repo
stringlengths
1
152
file
stringlengths
14
221
code
stringlengths
501
25k
file_length
int64
501
25k
avg_line_length
float64
20
99.5
max_line_length
int64
21
134
extension_type
stringclasses
2 values
XNNPACK
XNNPACK-master/src/f32-vrnd/gen/f32-vrndz-sse41-x8.c
// Auto-generated file. Do not edit! // Template: src/f32-vrnd/sse41.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <smmintrin.h> #include <xnnpack/common.h> #include <xnnpack/math.h> #include <xnnpack/vunary.h> void xnn_f32_vrndz_ukernel__sse41_x8( size_t batch, const float* input, float* output, const union xnn_f32_rnd_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m128 vx0123 = _mm_loadu_ps(input); const __m128 vx4567 = _mm_loadu_ps(input + 4); input += 8; const __m128 vy0123 = _mm_round_ps(vx0123, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC); const __m128 vy4567 = _mm_round_ps(vx4567, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC); _mm_storeu_ps(output, vy0123); _mm_storeu_ps(output + 4, vy4567); output += 8; } for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const __m128 vx = _mm_loadu_ps(input); input += 4; const __m128 vy = _mm_round_ps(vx, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC); _mm_storeu_ps(output, vy); output += 4; } if XNN_UNLIKELY(batch != 0) { const __m128 vx = _mm_loadu_ps(input); __m128 vy = _mm_round_ps(vx, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC); if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vy); vy = _mm_movehl_ps(vy, vy); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vy); } } }
1,787
26.9375
87
c
XNNPACK
XNNPACK-master/src/f32-vrnd/gen/f32-vrndz-wasmsimd-x4.c
// Auto-generated file. Do not edit! // Template: src/f32-vrnd/wasmsimd.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <wasm_simd128.h> #include <xnnpack/common.h> #include <xnnpack/math.h> #include <xnnpack/vunary.h> void xnn_f32_vrndz_ukernel__wasmsimd_x4( size_t batch, const float* input, float* output, const union xnn_f32_rnd_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const v128_t vx0123 = wasm_v128_load(input); input += 4; const v128_t vy0123 = wasm_f32x4_trunc(vx0123); wasm_v128_store(output, vy0123); output += 4; } if XNN_UNLIKELY(batch != 0) { const v128_t vx = wasm_v128_load(input); v128_t vy = wasm_f32x4_trunc(vx); if (batch & (2 * sizeof(float))) { wasm_v128_store64_lane(output, vy, 0); vy = wasm_v64x2_shuffle(vy, vy, 1, 1); output += 2; } if (batch & (1 * sizeof(float))) { wasm_v128_store32_lane(output, vy, 0); } } }
1,312
24.745098
86
c
XNNPACK
XNNPACK-master/src/f32-vrnd/gen/f32-vrndz-wasmsimd-x8.c
// Auto-generated file. Do not edit! // Template: src/f32-vrnd/wasmsimd.c.in // Generator: tools/xngen // // Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <wasm_simd128.h> #include <xnnpack/common.h> #include <xnnpack/math.h> #include <xnnpack/vunary.h> void xnn_f32_vrndz_ukernel__wasmsimd_x8( size_t batch, const float* input, float* output, const union xnn_f32_rnd_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const v128_t vx0123 = wasm_v128_load(input); input += 4; const v128_t vx4567 = wasm_v128_load(input); input += 4; const v128_t vy0123 = wasm_f32x4_trunc(vx0123); const v128_t vy4567 = wasm_f32x4_trunc(vx4567); wasm_v128_store(output, vy0123); output += 4; wasm_v128_store(output, vy4567); output += 4; } for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const v128_t vx = wasm_v128_load(input); input += 4; const v128_t vy = wasm_f32x4_trunc(vx); wasm_v128_store(output, vy); output += 4; } if XNN_UNLIKELY(batch != 0) { const v128_t vx = wasm_v128_load(input); v128_t vy = wasm_f32x4_trunc(vx); if (batch & (2 * sizeof(float))) { wasm_v128_store64_lane(output, vy, 0); vy = wasm_v64x2_shuffle(vy, vy, 1, 1); output += 2; } if (batch & (1 * sizeof(float))) { wasm_v128_store32_lane(output, vy, 0); } } }
1,693
27.711864
86
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx2-p5-x16.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x16( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscale = _mm256_set1_ps(scale); const __m256 vi_max = _mm256_set1_ps(max); for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 (2x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); input += 16; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); // Multiply by scale. vf0 = _mm256_mul_ps(vf0, vscale); vf1 = _mm256_mul_ps(vf1, vscale); // Store 16 (2x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); output += 16; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store 64 (8x8) outputs at a time. _mm256_storeu_ps(output, vf); output += 8; } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store up to 7 outputs at a time. _mm256_maskstore_ps(output, vmask, vf); } }
8,490
38.86385
116
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx2-p5-x24.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x24( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscale = _mm256_set1_ps(scale); const __m256 vi_max = _mm256_set1_ps(max); for (; batch >= 24 * sizeof(float); batch -= 24 * sizeof(float)) { // Load 24 (3x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); input += 24; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); // Multiply by scale. vf0 = _mm256_mul_ps(vf0, vscale); vf1 = _mm256_mul_ps(vf1, vscale); vf2 = _mm256_mul_ps(vf2, vscale); // Store 24 (3x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); output += 24; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store 64 (8x8) outputs at a time. _mm256_storeu_ps(output, vf); output += 8; } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store up to 7 outputs at a time. _mm256_maskstore_ps(output, vmask, vf); } }
9,318
39.694323
116
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx2-p5-x32.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x32( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscale = _mm256_set1_ps(scale); const __m256 vi_max = _mm256_set1_ps(max); for (; batch >= 32 * sizeof(float); batch -= 32 * sizeof(float)) { // Load 32 (4x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); input += 32; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); // Multiply by scale. vf0 = _mm256_mul_ps(vf0, vscale); vf1 = _mm256_mul_ps(vf1, vscale); vf2 = _mm256_mul_ps(vf2, vscale); vf3 = _mm256_mul_ps(vf3, vscale); // Store 32 (4x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); output += 32; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store 64 (8x8) outputs at a time. _mm256_storeu_ps(output, vf); output += 8; } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store up to 7 outputs at a time. _mm256_maskstore_ps(output, vmask, vf); } }
10,146
40.416327
116
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx2-p5-x40.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x40( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscale = _mm256_set1_ps(scale); const __m256 vi_max = _mm256_set1_ps(max); for (; batch >= 40 * sizeof(float); batch -= 40 * sizeof(float)) { // Load 40 (5x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); input += 40; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); // Multiply by scale. vf0 = _mm256_mul_ps(vf0, vscale); vf1 = _mm256_mul_ps(vf1, vscale); vf2 = _mm256_mul_ps(vf2, vscale); vf3 = _mm256_mul_ps(vf3, vscale); vf4 = _mm256_mul_ps(vf4, vscale); // Store 40 (5x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); output += 40; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store 64 (8x8) outputs at a time. _mm256_storeu_ps(output, vf); output += 8; } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store up to 7 outputs at a time. _mm256_maskstore_ps(output, vmask, vf); } }
10,974
41.049808
116
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx2-p5-x48.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x48( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscale = _mm256_set1_ps(scale); const __m256 vi_max = _mm256_set1_ps(max); for (; batch >= 48 * sizeof(float); batch -= 48 * sizeof(float)) { // Load 48 (6x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); input += 48; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); // Multiply by scale. vf0 = _mm256_mul_ps(vf0, vscale); vf1 = _mm256_mul_ps(vf1, vscale); vf2 = _mm256_mul_ps(vf2, vscale); vf3 = _mm256_mul_ps(vf3, vscale); vf4 = _mm256_mul_ps(vf4, vscale); vf5 = _mm256_mul_ps(vf5, vscale); // Store 48 (6x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); output += 48; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store 64 (8x8) outputs at a time. _mm256_storeu_ps(output, vf); output += 8; } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store up to 7 outputs at a time. _mm256_maskstore_ps(output, vmask, vf); } }
11,802
41.610108
116
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx2-p5-x56.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x56( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscale = _mm256_set1_ps(scale); const __m256 vi_max = _mm256_set1_ps(max); for (; batch >= 56 * sizeof(float); batch -= 56 * sizeof(float)) { // Load 56 (7x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); input += 56; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); // Multiply by scale. vf0 = _mm256_mul_ps(vf0, vscale); vf1 = _mm256_mul_ps(vf1, vscale); vf2 = _mm256_mul_ps(vf2, vscale); vf3 = _mm256_mul_ps(vf3, vscale); vf4 = _mm256_mul_ps(vf4, vscale); vf5 = _mm256_mul_ps(vf5, vscale); vf6 = _mm256_mul_ps(vf6, vscale); // Store 56 (7x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); output += 56; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store 64 (8x8) outputs at a time. _mm256_storeu_ps(output, vf); output += 8; } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store up to 7 outputs at a time. _mm256_maskstore_ps(output, vmask, vf); } }
12,630
42.109215
116
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx2-p5-x64.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x64( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscale = _mm256_set1_ps(scale); const __m256 vi_max = _mm256_set1_ps(max); for (; batch >= 64 * sizeof(float); batch -= 64 * sizeof(float)) { // Load 64 (8x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); input += 64; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); // Multiply by scale. vf0 = _mm256_mul_ps(vf0, vscale); vf1 = _mm256_mul_ps(vf1, vscale); vf2 = _mm256_mul_ps(vf2, vscale); vf3 = _mm256_mul_ps(vf3, vscale); vf4 = _mm256_mul_ps(vf4, vscale); vf5 = _mm256_mul_ps(vf5, vscale); vf6 = _mm256_mul_ps(vf6, vscale); vf7 = _mm256_mul_ps(vf7, vscale); // Store 64 (8x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); output += 64; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store 64 (8x8) outputs at a time. _mm256_storeu_ps(output, vf); output += 8; } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store up to 7 outputs at a time. _mm256_maskstore_ps(output, vmask, vf); } }
13,458
42.556634
116
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx2-p5-x72.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x72( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscale = _mm256_set1_ps(scale); const __m256 vi_max = _mm256_set1_ps(max); for (; batch >= 72 * sizeof(float); batch -= 72 * sizeof(float)) { // Load 72 (9x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); input += 72; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); // Multiply by scale. vf0 = _mm256_mul_ps(vf0, vscale); vf1 = _mm256_mul_ps(vf1, vscale); vf2 = _mm256_mul_ps(vf2, vscale); vf3 = _mm256_mul_ps(vf3, vscale); vf4 = _mm256_mul_ps(vf4, vscale); vf5 = _mm256_mul_ps(vf5, vscale); vf6 = _mm256_mul_ps(vf6, vscale); vf7 = _mm256_mul_ps(vf7, vscale); vf8 = _mm256_mul_ps(vf8, vscale); // Store 72 (9x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); output += 72; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store 64 (8x8) outputs at a time. _mm256_storeu_ps(output, vf); output += 8; } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store up to 7 outputs at a time. _mm256_maskstore_ps(output, vmask, vf); } }
14,286
42.96
116
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx2-p5-x8.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x8( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscale = _mm256_set1_ps(scale); const __m256 vi_max = _mm256_set1_ps(max); for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 (1x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); // Multiply by scale. vf0 = _mm256_mul_ps(vf0, vscale); // Store 8 (1x8) outputs at a time. _mm256_storeu_ps(output, vf0); output += 8; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store 64 (8x8) outputs at a time. _mm256_storeu_ps(output, vf); output += 8; } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store up to 7 outputs at a time. _mm256_maskstore_ps(output, vmask, vf); } }
7,657
37.873096
116
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx2-p5-x80.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x80( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscale = _mm256_set1_ps(scale); const __m256 vi_max = _mm256_set1_ps(max); for (; batch >= 80 * sizeof(float); batch -= 80 * sizeof(float)) { // Load 80 (10x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); const __m256 vi9 = _mm256_loadu_ps(input + 72); input += 80; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); const __m256 vx9 = _mm256_sub_ps(vi9, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); vn9 = _mm256_sub_ps(vn9, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); vt9 = _mm256_mul_ps(vt9, vs9); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9); // Multiply by scale. vf0 = _mm256_mul_ps(vf0, vscale); vf1 = _mm256_mul_ps(vf1, vscale); vf2 = _mm256_mul_ps(vf2, vscale); vf3 = _mm256_mul_ps(vf3, vscale); vf4 = _mm256_mul_ps(vf4, vscale); vf5 = _mm256_mul_ps(vf5, vscale); vf6 = _mm256_mul_ps(vf6, vscale); vf7 = _mm256_mul_ps(vf7, vscale); vf8 = _mm256_mul_ps(vf8, vscale); vf9 = _mm256_mul_ps(vf9, vscale); // Store 80 (10x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); _mm256_storeu_ps(output + 72, vf9); output += 80; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store 64 (8x8) outputs at a time. _mm256_storeu_ps(output, vf); output += 8; } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store up to 7 outputs at a time. _mm256_maskstore_ps(output, vmask, vf); } }
15,116
43.331378
116
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx2-p5-x88.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x88( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscale = _mm256_set1_ps(scale); const __m256 vi_max = _mm256_set1_ps(max); for (; batch >= 88 * sizeof(float); batch -= 88 * sizeof(float)) { // Load 88 (11x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); const __m256 vi9 = _mm256_loadu_ps(input + 72); const __m256 vi10 = _mm256_loadu_ps(input + 80); input += 88; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); const __m256 vx9 = _mm256_sub_ps(vi9, vi_max); const __m256 vx10 = _mm256_sub_ps(vi10, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias); __m256 vn10 = _mm256_fmadd_ps(vx10, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23)); const __m256 vs10 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn10), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); vn9 = _mm256_sub_ps(vn9, vmagic_bias); vn10 = _mm256_sub_ps(vn10, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m256 vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_hi, vx10); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_lo, vt10); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); __m256 vp10 = _mm256_fmadd_ps(vc5, vt10, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp10 = _mm256_fmadd_ps(vp10, vt10, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp10 = _mm256_fmadd_ps(vp10, vt10, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vp10 = _mm256_fmadd_ps(vp10, vt10, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); vt9 = _mm256_mul_ps(vt9, vs9); vt10 = _mm256_mul_ps(vt10, vs10); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9); __m256 vf10 = _mm256_fmadd_ps(vt10, vp10, vs10); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9); vf10 = _mm256_andnot_ps(_mm256_cmp_ps(vx10, vdenorm_cutoff, _CMP_LT_OS), vf10); // Multiply by scale. vf0 = _mm256_mul_ps(vf0, vscale); vf1 = _mm256_mul_ps(vf1, vscale); vf2 = _mm256_mul_ps(vf2, vscale); vf3 = _mm256_mul_ps(vf3, vscale); vf4 = _mm256_mul_ps(vf4, vscale); vf5 = _mm256_mul_ps(vf5, vscale); vf6 = _mm256_mul_ps(vf6, vscale); vf7 = _mm256_mul_ps(vf7, vscale); vf8 = _mm256_mul_ps(vf8, vscale); vf9 = _mm256_mul_ps(vf9, vscale); vf10 = _mm256_mul_ps(vf10, vscale); // Store 88 (11x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); _mm256_storeu_ps(output + 72, vf9); _mm256_storeu_ps(output + 80, vf10); output += 88; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store 64 (8x8) outputs at a time. _mm256_storeu_ps(output, vf); output += 8; } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store up to 7 outputs at a time. _mm256_maskstore_ps(output, vmask, vf); } }
15,983
43.773109
116
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx2-p5-x96.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleexpminusmax.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x96( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscale = _mm256_set1_ps(scale); const __m256 vi_max = _mm256_set1_ps(max); for (; batch >= 96 * sizeof(float); batch -= 96 * sizeof(float)) { // Load 96 (12x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); const __m256 vi1 = _mm256_loadu_ps(input + 8); const __m256 vi2 = _mm256_loadu_ps(input + 16); const __m256 vi3 = _mm256_loadu_ps(input + 24); const __m256 vi4 = _mm256_loadu_ps(input + 32); const __m256 vi5 = _mm256_loadu_ps(input + 40); const __m256 vi6 = _mm256_loadu_ps(input + 48); const __m256 vi7 = _mm256_loadu_ps(input + 56); const __m256 vi8 = _mm256_loadu_ps(input + 64); const __m256 vi9 = _mm256_loadu_ps(input + 72); const __m256 vi10 = _mm256_loadu_ps(input + 80); const __m256 vi11 = _mm256_loadu_ps(input + 88); input += 96; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx0 = _mm256_sub_ps(vi0, vi_max); const __m256 vx1 = _mm256_sub_ps(vi1, vi_max); const __m256 vx2 = _mm256_sub_ps(vi2, vi_max); const __m256 vx3 = _mm256_sub_ps(vi3, vi_max); const __m256 vx4 = _mm256_sub_ps(vi4, vi_max); const __m256 vx5 = _mm256_sub_ps(vi5, vi_max); const __m256 vx6 = _mm256_sub_ps(vi6, vi_max); const __m256 vx7 = _mm256_sub_ps(vi7, vi_max); const __m256 vx8 = _mm256_sub_ps(vi8, vi_max); const __m256 vx9 = _mm256_sub_ps(vi9, vi_max); const __m256 vx10 = _mm256_sub_ps(vi10, vi_max); const __m256 vx11 = _mm256_sub_ps(vi11, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias); __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias); __m256 vn10 = _mm256_fmadd_ps(vx10, vlog2e, vmagic_bias); __m256 vn11 = _mm256_fmadd_ps(vx11, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23)); const __m256 vs10 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn10), 23)); const __m256 vs11 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn11), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); vn9 = _mm256_sub_ps(vn9, vmagic_bias); vn10 = _mm256_sub_ps(vn10, vmagic_bias); vn11 = _mm256_sub_ps(vn11, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m256 vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m256 vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); __m256 vp10 = _mm256_fmadd_ps(vc5, vt10, vc4); __m256 vp11 = _mm256_fmadd_ps(vc5, vt11, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp10 = _mm256_fmadd_ps(vp10, vt10, vc3); vp11 = _mm256_fmadd_ps(vp11, vt11, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp10 = _mm256_fmadd_ps(vp10, vt10, vc2); vp11 = _mm256_fmadd_ps(vp11, vt11, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vp10 = _mm256_fmadd_ps(vp10, vt10, vc1); vp11 = _mm256_fmadd_ps(vp11, vt11, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); vt9 = _mm256_mul_ps(vt9, vs9); vt10 = _mm256_mul_ps(vt10, vs10); vt11 = _mm256_mul_ps(vt11, vs11); __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0); __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1); __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2); __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3); __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4); __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5); __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6); __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7); __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8); __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9); __m256 vf10 = _mm256_fmadd_ps(vt10, vp10, vs10); __m256 vf11 = _mm256_fmadd_ps(vt11, vp11, vs11); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9); vf10 = _mm256_andnot_ps(_mm256_cmp_ps(vx10, vdenorm_cutoff, _CMP_LT_OS), vf10); vf11 = _mm256_andnot_ps(_mm256_cmp_ps(vx11, vdenorm_cutoff, _CMP_LT_OS), vf11); // Multiply by scale. vf0 = _mm256_mul_ps(vf0, vscale); vf1 = _mm256_mul_ps(vf1, vscale); vf2 = _mm256_mul_ps(vf2, vscale); vf3 = _mm256_mul_ps(vf3, vscale); vf4 = _mm256_mul_ps(vf4, vscale); vf5 = _mm256_mul_ps(vf5, vscale); vf6 = _mm256_mul_ps(vf6, vscale); vf7 = _mm256_mul_ps(vf7, vscale); vf8 = _mm256_mul_ps(vf8, vscale); vf9 = _mm256_mul_ps(vf9, vscale); vf10 = _mm256_mul_ps(vf10, vscale); vf11 = _mm256_mul_ps(vf11, vscale); // Store 96 (12x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); _mm256_storeu_ps(output + 72, vf9); _mm256_storeu_ps(output + 80, vf10); _mm256_storeu_ps(output + 88, vf11); output += 96; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store 64 (8x8) outputs at a time. _mm256_storeu_ps(output, vf); output += 8; } if (batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**batch for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= batch <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final batch := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store up to 7 outputs at a time. _mm256_maskstore_ps(output, vmask, vf); } }
16,850
44.176944
116
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx512f-p5-scalef-x112.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleexpminusmax.h> void xnn_f32_vscaleexpminusmax_ukernel__avx512f_p5_scalef_x112( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscale = _mm512_set1_ps(scale); const __m512 vi_max = _mm512_set1_ps(max); for (; batch >= 112 * sizeof(float); batch -= 112 * sizeof(float)) { // Load 112 (7x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); input += 112; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf0 = _mm512_scalef_ps(vp0, vn0); __m512 vf1 = _mm512_scalef_ps(vp1, vn1); __m512 vf2 = _mm512_scalef_ps(vp2, vn2); __m512 vf3 = _mm512_scalef_ps(vp3, vn3); __m512 vf4 = _mm512_scalef_ps(vp4, vn4); __m512 vf5 = _mm512_scalef_ps(vp5, vn5); __m512 vf6 = _mm512_scalef_ps(vp6, vn6); // Multiply by scale. vf0 = _mm512_mul_ps(vf0, vscale); vf1 = _mm512_mul_ps(vf1, vscale); vf2 = _mm512_mul_ps(vf2, vscale); vf3 = _mm512_mul_ps(vf3, vscale); vf4 = _mm512_mul_ps(vf4, vscale); vf5 = _mm512_mul_ps(vf5, vscale); vf6 = _mm512_mul_ps(vf6, vscale); // Store 112 (7x16) outputs at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); _mm512_storeu_ps(output + 64, vf4); _mm512_storeu_ps(output + 80, vf5); _mm512_storeu_ps(output + 96, vf6); output += 112; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store 16 outputs at a time. _mm512_storeu_ps(output, vf); output += 16; } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_mask_loadu_ps(_mm512_undefined_ps(), vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store up to 15 outputs at a time. _mm512_mask_storeu_ps(output, vmask, vf); } }
9,182
37.911017
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx512f-p5-scalef-x128.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleexpminusmax.h> void xnn_f32_vscaleexpminusmax_ukernel__avx512f_p5_scalef_x128( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscale = _mm512_set1_ps(scale); const __m512 vi_max = _mm512_set1_ps(max); for (; batch >= 128 * sizeof(float); batch -= 128 * sizeof(float)) { // Load 128 (8x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); input += 128; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf0 = _mm512_scalef_ps(vp0, vn0); __m512 vf1 = _mm512_scalef_ps(vp1, vn1); __m512 vf2 = _mm512_scalef_ps(vp2, vn2); __m512 vf3 = _mm512_scalef_ps(vp3, vn3); __m512 vf4 = _mm512_scalef_ps(vp4, vn4); __m512 vf5 = _mm512_scalef_ps(vp5, vn5); __m512 vf6 = _mm512_scalef_ps(vp6, vn6); __m512 vf7 = _mm512_scalef_ps(vp7, vn7); // Multiply by scale. vf0 = _mm512_mul_ps(vf0, vscale); vf1 = _mm512_mul_ps(vf1, vscale); vf2 = _mm512_mul_ps(vf2, vscale); vf3 = _mm512_mul_ps(vf3, vscale); vf4 = _mm512_mul_ps(vf4, vscale); vf5 = _mm512_mul_ps(vf5, vscale); vf6 = _mm512_mul_ps(vf6, vscale); vf7 = _mm512_mul_ps(vf7, vscale); // Store 128 (8x16) outputs at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); _mm512_storeu_ps(output + 64, vf4); _mm512_storeu_ps(output + 80, vf5); _mm512_storeu_ps(output + 96, vf6); _mm512_storeu_ps(output + 112, vf7); output += 128; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store 16 outputs at a time. _mm512_storeu_ps(output, vf); output += 16; } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_mask_loadu_ps(_mm512_undefined_ps(), vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store up to 15 outputs at a time. _mm512_mask_storeu_ps(output, vmask, vf); } }
9,808
38.393574
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx512f-p5-scalef-x144.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleexpminusmax.h> void xnn_f32_vscaleexpminusmax_ukernel__avx512f_p5_scalef_x144( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscale = _mm512_set1_ps(scale); const __m512 vi_max = _mm512_set1_ps(max); for (; batch >= 144 * sizeof(float); batch -= 144 * sizeof(float)) { // Load 144 (9x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); const __m512 vi8 = _mm512_loadu_ps(input + 128); input += 144; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); const __m512 vx8 = _mm512_sub_ps(vi8, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf0 = _mm512_scalef_ps(vp0, vn0); __m512 vf1 = _mm512_scalef_ps(vp1, vn1); __m512 vf2 = _mm512_scalef_ps(vp2, vn2); __m512 vf3 = _mm512_scalef_ps(vp3, vn3); __m512 vf4 = _mm512_scalef_ps(vp4, vn4); __m512 vf5 = _mm512_scalef_ps(vp5, vn5); __m512 vf6 = _mm512_scalef_ps(vp6, vn6); __m512 vf7 = _mm512_scalef_ps(vp7, vn7); __m512 vf8 = _mm512_scalef_ps(vp8, vn8); // Multiply by scale. vf0 = _mm512_mul_ps(vf0, vscale); vf1 = _mm512_mul_ps(vf1, vscale); vf2 = _mm512_mul_ps(vf2, vscale); vf3 = _mm512_mul_ps(vf3, vscale); vf4 = _mm512_mul_ps(vf4, vscale); vf5 = _mm512_mul_ps(vf5, vscale); vf6 = _mm512_mul_ps(vf6, vscale); vf7 = _mm512_mul_ps(vf7, vscale); vf8 = _mm512_mul_ps(vf8, vscale); // Store 144 (9x16) outputs at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); _mm512_storeu_ps(output + 64, vf4); _mm512_storeu_ps(output + 80, vf5); _mm512_storeu_ps(output + 96, vf6); _mm512_storeu_ps(output + 112, vf7); _mm512_storeu_ps(output + 128, vf8); output += 144; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store 16 outputs at a time. _mm512_storeu_ps(output, vf); output += 16; } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_mask_loadu_ps(_mm512_undefined_ps(), vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store up to 15 outputs at a time. _mm512_mask_storeu_ps(output, vmask, vf); } }
10,434
38.828244
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx512f-p5-scalef-x16.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleexpminusmax.h> void xnn_f32_vscaleexpminusmax_ukernel__avx512f_p5_scalef_x16( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscale = _mm512_set1_ps(scale); const __m512 vi_max = _mm512_set1_ps(max); for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 (1x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf0 = _mm512_scalef_ps(vp0, vn0); // Multiply by scale. vf0 = _mm512_mul_ps(vf0, vscale); // Store 16 (1x16) outputs at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); output += 16; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store 16 outputs at a time. _mm512_storeu_ps(output, vf); output += 16; } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_mask_loadu_ps(_mm512_undefined_ps(), vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store up to 15 outputs at a time. _mm512_mask_storeu_ps(output, vmask, vf); } }
5,431
33.379747
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx512f-p5-scalef-x160.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleexpminusmax.h> void xnn_f32_vscaleexpminusmax_ukernel__avx512f_p5_scalef_x160( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscale = _mm512_set1_ps(scale); const __m512 vi_max = _mm512_set1_ps(max); for (; batch >= 160 * sizeof(float); batch -= 160 * sizeof(float)) { // Load 160 (10x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); const __m512 vi8 = _mm512_loadu_ps(input + 128); const __m512 vi9 = _mm512_loadu_ps(input + 144); input += 160; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); const __m512 vx8 = _mm512_sub_ps(vi8, vi_max); const __m512 vx9 = _mm512_sub_ps(vi9, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf0 = _mm512_scalef_ps(vp0, vn0); __m512 vf1 = _mm512_scalef_ps(vp1, vn1); __m512 vf2 = _mm512_scalef_ps(vp2, vn2); __m512 vf3 = _mm512_scalef_ps(vp3, vn3); __m512 vf4 = _mm512_scalef_ps(vp4, vn4); __m512 vf5 = _mm512_scalef_ps(vp5, vn5); __m512 vf6 = _mm512_scalef_ps(vp6, vn6); __m512 vf7 = _mm512_scalef_ps(vp7, vn7); __m512 vf8 = _mm512_scalef_ps(vp8, vn8); __m512 vf9 = _mm512_scalef_ps(vp9, vn9); // Multiply by scale. vf0 = _mm512_mul_ps(vf0, vscale); vf1 = _mm512_mul_ps(vf1, vscale); vf2 = _mm512_mul_ps(vf2, vscale); vf3 = _mm512_mul_ps(vf3, vscale); vf4 = _mm512_mul_ps(vf4, vscale); vf5 = _mm512_mul_ps(vf5, vscale); vf6 = _mm512_mul_ps(vf6, vscale); vf7 = _mm512_mul_ps(vf7, vscale); vf8 = _mm512_mul_ps(vf8, vscale); vf9 = _mm512_mul_ps(vf9, vscale); // Store 160 (10x16) outputs at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); _mm512_storeu_ps(output + 64, vf4); _mm512_storeu_ps(output + 80, vf5); _mm512_storeu_ps(output + 96, vf6); _mm512_storeu_ps(output + 112, vf7); _mm512_storeu_ps(output + 128, vf8); _mm512_storeu_ps(output + 144, vf9); output += 160; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store 16 outputs at a time. _mm512_storeu_ps(output, vf); output += 16; } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_mask_loadu_ps(_mm512_undefined_ps(), vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store up to 15 outputs at a time. _mm512_mask_storeu_ps(output, vmask, vf); } }
11,062
39.229091
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx512f-p5-scalef-x176.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleexpminusmax.h> void xnn_f32_vscaleexpminusmax_ukernel__avx512f_p5_scalef_x176( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscale = _mm512_set1_ps(scale); const __m512 vi_max = _mm512_set1_ps(max); for (; batch >= 176 * sizeof(float); batch -= 176 * sizeof(float)) { // Load 176 (11x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); const __m512 vi8 = _mm512_loadu_ps(input + 128); const __m512 vi9 = _mm512_loadu_ps(input + 144); const __m512 vi10 = _mm512_loadu_ps(input + 160); input += 176; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); const __m512 vx8 = _mm512_sub_ps(vi8, vi_max); const __m512 vx9 = _mm512_sub_ps(vi9, vi_max); const __m512 vx10 = _mm512_sub_ps(vi10, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); __m512 vn10 = _mm512_roundscale_ps(_mm512_mul_ps(vx10, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m512 vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_hi, vx10); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_lo, vt10); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); __m512 vp10 = _mm512_fmadd_ps(vc5, vt10, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp10 = _mm512_fmadd_ps(vp10, vt10, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp10 = _mm512_fmadd_ps(vp10, vt10, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp10 = _mm512_fmadd_ps(vp10, vt10, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); vp10 = _mm512_fmadd_ps(vp10, vt10, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf0 = _mm512_scalef_ps(vp0, vn0); __m512 vf1 = _mm512_scalef_ps(vp1, vn1); __m512 vf2 = _mm512_scalef_ps(vp2, vn2); __m512 vf3 = _mm512_scalef_ps(vp3, vn3); __m512 vf4 = _mm512_scalef_ps(vp4, vn4); __m512 vf5 = _mm512_scalef_ps(vp5, vn5); __m512 vf6 = _mm512_scalef_ps(vp6, vn6); __m512 vf7 = _mm512_scalef_ps(vp7, vn7); __m512 vf8 = _mm512_scalef_ps(vp8, vn8); __m512 vf9 = _mm512_scalef_ps(vp9, vn9); __m512 vf10 = _mm512_scalef_ps(vp10, vn10); // Multiply by scale. vf0 = _mm512_mul_ps(vf0, vscale); vf1 = _mm512_mul_ps(vf1, vscale); vf2 = _mm512_mul_ps(vf2, vscale); vf3 = _mm512_mul_ps(vf3, vscale); vf4 = _mm512_mul_ps(vf4, vscale); vf5 = _mm512_mul_ps(vf5, vscale); vf6 = _mm512_mul_ps(vf6, vscale); vf7 = _mm512_mul_ps(vf7, vscale); vf8 = _mm512_mul_ps(vf8, vscale); vf9 = _mm512_mul_ps(vf9, vscale); vf10 = _mm512_mul_ps(vf10, vscale); // Store 176 (11x16) outputs at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); _mm512_storeu_ps(output + 64, vf4); _mm512_storeu_ps(output + 80, vf5); _mm512_storeu_ps(output + 96, vf6); _mm512_storeu_ps(output + 112, vf7); _mm512_storeu_ps(output + 128, vf8); _mm512_storeu_ps(output + 144, vf9); _mm512_storeu_ps(output + 160, vf10); output += 176; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store 16 outputs at a time. _mm512_storeu_ps(output, vf); output += 16; } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_mask_loadu_ps(_mm512_undefined_ps(), vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store up to 15 outputs at a time. _mm512_mask_storeu_ps(output, vmask, vf); } }
11,719
39.694444
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx512f-p5-scalef-x192.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleexpminusmax.h> void xnn_f32_vscaleexpminusmax_ukernel__avx512f_p5_scalef_x192( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscale = _mm512_set1_ps(scale); const __m512 vi_max = _mm512_set1_ps(max); for (; batch >= 192 * sizeof(float); batch -= 192 * sizeof(float)) { // Load 192 (12x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); const __m512 vi6 = _mm512_loadu_ps(input + 96); const __m512 vi7 = _mm512_loadu_ps(input + 112); const __m512 vi8 = _mm512_loadu_ps(input + 128); const __m512 vi9 = _mm512_loadu_ps(input + 144); const __m512 vi10 = _mm512_loadu_ps(input + 160); const __m512 vi11 = _mm512_loadu_ps(input + 176); input += 192; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); const __m512 vx6 = _mm512_sub_ps(vi6, vi_max); const __m512 vx7 = _mm512_sub_ps(vi7, vi_max); const __m512 vx8 = _mm512_sub_ps(vi8, vi_max); const __m512 vx9 = _mm512_sub_ps(vi9, vi_max); const __m512 vx10 = _mm512_sub_ps(vi10, vi_max); const __m512 vx11 = _mm512_sub_ps(vi11, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); __m512 vn10 = _mm512_roundscale_ps(_mm512_mul_ps(vx10, vlog2e), 0); __m512 vn11 = _mm512_roundscale_ps(_mm512_mul_ps(vx11, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m512 vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m512 vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); __m512 vp10 = _mm512_fmadd_ps(vc5, vt10, vc4); __m512 vp11 = _mm512_fmadd_ps(vc5, vt11, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp10 = _mm512_fmadd_ps(vp10, vt10, vc3); vp11 = _mm512_fmadd_ps(vp11, vt11, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp10 = _mm512_fmadd_ps(vp10, vt10, vc2); vp11 = _mm512_fmadd_ps(vp11, vt11, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp10 = _mm512_fmadd_ps(vp10, vt10, vc1); vp11 = _mm512_fmadd_ps(vp11, vt11, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); vp10 = _mm512_fmadd_ps(vp10, vt10, vc0); vp11 = _mm512_fmadd_ps(vp11, vt11, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf0 = _mm512_scalef_ps(vp0, vn0); __m512 vf1 = _mm512_scalef_ps(vp1, vn1); __m512 vf2 = _mm512_scalef_ps(vp2, vn2); __m512 vf3 = _mm512_scalef_ps(vp3, vn3); __m512 vf4 = _mm512_scalef_ps(vp4, vn4); __m512 vf5 = _mm512_scalef_ps(vp5, vn5); __m512 vf6 = _mm512_scalef_ps(vp6, vn6); __m512 vf7 = _mm512_scalef_ps(vp7, vn7); __m512 vf8 = _mm512_scalef_ps(vp8, vn8); __m512 vf9 = _mm512_scalef_ps(vp9, vn9); __m512 vf10 = _mm512_scalef_ps(vp10, vn10); __m512 vf11 = _mm512_scalef_ps(vp11, vn11); // Multiply by scale. vf0 = _mm512_mul_ps(vf0, vscale); vf1 = _mm512_mul_ps(vf1, vscale); vf2 = _mm512_mul_ps(vf2, vscale); vf3 = _mm512_mul_ps(vf3, vscale); vf4 = _mm512_mul_ps(vf4, vscale); vf5 = _mm512_mul_ps(vf5, vscale); vf6 = _mm512_mul_ps(vf6, vscale); vf7 = _mm512_mul_ps(vf7, vscale); vf8 = _mm512_mul_ps(vf8, vscale); vf9 = _mm512_mul_ps(vf9, vscale); vf10 = _mm512_mul_ps(vf10, vscale); vf11 = _mm512_mul_ps(vf11, vscale); // Store 192 (12x16) outputs at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); _mm512_storeu_ps(output + 64, vf4); _mm512_storeu_ps(output + 80, vf5); _mm512_storeu_ps(output + 96, vf6); _mm512_storeu_ps(output + 112, vf7); _mm512_storeu_ps(output + 128, vf8); _mm512_storeu_ps(output + 144, vf9); _mm512_storeu_ps(output + 160, vf10); _mm512_storeu_ps(output + 176, vf11); output += 192; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store 16 outputs at a time. _mm512_storeu_ps(output, vf); output += 16; } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_mask_loadu_ps(_mm512_undefined_ps(), vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store up to 15 outputs at a time. _mm512_mask_storeu_ps(output, vmask, vf); } }
12,376
40.119601
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx512f-p5-scalef-x32.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleexpminusmax.h> void xnn_f32_vscaleexpminusmax_ukernel__avx512f_p5_scalef_x32( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscale = _mm512_set1_ps(scale); const __m512 vi_max = _mm512_set1_ps(max); for (; batch >= 32 * sizeof(float); batch -= 32 * sizeof(float)) { // Load 32 (2x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); input += 32; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf0 = _mm512_scalef_ps(vp0, vn0); __m512 vf1 = _mm512_scalef_ps(vp1, vn1); // Multiply by scale. vf0 = _mm512_mul_ps(vf0, vscale); vf1 = _mm512_mul_ps(vf1, vscale); // Store 32 (2x16) outputs at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); output += 32; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store 16 outputs at a time. _mm512_storeu_ps(output, vf); output += 16; } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_mask_loadu_ps(_mm512_undefined_ps(), vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store up to 15 outputs at a time. _mm512_mask_storeu_ps(output, vmask, vf); } }
6,055
34.415205
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx512f-p5-scalef-x48.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleexpminusmax.h> void xnn_f32_vscaleexpminusmax_ukernel__avx512f_p5_scalef_x48( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscale = _mm512_set1_ps(scale); const __m512 vi_max = _mm512_set1_ps(max); for (; batch >= 48 * sizeof(float); batch -= 48 * sizeof(float)) { // Load 48 (3x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); input += 48; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf0 = _mm512_scalef_ps(vp0, vn0); __m512 vf1 = _mm512_scalef_ps(vp1, vn1); __m512 vf2 = _mm512_scalef_ps(vp2, vn2); // Multiply by scale. vf0 = _mm512_mul_ps(vf0, vscale); vf1 = _mm512_mul_ps(vf1, vscale); vf2 = _mm512_mul_ps(vf2, vscale); // Store 48 (3x16) outputs at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); output += 48; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store 16 outputs at a time. _mm512_storeu_ps(output, vf); output += 16; } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_mask_loadu_ps(_mm512_undefined_ps(), vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store up to 15 outputs at a time. _mm512_mask_storeu_ps(output, vmask, vf); } }
6,679
35.304348
