAD_CTX* ctx)
{
OPENSSL_free(ctx);
}
/* Converts a log's public key into a SHA256 log ID */
static int ct_v1_log_id_from_pkey(CTLOG *log, EVP_PKEY *pkey)
{
int ret = 0;
unsigned char *pkey_der = NULL;
int pkey_der_len = i2d_PUBKEY(pkey, &pkey_der);
unsigned int len;
EVP_MD *sha256 = NULL;
if (pkey_der_len <= 0) {
ERR_raise(ERR_LIB_CT, CT_R_LOG_KEY_INVALID);
goto err;
}
sha256 = EVP_MD_fetch(log->libctx, "SHA2-256", log->propq);
if (sha256 == NULL) {
ERR_raise(ERR_LIB_CT, ERR_R_EVP_LIB);
goto err;
}
ret = EVP_Digest(pkey_der, pkey_der_len, log->log_id, &len, sha256,
NULL);
err:
EVP_MD_free(sha256);
OPENSSL_free(pkey_der);
return ret;
}
CTLOG_STORE *CTLOG_STORE_new_ex(OSSL_LIB_CTX *libctx, const char *propq)
{
CTLOG_STORE *ret = OPENSSL_zalloc(sizeof(*ret));
if (ret == NULL)
return NULL;
ret->libctx = libctx;
if (propq != NULL) {
ret->propq = OPENSSL_strdup(propq);
if (ret->propq == NULL)
goto err;
}
ret->logs = sk_CTLOG_new_null();
if (ret->logs == NULL) {
ERR_raise(ERR_LIB_CT, ERR_R_CRYPTO_LIB);
goto err;
}
return ret;
err:
CTLOG_STORE_free(ret);
return NULL;
}
CTLOG_STORE *CTLOG_STORE_new(void)
{
return CTLOG_STORE_new_ex(NULL, NULL);
}
void CTLOG_STORE_free(CTLOG_STORE *store)
{
if (store != NULL) {
OPENSSL_free(store->propq);
sk_CTLOG_pop_free(store->logs, CTLOG_free);
OPENSSL_free(store);
}
}
static int ctlog_new_from_conf(CTLOG_STORE *store, CTLOG **ct_log,
const CONF *conf, const char *section)
{
const char *description = NCONF_get_string(conf, section, "description");
char *pkey_base64;
if (description == NULL) {
ERR_raise(ERR_LIB_CT, CT_R_LOG_CONF_MISSING_DESCRIPTION);
return 0;
}
pkey_base64 = NCONF_get_string(conf, section, "key");
if (pkey_base64 == NULL) {
ERR_raise(ERR_LIB_CT, CT_R_LOG_CONF_MISSING_KEY);
return 0;
}
return CTLOG_new_from_base64_ex(ct_log, pkey_base64, description,
store->libctx, store->propq);
}
int CTLOG_STORE_load_default_file(CTLOG_STORE *store)
{
const char *fpath = ossl_safe_getenv(CTLOG_FILE_EVP);
if (fpath == NULL)
fpath = CTLOG_FILE;
return CTLOG_STORE_load_file(store, fpath);
}
/*
* Called by CONF_parse_list, which stops if this returns <= 0,
* Otherwise, one bad log entry would stop loading of any of
* the following log entries.
* It may stop parsing and returns -1 on any internal (malloc) error.
*/
static int ctlog_store_load_log(const char *log_name, int log_name_len,
void *arg)
{
CTLOG_STORE_LOAD_CTX *load_ctx = arg;
CTLOG *ct_log = NULL;
/* log_name may not be null-terminated, so fix that before using it */
char *tmp;
int ret = 0;
/* log_name will be NULL for empty list entries */
if (log_name == NULL)
return 1;
tmp = OPENSSL_strndup(log_name, log_name_len);
if (tmp == NULL)
return -1;
ret = ctlog_new_from_conf(load_ctx->log_store, &ct_log, load_ctx->conf, tmp);
OPENSSL_free(tmp);
if (ret < 0) {
/* Propagate any internal error */
return ret;
}
if (ret == 0) {
/* If we can't load this log, record that fact and skip it */
++load_ctx->invalid_log_entries;
return 1;
}
if (!sk_CTLOG_push(load_ctx->log_store->logs, ct_log)) {
CTLOG_free(ct_log);
ERR_raise(ERR_LIB_CT, ERR_R_CRYPTO_LIB);
return -1;
}
return 1;
}
int CTLOG_STORE_load_file(CTLOG_STORE *store, const char *file)
{
int ret = 0;
char *enabled_logs;
CTLOG_STORE_LOAD_CTX* load_ctx = ctlog_store_load_ctx_new();
if (load_ctx == NULL)
return 0;
load_ctx->log_store = store;
load_ctx->conf = NCONF_new(NULL);
if (load_ctx->conf == NULL)
goto end;
if (NCONF_load(load_ctx->conf, file, NULL) <= 0) {
ERR_raise(ERR_LIB_CT, CT_R_LOG_CONF_INVALID);
goto end;
}
enabled_logs = NCONF_get_string(load_ctx->conf, NULL, "enabled_logs");
if (enabled_logs == NULL) {
ERR_raise(ERR_LIB_CT, CT_R_LOG_CONF_INVALID);
goto end;
}
if (!CONF_parse_list(enabled_logs, ',', 1, ctlog_store_load_log, load_ctx) ||
load_ctx->invalid_log_entries > 0) {
ERR_raise(ERR_LIB_CT, CT_R_LOG_CONF_INVALID);
goto end;
}
ret = 1;
end:
NCONF_free(load_ctx->conf);
ctlog_store_load_ctx_free(load_ctx);
return ret;
}
/*
* Initialize a new CTLOG object.
* Takes ownership of the public key.
* Copies the name.
*/
CTLOG *CTLOG_new_ex(EVP_PKEY *public_key, const char *name, OSSL_LIB_CTX *libctx,
const char *propq)
{
CTLOG *ret = OPENSSL_zalloc(sizeof(*ret));
if (ret == NULL)
return NULL;
ret->libctx = libctx;
if (propq != NULL) {
ret->propq = OPENSSL_strdup(propq);
if (ret->propq == NULL)
goto err;
}
ret->name = OPENSSL_strdup(name);
if (ret->name == NULL)
goto err;
if (ct_v1_log_id_from_pkey(ret, public_key) != 1)
goto err;
ret->public_key = public_key;
return ret;
err:
CTLOG_free(ret);
return NULL;
}
CTLOG *CTLOG_new(EVP_PKEY *public_key, const char *name)
{
return CTLOG_new_ex(public_key, name, NULL, NULL);
}
/* Frees CT log and associated structures */
void CTLOG_free(CTLOG *log)
{
if (log != NULL) {
OPENSSL_free(log->name);
EVP_PKEY_free(log->public_key);
OPENSSL_free(log->propq);
OPENSSL_free(log);
}
}
const char *CTLOG_get0_name(const CTLOG *log)
{
return log->name;
}
void CTLOG_get0_log_id(const CTLOG *log, const uint8_t **log_id,
size_t *log_id_len)
{
*log_id = log->log_id;
*log_id_len = CT_V1_HASHLEN;
}
EVP_PKEY *CTLOG_get0_public_key(const CTLOG *log)
{
return log->public_key;
}
/*
* Given a log ID, finds the matching log.
* Returns NULL if no match found.
*/
const CTLOG *CTLOG_STORE_get0_log_by_id(const CTLOG_STORE *store,
const uint8_t *log_id,
size_t log_id_len)
{
int i;
for (i = 0; i < sk_CTLOG_num(store->logs); ++i) {
const CTLOG *log = sk_CTLOG_value(store->logs, i);
if (memcmp(log->log_id, log_id, log_id_len) == 0)
return log;
}
return NULL;
}
| 8,251 | 23.486647 | 81 | c |
openssl | openssl-master/crypto/ct/ct_oct.c | /*
* Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#ifdef OPENSSL_NO_CT
# error "CT is disabled"
#endif
#include <limits.h>
#include <string.h>
#include <openssl/asn1.h>
#include <openssl/buffer.h>
#include <openssl/ct.h>
#include <openssl/err.h>
#include "ct_local.h"
int o2i_SCT_signature(SCT *sct, const unsigned char **in, size_t len)
{
size_t siglen;
size_t len_remaining = len;
const unsigned char *p;
if (sct->version != SCT_VERSION_V1) {
ERR_raise(ERR_LIB_CT, CT_R_UNSUPPORTED_VERSION);
return -1;
}
/*
* digitally-signed struct header: (1 byte) Hash algorithm (1 byte)
* Signature algorithm (2 bytes + ?) Signature
*
* This explicitly rejects empty signatures: they're invalid for
* all supported algorithms.
*/
if (len <= 4) {
ERR_raise(ERR_LIB_CT, CT_R_SCT_INVALID_SIGNATURE);
return -1;
}
p = *in;
/* Get hash and signature algorithm */
sct->hash_alg = *p++;
sct->sig_alg = *p++;
if (SCT_get_signature_nid(sct) == NID_undef) {
ERR_raise(ERR_LIB_CT, CT_R_SCT_INVALID_SIGNATURE);
return -1;
}
/* Retrieve signature and check it is consistent with the buffer length */
n2s(p, siglen);
len_remaining -= (p - *in);
if (siglen > len_remaining) {
ERR_raise(ERR_LIB_CT, CT_R_SCT_INVALID_SIGNATURE);
return -1;
}
if (SCT_set1_signature(sct, p, siglen) != 1)
return -1;
len_remaining -= siglen;
*in = p + siglen;
return len - len_remaining;
}
SCT *o2i_SCT(SCT **psct, const unsigned char **in, size_t len)
{
SCT *sct = NULL;
const unsigned char *p;
if (len == 0 || len > MAX_SCT_SIZE) {
ERR_raise(ERR_LIB_CT, CT_R_SCT_INVALID);
goto err;
}
if ((sct = SCT_new()) == NULL)
goto err;
p = *in;
sct->version = *p;
if (sct->version == SCT_VERSION_V1) {
int sig_len;
size_t len2;
/*-
* Fixed-length header:
* struct {
* Version sct_version; (1 byte)
* log_id id; (32 bytes)
* uint64 timestamp; (8 bytes)
* CtExtensions extensions; (2 bytes + ?)
* }
*/
if (len < 43) {
ERR_raise(ERR_LIB_CT, CT_R_SCT_INVALID);
goto err;
}
len -= 43;
p++;
sct->log_id = OPENSSL_memdup(p, CT_V1_HASHLEN);
if (sct->log_id == NULL)
goto err;
sct->log_id_len = CT_V1_HASHLEN;
p += CT_V1_HASHLEN;
n2l8(p, sct->timestamp);
n2s(p, len2);
if (len < len2) {
ERR_raise(ERR_LIB_CT, CT_R_SCT_INVALID);
goto err;
}
if (len2 > 0) {
sct->ext = OPENSSL_memdup(p, len2);
if (sct->ext == NULL)
goto err;
}
sct->ext_len = len2;
p += len2;
len -= len2;
sig_len = o2i_SCT_signature(sct, &p, len);
if (sig_len <= 0) {
ERR_raise(ERR_LIB_CT, CT_R_SCT_INVALID);
goto err;
}
len -= sig_len;
*in = p + len;
} else {
/* If not V1 just cache encoding */
sct->sct = OPENSSL_memdup(p, len);
if (sct->sct == NULL)
goto err;
sct->sct_len = len;
*in = p + len;
}
if (psct != NULL) {
SCT_free(*psct);
*psct = sct;
}
return sct;
err:
SCT_free(sct);
return NULL;
}
int i2o_SCT_signature(const SCT *sct, unsigned char **out)
{
size_t len;
unsigned char *p = NULL, *pstart = NULL;
if (!SCT_signature_is_complete(sct)) {
ERR_raise(ERR_LIB_CT, CT_R_SCT_INVALID_SIGNATURE);
goto err;
}
if (sct->version != SCT_VERSION_V1) {
ERR_raise(ERR_LIB_CT, CT_R_UNSUPPORTED_VERSION);
goto err;
}
/*
* (1 byte) Hash algorithm
* (1 byte) Signature algorithm
* (2 bytes + ?) Signature
*/
len = 4 + sct->sig_len;
if (out != NULL) {
if (*out != NULL) {
p = *out;
*out += len;
} else {
pstart = p = OPENSSL_malloc(len);
if (p == NULL)
goto err;
*out = p;
}
*p++ = sct->hash_alg;
*p++ = sct->sig_alg;
s2n(sct->sig_len, p);
memcpy(p, sct->sig, sct->sig_len);
}
return len;
err:
OPENSSL_free(pstart);
return -1;
}
int i2o_SCT(const SCT *sct, unsigned char **out)
{
size_t len;
unsigned char *p = NULL, *pstart = NULL;
if (!SCT_is_complete(sct)) {
ERR_raise(ERR_LIB_CT, CT_R_SCT_NOT_SET);
goto err;
}
/*
* Fixed-length header: struct { (1 byte) Version sct_version; (32 bytes)
* log_id id; (8 bytes) uint64 timestamp; (2 bytes + ?) CtExtensions
* extensions; (1 byte) Hash algorithm (1 byte) Signature algorithm (2
* bytes + ?) Signature
*/
if (sct->version == SCT_VERSION_V1)
len = 43 + sct->ext_len + 4 + sct->sig_len;
else
len = sct->sct_len;
if (out == NULL)
return len;
if (*out != NULL) {
p = *out;
*out += len;
} else {
pstart = p = OPENSSL_malloc(len);
if (p == NULL)
goto err;
*out = p;
}
if (sct->version == SCT_VERSION_V1) {
*p++ = sct->version;
memcpy(p, sct->log_id, CT_V1_HASHLEN);
p += CT_V1_HASHLEN;
l2n8(sct->timestamp, p);
s2n(sct->ext_len, p);
if (sct->ext_len > 0) {
memcpy(p, sct->ext, sct->ext_len);
p += sct->ext_len;
}
if (i2o_SCT_signature(sct, &p) <= 0)
goto err;
} else {
memcpy(p, sct->sct, len);
}
return len;
err:
OPENSSL_free(pstart);
return -1;
}
STACK_OF(SCT) *o2i_SCT_LIST(STACK_OF(SCT) **a, const unsigned char **pp,
size_t len)
{
STACK_OF(SCT) *sk = NULL;
size_t list_len, sct_len;
if (len < 2 || len > MAX_SCT_LIST_SIZE) {
ERR_raise(ERR_LIB_CT, CT_R_SCT_LIST_INVALID);
return NULL;
}
n2s(*pp, list_len);
if (list_len != len - 2) {
ERR_raise(ERR_LIB_CT, CT_R_SCT_LIST_INVALID);
return NULL;
}
if (a == NULL || *a == NULL) {
sk = sk_SCT_new_null();
if (sk == NULL)
return NULL;
} else {
SCT *sct;
/* Use the given stack, but empty it first. */
sk = *a;
while ((sct = sk_SCT_pop(sk)) != NULL)
SCT_free(sct);
}
while (list_len > 0) {
SCT *sct;
if (list_len < 2) {
ERR_raise(ERR_LIB_CT, CT_R_SCT_LIST_INVALID);
goto err;
}
n2s(*pp, sct_len);
list_len -= 2;
if (sct_len == 0 || sct_len > list_len) {
ERR_raise(ERR_LIB_CT, CT_R_SCT_LIST_INVALID);
goto err;
}
list_len -= sct_len;
if ((sct = o2i_SCT(NULL, pp, sct_len)) == NULL)
goto err;
if (!sk_SCT_push(sk, sct)) {
SCT_free(sct);
goto err;
}
}
if (a != NULL && *a == NULL)
*a = sk;
return sk;
err:
if (a == NULL || *a == NULL)
SCT_LIST_free(sk);
return NULL;
}
int i2o_SCT_LIST(const STACK_OF(SCT) *a, unsigned char **pp)
{
int len, sct_len, i, is_pp_new = 0;
size_t len2;
unsigned char *p = NULL, *p2;
if (pp != NULL) {
if (*pp == NULL) {
if ((len = i2o_SCT_LIST(a, NULL)) == -1) {
ERR_raise(ERR_LIB_CT, CT_R_SCT_LIST_INVALID);
return -1;
}
if ((*pp = OPENSSL_malloc(len)) == NULL)
return -1;
is_pp_new = 1;
}
p = *pp + 2;
}
len2 = 2;
for (i = 0; i < sk_SCT_num(a); i++) {
if (pp != NULL) {
p2 = p;
p += 2;
if ((sct_len = i2o_SCT(sk_SCT_value(a, i), &p)) == -1)
goto err;
s2n(sct_len, p2);
} else {
if ((sct_len = i2o_SCT(sk_SCT_value(a, i), NULL)) == -1)
goto err;
}
len2 += 2 + sct_len;
}
if (len2 > MAX_SCT_LIST_SIZE)
goto err;
if (pp != NULL) {
p = *pp;
s2n(len2 - 2, p);
if (!is_pp_new)
*pp += len2;
}
return len2;
err:
if (is_pp_new) {
OPENSSL_free(*pp);
*pp = NULL;
}
return -1;
}
STACK_OF(SCT) *d2i_SCT_LIST(STACK_OF(SCT) **a, const unsigned char **pp,
long len)
{
ASN1_OCTET_STRING *oct = NULL;
STACK_OF(SCT) *sk = NULL;
const unsigned char *p;
p = *pp;
if (d2i_ASN1_OCTET_STRING(&oct, &p, len) == NULL)
return NULL;
p = oct->data;
if ((sk = o2i_SCT_LIST(a, &p, oct->length)) != NULL)
*pp += len;
ASN1_OCTET_STRING_free(oct);
return sk;
}
int i2d_SCT_LIST(const STACK_OF(SCT) *a, unsigned char **out)
{
ASN1_OCTET_STRING oct;
int len;
oct.data = NULL;
if ((oct.length = i2o_SCT_LIST(a, &oct.data)) == -1)
return -1;
len = i2d_ASN1_OCTET_STRING(&oct, out);
OPENSSL_free(oct.data);
return len;
}
| 9,514 | 22.669154 | 78 | c |
openssl | openssl-master/crypto/ct/ct_policy.c | /*
* Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#ifdef OPENSSL_NO_CT
# error "CT is disabled"
#endif
#include <openssl/ct.h>
#include <openssl/err.h>
#include "internal/time.h"
#include "ct_local.h"
/*
* Number of seconds in the future that an SCT timestamp can be, by default,
* without being considered invalid. This is added to time() when setting a
* default value for CT_POLICY_EVAL_CTX.epoch_time_in_ms.
* It can be overridden by calling CT_POLICY_EVAL_CTX_set_time().
*/
static const time_t SCT_CLOCK_DRIFT_TOLERANCE = 300;
CT_POLICY_EVAL_CTX *CT_POLICY_EVAL_CTX_new_ex(OSSL_LIB_CTX *libctx,
const char *propq)
{
CT_POLICY_EVAL_CTX *ctx = OPENSSL_zalloc(sizeof(CT_POLICY_EVAL_CTX));
OSSL_TIME now;
if (ctx == NULL)
return NULL;
ctx->libctx = libctx;
if (propq != NULL) {
ctx->propq = OPENSSL_strdup(propq);
if (ctx->propq == NULL) {
OPENSSL_free(ctx);
return NULL;
}
}
now = ossl_time_add(ossl_time_now(),
ossl_seconds2time(SCT_CLOCK_DRIFT_TOLERANCE));
ctx->epoch_time_in_ms = ossl_time2ms(now);
return ctx;
}
CT_POLICY_EVAL_CTX *CT_POLICY_EVAL_CTX_new(void)
{
return CT_POLICY_EVAL_CTX_new_ex(NULL, NULL);
}
void CT_POLICY_EVAL_CTX_free(CT_POLICY_EVAL_CTX *ctx)
{
if (ctx == NULL)
return;
X509_free(ctx->cert);
X509_free(ctx->issuer);
OPENSSL_free(ctx->propq);
OPENSSL_free(ctx);
}
int CT_POLICY_EVAL_CTX_set1_cert(CT_POLICY_EVAL_CTX *ctx, X509 *cert)
{
if (!X509_up_ref(cert))
return 0;
ctx->cert = cert;
return 1;
}
int CT_POLICY_EVAL_CTX_set1_issuer(CT_POLICY_EVAL_CTX *ctx, X509 *issuer)
{
if (!X509_up_ref(issuer))
return 0;
ctx->issuer = issuer;
return 1;
}
void CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(CT_POLICY_EVAL_CTX *ctx,
CTLOG_STORE *log_store)
{
ctx->log_store = log_store;
}
void CT_POLICY_EVAL_CTX_set_time(CT_POLICY_EVAL_CTX *ctx, uint64_t time_in_ms)
{
ctx->epoch_time_in_ms = time_in_ms;
}
X509* CT_POLICY_EVAL_CTX_get0_cert(const CT_POLICY_EVAL_CTX *ctx)
{
return ctx->cert;
}
X509* CT_POLICY_EVAL_CTX_get0_issuer(const CT_POLICY_EVAL_CTX *ctx)
{
return ctx->issuer;
}
const CTLOG_STORE *CT_POLICY_EVAL_CTX_get0_log_store(const CT_POLICY_EVAL_CTX *ctx)
{
return ctx->log_store;
}
uint64_t CT_POLICY_EVAL_CTX_get_time(const CT_POLICY_EVAL_CTX *ctx)
{
return ctx->epoch_time_in_ms;
}
| 2,829 | 23.824561 | 83 | c |
openssl | openssl-master/crypto/ct/ct_prn.c | /*
* Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#ifdef OPENSSL_NO_CT
# error "CT is disabled"
#endif
#include <openssl/asn1.h>
#include <openssl/bio.h>
#include "ct_local.h"
static void SCT_signature_algorithms_print(const SCT *sct, BIO *out)
{
int nid = SCT_get_signature_nid(sct);
if (nid == NID_undef)
BIO_printf(out, "%02X%02X", sct->hash_alg, sct->sig_alg);
else
BIO_printf(out, "%s", OBJ_nid2ln(nid));
}
static void timestamp_print(uint64_t timestamp, BIO *out)
{
ASN1_GENERALIZEDTIME *gen = ASN1_GENERALIZEDTIME_new();
char genstr[20];
if (gen == NULL)
return;
ASN1_GENERALIZEDTIME_adj(gen, (time_t)0,
(int)(timestamp / 86400000),
(timestamp % 86400000) / 1000);
/*
* Note GeneralizedTime from ASN1_GENERALIZETIME_adj is always 15
* characters long with a final Z. Update it with fractional seconds.
*/
BIO_snprintf(genstr, sizeof(genstr), "%.14s.%03dZ",
ASN1_STRING_get0_data(gen), (unsigned int)(timestamp % 1000));
if (ASN1_GENERALIZEDTIME_set_string(gen, genstr))
ASN1_GENERALIZEDTIME_print(out, gen);
ASN1_GENERALIZEDTIME_free(gen);
}
const char *SCT_validation_status_string(const SCT *sct)
{
switch (SCT_get_validation_status(sct)) {
case SCT_VALIDATION_STATUS_NOT_SET:
return "not set";
case SCT_VALIDATION_STATUS_UNKNOWN_VERSION:
return "unknown version";
case SCT_VALIDATION_STATUS_UNKNOWN_LOG:
return "unknown log";
case SCT_VALIDATION_STATUS_UNVERIFIED:
return "unverified";
case SCT_VALIDATION_STATUS_INVALID:
return "invalid";
case SCT_VALIDATION_STATUS_VALID:
return "valid";
}
return "unknown status";
}
void SCT_print(const SCT *sct, BIO *out, int indent,
const CTLOG_STORE *log_store)
{
const CTLOG *log = NULL;
if (log_store != NULL) {
log = CTLOG_STORE_get0_log_by_id(log_store, sct->log_id,
sct->log_id_len);
}
BIO_printf(out, "%*sSigned Certificate Timestamp:", indent, "");
BIO_printf(out, "\n%*sVersion : ", indent + 4, "");
if (sct->version != SCT_VERSION_V1) {
BIO_printf(out, "unknown\n%*s", indent + 16, "");
BIO_hex_string(out, indent + 16, 16, sct->sct, sct->sct_len);
return;
}
BIO_printf(out, "v1 (0x0)");
if (log != NULL) {
BIO_printf(out, "\n%*sLog : %s", indent + 4, "",
CTLOG_get0_name(log));
}
BIO_printf(out, "\n%*sLog ID : ", indent + 4, "");
BIO_hex_string(out, indent + 16, 16, sct->log_id, sct->log_id_len);
BIO_printf(out, "\n%*sTimestamp : ", indent + 4, "");
timestamp_print(sct->timestamp, out);
BIO_printf(out, "\n%*sExtensions: ", indent + 4, "");
if (sct->ext_len == 0)
BIO_printf(out, "none");
else
BIO_hex_string(out, indent + 16, 16, sct->ext, sct->ext_len);
BIO_printf(out, "\n%*sSignature : ", indent + 4, "");
SCT_signature_algorithms_print(sct, out);
BIO_printf(out, "\n%*s ", indent + 4, "");
BIO_hex_string(out, indent + 16, 16, sct->sig, sct->sig_len);
}
void SCT_LIST_print(const STACK_OF(SCT) *sct_list, BIO *out, int indent,
const char *separator, const CTLOG_STORE *log_store)
{
int sct_count = sk_SCT_num(sct_list);
int i;
for (i = 0; i < sct_count; ++i) {
SCT *sct = sk_SCT_value(sct_list, i);
SCT_print(sct, out, indent, log_store);
if (i < sk_SCT_num(sct_list) - 1)
BIO_printf(out, "%s", separator);
}
}
| 3,947 | 29.84375 | 79 | c |
openssl | openssl-master/crypto/ct/ct_sct.c | /*
* Copyright 2016-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#ifdef OPENSSL_NO_CT
# error "CT disabled"
#endif
#include <openssl/ct.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/tls1.h>
#include <openssl/x509.h>
#include "ct_local.h"
SCT *SCT_new(void)
{
SCT *sct = OPENSSL_zalloc(sizeof(*sct));
if (sct == NULL)
return NULL;
sct->entry_type = CT_LOG_ENTRY_TYPE_NOT_SET;
sct->version = SCT_VERSION_NOT_SET;
return sct;
}
void SCT_free(SCT *sct)
{
if (sct == NULL)
return;
OPENSSL_free(sct->log_id);
OPENSSL_free(sct->ext);
OPENSSL_free(sct->sig);
OPENSSL_free(sct->sct);
OPENSSL_free(sct);
}
void SCT_LIST_free(STACK_OF(SCT) *a)
{
sk_SCT_pop_free(a, SCT_free);
}
int SCT_set_version(SCT *sct, sct_version_t version)
{
if (version != SCT_VERSION_V1) {
ERR_raise(ERR_LIB_CT, CT_R_UNSUPPORTED_VERSION);
return 0;
}
sct->version = version;
sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET;
return 1;
}
int SCT_set_log_entry_type(SCT *sct, ct_log_entry_type_t entry_type)
{
sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET;
switch (entry_type) {
case CT_LOG_ENTRY_TYPE_X509:
case CT_LOG_ENTRY_TYPE_PRECERT:
sct->entry_type = entry_type;
return 1;
case CT_LOG_ENTRY_TYPE_NOT_SET:
break;
}
ERR_raise(ERR_LIB_CT, CT_R_UNSUPPORTED_ENTRY_TYPE);
return 0;
}
int SCT_set0_log_id(SCT *sct, unsigned char *log_id, size_t log_id_len)
{
if (sct->version == SCT_VERSION_V1 && log_id_len != CT_V1_HASHLEN) {
ERR_raise(ERR_LIB_CT, CT_R_INVALID_LOG_ID_LENGTH);
return 0;
}
OPENSSL_free(sct->log_id);
sct->log_id = log_id;
sct->log_id_len = log_id_len;
sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET;
return 1;
}
int SCT_set1_log_id(SCT *sct, const unsigned char *log_id, size_t log_id_len)
{
if (sct->version == SCT_VERSION_V1 && log_id_len != CT_V1_HASHLEN) {
ERR_raise(ERR_LIB_CT, CT_R_INVALID_LOG_ID_LENGTH);
return 0;
}
OPENSSL_free(sct->log_id);
sct->log_id = NULL;
sct->log_id_len = 0;
sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET;
if (log_id != NULL && log_id_len > 0) {
sct->log_id = OPENSSL_memdup(log_id, log_id_len);
if (sct->log_id == NULL)
return 0;
sct->log_id_len = log_id_len;
}
return 1;
}
void SCT_set_timestamp(SCT *sct, uint64_t timestamp)
{
sct->timestamp = timestamp;
sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET;
}
int SCT_set_signature_nid(SCT *sct, int nid)
{
switch (nid) {
case NID_sha256WithRSAEncryption:
sct->hash_alg = TLSEXT_hash_sha256;
sct->sig_alg = TLSEXT_signature_rsa;
sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET;
return 1;
case NID_ecdsa_with_SHA256:
sct->hash_alg = TLSEXT_hash_sha256;
sct->sig_alg = TLSEXT_signature_ecdsa;
sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET;
return 1;
default:
ERR_raise(ERR_LIB_CT, CT_R_UNRECOGNIZED_SIGNATURE_NID);
return 0;
}
}
void SCT_set0_extensions(SCT *sct, unsigned char *ext, size_t ext_len)
{
OPENSSL_free(sct->ext);
sct->ext = ext;
sct->ext_len = ext_len;
sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET;
}
int SCT_set1_extensions(SCT *sct, const unsigned char *ext, size_t ext_len)
{
OPENSSL_free(sct->ext);
sct->ext = NULL;
sct->ext_len = 0;
sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET;
if (ext != NULL && ext_len > 0) {
sct->ext = OPENSSL_memdup(ext, ext_len);
if (sct->ext == NULL)
return 0;
sct->ext_len = ext_len;
}
return 1;
}
void SCT_set0_signature(SCT *sct, unsigned char *sig, size_t sig_len)
{
OPENSSL_free(sct->sig);
sct->sig = sig;
sct->sig_len = sig_len;
sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET;
}
int SCT_set1_signature(SCT *sct, const unsigned char *sig, size_t sig_len)
{
OPENSSL_free(sct->sig);
sct->sig = NULL;
sct->sig_len = 0;
sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET;
if (sig != NULL && sig_len > 0) {
sct->sig = OPENSSL_memdup(sig, sig_len);
if (sct->sig == NULL)
return 0;
sct->sig_len = sig_len;
}
return 1;
}
sct_version_t SCT_get_version(const SCT *sct)
{
return sct->version;
}
ct_log_entry_type_t SCT_get_log_entry_type(const SCT *sct)
{
return sct->entry_type;
}
size_t SCT_get0_log_id(const SCT *sct, unsigned char **log_id)
{
*log_id = sct->log_id;
return sct->log_id_len;
}
uint64_t SCT_get_timestamp(const SCT *sct)
{
return sct->timestamp;
}
int SCT_get_signature_nid(const SCT *sct)
{
if (sct->version == SCT_VERSION_V1) {
if (sct->hash_alg == TLSEXT_hash_sha256) {
switch (sct->sig_alg) {
case TLSEXT_signature_ecdsa:
return NID_ecdsa_with_SHA256;
case TLSEXT_signature_rsa:
return NID_sha256WithRSAEncryption;
default:
return NID_undef;
}
}
}
return NID_undef;
}
size_t SCT_get0_extensions(const SCT *sct, unsigned char **ext)
{
*ext = sct->ext;
return sct->ext_len;
}
size_t SCT_get0_signature(const SCT *sct, unsigned char **sig)
{
*sig = sct->sig;
return sct->sig_len;
}
int SCT_is_complete(const SCT *sct)
{
switch (sct->version) {
case SCT_VERSION_NOT_SET:
return 0;
case SCT_VERSION_V1:
return sct->log_id != NULL && SCT_signature_is_complete(sct);
default:
return sct->sct != NULL; /* Just need cached encoding */
}
}
int SCT_signature_is_complete(const SCT *sct)
{
return SCT_get_signature_nid(sct) != NID_undef &&
sct->sig != NULL && sct->sig_len > 0;
}
sct_source_t SCT_get_source(const SCT *sct)
{
return sct->source;
}
int SCT_set_source(SCT *sct, sct_source_t source)
{
sct->source = source;
sct->validation_status = SCT_VALIDATION_STATUS_NOT_SET;
switch (source) {
case SCT_SOURCE_TLS_EXTENSION:
case SCT_SOURCE_OCSP_STAPLED_RESPONSE:
return SCT_set_log_entry_type(sct, CT_LOG_ENTRY_TYPE_X509);
case SCT_SOURCE_X509V3_EXTENSION:
return SCT_set_log_entry_type(sct, CT_LOG_ENTRY_TYPE_PRECERT);
case SCT_SOURCE_UNKNOWN:
break;
}
/* if we aren't sure, leave the log entry type alone */
return 1;
}
sct_validation_status_t SCT_get_validation_status(const SCT *sct)
{
return sct->validation_status;
}
int SCT_validate(SCT *sct, const CT_POLICY_EVAL_CTX *ctx)
{
int is_sct_valid = -1;
SCT_CTX *sctx = NULL;
X509_PUBKEY *pub = NULL, *log_pkey = NULL;
const CTLOG *log;
/*
* With an unrecognized SCT version we don't know what such an SCT means,
* let alone validate one. So we return validation failure (0).