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx512f-p5-scalef-x64.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleexpminusmax.h> void xnn_f32_vscaleexpminusmax_ukernel__avx512f_p5_scalef_x64( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscale = _mm512_set1_ps(scale); const __m512 vi_max = _mm512_set1_ps(max); for (; batch >= 64 * sizeof(float); batch -= 64 * sizeof(float)) { // Load 64 (4x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); input += 64; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf0 = _mm512_scalef_ps(vp0, vn0); __m512 vf1 = _mm512_scalef_ps(vp1, vn1); __m512 vf2 = _mm512_scalef_ps(vp2, vn2); __m512 vf3 = _mm512_scalef_ps(vp3, vn3); // Multiply by scale. vf0 = _mm512_mul_ps(vf0, vscale); vf1 = _mm512_mul_ps(vf1, vscale); vf2 = _mm512_mul_ps(vf2, vscale); vf3 = _mm512_mul_ps(vf3, vscale); // Store 64 (4x16) outputs at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); output += 64; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store 16 outputs at a time. _mm512_storeu_ps(output, vf); output += 16; } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_mask_loadu_ps(_mm512_undefined_ps(), vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store up to 15 outputs at a time. _mm512_mask_storeu_ps(output, vmask, vf); } }
7,303
36.076142
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx512f-p5-scalef-x80.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleexpminusmax.h> void xnn_f32_vscaleexpminusmax_ukernel__avx512f_p5_scalef_x80( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscale = _mm512_set1_ps(scale); const __m512 vi_max = _mm512_set1_ps(max); for (; batch >= 80 * sizeof(float); batch -= 80 * sizeof(float)) { // Load 80 (5x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); input += 80; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf0 = _mm512_scalef_ps(vp0, vn0); __m512 vf1 = _mm512_scalef_ps(vp1, vn1); __m512 vf2 = _mm512_scalef_ps(vp2, vn2); __m512 vf3 = _mm512_scalef_ps(vp3, vn3); __m512 vf4 = _mm512_scalef_ps(vp4, vn4); // Multiply by scale. vf0 = _mm512_mul_ps(vf0, vscale); vf1 = _mm512_mul_ps(vf1, vscale); vf2 = _mm512_mul_ps(vf2, vscale); vf3 = _mm512_mul_ps(vf3, vscale); vf4 = _mm512_mul_ps(vf4, vscale); // Store 80 (5x16) outputs at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); _mm512_storeu_ps(output + 64, vf4); output += 80; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store 16 outputs at a time. _mm512_storeu_ps(output, vf); output += 16; } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_mask_loadu_ps(_mm512_undefined_ps(), vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store up to 15 outputs at a time. _mm512_mask_storeu_ps(output, vmask, vf); } }
7,927
36.752381
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleexpminusmax/gen/f32-vscaleexpminusmax-avx512f-p5-scalef-x96.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleexpminusmax/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleexpminusmax.h> void xnn_f32_vscaleexpminusmax_ukernel__avx512f_p5_scalef_x96( size_t batch, const float* input, float* output, float scale, float max) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscale = _mm512_set1_ps(scale); const __m512 vi_max = _mm512_set1_ps(max); for (; batch >= 96 * sizeof(float); batch -= 96 * sizeof(float)) { // Load 96 (6x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); const __m512 vi1 = _mm512_loadu_ps(input + 16); const __m512 vi2 = _mm512_loadu_ps(input + 32); const __m512 vi3 = _mm512_loadu_ps(input + 48); const __m512 vi4 = _mm512_loadu_ps(input + 64); const __m512 vi5 = _mm512_loadu_ps(input + 80); input += 96; // Subtract maximum input x := i - i_max. const __m512 vx0 = _mm512_sub_ps(vi0, vi_max); const __m512 vx1 = _mm512_sub_ps(vi1, vi_max); const __m512 vx2 = _mm512_sub_ps(vi2, vi_max); const __m512 vx3 = _mm512_sub_ps(vi3, vi_max); const __m512 vx4 = _mm512_sub_ps(vi4, vi_max); const __m512 vx5 = _mm512_sub_ps(vi5, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf0 = _mm512_scalef_ps(vp0, vn0); __m512 vf1 = _mm512_scalef_ps(vp1, vn1); __m512 vf2 = _mm512_scalef_ps(vp2, vn2); __m512 vf3 = _mm512_scalef_ps(vp3, vn3); __m512 vf4 = _mm512_scalef_ps(vp4, vn4); __m512 vf5 = _mm512_scalef_ps(vp5, vn5); // Multiply by scale. vf0 = _mm512_mul_ps(vf0, vscale); vf1 = _mm512_mul_ps(vf1, vscale); vf2 = _mm512_mul_ps(vf2, vscale); vf3 = _mm512_mul_ps(vf3, vscale); vf4 = _mm512_mul_ps(vf4, vscale); vf5 = _mm512_mul_ps(vf5, vscale); // Store 96 (6x16) outputs at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); _mm512_storeu_ps(output + 64, vf4); _mm512_storeu_ps(output + 80, vf5); output += 96; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store 16 outputs at a time. _mm512_storeu_ps(output, vf); output += 16; } if (batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_mask_loadu_ps(_mm512_undefined_ps(), vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument batch := round(x / log(2)). __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**batch * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**batch * p __m512 vf = _mm512_scalef_ps(vp, vn); // Multiply by scale. vf = _mm512_mul_ps(vf, vscale); // Store up to 15 outputs at a time. _mm512_mask_storeu_ps(output, vmask, vf); } }
8,551
37.349776
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx2-p5-x16.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleextexp_ukernel__avx2_p5_x16( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscalev = _mm256_set1_ps(scale_value); const __m256 vscalee = _mm256_set1_ps(scale_exp); for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 (2x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m256 vf0 = _mm256_mul_ps(vp0, vscalev); __m256 vf1 = _mm256_mul_ps(vp1, vscalev); __m256 ve0 = _mm256_add_ps(vn0, vscalee); __m256 ve1 = _mm256_add_ps(vn1, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum e at -127.0. // 2. Map e to scale factor 0.0 when e == -127.0 ve0 = _mm256_max_ps(ve0, vmin_exponent); ve1 = _mm256_max_ps(ve1, vmin_exponent); // Convert exponents into scale factors: // - s = exp2(e) when e > -127.0 // - s = 0.0 when e <= -127.0 const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve1, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf0 = _mm256_mul_ps(vf0, vs0); vf1 = _mm256_mul_ps(vf1, vs1); // Store 16 (2x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); output += 16; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store 8 results at a time. _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store up to 7 inputs at a time. _mm256_maskstore_ps(output, vmask, vf); } _mm256_zeroupper(); }
7,641
37.59596
120
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx2-p5-x24.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleextexp_ukernel__avx2_p5_x24( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscalev = _mm256_set1_ps(scale_value); const __m256 vscalee = _mm256_set1_ps(scale_exp); for (; batch >= 24 * sizeof(float); batch -= 24 * sizeof(float)) { // Load 24 (3x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); input += 24; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m256 vf0 = _mm256_mul_ps(vp0, vscalev); __m256 vf1 = _mm256_mul_ps(vp1, vscalev); __m256 vf2 = _mm256_mul_ps(vp2, vscalev); __m256 ve0 = _mm256_add_ps(vn0, vscalee); __m256 ve1 = _mm256_add_ps(vn1, vscalee); __m256 ve2 = _mm256_add_ps(vn2, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum e at -127.0. // 2. Map e to scale factor 0.0 when e == -127.0 ve0 = _mm256_max_ps(ve0, vmin_exponent); ve1 = _mm256_max_ps(ve1, vmin_exponent); ve2 = _mm256_max_ps(ve2, vmin_exponent); // Convert exponents into scale factors: // - s = exp2(e) when e > -127.0 // - s = 0.0 when e <= -127.0 const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve2, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf0 = _mm256_mul_ps(vf0, vs0); vf1 = _mm256_mul_ps(vf1, vs1); vf2 = _mm256_mul_ps(vf2, vs2); // Store 24 (3x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); output += 24; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store 8 results at a time. _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store up to 7 inputs at a time. _mm256_maskstore_ps(output, vmask, vf); } _mm256_zeroupper(); }
8,469
38.765258
120
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx2-p5-x32.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleextexp_ukernel__avx2_p5_x32( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscalev = _mm256_set1_ps(scale_value); const __m256 vscalee = _mm256_set1_ps(scale_exp); for (; batch >= 32 * sizeof(float); batch -= 32 * sizeof(float)) { // Load 32 (4x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); input += 32; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m256 vf0 = _mm256_mul_ps(vp0, vscalev); __m256 vf1 = _mm256_mul_ps(vp1, vscalev); __m256 vf2 = _mm256_mul_ps(vp2, vscalev); __m256 vf3 = _mm256_mul_ps(vp3, vscalev); __m256 ve0 = _mm256_add_ps(vn0, vscalee); __m256 ve1 = _mm256_add_ps(vn1, vscalee); __m256 ve2 = _mm256_add_ps(vn2, vscalee); __m256 ve3 = _mm256_add_ps(vn3, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum e at -127.0. // 2. Map e to scale factor 0.0 when e == -127.0 ve0 = _mm256_max_ps(ve0, vmin_exponent); ve1 = _mm256_max_ps(ve1, vmin_exponent); ve2 = _mm256_max_ps(ve2, vmin_exponent); ve3 = _mm256_max_ps(ve3, vmin_exponent); // Convert exponents into scale factors: // - s = exp2(e) when e > -127.0 // - s = 0.0 when e <= -127.0 const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve3, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf0 = _mm256_mul_ps(vf0, vs0); vf1 = _mm256_mul_ps(vf1, vs1); vf2 = _mm256_mul_ps(vf2, vs2); vf3 = _mm256_mul_ps(vf3, vs3); // Store 32 (4x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); output += 32; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store 8 results at a time. _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store up to 7 inputs at a time. _mm256_maskstore_ps(output, vmask, vf); } _mm256_zeroupper(); }
9,297
39.780702
120
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx2-p5-x40.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleextexp_ukernel__avx2_p5_x40( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscalev = _mm256_set1_ps(scale_value); const __m256 vscalee = _mm256_set1_ps(scale_exp); for (; batch >= 40 * sizeof(float); batch -= 40 * sizeof(float)) { // Load 40 (5x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); input += 40; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m256 vf0 = _mm256_mul_ps(vp0, vscalev); __m256 vf1 = _mm256_mul_ps(vp1, vscalev); __m256 vf2 = _mm256_mul_ps(vp2, vscalev); __m256 vf3 = _mm256_mul_ps(vp3, vscalev); __m256 vf4 = _mm256_mul_ps(vp4, vscalev); __m256 ve0 = _mm256_add_ps(vn0, vscalee); __m256 ve1 = _mm256_add_ps(vn1, vscalee); __m256 ve2 = _mm256_add_ps(vn2, vscalee); __m256 ve3 = _mm256_add_ps(vn3, vscalee); __m256 ve4 = _mm256_add_ps(vn4, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum e at -127.0. // 2. Map e to scale factor 0.0 when e == -127.0 ve0 = _mm256_max_ps(ve0, vmin_exponent); ve1 = _mm256_max_ps(ve1, vmin_exponent); ve2 = _mm256_max_ps(ve2, vmin_exponent); ve3 = _mm256_max_ps(ve3, vmin_exponent); ve4 = _mm256_max_ps(ve4, vmin_exponent); // Convert exponents into scale factors: // - s = exp2(e) when e > -127.0 // - s = 0.0 when e <= -127.0 const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve3, vmagic_bias)), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve4, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf0 = _mm256_mul_ps(vf0, vs0); vf1 = _mm256_mul_ps(vf1, vs1); vf2 = _mm256_mul_ps(vf2, vs2); vf3 = _mm256_mul_ps(vf3, vs3); vf4 = _mm256_mul_ps(vf4, vs4); // Store 40 (5x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); output += 40; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store 8 results at a time. _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store up to 7 inputs at a time. _mm256_maskstore_ps(output, vmask, vf); } _mm256_zeroupper(); }
10,125
40.670782
120
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx2-p5-x48.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleextexp_ukernel__avx2_p5_x48( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscalev = _mm256_set1_ps(scale_value); const __m256 vscalee = _mm256_set1_ps(scale_exp); for (; batch >= 48 * sizeof(float); batch -= 48 * sizeof(float)) { // Load 48 (6x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); input += 48; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); vp5 = _mm256_fmadd_ps(vp5, vt5, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m256 vf0 = _mm256_mul_ps(vp0, vscalev); __m256 vf1 = _mm256_mul_ps(vp1, vscalev); __m256 vf2 = _mm256_mul_ps(vp2, vscalev); __m256 vf3 = _mm256_mul_ps(vp3, vscalev); __m256 vf4 = _mm256_mul_ps(vp4, vscalev); __m256 vf5 = _mm256_mul_ps(vp5, vscalev); __m256 ve0 = _mm256_add_ps(vn0, vscalee); __m256 ve1 = _mm256_add_ps(vn1, vscalee); __m256 ve2 = _mm256_add_ps(vn2, vscalee); __m256 ve3 = _mm256_add_ps(vn3, vscalee); __m256 ve4 = _mm256_add_ps(vn4, vscalee); __m256 ve5 = _mm256_add_ps(vn5, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum e at -127.0. // 2. Map e to scale factor 0.0 when e == -127.0 ve0 = _mm256_max_ps(ve0, vmin_exponent); ve1 = _mm256_max_ps(ve1, vmin_exponent); ve2 = _mm256_max_ps(ve2, vmin_exponent); ve3 = _mm256_max_ps(ve3, vmin_exponent); ve4 = _mm256_max_ps(ve4, vmin_exponent); ve5 = _mm256_max_ps(ve5, vmin_exponent); // Convert exponents into scale factors: // - s = exp2(e) when e > -127.0 // - s = 0.0 when e <= -127.0 const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve3, vmagic_bias)), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve4, vmagic_bias)), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve5, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf0 = _mm256_mul_ps(vf0, vs0); vf1 = _mm256_mul_ps(vf1, vs1); vf2 = _mm256_mul_ps(vf2, vs2); vf3 = _mm256_mul_ps(vf3, vs3); vf4 = _mm256_mul_ps(vf4, vs4); vf5 = _mm256_mul_ps(vf5, vs5); // Store 48 (6x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); output += 48; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store 8 results at a time. _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store up to 7 inputs at a time. _mm256_maskstore_ps(output, vmask, vf); } _mm256_zeroupper(); }
10,953
41.457364
120
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx2-p5-x56.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleextexp_ukernel__avx2_p5_x56( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscalev = _mm256_set1_ps(scale_value); const __m256 vscalee = _mm256_set1_ps(scale_exp); for (; batch >= 56 * sizeof(float); batch -= 56 * sizeof(float)) { // Load 56 (7x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); input += 56; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); vp5 = _mm256_fmadd_ps(vp5, vt5, vc0); vp6 = _mm256_fmadd_ps(vp6, vt6, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m256 vf0 = _mm256_mul_ps(vp0, vscalev); __m256 vf1 = _mm256_mul_ps(vp1, vscalev); __m256 vf2 = _mm256_mul_ps(vp2, vscalev); __m256 vf3 = _mm256_mul_ps(vp3, vscalev); __m256 vf4 = _mm256_mul_ps(vp4, vscalev); __m256 vf5 = _mm256_mul_ps(vp5, vscalev); __m256 vf6 = _mm256_mul_ps(vp6, vscalev); __m256 ve0 = _mm256_add_ps(vn0, vscalee); __m256 ve1 = _mm256_add_ps(vn1, vscalee); __m256 ve2 = _mm256_add_ps(vn2, vscalee); __m256 ve3 = _mm256_add_ps(vn3, vscalee); __m256 ve4 = _mm256_add_ps(vn4, vscalee); __m256 ve5 = _mm256_add_ps(vn5, vscalee); __m256 ve6 = _mm256_add_ps(vn6, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum e at -127.0. // 2. Map e to scale factor 0.0 when e == -127.0 ve0 = _mm256_max_ps(ve0, vmin_exponent); ve1 = _mm256_max_ps(ve1, vmin_exponent); ve2 = _mm256_max_ps(ve2, vmin_exponent); ve3 = _mm256_max_ps(ve3, vmin_exponent); ve4 = _mm256_max_ps(ve4, vmin_exponent); ve5 = _mm256_max_ps(ve5, vmin_exponent); ve6 = _mm256_max_ps(ve6, vmin_exponent); // Convert exponents into scale factors: // - s = exp2(e) when e > -127.0 // - s = 0.0 when e <= -127.0 const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve3, vmagic_bias)), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve4, vmagic_bias)), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve5, vmagic_bias)), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve6, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf0 = _mm256_mul_ps(vf0, vs0); vf1 = _mm256_mul_ps(vf1, vs1); vf2 = _mm256_mul_ps(vf2, vs2); vf3 = _mm256_mul_ps(vf3, vs3); vf4 = _mm256_mul_ps(vf4, vs4); vf5 = _mm256_mul_ps(vf5, vs5); vf6 = _mm256_mul_ps(vf6, vs6); // Store 56 (7x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); output += 56; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store 8 results at a time. _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store up to 7 inputs at a time. _mm256_maskstore_ps(output, vmask, vf); } _mm256_zeroupper(); }
11,781
42.157509
120
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx2-p5-x64.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleextexp_ukernel__avx2_p5_x64( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscalev = _mm256_set1_ps(scale_value); const __m256 vscalee = _mm256_set1_ps(scale_exp); for (; batch >= 64 * sizeof(float); batch -= 64 * sizeof(float)) { // Load 64 (8x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); input += 64; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); vp5 = _mm256_fmadd_ps(vp5, vt5, vc0); vp6 = _mm256_fmadd_ps(vp6, vt6, vc0); vp7 = _mm256_fmadd_ps(vp7, vt7, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m256 vf0 = _mm256_mul_ps(vp0, vscalev); __m256 vf1 = _mm256_mul_ps(vp1, vscalev); __m256 vf2 = _mm256_mul_ps(vp2, vscalev); __m256 vf3 = _mm256_mul_ps(vp3, vscalev); __m256 vf4 = _mm256_mul_ps(vp4, vscalev); __m256 vf5 = _mm256_mul_ps(vp5, vscalev); __m256 vf6 = _mm256_mul_ps(vp6, vscalev); __m256 vf7 = _mm256_mul_ps(vp7, vscalev); __m256 ve0 = _mm256_add_ps(vn0, vscalee); __m256 ve1 = _mm256_add_ps(vn1, vscalee); __m256 ve2 = _mm256_add_ps(vn2, vscalee); __m256 ve3 = _mm256_add_ps(vn3, vscalee); __m256 ve4 = _mm256_add_ps(vn4, vscalee); __m256 ve5 = _mm256_add_ps(vn5, vscalee); __m256 ve6 = _mm256_add_ps(vn6, vscalee); __m256 ve7 = _mm256_add_ps(vn7, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum e at -127.0. // 2. Map e to scale factor 0.0 when e == -127.0 ve0 = _mm256_max_ps(ve0, vmin_exponent); ve1 = _mm256_max_ps(ve1, vmin_exponent); ve2 = _mm256_max_ps(ve2, vmin_exponent); ve3 = _mm256_max_ps(ve3, vmin_exponent); ve4 = _mm256_max_ps(ve4, vmin_exponent); ve5 = _mm256_max_ps(ve5, vmin_exponent); ve6 = _mm256_max_ps(ve6, vmin_exponent); ve7 = _mm256_max_ps(ve7, vmin_exponent); // Convert exponents into scale factors: // - s = exp2(e) when e > -127.0 // - s = 0.0 when e <= -127.0 const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve3, vmagic_bias)), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve4, vmagic_bias)), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve5, vmagic_bias)), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve6, vmagic_bias)), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve7, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf0 = _mm256_mul_ps(vf0, vs0); vf1 = _mm256_mul_ps(vf1, vs1); vf2 = _mm256_mul_ps(vf2, vs2); vf3 = _mm256_mul_ps(vf3, vs3); vf4 = _mm256_mul_ps(vf4, vs4); vf5 = _mm256_mul_ps(vf5, vs5); vf6 = _mm256_mul_ps(vf6, vs6); vf7 = _mm256_mul_ps(vf7, vs7); // Store 64 (8x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); output += 64; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store 8 results at a time. _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store up to 7 inputs at a time. _mm256_maskstore_ps(output, vmask, vf); } _mm256_zeroupper(); }
12,609
42.784722
120
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx2-p5-x72.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleextexp_ukernel__avx2_p5_x72( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscalev = _mm256_set1_ps(scale_value); const __m256 vscalee = _mm256_set1_ps(scale_exp); for (; batch >= 72 * sizeof(float); batch -= 72 * sizeof(float)) { // Load 72 (9x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); const __m256 vx8 = _mm256_loadu_ps(input + 64); input += 72; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn8 = _mm256_round_ps(_mm256_mul_ps(vx8, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); vp5 = _mm256_fmadd_ps(vp5, vt5, vc0); vp6 = _mm256_fmadd_ps(vp6, vt6, vc0); vp7 = _mm256_fmadd_ps(vp7, vt7, vc0); vp8 = _mm256_fmadd_ps(vp8, vt8, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m256 vf0 = _mm256_mul_ps(vp0, vscalev); __m256 vf1 = _mm256_mul_ps(vp1, vscalev); __m256 vf2 = _mm256_mul_ps(vp2, vscalev); __m256 vf3 = _mm256_mul_ps(vp3, vscalev); __m256 vf4 = _mm256_mul_ps(vp4, vscalev); __m256 vf5 = _mm256_mul_ps(vp5, vscalev); __m256 vf6 = _mm256_mul_ps(vp6, vscalev); __m256 vf7 = _mm256_mul_ps(vp7, vscalev); __m256 vf8 = _mm256_mul_ps(vp8, vscalev); __m256 ve0 = _mm256_add_ps(vn0, vscalee); __m256 ve1 = _mm256_add_ps(vn1, vscalee); __m256 ve2 = _mm256_add_ps(vn2, vscalee); __m256 ve3 = _mm256_add_ps(vn3, vscalee); __m256 ve4 = _mm256_add_ps(vn4, vscalee); __m256 ve5 = _mm256_add_ps(vn5, vscalee); __m256 ve6 = _mm256_add_ps(vn6, vscalee); __m256 ve7 = _mm256_add_ps(vn7, vscalee); __m256 ve8 = _mm256_add_ps(vn8, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum e at -127.0. // 2. Map e to scale factor 0.0 when e == -127.0 ve0 = _mm256_max_ps(ve0, vmin_exponent); ve1 = _mm256_max_ps(ve1, vmin_exponent); ve2 = _mm256_max_ps(ve2, vmin_exponent); ve3 = _mm256_max_ps(ve3, vmin_exponent); ve4 = _mm256_max_ps(ve4, vmin_exponent); ve5 = _mm256_max_ps(ve5, vmin_exponent); ve6 = _mm256_max_ps(ve6, vmin_exponent); ve7 = _mm256_max_ps(ve7, vmin_exponent); ve8 = _mm256_max_ps(ve8, vmin_exponent); // Convert exponents into scale factors: // - s = exp2(e) when e > -127.0 // - s = 0.0 when e <= -127.0 const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve3, vmagic_bias)), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve4, vmagic_bias)), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve5, vmagic_bias)), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve6, vmagic_bias)), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve7, vmagic_bias)), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve8, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf0 = _mm256_mul_ps(vf0, vs0); vf1 = _mm256_mul_ps(vf1, vs1); vf2 = _mm256_mul_ps(vf2, vs2); vf3 = _mm256_mul_ps(vf3, vs3); vf4 = _mm256_mul_ps(vf4, vs4); vf5 = _mm256_mul_ps(vf5, vs5); vf6 = _mm256_mul_ps(vf6, vs6); vf7 = _mm256_mul_ps(vf7, vs7); vf8 = _mm256_mul_ps(vf8, vs8); // Store 72 (9x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); output += 72; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store 8 results at a time. _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store up to 7 inputs at a time. _mm256_maskstore_ps(output, vmask, vf); } _mm256_zeroupper(); }
13,437
43.349835
120
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx2-p5-x8.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleextexp_ukernel__avx2_p5_x8( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscalev = _mm256_set1_ps(scale_value); const __m256 vscalee = _mm256_set1_ps(scale_exp); for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 (1x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m256 vf0 = _mm256_mul_ps(vp0, vscalev); __m256 ve0 = _mm256_add_ps(vn0, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum e at -127.0. // 2. Map e to scale factor 0.0 when e == -127.0 ve0 = _mm256_max_ps(ve0, vmin_exponent); // Convert exponents into scale factors: // - s = exp2(e) when e > -127.0 // - s = 0.0 when e <= -127.0 const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve0, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf0 = _mm256_mul_ps(vf0, vs0); // Store 8 (1x8) outputs at a time. _mm256_storeu_ps(output, vf0); output += 8; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store 8 results at a time. _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store up to 7 inputs at a time. _mm256_maskstore_ps(output, vmask, vf); } _mm256_zeroupper(); }
6,808
36.20765
120
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx2-p5-x80.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleextexp_ukernel__avx2_p5_x80( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscalev = _mm256_set1_ps(scale_value); const __m256 vscalee = _mm256_set1_ps(scale_exp); for (; batch >= 80 * sizeof(float); batch -= 80 * sizeof(float)) { // Load 80 (10x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); const __m256 vx8 = _mm256_loadu_ps(input + 64); const __m256 vx9 = _mm256_loadu_ps(input + 72); input += 80; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn8 = _mm256_round_ps(_mm256_mul_ps(vx8, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn9 = _mm256_round_ps(_mm256_mul_ps(vx9, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); vp5 = _mm256_fmadd_ps(vp5, vt5, vc0); vp6 = _mm256_fmadd_ps(vp6, vt6, vc0); vp7 = _mm256_fmadd_ps(vp7, vt7, vc0); vp8 = _mm256_fmadd_ps(vp8, vt8, vc0); vp9 = _mm256_fmadd_ps(vp9, vt9, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m256 vf0 = _mm256_mul_ps(vp0, vscalev); __m256 vf1 = _mm256_mul_ps(vp1, vscalev); __m256 vf2 = _mm256_mul_ps(vp2, vscalev); __m256 vf3 = _mm256_mul_ps(vp3, vscalev); __m256 vf4 = _mm256_mul_ps(vp4, vscalev); __m256 vf5 = _mm256_mul_ps(vp5, vscalev); __m256 vf6 = _mm256_mul_ps(vp6, vscalev); __m256 vf7 = _mm256_mul_ps(vp7, vscalev); __m256 vf8 = _mm256_mul_ps(vp8, vscalev); __m256 vf9 = _mm256_mul_ps(vp9, vscalev); __m256 ve0 = _mm256_add_ps(vn0, vscalee); __m256 ve1 = _mm256_add_ps(vn1, vscalee); __m256 ve2 = _mm256_add_ps(vn2, vscalee); __m256 ve3 = _mm256_add_ps(vn3, vscalee); __m256 ve4 = _mm256_add_ps(vn4, vscalee); __m256 ve5 = _mm256_add_ps(vn5, vscalee); __m256 ve6 = _mm256_add_ps(vn6, vscalee); __m256 ve7 = _mm256_add_ps(vn7, vscalee); __m256 ve8 = _mm256_add_ps(vn8, vscalee); __m256 ve9 = _mm256_add_ps(vn9, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum e at -127.0. // 2. Map e to scale factor 0.0 when e == -127.0 ve0 = _mm256_max_ps(ve0, vmin_exponent); ve1 = _mm256_max_ps(ve1, vmin_exponent); ve2 = _mm256_max_ps(ve2, vmin_exponent); ve3 = _mm256_max_ps(ve3, vmin_exponent); ve4 = _mm256_max_ps(ve4, vmin_exponent); ve5 = _mm256_max_ps(ve5, vmin_exponent); ve6 = _mm256_max_ps(ve6, vmin_exponent); ve7 = _mm256_max_ps(ve7, vmin_exponent); ve8 = _mm256_max_ps(ve8, vmin_exponent); ve9 = _mm256_max_ps(ve9, vmin_exponent); // Convert exponents into scale factors: // - s = exp2(e) when e > -127.0 // - s = 0.0 when e <= -127.0 const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve3, vmagic_bias)), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve4, vmagic_bias)), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve5, vmagic_bias)), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve6, vmagic_bias)), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve7, vmagic_bias)), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve8, vmagic_bias)), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve9, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf0 = _mm256_mul_ps(vf0, vs0); vf1 = _mm256_mul_ps(vf1, vs1); vf2 = _mm256_mul_ps(vf2, vs2); vf3 = _mm256_mul_ps(vf3, vs3); vf4 = _mm256_mul_ps(vf4, vs4); vf5 = _mm256_mul_ps(vf5, vs5); vf6 = _mm256_mul_ps(vf6, vs6); vf7 = _mm256_mul_ps(vf7, vs7); vf8 = _mm256_mul_ps(vf8, vs8); vf9 = _mm256_mul_ps(vf9, vs9); // Store 80 (10x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); _mm256_storeu_ps(output + 72, vf9); output += 80; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store 8 results at a time. _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store up to 7 inputs at a time. _mm256_maskstore_ps(output, vmask, vf); } _mm256_zeroupper(); }
14,267
43.867925
120
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx2-p5-x88.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleextexp_ukernel__avx2_p5_x88( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscalev = _mm256_set1_ps(scale_value); const __m256 vscalee = _mm256_set1_ps(scale_exp); for (; batch >= 88 * sizeof(float); batch -= 88 * sizeof(float)) { // Load 88 (11x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); const __m256 vx8 = _mm256_loadu_ps(input + 64); const __m256 vx9 = _mm256_loadu_ps(input + 72); const __m256 vx10 = _mm256_loadu_ps(input + 80); input += 88; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn8 = _mm256_round_ps(_mm256_mul_ps(vx8, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn9 = _mm256_round_ps(_mm256_mul_ps(vx9, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn10 = _mm256_round_ps(_mm256_mul_ps(vx10, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m256 vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_hi, vx10); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_lo, vt10); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); __m256 vp10 = _mm256_fmadd_ps(vc5, vt10, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp10 = _mm256_fmadd_ps(vp10, vt10, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp10 = _mm256_fmadd_ps(vp10, vt10, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vp10 = _mm256_fmadd_ps(vp10, vt10, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); vp5 = _mm256_fmadd_ps(vp5, vt5, vc0); vp6 = _mm256_fmadd_ps(vp6, vt6, vc0); vp7 = _mm256_fmadd_ps(vp7, vt7, vc0); vp8 = _mm256_fmadd_ps(vp8, vt8, vc0); vp9 = _mm256_fmadd_ps(vp9, vt9, vc0); vp10 = _mm256_fmadd_ps(vp10, vt10, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m256 vf0 = _mm256_mul_ps(vp0, vscalev); __m256 vf1 = _mm256_mul_ps(vp1, vscalev); __m256 vf2 = _mm256_mul_ps(vp2, vscalev); __m256 vf3 = _mm256_mul_ps(vp3, vscalev); __m256 vf4 = _mm256_mul_ps(vp4, vscalev); __m256 vf5 = _mm256_mul_ps(vp5, vscalev); __m256 vf6 = _mm256_mul_ps(vp6, vscalev); __m256 vf7 = _mm256_mul_ps(vp7, vscalev); __m256 vf8 = _mm256_mul_ps(vp8, vscalev); __m256 vf9 = _mm256_mul_ps(vp9, vscalev); __m256 vf10 = _mm256_mul_ps(vp10, vscalev); __m256 ve0 = _mm256_add_ps(vn0, vscalee); __m256 ve1 = _mm256_add_ps(vn1, vscalee); __m256 ve2 = _mm256_add_ps(vn2, vscalee); __m256 ve3 = _mm256_add_ps(vn3, vscalee); __m256 ve4 = _mm256_add_ps(vn4, vscalee); __m256 ve5 = _mm256_add_ps(vn5, vscalee); __m256 ve6 = _mm256_add_ps(vn6, vscalee); __m256 ve7 = _mm256_add_ps(vn7, vscalee); __m256 ve8 = _mm256_add_ps(vn8, vscalee); __m256 ve9 = _mm256_add_ps(vn9, vscalee); __m256 ve10 = _mm256_add_ps(vn10, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum e at -127.0. // 2. Map e to scale factor 0.0 when e == -127.0 ve0 = _mm256_max_ps(ve0, vmin_exponent); ve1 = _mm256_max_ps(ve1, vmin_exponent); ve2 = _mm256_max_ps(ve2, vmin_exponent); ve3 = _mm256_max_ps(ve3, vmin_exponent); ve4 = _mm256_max_ps(ve4, vmin_exponent); ve5 = _mm256_max_ps(ve5, vmin_exponent); ve6 = _mm256_max_ps(ve6, vmin_exponent); ve7 = _mm256_max_ps(ve7, vmin_exponent); ve8 = _mm256_max_ps(ve8, vmin_exponent); ve9 = _mm256_max_ps(ve9, vmin_exponent); ve10 = _mm256_max_ps(ve10, vmin_exponent); // Convert exponents into scale factors: // - s = exp2(e) when e > -127.0 // - s = 0.0 when e <= -127.0 const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve3, vmagic_bias)), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve4, vmagic_bias)), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve5, vmagic_bias)), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve6, vmagic_bias)), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve7, vmagic_bias)), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve8, vmagic_bias)), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve9, vmagic_bias)), 23)); const __m256 vs10 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve10, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf0 = _mm256_mul_ps(vf0, vs0); vf1 = _mm256_mul_ps(vf1, vs1); vf2 = _mm256_mul_ps(vf2, vs2); vf3 = _mm256_mul_ps(vf3, vs3); vf4 = _mm256_mul_ps(vf4, vs4); vf5 = _mm256_mul_ps(vf5, vs5); vf6 = _mm256_mul_ps(vf6, vs6); vf7 = _mm256_mul_ps(vf7, vs7); vf8 = _mm256_mul_ps(vf8, vs8); vf9 = _mm256_mul_ps(vf9, vs9); vf10 = _mm256_mul_ps(vf10, vs10); // Store 88 (11x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); _mm256_storeu_ps(output + 72, vf9); _mm256_storeu_ps(output + 80, vf10); output += 88; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store 8 results at a time. _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store up to 7 inputs at a time. _mm256_maskstore_ps(output, vmask, vf); } _mm256_zeroupper(); }
15,130
44.438438
122
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx2-p5-x96.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx2-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vscaleextexp.h> static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleextexp_ukernel__avx2_p5_x96( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); // The smallest batch such that 2**batch is considered non-negligible. // For smaller batch, 2**batch is replaced with zero. const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); const __m256 vc0 = _mm256_set1_ps(1.0f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscalev = _mm256_set1_ps(scale_value); const __m256 vscalee = _mm256_set1_ps(scale_exp); for (; batch >= 96 * sizeof(float); batch -= 96 * sizeof(float)) { // Load 96 (12x8) inputs at a time. const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); const __m256 vx8 = _mm256_loadu_ps(input + 64); const __m256 vx9 = _mm256_loadu_ps(input + 72); const __m256 vx10 = _mm256_loadu_ps(input + 80); const __m256 vx11 = _mm256_loadu_ps(input + 88); input += 96; // Compute reduced argument batch := round(input / log(2)). const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn8 = _mm256_round_ps(_mm256_mul_ps(vx8, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn9 = _mm256_round_ps(_mm256_mul_ps(vx9, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn10 = _mm256_round_ps(_mm256_mul_ps(vx10, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); const __m256 vn11 = _mm256_round_ps(_mm256_mul_ps(vx11, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m256 vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m256 vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); __m256 vp10 = _mm256_fmadd_ps(vc5, vt10, vc4); __m256 vp11 = _mm256_fmadd_ps(vc5, vt11, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp10 = _mm256_fmadd_ps(vp10, vt10, vc3); vp11 = _mm256_fmadd_ps(vp11, vt11, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp10 = _mm256_fmadd_ps(vp10, vt10, vc2); vp11 = _mm256_fmadd_ps(vp11, vt11, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vp10 = _mm256_fmadd_ps(vp10, vt10, vc1); vp11 = _mm256_fmadd_ps(vp11, vt11, vc1); vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); vp5 = _mm256_fmadd_ps(vp5, vt5, vc0); vp6 = _mm256_fmadd_ps(vp6, vt6, vc0); vp7 = _mm256_fmadd_ps(vp7, vt7, vc0); vp8 = _mm256_fmadd_ps(vp8, vt8, vc0); vp9 = _mm256_fmadd_ps(vp9, vt9, vc0); vp10 = _mm256_fmadd_ps(vp10, vt10, vc0); vp11 = _mm256_fmadd_ps(vp11, vt11, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m256 vf0 = _mm256_mul_ps(vp0, vscalev); __m256 vf1 = _mm256_mul_ps(vp1, vscalev); __m256 vf2 = _mm256_mul_ps(vp2, vscalev); __m256 vf3 = _mm256_mul_ps(vp3, vscalev); __m256 vf4 = _mm256_mul_ps(vp4, vscalev); __m256 vf5 = _mm256_mul_ps(vp5, vscalev); __m256 vf6 = _mm256_mul_ps(vp6, vscalev); __m256 vf7 = _mm256_mul_ps(vp7, vscalev); __m256 vf8 = _mm256_mul_ps(vp8, vscalev); __m256 vf9 = _mm256_mul_ps(vp9, vscalev); __m256 vf10 = _mm256_mul_ps(vp10, vscalev); __m256 vf11 = _mm256_mul_ps(vp11, vscalev); __m256 ve0 = _mm256_add_ps(vn0, vscalee); __m256 ve1 = _mm256_add_ps(vn1, vscalee); __m256 ve2 = _mm256_add_ps(vn2, vscalee); __m256 ve3 = _mm256_add_ps(vn3, vscalee); __m256 ve4 = _mm256_add_ps(vn4, vscalee); __m256 ve5 = _mm256_add_ps(vn5, vscalee); __m256 ve6 = _mm256_add_ps(vn6, vscalee); __m256 ve7 = _mm256_add_ps(vn7, vscalee); __m256 ve8 = _mm256_add_ps(vn8, vscalee); __m256 ve9 = _mm256_add_ps(vn9, vscalee); __m256 ve10 = _mm256_add_ps(vn10, vscalee); __m256 ve11 = _mm256_add_ps(vn11, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. // This replacement is done in two steps: // 1. Clamp minimum e at -127.0. // 2. Map e to scale factor 0.0 when e == -127.0 ve0 = _mm256_max_ps(ve0, vmin_exponent); ve1 = _mm256_max_ps(ve1, vmin_exponent); ve2 = _mm256_max_ps(ve2, vmin_exponent); ve3 = _mm256_max_ps(ve3, vmin_exponent); ve4 = _mm256_max_ps(ve4, vmin_exponent); ve5 = _mm256_max_ps(ve5, vmin_exponent); ve6 = _mm256_max_ps(ve6, vmin_exponent); ve7 = _mm256_max_ps(ve7, vmin_exponent); ve8 = _mm256_max_ps(ve8, vmin_exponent); ve9 = _mm256_max_ps(ve9, vmin_exponent); ve10 = _mm256_max_ps(ve10, vmin_exponent); ve11 = _mm256_max_ps(ve11, vmin_exponent); // Convert exponents into scale factors: // - s = exp2(e) when e > -127.0 // - s = 0.0 when e <= -127.0 const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve0, vmagic_bias)), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve1, vmagic_bias)), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve2, vmagic_bias)), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve3, vmagic_bias)), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve4, vmagic_bias)), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve5, vmagic_bias)), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve6, vmagic_bias)), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve7, vmagic_bias)), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve8, vmagic_bias)), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve9, vmagic_bias)), 23)); const __m256 vs10 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve10, vmagic_bias)), 23)); const __m256 vs11 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve11, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf0 = _mm256_mul_ps(vf0, vs0); vf1 = _mm256_mul_ps(vf1, vs1); vf2 = _mm256_mul_ps(vf2, vs2); vf3 = _mm256_mul_ps(vf3, vs3); vf4 = _mm256_mul_ps(vf4, vs4); vf5 = _mm256_mul_ps(vf5, vs5); vf6 = _mm256_mul_ps(vf6, vs6); vf7 = _mm256_mul_ps(vf7, vs7); vf8 = _mm256_mul_ps(vf8, vs8); vf9 = _mm256_mul_ps(vf9, vs9); vf10 = _mm256_mul_ps(vf10, vs10); vf11 = _mm256_mul_ps(vf11, vs11); // Store 96 (12x8) outputs at a time. _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); _mm256_storeu_ps(output + 72, vf9); _mm256_storeu_ps(output + 80, vf10); _mm256_storeu_ps(output + 88, vf11); output += 96; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vx = _mm256_loadu_ps(input); input += 8; // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store 8 results at a time. _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - batch)); // Load up to 7 inputs at a time. const __m256 vx = _mm256_maskload_ps(input, vmask); // Compute reduced argument batch := round(input / log(2)). const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vp = _mm256_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m256 vf = _mm256_mul_ps(vp, vscalev); __m256 ve = _mm256_add_ps(vn, vscalee); // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. ve = _mm256_max_ps(ve, vmin_exponent); // Convert exponents into scale factors. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); // Multiply "mantissa" by the scale factor. vf = _mm256_mul_ps(vf, vs); // Store up to 7 inputs at a time. _mm256_maskstore_ps(output, vmask, vf); } _mm256_zeroupper(); }
15,993
44.95977
122