*/
if (sct->version != SCT_VERSION_V1) {
sct->validation_status = SCT_VALIDATION_STATUS_UNKNOWN_VERSION;
return 0;
}
log = CTLOG_STORE_get0_log_by_id(ctx->log_store,
sct->log_id, sct->log_id_len);
/* Similarly, an SCT from an unknown log also cannot be validated. */
if (log == NULL) {
sct->validation_status = SCT_VALIDATION_STATUS_UNKNOWN_LOG;
return 0;
}
sctx = SCT_CTX_new(ctx->libctx, ctx->propq);
if (sctx == NULL)
goto err;
if (X509_PUBKEY_set(&log_pkey, CTLOG_get0_public_key(log)) != 1)
goto err;
if (SCT_CTX_set1_pubkey(sctx, log_pkey) != 1)
goto err;
if (SCT_get_log_entry_type(sct) == CT_LOG_ENTRY_TYPE_PRECERT) {
EVP_PKEY *issuer_pkey;
if (ctx->issuer == NULL) {
sct->validation_status = SCT_VALIDATION_STATUS_UNVERIFIED;
goto end;
}
issuer_pkey = X509_get0_pubkey(ctx->issuer);
if (X509_PUBKEY_set(&pub, issuer_pkey) != 1)
goto err;
if (SCT_CTX_set1_issuer_pubkey(sctx, pub) != 1)
goto err;
}
SCT_CTX_set_time(sctx, ctx->epoch_time_in_ms);
/*
* XXX: Potential for optimization. This repeats some idempotent heavy
* lifting on the certificate for each candidate SCT, and appears to not
* use any information in the SCT itself, only the certificate is
* processed. So it may make more sense to do this just once, perhaps
* associated with the shared (by all SCTs) policy eval ctx.
*
* XXX: Failure here is global (SCT independent) and represents either an
* issue with the certificate (e.g. duplicate extensions) or an out of
* memory condition. When the certificate is incompatible with CT, we just
* mark the SCTs invalid, rather than report a failure to determine the
* validation status. That way, callbacks that want to do "soft" SCT
* processing will not abort handshakes with false positive internal
* errors. Since the function does not distinguish between certificate
* issues (peer's fault) and internal problems (out fault) the safe thing
* to do is to report a validation failure and let the callback or
* application decide what to do.
*/
if (SCT_CTX_set1_cert(sctx, ctx->cert, NULL) != 1)
sct->validation_status = SCT_VALIDATION_STATUS_UNVERIFIED;
else
sct->validation_status = SCT_CTX_verify(sctx, sct) == 1 ?
SCT_VALIDATION_STATUS_VALID : SCT_VALIDATION_STATUS_INVALID;
end:
is_sct_valid = sct->validation_status == SCT_VALIDATION_STATUS_VALID;
err:
X509_PUBKEY_free(pub);
X509_PUBKEY_free(log_pkey);
SCT_CTX_free(sctx);
return is_sct_valid;
}
int SCT_LIST_validate(const STACK_OF(SCT) *scts, CT_POLICY_EVAL_CTX *ctx)
{
int are_scts_valid = 1;
int sct_count = scts != NULL ? sk_SCT_num(scts) : 0;
int i;
for (i = 0; i < sct_count; ++i) {
int is_sct_valid = -1;
SCT *sct = sk_SCT_value(scts, i);
if (sct == NULL)
continue;
is_sct_valid = SCT_validate(sct, ctx);
if (is_sct_valid < 0)
return is_sct_valid;
are_scts_valid &= is_sct_valid;
}
return are_scts_valid;
}
| 10,549 | 26.120823 | 79 | c |
openssl | openssl-master/crypto/ct/ct_sct_ctx.c | /*
* Copyright 2016-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#ifdef OPENSSL_NO_CT
# error "CT is disabled"
#endif
#include <stddef.h>
#include <string.h>
#include <openssl/err.h>
#include <openssl/obj_mac.h>
#include <openssl/x509.h>
#include "ct_local.h"
SCT_CTX *SCT_CTX_new(OSSL_LIB_CTX *libctx, const char *propq)
{
SCT_CTX *sctx = OPENSSL_zalloc(sizeof(*sctx));
if (sctx == NULL)
return NULL;
sctx->libctx = libctx;
if (propq != NULL) {
sctx->propq = OPENSSL_strdup(propq);
if (sctx->propq == NULL) {
OPENSSL_free(sctx);
return NULL;
}
}
return sctx;
}
void SCT_CTX_free(SCT_CTX *sctx)
{
if (sctx == NULL)
return;
EVP_PKEY_free(sctx->pkey);
OPENSSL_free(sctx->pkeyhash);
OPENSSL_free(sctx->ihash);
OPENSSL_free(sctx->certder);
OPENSSL_free(sctx->preder);
OPENSSL_free(sctx->propq);
OPENSSL_free(sctx);
}
/*
* Finds the index of the first extension with the given NID in cert.
* If there is more than one extension with that NID, *is_duplicated is set to
* 1, otherwise 0 (unless it is NULL).
*/
static int ct_x509_get_ext(X509 *cert, int nid, int *is_duplicated)
{
int ret = X509_get_ext_by_NID(cert, nid, -1);
if (is_duplicated != NULL)
*is_duplicated = ret >= 0 && X509_get_ext_by_NID(cert, nid, ret) >= 0;
return ret;
}
/*
* Modifies a certificate by deleting extensions and copying the issuer and
* AKID from the presigner certificate, if necessary.
* Returns 1 on success, 0 otherwise.
*/
__owur static int ct_x509_cert_fixup(X509 *cert, X509 *presigner)
{
int preidx, certidx;
int pre_akid_ext_is_dup, cert_akid_ext_is_dup;
if (presigner == NULL)
return 1;
preidx = ct_x509_get_ext(presigner, NID_authority_key_identifier,
&pre_akid_ext_is_dup);
certidx = ct_x509_get_ext(cert, NID_authority_key_identifier,
&cert_akid_ext_is_dup);
/* An error occurred whilst searching for the extension */
if (preidx < -1 || certidx < -1)
return 0;
/* Invalid certificate if they contain duplicate extensions */
if (pre_akid_ext_is_dup || cert_akid_ext_is_dup)
return 0;
/* AKID must be present in both certificate or absent in both */
if (preidx >= 0 && certidx == -1)
return 0;
if (preidx == -1 && certidx >= 0)
return 0;
/* Copy issuer name */
if (!X509_set_issuer_name(cert, X509_get_issuer_name(presigner)))
return 0;
if (preidx != -1) {
/* Retrieve and copy AKID encoding */
X509_EXTENSION *preext = X509_get_ext(presigner, preidx);
X509_EXTENSION *certext = X509_get_ext(cert, certidx);
ASN1_OCTET_STRING *preextdata;
/* Should never happen */
if (preext == NULL || certext == NULL)
return 0;
preextdata = X509_EXTENSION_get_data(preext);
if (preextdata == NULL ||
!X509_EXTENSION_set_data(certext, preextdata))
return 0;
}
return 1;
}
int SCT_CTX_set1_cert(SCT_CTX *sctx, X509 *cert, X509 *presigner)
{
unsigned char *certder = NULL, *preder = NULL;
X509 *pretmp = NULL;
int certderlen = 0, prederlen = 0;
int idx = -1;
int poison_ext_is_dup, sct_ext_is_dup;
int poison_idx = ct_x509_get_ext(cert, NID_ct_precert_poison, &poison_ext_is_dup);
/* Duplicate poison extensions are present - error */
if (poison_ext_is_dup)
goto err;
/* If *cert doesn't have a poison extension, it isn't a precert */
if (poison_idx == -1) {
/* cert isn't a precert, so we shouldn't have a presigner */
if (presigner != NULL)
goto err;
certderlen = i2d_X509(cert, &certder);
if (certderlen < 0)
goto err;
}
/* See if cert has a precert SCTs extension */
idx = ct_x509_get_ext(cert, NID_ct_precert_scts, &sct_ext_is_dup);
/* Duplicate SCT extensions are present - error */
if (sct_ext_is_dup)
goto err;
if (idx >= 0 && poison_idx >= 0) {
/*
* cert can't both contain SCTs (i.e. have an SCT extension) and be a
* precert (i.e. have a poison extension).
*/
goto err;
}
if (idx == -1) {
idx = poison_idx;
}
/*
* If either a poison or SCT extension is present, remove it before encoding
* cert. This, along with ct_x509_cert_fixup(), gets a TBSCertificate (see
* RFC5280) from cert, which is what the CT log signed when it produced the
* SCT.
*/
if (idx >= 0) {
/* Take a copy of certificate so we don't modify passed version */
pretmp = X509_dup(cert);
if (pretmp == NULL)
goto err;
X509_EXTENSION_free(X509_delete_ext(pretmp, idx));
if (!ct_x509_cert_fixup(pretmp, presigner))
goto err;
prederlen = i2d_re_X509_tbs(pretmp, &preder);
if (prederlen <= 0)
goto err;
}
X509_free(pretmp);
OPENSSL_free(sctx->certder);
sctx->certder = certder;
sctx->certderlen = certderlen;
OPENSSL_free(sctx->preder);
sctx->preder = preder;
sctx->prederlen = prederlen;
return 1;
err:
OPENSSL_free(certder);
OPENSSL_free(preder);
X509_free(pretmp);
return 0;
}
__owur static int ct_public_key_hash(SCT_CTX *sctx, X509_PUBKEY *pkey,
unsigned char **hash, size_t *hash_len)
{
int ret = 0;
unsigned char *md = NULL, *der = NULL;
int der_len;
unsigned int md_len;
EVP_MD *sha256 = EVP_MD_fetch(sctx->libctx, "SHA2-256", sctx->propq);
if (sha256 == NULL)
goto err;
/* Reuse buffer if possible */
if (*hash != NULL && *hash_len >= SHA256_DIGEST_LENGTH) {
md = *hash;
} else {
md = OPENSSL_malloc(SHA256_DIGEST_LENGTH);
if (md == NULL)
goto err;
}
/* Calculate key hash */
der_len = i2d_X509_PUBKEY(pkey, &der);
if (der_len <= 0)
goto err;
if (!EVP_Digest(der, der_len, md, &md_len, sha256, NULL))
goto err;
if (md != *hash) {
OPENSSL_free(*hash);
*hash = md;
*hash_len = SHA256_DIGEST_LENGTH;
}
md = NULL;
ret = 1;
err:
EVP_MD_free(sha256);
OPENSSL_free(md);
OPENSSL_free(der);
return ret;
}
int SCT_CTX_set1_issuer(SCT_CTX *sctx, const X509 *issuer)
{
return SCT_CTX_set1_issuer_pubkey(sctx, X509_get_X509_PUBKEY(issuer));
}
int SCT_CTX_set1_issuer_pubkey(SCT_CTX *sctx, X509_PUBKEY *pubkey)
{
return ct_public_key_hash(sctx, pubkey, &sctx->ihash, &sctx->ihashlen);
}
int SCT_CTX_set1_pubkey(SCT_CTX *sctx, X509_PUBKEY *pubkey)
{
EVP_PKEY *pkey = X509_PUBKEY_get(pubkey);
if (pkey == NULL)
return 0;
if (!ct_public_key_hash(sctx, pubkey, &sctx->pkeyhash, &sctx->pkeyhashlen)) {
EVP_PKEY_free(pkey);
return 0;
}
EVP_PKEY_free(sctx->pkey);
sctx->pkey = pkey;
return 1;
}
void SCT_CTX_set_time(SCT_CTX *sctx, uint64_t time_in_ms)
{
sctx->epoch_time_in_ms = time_in_ms;
}
| 7,415 | 25.869565 | 86 | c |
openssl | openssl-master/crypto/ct/ct_vfy.c | /*
* Copyright 2016-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <string.h>
#include <openssl/ct.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/x509.h>
#include "ct_local.h"
typedef enum sct_signature_type_t {
SIGNATURE_TYPE_NOT_SET = -1,
SIGNATURE_TYPE_CERT_TIMESTAMP,
SIGNATURE_TYPE_TREE_HASH
} SCT_SIGNATURE_TYPE;
/*
* Update encoding for SCT signature verification/generation to supplied
* EVP_MD_CTX.
*/
static int sct_ctx_update(EVP_MD_CTX *ctx, const SCT_CTX *sctx, const SCT *sct)
{
unsigned char tmpbuf[12];
unsigned char *p, *der;
size_t derlen;
/*+
* digitally-signed struct {
* (1 byte) Version sct_version;
* (1 byte) SignatureType signature_type = certificate_timestamp;
* (8 bytes) uint64 timestamp;
* (2 bytes) LogEntryType entry_type;
* (? bytes) select(entry_type) {
* case x509_entry: ASN.1Cert;
* case precert_entry: PreCert;
* } signed_entry;
* (2 bytes + sct->ext_len) CtExtensions extensions;
* }
*/
if (sct->entry_type == CT_LOG_ENTRY_TYPE_NOT_SET)
return 0;
if (sct->entry_type == CT_LOG_ENTRY_TYPE_PRECERT && sctx->ihash == NULL)
return 0;
p = tmpbuf;
*p++ = sct->version;
*p++ = SIGNATURE_TYPE_CERT_TIMESTAMP;
l2n8(sct->timestamp, p);
s2n(sct->entry_type, p);
if (!EVP_DigestUpdate(ctx, tmpbuf, p - tmpbuf))
return 0;
if (sct->entry_type == CT_LOG_ENTRY_TYPE_X509) {
der = sctx->certder;
derlen = sctx->certderlen;
} else {
if (!EVP_DigestUpdate(ctx, sctx->ihash, sctx->ihashlen))
return 0;
der = sctx->preder;
derlen = sctx->prederlen;
}
/* If no encoding available, fatal error */
if (der == NULL)
return 0;
/* Include length first */
p = tmpbuf;
l2n3(derlen, p);
if (!EVP_DigestUpdate(ctx, tmpbuf, 3))
return 0;
if (!EVP_DigestUpdate(ctx, der, derlen))
return 0;
/* Add any extensions */
p = tmpbuf;
s2n(sct->ext_len, p);
if (!EVP_DigestUpdate(ctx, tmpbuf, 2))
return 0;
if (sct->ext_len && !EVP_DigestUpdate(ctx, sct->ext, sct->ext_len))
return 0;
return 1;
}
int SCT_CTX_verify(const SCT_CTX *sctx, const SCT *sct)
{
EVP_MD_CTX *ctx = NULL;
int ret = 0;
if (!SCT_is_complete(sct) || sctx->pkey == NULL ||
sct->entry_type == CT_LOG_ENTRY_TYPE_NOT_SET ||
(sct->entry_type == CT_LOG_ENTRY_TYPE_PRECERT && sctx->ihash == NULL)) {
ERR_raise(ERR_LIB_CT, CT_R_SCT_NOT_SET);
return 0;
}
if (sct->version != SCT_VERSION_V1) {
ERR_raise(ERR_LIB_CT, CT_R_SCT_UNSUPPORTED_VERSION);
return 0;
}
if (sct->log_id_len != sctx->pkeyhashlen ||
memcmp(sct->log_id, sctx->pkeyhash, sctx->pkeyhashlen) != 0) {
ERR_raise(ERR_LIB_CT, CT_R_SCT_LOG_ID_MISMATCH);
return 0;
}
if (sct->timestamp > sctx->epoch_time_in_ms) {
ERR_raise(ERR_LIB_CT, CT_R_SCT_FUTURE_TIMESTAMP);
return 0;
}
ctx = EVP_MD_CTX_new();
if (ctx == NULL)
goto end;
if (!EVP_DigestVerifyInit_ex(ctx, NULL, "SHA2-256", sctx->libctx,
sctx->propq, sctx->pkey, NULL))
goto end;
if (!sct_ctx_update(ctx, sctx, sct))
goto end;
/* Verify signature */
ret = EVP_DigestVerifyFinal(ctx, sct->sig, sct->sig_len);
/* If ret < 0 some other error: fall through without setting error */
if (ret == 0)
ERR_raise(ERR_LIB_CT, CT_R_SCT_INVALID_SIGNATURE);
end:
EVP_MD_CTX_free(ctx);
return ret;
}
| 3,937 | 26.732394 | 80 | c |
openssl | openssl-master/crypto/ct/ct_x509v3.c | /*
* Copyright 2016-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#ifdef OPENSSL_NO_CT
# error "CT is disabled"
#endif
#include "ct_local.h"
static char *i2s_poison(const X509V3_EXT_METHOD *method, void *val)
{
return OPENSSL_strdup("NULL");
}
static void *s2i_poison(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, const char *str)
{
return ASN1_NULL_new();
}
static int i2r_SCT_LIST(X509V3_EXT_METHOD *method, STACK_OF(SCT) *sct_list,
BIO *out, int indent)
{
SCT_LIST_print(sct_list, out, indent, "\n", NULL);
return 1;
}
static int set_sct_list_source(STACK_OF(SCT) *s, sct_source_t source)
{
if (s != NULL) {
int i;
for (i = 0; i < sk_SCT_num(s); i++) {
int res = SCT_set_source(sk_SCT_value(s, i), source);
if (res != 1) {
return 0;
}
}
}
return 1;
}
static STACK_OF(SCT) *x509_ext_d2i_SCT_LIST(STACK_OF(SCT) **a,
const unsigned char **pp,
long len)
{
STACK_OF(SCT) *s = d2i_SCT_LIST(a, pp, len);
if (set_sct_list_source(s, SCT_SOURCE_X509V3_EXTENSION) != 1) {
SCT_LIST_free(s);
*a = NULL;
return NULL;
}
return s;
}
static STACK_OF(SCT) *ocsp_ext_d2i_SCT_LIST(STACK_OF(SCT) **a,
const unsigned char **pp,
long len)
{
STACK_OF(SCT) *s = d2i_SCT_LIST(a, pp, len);
if (set_sct_list_source(s, SCT_SOURCE_OCSP_STAPLED_RESPONSE) != 1) {
SCT_LIST_free(s);
*a = NULL;
return NULL;
}
return s;
}
/* Handlers for X509v3/OCSP Certificate Transparency extensions */
const X509V3_EXT_METHOD ossl_v3_ct_scts[3] = {
/* X509v3 extension in certificates that contains SCTs */
{ NID_ct_precert_scts, 0, NULL,
NULL, (X509V3_EXT_FREE)SCT_LIST_free,
(X509V3_EXT_D2I)x509_ext_d2i_SCT_LIST, (X509V3_EXT_I2D)i2d_SCT_LIST,
NULL, NULL,
NULL, NULL,
(X509V3_EXT_I2R)i2r_SCT_LIST, NULL,
NULL },
/* X509v3 extension to mark a certificate as a pre-certificate */
{ NID_ct_precert_poison, 0, ASN1_ITEM_ref(ASN1_NULL),
NULL, NULL, NULL, NULL,
i2s_poison, s2i_poison,
NULL, NULL,
NULL, NULL,
NULL },
/* OCSP extension that contains SCTs */
{ NID_ct_cert_scts, 0, NULL,
0, (X509V3_EXT_FREE)SCT_LIST_free,
(X509V3_EXT_D2I)ocsp_ext_d2i_SCT_LIST, (X509V3_EXT_I2D)i2d_SCT_LIST,
NULL, NULL,
NULL, NULL,
(X509V3_EXT_I2R)i2r_SCT_LIST, NULL,
NULL },
};
| 2,878 | 26.419048 | 90 | c |
openssl | openssl-master/crypto/des/cbc_cksm.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* DES low level APIs are deprecated for public use, but still ok for internal
* use.
*/
#include "internal/deprecated.h"
#include "des_local.h"
DES_LONG DES_cbc_cksum(const unsigned char *in, DES_cblock *output,
long length, DES_key_schedule *schedule,
const_DES_cblock *ivec)
{
register DES_LONG tout0, tout1, tin0, tin1;
register long l = length;
DES_LONG tin[2];
unsigned char *out = &(*output)[0];
const unsigned char *iv = &(*ivec)[0];
c2l(iv, tout0);
c2l(iv, tout1);
for (; l > 0; l -= 8) {
if (l >= 8) {
c2l(in, tin0);
c2l(in, tin1);
} else
c2ln(in, tin0, tin1, l);
tin0 ^= tout0;
tin[0] = tin0;
tin1 ^= tout1;
tin[1] = tin1;
DES_encrypt1((DES_LONG *)tin, schedule, DES_ENCRYPT);
tout0 = tin[0];
tout1 = tin[1];
}
if (out != NULL) {
l2c(tout0, out);
l2c(tout1, out);
}
tout0 = tin0 = tin1 = tin[0] = tin[1] = 0;
/*
* Transform the data in tout1 so that it will match the return value
* that the MIT Kerberos mit_des_cbc_cksum API returns.
*/
tout1 = ((tout1 >> 24L) & 0x000000FF)
| ((tout1 >> 8L) & 0x0000FF00)
| ((tout1 << 8L) & 0x00FF0000)
| ((tout1 << 24L) & 0xFF000000);
return tout1;
}
| 1,714 | 27.583333 | 78 | c |
openssl | openssl-master/crypto/des/cbc_enc.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* DES low level APIs are deprecated for public use, but still ok for internal
* use.
*/
#include "internal/deprecated.h"
#define CBC_ENC_C__DONT_UPDATE_IV
#include "ncbc_enc.c" /* des_cbc_encrypt */
| 554 | 28.210526 | 78 | c |
openssl | openssl-master/crypto/des/cfb64ede.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* DES low level APIs are deprecated for public use, but still ok for internal
* use.
*/
#include "internal/deprecated.h"
#include "des_local.h"
/*
* The input and output encrypted as though 64bit cfb mode is being used.
* The extra state information to record how much of the 64bit block we have
* used is contained in *num;
*/
void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_key_schedule *ks3,
DES_cblock *ivec, int *num, int enc)
{
register DES_LONG v0, v1;
register long l = length;
register int n = *num;
DES_LONG ti[2];
unsigned char *iv, c, cc;
iv = &(*ivec)[0];
if (enc) {
while (l--) {
if (n == 0) {
c2l(iv, v0);
c2l(iv, v1);
ti[0] = v0;
ti[1] = v1;
DES_encrypt3(ti, ks1, ks2, ks3);
v0 = ti[0];
v1 = ti[1];
iv = &(*ivec)[0];
l2c(v0, iv);
l2c(v1, iv);
iv = &(*ivec)[0];
}
c = *(in++) ^ iv[n];
*(out++) = c;
iv[n] = c;
n = (n + 1) & 0x07;
}
} else {
while (l--) {
if (n == 0) {
c2l(iv, v0);
c2l(iv, v1);
ti[0] = v0;
ti[1] = v1;
DES_encrypt3(ti, ks1, ks2, ks3);
v0 = ti[0];
v1 = ti[1];
iv = &(*ivec)[0];
l2c(v0, iv);
l2c(v1, iv);
iv = &(*ivec)[0];
}
cc = *(in++);
c = iv[n];
iv[n] = cc;
*(out++) = c ^ cc;
n = (n + 1) & 0x07;
}
}
v0 = v1 = ti[0] = ti[1] = c = cc = 0;
*num = n;
}
/*
* This is compatible with the single key CFB-r for DES, even thought that's
* not what EVP needs.
*/
void DES_ede3_cfb_encrypt(const unsigned char *in, unsigned char *out,
int numbits, long length, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_key_schedule *ks3,
DES_cblock *ivec, int enc)
{
register DES_LONG d0, d1, v0, v1;
register unsigned long l = length, n = ((unsigned int)numbits + 7) / 8;
register int num = numbits, i;
DES_LONG ti[2];
unsigned char *iv;
unsigned char ovec[16];
if (num > 64)
return;
iv = &(*ivec)[0];
c2l(iv, v0);
c2l(iv, v1);
if (enc) {
while (l >= n) {
l -= n;
ti[0] = v0;
ti[1] = v1;
DES_encrypt3(ti, ks1, ks2, ks3);
c2ln(in, d0, d1, n);
in += n;
d0 ^= ti[0];
d1 ^= ti[1];
l2cn(d0, d1, out, n);
out += n;
/*
* 30-08-94 - eay - changed because l>>32 and l<<32 are bad under
* gcc :-(
*/
if (num == 32) {
v0 = v1;
v1 = d0;
} else if (num == 64) {
v0 = d0;
v1 = d1;
} else {
iv = &ovec[0];
l2c(v0, iv);
l2c(v1, iv);
l2c(d0, iv);
l2c(d1, iv);
/* shift ovec left most of the bits... */
memmove(ovec, ovec + num / 8, 8 + (num % 8 ? 1 : 0));
/* now the remaining bits */
if (num % 8 != 0)
for (i = 0; i < 8; ++i) {
ovec[i] <<= num % 8;
ovec[i] |= ovec[i + 1] >> (8 - num % 8);
}
iv = &ovec[0];
c2l(iv, v0);
c2l(iv, v1);
}
}
} else {
while (l >= n) {
l -= n;
ti[0] = v0;
ti[1] = v1;
DES_encrypt3(ti, ks1, ks2, ks3);
c2ln(in, d0, d1, n);
in += n;
/*
* 30-08-94 - eay - changed because l>>32 and l<<32 are bad under
* gcc :-(
*/
if (num == 32) {
v0 = v1;
v1 = d0;
} else if (num == 64) {
v0 = d0;
v1 = d1;
} else {
iv = &ovec[0];
l2c(v0, iv);
l2c(v1, iv);
l2c(d0, iv);
l2c(d1, iv);
/* shift ovec left most of the bits... */
memmove(ovec, ovec + num / 8, 8 + (num % 8 ? 1 : 0));
/* now the remaining bits */
if (num % 8 != 0)
for (i = 0; i < 8; ++i) {
ovec[i] <<= num % 8;
ovec[i] |= ovec[i + 1] >> (8 - num % 8);
}
iv = &ovec[0];
c2l(iv, v0);
c2l(iv, v1);
}
d0 ^= ti[0];
d1 ^= ti[1];
l2cn(d0, d1, out, n);
out += n;
}
}
iv = &(*ivec)[0];
l2c(v0, iv);
l2c(v1, iv);
v0 = v1 = d0 = d1 = ti[0] = ti[1] = 0;
}
| 5,646 | 27.811224 | 78 | c |
openssl | openssl-master/crypto/des/cfb64enc.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* DES low level APIs are deprecated for public use, but still ok for internal
* use.