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx512f-p5-scalef-x112.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleextexp.h> void xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_x112( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch % sizeof(float) == 0); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscalev = _mm512_set1_ps(scale_value); const __m512 vscalee = _mm512_set1_ps(scale_exp); for (; batch >= 112 * sizeof(float); batch -= 112 * sizeof(float)) { // Load 112 (7x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); const __m512 vx4 = _mm512_loadu_ps(input + 64); const __m512 vx5 = _mm512_loadu_ps(input + 80); const __m512 vx6 = _mm512_loadu_ps(input + 96); input += 112; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m512 vf0 = _mm512_mul_ps(vp0, vscalev); __m512 vf1 = _mm512_mul_ps(vp1, vscalev); __m512 vf2 = _mm512_mul_ps(vp2, vscalev); __m512 vf3 = _mm512_mul_ps(vp3, vscalev); __m512 vf4 = _mm512_mul_ps(vp4, vscalev); __m512 vf5 = _mm512_mul_ps(vp5, vscalev); __m512 vf6 = _mm512_mul_ps(vp6, vscalev); const __m512 ve0 = _mm512_add_ps(vn0, vscalee); const __m512 ve1 = _mm512_add_ps(vn1, vscalee); const __m512 ve2 = _mm512_add_ps(vn2, vscalee); const __m512 ve3 = _mm512_add_ps(vn3, vscalee); const __m512 ve4 = _mm512_add_ps(vn4, vscalee); const __m512 ve5 = _mm512_add_ps(vn5, vscalee); const __m512 ve6 = _mm512_add_ps(vn6, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf0 = _mm512_scalef_ps(vf0, ve0); vf1 = _mm512_scalef_ps(vf1, ve1); vf2 = _mm512_scalef_ps(vf2, ve2); vf3 = _mm512_scalef_ps(vf3, ve3); vf4 = _mm512_scalef_ps(vf4, ve4); vf5 = _mm512_scalef_ps(vf5, ve5); vf6 = _mm512_scalef_ps(vf6, ve6); // Store 128 (8x16) results at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); _mm512_storeu_ps(output + 64, vf4); _mm512_storeu_ps(output + 80, vf5); _mm512_storeu_ps(output + 96, vf6); output += 112; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store 16 results at a time. _mm512_storeu_ps(output, vf); output += 16; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store up to 15 results at a time. _mm512_mask_storeu_ps(output, vmask, vf); } _mm256_zeroupper(); }
9,186
38.943478
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx512f-p5-scalef-x128.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleextexp.h> void xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_x128( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch % sizeof(float) == 0); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscalev = _mm512_set1_ps(scale_value); const __m512 vscalee = _mm512_set1_ps(scale_exp); for (; batch >= 128 * sizeof(float); batch -= 128 * sizeof(float)) { // Load 128 (8x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); const __m512 vx4 = _mm512_loadu_ps(input + 64); const __m512 vx5 = _mm512_loadu_ps(input + 80); const __m512 vx6 = _mm512_loadu_ps(input + 96); const __m512 vx7 = _mm512_loadu_ps(input + 112); input += 128; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m512 vf0 = _mm512_mul_ps(vp0, vscalev); __m512 vf1 = _mm512_mul_ps(vp1, vscalev); __m512 vf2 = _mm512_mul_ps(vp2, vscalev); __m512 vf3 = _mm512_mul_ps(vp3, vscalev); __m512 vf4 = _mm512_mul_ps(vp4, vscalev); __m512 vf5 = _mm512_mul_ps(vp5, vscalev); __m512 vf6 = _mm512_mul_ps(vp6, vscalev); __m512 vf7 = _mm512_mul_ps(vp7, vscalev); const __m512 ve0 = _mm512_add_ps(vn0, vscalee); const __m512 ve1 = _mm512_add_ps(vn1, vscalee); const __m512 ve2 = _mm512_add_ps(vn2, vscalee); const __m512 ve3 = _mm512_add_ps(vn3, vscalee); const __m512 ve4 = _mm512_add_ps(vn4, vscalee); const __m512 ve5 = _mm512_add_ps(vn5, vscalee); const __m512 ve6 = _mm512_add_ps(vn6, vscalee); const __m512 ve7 = _mm512_add_ps(vn7, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf0 = _mm512_scalef_ps(vf0, ve0); vf1 = _mm512_scalef_ps(vf1, ve1); vf2 = _mm512_scalef_ps(vf2, ve2); vf3 = _mm512_scalef_ps(vf3, ve3); vf4 = _mm512_scalef_ps(vf4, ve4); vf5 = _mm512_scalef_ps(vf5, ve5); vf6 = _mm512_scalef_ps(vf6, ve6); vf7 = _mm512_scalef_ps(vf7, ve7); // Store 128 (8x16) results at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); _mm512_storeu_ps(output + 64, vf4); _mm512_storeu_ps(output + 80, vf5); _mm512_storeu_ps(output + 96, vf6); _mm512_storeu_ps(output + 112, vf7); output += 128; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store 16 results at a time. _mm512_storeu_ps(output, vf); output += 16; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store up to 15 results at a time. _mm512_mask_storeu_ps(output, vmask, vf); } _mm256_zeroupper(); }
9,820
39.415638
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx512f-p5-scalef-x144.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleextexp.h> void xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_x144( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch % sizeof(float) == 0); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscalev = _mm512_set1_ps(scale_value); const __m512 vscalee = _mm512_set1_ps(scale_exp); for (; batch >= 144 * sizeof(float); batch -= 144 * sizeof(float)) { // Load 144 (9x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); const __m512 vx4 = _mm512_loadu_ps(input + 64); const __m512 vx5 = _mm512_loadu_ps(input + 80); const __m512 vx6 = _mm512_loadu_ps(input + 96); const __m512 vx7 = _mm512_loadu_ps(input + 112); const __m512 vx8 = _mm512_loadu_ps(input + 128); input += 144; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m512 vf0 = _mm512_mul_ps(vp0, vscalev); __m512 vf1 = _mm512_mul_ps(vp1, vscalev); __m512 vf2 = _mm512_mul_ps(vp2, vscalev); __m512 vf3 = _mm512_mul_ps(vp3, vscalev); __m512 vf4 = _mm512_mul_ps(vp4, vscalev); __m512 vf5 = _mm512_mul_ps(vp5, vscalev); __m512 vf6 = _mm512_mul_ps(vp6, vscalev); __m512 vf7 = _mm512_mul_ps(vp7, vscalev); __m512 vf8 = _mm512_mul_ps(vp8, vscalev); const __m512 ve0 = _mm512_add_ps(vn0, vscalee); const __m512 ve1 = _mm512_add_ps(vn1, vscalee); const __m512 ve2 = _mm512_add_ps(vn2, vscalee); const __m512 ve3 = _mm512_add_ps(vn3, vscalee); const __m512 ve4 = _mm512_add_ps(vn4, vscalee); const __m512 ve5 = _mm512_add_ps(vn5, vscalee); const __m512 ve6 = _mm512_add_ps(vn6, vscalee); const __m512 ve7 = _mm512_add_ps(vn7, vscalee); const __m512 ve8 = _mm512_add_ps(vn8, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf0 = _mm512_scalef_ps(vf0, ve0); vf1 = _mm512_scalef_ps(vf1, ve1); vf2 = _mm512_scalef_ps(vf2, ve2); vf3 = _mm512_scalef_ps(vf3, ve3); vf4 = _mm512_scalef_ps(vf4, ve4); vf5 = _mm512_scalef_ps(vf5, ve5); vf6 = _mm512_scalef_ps(vf6, ve6); vf7 = _mm512_scalef_ps(vf7, ve7); vf8 = _mm512_scalef_ps(vf8, ve8); // Store 128 (8x16) results at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); _mm512_storeu_ps(output + 64, vf4); _mm512_storeu_ps(output + 80, vf5); _mm512_storeu_ps(output + 96, vf6); _mm512_storeu_ps(output + 112, vf7); _mm512_storeu_ps(output + 128, vf8); output += 144; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store 16 results at a time. _mm512_storeu_ps(output, vf); output += 16; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store up to 15 results at a time. _mm512_mask_storeu_ps(output, vmask, vf); } _mm256_zeroupper(); }
10,454
39.839844
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx512f-p5-scalef-x16.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleextexp.h> void xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_x16( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch % sizeof(float) == 0); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscalev = _mm512_set1_ps(scale_value); const __m512 vscalee = _mm512_set1_ps(scale_exp); for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 (1x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m512 vf0 = _mm512_mul_ps(vp0, vscalev); const __m512 ve0 = _mm512_add_ps(vn0, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf0 = _mm512_scalef_ps(vf0, ve0); // Store 128 (8x16) results at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); output += 16; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store 16 results at a time. _mm512_storeu_ps(output, vf); output += 16; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store up to 15 results at a time. _mm512_mask_storeu_ps(output, vmask, vf); } _mm256_zeroupper(); }
5,388
34.453947
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx512f-p5-scalef-x160.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleextexp.h> void xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_x160( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch % sizeof(float) == 0); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscalev = _mm512_set1_ps(scale_value); const __m512 vscalee = _mm512_set1_ps(scale_exp); for (; batch >= 160 * sizeof(float); batch -= 160 * sizeof(float)) { // Load 160 (10x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); const __m512 vx4 = _mm512_loadu_ps(input + 64); const __m512 vx5 = _mm512_loadu_ps(input + 80); const __m512 vx6 = _mm512_loadu_ps(input + 96); const __m512 vx7 = _mm512_loadu_ps(input + 112); const __m512 vx8 = _mm512_loadu_ps(input + 128); const __m512 vx9 = _mm512_loadu_ps(input + 144); input += 160; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m512 vf0 = _mm512_mul_ps(vp0, vscalev); __m512 vf1 = _mm512_mul_ps(vp1, vscalev); __m512 vf2 = _mm512_mul_ps(vp2, vscalev); __m512 vf3 = _mm512_mul_ps(vp3, vscalev); __m512 vf4 = _mm512_mul_ps(vp4, vscalev); __m512 vf5 = _mm512_mul_ps(vp5, vscalev); __m512 vf6 = _mm512_mul_ps(vp6, vscalev); __m512 vf7 = _mm512_mul_ps(vp7, vscalev); __m512 vf8 = _mm512_mul_ps(vp8, vscalev); __m512 vf9 = _mm512_mul_ps(vp9, vscalev); const __m512 ve0 = _mm512_add_ps(vn0, vscalee); const __m512 ve1 = _mm512_add_ps(vn1, vscalee); const __m512 ve2 = _mm512_add_ps(vn2, vscalee); const __m512 ve3 = _mm512_add_ps(vn3, vscalee); const __m512 ve4 = _mm512_add_ps(vn4, vscalee); const __m512 ve5 = _mm512_add_ps(vn5, vscalee); const __m512 ve6 = _mm512_add_ps(vn6, vscalee); const __m512 ve7 = _mm512_add_ps(vn7, vscalee); const __m512 ve8 = _mm512_add_ps(vn8, vscalee); const __m512 ve9 = _mm512_add_ps(vn9, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf0 = _mm512_scalef_ps(vf0, ve0); vf1 = _mm512_scalef_ps(vf1, ve1); vf2 = _mm512_scalef_ps(vf2, ve2); vf3 = _mm512_scalef_ps(vf3, ve3); vf4 = _mm512_scalef_ps(vf4, ve4); vf5 = _mm512_scalef_ps(vf5, ve5); vf6 = _mm512_scalef_ps(vf6, ve6); vf7 = _mm512_scalef_ps(vf7, ve7); vf8 = _mm512_scalef_ps(vf8, ve8); vf9 = _mm512_scalef_ps(vf9, ve9); // Store 128 (8x16) results at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); _mm512_storeu_ps(output + 64, vf4); _mm512_storeu_ps(output + 80, vf5); _mm512_storeu_ps(output + 96, vf6); _mm512_storeu_ps(output + 112, vf7); _mm512_storeu_ps(output + 128, vf8); _mm512_storeu_ps(output + 144, vf9); output += 160; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store 16 results at a time. _mm512_storeu_ps(output, vf); output += 16; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store up to 15 results at a time. _mm512_mask_storeu_ps(output, vmask, vf); } _mm256_zeroupper(); }
11,089
40.226766
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx512f-p5-scalef-x176.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleextexp.h> void xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_x176( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch % sizeof(float) == 0); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscalev = _mm512_set1_ps(scale_value); const __m512 vscalee = _mm512_set1_ps(scale_exp); for (; batch >= 176 * sizeof(float); batch -= 176 * sizeof(float)) { // Load 176 (11x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); const __m512 vx4 = _mm512_loadu_ps(input + 64); const __m512 vx5 = _mm512_loadu_ps(input + 80); const __m512 vx6 = _mm512_loadu_ps(input + 96); const __m512 vx7 = _mm512_loadu_ps(input + 112); const __m512 vx8 = _mm512_loadu_ps(input + 128); const __m512 vx9 = _mm512_loadu_ps(input + 144); const __m512 vx10 = _mm512_loadu_ps(input + 160); input += 176; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); const __m512 vn10 = _mm512_roundscale_ps(_mm512_mul_ps(vx10, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m512 vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_hi, vx10); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_lo, vt10); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); __m512 vp10 = _mm512_fmadd_ps(vc5, vt10, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp10 = _mm512_fmadd_ps(vp10, vt10, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp10 = _mm512_fmadd_ps(vp10, vt10, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp10 = _mm512_fmadd_ps(vp10, vt10, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); vp10 = _mm512_fmadd_ps(vp10, vt10, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m512 vf0 = _mm512_mul_ps(vp0, vscalev); __m512 vf1 = _mm512_mul_ps(vp1, vscalev); __m512 vf2 = _mm512_mul_ps(vp2, vscalev); __m512 vf3 = _mm512_mul_ps(vp3, vscalev); __m512 vf4 = _mm512_mul_ps(vp4, vscalev); __m512 vf5 = _mm512_mul_ps(vp5, vscalev); __m512 vf6 = _mm512_mul_ps(vp6, vscalev); __m512 vf7 = _mm512_mul_ps(vp7, vscalev); __m512 vf8 = _mm512_mul_ps(vp8, vscalev); __m512 vf9 = _mm512_mul_ps(vp9, vscalev); __m512 vf10 = _mm512_mul_ps(vp10, vscalev); const __m512 ve0 = _mm512_add_ps(vn0, vscalee); const __m512 ve1 = _mm512_add_ps(vn1, vscalee); const __m512 ve2 = _mm512_add_ps(vn2, vscalee); const __m512 ve3 = _mm512_add_ps(vn3, vscalee); const __m512 ve4 = _mm512_add_ps(vn4, vscalee); const __m512 ve5 = _mm512_add_ps(vn5, vscalee); const __m512 ve6 = _mm512_add_ps(vn6, vscalee); const __m512 ve7 = _mm512_add_ps(vn7, vscalee); const __m512 ve8 = _mm512_add_ps(vn8, vscalee); const __m512 ve9 = _mm512_add_ps(vn9, vscalee); const __m512 ve10 = _mm512_add_ps(vn10, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf0 = _mm512_scalef_ps(vf0, ve0); vf1 = _mm512_scalef_ps(vf1, ve1); vf2 = _mm512_scalef_ps(vf2, ve2); vf3 = _mm512_scalef_ps(vf3, ve3); vf4 = _mm512_scalef_ps(vf4, ve4); vf5 = _mm512_scalef_ps(vf5, ve5); vf6 = _mm512_scalef_ps(vf6, ve6); vf7 = _mm512_scalef_ps(vf7, ve7); vf8 = _mm512_scalef_ps(vf8, ve8); vf9 = _mm512_scalef_ps(vf9, ve9); vf10 = _mm512_scalef_ps(vf10, ve10); // Store 128 (8x16) results at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); _mm512_storeu_ps(output + 64, vf4); _mm512_storeu_ps(output + 80, vf5); _mm512_storeu_ps(output + 96, vf6); _mm512_storeu_ps(output + 112, vf7); _mm512_storeu_ps(output + 128, vf8); _mm512_storeu_ps(output + 144, vf9); _mm512_storeu_ps(output + 160, vf10); output += 176; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store 16 results at a time. _mm512_storeu_ps(output, vf); output += 16; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store up to 15 results at a time. _mm512_mask_storeu_ps(output, vmask, vf); } _mm256_zeroupper(); }
11,754
40.684397
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx512f-p5-scalef-x192.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleextexp.h> void xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_x192( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch % sizeof(float) == 0); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscalev = _mm512_set1_ps(scale_value); const __m512 vscalee = _mm512_set1_ps(scale_exp); for (; batch >= 192 * sizeof(float); batch -= 192 * sizeof(float)) { // Load 192 (12x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); const __m512 vx4 = _mm512_loadu_ps(input + 64); const __m512 vx5 = _mm512_loadu_ps(input + 80); const __m512 vx6 = _mm512_loadu_ps(input + 96); const __m512 vx7 = _mm512_loadu_ps(input + 112); const __m512 vx8 = _mm512_loadu_ps(input + 128); const __m512 vx9 = _mm512_loadu_ps(input + 144); const __m512 vx10 = _mm512_loadu_ps(input + 160); const __m512 vx11 = _mm512_loadu_ps(input + 176); input += 192; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0); const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0); const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0); const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0); const __m512 vn10 = _mm512_roundscale_ps(_mm512_mul_ps(vx10, vlog2e), 0); const __m512 vn11 = _mm512_roundscale_ps(_mm512_mul_ps(vx11, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6); __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7); __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8); __m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9); __m512 vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_hi, vx10); __m512 vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_hi, vx11); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6); vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7); vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8); vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9); vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_lo, vt10); vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_lo, vt11); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4); __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4); __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4); __m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4); __m512 vp10 = _mm512_fmadd_ps(vc5, vt10, vc4); __m512 vp11 = _mm512_fmadd_ps(vc5, vt11, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp6 = _mm512_fmadd_ps(vp6, vt6, vc3); vp7 = _mm512_fmadd_ps(vp7, vt7, vc3); vp8 = _mm512_fmadd_ps(vp8, vt8, vc3); vp9 = _mm512_fmadd_ps(vp9, vt9, vc3); vp10 = _mm512_fmadd_ps(vp10, vt10, vc3); vp11 = _mm512_fmadd_ps(vp11, vt11, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp6 = _mm512_fmadd_ps(vp6, vt6, vc2); vp7 = _mm512_fmadd_ps(vp7, vt7, vc2); vp8 = _mm512_fmadd_ps(vp8, vt8, vc2); vp9 = _mm512_fmadd_ps(vp9, vt9, vc2); vp10 = _mm512_fmadd_ps(vp10, vt10, vc2); vp11 = _mm512_fmadd_ps(vp11, vt11, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp6 = _mm512_fmadd_ps(vp6, vt6, vc1); vp7 = _mm512_fmadd_ps(vp7, vt7, vc1); vp8 = _mm512_fmadd_ps(vp8, vt8, vc1); vp9 = _mm512_fmadd_ps(vp9, vt9, vc1); vp10 = _mm512_fmadd_ps(vp10, vt10, vc1); vp11 = _mm512_fmadd_ps(vp11, vt11, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); vp6 = _mm512_fmadd_ps(vp6, vt6, vc0); vp7 = _mm512_fmadd_ps(vp7, vt7, vc0); vp8 = _mm512_fmadd_ps(vp8, vt8, vc0); vp9 = _mm512_fmadd_ps(vp9, vt9, vc0); vp10 = _mm512_fmadd_ps(vp10, vt10, vc0); vp11 = _mm512_fmadd_ps(vp11, vt11, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m512 vf0 = _mm512_mul_ps(vp0, vscalev); __m512 vf1 = _mm512_mul_ps(vp1, vscalev); __m512 vf2 = _mm512_mul_ps(vp2, vscalev); __m512 vf3 = _mm512_mul_ps(vp3, vscalev); __m512 vf4 = _mm512_mul_ps(vp4, vscalev); __m512 vf5 = _mm512_mul_ps(vp5, vscalev); __m512 vf6 = _mm512_mul_ps(vp6, vscalev); __m512 vf7 = _mm512_mul_ps(vp7, vscalev); __m512 vf8 = _mm512_mul_ps(vp8, vscalev); __m512 vf9 = _mm512_mul_ps(vp9, vscalev); __m512 vf10 = _mm512_mul_ps(vp10, vscalev); __m512 vf11 = _mm512_mul_ps(vp11, vscalev); const __m512 ve0 = _mm512_add_ps(vn0, vscalee); const __m512 ve1 = _mm512_add_ps(vn1, vscalee); const __m512 ve2 = _mm512_add_ps(vn2, vscalee); const __m512 ve3 = _mm512_add_ps(vn3, vscalee); const __m512 ve4 = _mm512_add_ps(vn4, vscalee); const __m512 ve5 = _mm512_add_ps(vn5, vscalee); const __m512 ve6 = _mm512_add_ps(vn6, vscalee); const __m512 ve7 = _mm512_add_ps(vn7, vscalee); const __m512 ve8 = _mm512_add_ps(vn8, vscalee); const __m512 ve9 = _mm512_add_ps(vn9, vscalee); const __m512 ve10 = _mm512_add_ps(vn10, vscalee); const __m512 ve11 = _mm512_add_ps(vn11, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf0 = _mm512_scalef_ps(vf0, ve0); vf1 = _mm512_scalef_ps(vf1, ve1); vf2 = _mm512_scalef_ps(vf2, ve2); vf3 = _mm512_scalef_ps(vf3, ve3); vf4 = _mm512_scalef_ps(vf4, ve4); vf5 = _mm512_scalef_ps(vf5, ve5); vf6 = _mm512_scalef_ps(vf6, ve6); vf7 = _mm512_scalef_ps(vf7, ve7); vf8 = _mm512_scalef_ps(vf8, ve8); vf9 = _mm512_scalef_ps(vf9, ve9); vf10 = _mm512_scalef_ps(vf10, ve10); vf11 = _mm512_scalef_ps(vf11, ve11); // Store 128 (8x16) results at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); _mm512_storeu_ps(output + 64, vf4); _mm512_storeu_ps(output + 80, vf5); _mm512_storeu_ps(output + 96, vf6); _mm512_storeu_ps(output + 112, vf7); _mm512_storeu_ps(output + 128, vf8); _mm512_storeu_ps(output + 144, vf9); _mm512_storeu_ps(output + 160, vf10); _mm512_storeu_ps(output + 176, vf11); output += 192; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store 16 results at a time. _mm512_storeu_ps(output, vf); output += 16; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store up to 15 results at a time. _mm512_mask_storeu_ps(output, vmask, vf); } _mm256_zeroupper(); }
12,419
41.101695
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx512f-p5-scalef-x32.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleextexp.h> void xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_x32( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch % sizeof(float) == 0); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscalev = _mm512_set1_ps(scale_value); const __m512 vscalee = _mm512_set1_ps(scale_exp); for (; batch >= 32 * sizeof(float); batch -= 32 * sizeof(float)) { // Load 32 (2x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); input += 32; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m512 vf0 = _mm512_mul_ps(vp0, vscalev); __m512 vf1 = _mm512_mul_ps(vp1, vscalev); const __m512 ve0 = _mm512_add_ps(vn0, vscalee); const __m512 ve1 = _mm512_add_ps(vn1, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf0 = _mm512_scalef_ps(vf0, ve0); vf1 = _mm512_scalef_ps(vf1, ve1); // Store 128 (8x16) results at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); output += 32; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store 16 results at a time. _mm512_storeu_ps(output, vf); output += 16; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store up to 15 results at a time. _mm512_mask_storeu_ps(output, vmask, vf); } _mm256_zeroupper(); }
6,020
35.490909
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx512f-p5-scalef-x48.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleextexp.h> void xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_x48( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch % sizeof(float) == 0); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscalev = _mm512_set1_ps(scale_value); const __m512 vscalee = _mm512_set1_ps(scale_exp); for (; batch >= 48 * sizeof(float); batch -= 48 * sizeof(float)) { // Load 48 (3x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); input += 48; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m512 vf0 = _mm512_mul_ps(vp0, vscalev); __m512 vf1 = _mm512_mul_ps(vp1, vscalev); __m512 vf2 = _mm512_mul_ps(vp2, vscalev); const __m512 ve0 = _mm512_add_ps(vn0, vscalee); const __m512 ve1 = _mm512_add_ps(vn1, vscalee); const __m512 ve2 = _mm512_add_ps(vn2, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf0 = _mm512_scalef_ps(vf0, ve0); vf1 = _mm512_scalef_ps(vf1, ve1); vf2 = _mm512_scalef_ps(vf2, ve2); // Store 128 (8x16) results at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); output += 48; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store 16 results at a time. _mm512_storeu_ps(output, vf); output += 16; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store up to 15 results at a time. _mm512_mask_storeu_ps(output, vmask, vf); } _mm256_zeroupper(); }
6,652
36.376404
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx512f-p5-scalef-x64.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleextexp.h> void xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_x64( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch % sizeof(float) == 0); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscalev = _mm512_set1_ps(scale_value); const __m512 vscalee = _mm512_set1_ps(scale_exp); for (; batch >= 64 * sizeof(float); batch -= 64 * sizeof(float)) { // Load 64 (4x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); input += 64; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m512 vf0 = _mm512_mul_ps(vp0, vscalev); __m512 vf1 = _mm512_mul_ps(vp1, vscalev); __m512 vf2 = _mm512_mul_ps(vp2, vscalev); __m512 vf3 = _mm512_mul_ps(vp3, vscalev); const __m512 ve0 = _mm512_add_ps(vn0, vscalee); const __m512 ve1 = _mm512_add_ps(vn1, vscalee); const __m512 ve2 = _mm512_add_ps(vn2, vscalee); const __m512 ve3 = _mm512_add_ps(vn3, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf0 = _mm512_scalef_ps(vf0, ve0); vf1 = _mm512_scalef_ps(vf1, ve1); vf2 = _mm512_scalef_ps(vf2, ve2); vf3 = _mm512_scalef_ps(vf3, ve3); // Store 128 (8x16) results at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); output += 64; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store 16 results at a time. _mm512_storeu_ps(output, vf); output += 16; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store up to 15 results at a time. _mm512_mask_storeu_ps(output, vmask, vf); } _mm256_zeroupper(); }
7,284
37.141361
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx512f-p5-scalef-x80.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleextexp.h> void xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_x80( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch % sizeof(float) == 0); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscalev = _mm512_set1_ps(scale_value); const __m512 vscalee = _mm512_set1_ps(scale_exp); for (; batch >= 80 * sizeof(float); batch -= 80 * sizeof(float)) { // Load 80 (5x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); const __m512 vx4 = _mm512_loadu_ps(input + 64); input += 80; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m512 vf0 = _mm512_mul_ps(vp0, vscalev); __m512 vf1 = _mm512_mul_ps(vp1, vscalev); __m512 vf2 = _mm512_mul_ps(vp2, vscalev); __m512 vf3 = _mm512_mul_ps(vp3, vscalev); __m512 vf4 = _mm512_mul_ps(vp4, vscalev); const __m512 ve0 = _mm512_add_ps(vn0, vscalee); const __m512 ve1 = _mm512_add_ps(vn1, vscalee); const __m512 ve2 = _mm512_add_ps(vn2, vscalee); const __m512 ve3 = _mm512_add_ps(vn3, vscalee); const __m512 ve4 = _mm512_add_ps(vn4, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf0 = _mm512_scalef_ps(vf0, ve0); vf1 = _mm512_scalef_ps(vf1, ve1); vf2 = _mm512_scalef_ps(vf2, ve2); vf3 = _mm512_scalef_ps(vf3, ve3); vf4 = _mm512_scalef_ps(vf4, ve4); // Store 128 (8x16) results at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); _mm512_storeu_ps(output + 64, vf4); output += 80; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store 16 results at a time. _mm512_storeu_ps(output, vf); output += 16; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store up to 15 results at a time. _mm512_mask_storeu_ps(output, vmask, vf); } _mm256_zeroupper(); }
7,916
37.808824
106
c
XNNPACK
XNNPACK-master/src/f32-vscaleextexp/gen/f32-vscaleextexp-avx512f-p5-scalef-x96.c
// Auto-generated file. Do not edit! // Template: src/f32-vscaleextexp/avx512f-p5-scalef.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/intrinsics-polyfill.h> #include <xnnpack/vscaleextexp.h> void xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_x96( size_t batch, const float* input, float* output, float scale_value, float scale_exp) { assert(batch % sizeof(float) == 0); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vscalev = _mm512_set1_ps(scale_value); const __m512 vscalee = _mm512_set1_ps(scale_exp); for (; batch >= 96 * sizeof(float); batch -= 96 * sizeof(float)) { // Load 96 (6x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(input); const __m512 vx1 = _mm512_loadu_ps(input + 16); const __m512 vx2 = _mm512_loadu_ps(input + 32); const __m512 vx3 = _mm512_loadu_ps(input + 48); const __m512 vx4 = _mm512_loadu_ps(input + 64); const __m512 vx5 = _mm512_loadu_ps(input + 80); input += 96; // Compute reduced argument batch := round(input / log(2)). const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0); const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0); const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0); const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0); const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0); const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0); __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1); __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2); __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3); __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4); __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5); vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0); vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1); vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2); vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3); vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4); vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4); __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4); __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4); __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4); __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4); __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4); vp0 = _mm512_fmadd_ps(vp0, vt0, vc3); vp1 = _mm512_fmadd_ps(vp1, vt1, vc3); vp2 = _mm512_fmadd_ps(vp2, vt2, vc3); vp3 = _mm512_fmadd_ps(vp3, vt3, vc3); vp4 = _mm512_fmadd_ps(vp4, vt4, vc3); vp5 = _mm512_fmadd_ps(vp5, vt5, vc3); vp0 = _mm512_fmadd_ps(vp0, vt0, vc2); vp1 = _mm512_fmadd_ps(vp1, vt1, vc2); vp2 = _mm512_fmadd_ps(vp2, vt2, vc2); vp3 = _mm512_fmadd_ps(vp3, vt3, vc2); vp4 = _mm512_fmadd_ps(vp4, vt4, vc2); vp5 = _mm512_fmadd_ps(vp5, vt5, vc2); vp0 = _mm512_fmadd_ps(vp0, vt0, vc1); vp1 = _mm512_fmadd_ps(vp1, vt1, vc1); vp2 = _mm512_fmadd_ps(vp2, vt2, vc1); vp3 = _mm512_fmadd_ps(vp3, vt3, vc1); vp4 = _mm512_fmadd_ps(vp4, vt4, vc1); vp5 = _mm512_fmadd_ps(vp5, vt5, vc1); vp0 = _mm512_fmadd_ps(vp0, vt0, vc0); vp1 = _mm512_fmadd_ps(vp1, vt1, vc0); vp2 = _mm512_fmadd_ps(vp2, vt2, vc0); vp3 = _mm512_fmadd_ps(vp3, vt3, vc0); vp4 = _mm512_fmadd_ps(vp4, vt4, vc0); vp5 = _mm512_fmadd_ps(vp5, vt5, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av * exp2(be) * bv = // = exp2(ae + be) * (av * bv) __m512 vf0 = _mm512_mul_ps(vp0, vscalev); __m512 vf1 = _mm512_mul_ps(vp1, vscalev); __m512 vf2 = _mm512_mul_ps(vp2, vscalev); __m512 vf3 = _mm512_mul_ps(vp3, vscalev); __m512 vf4 = _mm512_mul_ps(vp4, vscalev); __m512 vf5 = _mm512_mul_ps(vp5, vscalev); const __m512 ve0 = _mm512_add_ps(vn0, vscalee); const __m512 ve1 = _mm512_add_ps(vn1, vscalee); const __m512 ve2 = _mm512_add_ps(vn2, vscalee); const __m512 ve3 = _mm512_add_ps(vn3, vscalee); const __m512 ve4 = _mm512_add_ps(vn4, vscalee); const __m512 ve5 = _mm512_add_ps(vn5, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf0 = _mm512_scalef_ps(vf0, ve0); vf1 = _mm512_scalef_ps(vf1, ve1); vf2 = _mm512_scalef_ps(vf2, ve2); vf3 = _mm512_scalef_ps(vf3, ve3); vf4 = _mm512_scalef_ps(vf4, ve4); vf5 = _mm512_scalef_ps(vf5, ve5); // Store 128 (8x16) results at a time. _mm512_storeu_ps(output, vf0); _mm512_storeu_ps(output + 0, vf0); _mm512_storeu_ps(output + 16, vf1); _mm512_storeu_ps(output + 32, vf2); _mm512_storeu_ps(output + 48, vf3); _mm512_storeu_ps(output + 64, vf4); _mm512_storeu_ps(output + 80, vf5); output += 96; } for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(input); input += 16; // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store 16 results at a time. _mm512_storeu_ps(output, vf); output += 16; } if XNN_UNLIKELY(batch != 0) { // Prepare mask for valid 32-bit batch (depends on batch). batch >>= XNN_LOG2_SIZEOF_FLOAT; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << batch) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, input); // Compute reduced argument batch := round(input / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := input - batch * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. __m512 vf = _mm512_mul_ps(vp, vscalev); const __m512 ve = _mm512_add_ps(vn, vscalee); // Multiply "mantissa" by the exp2("exponent"). vf = _mm512_scalef_ps(vf, ve); // Store up to 15 results at a time. _mm512_mask_storeu_ps(output, vmask, vf); } _mm256_zeroupper(); }
8,548
38.396313
106
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-aarch64-neonfma-rr1-lut2048-p1-div-x12.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/neon-lut2048-p1.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_2048[2048]; void xnn_f32_vsigmoid_ukernel__aarch64_neonfma_rr1_lut2048_p1_div_x12( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.magic_bias); const float32x4_t vminus_log2e = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.minus_log2e); const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x7FF)); const float32x4_t vln2 = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.ln2); const float32x4_t vc1 = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.c1); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.denorm_cutoff); for (; batch >= 12 * sizeof(float); batch -= 12 * sizeof(float)) { const float32x4_t vx0123 = vld1q_f32(input); input += 4; const float32x4_t vx4567 = vld1q_f32(input); input += 4; const float32x4_t vx89AB = vld1q_f32(input); input += 4; const float32x4_t vz0123 = vabsq_f32(vx0123); const float32x4_t vz4567 = vabsq_f32(vx4567); const float32x4_t vz89AB = vabsq_f32(vx89AB); float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e); float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e); float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e); const int32x4_t ve0123 = vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 12); const int32x4_t ve4567 = vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 12); const int32x4_t ve89AB = vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 12); const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask)); const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask)); const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask)); const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0); const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1); float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx01]); float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx23]); const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0); const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1); float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx45]); float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx67]); const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0); const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1); float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx89]); float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidxAB]); vl01 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx01 >> 32)], vl01, 1); vl23 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx23 >> 32)], vl23, 1); const float32x4_t vl0123 = vcombine_f32(vl01, vl23); vl45 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx45 >> 32)], vl45, 1); vl67 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx67 >> 32)], vl67, 1); const float32x4_t vl4567 = vcombine_f32(vl45, vl67); vl89 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx89 >> 32)], vl89, 1); vlAB = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidxAB >> 32)], vlAB, 1); const float32x4_t vl89AB = vcombine_f32(vl89, vlAB); const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123)); const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567)); const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB)); vn0123 = vsubq_f32(vn0123, vmagic_bias); vn4567 = vsubq_f32(vn4567, vmagic_bias); vn89AB = vsubq_f32(vn89AB, vmagic_bias); float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2); float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2); float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2); const float32x4_t vp0123 = vmulq_f32(vt0123, vc1); const float32x4_t vp4567 = vmulq_f32(vt4567, vc1); const float32x4_t vp89AB = vmulq_f32(vt89AB, vc1); const float32x4_t vy0123 = vfmaq_f32(vs0123, vs0123, vp0123); const float32x4_t vy4567 = vfmaq_f32(vs4567, vs4567, vp4567); const float32x4_t vy89AB = vfmaq_f32(vs89AB, vs89AB, vp89AB); const float32x4_t vd0123 = vaddq_f32(vy0123, vone); const float32x4_t vd4567 = vaddq_f32(vy4567, vone); const float32x4_t vd89AB = vaddq_f32(vy89AB, vone); float32x4_t vf0123 = vdivq_f32(vy0123, vd0123); float32x4_t vf4567 = vdivq_f32(vy4567, vd4567); float32x4_t vf89AB = vdivq_f32(vy89AB, vd89AB); vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff))); vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff))); vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff))); const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f)); const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f)); const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f)); vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123)); vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567)); vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB)); vst1q_f32(output, vf0123); output += 4; vst1q_f32(output, vf4567); output += 4; vst1q_f32(output, vf89AB); output += 4; } for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 12); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); const float32x4_t vp = vmulq_f32(vt, vc1); const float32x4_t vy = vfmaq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(output, vf); output += 4; } if XNN_UNLIKELY(batch != 0) { const float32x4_t vx = vld1q_f32(input); const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 12); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); const float32x4_t vp = vmulq_f32(vt, vc1); const float32x4_t vy = vfmaq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (batch & (2 * sizeof(float))) { vst1_f32(output, vf_lo); output += 2; vf_lo = vget_high_f32(vf); } if (batch & (1 * sizeof(float))) { vst1_lane_f32(output, vf_lo, 0); } } }
9,654
47.034826
113
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-aarch64-neonfma-rr1-lut2048-p1-div-x16.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/neon-lut2048-p1.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_2048[2048]; void xnn_f32_vsigmoid_ukernel__aarch64_neonfma_rr1_lut2048_p1_div_x16( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.magic_bias); const float32x4_t vminus_log2e = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.minus_log2e); const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x7FF)); const float32x4_t vln2 = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.ln2); const float32x4_t vc1 = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.c1); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.denorm_cutoff); for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { const float32x4_t vx0123 = vld1q_f32(input); input += 4; const float32x4_t vx4567 = vld1q_f32(input); input += 4; const float32x4_t vx89AB = vld1q_f32(input); input += 4; const float32x4_t vxCDEF = vld1q_f32(input); input += 4; const float32x4_t vz0123 = vabsq_f32(vx0123); const float32x4_t vz4567 = vabsq_f32(vx4567); const float32x4_t vz89AB = vabsq_f32(vx89AB); const float32x4_t vzCDEF = vabsq_f32(vxCDEF); float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e); float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e); float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e); float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e); const int32x4_t ve0123 = vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 12); const int32x4_t ve4567 = vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 12); const int32x4_t ve89AB = vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 12); const int32x4_t veCDEF = vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 12); const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask)); const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask)); const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask)); const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask)); const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0); const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1); float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx01]); float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx23]); const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0); const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1); float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx45]); float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx67]); const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0); const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1); float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx89]); float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidxAB]); const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0); const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1); float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidxCD]); float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidxEF]); vl01 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx01 >> 32)], vl01, 1); vl23 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx23 >> 32)], vl23, 1); const float32x4_t vl0123 = vcombine_f32(vl01, vl23); vl45 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx45 >> 32)], vl45, 1); vl67 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx67 >> 32)], vl67, 1); const float32x4_t vl4567 = vcombine_f32(vl45, vl67); vl89 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx89 >> 32)], vl89, 1); vlAB = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidxAB >> 32)], vlAB, 1); const float32x4_t vl89AB = vcombine_f32(vl89, vlAB); vlCD = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidxCD >> 32)], vlCD, 1); vlEF = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidxEF >> 32)], vlEF, 1); const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF); const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123)); const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567)); const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB)); const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF)); vn0123 = vsubq_f32(vn0123, vmagic_bias); vn4567 = vsubq_f32(vn4567, vmagic_bias); vn89AB = vsubq_f32(vn89AB, vmagic_bias); vnCDEF = vsubq_f32(vnCDEF, vmagic_bias); float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2); float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2); float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2); float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2); const float32x4_t vp0123 = vmulq_f32(vt0123, vc1); const float32x4_t vp4567 = vmulq_f32(vt4567, vc1); const float32x4_t vp89AB = vmulq_f32(vt89AB, vc1); const float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc1); const float32x4_t vy0123 = vfmaq_f32(vs0123, vs0123, vp0123); const float32x4_t vy4567 = vfmaq_f32(vs4567, vs4567, vp4567); const float32x4_t vy89AB = vfmaq_f32(vs89AB, vs89AB, vp89AB); const float32x4_t vyCDEF = vfmaq_f32(vsCDEF, vsCDEF, vpCDEF); const float32x4_t vd0123 = vaddq_f32(vy0123, vone); const float32x4_t vd4567 = vaddq_f32(vy4567, vone); const float32x4_t vd89AB = vaddq_f32(vy89AB, vone); const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone); float32x4_t vf0123 = vdivq_f32(vy0123, vd0123); float32x4_t vf4567 = vdivq_f32(vy4567, vd4567); float32x4_t vf89AB = vdivq_f32(vy89AB, vd89AB); float32x4_t vfCDEF = vdivq_f32(vyCDEF, vdCDEF); vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff))); vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff))); vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff))); vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff))); const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f)); const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f)); const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f)); const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f)); vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123)); vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567)); vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB)); vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF)); vst1q_f32(output, vf0123); output += 4; vst1q_f32(output, vf4567); output += 4; vst1q_f32(output, vf89AB); output += 4; vst1q_f32(output, vfCDEF); output += 4; } for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 12); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); const float32x4_t vp = vmulq_f32(vt, vc1); const float32x4_t vy = vfmaq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(output, vf); output += 4; } if XNN_UNLIKELY(batch != 0) { const float32x4_t vx = vld1q_f32(input); const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 12); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); const float32x4_t vp = vmulq_f32(vt, vc1); const float32x4_t vy = vfmaq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (batch & (2 * sizeof(float))) { vst1_f32(output, vf_lo); output += 2; vf_lo = vget_high_f32(vf); } if (batch & (1 * sizeof(float))) { vst1_lane_f32(output, vf_lo, 0); } } }
11,293
49.419643
113
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-aarch64-neonfma-rr1-lut2048-p1-div-x20.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/neon-lut2048-p1.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_2048[2048]; void xnn_f32_vsigmoid_ukernel__aarch64_neonfma_rr1_lut2048_p1_div_x20( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.magic_bias); const float32x4_t vminus_log2e = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.minus_log2e); const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x7FF)); const float32x4_t vln2 = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.ln2); const float32x4_t vc1 = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.c1); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.denorm_cutoff); for (; batch >= 20 * sizeof(float); batch -= 20 * sizeof(float)) { const float32x4_t vx0123 = vld1q_f32(input); input += 4; const float32x4_t vx4567 = vld1q_f32(input); input += 4; const float32x4_t vx89AB = vld1q_f32(input); input += 4; const float32x4_t vxCDEF = vld1q_f32(input); input += 4; const float32x4_t vxGHIJ = vld1q_f32(input); input += 4; const float32x4_t vz0123 = vabsq_f32(vx0123); const float32x4_t vz4567 = vabsq_f32(vx4567); const float32x4_t vz89AB = vabsq_f32(vx89AB); const float32x4_t vzCDEF = vabsq_f32(vxCDEF); const float32x4_t vzGHIJ = vabsq_f32(vxGHIJ); float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e); float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e); float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e); float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e); float32x4_t vnGHIJ = vfmaq_f32(vmagic_bias, vzGHIJ, vminus_log2e); const int32x4_t ve0123 = vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 12); const int32x4_t ve4567 = vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 12); const int32x4_t ve89AB = vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 12); const int32x4_t veCDEF = vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 12); const int32x4_t veGHIJ = vshlq_n_s32(vreinterpretq_s32_f32(vnGHIJ), 12); const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask)); const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask)); const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask)); const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask)); const uint64x2_t vidxGHIJ = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnGHIJ), vindex_mask)); const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0); const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1); float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx01]); float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx23]); const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0); const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1); float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx45]); float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx67]); const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0); const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1); float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx89]); float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidxAB]); const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0); const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1); float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidxCD]); float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidxEF]); const uint64_t vidxGH = vgetq_lane_u64(vidxGHIJ, 0); const uint64_t vidxIJ = vgetq_lane_u64(vidxGHIJ, 1); float32x2_t vlGH = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidxGH]); float32x2_t vlIJ = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidxIJ]); vl01 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx01 >> 32)], vl01, 1); vl23 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx23 >> 32)], vl23, 1); const float32x4_t vl0123 = vcombine_f32(vl01, vl23); vl45 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx45 >> 32)], vl45, 1); vl67 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx67 >> 32)], vl67, 1); const float32x4_t vl4567 = vcombine_f32(vl45, vl67); vl89 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx89 >> 32)], vl89, 1); vlAB = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidxAB >> 32)], vlAB, 1); const float32x4_t vl89AB = vcombine_f32(vl89, vlAB); vlCD = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidxCD >> 32)], vlCD, 1); vlEF = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidxEF >> 32)], vlEF, 1); const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF); vlGH = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidxGH >> 32)], vlGH, 1); vlIJ = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidxIJ >> 32)], vlIJ, 1); const float32x4_t vlGHIJ = vcombine_f32(vlGH, vlIJ); const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123)); const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567)); const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB)); const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF)); const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlGHIJ), veGHIJ)); vn0123 = vsubq_f32(vn0123, vmagic_bias); vn4567 = vsubq_f32(vn4567, vmagic_bias); vn89AB = vsubq_f32(vn89AB, vmagic_bias); vnCDEF = vsubq_f32(vnCDEF, vmagic_bias); vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias); float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2); float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2); float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2); float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2); float32x4_t vtGHIJ = vfmaq_f32(vzGHIJ, vnGHIJ, vln2); const float32x4_t vp0123 = vmulq_f32(vt0123, vc1); const float32x4_t vp4567 = vmulq_f32(vt4567, vc1); const float32x4_t vp89AB = vmulq_f32(vt89AB, vc1); const float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc1); const float32x4_t vpGHIJ = vmulq_f32(vtGHIJ, vc1); const float32x4_t vy0123 = vfmaq_f32(vs0123, vs0123, vp0123); const float32x4_t vy4567 = vfmaq_f32(vs4567, vs4567, vp4567); const float32x4_t vy89AB = vfmaq_f32(vs89AB, vs89AB, vp89AB); const float32x4_t vyCDEF = vfmaq_f32(vsCDEF, vsCDEF, vpCDEF); const float32x4_t vyGHIJ = vfmaq_f32(vsGHIJ, vsGHIJ, vpGHIJ); const float32x4_t vd0123 = vaddq_f32(vy0123, vone); const float32x4_t vd4567 = vaddq_f32(vy4567, vone); const float32x4_t vd89AB = vaddq_f32(vy89AB, vone); const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone); const float32x4_t vdGHIJ = vaddq_f32(vyGHIJ, vone); float32x4_t vf0123 = vdivq_f32(vy0123, vd0123); float32x4_t vf4567 = vdivq_f32(vy4567, vd4567); float32x4_t vf89AB = vdivq_f32(vy89AB, vd89AB); float32x4_t vfCDEF = vdivq_f32(vyCDEF, vdCDEF); float32x4_t vfGHIJ = vdivq_f32(vyGHIJ, vdGHIJ); vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff))); vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff))); vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff))); vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff))); vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcagtq_f32(vxGHIJ, vdenorm_cutoff))); const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f)); const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f)); const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f)); const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f)); const uint32x4_t vmGHIJ = vcltq_f32(vxGHIJ, vmovq_n_f32(0.0f)); vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123)); vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567)); vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB)); vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF)); vfGHIJ = vbslq_f32(vmGHIJ, vfGHIJ, vsubq_f32(vone, vfGHIJ)); vst1q_f32(output, vf0123); output += 4; vst1q_f32(output, vf4567); output += 4; vst1q_f32(output, vf89AB); output += 4; vst1q_f32(output, vfCDEF); output += 4; vst1q_f32(output, vfGHIJ); output += 4; } for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 12); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); const float32x4_t vp = vmulq_f32(vt, vc1); const float32x4_t vy = vfmaq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(output, vf); output += 4; } if XNN_UNLIKELY(batch != 0) { const float32x4_t vx = vld1q_f32(input); const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 12); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); const float32x4_t vp = vmulq_f32(vt, vc1); const float32x4_t vy = vfmaq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (batch & (2 * sizeof(float))) { vst1_f32(output, vf_lo); output += 2; vf_lo = vget_high_f32(vf); } if (batch & (1 * sizeof(float))) { vst1_lane_f32(output, vf_lo, 0); } } }
12,932
51.360324
113
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-aarch64-neonfma-rr1-lut2048-p1-div-x24.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/neon-lut2048-p1.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_2048[2048]; void xnn_f32_vsigmoid_ukernel__aarch64_neonfma_rr1_lut2048_p1_div_x24( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.magic_bias); const float32x4_t vminus_log2e = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.minus_log2e); const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x7FF)); const float32x4_t vln2 = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.ln2); const float32x4_t vc1 = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.c1); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.denorm_cutoff); for (; batch >= 24 * sizeof(float); batch -= 24 * sizeof(float)) { const float32x4_t vx0123 = vld1q_f32(input); input += 4; const float32x4_t vx4567 = vld1q_f32(input); input += 4; const float32x4_t vx89AB = vld1q_f32(input); input += 4; const float32x4_t vxCDEF = vld1q_f32(input); input += 4; const float32x4_t vxGHIJ = vld1q_f32(input); input += 4; const float32x4_t vxKLMN = vld1q_f32(input); input += 4; const float32x4_t vz0123 = vabsq_f32(vx0123); const float32x4_t vz4567 = vabsq_f32(vx4567); const float32x4_t vz89AB = vabsq_f32(vx89AB); const float32x4_t vzCDEF = vabsq_f32(vxCDEF); const float32x4_t vzGHIJ = vabsq_f32(vxGHIJ); const float32x4_t vzKLMN = vabsq_f32(vxKLMN); float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e); float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e); float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e); float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e); float32x4_t vnGHIJ = vfmaq_f32(vmagic_bias, vzGHIJ, vminus_log2e); float32x4_t vnKLMN = vfmaq_f32(vmagic_bias, vzKLMN, vminus_log2e); const int32x4_t ve0123 = vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 12); const int32x4_t ve4567 = vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 12); const int32x4_t ve89AB = vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 12); const int32x4_t veCDEF = vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 12); const int32x4_t veGHIJ = vshlq_n_s32(vreinterpretq_s32_f32(vnGHIJ), 12); const int32x4_t veKLMN = vshlq_n_s32(vreinterpretq_s32_f32(vnKLMN), 12); const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask)); const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask)); const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask)); const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask)); const uint64x2_t vidxGHIJ = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnGHIJ), vindex_mask)); const uint64x2_t vidxKLMN = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnKLMN), vindex_mask)); const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0); const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1); float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx01]); float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx23]); const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0); const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1); float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx45]); float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx67]); const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0); const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1); float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx89]); float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidxAB]); const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0); const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1); float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidxCD]); float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidxEF]); const uint64_t vidxGH = vgetq_lane_u64(vidxGHIJ, 0); const uint64_t vidxIJ = vgetq_lane_u64(vidxGHIJ, 1); float32x2_t vlGH = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidxGH]); float32x2_t vlIJ = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidxIJ]); const uint64_t vidxKL = vgetq_lane_u64(vidxKLMN, 0); const uint64_t vidxMN = vgetq_lane_u64(vidxKLMN, 1); float32x2_t vlKL = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidxKL]); float32x2_t vlMN = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidxMN]); vl01 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx01 >> 32)], vl01, 1); vl23 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx23 >> 32)], vl23, 1); const float32x4_t vl0123 = vcombine_f32(vl01, vl23); vl45 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx45 >> 32)], vl45, 1); vl67 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx67 >> 32)], vl67, 1); const float32x4_t vl4567 = vcombine_f32(vl45, vl67); vl89 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx89 >> 32)], vl89, 1); vlAB = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidxAB >> 32)], vlAB, 1); const float32x4_t vl89AB = vcombine_f32(vl89, vlAB); vlCD = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidxCD >> 32)], vlCD, 1); vlEF = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidxEF >> 32)], vlEF, 1); const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF); vlGH = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidxGH >> 32)], vlGH, 1); vlIJ = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidxIJ >> 32)], vlIJ, 1); const float32x4_t vlGHIJ = vcombine_f32(vlGH, vlIJ); vlKL = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidxKL >> 32)], vlKL, 1); vlMN = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidxMN >> 32)], vlMN, 1); const float32x4_t vlKLMN = vcombine_f32(vlKL, vlMN); const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123)); const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567)); const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB)); const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF)); const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlGHIJ), veGHIJ)); const float32x4_t vsKLMN = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlKLMN), veKLMN)); vn0123 = vsubq_f32(vn0123, vmagic_bias); vn4567 = vsubq_f32(vn4567, vmagic_bias); vn89AB = vsubq_f32(vn89AB, vmagic_bias); vnCDEF = vsubq_f32(vnCDEF, vmagic_bias); vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias); vnKLMN = vsubq_f32(vnKLMN, vmagic_bias); float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2); float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2); float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2); float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2); float32x4_t vtGHIJ = vfmaq_f32(vzGHIJ, vnGHIJ, vln2); float32x4_t vtKLMN = vfmaq_f32(vzKLMN, vnKLMN, vln2); const float32x4_t vp0123 = vmulq_f32(vt0123, vc1); const float32x4_t vp4567 = vmulq_f32(vt4567, vc1); const float32x4_t vp89AB = vmulq_f32(vt89AB, vc1); const float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc1); const float32x4_t vpGHIJ = vmulq_f32(vtGHIJ, vc1); const float32x4_t vpKLMN = vmulq_f32(vtKLMN, vc1); const float32x4_t vy0123 = vfmaq_f32(vs0123, vs0123, vp0123); const float32x4_t vy4567 = vfmaq_f32(vs4567, vs4567, vp4567); const float32x4_t vy89AB = vfmaq_f32(vs89AB, vs89AB, vp89AB); const float32x4_t vyCDEF = vfmaq_f32(vsCDEF, vsCDEF, vpCDEF); const float32x4_t vyGHIJ = vfmaq_f32(vsGHIJ, vsGHIJ, vpGHIJ); const float32x4_t vyKLMN = vfmaq_f32(vsKLMN, vsKLMN, vpKLMN); const float32x4_t vd0123 = vaddq_f32(vy0123, vone); const float32x4_t vd4567 = vaddq_f32(vy4567, vone); const float32x4_t vd89AB = vaddq_f32(vy89AB, vone); const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone); const float32x4_t vdGHIJ = vaddq_f32(vyGHIJ, vone); const float32x4_t vdKLMN = vaddq_f32(vyKLMN, vone); float32x4_t vf0123 = vdivq_f32(vy0123, vd0123); float32x4_t vf4567 = vdivq_f32(vy4567, vd4567); float32x4_t vf89AB = vdivq_f32(vy89AB, vd89AB); float32x4_t vfCDEF = vdivq_f32(vyCDEF, vdCDEF); float32x4_t vfGHIJ = vdivq_f32(vyGHIJ, vdGHIJ); float32x4_t vfKLMN = vdivq_f32(vyKLMN, vdKLMN); vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff))); vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff))); vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff))); vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff))); vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcagtq_f32(vxGHIJ, vdenorm_cutoff))); vfKLMN = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfKLMN), vcagtq_f32(vxKLMN, vdenorm_cutoff))); const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f)); const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f)); const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f)); const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f)); const uint32x4_t vmGHIJ = vcltq_f32(vxGHIJ, vmovq_n_f32(0.0f)); const uint32x4_t vmKLMN = vcltq_f32(vxKLMN, vmovq_n_f32(0.0f)); vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123)); vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567)); vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB)); vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF)); vfGHIJ = vbslq_f32(vmGHIJ, vfGHIJ, vsubq_f32(vone, vfGHIJ)); vfKLMN = vbslq_f32(vmKLMN, vfKLMN, vsubq_f32(vone, vfKLMN)); vst1q_f32(output, vf0123); output += 4; vst1q_f32(output, vf4567); output += 4; vst1q_f32(output, vf89AB); output += 4; vst1q_f32(output, vfCDEF); output += 4; vst1q_f32(output, vfGHIJ); output += 4; vst1q_f32(output, vfKLMN); output += 4; } for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 12); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); const float32x4_t vp = vmulq_f32(vt, vc1); const float32x4_t vy = vfmaq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(output, vf); output += 4; } if XNN_UNLIKELY(batch != 0) { const float32x4_t vx = vld1q_f32(input); const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 12); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); const float32x4_t vp = vmulq_f32(vt, vc1); const float32x4_t vy = vfmaq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (batch & (2 * sizeof(float))) { vst1_f32(output, vf_lo); output += 2; vf_lo = vget_high_f32(vf); } if (batch & (1 * sizeof(float))) { vst1_lane_f32(output, vf_lo, 0); } } }
14,571
52.97037
113
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-aarch64-neonfma-rr1-lut2048-p1-div-x4.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/neon-lut2048-p1.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_2048[2048]; void xnn_f32_vsigmoid_ukernel__aarch64_neonfma_rr1_lut2048_p1_div_x4( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.magic_bias); const float32x4_t vminus_log2e = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.minus_log2e); const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x7FF)); const float32x4_t vln2 = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.ln2); const float32x4_t vc1 = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.c1); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.denorm_cutoff); for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 12); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); const float32x4_t vp = vmulq_f32(vt, vc1); const float32x4_t vy = vfmaq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(output, vf); output += 4; } if XNN_UNLIKELY(batch != 0) { const float32x4_t vx = vld1q_f32(input); const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 12); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); const float32x4_t vp = vmulq_f32(vt, vc1); const float32x4_t vy = vfmaq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (batch & (2 * sizeof(float))) { vst1_f32(output, vf_lo); output += 2; vf_lo = vget_high_f32(vf); } if (batch & (1 * sizeof(float))) { vst1_lane_f32(output, vf_lo, 0); } } }
4,646
40.123894
101
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-aarch64-neonfma-rr1-lut2048-p1-div-x8.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/neon-lut2048-p1.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_2048[2048]; void xnn_f32_vsigmoid_ukernel__aarch64_neonfma_rr1_lut2048_p1_div_x8( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.magic_bias); const float32x4_t vminus_log2e = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.minus_log2e); const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x7FF)); const float32x4_t vln2 = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.ln2); const float32x4_t vc1 = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.c1); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->neonfma_rr1_lut2048_p1.denorm_cutoff); for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const float32x4_t vx0123 = vld1q_f32(input); input += 4; const float32x4_t vx4567 = vld1q_f32(input); input += 4; const float32x4_t vz0123 = vabsq_f32(vx0123); const float32x4_t vz4567 = vabsq_f32(vx4567); float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e); float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e); const int32x4_t ve0123 = vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 12); const int32x4_t ve4567 = vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 12); const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask)); const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask)); const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0); const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1); float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx01]); float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx23]); const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0); const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1); float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx45]); float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx67]); vl01 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx01 >> 32)], vl01, 1); vl23 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx23 >> 32)], vl23, 1); const float32x4_t vl0123 = vcombine_f32(vl01, vl23); vl45 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx45 >> 32)], vl45, 1); vl67 = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx67 >> 32)], vl67, 1); const float32x4_t vl4567 = vcombine_f32(vl45, vl67); const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123)); const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567)); vn0123 = vsubq_f32(vn0123, vmagic_bias); vn4567 = vsubq_f32(vn4567, vmagic_bias); float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2); float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2); const float32x4_t vp0123 = vmulq_f32(vt0123, vc1); const float32x4_t vp4567 = vmulq_f32(vt4567, vc1); const float32x4_t vy0123 = vfmaq_f32(vs0123, vs0123, vp0123); const float32x4_t vy4567 = vfmaq_f32(vs4567, vs4567, vp4567); const float32x4_t vd0123 = vaddq_f32(vy0123, vone); const float32x4_t vd4567 = vaddq_f32(vy4567, vone); float32x4_t vf0123 = vdivq_f32(vy0123, vd0123); float32x4_t vf4567 = vdivq_f32(vy4567, vd4567); vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff))); vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff))); const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f)); const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f)); vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123)); vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567)); vst1q_f32(output, vf0123); output += 4; vst1q_f32(output, vf4567); output += 4; } for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 12); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); const float32x4_t vp = vmulq_f32(vt, vc1); const float32x4_t vy = vfmaq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(output, vf); output += 4; } if XNN_UNLIKELY(batch != 0) { const float32x4_t vx = vld1q_f32(input); const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 12); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); const float32x4_t vp = vmulq_f32(vt, vc1); const float32x4_t vy = vfmaq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (batch & (2 * sizeof(float))) { vst1_f32(output, vf_lo); output += 2; vf_lo = vget_high_f32(vf); } if (batch & (1 * sizeof(float))) { vst1_lane_f32(output, vf_lo, 0); } } }
8,012
44.016854
113
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-aarch64-neonfma-rr1-lut64-p2-div-x12.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/neon-lut64-p2.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_64[64]; void xnn_f32_vsigmoid_ukernel__aarch64_neonfma_rr1_lut64_p2_div_x12( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.magic_bias); const float32x4_t vminus_log2e = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.minus_log2e); const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F)); const float32x4_t vln2 = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.ln2); const float32x4_t vc2 = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.c2); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.denorm_cutoff); for (; batch >= 12 * sizeof(float); batch -= 12 * sizeof(float)) { const float32x4_t vx0123 = vld1q_f32(input); input += 4; const float32x4_t vx4567 = vld1q_f32(input); input += 4; const float32x4_t vx89AB = vld1q_f32(input); input += 4; const float32x4_t vz0123 = vabsq_f32(vx0123); const float32x4_t vz4567 = vabsq_f32(vx4567); const float32x4_t vz89AB = vabsq_f32(vx89AB); float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e); float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e); float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e); const int32x4_t ve0123 = vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 17); const int32x4_t ve4567 = vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 17); const int32x4_t ve89AB = vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 17); // Use bits 0:6 bits of batch, as integer, as an index for table lookup of l := 2**(batch % 64). const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask)); const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask)); const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask)); const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0); const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1); float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx01]); float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx23]); const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0); const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1); float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx45]); float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx67]); const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0); const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1); float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx89]); float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidxAB]); vl01 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1); vl23 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1); const float32x4_t vl0123 = vcombine_f32(vl01, vl23); vl45 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1); vl67 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1); const float32x4_t vl4567 = vcombine_f32(vl45, vl67); vl89 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1); vlAB = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1); const float32x4_t vl89AB = vcombine_f32(vl89, vlAB); const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123)); const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567)); const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB)); vn0123 = vsubq_f32(vn0123, vmagic_bias); vn4567 = vsubq_f32(vn4567, vmagic_bias); vn89AB = vsubq_f32(vn89AB, vmagic_bias); float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2); float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2); float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2); float32x4_t vp0123 = vmulq_f32(vt0123, vc2); float32x4_t vp4567 = vmulq_f32(vt4567, vc2); float32x4_t vp89AB = vmulq_f32(vt89AB, vc2); vp0123 = vfmsq_f32(vt0123, vp0123, vt0123); vp4567 = vfmsq_f32(vt4567, vp4567, vt4567); vp89AB = vfmsq_f32(vt89AB, vp89AB, vt89AB); const float32x4_t vy0123 = vfmsq_f32(vs0123, vs0123, vp0123); const float32x4_t vy4567 = vfmsq_f32(vs4567, vs4567, vp4567); const float32x4_t vy89AB = vfmsq_f32(vs89AB, vs89AB, vp89AB); const float32x4_t vd0123 = vaddq_f32(vy0123, vone); const float32x4_t vd4567 = vaddq_f32(vy4567, vone); const float32x4_t vd89AB = vaddq_f32(vy89AB, vone); float32x4_t vf0123 = vdivq_f32(vy0123, vd0123); float32x4_t vf4567 = vdivq_f32(vy4567, vd4567); float32x4_t vf89AB = vdivq_f32(vy89AB, vd89AB); vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff))); vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff))); vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff))); const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f)); const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f)); const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f)); vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123)); vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567)); vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB)); vst1q_f32(output, vf0123); output += 4; vst1q_f32(output, vf4567); output += 4; vst1q_f32(output, vf89AB); output += 4; } for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 17); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vmulq_f32(vt, vc2); vp = vfmsq_f32(vt, vp, vt); const float32x4_t vy = vfmsq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(output, vf); output += 4; } if XNN_UNLIKELY(batch != 0) { const float32x4_t vx = vld1q_f32(input); const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 17); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vmulq_f32(vt, vc2); vp = vfmsq_f32(vt, vp, vt); const float32x4_t vy = vfmsq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (batch & (2 * sizeof(float))) { vst1_f32(output, vf_lo); output += 2; vf_lo = vget_high_f32(vf); } if (batch & (1 * sizeof(float))) { vst1_lane_f32(output, vf_lo, 0); } } }
9,875
46.480769
113
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-aarch64-neonfma-rr1-lut64-p2-div-x16.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/neon-lut64-p2.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_64[64]; void xnn_f32_vsigmoid_ukernel__aarch64_neonfma_rr1_lut64_p2_div_x16( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.magic_bias); const float32x4_t vminus_log2e = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.minus_log2e); const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F)); const float32x4_t vln2 = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.ln2); const float32x4_t vc2 = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.c2); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.denorm_cutoff); for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { const float32x4_t vx0123 = vld1q_f32(input); input += 4; const float32x4_t vx4567 = vld1q_f32(input); input += 4; const float32x4_t vx89AB = vld1q_f32(input); input += 4; const float32x4_t vxCDEF = vld1q_f32(input); input += 4; const float32x4_t vz0123 = vabsq_f32(vx0123); const float32x4_t vz4567 = vabsq_f32(vx4567); const float32x4_t vz89AB = vabsq_f32(vx89AB); const float32x4_t vzCDEF = vabsq_f32(vxCDEF); float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e); float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e); float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e); float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e); const int32x4_t ve0123 = vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 17); const int32x4_t ve4567 = vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 17); const int32x4_t ve89AB = vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 17); const int32x4_t veCDEF = vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 17); // Use bits 0:6 bits of batch, as integer, as an index for table lookup of l := 2**(batch % 64). const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask)); const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask)); const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask)); const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask)); const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0); const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1); float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx01]); float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx23]); const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0); const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1); float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx45]); float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx67]); const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0); const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1); float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx89]); float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidxAB]); const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0); const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1); float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidxCD]); float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidxEF]); vl01 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1); vl23 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1); const float32x4_t vl0123 = vcombine_f32(vl01, vl23); vl45 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1); vl67 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1); const float32x4_t vl4567 = vcombine_f32(vl45, vl67); vl89 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1); vlAB = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1); const float32x4_t vl89AB = vcombine_f32(vl89, vlAB); vlCD = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidxCD >> 32)], vlCD, 1); vlEF = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidxEF >> 32)], vlEF, 1); const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF); const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123)); const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567)); const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB)); const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF)); vn0123 = vsubq_f32(vn0123, vmagic_bias); vn4567 = vsubq_f32(vn4567, vmagic_bias); vn89AB = vsubq_f32(vn89AB, vmagic_bias); vnCDEF = vsubq_f32(vnCDEF, vmagic_bias); float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2); float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2); float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2); float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2); float32x4_t vp0123 = vmulq_f32(vt0123, vc2); float32x4_t vp4567 = vmulq_f32(vt4567, vc2); float32x4_t vp89AB = vmulq_f32(vt89AB, vc2); float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc2); vp0123 = vfmsq_f32(vt0123, vp0123, vt0123); vp4567 = vfmsq_f32(vt4567, vp4567, vt4567); vp89AB = vfmsq_f32(vt89AB, vp89AB, vt89AB); vpCDEF = vfmsq_f32(vtCDEF, vpCDEF, vtCDEF); const float32x4_t vy0123 = vfmsq_f32(vs0123, vs0123, vp0123); const float32x4_t vy4567 = vfmsq_f32(vs4567, vs4567, vp4567); const float32x4_t vy89AB = vfmsq_f32(vs89AB, vs89AB, vp89AB); const float32x4_t vyCDEF = vfmsq_f32(vsCDEF, vsCDEF, vpCDEF); const float32x4_t vd0123 = vaddq_f32(vy0123, vone); const float32x4_t vd4567 = vaddq_f32(vy4567, vone); const float32x4_t vd89AB = vaddq_f32(vy89AB, vone); const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone); float32x4_t vf0123 = vdivq_f32(vy0123, vd0123); float32x4_t vf4567 = vdivq_f32(vy4567, vd4567); float32x4_t vf89AB = vdivq_f32(vy89AB, vd89AB); float32x4_t vfCDEF = vdivq_f32(vyCDEF, vdCDEF); vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff))); vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff))); vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff))); vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff))); const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f)); const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f)); const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f)); const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f)); vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123)); vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567)); vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB)); vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF)); vst1q_f32(output, vf0123); output += 4; vst1q_f32(output, vf4567); output += 4; vst1q_f32(output, vf89AB); output += 4; vst1q_f32(output, vfCDEF); output += 4; } for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 17); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vmulq_f32(vt, vc2); vp = vfmsq_f32(vt, vp, vt); const float32x4_t vy = vfmsq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(output, vf); output += 4; } if XNN_UNLIKELY(batch != 0) { const float32x4_t vx = vld1q_f32(input); const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 17); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vmulq_f32(vt, vc2); vp = vfmsq_f32(vt, vp, vt); const float32x4_t vy = vfmsq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (batch & (2 * sizeof(float))) { vst1_f32(output, vf_lo); output += 2; vf_lo = vget_high_f32(vf); } if (batch & (1 * sizeof(float))) { vst1_lane_f32(output, vf_lo, 0); } } }