*/
#include "internal/deprecated.h"
#include "des_local.h"
/*
* The input and output encrypted as though 64bit cfb mode is being used.
* The extra state information to record how much of the 64bit block we have
* used is contained in *num;
*/
void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *schedule,
DES_cblock *ivec, int *num, int enc)
{
register DES_LONG v0, v1;
register long l = length;
register int n = *num;
DES_LONG ti[2];
unsigned char *iv, c, cc;
iv = &(*ivec)[0];
if (enc) {
while (l--) {
if (n == 0) {
c2l(iv, v0);
ti[0] = v0;
c2l(iv, v1);
ti[1] = v1;
DES_encrypt1(ti, schedule, DES_ENCRYPT);
iv = &(*ivec)[0];
v0 = ti[0];
l2c(v0, iv);
v0 = ti[1];
l2c(v0, iv);
iv = &(*ivec)[0];
}
c = *(in++) ^ iv[n];
*(out++) = c;
iv[n] = c;
n = (n + 1) & 0x07;
}
} else {
while (l--) {
if (n == 0) {
c2l(iv, v0);
ti[0] = v0;
c2l(iv, v1);
ti[1] = v1;
DES_encrypt1(ti, schedule, DES_ENCRYPT);
iv = &(*ivec)[0];
v0 = ti[0];
l2c(v0, iv);
v0 = ti[1];
l2c(v0, iv);
iv = &(*ivec)[0];
}
cc = *(in++);
c = iv[n];
iv[n] = cc;
*(out++) = c ^ cc;
n = (n + 1) & 0x07;
}
}
v0 = v1 = ti[0] = ti[1] = c = cc = 0;
*num = n;
}
| 2,224 | 26.8125 | 78 | c |
openssl | openssl-master/crypto/des/cfb_enc.c | /*
* Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* DES low level APIs are deprecated for public use, but still ok for internal
* use.
*/
#include "internal/deprecated.h"
#include "internal/e_os.h"
#include "des_local.h"
#include <assert.h>
/*
* The input and output are loaded in multiples of 8 bits. What this means is
* that if you hame numbits=12 and length=2 the first 12 bits will be
* retrieved from the first byte and half the second. The second 12 bits
* will come from the 3rd and half the 4th byte.
*/
/*
* Until Aug 1 2003 this function did not correctly implement CFB-r, so it
* will not be compatible with any encryption prior to that date. Ben.
*/
void DES_cfb_encrypt(const unsigned char *in, unsigned char *out, int numbits,
long length, DES_key_schedule *schedule,
DES_cblock *ivec, int enc)
{
register DES_LONG d0, d1, v0, v1;
register unsigned long l = length;
register int num = numbits / 8, n = (numbits + 7) / 8, i, rem =
numbits % 8;
DES_LONG ti[2];
unsigned char *iv;
#ifndef L_ENDIAN
unsigned char ovec[16];
#else
unsigned int sh[4];
unsigned char *ovec = (unsigned char *)sh;
/* I kind of count that compiler optimizes away this assertion, */
assert(sizeof(sh[0]) == 4); /* as this holds true for all, */
/* but 16-bit platforms... */
#endif
if (numbits <= 0 || numbits > 64)
return;
iv = &(*ivec)[0];
c2l(iv, v0);
c2l(iv, v1);
if (enc) {
while (l >= (unsigned long)n) {
l -= n;
ti[0] = v0;
ti[1] = v1;
DES_encrypt1((DES_LONG *)ti, schedule, DES_ENCRYPT);
c2ln(in, d0, d1, n);
in += n;
d0 ^= ti[0];
d1 ^= ti[1];
l2cn(d0, d1, out, n);
out += n;
/*
* 30-08-94 - eay - changed because l>>32 and l<<32 are bad under
* gcc :-(
*/
if (numbits == 32) {
v0 = v1;
v1 = d0;
} else if (numbits == 64) {
v0 = d0;
v1 = d1;
} else {
#ifndef L_ENDIAN
iv = &ovec[0];
l2c(v0, iv);
l2c(v1, iv);
l2c(d0, iv);
l2c(d1, iv);
#else
sh[0] = v0, sh[1] = v1, sh[2] = d0, sh[3] = d1;
#endif
if (rem == 0)
memmove(ovec, ovec + num, 8);
else
for (i = 0; i < 8; ++i)
ovec[i] = ovec[i + num] << rem |
ovec[i + num + 1] >> (8 - rem);
#ifdef L_ENDIAN
v0 = sh[0], v1 = sh[1];
#else
iv = &ovec[0];
c2l(iv, v0);
c2l(iv, v1);
#endif
}
}
} else {
while (l >= (unsigned long)n) {
l -= n;
ti[0] = v0;
ti[1] = v1;
DES_encrypt1((DES_LONG *)ti, schedule, DES_ENCRYPT);
c2ln(in, d0, d1, n);
in += n;
/*
* 30-08-94 - eay - changed because l>>32 and l<<32 are bad under
* gcc :-(
*/
if (numbits == 32) {
v0 = v1;
v1 = d0;
} else if (numbits == 64) {
v0 = d0;
v1 = d1;
} else {
#ifndef L_ENDIAN
iv = &ovec[0];
l2c(v0, iv);
l2c(v1, iv);
l2c(d0, iv);
l2c(d1, iv);
#else
sh[0] = v0, sh[1] = v1, sh[2] = d0, sh[3] = d1;
#endif
if (rem == 0)
memmove(ovec, ovec + num, 8);
else
for (i = 0; i < 8; ++i)
ovec[i] = ovec[i + num] << rem |
ovec[i + num + 1] >> (8 - rem);
#ifdef L_ENDIAN
v0 = sh[0], v1 = sh[1];
#else
iv = &ovec[0];
c2l(iv, v0);
c2l(iv, v1);
#endif
}
d0 ^= ti[0];
d1 ^= ti[1];
l2cn(d0, d1, out, n);
out += n;
}
}
iv = &(*ivec)[0];
l2c(v0, iv);
l2c(v1, iv);
v0 = v1 = d0 = d1 = ti[0] = ti[1] = 0;
}
| 4,608 | 28.356688 | 78 | c |
openssl | openssl-master/crypto/des/des_enc.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* DES low level APIs are deprecated for public use, but still ok for internal
* use.
*/
#include "internal/deprecated.h"
#include <openssl/crypto.h>
#include "des_local.h"
#include "spr.h"
void DES_encrypt1(DES_LONG *data, DES_key_schedule *ks, int enc)
{
register DES_LONG l, r, t, u;
register DES_LONG *s;
r = data[0];
l = data[1];
IP(r, l);
/*
* Things have been modified so that the initial rotate is done outside
* the loop. This required the DES_SPtrans values in sp.h to be rotated
* 1 bit to the right. One perl script later and things have a 5% speed
* up on a sparc2. Thanks to Richard Outerbridge for pointing this out.
*/
/* clear the top bits on machines with 8byte longs */
/* shift left by 2 */
r = ROTATE(r, 29) & 0xffffffffL;
l = ROTATE(l, 29) & 0xffffffffL;
s = ks->ks->deslong;
/*
* I don't know if it is worth the effort of loop unrolling the inner
* loop
*/
if (enc) {
D_ENCRYPT(l, r, 0); /* 1 */
D_ENCRYPT(r, l, 2); /* 2 */
D_ENCRYPT(l, r, 4); /* 3 */
D_ENCRYPT(r, l, 6); /* 4 */
D_ENCRYPT(l, r, 8); /* 5 */
D_ENCRYPT(r, l, 10); /* 6 */
D_ENCRYPT(l, r, 12); /* 7 */
D_ENCRYPT(r, l, 14); /* 8 */
D_ENCRYPT(l, r, 16); /* 9 */
D_ENCRYPT(r, l, 18); /* 10 */
D_ENCRYPT(l, r, 20); /* 11 */
D_ENCRYPT(r, l, 22); /* 12 */
D_ENCRYPT(l, r, 24); /* 13 */
D_ENCRYPT(r, l, 26); /* 14 */
D_ENCRYPT(l, r, 28); /* 15 */
D_ENCRYPT(r, l, 30); /* 16 */
} else {
D_ENCRYPT(l, r, 30); /* 16 */
D_ENCRYPT(r, l, 28); /* 15 */
D_ENCRYPT(l, r, 26); /* 14 */
D_ENCRYPT(r, l, 24); /* 13 */
D_ENCRYPT(l, r, 22); /* 12 */
D_ENCRYPT(r, l, 20); /* 11 */
D_ENCRYPT(l, r, 18); /* 10 */
D_ENCRYPT(r, l, 16); /* 9 */
D_ENCRYPT(l, r, 14); /* 8 */
D_ENCRYPT(r, l, 12); /* 7 */
D_ENCRYPT(l, r, 10); /* 6 */
D_ENCRYPT(r, l, 8); /* 5 */
D_ENCRYPT(l, r, 6); /* 4 */
D_ENCRYPT(r, l, 4); /* 3 */
D_ENCRYPT(l, r, 2); /* 2 */
D_ENCRYPT(r, l, 0); /* 1 */
}
/* rotate and clear the top bits on machines with 8byte longs */
l = ROTATE(l, 3) & 0xffffffffL;
r = ROTATE(r, 3) & 0xffffffffL;
FP(r, l);
data[0] = l;
data[1] = r;
l = r = t = u = 0;
}
void DES_encrypt2(DES_LONG *data, DES_key_schedule *ks, int enc)
{
register DES_LONG l, r, t, u;
register DES_LONG *s;
r = data[0];
l = data[1];
/*
* Things have been modified so that the initial rotate is done outside
* the loop. This required the DES_SPtrans values in sp.h to be rotated
* 1 bit to the right. One perl script later and things have a 5% speed
* up on a sparc2. Thanks to Richard Outerbridge for pointing this out.
*/
/* clear the top bits on machines with 8byte longs */
r = ROTATE(r, 29) & 0xffffffffL;
l = ROTATE(l, 29) & 0xffffffffL;
s = ks->ks->deslong;
/*
* I don't know if it is worth the effort of loop unrolling the inner
* loop
*/
if (enc) {
D_ENCRYPT(l, r, 0); /* 1 */
D_ENCRYPT(r, l, 2); /* 2 */
D_ENCRYPT(l, r, 4); /* 3 */
D_ENCRYPT(r, l, 6); /* 4 */
D_ENCRYPT(l, r, 8); /* 5 */
D_ENCRYPT(r, l, 10); /* 6 */
D_ENCRYPT(l, r, 12); /* 7 */
D_ENCRYPT(r, l, 14); /* 8 */
D_ENCRYPT(l, r, 16); /* 9 */
D_ENCRYPT(r, l, 18); /* 10 */
D_ENCRYPT(l, r, 20); /* 11 */
D_ENCRYPT(r, l, 22); /* 12 */
D_ENCRYPT(l, r, 24); /* 13 */
D_ENCRYPT(r, l, 26); /* 14 */
D_ENCRYPT(l, r, 28); /* 15 */
D_ENCRYPT(r, l, 30); /* 16 */
} else {
D_ENCRYPT(l, r, 30); /* 16 */
D_ENCRYPT(r, l, 28); /* 15 */
D_ENCRYPT(l, r, 26); /* 14 */
D_ENCRYPT(r, l, 24); /* 13 */
D_ENCRYPT(l, r, 22); /* 12 */
D_ENCRYPT(r, l, 20); /* 11 */
D_ENCRYPT(l, r, 18); /* 10 */
D_ENCRYPT(r, l, 16); /* 9 */
D_ENCRYPT(l, r, 14); /* 8 */
D_ENCRYPT(r, l, 12); /* 7 */
D_ENCRYPT(l, r, 10); /* 6 */
D_ENCRYPT(r, l, 8); /* 5 */
D_ENCRYPT(l, r, 6); /* 4 */
D_ENCRYPT(r, l, 4); /* 3 */
D_ENCRYPT(l, r, 2); /* 2 */
D_ENCRYPT(r, l, 0); /* 1 */
}
/* rotate and clear the top bits on machines with 8byte longs */
data[0] = ROTATE(l, 3) & 0xffffffffL;
data[1] = ROTATE(r, 3) & 0xffffffffL;
l = r = t = u = 0;
}
void DES_encrypt3(DES_LONG *data, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_key_schedule *ks3)
{
register DES_LONG l, r;
l = data[0];
r = data[1];
IP(l, r);
data[0] = l;
data[1] = r;
DES_encrypt2((DES_LONG *)data, ks1, DES_ENCRYPT);
DES_encrypt2((DES_LONG *)data, ks2, DES_DECRYPT);
DES_encrypt2((DES_LONG *)data, ks3, DES_ENCRYPT);
l = data[0];
r = data[1];
FP(r, l);
data[0] = l;
data[1] = r;
}
void DES_decrypt3(DES_LONG *data, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_key_schedule *ks3)
{
register DES_LONG l, r;
l = data[0];
r = data[1];
IP(l, r);
data[0] = l;
data[1] = r;
DES_encrypt2((DES_LONG *)data, ks3, DES_DECRYPT);
DES_encrypt2((DES_LONG *)data, ks2, DES_ENCRYPT);
DES_encrypt2((DES_LONG *)data, ks1, DES_DECRYPT);
l = data[0];
r = data[1];
FP(r, l);
data[0] = l;
data[1] = r;
}
#ifndef DES_DEFAULT_OPTIONS
# undef CBC_ENC_C__DONT_UPDATE_IV
# include "ncbc_enc.c" /* DES_ncbc_encrypt */
void DES_ede3_cbc_encrypt(const unsigned char *input, unsigned char *output,
long length, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_key_schedule *ks3,
DES_cblock *ivec, int enc)
{
register DES_LONG tin0, tin1;
register DES_LONG tout0, tout1, xor0, xor1;
register const unsigned char *in;
unsigned char *out;
register long l = length;
DES_LONG tin[2];
unsigned char *iv;
in = input;
out = output;
iv = &(*ivec)[0];
if (enc) {
c2l(iv, tout0);
c2l(iv, tout1);
for (l -= 8; l >= 0; l -= 8) {
c2l(in, tin0);
c2l(in, tin1);
tin0 ^= tout0;
tin1 ^= tout1;
tin[0] = tin0;
tin[1] = tin1;
DES_encrypt3((DES_LONG *)tin, ks1, ks2, ks3);
tout0 = tin[0];
tout1 = tin[1];
l2c(tout0, out);
l2c(tout1, out);
}
if (l != -8) {
c2ln(in, tin0, tin1, l + 8);
tin0 ^= tout0;
tin1 ^= tout1;
tin[0] = tin0;
tin[1] = tin1;
DES_encrypt3((DES_LONG *)tin, ks1, ks2, ks3);
tout0 = tin[0];
tout1 = tin[1];
l2c(tout0, out);
l2c(tout1, out);
}
iv = &(*ivec)[0];
l2c(tout0, iv);
l2c(tout1, iv);
} else {
register DES_LONG t0, t1;
c2l(iv, xor0);
c2l(iv, xor1);
for (l -= 8; l >= 0; l -= 8) {
c2l(in, tin0);
c2l(in, tin1);
t0 = tin0;
t1 = tin1;
tin[0] = tin0;
tin[1] = tin1;
DES_decrypt3((DES_LONG *)tin, ks1, ks2, ks3);
tout0 = tin[0];
tout1 = tin[1];
tout0 ^= xor0;
tout1 ^= xor1;
l2c(tout0, out);
l2c(tout1, out);
xor0 = t0;
xor1 = t1;
}
if (l != -8) {
c2l(in, tin0);
c2l(in, tin1);
t0 = tin0;
t1 = tin1;
tin[0] = tin0;
tin[1] = tin1;
DES_decrypt3((DES_LONG *)tin, ks1, ks2, ks3);
tout0 = tin[0];
tout1 = tin[1];
tout0 ^= xor0;
tout1 ^= xor1;
l2cn(tout0, tout1, out, l + 8);
xor0 = t0;
xor1 = t1;
}
iv = &(*ivec)[0];
l2c(xor0, iv);
l2c(xor1, iv);
}
tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0;
tin[0] = tin[1] = 0;
}
#endif /* DES_DEFAULT_OPTIONS */
| 8,847 | 27.915033 | 78 | c |
openssl | openssl-master/crypto/des/ecb3_enc.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* DES low level APIs are deprecated for public use, but still ok for internal
* use.