11,548
48.780172
113
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-aarch64-neonfma-rr1-lut64-p2-div-x20.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/neon-lut64-p2.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_64[64]; void xnn_f32_vsigmoid_ukernel__aarch64_neonfma_rr1_lut64_p2_div_x20( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.magic_bias); const float32x4_t vminus_log2e = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.minus_log2e); const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F)); const float32x4_t vln2 = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.ln2); const float32x4_t vc2 = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.c2); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.denorm_cutoff); for (; batch >= 20 * sizeof(float); batch -= 20 * sizeof(float)) { const float32x4_t vx0123 = vld1q_f32(input); input += 4; const float32x4_t vx4567 = vld1q_f32(input); input += 4; const float32x4_t vx89AB = vld1q_f32(input); input += 4; const float32x4_t vxCDEF = vld1q_f32(input); input += 4; const float32x4_t vxGHIJ = vld1q_f32(input); input += 4; const float32x4_t vz0123 = vabsq_f32(vx0123); const float32x4_t vz4567 = vabsq_f32(vx4567); const float32x4_t vz89AB = vabsq_f32(vx89AB); const float32x4_t vzCDEF = vabsq_f32(vxCDEF); const float32x4_t vzGHIJ = vabsq_f32(vxGHIJ); float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e); float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e); float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e); float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e); float32x4_t vnGHIJ = vfmaq_f32(vmagic_bias, vzGHIJ, vminus_log2e); const int32x4_t ve0123 = vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 17); const int32x4_t ve4567 = vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 17); const int32x4_t ve89AB = vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 17); const int32x4_t veCDEF = vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 17); const int32x4_t veGHIJ = vshlq_n_s32(vreinterpretq_s32_f32(vnGHIJ), 17); // Use bits 0:6 bits of batch, as integer, as an index for table lookup of l := 2**(batch % 64). const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask)); const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask)); const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask)); const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask)); const uint64x2_t vidxGHIJ = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnGHIJ), vindex_mask)); const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0); const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1); float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx01]); float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx23]); const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0); const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1); float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx45]); float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx67]); const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0); const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1); float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx89]); float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidxAB]); const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0); const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1); float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidxCD]); float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidxEF]); const uint64_t vidxGH = vgetq_lane_u64(vidxGHIJ, 0); const uint64_t vidxIJ = vgetq_lane_u64(vidxGHIJ, 1); float32x2_t vlGH = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidxGH]); float32x2_t vlIJ = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidxIJ]); vl01 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1); vl23 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1); const float32x4_t vl0123 = vcombine_f32(vl01, vl23); vl45 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1); vl67 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1); const float32x4_t vl4567 = vcombine_f32(vl45, vl67); vl89 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1); vlAB = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1); const float32x4_t vl89AB = vcombine_f32(vl89, vlAB); vlCD = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidxCD >> 32)], vlCD, 1); vlEF = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidxEF >> 32)], vlEF, 1); const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF); vlGH = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidxGH >> 32)], vlGH, 1); vlIJ = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidxIJ >> 32)], vlIJ, 1); const float32x4_t vlGHIJ = vcombine_f32(vlGH, vlIJ); const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123)); const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567)); const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB)); const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF)); const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlGHIJ), veGHIJ)); vn0123 = vsubq_f32(vn0123, vmagic_bias); vn4567 = vsubq_f32(vn4567, vmagic_bias); vn89AB = vsubq_f32(vn89AB, vmagic_bias); vnCDEF = vsubq_f32(vnCDEF, vmagic_bias); vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias); float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2); float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2); float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2); float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2); float32x4_t vtGHIJ = vfmaq_f32(vzGHIJ, vnGHIJ, vln2); float32x4_t vp0123 = vmulq_f32(vt0123, vc2); float32x4_t vp4567 = vmulq_f32(vt4567, vc2); float32x4_t vp89AB = vmulq_f32(vt89AB, vc2); float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc2); float32x4_t vpGHIJ = vmulq_f32(vtGHIJ, vc2); vp0123 = vfmsq_f32(vt0123, vp0123, vt0123); vp4567 = vfmsq_f32(vt4567, vp4567, vt4567); vp89AB = vfmsq_f32(vt89AB, vp89AB, vt89AB); vpCDEF = vfmsq_f32(vtCDEF, vpCDEF, vtCDEF); vpGHIJ = vfmsq_f32(vtGHIJ, vpGHIJ, vtGHIJ); const float32x4_t vy0123 = vfmsq_f32(vs0123, vs0123, vp0123); const float32x4_t vy4567 = vfmsq_f32(vs4567, vs4567, vp4567); const float32x4_t vy89AB = vfmsq_f32(vs89AB, vs89AB, vp89AB); const float32x4_t vyCDEF = vfmsq_f32(vsCDEF, vsCDEF, vpCDEF); const float32x4_t vyGHIJ = vfmsq_f32(vsGHIJ, vsGHIJ, vpGHIJ); const float32x4_t vd0123 = vaddq_f32(vy0123, vone); const float32x4_t vd4567 = vaddq_f32(vy4567, vone); const float32x4_t vd89AB = vaddq_f32(vy89AB, vone); const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone); const float32x4_t vdGHIJ = vaddq_f32(vyGHIJ, vone); float32x4_t vf0123 = vdivq_f32(vy0123, vd0123); float32x4_t vf4567 = vdivq_f32(vy4567, vd4567); float32x4_t vf89AB = vdivq_f32(vy89AB, vd89AB); float32x4_t vfCDEF = vdivq_f32(vyCDEF, vdCDEF); float32x4_t vfGHIJ = vdivq_f32(vyGHIJ, vdGHIJ); vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff))); vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff))); vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff))); vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff))); vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcagtq_f32(vxGHIJ, vdenorm_cutoff))); const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f)); const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f)); const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f)); const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f)); const uint32x4_t vmGHIJ = vcltq_f32(vxGHIJ, vmovq_n_f32(0.0f)); vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123)); vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567)); vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB)); vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF)); vfGHIJ = vbslq_f32(vmGHIJ, vfGHIJ, vsubq_f32(vone, vfGHIJ)); vst1q_f32(output, vf0123); output += 4; vst1q_f32(output, vf4567); output += 4; vst1q_f32(output, vf89AB); output += 4; vst1q_f32(output, vfCDEF); output += 4; vst1q_f32(output, vfGHIJ); output += 4; } for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 17); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vmulq_f32(vt, vc2); vp = vfmsq_f32(vt, vp, vt); const float32x4_t vy = vfmsq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(output, vf); output += 4; } if XNN_UNLIKELY(batch != 0) { const float32x4_t vx = vld1q_f32(input); const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 17); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vmulq_f32(vt, vc2); vp = vfmsq_f32(vt, vp, vt); const float32x4_t vy = vfmsq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (batch & (2 * sizeof(float))) { vst1_f32(output, vf_lo); output += 2; vf_lo = vget_high_f32(vf); } if (batch & (1 * sizeof(float))) { vst1_lane_f32(output, vf_lo, 0); } } }
13,221
50.648438
113
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-aarch64-neonfma-rr1-lut64-p2-div-x24.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/neon-lut64-p2.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_64[64]; void xnn_f32_vsigmoid_ukernel__aarch64_neonfma_rr1_lut64_p2_div_x24( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.magic_bias); const float32x4_t vminus_log2e = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.minus_log2e); const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F)); const float32x4_t vln2 = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.ln2); const float32x4_t vc2 = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.c2); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.denorm_cutoff); for (; batch >= 24 * sizeof(float); batch -= 24 * sizeof(float)) { const float32x4_t vx0123 = vld1q_f32(input); input += 4; const float32x4_t vx4567 = vld1q_f32(input); input += 4; const float32x4_t vx89AB = vld1q_f32(input); input += 4; const float32x4_t vxCDEF = vld1q_f32(input); input += 4; const float32x4_t vxGHIJ = vld1q_f32(input); input += 4; const float32x4_t vxKLMN = vld1q_f32(input); input += 4; const float32x4_t vz0123 = vabsq_f32(vx0123); const float32x4_t vz4567 = vabsq_f32(vx4567); const float32x4_t vz89AB = vabsq_f32(vx89AB); const float32x4_t vzCDEF = vabsq_f32(vxCDEF); const float32x4_t vzGHIJ = vabsq_f32(vxGHIJ); const float32x4_t vzKLMN = vabsq_f32(vxKLMN); float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e); float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e); float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e); float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e); float32x4_t vnGHIJ = vfmaq_f32(vmagic_bias, vzGHIJ, vminus_log2e); float32x4_t vnKLMN = vfmaq_f32(vmagic_bias, vzKLMN, vminus_log2e); const int32x4_t ve0123 = vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 17); const int32x4_t ve4567 = vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 17); const int32x4_t ve89AB = vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 17); const int32x4_t veCDEF = vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 17); const int32x4_t veGHIJ = vshlq_n_s32(vreinterpretq_s32_f32(vnGHIJ), 17); const int32x4_t veKLMN = vshlq_n_s32(vreinterpretq_s32_f32(vnKLMN), 17); // Use bits 0:6 bits of batch, as integer, as an index for table lookup of l := 2**(batch % 64). const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask)); const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask)); const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask)); const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask)); const uint64x2_t vidxGHIJ = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnGHIJ), vindex_mask)); const uint64x2_t vidxKLMN = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnKLMN), vindex_mask)); const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0); const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1); float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx01]); float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx23]); const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0); const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1); float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx45]); float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx67]); const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0); const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1); float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx89]); float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidxAB]); const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0); const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1); float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidxCD]); float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidxEF]); const uint64_t vidxGH = vgetq_lane_u64(vidxGHIJ, 0); const uint64_t vidxIJ = vgetq_lane_u64(vidxGHIJ, 1); float32x2_t vlGH = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidxGH]); float32x2_t vlIJ = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidxIJ]); const uint64_t vidxKL = vgetq_lane_u64(vidxKLMN, 0); const uint64_t vidxMN = vgetq_lane_u64(vidxKLMN, 1); float32x2_t vlKL = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidxKL]); float32x2_t vlMN = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidxMN]); vl01 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1); vl23 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1); const float32x4_t vl0123 = vcombine_f32(vl01, vl23); vl45 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1); vl67 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1); const float32x4_t vl4567 = vcombine_f32(vl45, vl67); vl89 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1); vlAB = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1); const float32x4_t vl89AB = vcombine_f32(vl89, vlAB); vlCD = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidxCD >> 32)], vlCD, 1); vlEF = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidxEF >> 32)], vlEF, 1); const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF); vlGH = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidxGH >> 32)], vlGH, 1); vlIJ = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidxIJ >> 32)], vlIJ, 1); const float32x4_t vlGHIJ = vcombine_f32(vlGH, vlIJ); vlKL = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidxKL >> 32)], vlKL, 1); vlMN = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidxMN >> 32)], vlMN, 1); const float32x4_t vlKLMN = vcombine_f32(vlKL, vlMN); const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123)); const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567)); const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB)); const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF)); const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlGHIJ), veGHIJ)); const float32x4_t vsKLMN = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlKLMN), veKLMN)); vn0123 = vsubq_f32(vn0123, vmagic_bias); vn4567 = vsubq_f32(vn4567, vmagic_bias); vn89AB = vsubq_f32(vn89AB, vmagic_bias); vnCDEF = vsubq_f32(vnCDEF, vmagic_bias); vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias); vnKLMN = vsubq_f32(vnKLMN, vmagic_bias); float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2); float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2); float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2); float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2); float32x4_t vtGHIJ = vfmaq_f32(vzGHIJ, vnGHIJ, vln2); float32x4_t vtKLMN = vfmaq_f32(vzKLMN, vnKLMN, vln2); float32x4_t vp0123 = vmulq_f32(vt0123, vc2); float32x4_t vp4567 = vmulq_f32(vt4567, vc2); float32x4_t vp89AB = vmulq_f32(vt89AB, vc2); float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc2); float32x4_t vpGHIJ = vmulq_f32(vtGHIJ, vc2); float32x4_t vpKLMN = vmulq_f32(vtKLMN, vc2); vp0123 = vfmsq_f32(vt0123, vp0123, vt0123); vp4567 = vfmsq_f32(vt4567, vp4567, vt4567); vp89AB = vfmsq_f32(vt89AB, vp89AB, vt89AB); vpCDEF = vfmsq_f32(vtCDEF, vpCDEF, vtCDEF); vpGHIJ = vfmsq_f32(vtGHIJ, vpGHIJ, vtGHIJ); vpKLMN = vfmsq_f32(vtKLMN, vpKLMN, vtKLMN); const float32x4_t vy0123 = vfmsq_f32(vs0123, vs0123, vp0123); const float32x4_t vy4567 = vfmsq_f32(vs4567, vs4567, vp4567); const float32x4_t vy89AB = vfmsq_f32(vs89AB, vs89AB, vp89AB); const float32x4_t vyCDEF = vfmsq_f32(vsCDEF, vsCDEF, vpCDEF); const float32x4_t vyGHIJ = vfmsq_f32(vsGHIJ, vsGHIJ, vpGHIJ); const float32x4_t vyKLMN = vfmsq_f32(vsKLMN, vsKLMN, vpKLMN); const float32x4_t vd0123 = vaddq_f32(vy0123, vone); const float32x4_t vd4567 = vaddq_f32(vy4567, vone); const float32x4_t vd89AB = vaddq_f32(vy89AB, vone); const float32x4_t vdCDEF = vaddq_f32(vyCDEF, vone); const float32x4_t vdGHIJ = vaddq_f32(vyGHIJ, vone); const float32x4_t vdKLMN = vaddq_f32(vyKLMN, vone); float32x4_t vf0123 = vdivq_f32(vy0123, vd0123); float32x4_t vf4567 = vdivq_f32(vy4567, vd4567); float32x4_t vf89AB = vdivq_f32(vy89AB, vd89AB); float32x4_t vfCDEF = vdivq_f32(vyCDEF, vdCDEF); float32x4_t vfGHIJ = vdivq_f32(vyGHIJ, vdGHIJ); float32x4_t vfKLMN = vdivq_f32(vyKLMN, vdKLMN); vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff))); vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff))); vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff))); vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff))); vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcagtq_f32(vxGHIJ, vdenorm_cutoff))); vfKLMN = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfKLMN), vcagtq_f32(vxKLMN, vdenorm_cutoff))); const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f)); const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f)); const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f)); const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f)); const uint32x4_t vmGHIJ = vcltq_f32(vxGHIJ, vmovq_n_f32(0.0f)); const uint32x4_t vmKLMN = vcltq_f32(vxKLMN, vmovq_n_f32(0.0f)); vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123)); vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567)); vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB)); vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF)); vfGHIJ = vbslq_f32(vmGHIJ, vfGHIJ, vsubq_f32(vone, vfGHIJ)); vfKLMN = vbslq_f32(vmKLMN, vfKLMN, vsubq_f32(vone, vfKLMN)); vst1q_f32(output, vf0123); output += 4; vst1q_f32(output, vf4567); output += 4; vst1q_f32(output, vf89AB); output += 4; vst1q_f32(output, vfCDEF); output += 4; vst1q_f32(output, vfGHIJ); output += 4; vst1q_f32(output, vfKLMN); output += 4; } for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 17); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vmulq_f32(vt, vc2); vp = vfmsq_f32(vt, vp, vt); const float32x4_t vy = vfmsq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(output, vf); output += 4; } if XNN_UNLIKELY(batch != 0) { const float32x4_t vx = vld1q_f32(input); const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 17); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vmulq_f32(vt, vc2); vp = vfmsq_f32(vt, vp, vt); const float32x4_t vy = vfmsq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (batch & (2 * sizeof(float))) { vst1_f32(output, vf_lo); output += 2; vf_lo = vget_high_f32(vf); } if (batch & (1 * sizeof(float))) { vst1_lane_f32(output, vf_lo, 0); } } }
14,894
52.196429
113
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-aarch64-neonfma-rr1-lut64-p2-div-x4.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/neon-lut64-p2.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_64[64]; void xnn_f32_vsigmoid_ukernel__aarch64_neonfma_rr1_lut64_p2_div_x4( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.magic_bias); const float32x4_t vminus_log2e = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.minus_log2e); const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F)); const float32x4_t vln2 = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.ln2); const float32x4_t vc2 = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.c2); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.denorm_cutoff); for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 17); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vmulq_f32(vt, vc2); vp = vfmsq_f32(vt, vp, vt); const float32x4_t vy = vfmsq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(output, vf); output += 4; } if XNN_UNLIKELY(batch != 0) { const float32x4_t vx = vld1q_f32(input); const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 17); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vmulq_f32(vt, vc2); vp = vfmsq_f32(vt, vp, vt); const float32x4_t vy = vfmsq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (batch & (2 * sizeof(float))) { vst1_f32(output, vf_lo); output += 2; vf_lo = vget_high_f32(vf); } if (batch & (1 * sizeof(float))) { vst1_lane_f32(output, vf_lo, 0); } } }
4,663
39.556522
101
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-aarch64-neonfma-rr1-lut64-p2-div-x8.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/neon-lut64-p2.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_64[64]; void xnn_f32_vsigmoid_ukernel__aarch64_neonfma_rr1_lut64_p2_div_x8( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.magic_bias); const float32x4_t vminus_log2e = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.minus_log2e); const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F)); const float32x4_t vln2 = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.ln2); const float32x4_t vc2 = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.c2); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->neonfma_rr1_lut64_p2.denorm_cutoff); for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const float32x4_t vx0123 = vld1q_f32(input); input += 4; const float32x4_t vx4567 = vld1q_f32(input); input += 4; const float32x4_t vz0123 = vabsq_f32(vx0123); const float32x4_t vz4567 = vabsq_f32(vx4567); float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e); float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e); const int32x4_t ve0123 = vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 17); const int32x4_t ve4567 = vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 17); // Use bits 0:6 bits of batch, as integer, as an index for table lookup of l := 2**(batch % 64). const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask)); const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask)); const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0); const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1); float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx01]); float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx23]); const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0); const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1); float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx45]); float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx67]); vl01 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1); vl23 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1); const float32x4_t vl0123 = vcombine_f32(vl01, vl23); vl45 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1); vl67 = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1); const float32x4_t vl4567 = vcombine_f32(vl45, vl67); const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123)); const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567)); vn0123 = vsubq_f32(vn0123, vmagic_bias); vn4567 = vsubq_f32(vn4567, vmagic_bias); float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2); float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2); float32x4_t vp0123 = vmulq_f32(vt0123, vc2); float32x4_t vp4567 = vmulq_f32(vt4567, vc2); vp0123 = vfmsq_f32(vt0123, vp0123, vt0123); vp4567 = vfmsq_f32(vt4567, vp4567, vt4567); const float32x4_t vy0123 = vfmsq_f32(vs0123, vs0123, vp0123); const float32x4_t vy4567 = vfmsq_f32(vs4567, vs4567, vp4567); const float32x4_t vd0123 = vaddq_f32(vy0123, vone); const float32x4_t vd4567 = vaddq_f32(vy4567, vone); float32x4_t vf0123 = vdivq_f32(vy0123, vd0123); float32x4_t vf4567 = vdivq_f32(vy4567, vd4567); vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff))); vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff))); const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f)); const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f)); vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123)); vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567)); vst1q_f32(output, vf0123); output += 4; vst1q_f32(output, vf4567); output += 4; } for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 17); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vmulq_f32(vt, vc2); vp = vfmsq_f32(vt, vp, vt); const float32x4_t vy = vfmsq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(output, vf); output += 4; } if XNN_UNLIKELY(batch != 0) { const float32x4_t vx = vld1q_f32(input); const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 17); const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask)); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_lo]); float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) vidx_hi]); vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1); vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1); const float32x4_t vl = vcombine_f32(vl_lo, vl_hi); const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vmulq_f32(vt, vc2); vp = vfmsq_f32(vt, vp, vt); const float32x4_t vy = vfmsq_f32(vs, vs, vp); const float32x4_t vd = vaddq_f32(vy, vone); float32x4_t vf = vdivq_f32(vy, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (batch & (2 * sizeof(float))) { vst1_f32(output, vf_lo); output += 2; vf_lo = vget_high_f32(vf); } if (batch & (1 * sizeof(float))) { vst1_lane_f32(output, vf_lo, 0); } } }
8,199
43.565217
113
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-aarch64-neonfma-rr1-p5-div-x12.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/neon-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__aarch64_neonfma_rr1_p5_div_x12( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neonfma_rr1_p5.magic_bias); const float32x4_t vminus_log2e = vld1q_dup_f32(&params->neonfma_rr1_p5.minus_log2e); const float32x4_t vln2 = vld1q_dup_f32(&params->neonfma_rr1_p5.ln2); const float32x4_t vc5 = vld1q_dup_f32(&params->neonfma_rr1_p5.c5); const float32x4_t vc4 = vld1q_dup_f32(&params->neonfma_rr1_p5.c4); const float32x4_t vc3 = vld1q_dup_f32(&params->neonfma_rr1_p5.c3); const float32x4_t vc2 = vld1q_dup_f32(&params->neonfma_rr1_p5.c2); const float32x4_t vc1 = vld1q_dup_f32(&params->neonfma_rr1_p5.c1); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->neonfma_rr1_p5.denorm_cutoff); for (; batch >= 12 * sizeof(float); batch -= 12 * sizeof(float)) { const float32x4_t vx0123 = vld1q_f32(input); input += 4; const float32x4_t vx4567 = vld1q_f32(input); input += 4; const float32x4_t vx89AB = vld1q_f32(input); input += 4; const float32x4_t vz0123 = vabsq_f32(vx0123); const float32x4_t vz4567 = vabsq_f32(vx4567); const float32x4_t vz89AB = vabsq_f32(vx89AB); float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e); float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e); float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e); const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23)); const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23)); const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23)); vn0123 = vsubq_f32(vn0123, vmagic_bias); vn4567 = vsubq_f32(vn4567, vmagic_bias); vn89AB = vsubq_f32(vn89AB, vmagic_bias); float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2); float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2); float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2); float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123); float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567); float32x4_t vp89AB = vfmaq_f32(vc4, vc5, vt89AB); vp0123 = vfmaq_f32(vc3, vp0123, vt0123); vp4567 = vfmaq_f32(vc3, vp4567, vt4567); vp89AB = vfmaq_f32(vc3, vp89AB, vt89AB); vp0123 = vfmaq_f32(vc2, vp0123, vt0123); vp4567 = vfmaq_f32(vc2, vp4567, vt4567); vp89AB = vfmaq_f32(vc2, vp89AB, vt89AB); vp0123 = vfmaq_f32(vc1, vp0123, vt0123); vp4567 = vfmaq_f32(vc1, vp4567, vt4567); vp89AB = vfmaq_f32(vc1, vp89AB, vt89AB); vt0123 = vmulq_f32(vt0123, vs0123); vt4567 = vmulq_f32(vt4567, vs4567); vt89AB = vmulq_f32(vt89AB, vs89AB); const float32x4_t ve0123 = vfmaq_f32(vs0123, vp0123, vt0123); const float32x4_t ve4567 = vfmaq_f32(vs4567, vp4567, vt4567); const float32x4_t ve89AB = vfmaq_f32(vs89AB, vp89AB, vt89AB); const float32x4_t vd0123 = vaddq_f32(ve0123, vone); const float32x4_t vd4567 = vaddq_f32(ve4567, vone); const float32x4_t vd89AB = vaddq_f32(ve89AB, vone); float32x4_t vf0123 = vdivq_f32(ve0123, vd0123); float32x4_t vf4567 = vdivq_f32(ve4567, vd4567); float32x4_t vf89AB = vdivq_f32(ve89AB, vd89AB); vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff))); vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff))); vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff))); const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f)); const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f)); const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f)); vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123)); vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567)); vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB)); vst1q_f32(output, vf0123); output += 4; vst1q_f32(output, vf4567); output += 4; vst1q_f32(output, vf89AB); output += 4; } for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vfmaq_f32(vc4, vc5, vt); vp = vfmaq_f32(vc3, vp, vt); vp = vfmaq_f32(vc2, vp, vt); vp = vfmaq_f32(vc1, vp, vt); vt = vmulq_f32(vt, vs); const float32x4_t ve = vfmaq_f32(vs, vp, vt); const float32x4_t vd = vaddq_f32(ve, vone); float32x4_t vf = vdivq_f32(ve, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(output, vf); output += 4; } if XNN_UNLIKELY(batch != 0) { const float32x4_t vx = vld1q_f32(input); const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vfmaq_f32(vc4, vc5, vt); vp = vfmaq_f32(vc3, vp, vt); vp = vfmaq_f32(vc2, vp, vt); vp = vfmaq_f32(vc1, vp, vt); vt = vmulq_f32(vt, vs); const float32x4_t ve = vfmaq_f32(vs, vp, vt); const float32x4_t vd = vaddq_f32(ve, vone); float32x4_t vf = vdivq_f32(ve, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (batch & (2 * sizeof(float))) { vst1_f32(output, vf_lo); output += 2; vf_lo = vget_high_f32(vf); } if (batch & (1 * sizeof(float))) { vst1_lane_f32(output, vf_lo, 0); } } }
6,887
38.815029
113
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-aarch64-neonfma-rr1-p5-div-x16.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/neon-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__aarch64_neonfma_rr1_p5_div_x16( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neonfma_rr1_p5.magic_bias); const float32x4_t vminus_log2e = vld1q_dup_f32(&params->neonfma_rr1_p5.minus_log2e); const float32x4_t vln2 = vld1q_dup_f32(&params->neonfma_rr1_p5.ln2); const float32x4_t vc5 = vld1q_dup_f32(&params->neonfma_rr1_p5.c5); const float32x4_t vc4 = vld1q_dup_f32(&params->neonfma_rr1_p5.c4); const float32x4_t vc3 = vld1q_dup_f32(&params->neonfma_rr1_p5.c3); const float32x4_t vc2 = vld1q_dup_f32(&params->neonfma_rr1_p5.c2); const float32x4_t vc1 = vld1q_dup_f32(&params->neonfma_rr1_p5.c1); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->neonfma_rr1_p5.denorm_cutoff); for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { const float32x4_t vx0123 = vld1q_f32(input); input += 4; const float32x4_t vx4567 = vld1q_f32(input); input += 4; const float32x4_t vx89AB = vld1q_f32(input); input += 4; const float32x4_t vxCDEF = vld1q_f32(input); input += 4; const float32x4_t vz0123 = vabsq_f32(vx0123); const float32x4_t vz4567 = vabsq_f32(vx4567); const float32x4_t vz89AB = vabsq_f32(vx89AB); const float32x4_t vzCDEF = vabsq_f32(vxCDEF); float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e); float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e); float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e); float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e); const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23)); const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23)); const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23)); const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23)); vn0123 = vsubq_f32(vn0123, vmagic_bias); vn4567 = vsubq_f32(vn4567, vmagic_bias); vn89AB = vsubq_f32(vn89AB, vmagic_bias); vnCDEF = vsubq_f32(vnCDEF, vmagic_bias); float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2); float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2); float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2); float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2); float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123); float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567); float32x4_t vp89AB = vfmaq_f32(vc4, vc5, vt89AB); float32x4_t vpCDEF = vfmaq_f32(vc4, vc5, vtCDEF); vp0123 = vfmaq_f32(vc3, vp0123, vt0123); vp4567 = vfmaq_f32(vc3, vp4567, vt4567); vp89AB = vfmaq_f32(vc3, vp89AB, vt89AB); vpCDEF = vfmaq_f32(vc3, vpCDEF, vtCDEF); vp0123 = vfmaq_f32(vc2, vp0123, vt0123); vp4567 = vfmaq_f32(vc2, vp4567, vt4567); vp89AB = vfmaq_f32(vc2, vp89AB, vt89AB); vpCDEF = vfmaq_f32(vc2, vpCDEF, vtCDEF); vp0123 = vfmaq_f32(vc1, vp0123, vt0123); vp4567 = vfmaq_f32(vc1, vp4567, vt4567); vp89AB = vfmaq_f32(vc1, vp89AB, vt89AB); vpCDEF = vfmaq_f32(vc1, vpCDEF, vtCDEF); vt0123 = vmulq_f32(vt0123, vs0123); vt4567 = vmulq_f32(vt4567, vs4567); vt89AB = vmulq_f32(vt89AB, vs89AB); vtCDEF = vmulq_f32(vtCDEF, vsCDEF); const float32x4_t ve0123 = vfmaq_f32(vs0123, vp0123, vt0123); const float32x4_t ve4567 = vfmaq_f32(vs4567, vp4567, vt4567); const float32x4_t ve89AB = vfmaq_f32(vs89AB, vp89AB, vt89AB); const float32x4_t veCDEF = vfmaq_f32(vsCDEF, vpCDEF, vtCDEF); const float32x4_t vd0123 = vaddq_f32(ve0123, vone); const float32x4_t vd4567 = vaddq_f32(ve4567, vone); const float32x4_t vd89AB = vaddq_f32(ve89AB, vone); const float32x4_t vdCDEF = vaddq_f32(veCDEF, vone); float32x4_t vf0123 = vdivq_f32(ve0123, vd0123); float32x4_t vf4567 = vdivq_f32(ve4567, vd4567); float32x4_t vf89AB = vdivq_f32(ve89AB, vd89AB); float32x4_t vfCDEF = vdivq_f32(veCDEF, vdCDEF); vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff))); vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff))); vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff))); vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff))); const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f)); const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f)); const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f)); const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f)); vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123)); vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567)); vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB)); vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF)); vst1q_f32(output, vf0123); output += 4; vst1q_f32(output, vf4567); output += 4; vst1q_f32(output, vf89AB); output += 4; vst1q_f32(output, vfCDEF); output += 4; } for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vfmaq_f32(vc4, vc5, vt); vp = vfmaq_f32(vc3, vp, vt); vp = vfmaq_f32(vc2, vp, vt); vp = vfmaq_f32(vc1, vp, vt); vt = vmulq_f32(vt, vs); const float32x4_t ve = vfmaq_f32(vs, vp, vt); const float32x4_t vd = vaddq_f32(ve, vone); float32x4_t vf = vdivq_f32(ve, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(output, vf); output += 4; } if XNN_UNLIKELY(batch != 0) { const float32x4_t vx = vld1q_f32(input); const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vfmaq_f32(vc4, vc5, vt); vp = vfmaq_f32(vc3, vp, vt); vp = vfmaq_f32(vc2, vp, vt); vp = vfmaq_f32(vc1, vp, vt); vt = vmulq_f32(vt, vs); const float32x4_t ve = vfmaq_f32(vs, vp, vt); const float32x4_t vd = vaddq_f32(ve, vone); float32x4_t vf = vdivq_f32(ve, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (batch & (2 * sizeof(float))) { vst1_f32(output, vf_lo); output += 2; vf_lo = vget_high_f32(vf); } if (batch & (1 * sizeof(float))) { vst1_lane_f32(output, vf_lo, 0); } } }
7,968
40.722513
113
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-aarch64-neonfma-rr1-p5-div-x20.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/neon-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__aarch64_neonfma_rr1_p5_div_x20( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neonfma_rr1_p5.magic_bias); const float32x4_t vminus_log2e = vld1q_dup_f32(&params->neonfma_rr1_p5.minus_log2e); const float32x4_t vln2 = vld1q_dup_f32(&params->neonfma_rr1_p5.ln2); const float32x4_t vc5 = vld1q_dup_f32(&params->neonfma_rr1_p5.c5); const float32x4_t vc4 = vld1q_dup_f32(&params->neonfma_rr1_p5.c4); const float32x4_t vc3 = vld1q_dup_f32(&params->neonfma_rr1_p5.c3); const float32x4_t vc2 = vld1q_dup_f32(&params->neonfma_rr1_p5.c2); const float32x4_t vc1 = vld1q_dup_f32(&params->neonfma_rr1_p5.c1); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->neonfma_rr1_p5.denorm_cutoff); for (; batch >= 20 * sizeof(float); batch -= 20 * sizeof(float)) { const float32x4_t vx0123 = vld1q_f32(input); input += 4; const float32x4_t vx4567 = vld1q_f32(input); input += 4; const float32x4_t vx89AB = vld1q_f32(input); input += 4; const float32x4_t vxCDEF = vld1q_f32(input); input += 4; const float32x4_t vxGHIJ = vld1q_f32(input); input += 4; const float32x4_t vz0123 = vabsq_f32(vx0123); const float32x4_t vz4567 = vabsq_f32(vx4567); const float32x4_t vz89AB = vabsq_f32(vx89AB); const float32x4_t vzCDEF = vabsq_f32(vxCDEF); const float32x4_t vzGHIJ = vabsq_f32(vxGHIJ); float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e); float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e); float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e); float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e); float32x4_t vnGHIJ = vfmaq_f32(vmagic_bias, vzGHIJ, vminus_log2e); const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23)); const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23)); const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23)); const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23)); const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnGHIJ), 23)); vn0123 = vsubq_f32(vn0123, vmagic_bias); vn4567 = vsubq_f32(vn4567, vmagic_bias); vn89AB = vsubq_f32(vn89AB, vmagic_bias); vnCDEF = vsubq_f32(vnCDEF, vmagic_bias); vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias); float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2); float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2); float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2); float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2); float32x4_t vtGHIJ = vfmaq_f32(vzGHIJ, vnGHIJ, vln2); float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123); float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567); float32x4_t vp89AB = vfmaq_f32(vc4, vc5, vt89AB); float32x4_t vpCDEF = vfmaq_f32(vc4, vc5, vtCDEF); float32x4_t vpGHIJ = vfmaq_f32(vc4, vc5, vtGHIJ); vp0123 = vfmaq_f32(vc3, vp0123, vt0123); vp4567 = vfmaq_f32(vc3, vp4567, vt4567); vp89AB = vfmaq_f32(vc3, vp89AB, vt89AB); vpCDEF = vfmaq_f32(vc3, vpCDEF, vtCDEF); vpGHIJ = vfmaq_f32(vc3, vpGHIJ, vtGHIJ); vp0123 = vfmaq_f32(vc2, vp0123, vt0123); vp4567 = vfmaq_f32(vc2, vp4567, vt4567); vp89AB = vfmaq_f32(vc2, vp89AB, vt89AB); vpCDEF = vfmaq_f32(vc2, vpCDEF, vtCDEF); vpGHIJ = vfmaq_f32(vc2, vpGHIJ, vtGHIJ); vp0123 = vfmaq_f32(vc1, vp0123, vt0123); vp4567 = vfmaq_f32(vc1, vp4567, vt4567); vp89AB = vfmaq_f32(vc1, vp89AB, vt89AB); vpCDEF = vfmaq_f32(vc1, vpCDEF, vtCDEF); vpGHIJ = vfmaq_f32(vc1, vpGHIJ, vtGHIJ); vt0123 = vmulq_f32(vt0123, vs0123); vt4567 = vmulq_f32(vt4567, vs4567); vt89AB = vmulq_f32(vt89AB, vs89AB); vtCDEF = vmulq_f32(vtCDEF, vsCDEF); vtGHIJ = vmulq_f32(vtGHIJ, vsGHIJ); const float32x4_t ve0123 = vfmaq_f32(vs0123, vp0123, vt0123); const float32x4_t ve4567 = vfmaq_f32(vs4567, vp4567, vt4567); const float32x4_t ve89AB = vfmaq_f32(vs89AB, vp89AB, vt89AB); const float32x4_t veCDEF = vfmaq_f32(vsCDEF, vpCDEF, vtCDEF); const float32x4_t veGHIJ = vfmaq_f32(vsGHIJ, vpGHIJ, vtGHIJ); const float32x4_t vd0123 = vaddq_f32(ve0123, vone); const float32x4_t vd4567 = vaddq_f32(ve4567, vone); const float32x4_t vd89AB = vaddq_f32(ve89AB, vone); const float32x4_t vdCDEF = vaddq_f32(veCDEF, vone); const float32x4_t vdGHIJ = vaddq_f32(veGHIJ, vone); float32x4_t vf0123 = vdivq_f32(ve0123, vd0123); float32x4_t vf4567 = vdivq_f32(ve4567, vd4567); float32x4_t vf89AB = vdivq_f32(ve89AB, vd89AB); float32x4_t vfCDEF = vdivq_f32(veCDEF, vdCDEF); float32x4_t vfGHIJ = vdivq_f32(veGHIJ, vdGHIJ); vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff))); vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff))); vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff))); vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff))); vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcagtq_f32(vxGHIJ, vdenorm_cutoff))); const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f)); const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f)); const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f)); const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f)); const uint32x4_t vmGHIJ = vcltq_f32(vxGHIJ, vmovq_n_f32(0.0f)); vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123)); vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567)); vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB)); vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF)); vfGHIJ = vbslq_f32(vmGHIJ, vfGHIJ, vsubq_f32(vone, vfGHIJ)); vst1q_f32(output, vf0123); output += 4; vst1q_f32(output, vf4567); output += 4; vst1q_f32(output, vf89AB); output += 4; vst1q_f32(output, vfCDEF); output += 4; vst1q_f32(output, vfGHIJ); output += 4; } for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vfmaq_f32(vc4, vc5, vt); vp = vfmaq_f32(vc3, vp, vt); vp = vfmaq_f32(vc2, vp, vt); vp = vfmaq_f32(vc1, vp, vt); vt = vmulq_f32(vt, vs); const float32x4_t ve = vfmaq_f32(vs, vp, vt); const float32x4_t vd = vaddq_f32(ve, vone); float32x4_t vf = vdivq_f32(ve, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(output, vf); output += 4; } if XNN_UNLIKELY(batch != 0) { const float32x4_t vx = vld1q_f32(input); const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vfmaq_f32(vc4, vc5, vt); vp = vfmaq_f32(vc3, vp, vt); vp = vfmaq_f32(vc2, vp, vt); vp = vfmaq_f32(vc1, vp, vt); vt = vmulq_f32(vt, vs); const float32x4_t ve = vfmaq_f32(vs, vp, vt); const float32x4_t vd = vaddq_f32(ve, vone); float32x4_t vf = vdivq_f32(ve, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (batch & (2 * sizeof(float))) { vst1_f32(output, vf_lo); output += 2; vf_lo = vget_high_f32(vf); } if (batch & (1 * sizeof(float))) { vst1_lane_f32(output, vf_lo, 0); } } }
9,049
42.301435
113
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-aarch64-neonfma-rr1-p5-div-x24.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/neon-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__aarch64_neonfma_rr1_p5_div_x24( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neonfma_rr1_p5.magic_bias); const float32x4_t vminus_log2e = vld1q_dup_f32(&params->neonfma_rr1_p5.minus_log2e); const float32x4_t vln2 = vld1q_dup_f32(&params->neonfma_rr1_p5.ln2); const float32x4_t vc5 = vld1q_dup_f32(&params->neonfma_rr1_p5.c5); const float32x4_t vc4 = vld1q_dup_f32(&params->neonfma_rr1_p5.c4); const float32x4_t vc3 = vld1q_dup_f32(&params->neonfma_rr1_p5.c3); const float32x4_t vc2 = vld1q_dup_f32(&params->neonfma_rr1_p5.c2); const float32x4_t vc1 = vld1q_dup_f32(&params->neonfma_rr1_p5.c1); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->neonfma_rr1_p5.denorm_cutoff); for (; batch >= 24 * sizeof(float); batch -= 24 * sizeof(float)) { const float32x4_t vx0123 = vld1q_f32(input); input += 4; const float32x4_t vx4567 = vld1q_f32(input); input += 4; const float32x4_t vx89AB = vld1q_f32(input); input += 4; const float32x4_t vxCDEF = vld1q_f32(input); input += 4; const float32x4_t vxGHIJ = vld1q_f32(input); input += 4; const float32x4_t vxKLMN = vld1q_f32(input); input += 4; const float32x4_t vz0123 = vabsq_f32(vx0123); const float32x4_t vz4567 = vabsq_f32(vx4567); const float32x4_t vz89AB = vabsq_f32(vx89AB); const float32x4_t vzCDEF = vabsq_f32(vxCDEF); const float32x4_t vzGHIJ = vabsq_f32(vxGHIJ); const float32x4_t vzKLMN = vabsq_f32(vxKLMN); float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e); float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e); float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e); float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vzCDEF, vminus_log2e); float32x4_t vnGHIJ = vfmaq_f32(vmagic_bias, vzGHIJ, vminus_log2e); float32x4_t vnKLMN = vfmaq_f32(vmagic_bias, vzKLMN, vminus_log2e); const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23)); const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23)); const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23)); const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23)); const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnGHIJ), 23)); const float32x4_t vsKLMN = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnKLMN), 23)); vn0123 = vsubq_f32(vn0123, vmagic_bias); vn4567 = vsubq_f32(vn4567, vmagic_bias); vn89AB = vsubq_f32(vn89AB, vmagic_bias); vnCDEF = vsubq_f32(vnCDEF, vmagic_bias); vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias); vnKLMN = vsubq_f32(vnKLMN, vmagic_bias); float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2); float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2); float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2); float32x4_t vtCDEF = vfmaq_f32(vzCDEF, vnCDEF, vln2); float32x4_t vtGHIJ = vfmaq_f32(vzGHIJ, vnGHIJ, vln2); float32x4_t vtKLMN = vfmaq_f32(vzKLMN, vnKLMN, vln2); float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123); float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567); float32x4_t vp89AB = vfmaq_f32(vc4, vc5, vt89AB); float32x4_t vpCDEF = vfmaq_f32(vc4, vc5, vtCDEF); float32x4_t vpGHIJ = vfmaq_f32(vc4, vc5, vtGHIJ); float32x4_t vpKLMN = vfmaq_f32(vc4, vc5, vtKLMN); vp0123 = vfmaq_f32(vc3, vp0123, vt0123); vp4567 = vfmaq_f32(vc3, vp4567, vt4567); vp89AB = vfmaq_f32(vc3, vp89AB, vt89AB); vpCDEF = vfmaq_f32(vc3, vpCDEF, vtCDEF); vpGHIJ = vfmaq_f32(vc3, vpGHIJ, vtGHIJ); vpKLMN = vfmaq_f32(vc3, vpKLMN, vtKLMN); vp0123 = vfmaq_f32(vc2, vp0123, vt0123); vp4567 = vfmaq_f32(vc2, vp4567, vt4567); vp89AB = vfmaq_f32(vc2, vp89AB, vt89AB); vpCDEF = vfmaq_f32(vc2, vpCDEF, vtCDEF); vpGHIJ = vfmaq_f32(vc2, vpGHIJ, vtGHIJ); vpKLMN = vfmaq_f32(vc2, vpKLMN, vtKLMN); vp0123 = vfmaq_f32(vc1, vp0123, vt0123); vp4567 = vfmaq_f32(vc1, vp4567, vt4567); vp89AB = vfmaq_f32(vc1, vp89AB, vt89AB); vpCDEF = vfmaq_f32(vc1, vpCDEF, vtCDEF); vpGHIJ = vfmaq_f32(vc1, vpGHIJ, vtGHIJ); vpKLMN = vfmaq_f32(vc1, vpKLMN, vtKLMN); vt0123 = vmulq_f32(vt0123, vs0123); vt4567 = vmulq_f32(vt4567, vs4567); vt89AB = vmulq_f32(vt89AB, vs89AB); vtCDEF = vmulq_f32(vtCDEF, vsCDEF); vtGHIJ = vmulq_f32(vtGHIJ, vsGHIJ); vtKLMN = vmulq_f32(vtKLMN, vsKLMN); const float32x4_t ve0123 = vfmaq_f32(vs0123, vp0123, vt0123); const float32x4_t ve4567 = vfmaq_f32(vs4567, vp4567, vt4567); const float32x4_t ve89AB = vfmaq_f32(vs89AB, vp89AB, vt89AB); const float32x4_t veCDEF = vfmaq_f32(vsCDEF, vpCDEF, vtCDEF); const float32x4_t veGHIJ = vfmaq_f32(vsGHIJ, vpGHIJ, vtGHIJ); const float32x4_t veKLMN = vfmaq_f32(vsKLMN, vpKLMN, vtKLMN); const float32x4_t vd0123 = vaddq_f32(ve0123, vone); const float32x4_t vd4567 = vaddq_f32(ve4567, vone); const float32x4_t vd89AB = vaddq_f32(ve89AB, vone); const float32x4_t vdCDEF = vaddq_f32(veCDEF, vone); const float32x4_t vdGHIJ = vaddq_f32(veGHIJ, vone); const float32x4_t vdKLMN = vaddq_f32(veKLMN, vone); float32x4_t vf0123 = vdivq_f32(ve0123, vd0123); float32x4_t vf4567 = vdivq_f32(ve4567, vd4567); float32x4_t vf89AB = vdivq_f32(ve89AB, vd89AB); float32x4_t vfCDEF = vdivq_f32(veCDEF, vdCDEF); float32x4_t vfGHIJ = vdivq_f32(veGHIJ, vdGHIJ); float32x4_t vfKLMN = vdivq_f32(veKLMN, vdKLMN); vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff))); vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff))); vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff))); vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcagtq_f32(vxCDEF, vdenorm_cutoff))); vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcagtq_f32(vxGHIJ, vdenorm_cutoff))); vfKLMN = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfKLMN), vcagtq_f32(vxKLMN, vdenorm_cutoff))); const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f)); const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f)); const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f)); const uint32x4_t vmCDEF = vcltq_f32(vxCDEF, vmovq_n_f32(0.0f)); const uint32x4_t vmGHIJ = vcltq_f32(vxGHIJ, vmovq_n_f32(0.0f)); const uint32x4_t vmKLMN = vcltq_f32(vxKLMN, vmovq_n_f32(0.0f)); vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123)); vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567)); vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB)); vfCDEF = vbslq_f32(vmCDEF, vfCDEF, vsubq_f32(vone, vfCDEF)); vfGHIJ = vbslq_f32(vmGHIJ, vfGHIJ, vsubq_f32(vone, vfGHIJ)); vfKLMN = vbslq_f32(vmKLMN, vfKLMN, vsubq_f32(vone, vfKLMN)); vst1q_f32(output, vf0123); output += 4; vst1q_f32(output, vf4567); output += 4; vst1q_f32(output, vf89AB); output += 4; vst1q_f32(output, vfCDEF); output += 4; vst1q_f32(output, vfGHIJ); output += 4; vst1q_f32(output, vfKLMN); output += 4; } for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vfmaq_f32(vc4, vc5, vt); vp = vfmaq_f32(vc3, vp, vt); vp = vfmaq_f32(vc2, vp, vt); vp = vfmaq_f32(vc1, vp, vt); vt = vmulq_f32(vt, vs); const float32x4_t ve = vfmaq_f32(vs, vp, vt); const float32x4_t vd = vaddq_f32(ve, vone); float32x4_t vf = vdivq_f32(ve, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(output, vf); output += 4; } if XNN_UNLIKELY(batch != 0) { const float32x4_t vx = vld1q_f32(input); const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vfmaq_f32(vc4, vc5, vt); vp = vfmaq_f32(vc3, vp, vt); vp = vfmaq_f32(vc2, vp, vt); vp = vfmaq_f32(vc1, vp, vt); vt = vmulq_f32(vt, vs); const float32x4_t ve = vfmaq_f32(vs, vp, vt); const float32x4_t vd = vaddq_f32(ve, vone); float32x4_t vf = vdivq_f32(ve, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (batch & (2 * sizeof(float))) { vst1_f32(output, vf_lo); output += 2; vf_lo = vget_high_f32(vf); } if (batch & (1 * sizeof(float))) { vst1_lane_f32(output, vf_lo, 0); } } }
10,130
43.629956
113
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-aarch64-neonfma-rr1-p5-div-x4.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/neon-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__aarch64_neonfma_rr1_p5_div_x4( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neonfma_rr1_p5.magic_bias); const float32x4_t vminus_log2e = vld1q_dup_f32(&params->neonfma_rr1_p5.minus_log2e); const float32x4_t vln2 = vld1q_dup_f32(&params->neonfma_rr1_p5.ln2); const float32x4_t vc5 = vld1q_dup_f32(&params->neonfma_rr1_p5.c5); const float32x4_t vc4 = vld1q_dup_f32(&params->neonfma_rr1_p5.c4); const float32x4_t vc3 = vld1q_dup_f32(&params->neonfma_rr1_p5.c3); const float32x4_t vc2 = vld1q_dup_f32(&params->neonfma_rr1_p5.c2); const float32x4_t vc1 = vld1q_dup_f32(&params->neonfma_rr1_p5.c1); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->neonfma_rr1_p5.denorm_cutoff); for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vfmaq_f32(vc4, vc5, vt); vp = vfmaq_f32(vc3, vp, vt); vp = vfmaq_f32(vc2, vp, vt); vp = vfmaq_f32(vc1, vp, vt); vt = vmulq_f32(vt, vs); const float32x4_t ve = vfmaq_f32(vs, vp, vt); const float32x4_t vd = vaddq_f32(ve, vone); float32x4_t vf = vdivq_f32(ve, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(output, vf); output += 4; } if XNN_UNLIKELY(batch != 0) { const float32x4_t vx = vld1q_f32(input); const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vfmaq_f32(vc4, vc5, vt); vp = vfmaq_f32(vc3, vp, vt); vp = vfmaq_f32(vc2, vp, vt); vp = vfmaq_f32(vc1, vp, vt); vt = vmulq_f32(vt, vs); const float32x4_t ve = vfmaq_f32(vs, vp, vt); const float32x4_t vd = vaddq_f32(ve, vone); float32x4_t vf = vdivq_f32(ve, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (batch & (2 * sizeof(float))) { vst1_f32(output, vf_lo); output += 2; vf_lo = vget_high_f32(vf); } if (batch & (1 * sizeof(float))) { vst1_lane_f32(output, vf_lo, 0); } } }
3,553
34.54
101
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-aarch64-neonfma-rr1-p5-div-x8.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/neon-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <arm_neon.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__aarch64_neonfma_rr1_p5_div_x8( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const float32x4_t vmagic_bias = vld1q_dup_f32(&params->neonfma_rr1_p5.magic_bias); const float32x4_t vminus_log2e = vld1q_dup_f32(&params->neonfma_rr1_p5.minus_log2e); const float32x4_t vln2 = vld1q_dup_f32(&params->neonfma_rr1_p5.ln2); const float32x4_t vc5 = vld1q_dup_f32(&params->neonfma_rr1_p5.c5); const float32x4_t vc4 = vld1q_dup_f32(&params->neonfma_rr1_p5.c4); const float32x4_t vc3 = vld1q_dup_f32(&params->neonfma_rr1_p5.c3); const float32x4_t vc2 = vld1q_dup_f32(&params->neonfma_rr1_p5.c2); const float32x4_t vc1 = vld1q_dup_f32(&params->neonfma_rr1_p5.c1); const float32x4_t vone = vmovq_n_f32(1.0f); const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->neonfma_rr1_p5.denorm_cutoff); for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const float32x4_t vx0123 = vld1q_f32(input); input += 4; const float32x4_t vx4567 = vld1q_f32(input); input += 4; const float32x4_t vz0123 = vabsq_f32(vx0123); const float32x4_t vz4567 = vabsq_f32(vx4567); float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e); float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e); const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23)); const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23)); vn0123 = vsubq_f32(vn0123, vmagic_bias); vn4567 = vsubq_f32(vn4567, vmagic_bias); float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2); float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2); float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123); float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567); vp0123 = vfmaq_f32(vc3, vp0123, vt0123); vp4567 = vfmaq_f32(vc3, vp4567, vt4567); vp0123 = vfmaq_f32(vc2, vp0123, vt0123); vp4567 = vfmaq_f32(vc2, vp4567, vt4567); vp0123 = vfmaq_f32(vc1, vp0123, vt0123); vp4567 = vfmaq_f32(vc1, vp4567, vt4567); vt0123 = vmulq_f32(vt0123, vs0123); vt4567 = vmulq_f32(vt4567, vs4567); const float32x4_t ve0123 = vfmaq_f32(vs0123, vp0123, vt0123); const float32x4_t ve4567 = vfmaq_f32(vs4567, vp4567, vt4567); const float32x4_t vd0123 = vaddq_f32(ve0123, vone); const float32x4_t vd4567 = vaddq_f32(ve4567, vone); float32x4_t vf0123 = vdivq_f32(ve0123, vd0123); float32x4_t vf4567 = vdivq_f32(ve4567, vd4567); vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff))); vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff))); const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f)); const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f)); vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123)); vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567)); vst1q_f32(output, vf0123); output += 4; vst1q_f32(output, vf4567); output += 4; } for (; batch >= 4 * sizeof(float); batch -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vfmaq_f32(vc4, vc5, vt); vp = vfmaq_f32(vc3, vp, vt); vp = vfmaq_f32(vc2, vp, vt); vp = vfmaq_f32(vc1, vp, vt); vt = vmulq_f32(vt, vs); const float32x4_t ve = vfmaq_f32(vs, vp, vt); const float32x4_t vd = vaddq_f32(ve, vone); float32x4_t vf = vdivq_f32(ve, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(output, vf); output += 4; } if XNN_UNLIKELY(batch != 0) { const float32x4_t vx = vld1q_f32(input); const float32x4_t vz = vabsq_f32(vx); float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); vn = vsubq_f32(vn, vmagic_bias); float32x4_t vt = vfmaq_f32(vz, vn, vln2); float32x4_t vp = vfmaq_f32(vc4, vc5, vt); vp = vfmaq_f32(vc3, vp, vt); vp = vfmaq_f32(vc2, vp, vt); vp = vfmaq_f32(vc1, vp, vt); vt = vmulq_f32(vt, vs); const float32x4_t ve = vfmaq_f32(vs, vp, vt); const float32x4_t vd = vaddq_f32(ve, vone); float32x4_t vf = vdivq_f32(ve, vd); vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); float32x2_t vf_lo = vget_low_f32(vf); if (batch & (2 * sizeof(float))) { vst1_f32(output, vf_lo); output += 2; vf_lo = vget_high_f32(vf); } if (batch & (1 * sizeof(float))) { vst1_lane_f32(output, vf_lo, 0); } } }
5,803
36.445161
113
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx-rr2-p5-div-x16.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx-rr2-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx_rr2_p5_div_x16( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx_rr2_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx_rr2_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx_rr2_p5.log2e); const __m256 vminus_ln2_hi = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_hi); const __m256 vminus_ln2_lo = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_lo); const __m256 vc5 = _mm256_load_ps(params->avx_rr2_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx_rr2_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx_rr2_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx_rr2_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx_rr2_p5.c1); const __m256 vone = _mm256_load_ps(params->avx_rr2_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx_rr2_p5.denorm_cutoff); for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); input += 16; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); __m256 vn0 = _mm256_add_ps(_mm256_mul_ps(vz0, vlog2e), vmagic_bias); __m256 vn1 = _mm256_add_ps(_mm256_mul_ps(vz1, vlog2e), vmagic_bias); const __m128 vs_lo0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn0)), 23)); const __m128 vs_hi0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn0, 1)), 23)); const __m256 vs0 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo0), vs_hi0, 1); const __m128 vs_lo1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn1)), 23)); const __m128 vs_hi1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn1, 1)), 23)); const __m256 vs1 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo1), vs_hi1, 1); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); __m256 vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_hi), vz0); __m256 vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_hi), vz1); vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_lo), vt0); vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_lo), vt1); __m256 vp0 = _mm256_add_ps(_mm256_mul_ps(vc5, vt0), vc4); __m256 vp1 = _mm256_add_ps(_mm256_mul_ps(vc5, vt1), vc4); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc3); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc3); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc2); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc2); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc1); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); const __m256 ve0 = _mm256_add_ps(_mm256_mul_ps(vt0, vp0), vs0); const __m256 ve1 = _mm256_add_ps(_mm256_mul_ps(vt1, vp1), vs1); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); __m256 vf0 = _mm256_div_ps(ve0, vd0); __m256 vf1 = _mm256_div_ps(ve1, vd1); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); output += 16; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx_rr2_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
7,368
38.61828
119
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx-rr2-p5-div-x24.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx-rr2-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx_rr2_p5_div_x24( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx_rr2_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx_rr2_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx_rr2_p5.log2e); const __m256 vminus_ln2_hi = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_hi); const __m256 vminus_ln2_lo = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_lo); const __m256 vc5 = _mm256_load_ps(params->avx_rr2_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx_rr2_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx_rr2_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx_rr2_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx_rr2_p5.c1); const __m256 vone = _mm256_load_ps(params->avx_rr2_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx_rr2_p5.denorm_cutoff); for (; batch >= 24 * sizeof(float); batch -= 24 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); input += 24; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); __m256 vn0 = _mm256_add_ps(_mm256_mul_ps(vz0, vlog2e), vmagic_bias); __m256 vn1 = _mm256_add_ps(_mm256_mul_ps(vz1, vlog2e), vmagic_bias); __m256 vn2 = _mm256_add_ps(_mm256_mul_ps(vz2, vlog2e), vmagic_bias); const __m128 vs_lo0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn0)), 23)); const __m128 vs_hi0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn0, 1)), 23)); const __m256 vs0 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo0), vs_hi0, 1); const __m128 vs_lo1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn1)), 23)); const __m128 vs_hi1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn1, 1)), 23)); const __m256 vs1 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo1), vs_hi1, 1); const __m128 vs_lo2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn2)), 23)); const __m128 vs_hi2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn2, 1)), 23)); const __m256 vs2 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo2), vs_hi2, 1); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); __m256 vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_hi), vz0); __m256 vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_hi), vz1); __m256 vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_hi), vz2); vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_lo), vt0); vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_lo), vt1); vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_lo), vt2); __m256 vp0 = _mm256_add_ps(_mm256_mul_ps(vc5, vt0), vc4); __m256 vp1 = _mm256_add_ps(_mm256_mul_ps(vc5, vt1), vc4); __m256 vp2 = _mm256_add_ps(_mm256_mul_ps(vc5, vt2), vc4); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc3); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc3); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc3); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc2); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc2); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc2); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc1); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc1); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); const __m256 ve0 = _mm256_add_ps(_mm256_mul_ps(vt0, vp0), vs0); const __m256 ve1 = _mm256_add_ps(_mm256_mul_ps(vt1, vp1), vs1); const __m256 ve2 = _mm256_add_ps(_mm256_mul_ps(vt2, vp2), vs2); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); __m256 vf0 = _mm256_div_ps(ve0, vd0); __m256 vf1 = _mm256_div_ps(ve1, vd1); __m256 vf2 = _mm256_div_ps(ve2, vd2); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); output += 24; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx_rr2_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
8,645
40.970874
119
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx-rr2-p5-div-x32.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx-rr2-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx_rr2_p5_div_x32( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx_rr2_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx_rr2_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx_rr2_p5.log2e); const __m256 vminus_ln2_hi = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_hi); const __m256 vminus_ln2_lo = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_lo); const __m256 vc5 = _mm256_load_ps(params->avx_rr2_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx_rr2_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx_rr2_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx_rr2_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx_rr2_p5.c1); const __m256 vone = _mm256_load_ps(params->avx_rr2_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx_rr2_p5.denorm_cutoff); for (; batch >= 32 * sizeof(float); batch -= 32 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); input += 32; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); __m256 vn0 = _mm256_add_ps(_mm256_mul_ps(vz0, vlog2e), vmagic_bias); __m256 vn1 = _mm256_add_ps(_mm256_mul_ps(vz1, vlog2e), vmagic_bias); __m256 vn2 = _mm256_add_ps(_mm256_mul_ps(vz2, vlog2e), vmagic_bias); __m256 vn3 = _mm256_add_ps(_mm256_mul_ps(vz3, vlog2e), vmagic_bias); const __m128 vs_lo0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn0)), 23)); const __m128 vs_hi0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn0, 1)), 23)); const __m256 vs0 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo0), vs_hi0, 1); const __m128 vs_lo1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn1)), 23)); const __m128 vs_hi1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn1, 1)), 23)); const __m256 vs1 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo1), vs_hi1, 1); const __m128 vs_lo2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn2)), 23)); const __m128 vs_hi2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn2, 1)), 23)); const __m256 vs2 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo2), vs_hi2, 1); const __m128 vs_lo3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn3)), 23)); const __m128 vs_hi3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn3, 1)), 23)); const __m256 vs3 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo3), vs_hi3, 1); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); __m256 vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_hi), vz0); __m256 vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_hi), vz1); __m256 vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_hi), vz2); __m256 vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_hi), vz3); vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_lo), vt0); vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_lo), vt1); vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_lo), vt2); vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_lo), vt3); __m256 vp0 = _mm256_add_ps(_mm256_mul_ps(vc5, vt0), vc4); __m256 vp1 = _mm256_add_ps(_mm256_mul_ps(vc5, vt1), vc4); __m256 vp2 = _mm256_add_ps(_mm256_mul_ps(vc5, vt2), vc4); __m256 vp3 = _mm256_add_ps(_mm256_mul_ps(vc5, vt3), vc4); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc3); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc3); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc3); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc3); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc2); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc2); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc2); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc2); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc1); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc1); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc1); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); const __m256 ve0 = _mm256_add_ps(_mm256_mul_ps(vt0, vp0), vs0); const __m256 ve1 = _mm256_add_ps(_mm256_mul_ps(vt1, vp1), vs1); const __m256 ve2 = _mm256_add_ps(_mm256_mul_ps(vt2, vp2), vs2); const __m256 ve3 = _mm256_add_ps(_mm256_mul_ps(vt3, vp3), vs3); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); __m256 vf0 = _mm256_div_ps(ve0, vd0); __m256 vf1 = _mm256_div_ps(ve1, vd1); __m256 vf2 = _mm256_div_ps(ve2, vd2); __m256 vf3 = _mm256_div_ps(ve3, vd3); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); output += 32; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx_rr2_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
9,922
42.90708
119
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx-rr2-p5-div-x40.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx-rr2-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx_rr2_p5_div_x40( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx_rr2_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx_rr2_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx_rr2_p5.log2e); const __m256 vminus_ln2_hi = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_hi); const __m256 vminus_ln2_lo = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_lo); const __m256 vc5 = _mm256_load_ps(params->avx_rr2_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx_rr2_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx_rr2_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx_rr2_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx_rr2_p5.c1); const __m256 vone = _mm256_load_ps(params->avx_rr2_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx_rr2_p5.denorm_cutoff); for (; batch >= 40 * sizeof(float); batch -= 40 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); input += 40; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask); __m256 vn0 = _mm256_add_ps(_mm256_mul_ps(vz0, vlog2e), vmagic_bias); __m256 vn1 = _mm256_add_ps(_mm256_mul_ps(vz1, vlog2e), vmagic_bias); __m256 vn2 = _mm256_add_ps(_mm256_mul_ps(vz2, vlog2e), vmagic_bias); __m256 vn3 = _mm256_add_ps(_mm256_mul_ps(vz3, vlog2e), vmagic_bias); __m256 vn4 = _mm256_add_ps(_mm256_mul_ps(vz4, vlog2e), vmagic_bias); const __m128 vs_lo0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn0)), 23)); const __m128 vs_hi0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn0, 1)), 23)); const __m256 vs0 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo0), vs_hi0, 1); const __m128 vs_lo1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn1)), 23)); const __m128 vs_hi1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn1, 1)), 23)); const __m256 vs1 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo1), vs_hi1, 1); const __m128 vs_lo2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn2)), 23)); const __m128 vs_hi2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn2, 1)), 23)); const __m256 vs2 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo2), vs_hi2, 1); const __m128 vs_lo3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn3)), 23)); const __m128 vs_hi3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn3, 1)), 23)); const __m256 vs3 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo3), vs_hi3, 1); const __m128 vs_lo4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn4)), 23)); const __m128 vs_hi4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn4, 1)), 23)); const __m256 vs4 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo4), vs_hi4, 1); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); __m256 vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_hi), vz0); __m256 vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_hi), vz1); __m256 vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_hi), vz2); __m256 vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_hi), vz3); __m256 vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_hi), vz4); vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_lo), vt0); vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_lo), vt1); vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_lo), vt2); vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_lo), vt3); vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_lo), vt4); __m256 vp0 = _mm256_add_ps(_mm256_mul_ps(vc5, vt0), vc4); __m256 vp1 = _mm256_add_ps(_mm256_mul_ps(vc5, vt1), vc4); __m256 vp2 = _mm256_add_ps(_mm256_mul_ps(vc5, vt2), vc4); __m256 vp3 = _mm256_add_ps(_mm256_mul_ps(vc5, vt3), vc4); __m256 vp4 = _mm256_add_ps(_mm256_mul_ps(vc5, vt4), vc4); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc3); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc3); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc3); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc3); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc3); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc2); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc2); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc2); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc2); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc2); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc1); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc1); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc1); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc1); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); const __m256 ve0 = _mm256_add_ps(_mm256_mul_ps(vt0, vp0), vs0); const __m256 ve1 = _mm256_add_ps(_mm256_mul_ps(vt1, vp1), vs1); const __m256 ve2 = _mm256_add_ps(_mm256_mul_ps(vt2, vp2), vs2); const __m256 ve3 = _mm256_add_ps(_mm256_mul_ps(vt3, vp3), vs3); const __m256 ve4 = _mm256_add_ps(_mm256_mul_ps(vt4, vp4), vs4); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); const __m256 vd4 = _mm256_add_ps(ve4, vone); __m256 vf0 = _mm256_div_ps(ve0, vd0); __m256 vf1 = _mm256_div_ps(ve1, vd1); __m256 vf2 = _mm256_div_ps(ve2, vd2); __m256 vf3 = _mm256_div_ps(ve3, vd3); __m256 vf4 = _mm256_div_ps(ve4, vd4); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); output += 40; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx_rr2_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
11,199
44.528455
119
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx-rr2-p5-div-x48.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx-rr2-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx_rr2_p5_div_x48( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx_rr2_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx_rr2_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx_rr2_p5.log2e); const __m256 vminus_ln2_hi = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_hi); const __m256 vminus_ln2_lo = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_lo); const __m256 vc5 = _mm256_load_ps(params->avx_rr2_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx_rr2_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx_rr2_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx_rr2_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx_rr2_p5.c1); const __m256 vone = _mm256_load_ps(params->avx_rr2_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx_rr2_p5.denorm_cutoff); for (; batch >= 48 * sizeof(float); batch -= 48 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); input += 48; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask); const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask); __m256 vn0 = _mm256_add_ps(_mm256_mul_ps(vz0, vlog2e), vmagic_bias); __m256 vn1 = _mm256_add_ps(_mm256_mul_ps(vz1, vlog2e), vmagic_bias); __m256 vn2 = _mm256_add_ps(_mm256_mul_ps(vz2, vlog2e), vmagic_bias); __m256 vn3 = _mm256_add_ps(_mm256_mul_ps(vz3, vlog2e), vmagic_bias); __m256 vn4 = _mm256_add_ps(_mm256_mul_ps(vz4, vlog2e), vmagic_bias); __m256 vn5 = _mm256_add_ps(_mm256_mul_ps(vz5, vlog2e), vmagic_bias); const __m128 vs_lo0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn0)), 23)); const __m128 vs_hi0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn0, 1)), 23)); const __m256 vs0 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo0), vs_hi0, 1); const __m128 vs_lo1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn1)), 23)); const __m128 vs_hi1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn1, 1)), 23)); const __m256 vs1 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo1), vs_hi1, 1); const __m128 vs_lo2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn2)), 23)); const __m128 vs_hi2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn2, 1)), 23)); const __m256 vs2 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo2), vs_hi2, 1); const __m128 vs_lo3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn3)), 23)); const __m128 vs_hi3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn3, 1)), 23)); const __m256 vs3 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo3), vs_hi3, 1); const __m128 vs_lo4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn4)), 23)); const __m128 vs_hi4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn4, 1)), 23)); const __m256 vs4 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo4), vs_hi4, 1); const __m128 vs_lo5 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn5)), 23)); const __m128 vs_hi5 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn5, 1)), 23)); const __m256 vs5 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo5), vs_hi5, 1); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); __m256 vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_hi), vz0); __m256 vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_hi), vz1); __m256 vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_hi), vz2); __m256 vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_hi), vz3); __m256 vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_hi), vz4); __m256 vt5 = _mm256_add_ps(_mm256_mul_ps(vn5, vminus_ln2_hi), vz5); vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_lo), vt0); vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_lo), vt1); vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_lo), vt2); vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_lo), vt3); vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_lo), vt4); vt5 = _mm256_add_ps(_mm256_mul_ps(vn5, vminus_ln2_lo), vt5); __m256 vp0 = _mm256_add_ps(_mm256_mul_ps(vc5, vt0), vc4); __m256 vp1 = _mm256_add_ps(_mm256_mul_ps(vc5, vt1), vc4); __m256 vp2 = _mm256_add_ps(_mm256_mul_ps(vc5, vt2), vc4); __m256 vp3 = _mm256_add_ps(_mm256_mul_ps(vc5, vt3), vc4); __m256 vp4 = _mm256_add_ps(_mm256_mul_ps(vc5, vt4), vc4); __m256 vp5 = _mm256_add_ps(_mm256_mul_ps(vc5, vt5), vc4); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc3); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc3); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc3); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc3); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc3); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc3); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc2); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc2); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc2); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc2); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc2); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc2); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc1); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc1); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc1); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc1); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc1); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); const __m256 ve0 = _mm256_add_ps(_mm256_mul_ps(vt0, vp0), vs0); const __m256 ve1 = _mm256_add_ps(_mm256_mul_ps(vt1, vp1), vs1); const __m256 ve2 = _mm256_add_ps(_mm256_mul_ps(vt2, vp2), vs2); const __m256 ve3 = _mm256_add_ps(_mm256_mul_ps(vt3, vp3), vs3); const __m256 ve4 = _mm256_add_ps(_mm256_mul_ps(vt4, vp4), vs4); const __m256 ve5 = _mm256_add_ps(_mm256_mul_ps(vt5, vp5), vs5); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); const __m256 vd4 = _mm256_add_ps(ve4, vone); const __m256 vd5 = _mm256_add_ps(ve5, vone); __m256 vf0 = _mm256_div_ps(ve0, vd0); __m256 vf1 = _mm256_div_ps(ve1, vd1); __m256 vf2 = _mm256_div_ps(ve2, vd2); __m256 vf3 = _mm256_div_ps(ve3, vd3); __m256 vf4 = _mm256_div_ps(ve4, vd4); __m256 vf5 = _mm256_div_ps(ve5, vd5); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4); vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); output += 48; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx_rr2_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