*/
#include "internal/deprecated.h"
#include "des_local.h"
void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output,
DES_key_schedule *ks1, DES_key_schedule *ks2,
DES_key_schedule *ks3, int enc)
{
register DES_LONG l0, l1;
DES_LONG ll[2];
const unsigned char *in = &(*input)[0];
unsigned char *out = &(*output)[0];
c2l(in, l0);
c2l(in, l1);
ll[0] = l0;
ll[1] = l1;
if (enc)
DES_encrypt3(ll, ks1, ks2, ks3);
else
DES_decrypt3(ll, ks1, ks2, ks3);
l0 = ll[0];
l1 = ll[1];
l2c(l0, out);
l2c(l1, out);
}
| 1,055 | 25.4 | 78 | c |
openssl | openssl-master/crypto/des/ecb_enc.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* DES low level APIs are deprecated for public use, but still ok for internal
* use.
*/
#include "internal/deprecated.h"
#include "des_local.h"
#include <openssl/opensslv.h>
#include <openssl/bio.h>
const char *DES_options(void)
{
static int init = 1;
static char buf[12];
if (init) {
if (sizeof(DES_LONG) != sizeof(long))
OPENSSL_strlcpy(buf, "des(int)", sizeof(buf));
else
OPENSSL_strlcpy(buf, "des(long)", sizeof(buf));
init = 0;
}
return buf;
}
void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output,
DES_key_schedule *ks, int enc)
{
register DES_LONG l;
DES_LONG ll[2];
const unsigned char *in = &(*input)[0];
unsigned char *out = &(*output)[0];
c2l(in, l);
ll[0] = l;
c2l(in, l);
ll[1] = l;
DES_encrypt1(ll, ks, enc);
l = ll[0];
l2c(l, out);
l = ll[1];
l2c(l, out);
l = ll[0] = ll[1] = 0;
}
| 1,301 | 22.672727 | 78 | c |
openssl | openssl-master/crypto/des/fcrypt.c | /*
* Copyright 1998-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* DES low level APIs are deprecated for public use, but still ok for internal
* use.
*/
#include "internal/deprecated.h"
/* NOCW */
#include <stdio.h>
#ifdef _OSD_POSIX
# ifndef CHARSET_EBCDIC
# define CHARSET_EBCDIC 1
# endif
#endif
#ifdef CHARSET_EBCDIC
# include <openssl/ebcdic.h>
#endif
#include <openssl/crypto.h>
#include "des_local.h"
/*
* Added more values to handle illegal salt values the way normal crypt()
* implementations do.
*/
static const unsigned char con_salt[128] = {
0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9,
0xDA, 0xDB, 0xDC, 0xDD, 0xDE, 0xDF, 0xE0, 0xE1,
0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9,
0xEA, 0xEB, 0xEC, 0xED, 0xEE, 0xEF, 0xF0, 0xF1,
0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9,
0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF, 0x00, 0x01,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0x0A, 0x0B, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A,
0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12,
0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A,
0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22,
0x23, 0x24, 0x25, 0x20, 0x21, 0x22, 0x23, 0x24,
0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C,
0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34,
0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C,
0x3D, 0x3E, 0x3F, 0x40, 0x41, 0x42, 0x43, 0x44,
};
static const unsigned char cov_2char[64] = {
0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
0x36, 0x37, 0x38, 0x39, 0x41, 0x42, 0x43, 0x44,
0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C,
0x4D, 0x4E, 0x4F, 0x50, 0x51, 0x52, 0x53, 0x54,
0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x61, 0x62,
0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A,
0x6B, 0x6C, 0x6D, 0x6E, 0x6F, 0x70, 0x71, 0x72,
0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A
};
char *DES_crypt(const char *buf, const char *salt)
{
static char buff[14];
#ifndef CHARSET_EBCDIC
return DES_fcrypt(buf, salt, buff);
#else
char e_salt[2 + 1];
char e_buf[32 + 1]; /* replace 32 by 8 ? */
char *ret;
if (salt[0] == '\0' || salt[1] == '\0')
return NULL;
/* Copy salt, convert to ASCII. */
e_salt[0] = salt[0];
e_salt[1] = salt[1];
e_salt[2] = '\0';
ebcdic2ascii(e_salt, e_salt, sizeof(e_salt));
/* Convert password to ASCII. */
OPENSSL_strlcpy(e_buf, buf, sizeof(e_buf));
ebcdic2ascii(e_buf, e_buf, sizeof(e_buf));
/* Encrypt it (from/to ASCII); if it worked, convert back. */
ret = DES_fcrypt(e_buf, e_salt, buff);
if (ret != NULL)
ascii2ebcdic(ret, ret, strlen(ret));
return ret;
#endif
}
char *DES_fcrypt(const char *buf, const char *salt, char *ret)
{
unsigned int i, j, x, y;
DES_LONG Eswap0, Eswap1;
DES_LONG out[2], ll;
DES_cblock key;
DES_key_schedule ks;
unsigned char bb[9];
unsigned char *b = bb;
unsigned char c, u;
x = ret[0] = salt[0];
if (x == 0 || x >= sizeof(con_salt))
return NULL;
Eswap0 = con_salt[x] << 2;
x = ret[1] = salt[1];
if (x == 0 || x >= sizeof(con_salt))
return NULL;
Eswap1 = con_salt[x] << 6;
/*
* EAY r=strlen(buf); r=(r+7)/8;
*/
for (i = 0; i < 8; i++) {
c = *(buf++);
if (!c)
break;
key[i] = (c << 1);
}
for (; i < 8; i++)
key[i] = 0;
DES_set_key_unchecked(&key, &ks);
fcrypt_body(&(out[0]), &ks, Eswap0, Eswap1);
ll = out[0];
l2c(ll, b);
ll = out[1];
l2c(ll, b);
y = 0;
u = 0x80;
bb[8] = 0;
for (i = 2; i < 13; i++) {
c = 0;
for (j = 0; j < 6; j++) {
c <<= 1;
if (bb[y] & u)
c |= 1;
u >>= 1;
if (!u) {
y++;
u = 0x80;
}
}
ret[i] = cov_2char[c];
}
ret[13] = '\0';
return ret;
}
| 4,207 | 25.974359 | 78 | c |
openssl | openssl-master/crypto/des/fcrypt_b.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* DES low level APIs are deprecated for public use, but still ok for internal
* use.
*/
#include "internal/deprecated.h"
#include <stdio.h>
#define DES_FCRYPT
#include "des_local.h"
#undef DES_FCRYPT
#undef PERM_OP
#define PERM_OP(a,b,t,n,m) ((t)=((((a)>>(n))^(b))&(m)),\
(b)^=(t),\
(a)^=((t)<<(n)))
#undef HPERM_OP
#define HPERM_OP(a,t,n,m) ((t)=((((a)<<(16-(n)))^(a))&(m)),\
(a)=(a)^(t)^(t>>(16-(n))))\
void fcrypt_body(DES_LONG *out, DES_key_schedule *ks, DES_LONG Eswap0,
DES_LONG Eswap1)
{
register DES_LONG l, r, t, u;
register DES_LONG *s;
register int j;
register DES_LONG E0, E1;
l = 0;
r = 0;
s = (DES_LONG *)ks;
E0 = Eswap0;
E1 = Eswap1;
for (j = 0; j < 25; j++) {
D_ENCRYPT(l, r, 0); /* 1 */
D_ENCRYPT(r, l, 2); /* 2 */
D_ENCRYPT(l, r, 4); /* 3 */
D_ENCRYPT(r, l, 6); /* 4 */
D_ENCRYPT(l, r, 8); /* 5 */
D_ENCRYPT(r, l, 10); /* 6 */
D_ENCRYPT(l, r, 12); /* 7 */
D_ENCRYPT(r, l, 14); /* 8 */
D_ENCRYPT(l, r, 16); /* 9 */
D_ENCRYPT(r, l, 18); /* 10 */
D_ENCRYPT(l, r, 20); /* 11 */
D_ENCRYPT(r, l, 22); /* 12 */
D_ENCRYPT(l, r, 24); /* 13 */
D_ENCRYPT(r, l, 26); /* 14 */
D_ENCRYPT(l, r, 28); /* 15 */
D_ENCRYPT(r, l, 30); /* 16 */
t = l;
l = r;
r = t;
}
l = ROTATE(l, 3) & 0xffffffffL;
r = ROTATE(r, 3) & 0xffffffffL;
PERM_OP(l, r, t, 1, 0x55555555L);
PERM_OP(r, l, t, 8, 0x00ff00ffL);
PERM_OP(l, r, t, 2, 0x33333333L);
PERM_OP(r, l, t, 16, 0x0000ffffL);
PERM_OP(l, r, t, 4, 0x0f0f0f0fL);
out[0] = r;
out[1] = l;
}
| 2,109 | 25.708861 | 78 | c |
openssl | openssl-master/crypto/des/ncbc_enc.c | /*
* Copyright 1998-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*-
* #included by:
* cbc_enc.c (DES_cbc_encrypt)
* des_enc.c (DES_ncbc_encrypt)
*/
#include "des_local.h"
#ifdef CBC_ENC_C__DONT_UPDATE_IV
void DES_cbc_encrypt(const unsigned char *in, unsigned char *out, long length,
DES_key_schedule *_schedule, DES_cblock *ivec, int enc)
#else
void DES_ncbc_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *_schedule,
DES_cblock *ivec, int enc)
#endif
{
register DES_LONG tin0, tin1;
register DES_LONG tout0, tout1, xor0, xor1;
register long l = length;
DES_LONG tin[2];
unsigned char *iv;
iv = &(*ivec)[0];
if (enc) {
c2l(iv, tout0);
c2l(iv, tout1);
for (l -= 8; l >= 0; l -= 8) {
c2l(in, tin0);
c2l(in, tin1);
tin0 ^= tout0;
tin[0] = tin0;
tin1 ^= tout1;
tin[1] = tin1;
DES_encrypt1((DES_LONG *)tin, _schedule, DES_ENCRYPT);
tout0 = tin[0];
l2c(tout0, out);
tout1 = tin[1];
l2c(tout1, out);
}
if (l != -8) {
c2ln(in, tin0, tin1, l + 8);
tin0 ^= tout0;
tin[0] = tin0;
tin1 ^= tout1;
tin[1] = tin1;
DES_encrypt1((DES_LONG *)tin, _schedule, DES_ENCRYPT);
tout0 = tin[0];
l2c(tout0, out);
tout1 = tin[1];
l2c(tout1, out);
}
#ifndef CBC_ENC_C__DONT_UPDATE_IV
iv = &(*ivec)[0];
l2c(tout0, iv);
l2c(tout1, iv);
#endif
} else {
c2l(iv, xor0);
c2l(iv, xor1);
for (l -= 8; l >= 0; l -= 8) {
c2l(in, tin0);
tin[0] = tin0;
c2l(in, tin1);
tin[1] = tin1;
DES_encrypt1((DES_LONG *)tin, _schedule, DES_DECRYPT);
tout0 = tin[0] ^ xor0;
tout1 = tin[1] ^ xor1;
l2c(tout0, out);
l2c(tout1, out);
xor0 = tin0;
xor1 = tin1;
}
if (l != -8) {
c2l(in, tin0);
tin[0] = tin0;
c2l(in, tin1);
tin[1] = tin1;
DES_encrypt1((DES_LONG *)tin, _schedule, DES_DECRYPT);
tout0 = tin[0] ^ xor0;
tout1 = tin[1] ^ xor1;
l2cn(tout0, tout1, out, l + 8);
#ifndef CBC_ENC_C__DONT_UPDATE_IV
xor0 = tin0;
xor1 = tin1;
#endif
}
#ifndef CBC_ENC_C__DONT_UPDATE_IV
iv = &(*ivec)[0];
l2c(xor0, iv);
l2c(xor1, iv);
#endif
}
tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0;
tin[0] = tin[1] = 0;
}
| 3,026 | 27.28972 | 78 | c |
openssl | openssl-master/crypto/des/ofb64ede.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* DES low level APIs are deprecated for public use, but still ok for internal
* use.
*/
#include "internal/deprecated.h"
#include "des_local.h"
/*
* The input and output encrypted as though 64bit ofb mode is being used.
* The extra state information to record how much of the 64bit block we have
* used is contained in *num;
*/
void DES_ede3_ofb64_encrypt(register const unsigned char *in,
register unsigned char *out, long length,
DES_key_schedule *k1, DES_key_schedule *k2,
DES_key_schedule *k3, DES_cblock *ivec, int *num)
{
register DES_LONG v0, v1;
register int n = *num;
register long l = length;
DES_cblock d;
register char *dp;
DES_LONG ti[2];
unsigned char *iv;
int save = 0;
iv = &(*ivec)[0];
c2l(iv, v0);
c2l(iv, v1);
ti[0] = v0;
ti[1] = v1;
dp = (char *)d;
l2c(v0, dp);
l2c(v1, dp);
while (l--) {
if (n == 0) {
/* ti[0]=v0; */
/* ti[1]=v1; */
DES_encrypt3(ti, k1, k2, k3);
v0 = ti[0];
v1 = ti[1];
dp = (char *)d;
l2c(v0, dp);
l2c(v1, dp);
save++;
}
*(out++) = *(in++) ^ d[n];
n = (n + 1) & 0x07;
}
if (save) {
iv = &(*ivec)[0];
l2c(v0, iv);
l2c(v1, iv);
}
v0 = v1 = ti[0] = ti[1] = 0;
*num = n;
}
| 1,796 | 25.043478 | 78 | c |
openssl | openssl-master/crypto/des/ofb64enc.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* DES low level APIs are deprecated for public use, but still ok for internal
* use.
*/
#include "internal/deprecated.h"
#include "des_local.h"
/*
* The input and output encrypted as though 64bit ofb mode is being used.
* The extra state information to record how much of the 64bit block we have
* used is contained in *num;
*/
void DES_ofb64_encrypt(register const unsigned char *in,
register unsigned char *out, long length,
DES_key_schedule *schedule, DES_cblock *ivec, int *num)
{
register DES_LONG v0, v1, t;
register int n = *num;
register long l = length;
DES_cblock d;
register unsigned char *dp;
DES_LONG ti[2];
unsigned char *iv;
int save = 0;
iv = &(*ivec)[0];
c2l(iv, v0);
c2l(iv, v1);
ti[0] = v0;
ti[1] = v1;
dp = d;
l2c(v0, dp);
l2c(v1, dp);
while (l--) {
if (n == 0) {
DES_encrypt1(ti, schedule, DES_ENCRYPT);
dp = d;
t = ti[0];
l2c(t, dp);
t = ti[1];
l2c(t, dp);
save++;
}
*(out++) = *(in++) ^ d[n];
n = (n + 1) & 0x07;
}
if (save) {
v0 = ti[0];
v1 = ti[1];
iv = &(*ivec)[0];
l2c(v0, iv);
l2c(v1, iv);
}
t = v0 = v1 = ti[0] = ti[1] = 0;
*num = n;
}
| 1,705 | 24.462687 | 78 | c |
openssl | openssl-master/crypto/des/ofb_enc.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* DES low level APIs are deprecated for public use, but still ok for internal
* use.
*/
#include "internal/deprecated.h"
#include "des_local.h"
/*
* The input and output are loaded in multiples of 8 bits. What this means is
* that if you have numbits=12 and length=2 the first 12 bits will be
* retrieved from the first byte and half the second. The second 12 bits
* will come from the 3rd and half the 4th byte.
*/
void DES_ofb_encrypt(const unsigned char *in, unsigned char *out, int numbits,
long length, DES_key_schedule *schedule,
DES_cblock *ivec)
{
register DES_LONG d0, d1, vv0, vv1, v0, v1, n = (numbits + 7) / 8;
register DES_LONG mask0, mask1;
register long l = length;
register int num = numbits;
DES_LONG ti[2];
unsigned char *iv;
if (num > 64)
return;
if (num > 32) {
mask0 = 0xffffffffL;
if (num >= 64)
mask1 = mask0;
else
mask1 = (1L << (num - 32)) - 1;
} else {
if (num == 32)
mask0 = 0xffffffffL;
else
mask0 = (1L << num) - 1;
mask1 = 0x00000000L;
}
iv = &(*ivec)[0];
c2l(iv, v0);
c2l(iv, v1);
ti[0] = v0;
ti[1] = v1;
while (l-- > 0) {
ti[0] = v0;
ti[1] = v1;
DES_encrypt1((DES_LONG *)ti, schedule, DES_ENCRYPT);
vv0 = ti[0];
vv1 = ti[1];
c2ln(in, d0, d1, n);
in += n;
d0 = (d0 ^ vv0) & mask0;
d1 = (d1 ^ vv1) & mask1;
l2cn(d0, d1, out, n);
out += n;
if (num == 32) {
v0 = v1;
v1 = vv0;
} else if (num == 64) {
v0 = vv0;
v1 = vv1;
} else if (num > 32) { /* && num != 64 */
v0 = ((v1 >> (num - 32)) | (vv0 << (64 - num))) & 0xffffffffL;
v1 = ((vv0 >> (num - 32)) | (vv1 << (64 - num))) & 0xffffffffL;
} else { /* num < 32 */
v0 = ((v0 >> num) | (v1 << (32 - num))) & 0xffffffffL;
v1 = ((v1 >> num) | (vv0 << (32 - num))) & 0xffffffffL;
}
}
iv = &(*ivec)[0];
l2c(v0, iv);
l2c(v1, iv);
v0 = v1 = d0 = d1 = ti[0] = ti[1] = vv0 = vv1 = 0;
}
| 2,579 | 27.988764 | 78 | c |
openssl | openssl-master/crypto/des/pcbc_enc.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* DES low level APIs are deprecated for public use, but still ok for internal
* use.
*/
#include "internal/deprecated.h"
#include "des_local.h"
void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output,
long length, DES_key_schedule *schedule,
DES_cblock *ivec, int enc)
{
register DES_LONG sin0, sin1, xor0, xor1, tout0, tout1;
DES_LONG tin[2];
const unsigned char *in;
unsigned char *out, *iv;
in = input;
out = output;
iv = &(*ivec)[0];
if (enc) {
c2l(iv, xor0);
c2l(iv, xor1);
for (; length > 0; length -= 8) {
if (length >= 8) {
c2l(in, sin0);
c2l(in, sin1);
} else
c2ln(in, sin0, sin1, length);
tin[0] = sin0 ^ xor0;
tin[1] = sin1 ^ xor1;
DES_encrypt1((DES_LONG *)tin, schedule, DES_ENCRYPT);
tout0 = tin[0];
tout1 = tin[1];
xor0 = sin0 ^ tout0;
xor1 = sin1 ^ tout1;
l2c(tout0, out);
l2c(tout1, out);
}
} else {
c2l(iv, xor0);
c2l(iv, xor1);
for (; length > 0; length -= 8) {
c2l(in, sin0);
c2l(in, sin1);
tin[0] = sin0;
tin[1] = sin1;
DES_encrypt1((DES_LONG *)tin, schedule, DES_DECRYPT);
tout0 = tin[0] ^ xor0;
tout1 = tin[1] ^ xor1;
if (length >= 8) {
l2c(tout0, out);
l2c(tout1, out);
} else
l2cn(tout0, tout1, out, length);
xor0 = tout0 ^ sin0;
xor1 = tout1 ^ sin1;
}
}
tin[0] = tin[1] = 0;
sin0 = sin1 = xor0 = xor1 = tout0 = tout1 = 0;
}
| 2,128 | 28.164384 | 78 | c |
openssl | openssl-master/crypto/des/qud_cksm.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* From "Message Authentication" R.R. Jueneman, S.M. Matyas, C.H. Meyer IEEE
* Communications Magazine Sept 1985 Vol. 23 No. 9 p 29-40 This module in
* only based on the code in this paper and is almost definitely not the same
* as the MIT implementation.
*/
/*
* DES low level APIs are deprecated for public use, but still ok for internal
* use.
*/
#include "internal/deprecated.h"
#include "des_local.h"
#define Q_B0(a) (((DES_LONG)(a)))
#define Q_B1(a) (((DES_LONG)(a))<<8)
#define Q_B2(a) (((DES_LONG)(a))<<16)
#define Q_B3(a) (((DES_LONG)(a))<<24)
/* used to scramble things a bit */
/* Got the value MIT uses via brute force :-) 2/10/90 eay */
#define NOISE ((DES_LONG)83653421L)
DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[],
long length, int out_count, DES_cblock *seed)
{
DES_LONG z0, z1, t0, t1;
int i;
long l;
const unsigned char *cp;
DES_LONG *lp;
if (out_count < 1)
out_count = 1;
lp = (DES_LONG *)&(output[0])[0];
z0 = Q_B0((*seed)[0]) | Q_B1((*seed)[1]) | Q_B2((*seed)[2]) |
Q_B3((*seed)[3]);
z1 = Q_B0((*seed)[4]) | Q_B1((*seed)[5]) | Q_B2((*seed)[6]) |
Q_B3((*seed)[7]);
for (i = 0; ((i < 4) && (i < out_count)); i++) {
cp = input;
l = length;
while (l > 0) {
if (l > 1) {
t0 = (DES_LONG)(*(cp++));
t0 |= (DES_LONG)Q_B1(*(cp++));
l--;
} else
t0 = (DES_LONG)(*(cp++));
l--;
/* add */
t0 += z0;
t0 &= 0xffffffffL;
t1 = z1;
/* square, well sort of square */
z0 = ((((t0 * t0) & 0xffffffffL) + ((t1 * t1) & 0xffffffffL))
& 0xffffffffL) % 0x7fffffffL;
z1 = ((t0 * ((t1 + NOISE) & 0xffffffffL)) & 0xffffffffL) %
0x7fffffffL;
}
if (lp != NULL) {
/*
* The MIT library assumes that the checksum is composed of
* 2*out_count 32 bit ints
*/
*lp++ = z0;
*lp++ = z1;
}
}
return z0;
}
| 2,508 | 28.869048 | 78 | c |
openssl | openssl-master/crypto/des/rand_key.c | /*
* Copyright 1998-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* DES low level APIs are deprecated for public use, but still ok for internal
* use.
*/
#include "internal/deprecated.h"
#include <openssl/des.h>
#include <openssl/rand.h>
int DES_random_key(DES_cblock *ret)
{
do {
if (RAND_priv_bytes((unsigned char *)ret, sizeof(DES_cblock)) != 1)
return 0;
} while (DES_is_weak_key(ret));
DES_set_odd_parity(ret);
return 1;
}
| 743 | 25.571429 | 78 | c |
openssl | openssl-master/crypto/des/set_key.c | /*
* Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*-
* set_key.c v 1.4 eay 24/9/91
* 1.4 Speed up by 400% :-)
* 1.3 added register declarations.
* 1.2 unrolled make_key_sched a bit more
* 1.1 added norm_expand_bits
* 1.0 First working version
*/
/*
* DES low level APIs are deprecated for public use, but still ok for internal
* use.
*/
#include "internal/deprecated.h"
#include <openssl/crypto.h>
#include "internal/constant_time.h"
#include "internal/nelem.h"
#include "des_local.h"
static const unsigned char odd_parity[256] = {
1, 1, 2, 2, 4, 4, 7, 7, 8, 8, 11, 11, 13, 13, 14, 14,
16, 16, 19, 19, 21, 21, 22, 22, 25, 25, 26, 26, 28, 28, 31, 31,
32, 32, 35, 35, 37, 37, 38, 38, 41, 41, 42, 42, 44, 44, 47, 47,
49, 49, 50, 50, 52, 52, 55, 55, 56, 56, 59, 59, 61, 61, 62, 62,
64, 64, 67, 67, 69, 69, 70, 70, 73, 73, 74, 74, 76, 76, 79, 79,
81, 81, 82, 82, 84, 84, 87, 87, 88, 88, 91, 91, 93, 93, 94, 94,
97, 97, 98, 98, 100, 100, 103, 103, 104, 104, 107, 107, 109, 109, 110,
110,
112, 112, 115, 115, 117, 117, 118, 118, 121, 121, 122, 122, 124, 124, 127,
127,
128, 128, 131, 131, 133, 133, 134, 134, 137, 137, 138, 138, 140, 140, 143,
143,
145, 145, 146, 146, 148, 148, 151, 151, 152, 152, 155, 155, 157, 157, 158,
158,
161, 161, 162, 162, 164, 164, 167, 167, 168, 168, 171, 171, 173, 173, 174,
174,
176, 176, 179, 179, 181, 181, 182, 182, 185, 185, 186, 186, 188, 188, 191,
191,
193, 193, 194, 194, 196, 196, 199, 199, 200, 200, 203, 203, 205, 205, 206,
206,
208, 208, 211, 211, 213, 213, 214, 214, 217, 217, 218, 218, 220, 220, 223,
223,
224, 224, 227, 227, 229, 229, 230, 230, 233, 233, 234, 234, 236, 236, 239,
239,
241, 241, 242, 242, 244, 244, 247, 247, 248, 248, 251, 251, 253, 253, 254,
254
};
void DES_set_odd_parity(DES_cblock *key)
{
unsigned int i;
for (i = 0; i < DES_KEY_SZ; i++)
(*key)[i] = odd_parity[(*key)[i]];
}
/*
* Check that a key has the correct parity.
* Return 1 if parity is okay and 0 if not.
*/
int DES_check_key_parity(const_DES_cblock *key)
{
unsigned int i;
unsigned char res = 0377, b;
for (i = 0; i < DES_KEY_SZ; i++) {
b = (*key)[i];
b ^= b >> 4;
b ^= b >> 2;
b ^= b >> 1;
res &= constant_time_eq_8(b & 1, 1);
}
return (int)(res & 1);
}
/*-
* Weak and semi weak keys as taken from
* %A D.W. Davies
* %A W.L. Price
* %T Security for Computer Networks
* %I John Wiley & Sons
* %D 1984
*/
static const DES_cblock weak_keys[] = {
/* weak keys */
{0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01},
{0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE},
{0x1F, 0x1F, 0x1F, 0x1F, 0x0E, 0x0E, 0x0E, 0x0E},
{0xE0, 0xE0, 0xE0, 0xE0, 0xF1, 0xF1, 0xF1, 0xF1},
/* semi-weak keys */
{0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE},
{0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01},
{0x1F, 0xE0, 0x1F, 0xE0, 0x0E, 0xF1, 0x0E, 0xF1},
{0xE0, 0x1F, 0xE0, 0x1F, 0xF1, 0x0E, 0xF1, 0x0E},
{0x01, 0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1},
{0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1, 0x01},
{0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E, 0xFE},
{0xFE, 0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E},
{0x01, 0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E},
{0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E, 0x01},
{0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1, 0xFE},
{0xFE, 0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1}
};
/*
* Check for weak keys.
* Return 1 if the key is weak and 0 otherwise.
*/
int DES_is_weak_key(const_DES_cblock *key)
{
unsigned int i, res = 0;
int j;
for (i = 0; i < OSSL_NELEM(weak_keys); i++) {
j = CRYPTO_memcmp(weak_keys[i], key, sizeof(DES_cblock));
res |= constant_time_is_zero((unsigned int)j);
}
return (int)(res & 1);
}
/*-
* NOW DEFINED IN des_local.h
* See ecb_encrypt.c for a pseudo description of these macros.