12,476
45.906015
119
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx-rr2-p5-div-x56.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx-rr2-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx_rr2_p5_div_x56( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx_rr2_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx_rr2_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx_rr2_p5.log2e); const __m256 vminus_ln2_hi = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_hi); const __m256 vminus_ln2_lo = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_lo); const __m256 vc5 = _mm256_load_ps(params->avx_rr2_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx_rr2_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx_rr2_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx_rr2_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx_rr2_p5.c1); const __m256 vone = _mm256_load_ps(params->avx_rr2_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx_rr2_p5.denorm_cutoff); for (; batch >= 56 * sizeof(float); batch -= 56 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); input += 56; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask); const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask); const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask); __m256 vn0 = _mm256_add_ps(_mm256_mul_ps(vz0, vlog2e), vmagic_bias); __m256 vn1 = _mm256_add_ps(_mm256_mul_ps(vz1, vlog2e), vmagic_bias); __m256 vn2 = _mm256_add_ps(_mm256_mul_ps(vz2, vlog2e), vmagic_bias); __m256 vn3 = _mm256_add_ps(_mm256_mul_ps(vz3, vlog2e), vmagic_bias); __m256 vn4 = _mm256_add_ps(_mm256_mul_ps(vz4, vlog2e), vmagic_bias); __m256 vn5 = _mm256_add_ps(_mm256_mul_ps(vz5, vlog2e), vmagic_bias); __m256 vn6 = _mm256_add_ps(_mm256_mul_ps(vz6, vlog2e), vmagic_bias); const __m128 vs_lo0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn0)), 23)); const __m128 vs_hi0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn0, 1)), 23)); const __m256 vs0 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo0), vs_hi0, 1); const __m128 vs_lo1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn1)), 23)); const __m128 vs_hi1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn1, 1)), 23)); const __m256 vs1 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo1), vs_hi1, 1); const __m128 vs_lo2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn2)), 23)); const __m128 vs_hi2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn2, 1)), 23)); const __m256 vs2 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo2), vs_hi2, 1); const __m128 vs_lo3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn3)), 23)); const __m128 vs_hi3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn3, 1)), 23)); const __m256 vs3 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo3), vs_hi3, 1); const __m128 vs_lo4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn4)), 23)); const __m128 vs_hi4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn4, 1)), 23)); const __m256 vs4 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo4), vs_hi4, 1); const __m128 vs_lo5 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn5)), 23)); const __m128 vs_hi5 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn5, 1)), 23)); const __m256 vs5 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo5), vs_hi5, 1); const __m128 vs_lo6 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn6)), 23)); const __m128 vs_hi6 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn6, 1)), 23)); const __m256 vs6 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo6), vs_hi6, 1); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); __m256 vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_hi), vz0); __m256 vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_hi), vz1); __m256 vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_hi), vz2); __m256 vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_hi), vz3); __m256 vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_hi), vz4); __m256 vt5 = _mm256_add_ps(_mm256_mul_ps(vn5, vminus_ln2_hi), vz5); __m256 vt6 = _mm256_add_ps(_mm256_mul_ps(vn6, vminus_ln2_hi), vz6); vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_lo), vt0); vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_lo), vt1); vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_lo), vt2); vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_lo), vt3); vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_lo), vt4); vt5 = _mm256_add_ps(_mm256_mul_ps(vn5, vminus_ln2_lo), vt5); vt6 = _mm256_add_ps(_mm256_mul_ps(vn6, vminus_ln2_lo), vt6); __m256 vp0 = _mm256_add_ps(_mm256_mul_ps(vc5, vt0), vc4); __m256 vp1 = _mm256_add_ps(_mm256_mul_ps(vc5, vt1), vc4); __m256 vp2 = _mm256_add_ps(_mm256_mul_ps(vc5, vt2), vc4); __m256 vp3 = _mm256_add_ps(_mm256_mul_ps(vc5, vt3), vc4); __m256 vp4 = _mm256_add_ps(_mm256_mul_ps(vc5, vt4), vc4); __m256 vp5 = _mm256_add_ps(_mm256_mul_ps(vc5, vt5), vc4); __m256 vp6 = _mm256_add_ps(_mm256_mul_ps(vc5, vt6), vc4); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc3); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc3); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc3); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc3); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc3); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc3); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc3); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc2); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc2); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc2); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc2); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc2); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc2); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc2); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc1); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc1); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc1); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc1); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc1); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc1); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); const __m256 ve0 = _mm256_add_ps(_mm256_mul_ps(vt0, vp0), vs0); const __m256 ve1 = _mm256_add_ps(_mm256_mul_ps(vt1, vp1), vs1); const __m256 ve2 = _mm256_add_ps(_mm256_mul_ps(vt2, vp2), vs2); const __m256 ve3 = _mm256_add_ps(_mm256_mul_ps(vt3, vp3), vs3); const __m256 ve4 = _mm256_add_ps(_mm256_mul_ps(vt4, vp4), vs4); const __m256 ve5 = _mm256_add_ps(_mm256_mul_ps(vt5, vp5), vs5); const __m256 ve6 = _mm256_add_ps(_mm256_mul_ps(vt6, vp6), vs6); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); const __m256 vd4 = _mm256_add_ps(ve4, vone); const __m256 vd5 = _mm256_add_ps(ve5, vone); const __m256 vd6 = _mm256_add_ps(ve6, vone); __m256 vf0 = _mm256_div_ps(ve0, vd0); __m256 vf1 = _mm256_div_ps(ve1, vd1); __m256 vf2 = _mm256_div_ps(ve2, vd2); __m256 vf3 = _mm256_div_ps(ve3, vd3); __m256 vf4 = _mm256_div_ps(ve4, vd4); __m256 vf5 = _mm256_div_ps(ve5, vd5); __m256 vf6 = _mm256_div_ps(ve6, vd6); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4); vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5); vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); output += 56; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx_rr2_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
13,753
47.090909
119
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx-rr2-p5-div-x64.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx-rr2-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx_rr2_p5_div_x64( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx_rr2_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx_rr2_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx_rr2_p5.log2e); const __m256 vminus_ln2_hi = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_hi); const __m256 vminus_ln2_lo = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_lo); const __m256 vc5 = _mm256_load_ps(params->avx_rr2_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx_rr2_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx_rr2_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx_rr2_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx_rr2_p5.c1); const __m256 vone = _mm256_load_ps(params->avx_rr2_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx_rr2_p5.denorm_cutoff); for (; batch >= 64 * sizeof(float); batch -= 64 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); input += 64; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask); const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask); const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask); const __m256 vz7 = _mm256_or_ps(vx7, vsign_mask); __m256 vn0 = _mm256_add_ps(_mm256_mul_ps(vz0, vlog2e), vmagic_bias); __m256 vn1 = _mm256_add_ps(_mm256_mul_ps(vz1, vlog2e), vmagic_bias); __m256 vn2 = _mm256_add_ps(_mm256_mul_ps(vz2, vlog2e), vmagic_bias); __m256 vn3 = _mm256_add_ps(_mm256_mul_ps(vz3, vlog2e), vmagic_bias); __m256 vn4 = _mm256_add_ps(_mm256_mul_ps(vz4, vlog2e), vmagic_bias); __m256 vn5 = _mm256_add_ps(_mm256_mul_ps(vz5, vlog2e), vmagic_bias); __m256 vn6 = _mm256_add_ps(_mm256_mul_ps(vz6, vlog2e), vmagic_bias); __m256 vn7 = _mm256_add_ps(_mm256_mul_ps(vz7, vlog2e), vmagic_bias); const __m128 vs_lo0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn0)), 23)); const __m128 vs_hi0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn0, 1)), 23)); const __m256 vs0 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo0), vs_hi0, 1); const __m128 vs_lo1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn1)), 23)); const __m128 vs_hi1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn1, 1)), 23)); const __m256 vs1 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo1), vs_hi1, 1); const __m128 vs_lo2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn2)), 23)); const __m128 vs_hi2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn2, 1)), 23)); const __m256 vs2 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo2), vs_hi2, 1); const __m128 vs_lo3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn3)), 23)); const __m128 vs_hi3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn3, 1)), 23)); const __m256 vs3 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo3), vs_hi3, 1); const __m128 vs_lo4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn4)), 23)); const __m128 vs_hi4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn4, 1)), 23)); const __m256 vs4 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo4), vs_hi4, 1); const __m128 vs_lo5 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn5)), 23)); const __m128 vs_hi5 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn5, 1)), 23)); const __m256 vs5 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo5), vs_hi5, 1); const __m128 vs_lo6 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn6)), 23)); const __m128 vs_hi6 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn6, 1)), 23)); const __m256 vs6 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo6), vs_hi6, 1); const __m128 vs_lo7 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn7)), 23)); const __m128 vs_hi7 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn7, 1)), 23)); const __m256 vs7 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo7), vs_hi7, 1); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); __m256 vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_hi), vz0); __m256 vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_hi), vz1); __m256 vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_hi), vz2); __m256 vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_hi), vz3); __m256 vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_hi), vz4); __m256 vt5 = _mm256_add_ps(_mm256_mul_ps(vn5, vminus_ln2_hi), vz5); __m256 vt6 = _mm256_add_ps(_mm256_mul_ps(vn6, vminus_ln2_hi), vz6); __m256 vt7 = _mm256_add_ps(_mm256_mul_ps(vn7, vminus_ln2_hi), vz7); vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_lo), vt0); vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_lo), vt1); vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_lo), vt2); vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_lo), vt3); vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_lo), vt4); vt5 = _mm256_add_ps(_mm256_mul_ps(vn5, vminus_ln2_lo), vt5); vt6 = _mm256_add_ps(_mm256_mul_ps(vn6, vminus_ln2_lo), vt6); vt7 = _mm256_add_ps(_mm256_mul_ps(vn7, vminus_ln2_lo), vt7); __m256 vp0 = _mm256_add_ps(_mm256_mul_ps(vc5, vt0), vc4); __m256 vp1 = _mm256_add_ps(_mm256_mul_ps(vc5, vt1), vc4); __m256 vp2 = _mm256_add_ps(_mm256_mul_ps(vc5, vt2), vc4); __m256 vp3 = _mm256_add_ps(_mm256_mul_ps(vc5, vt3), vc4); __m256 vp4 = _mm256_add_ps(_mm256_mul_ps(vc5, vt4), vc4); __m256 vp5 = _mm256_add_ps(_mm256_mul_ps(vc5, vt5), vc4); __m256 vp6 = _mm256_add_ps(_mm256_mul_ps(vc5, vt6), vc4); __m256 vp7 = _mm256_add_ps(_mm256_mul_ps(vc5, vt7), vc4); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc3); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc3); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc3); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc3); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc3); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc3); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc3); vp7 = _mm256_add_ps(_mm256_mul_ps(vp7, vt7), vc3); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc2); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc2); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc2); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc2); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc2); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc2); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc2); vp7 = _mm256_add_ps(_mm256_mul_ps(vp7, vt7), vc2); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc1); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc1); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc1); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc1); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc1); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc1); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc1); vp7 = _mm256_add_ps(_mm256_mul_ps(vp7, vt7), vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); const __m256 ve0 = _mm256_add_ps(_mm256_mul_ps(vt0, vp0), vs0); const __m256 ve1 = _mm256_add_ps(_mm256_mul_ps(vt1, vp1), vs1); const __m256 ve2 = _mm256_add_ps(_mm256_mul_ps(vt2, vp2), vs2); const __m256 ve3 = _mm256_add_ps(_mm256_mul_ps(vt3, vp3), vs3); const __m256 ve4 = _mm256_add_ps(_mm256_mul_ps(vt4, vp4), vs4); const __m256 ve5 = _mm256_add_ps(_mm256_mul_ps(vt5, vp5), vs5); const __m256 ve6 = _mm256_add_ps(_mm256_mul_ps(vt6, vp6), vs6); const __m256 ve7 = _mm256_add_ps(_mm256_mul_ps(vt7, vp7), vs7); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); const __m256 vd4 = _mm256_add_ps(ve4, vone); const __m256 vd5 = _mm256_add_ps(ve5, vone); const __m256 vd6 = _mm256_add_ps(ve6, vone); const __m256 vd7 = _mm256_add_ps(ve7, vone); __m256 vf0 = _mm256_div_ps(ve0, vd0); __m256 vf1 = _mm256_div_ps(ve1, vd1); __m256 vf2 = _mm256_div_ps(ve2, vd2); __m256 vf3 = _mm256_div_ps(ve3, vd3); __m256 vf4 = _mm256_div_ps(ve4, vd4); __m256 vf5 = _mm256_div_ps(ve5, vd5); __m256 vf6 = _mm256_div_ps(ve6, vd6); __m256 vf7 = _mm256_div_ps(ve7, vd7); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vz7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4); vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5); vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6); vf7 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf7), vf7, vx7); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); output += 64; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx_rr2_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
15,030
48.120915
119
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx-rr2-p5-div-x72.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx-rr2-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx_rr2_p5_div_x72( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx_rr2_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx_rr2_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx_rr2_p5.log2e); const __m256 vminus_ln2_hi = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_hi); const __m256 vminus_ln2_lo = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_lo); const __m256 vc5 = _mm256_load_ps(params->avx_rr2_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx_rr2_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx_rr2_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx_rr2_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx_rr2_p5.c1); const __m256 vone = _mm256_load_ps(params->avx_rr2_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx_rr2_p5.denorm_cutoff); for (; batch >= 72 * sizeof(float); batch -= 72 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); const __m256 vx8 = _mm256_loadu_ps(input + 64); input += 72; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask); const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask); const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask); const __m256 vz7 = _mm256_or_ps(vx7, vsign_mask); const __m256 vz8 = _mm256_or_ps(vx8, vsign_mask); __m256 vn0 = _mm256_add_ps(_mm256_mul_ps(vz0, vlog2e), vmagic_bias); __m256 vn1 = _mm256_add_ps(_mm256_mul_ps(vz1, vlog2e), vmagic_bias); __m256 vn2 = _mm256_add_ps(_mm256_mul_ps(vz2, vlog2e), vmagic_bias); __m256 vn3 = _mm256_add_ps(_mm256_mul_ps(vz3, vlog2e), vmagic_bias); __m256 vn4 = _mm256_add_ps(_mm256_mul_ps(vz4, vlog2e), vmagic_bias); __m256 vn5 = _mm256_add_ps(_mm256_mul_ps(vz5, vlog2e), vmagic_bias); __m256 vn6 = _mm256_add_ps(_mm256_mul_ps(vz6, vlog2e), vmagic_bias); __m256 vn7 = _mm256_add_ps(_mm256_mul_ps(vz7, vlog2e), vmagic_bias); __m256 vn8 = _mm256_add_ps(_mm256_mul_ps(vz8, vlog2e), vmagic_bias); const __m128 vs_lo0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn0)), 23)); const __m128 vs_hi0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn0, 1)), 23)); const __m256 vs0 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo0), vs_hi0, 1); const __m128 vs_lo1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn1)), 23)); const __m128 vs_hi1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn1, 1)), 23)); const __m256 vs1 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo1), vs_hi1, 1); const __m128 vs_lo2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn2)), 23)); const __m128 vs_hi2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn2, 1)), 23)); const __m256 vs2 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo2), vs_hi2, 1); const __m128 vs_lo3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn3)), 23)); const __m128 vs_hi3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn3, 1)), 23)); const __m256 vs3 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo3), vs_hi3, 1); const __m128 vs_lo4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn4)), 23)); const __m128 vs_hi4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn4, 1)), 23)); const __m256 vs4 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo4), vs_hi4, 1); const __m128 vs_lo5 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn5)), 23)); const __m128 vs_hi5 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn5, 1)), 23)); const __m256 vs5 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo5), vs_hi5, 1); const __m128 vs_lo6 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn6)), 23)); const __m128 vs_hi6 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn6, 1)), 23)); const __m256 vs6 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo6), vs_hi6, 1); const __m128 vs_lo7 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn7)), 23)); const __m128 vs_hi7 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn7, 1)), 23)); const __m256 vs7 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo7), vs_hi7, 1); const __m128 vs_lo8 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn8)), 23)); const __m128 vs_hi8 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn8, 1)), 23)); const __m256 vs8 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo8), vs_hi8, 1); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); __m256 vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_hi), vz0); __m256 vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_hi), vz1); __m256 vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_hi), vz2); __m256 vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_hi), vz3); __m256 vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_hi), vz4); __m256 vt5 = _mm256_add_ps(_mm256_mul_ps(vn5, vminus_ln2_hi), vz5); __m256 vt6 = _mm256_add_ps(_mm256_mul_ps(vn6, vminus_ln2_hi), vz6); __m256 vt7 = _mm256_add_ps(_mm256_mul_ps(vn7, vminus_ln2_hi), vz7); __m256 vt8 = _mm256_add_ps(_mm256_mul_ps(vn8, vminus_ln2_hi), vz8); vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_lo), vt0); vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_lo), vt1); vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_lo), vt2); vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_lo), vt3); vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_lo), vt4); vt5 = _mm256_add_ps(_mm256_mul_ps(vn5, vminus_ln2_lo), vt5); vt6 = _mm256_add_ps(_mm256_mul_ps(vn6, vminus_ln2_lo), vt6); vt7 = _mm256_add_ps(_mm256_mul_ps(vn7, vminus_ln2_lo), vt7); vt8 = _mm256_add_ps(_mm256_mul_ps(vn8, vminus_ln2_lo), vt8); __m256 vp0 = _mm256_add_ps(_mm256_mul_ps(vc5, vt0), vc4); __m256 vp1 = _mm256_add_ps(_mm256_mul_ps(vc5, vt1), vc4); __m256 vp2 = _mm256_add_ps(_mm256_mul_ps(vc5, vt2), vc4); __m256 vp3 = _mm256_add_ps(_mm256_mul_ps(vc5, vt3), vc4); __m256 vp4 = _mm256_add_ps(_mm256_mul_ps(vc5, vt4), vc4); __m256 vp5 = _mm256_add_ps(_mm256_mul_ps(vc5, vt5), vc4); __m256 vp6 = _mm256_add_ps(_mm256_mul_ps(vc5, vt6), vc4); __m256 vp7 = _mm256_add_ps(_mm256_mul_ps(vc5, vt7), vc4); __m256 vp8 = _mm256_add_ps(_mm256_mul_ps(vc5, vt8), vc4); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc3); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc3); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc3); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc3); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc3); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc3); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc3); vp7 = _mm256_add_ps(_mm256_mul_ps(vp7, vt7), vc3); vp8 = _mm256_add_ps(_mm256_mul_ps(vp8, vt8), vc3); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc2); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc2); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc2); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc2); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc2); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc2); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc2); vp7 = _mm256_add_ps(_mm256_mul_ps(vp7, vt7), vc2); vp8 = _mm256_add_ps(_mm256_mul_ps(vp8, vt8), vc2); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc1); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc1); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc1); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc1); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc1); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc1); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc1); vp7 = _mm256_add_ps(_mm256_mul_ps(vp7, vt7), vc1); vp8 = _mm256_add_ps(_mm256_mul_ps(vp8, vt8), vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); const __m256 ve0 = _mm256_add_ps(_mm256_mul_ps(vt0, vp0), vs0); const __m256 ve1 = _mm256_add_ps(_mm256_mul_ps(vt1, vp1), vs1); const __m256 ve2 = _mm256_add_ps(_mm256_mul_ps(vt2, vp2), vs2); const __m256 ve3 = _mm256_add_ps(_mm256_mul_ps(vt3, vp3), vs3); const __m256 ve4 = _mm256_add_ps(_mm256_mul_ps(vt4, vp4), vs4); const __m256 ve5 = _mm256_add_ps(_mm256_mul_ps(vt5, vp5), vs5); const __m256 ve6 = _mm256_add_ps(_mm256_mul_ps(vt6, vp6), vs6); const __m256 ve7 = _mm256_add_ps(_mm256_mul_ps(vt7, vp7), vs7); const __m256 ve8 = _mm256_add_ps(_mm256_mul_ps(vt8, vp8), vs8); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); const __m256 vd4 = _mm256_add_ps(ve4, vone); const __m256 vd5 = _mm256_add_ps(ve5, vone); const __m256 vd6 = _mm256_add_ps(ve6, vone); const __m256 vd7 = _mm256_add_ps(ve7, vone); const __m256 vd8 = _mm256_add_ps(ve8, vone); __m256 vf0 = _mm256_div_ps(ve0, vd0); __m256 vf1 = _mm256_div_ps(ve1, vd1); __m256 vf2 = _mm256_div_ps(ve2, vd2); __m256 vf3 = _mm256_div_ps(ve3, vd3); __m256 vf4 = _mm256_div_ps(ve4, vd4); __m256 vf5 = _mm256_div_ps(ve5, vd5); __m256 vf6 = _mm256_div_ps(ve6, vd6); __m256 vf7 = _mm256_div_ps(ve7, vd7); __m256 vf8 = _mm256_div_ps(ve8, vd8); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vz7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vz8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4); vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5); vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6); vf7 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf7), vf7, vx7); vf8 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf8), vf8, vx8); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); output += 72; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx_rr2_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
16,307
49.02454
119
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx-rr2-p5-div-x8.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx-rr2-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx_rr2_p5_div_x8( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx_rr2_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx_rr2_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx_rr2_p5.log2e); const __m256 vminus_ln2_hi = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_hi); const __m256 vminus_ln2_lo = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_lo); const __m256 vc5 = _mm256_load_ps(params->avx_rr2_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx_rr2_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx_rr2_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx_rr2_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx_rr2_p5.c1); const __m256 vone = _mm256_load_ps(params->avx_rr2_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx_rr2_p5.denorm_cutoff); for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx_rr2_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
4,700
36.608
119
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx-rr2-p5-div-x80.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx-rr2-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx_rr2_p5_div_x80( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx_rr2_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx_rr2_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx_rr2_p5.log2e); const __m256 vminus_ln2_hi = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_hi); const __m256 vminus_ln2_lo = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_lo); const __m256 vc5 = _mm256_load_ps(params->avx_rr2_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx_rr2_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx_rr2_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx_rr2_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx_rr2_p5.c1); const __m256 vone = _mm256_load_ps(params->avx_rr2_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx_rr2_p5.denorm_cutoff); for (; batch >= 80 * sizeof(float); batch -= 80 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); const __m256 vx8 = _mm256_loadu_ps(input + 64); const __m256 vx9 = _mm256_loadu_ps(input + 72); input += 80; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask); const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask); const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask); const __m256 vz7 = _mm256_or_ps(vx7, vsign_mask); const __m256 vz8 = _mm256_or_ps(vx8, vsign_mask); const __m256 vz9 = _mm256_or_ps(vx9, vsign_mask); __m256 vn0 = _mm256_add_ps(_mm256_mul_ps(vz0, vlog2e), vmagic_bias); __m256 vn1 = _mm256_add_ps(_mm256_mul_ps(vz1, vlog2e), vmagic_bias); __m256 vn2 = _mm256_add_ps(_mm256_mul_ps(vz2, vlog2e), vmagic_bias); __m256 vn3 = _mm256_add_ps(_mm256_mul_ps(vz3, vlog2e), vmagic_bias); __m256 vn4 = _mm256_add_ps(_mm256_mul_ps(vz4, vlog2e), vmagic_bias); __m256 vn5 = _mm256_add_ps(_mm256_mul_ps(vz5, vlog2e), vmagic_bias); __m256 vn6 = _mm256_add_ps(_mm256_mul_ps(vz6, vlog2e), vmagic_bias); __m256 vn7 = _mm256_add_ps(_mm256_mul_ps(vz7, vlog2e), vmagic_bias); __m256 vn8 = _mm256_add_ps(_mm256_mul_ps(vz8, vlog2e), vmagic_bias); __m256 vn9 = _mm256_add_ps(_mm256_mul_ps(vz9, vlog2e), vmagic_bias); const __m128 vs_lo0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn0)), 23)); const __m128 vs_hi0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn0, 1)), 23)); const __m256 vs0 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo0), vs_hi0, 1); const __m128 vs_lo1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn1)), 23)); const __m128 vs_hi1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn1, 1)), 23)); const __m256 vs1 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo1), vs_hi1, 1); const __m128 vs_lo2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn2)), 23)); const __m128 vs_hi2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn2, 1)), 23)); const __m256 vs2 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo2), vs_hi2, 1); const __m128 vs_lo3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn3)), 23)); const __m128 vs_hi3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn3, 1)), 23)); const __m256 vs3 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo3), vs_hi3, 1); const __m128 vs_lo4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn4)), 23)); const __m128 vs_hi4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn4, 1)), 23)); const __m256 vs4 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo4), vs_hi4, 1); const __m128 vs_lo5 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn5)), 23)); const __m128 vs_hi5 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn5, 1)), 23)); const __m256 vs5 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo5), vs_hi5, 1); const __m128 vs_lo6 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn6)), 23)); const __m128 vs_hi6 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn6, 1)), 23)); const __m256 vs6 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo6), vs_hi6, 1); const __m128 vs_lo7 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn7)), 23)); const __m128 vs_hi7 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn7, 1)), 23)); const __m256 vs7 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo7), vs_hi7, 1); const __m128 vs_lo8 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn8)), 23)); const __m128 vs_hi8 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn8, 1)), 23)); const __m256 vs8 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo8), vs_hi8, 1); const __m128 vs_lo9 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn9)), 23)); const __m128 vs_hi9 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn9, 1)), 23)); const __m256 vs9 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo9), vs_hi9, 1); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); vn9 = _mm256_sub_ps(vn9, vmagic_bias); __m256 vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_hi), vz0); __m256 vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_hi), vz1); __m256 vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_hi), vz2); __m256 vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_hi), vz3); __m256 vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_hi), vz4); __m256 vt5 = _mm256_add_ps(_mm256_mul_ps(vn5, vminus_ln2_hi), vz5); __m256 vt6 = _mm256_add_ps(_mm256_mul_ps(vn6, vminus_ln2_hi), vz6); __m256 vt7 = _mm256_add_ps(_mm256_mul_ps(vn7, vminus_ln2_hi), vz7); __m256 vt8 = _mm256_add_ps(_mm256_mul_ps(vn8, vminus_ln2_hi), vz8); __m256 vt9 = _mm256_add_ps(_mm256_mul_ps(vn9, vminus_ln2_hi), vz9); vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_lo), vt0); vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_lo), vt1); vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_lo), vt2); vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_lo), vt3); vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_lo), vt4); vt5 = _mm256_add_ps(_mm256_mul_ps(vn5, vminus_ln2_lo), vt5); vt6 = _mm256_add_ps(_mm256_mul_ps(vn6, vminus_ln2_lo), vt6); vt7 = _mm256_add_ps(_mm256_mul_ps(vn7, vminus_ln2_lo), vt7); vt8 = _mm256_add_ps(_mm256_mul_ps(vn8, vminus_ln2_lo), vt8); vt9 = _mm256_add_ps(_mm256_mul_ps(vn9, vminus_ln2_lo), vt9); __m256 vp0 = _mm256_add_ps(_mm256_mul_ps(vc5, vt0), vc4); __m256 vp1 = _mm256_add_ps(_mm256_mul_ps(vc5, vt1), vc4); __m256 vp2 = _mm256_add_ps(_mm256_mul_ps(vc5, vt2), vc4); __m256 vp3 = _mm256_add_ps(_mm256_mul_ps(vc5, vt3), vc4); __m256 vp4 = _mm256_add_ps(_mm256_mul_ps(vc5, vt4), vc4); __m256 vp5 = _mm256_add_ps(_mm256_mul_ps(vc5, vt5), vc4); __m256 vp6 = _mm256_add_ps(_mm256_mul_ps(vc5, vt6), vc4); __m256 vp7 = _mm256_add_ps(_mm256_mul_ps(vc5, vt7), vc4); __m256 vp8 = _mm256_add_ps(_mm256_mul_ps(vc5, vt8), vc4); __m256 vp9 = _mm256_add_ps(_mm256_mul_ps(vc5, vt9), vc4); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc3); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc3); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc3); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc3); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc3); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc3); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc3); vp7 = _mm256_add_ps(_mm256_mul_ps(vp7, vt7), vc3); vp8 = _mm256_add_ps(_mm256_mul_ps(vp8, vt8), vc3); vp9 = _mm256_add_ps(_mm256_mul_ps(vp9, vt9), vc3); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc2); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc2); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc2); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc2); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc2); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc2); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc2); vp7 = _mm256_add_ps(_mm256_mul_ps(vp7, vt7), vc2); vp8 = _mm256_add_ps(_mm256_mul_ps(vp8, vt8), vc2); vp9 = _mm256_add_ps(_mm256_mul_ps(vp9, vt9), vc2); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc1); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc1); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc1); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc1); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc1); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc1); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc1); vp7 = _mm256_add_ps(_mm256_mul_ps(vp7, vt7), vc1); vp8 = _mm256_add_ps(_mm256_mul_ps(vp8, vt8), vc1); vp9 = _mm256_add_ps(_mm256_mul_ps(vp9, vt9), vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); vt9 = _mm256_mul_ps(vt9, vs9); const __m256 ve0 = _mm256_add_ps(_mm256_mul_ps(vt0, vp0), vs0); const __m256 ve1 = _mm256_add_ps(_mm256_mul_ps(vt1, vp1), vs1); const __m256 ve2 = _mm256_add_ps(_mm256_mul_ps(vt2, vp2), vs2); const __m256 ve3 = _mm256_add_ps(_mm256_mul_ps(vt3, vp3), vs3); const __m256 ve4 = _mm256_add_ps(_mm256_mul_ps(vt4, vp4), vs4); const __m256 ve5 = _mm256_add_ps(_mm256_mul_ps(vt5, vp5), vs5); const __m256 ve6 = _mm256_add_ps(_mm256_mul_ps(vt6, vp6), vs6); const __m256 ve7 = _mm256_add_ps(_mm256_mul_ps(vt7, vp7), vs7); const __m256 ve8 = _mm256_add_ps(_mm256_mul_ps(vt8, vp8), vs8); const __m256 ve9 = _mm256_add_ps(_mm256_mul_ps(vt9, vp9), vs9); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); const __m256 vd4 = _mm256_add_ps(ve4, vone); const __m256 vd5 = _mm256_add_ps(ve5, vone); const __m256 vd6 = _mm256_add_ps(ve6, vone); const __m256 vd7 = _mm256_add_ps(ve7, vone); const __m256 vd8 = _mm256_add_ps(ve8, vone); const __m256 vd9 = _mm256_add_ps(ve9, vone); __m256 vf0 = _mm256_div_ps(ve0, vd0); __m256 vf1 = _mm256_div_ps(ve1, vd1); __m256 vf2 = _mm256_div_ps(ve2, vd2); __m256 vf3 = _mm256_div_ps(ve3, vd3); __m256 vf4 = _mm256_div_ps(ve4, vd4); __m256 vf5 = _mm256_div_ps(ve5, vd5); __m256 vf6 = _mm256_div_ps(ve6, vd6); __m256 vf7 = _mm256_div_ps(ve7, vd7); __m256 vf8 = _mm256_div_ps(ve8, vd8); __m256 vf9 = _mm256_div_ps(ve9, vd9); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vz7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vz8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vz9, vdenorm_cutoff, _CMP_LT_OS), vf9); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4); vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5); vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6); vf7 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf7), vf7, vx7); vf8 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf8), vf8, vx8); vf9 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf9), vf9, vx9); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); _mm256_storeu_ps(output + 72, vf9); output += 80; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx_rr2_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
17,584
49.823699
119