* #define PERM_OP(a,b,t,n,m) ((t)=((((a)>>(n))^(b))&(m)),\
* (b)^=(t),\
* (a)=((a)^((t)<<(n))))
*/
#define HPERM_OP(a,t,n,m) ((t)=((((a)<<(16-(n)))^(a))&(m)),\
(a)=(a)^(t)^(t>>(16-(n))))
static const DES_LONG des_skb[8][64] = {
{
/* for C bits (numbered as per FIPS 46) 1 2 3 4 5 6 */
0x00000000L, 0x00000010L, 0x20000000L, 0x20000010L,
0x00010000L, 0x00010010L, 0x20010000L, 0x20010010L,
0x00000800L, 0x00000810L, 0x20000800L, 0x20000810L,
0x00010800L, 0x00010810L, 0x20010800L, 0x20010810L,
0x00000020L, 0x00000030L, 0x20000020L, 0x20000030L,
0x00010020L, 0x00010030L, 0x20010020L, 0x20010030L,
0x00000820L, 0x00000830L, 0x20000820L, 0x20000830L,
0x00010820L, 0x00010830L, 0x20010820L, 0x20010830L,
0x00080000L, 0x00080010L, 0x20080000L, 0x20080010L,
0x00090000L, 0x00090010L, 0x20090000L, 0x20090010L,
0x00080800L, 0x00080810L, 0x20080800L, 0x20080810L,
0x00090800L, 0x00090810L, 0x20090800L, 0x20090810L,
0x00080020L, 0x00080030L, 0x20080020L, 0x20080030L,
0x00090020L, 0x00090030L, 0x20090020L, 0x20090030L,
0x00080820L, 0x00080830L, 0x20080820L, 0x20080830L,
0x00090820L, 0x00090830L, 0x20090820L, 0x20090830L,
},
{
/* for C bits (numbered as per FIPS 46) 7 8 10 11 12 13 */
0x00000000L, 0x02000000L, 0x00002000L, 0x02002000L,
0x00200000L, 0x02200000L, 0x00202000L, 0x02202000L,
0x00000004L, 0x02000004L, 0x00002004L, 0x02002004L,
0x00200004L, 0x02200004L, 0x00202004L, 0x02202004L,
0x00000400L, 0x02000400L, 0x00002400L, 0x02002400L,
0x00200400L, 0x02200400L, 0x00202400L, 0x02202400L,
0x00000404L, 0x02000404L, 0x00002404L, 0x02002404L,
0x00200404L, 0x02200404L, 0x00202404L, 0x02202404L,
0x10000000L, 0x12000000L, 0x10002000L, 0x12002000L,
0x10200000L, 0x12200000L, 0x10202000L, 0x12202000L,
0x10000004L, 0x12000004L, 0x10002004L, 0x12002004L,
0x10200004L, 0x12200004L, 0x10202004L, 0x12202004L,
0x10000400L, 0x12000400L, 0x10002400L, 0x12002400L,
0x10200400L, 0x12200400L, 0x10202400L, 0x12202400L,
0x10000404L, 0x12000404L, 0x10002404L, 0x12002404L,
0x10200404L, 0x12200404L, 0x10202404L, 0x12202404L,
},
{
/* for C bits (numbered as per FIPS 46) 14 15 16 17 19 20 */
0x00000000L, 0x00000001L, 0x00040000L, 0x00040001L,
0x01000000L, 0x01000001L, 0x01040000L, 0x01040001L,
0x00000002L, 0x00000003L, 0x00040002L, 0x00040003L,
0x01000002L, 0x01000003L, 0x01040002L, 0x01040003L,
0x00000200L, 0x00000201L, 0x00040200L, 0x00040201L,
0x01000200L, 0x01000201L, 0x01040200L, 0x01040201L,
0x00000202L, 0x00000203L, 0x00040202L, 0x00040203L,
0x01000202L, 0x01000203L, 0x01040202L, 0x01040203L,
0x08000000L, 0x08000001L, 0x08040000L, 0x08040001L,
0x09000000L, 0x09000001L, 0x09040000L, 0x09040001L,
0x08000002L, 0x08000003L, 0x08040002L, 0x08040003L,
0x09000002L, 0x09000003L, 0x09040002L, 0x09040003L,
0x08000200L, 0x08000201L, 0x08040200L, 0x08040201L,
0x09000200L, 0x09000201L, 0x09040200L, 0x09040201L,
0x08000202L, 0x08000203L, 0x08040202L, 0x08040203L,
0x09000202L, 0x09000203L, 0x09040202L, 0x09040203L,
},
{
/* for C bits (numbered as per FIPS 46) 21 23 24 26 27 28 */
0x00000000L, 0x00100000L, 0x00000100L, 0x00100100L,
0x00000008L, 0x00100008L, 0x00000108L, 0x00100108L,
0x00001000L, 0x00101000L, 0x00001100L, 0x00101100L,
0x00001008L, 0x00101008L, 0x00001108L, 0x00101108L,
0x04000000L, 0x04100000L, 0x04000100L, 0x04100100L,
0x04000008L, 0x04100008L, 0x04000108L, 0x04100108L,
0x04001000L, 0x04101000L, 0x04001100L, 0x04101100L,
0x04001008L, 0x04101008L, 0x04001108L, 0x04101108L,
0x00020000L, 0x00120000L, 0x00020100L, 0x00120100L,
0x00020008L, 0x00120008L, 0x00020108L, 0x00120108L,
0x00021000L, 0x00121000L, 0x00021100L, 0x00121100L,
0x00021008L, 0x00121008L, 0x00021108L, 0x00121108L,
0x04020000L, 0x04120000L, 0x04020100L, 0x04120100L,
0x04020008L, 0x04120008L, 0x04020108L, 0x04120108L,
0x04021000L, 0x04121000L, 0x04021100L, 0x04121100L,
0x04021008L, 0x04121008L, 0x04021108L, 0x04121108L,
},
{
/* for D bits (numbered as per FIPS 46) 1 2 3 4 5 6 */
0x00000000L, 0x10000000L, 0x00010000L, 0x10010000L,
0x00000004L, 0x10000004L, 0x00010004L, 0x10010004L,
0x20000000L, 0x30000000L, 0x20010000L, 0x30010000L,
0x20000004L, 0x30000004L, 0x20010004L, 0x30010004L,
0x00100000L, 0x10100000L, 0x00110000L, 0x10110000L,
0x00100004L, 0x10100004L, 0x00110004L, 0x10110004L,
0x20100000L, 0x30100000L, 0x20110000L, 0x30110000L,
0x20100004L, 0x30100004L, 0x20110004L, 0x30110004L,
0x00001000L, 0x10001000L, 0x00011000L, 0x10011000L,
0x00001004L, 0x10001004L, 0x00011004L, 0x10011004L,
0x20001000L, 0x30001000L, 0x20011000L, 0x30011000L,
0x20001004L, 0x30001004L, 0x20011004L, 0x30011004L,
0x00101000L, 0x10101000L, 0x00111000L, 0x10111000L,
0x00101004L, 0x10101004L, 0x00111004L, 0x10111004L,
0x20101000L, 0x30101000L, 0x20111000L, 0x30111000L,
0x20101004L, 0x30101004L, 0x20111004L, 0x30111004L,
},
{
/* for D bits (numbered as per FIPS 46) 8 9 11 12 13 14 */
0x00000000L, 0x08000000L, 0x00000008L, 0x08000008L,
0x00000400L, 0x08000400L, 0x00000408L, 0x08000408L,
0x00020000L, 0x08020000L, 0x00020008L, 0x08020008L,
0x00020400L, 0x08020400L, 0x00020408L, 0x08020408L,
0x00000001L, 0x08000001L, 0x00000009L, 0x08000009L,
0x00000401L, 0x08000401L, 0x00000409L, 0x08000409L,
0x00020001L, 0x08020001L, 0x00020009L, 0x08020009L,
0x00020401L, 0x08020401L, 0x00020409L, 0x08020409L,
0x02000000L, 0x0A000000L, 0x02000008L, 0x0A000008L,
0x02000400L, 0x0A000400L, 0x02000408L, 0x0A000408L,
0x02020000L, 0x0A020000L, 0x02020008L, 0x0A020008L,
0x02020400L, 0x0A020400L, 0x02020408L, 0x0A020408L,
0x02000001L, 0x0A000001L, 0x02000009L, 0x0A000009L,
0x02000401L, 0x0A000401L, 0x02000409L, 0x0A000409L,
0x02020001L, 0x0A020001L, 0x02020009L, 0x0A020009L,
0x02020401L, 0x0A020401L, 0x02020409L, 0x0A020409L,
},
{
/* for D bits (numbered as per FIPS 46) 16 17 18 19 20 21 */
0x00000000L, 0x00000100L, 0x00080000L, 0x00080100L,
0x01000000L, 0x01000100L, 0x01080000L, 0x01080100L,
0x00000010L, 0x00000110L, 0x00080010L, 0x00080110L,
0x01000010L, 0x01000110L, 0x01080010L, 0x01080110L,
0x00200000L, 0x00200100L, 0x00280000L, 0x00280100L,
0x01200000L, 0x01200100L, 0x01280000L, 0x01280100L,
0x00200010L, 0x00200110L, 0x00280010L, 0x00280110L,
0x01200010L, 0x01200110L, 0x01280010L, 0x01280110L,
0x00000200L, 0x00000300L, 0x00080200L, 0x00080300L,
0x01000200L, 0x01000300L, 0x01080200L, 0x01080300L,
0x00000210L, 0x00000310L, 0x00080210L, 0x00080310L,
0x01000210L, 0x01000310L, 0x01080210L, 0x01080310L,
0x00200200L, 0x00200300L, 0x00280200L, 0x00280300L,
0x01200200L, 0x01200300L, 0x01280200L, 0x01280300L,
0x00200210L, 0x00200310L, 0x00280210L, 0x00280310L,
0x01200210L, 0x01200310L, 0x01280210L, 0x01280310L,
},
{
/* for D bits (numbered as per FIPS 46) 22 23 24 25 27 28 */
0x00000000L, 0x04000000L, 0x00040000L, 0x04040000L,
0x00000002L, 0x04000002L, 0x00040002L, 0x04040002L,
0x00002000L, 0x04002000L, 0x00042000L, 0x04042000L,
0x00002002L, 0x04002002L, 0x00042002L, 0x04042002L,
0x00000020L, 0x04000020L, 0x00040020L, 0x04040020L,
0x00000022L, 0x04000022L, 0x00040022L, 0x04040022L,
0x00002020L, 0x04002020L, 0x00042020L, 0x04042020L,
0x00002022L, 0x04002022L, 0x00042022L, 0x04042022L,
0x00000800L, 0x04000800L, 0x00040800L, 0x04040800L,
0x00000802L, 0x04000802L, 0x00040802L, 0x04040802L,
0x00002800L, 0x04002800L, 0x00042800L, 0x04042800L,
0x00002802L, 0x04002802L, 0x00042802L, 0x04042802L,
0x00000820L, 0x04000820L, 0x00040820L, 0x04040820L,
0x00000822L, 0x04000822L, 0x00040822L, 0x04040822L,
0x00002820L, 0x04002820L, 0x00042820L, 0x04042820L,
0x00002822L, 0x04002822L, 0x00042822L, 0x04042822L,
}
};
/* Return values as DES_set_key_checked() but always set the key */
int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule)
{
int ret = 0;
if (!DES_check_key_parity(key))
ret = -1;
if (DES_is_weak_key(key))
ret = -2;
DES_set_key_unchecked(key, schedule);
return ret;
}
/*-
* return 0 if key parity is odd (correct),
* return -1 if key parity error,
* return -2 if illegal weak key.
*/
int DES_set_key_checked(const_DES_cblock *key, DES_key_schedule *schedule)
{
if (!DES_check_key_parity(key))
return -1;
if (DES_is_weak_key(key))
return -2;
DES_set_key_unchecked(key, schedule);
return 0;
}
void DES_set_key_unchecked(const_DES_cblock *key, DES_key_schedule *schedule)
{
static const int shifts2[16] =
{ 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0 };
register DES_LONG c, d, t, s, t2;
register const unsigned char *in;
register DES_LONG *k;
register int i;
#ifdef OPENBSD_DEV_CRYPTO
memcpy(schedule->key, key, sizeof(schedule->key));
schedule->session = NULL;
#endif
k = &schedule->ks->deslong[0];
in = &(*key)[0];
c2l(in, c);
c2l(in, d);
/*
* do PC1 in 47 simple operations. Thanks to John Fletcher
* for the inspiration.
*/
PERM_OP(d, c, t, 4, 0x0f0f0f0fL);
HPERM_OP(c, t, -2, 0xcccc0000L);
HPERM_OP(d, t, -2, 0xcccc0000L);
PERM_OP(d, c, t, 1, 0x55555555L);
PERM_OP(c, d, t, 8, 0x00ff00ffL);
PERM_OP(d, c, t, 1, 0x55555555L);
d = (((d & 0x000000ffL) << 16L) | (d & 0x0000ff00L) |
((d & 0x00ff0000L) >> 16L) | ((c & 0xf0000000L) >> 4L));
c &= 0x0fffffffL;
for (i = 0; i < ITERATIONS; i++) {
if (shifts2[i]) {
c = ((c >> 2L) | (c << 26L));
d = ((d >> 2L) | (d << 26L));
} else {
c = ((c >> 1L) | (c << 27L));
d = ((d >> 1L) | (d << 27L));
}
c &= 0x0fffffffL;
d &= 0x0fffffffL;
/*
* could be a few less shifts but I am to lazy at this point in time
* to investigate
*/
s = des_skb[0][(c) & 0x3f] |
des_skb[1][((c >> 6L) & 0x03) | ((c >> 7L) & 0x3c)] |
des_skb[2][((c >> 13L) & 0x0f) | ((c >> 14L) & 0x30)] |
des_skb[3][((c >> 20L) & 0x01) | ((c >> 21L) & 0x06) |
((c >> 22L) & 0x38)];
t = des_skb[4][(d) & 0x3f] |
des_skb[5][((d >> 7L) & 0x03) | ((d >> 8L) & 0x3c)] |
des_skb[6][(d >> 15L) & 0x3f] |
des_skb[7][((d >> 21L) & 0x0f) | ((d >> 22L) & 0x30)];
/* table contained 0213 4657 */
t2 = ((t << 16L) | (s & 0x0000ffffL)) & 0xffffffffL;
*(k++) = ROTATE(t2, 30) & 0xffffffffL;
t2 = ((s >> 16L) | (t & 0xffff0000L));
*(k++) = ROTATE(t2, 26) & 0xffffffffL;
}
}
int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule)
{
return DES_set_key(key, schedule);
}
| 15,377 | 37.931646 | 78 | c |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.