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx-rr2-p5-nr2-x16.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx-rr2-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx_rr2_p5_nr2_x16( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx_rr2_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx_rr2_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx_rr2_p5.log2e); const __m256 vminus_ln2_hi = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_hi); const __m256 vminus_ln2_lo = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_lo); const __m256 vc5 = _mm256_load_ps(params->avx_rr2_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx_rr2_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx_rr2_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx_rr2_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx_rr2_p5.c1); const __m256 vone = _mm256_load_ps(params->avx_rr2_p5.one); const __m256 vtwo = _mm256_load_ps(params->avx_rr2_p5.two); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx_rr2_p5.denorm_cutoff); for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); input += 16; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); __m256 vn0 = _mm256_add_ps(_mm256_mul_ps(vz0, vlog2e), vmagic_bias); __m256 vn1 = _mm256_add_ps(_mm256_mul_ps(vz1, vlog2e), vmagic_bias); const __m128 vs_lo0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn0)), 23)); const __m128 vs_hi0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn0, 1)), 23)); const __m256 vs0 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo0), vs_hi0, 1); const __m128 vs_lo1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn1)), 23)); const __m128 vs_hi1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn1, 1)), 23)); const __m256 vs1 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo1), vs_hi1, 1); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); __m256 vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_hi), vz0); __m256 vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_hi), vz1); vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_lo), vt0); vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_lo), vt1); __m256 vp0 = _mm256_add_ps(_mm256_mul_ps(vc5, vt0), vc4); __m256 vp1 = _mm256_add_ps(_mm256_mul_ps(vc5, vt1), vc4); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc3); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc3); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc2); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc2); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc1); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); const __m256 ve0 = _mm256_add_ps(_mm256_mul_ps(vt0, vp0), vs0); const __m256 ve1 = _mm256_add_ps(_mm256_mul_ps(vt1, vp1), vs1); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); __m256 vr0 = _mm256_rcp_ps(vd0); __m256 vr1 = _mm256_rcp_ps(vd1); vr0 = _mm256_mul_ps(vr0, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr0, vd0))); vr0 = _mm256_mul_ps(vr0, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr0, vd0))); vr1 = _mm256_mul_ps(vr1, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr1, vd1))); vr1 = _mm256_mul_ps(vr1, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr1, vd1))); __m256 vf0 = _mm256_mul_ps(ve0, vr0); __m256 vf1 = _mm256_mul_ps(ve1, vr1); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); output += 16; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx_rr2_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
8,168
39.641791
119
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx-rr2-p5-nr2-x24.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx-rr2-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx_rr2_p5_nr2_x24( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx_rr2_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx_rr2_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx_rr2_p5.log2e); const __m256 vminus_ln2_hi = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_hi); const __m256 vminus_ln2_lo = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_lo); const __m256 vc5 = _mm256_load_ps(params->avx_rr2_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx_rr2_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx_rr2_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx_rr2_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx_rr2_p5.c1); const __m256 vone = _mm256_load_ps(params->avx_rr2_p5.one); const __m256 vtwo = _mm256_load_ps(params->avx_rr2_p5.two); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx_rr2_p5.denorm_cutoff); for (; batch >= 24 * sizeof(float); batch -= 24 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); input += 24; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); __m256 vn0 = _mm256_add_ps(_mm256_mul_ps(vz0, vlog2e), vmagic_bias); __m256 vn1 = _mm256_add_ps(_mm256_mul_ps(vz1, vlog2e), vmagic_bias); __m256 vn2 = _mm256_add_ps(_mm256_mul_ps(vz2, vlog2e), vmagic_bias); const __m128 vs_lo0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn0)), 23)); const __m128 vs_hi0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn0, 1)), 23)); const __m256 vs0 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo0), vs_hi0, 1); const __m128 vs_lo1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn1)), 23)); const __m128 vs_hi1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn1, 1)), 23)); const __m256 vs1 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo1), vs_hi1, 1); const __m128 vs_lo2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn2)), 23)); const __m128 vs_hi2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn2, 1)), 23)); const __m256 vs2 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo2), vs_hi2, 1); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); __m256 vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_hi), vz0); __m256 vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_hi), vz1); __m256 vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_hi), vz2); vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_lo), vt0); vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_lo), vt1); vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_lo), vt2); __m256 vp0 = _mm256_add_ps(_mm256_mul_ps(vc5, vt0), vc4); __m256 vp1 = _mm256_add_ps(_mm256_mul_ps(vc5, vt1), vc4); __m256 vp2 = _mm256_add_ps(_mm256_mul_ps(vc5, vt2), vc4); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc3); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc3); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc3); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc2); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc2); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc2); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc1); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc1); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); const __m256 ve0 = _mm256_add_ps(_mm256_mul_ps(vt0, vp0), vs0); const __m256 ve1 = _mm256_add_ps(_mm256_mul_ps(vt1, vp1), vs1); const __m256 ve2 = _mm256_add_ps(_mm256_mul_ps(vt2, vp2), vs2); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); __m256 vr0 = _mm256_rcp_ps(vd0); __m256 vr1 = _mm256_rcp_ps(vd1); __m256 vr2 = _mm256_rcp_ps(vd2); vr0 = _mm256_mul_ps(vr0, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr0, vd0))); vr0 = _mm256_mul_ps(vr0, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr0, vd0))); vr1 = _mm256_mul_ps(vr1, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr1, vd1))); vr1 = _mm256_mul_ps(vr1, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr1, vd1))); vr2 = _mm256_mul_ps(vr2, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr2, vd2))); vr2 = _mm256_mul_ps(vr2, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr2, vd2))); __m256 vf0 = _mm256_mul_ps(ve0, vr0); __m256 vf1 = _mm256_mul_ps(ve1, vr1); __m256 vf2 = _mm256_mul_ps(ve2, vr2); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); output += 24; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx_rr2_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
9,634
42.013393
119
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx-rr2-p5-nr2-x32.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx-rr2-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx_rr2_p5_nr2_x32( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx_rr2_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx_rr2_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx_rr2_p5.log2e); const __m256 vminus_ln2_hi = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_hi); const __m256 vminus_ln2_lo = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_lo); const __m256 vc5 = _mm256_load_ps(params->avx_rr2_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx_rr2_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx_rr2_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx_rr2_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx_rr2_p5.c1); const __m256 vone = _mm256_load_ps(params->avx_rr2_p5.one); const __m256 vtwo = _mm256_load_ps(params->avx_rr2_p5.two); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx_rr2_p5.denorm_cutoff); for (; batch >= 32 * sizeof(float); batch -= 32 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); input += 32; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); __m256 vn0 = _mm256_add_ps(_mm256_mul_ps(vz0, vlog2e), vmagic_bias); __m256 vn1 = _mm256_add_ps(_mm256_mul_ps(vz1, vlog2e), vmagic_bias); __m256 vn2 = _mm256_add_ps(_mm256_mul_ps(vz2, vlog2e), vmagic_bias); __m256 vn3 = _mm256_add_ps(_mm256_mul_ps(vz3, vlog2e), vmagic_bias); const __m128 vs_lo0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn0)), 23)); const __m128 vs_hi0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn0, 1)), 23)); const __m256 vs0 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo0), vs_hi0, 1); const __m128 vs_lo1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn1)), 23)); const __m128 vs_hi1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn1, 1)), 23)); const __m256 vs1 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo1), vs_hi1, 1); const __m128 vs_lo2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn2)), 23)); const __m128 vs_hi2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn2, 1)), 23)); const __m256 vs2 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo2), vs_hi2, 1); const __m128 vs_lo3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn3)), 23)); const __m128 vs_hi3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn3, 1)), 23)); const __m256 vs3 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo3), vs_hi3, 1); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); __m256 vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_hi), vz0); __m256 vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_hi), vz1); __m256 vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_hi), vz2); __m256 vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_hi), vz3); vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_lo), vt0); vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_lo), vt1); vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_lo), vt2); vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_lo), vt3); __m256 vp0 = _mm256_add_ps(_mm256_mul_ps(vc5, vt0), vc4); __m256 vp1 = _mm256_add_ps(_mm256_mul_ps(vc5, vt1), vc4); __m256 vp2 = _mm256_add_ps(_mm256_mul_ps(vc5, vt2), vc4); __m256 vp3 = _mm256_add_ps(_mm256_mul_ps(vc5, vt3), vc4); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc3); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc3); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc3); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc3); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc2); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc2); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc2); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc2); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc1); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc1); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc1); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); const __m256 ve0 = _mm256_add_ps(_mm256_mul_ps(vt0, vp0), vs0); const __m256 ve1 = _mm256_add_ps(_mm256_mul_ps(vt1, vp1), vs1); const __m256 ve2 = _mm256_add_ps(_mm256_mul_ps(vt2, vp2), vs2); const __m256 ve3 = _mm256_add_ps(_mm256_mul_ps(vt3, vp3), vs3); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); __m256 vr0 = _mm256_rcp_ps(vd0); __m256 vr1 = _mm256_rcp_ps(vd1); __m256 vr2 = _mm256_rcp_ps(vd2); __m256 vr3 = _mm256_rcp_ps(vd3); vr0 = _mm256_mul_ps(vr0, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr0, vd0))); vr0 = _mm256_mul_ps(vr0, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr0, vd0))); vr1 = _mm256_mul_ps(vr1, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr1, vd1))); vr1 = _mm256_mul_ps(vr1, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr1, vd1))); vr2 = _mm256_mul_ps(vr2, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr2, vd2))); vr2 = _mm256_mul_ps(vr2, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr2, vd2))); vr3 = _mm256_mul_ps(vr3, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr3, vd3))); vr3 = _mm256_mul_ps(vr3, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr3, vd3))); __m256 vf0 = _mm256_mul_ps(ve0, vr0); __m256 vf1 = _mm256_mul_ps(ve1, vr1); __m256 vf2 = _mm256_mul_ps(ve2, vr2); __m256 vf3 = _mm256_mul_ps(ve3, vr3); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); output += 32; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx_rr2_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
11,100
43.94332
119
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx-rr2-p5-nr2-x40.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx-rr2-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx_rr2_p5_nr2_x40( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx_rr2_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx_rr2_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx_rr2_p5.log2e); const __m256 vminus_ln2_hi = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_hi); const __m256 vminus_ln2_lo = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_lo); const __m256 vc5 = _mm256_load_ps(params->avx_rr2_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx_rr2_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx_rr2_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx_rr2_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx_rr2_p5.c1); const __m256 vone = _mm256_load_ps(params->avx_rr2_p5.one); const __m256 vtwo = _mm256_load_ps(params->avx_rr2_p5.two); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx_rr2_p5.denorm_cutoff); for (; batch >= 40 * sizeof(float); batch -= 40 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); input += 40; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask); __m256 vn0 = _mm256_add_ps(_mm256_mul_ps(vz0, vlog2e), vmagic_bias); __m256 vn1 = _mm256_add_ps(_mm256_mul_ps(vz1, vlog2e), vmagic_bias); __m256 vn2 = _mm256_add_ps(_mm256_mul_ps(vz2, vlog2e), vmagic_bias); __m256 vn3 = _mm256_add_ps(_mm256_mul_ps(vz3, vlog2e), vmagic_bias); __m256 vn4 = _mm256_add_ps(_mm256_mul_ps(vz4, vlog2e), vmagic_bias); const __m128 vs_lo0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn0)), 23)); const __m128 vs_hi0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn0, 1)), 23)); const __m256 vs0 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo0), vs_hi0, 1); const __m128 vs_lo1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn1)), 23)); const __m128 vs_hi1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn1, 1)), 23)); const __m256 vs1 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo1), vs_hi1, 1); const __m128 vs_lo2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn2)), 23)); const __m128 vs_hi2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn2, 1)), 23)); const __m256 vs2 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo2), vs_hi2, 1); const __m128 vs_lo3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn3)), 23)); const __m128 vs_hi3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn3, 1)), 23)); const __m256 vs3 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo3), vs_hi3, 1); const __m128 vs_lo4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn4)), 23)); const __m128 vs_hi4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn4, 1)), 23)); const __m256 vs4 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo4), vs_hi4, 1); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); __m256 vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_hi), vz0); __m256 vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_hi), vz1); __m256 vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_hi), vz2); __m256 vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_hi), vz3); __m256 vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_hi), vz4); vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_lo), vt0); vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_lo), vt1); vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_lo), vt2); vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_lo), vt3); vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_lo), vt4); __m256 vp0 = _mm256_add_ps(_mm256_mul_ps(vc5, vt0), vc4); __m256 vp1 = _mm256_add_ps(_mm256_mul_ps(vc5, vt1), vc4); __m256 vp2 = _mm256_add_ps(_mm256_mul_ps(vc5, vt2), vc4); __m256 vp3 = _mm256_add_ps(_mm256_mul_ps(vc5, vt3), vc4); __m256 vp4 = _mm256_add_ps(_mm256_mul_ps(vc5, vt4), vc4); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc3); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc3); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc3); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc3); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc3); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc2); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc2); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc2); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc2); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc2); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc1); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc1); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc1); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc1); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); const __m256 ve0 = _mm256_add_ps(_mm256_mul_ps(vt0, vp0), vs0); const __m256 ve1 = _mm256_add_ps(_mm256_mul_ps(vt1, vp1), vs1); const __m256 ve2 = _mm256_add_ps(_mm256_mul_ps(vt2, vp2), vs2); const __m256 ve3 = _mm256_add_ps(_mm256_mul_ps(vt3, vp3), vs3); const __m256 ve4 = _mm256_add_ps(_mm256_mul_ps(vt4, vp4), vs4); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); const __m256 vd4 = _mm256_add_ps(ve4, vone); __m256 vr0 = _mm256_rcp_ps(vd0); __m256 vr1 = _mm256_rcp_ps(vd1); __m256 vr2 = _mm256_rcp_ps(vd2); __m256 vr3 = _mm256_rcp_ps(vd3); __m256 vr4 = _mm256_rcp_ps(vd4); vr0 = _mm256_mul_ps(vr0, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr0, vd0))); vr0 = _mm256_mul_ps(vr0, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr0, vd0))); vr1 = _mm256_mul_ps(vr1, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr1, vd1))); vr1 = _mm256_mul_ps(vr1, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr1, vd1))); vr2 = _mm256_mul_ps(vr2, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr2, vd2))); vr2 = _mm256_mul_ps(vr2, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr2, vd2))); vr3 = _mm256_mul_ps(vr3, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr3, vd3))); vr3 = _mm256_mul_ps(vr3, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr3, vd3))); vr4 = _mm256_mul_ps(vr4, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr4, vd4))); vr4 = _mm256_mul_ps(vr4, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr4, vd4))); __m256 vf0 = _mm256_mul_ps(ve0, vr0); __m256 vf1 = _mm256_mul_ps(ve1, vr1); __m256 vf2 = _mm256_mul_ps(ve2, vr2); __m256 vf3 = _mm256_mul_ps(ve3, vr3); __m256 vf4 = _mm256_mul_ps(ve4, vr4); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); output += 40; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx_rr2_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
12,566
45.544444
119
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx-rr2-p5-nr2-x48.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx-rr2-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx_rr2_p5_nr2_x48( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx_rr2_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx_rr2_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx_rr2_p5.log2e); const __m256 vminus_ln2_hi = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_hi); const __m256 vminus_ln2_lo = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_lo); const __m256 vc5 = _mm256_load_ps(params->avx_rr2_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx_rr2_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx_rr2_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx_rr2_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx_rr2_p5.c1); const __m256 vone = _mm256_load_ps(params->avx_rr2_p5.one); const __m256 vtwo = _mm256_load_ps(params->avx_rr2_p5.two); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx_rr2_p5.denorm_cutoff); for (; batch >= 48 * sizeof(float); batch -= 48 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); input += 48; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask); const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask); __m256 vn0 = _mm256_add_ps(_mm256_mul_ps(vz0, vlog2e), vmagic_bias); __m256 vn1 = _mm256_add_ps(_mm256_mul_ps(vz1, vlog2e), vmagic_bias); __m256 vn2 = _mm256_add_ps(_mm256_mul_ps(vz2, vlog2e), vmagic_bias); __m256 vn3 = _mm256_add_ps(_mm256_mul_ps(vz3, vlog2e), vmagic_bias); __m256 vn4 = _mm256_add_ps(_mm256_mul_ps(vz4, vlog2e), vmagic_bias); __m256 vn5 = _mm256_add_ps(_mm256_mul_ps(vz5, vlog2e), vmagic_bias); const __m128 vs_lo0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn0)), 23)); const __m128 vs_hi0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn0, 1)), 23)); const __m256 vs0 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo0), vs_hi0, 1); const __m128 vs_lo1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn1)), 23)); const __m128 vs_hi1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn1, 1)), 23)); const __m256 vs1 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo1), vs_hi1, 1); const __m128 vs_lo2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn2)), 23)); const __m128 vs_hi2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn2, 1)), 23)); const __m256 vs2 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo2), vs_hi2, 1); const __m128 vs_lo3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn3)), 23)); const __m128 vs_hi3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn3, 1)), 23)); const __m256 vs3 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo3), vs_hi3, 1); const __m128 vs_lo4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn4)), 23)); const __m128 vs_hi4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn4, 1)), 23)); const __m256 vs4 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo4), vs_hi4, 1); const __m128 vs_lo5 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn5)), 23)); const __m128 vs_hi5 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn5, 1)), 23)); const __m256 vs5 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo5), vs_hi5, 1); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); __m256 vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_hi), vz0); __m256 vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_hi), vz1); __m256 vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_hi), vz2); __m256 vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_hi), vz3); __m256 vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_hi), vz4); __m256 vt5 = _mm256_add_ps(_mm256_mul_ps(vn5, vminus_ln2_hi), vz5); vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_lo), vt0); vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_lo), vt1); vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_lo), vt2); vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_lo), vt3); vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_lo), vt4); vt5 = _mm256_add_ps(_mm256_mul_ps(vn5, vminus_ln2_lo), vt5); __m256 vp0 = _mm256_add_ps(_mm256_mul_ps(vc5, vt0), vc4); __m256 vp1 = _mm256_add_ps(_mm256_mul_ps(vc5, vt1), vc4); __m256 vp2 = _mm256_add_ps(_mm256_mul_ps(vc5, vt2), vc4); __m256 vp3 = _mm256_add_ps(_mm256_mul_ps(vc5, vt3), vc4); __m256 vp4 = _mm256_add_ps(_mm256_mul_ps(vc5, vt4), vc4); __m256 vp5 = _mm256_add_ps(_mm256_mul_ps(vc5, vt5), vc4); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc3); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc3); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc3); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc3); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc3); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc3); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc2); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc2); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc2); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc2); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc2); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc2); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc1); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc1); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc1); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc1); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc1); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); const __m256 ve0 = _mm256_add_ps(_mm256_mul_ps(vt0, vp0), vs0); const __m256 ve1 = _mm256_add_ps(_mm256_mul_ps(vt1, vp1), vs1); const __m256 ve2 = _mm256_add_ps(_mm256_mul_ps(vt2, vp2), vs2); const __m256 ve3 = _mm256_add_ps(_mm256_mul_ps(vt3, vp3), vs3); const __m256 ve4 = _mm256_add_ps(_mm256_mul_ps(vt4, vp4), vs4); const __m256 ve5 = _mm256_add_ps(_mm256_mul_ps(vt5, vp5), vs5); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); const __m256 vd4 = _mm256_add_ps(ve4, vone); const __m256 vd5 = _mm256_add_ps(ve5, vone); __m256 vr0 = _mm256_rcp_ps(vd0); __m256 vr1 = _mm256_rcp_ps(vd1); __m256 vr2 = _mm256_rcp_ps(vd2); __m256 vr3 = _mm256_rcp_ps(vd3); __m256 vr4 = _mm256_rcp_ps(vd4); __m256 vr5 = _mm256_rcp_ps(vd5); vr0 = _mm256_mul_ps(vr0, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr0, vd0))); vr0 = _mm256_mul_ps(vr0, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr0, vd0))); vr1 = _mm256_mul_ps(vr1, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr1, vd1))); vr1 = _mm256_mul_ps(vr1, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr1, vd1))); vr2 = _mm256_mul_ps(vr2, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr2, vd2))); vr2 = _mm256_mul_ps(vr2, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr2, vd2))); vr3 = _mm256_mul_ps(vr3, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr3, vd3))); vr3 = _mm256_mul_ps(vr3, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr3, vd3))); vr4 = _mm256_mul_ps(vr4, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr4, vd4))); vr4 = _mm256_mul_ps(vr4, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr4, vd4))); vr5 = _mm256_mul_ps(vr5, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr5, vd5))); vr5 = _mm256_mul_ps(vr5, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr5, vd5))); __m256 vf0 = _mm256_mul_ps(ve0, vr0); __m256 vf1 = _mm256_mul_ps(ve1, vr1); __m256 vf2 = _mm256_mul_ps(ve2, vr2); __m256 vf3 = _mm256_mul_ps(ve3, vr3); __m256 vf4 = _mm256_mul_ps(ve4, vr4); __m256 vf5 = _mm256_mul_ps(ve5, vr5); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4); vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); output += 48; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx_rr2_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
14,032
46.894198
119
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx-rr2-p5-nr2-x56.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx-rr2-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx_rr2_p5_nr2_x56( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx_rr2_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx_rr2_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx_rr2_p5.log2e); const __m256 vminus_ln2_hi = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_hi); const __m256 vminus_ln2_lo = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_lo); const __m256 vc5 = _mm256_load_ps(params->avx_rr2_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx_rr2_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx_rr2_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx_rr2_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx_rr2_p5.c1); const __m256 vone = _mm256_load_ps(params->avx_rr2_p5.one); const __m256 vtwo = _mm256_load_ps(params->avx_rr2_p5.two); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx_rr2_p5.denorm_cutoff); for (; batch >= 56 * sizeof(float); batch -= 56 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); input += 56; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask); const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask); const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask); __m256 vn0 = _mm256_add_ps(_mm256_mul_ps(vz0, vlog2e), vmagic_bias); __m256 vn1 = _mm256_add_ps(_mm256_mul_ps(vz1, vlog2e), vmagic_bias); __m256 vn2 = _mm256_add_ps(_mm256_mul_ps(vz2, vlog2e), vmagic_bias); __m256 vn3 = _mm256_add_ps(_mm256_mul_ps(vz3, vlog2e), vmagic_bias); __m256 vn4 = _mm256_add_ps(_mm256_mul_ps(vz4, vlog2e), vmagic_bias); __m256 vn5 = _mm256_add_ps(_mm256_mul_ps(vz5, vlog2e), vmagic_bias); __m256 vn6 = _mm256_add_ps(_mm256_mul_ps(vz6, vlog2e), vmagic_bias); const __m128 vs_lo0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn0)), 23)); const __m128 vs_hi0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn0, 1)), 23)); const __m256 vs0 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo0), vs_hi0, 1); const __m128 vs_lo1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn1)), 23)); const __m128 vs_hi1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn1, 1)), 23)); const __m256 vs1 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo1), vs_hi1, 1); const __m128 vs_lo2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn2)), 23)); const __m128 vs_hi2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn2, 1)), 23)); const __m256 vs2 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo2), vs_hi2, 1); const __m128 vs_lo3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn3)), 23)); const __m128 vs_hi3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn3, 1)), 23)); const __m256 vs3 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo3), vs_hi3, 1); const __m128 vs_lo4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn4)), 23)); const __m128 vs_hi4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn4, 1)), 23)); const __m256 vs4 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo4), vs_hi4, 1); const __m128 vs_lo5 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn5)), 23)); const __m128 vs_hi5 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn5, 1)), 23)); const __m256 vs5 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo5), vs_hi5, 1); const __m128 vs_lo6 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn6)), 23)); const __m128 vs_hi6 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn6, 1)), 23)); const __m256 vs6 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo6), vs_hi6, 1); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); __m256 vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_hi), vz0); __m256 vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_hi), vz1); __m256 vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_hi), vz2); __m256 vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_hi), vz3); __m256 vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_hi), vz4); __m256 vt5 = _mm256_add_ps(_mm256_mul_ps(vn5, vminus_ln2_hi), vz5); __m256 vt6 = _mm256_add_ps(_mm256_mul_ps(vn6, vminus_ln2_hi), vz6); vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_lo), vt0); vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_lo), vt1); vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_lo), vt2); vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_lo), vt3); vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_lo), vt4); vt5 = _mm256_add_ps(_mm256_mul_ps(vn5, vminus_ln2_lo), vt5); vt6 = _mm256_add_ps(_mm256_mul_ps(vn6, vminus_ln2_lo), vt6); __m256 vp0 = _mm256_add_ps(_mm256_mul_ps(vc5, vt0), vc4); __m256 vp1 = _mm256_add_ps(_mm256_mul_ps(vc5, vt1), vc4); __m256 vp2 = _mm256_add_ps(_mm256_mul_ps(vc5, vt2), vc4); __m256 vp3 = _mm256_add_ps(_mm256_mul_ps(vc5, vt3), vc4); __m256 vp4 = _mm256_add_ps(_mm256_mul_ps(vc5, vt4), vc4); __m256 vp5 = _mm256_add_ps(_mm256_mul_ps(vc5, vt5), vc4); __m256 vp6 = _mm256_add_ps(_mm256_mul_ps(vc5, vt6), vc4); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc3); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc3); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc3); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc3); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc3); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc3); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc3); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc2); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc2); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc2); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc2); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc2); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc2); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc2); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc1); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc1); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc1); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc1); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc1); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc1); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); const __m256 ve0 = _mm256_add_ps(_mm256_mul_ps(vt0, vp0), vs0); const __m256 ve1 = _mm256_add_ps(_mm256_mul_ps(vt1, vp1), vs1); const __m256 ve2 = _mm256_add_ps(_mm256_mul_ps(vt2, vp2), vs2); const __m256 ve3 = _mm256_add_ps(_mm256_mul_ps(vt3, vp3), vs3); const __m256 ve4 = _mm256_add_ps(_mm256_mul_ps(vt4, vp4), vs4); const __m256 ve5 = _mm256_add_ps(_mm256_mul_ps(vt5, vp5), vs5); const __m256 ve6 = _mm256_add_ps(_mm256_mul_ps(vt6, vp6), vs6); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); const __m256 vd4 = _mm256_add_ps(ve4, vone); const __m256 vd5 = _mm256_add_ps(ve5, vone); const __m256 vd6 = _mm256_add_ps(ve6, vone); __m256 vr0 = _mm256_rcp_ps(vd0); __m256 vr1 = _mm256_rcp_ps(vd1); __m256 vr2 = _mm256_rcp_ps(vd2); __m256 vr3 = _mm256_rcp_ps(vd3); __m256 vr4 = _mm256_rcp_ps(vd4); __m256 vr5 = _mm256_rcp_ps(vd5); __m256 vr6 = _mm256_rcp_ps(vd6); vr0 = _mm256_mul_ps(vr0, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr0, vd0))); vr0 = _mm256_mul_ps(vr0, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr0, vd0))); vr1 = _mm256_mul_ps(vr1, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr1, vd1))); vr1 = _mm256_mul_ps(vr1, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr1, vd1))); vr2 = _mm256_mul_ps(vr2, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr2, vd2))); vr2 = _mm256_mul_ps(vr2, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr2, vd2))); vr3 = _mm256_mul_ps(vr3, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr3, vd3))); vr3 = _mm256_mul_ps(vr3, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr3, vd3))); vr4 = _mm256_mul_ps(vr4, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr4, vd4))); vr4 = _mm256_mul_ps(vr4, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr4, vd4))); vr5 = _mm256_mul_ps(vr5, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr5, vd5))); vr5 = _mm256_mul_ps(vr5, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr5, vd5))); vr6 = _mm256_mul_ps(vr6, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr6, vd6))); vr6 = _mm256_mul_ps(vr6, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr6, vd6))); __m256 vf0 = _mm256_mul_ps(ve0, vr0); __m256 vf1 = _mm256_mul_ps(ve1, vr1); __m256 vf2 = _mm256_mul_ps(ve2, vr2); __m256 vf3 = _mm256_mul_ps(ve3, vr3); __m256 vf4 = _mm256_mul_ps(ve4, vr4); __m256 vf5 = _mm256_mul_ps(ve5, vr5); __m256 vf6 = _mm256_mul_ps(ve6, vr6); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4); vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5); vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); output += 56; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx_rr2_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
15,498
48.047468
119
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx-rr2-p5-nr2-x64.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx-rr2-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx_rr2_p5_nr2_x64( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx_rr2_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx_rr2_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx_rr2_p5.log2e); const __m256 vminus_ln2_hi = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_hi); const __m256 vminus_ln2_lo = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_lo); const __m256 vc5 = _mm256_load_ps(params->avx_rr2_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx_rr2_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx_rr2_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx_rr2_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx_rr2_p5.c1); const __m256 vone = _mm256_load_ps(params->avx_rr2_p5.one); const __m256 vtwo = _mm256_load_ps(params->avx_rr2_p5.two); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx_rr2_p5.denorm_cutoff); for (; batch >= 64 * sizeof(float); batch -= 64 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); input += 64; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask); const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask); const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask); const __m256 vz7 = _mm256_or_ps(vx7, vsign_mask); __m256 vn0 = _mm256_add_ps(_mm256_mul_ps(vz0, vlog2e), vmagic_bias); __m256 vn1 = _mm256_add_ps(_mm256_mul_ps(vz1, vlog2e), vmagic_bias); __m256 vn2 = _mm256_add_ps(_mm256_mul_ps(vz2, vlog2e), vmagic_bias); __m256 vn3 = _mm256_add_ps(_mm256_mul_ps(vz3, vlog2e), vmagic_bias); __m256 vn4 = _mm256_add_ps(_mm256_mul_ps(vz4, vlog2e), vmagic_bias); __m256 vn5 = _mm256_add_ps(_mm256_mul_ps(vz5, vlog2e), vmagic_bias); __m256 vn6 = _mm256_add_ps(_mm256_mul_ps(vz6, vlog2e), vmagic_bias); __m256 vn7 = _mm256_add_ps(_mm256_mul_ps(vz7, vlog2e), vmagic_bias); const __m128 vs_lo0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn0)), 23)); const __m128 vs_hi0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn0, 1)), 23)); const __m256 vs0 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo0), vs_hi0, 1); const __m128 vs_lo1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn1)), 23)); const __m128 vs_hi1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn1, 1)), 23)); const __m256 vs1 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo1), vs_hi1, 1); const __m128 vs_lo2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn2)), 23)); const __m128 vs_hi2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn2, 1)), 23)); const __m256 vs2 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo2), vs_hi2, 1); const __m128 vs_lo3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn3)), 23)); const __m128 vs_hi3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn3, 1)), 23)); const __m256 vs3 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo3), vs_hi3, 1); const __m128 vs_lo4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn4)), 23)); const __m128 vs_hi4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn4, 1)), 23)); const __m256 vs4 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo4), vs_hi4, 1); const __m128 vs_lo5 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn5)), 23)); const __m128 vs_hi5 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn5, 1)), 23)); const __m256 vs5 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo5), vs_hi5, 1); const __m128 vs_lo6 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn6)), 23)); const __m128 vs_hi6 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn6, 1)), 23)); const __m256 vs6 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo6), vs_hi6, 1); const __m128 vs_lo7 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn7)), 23)); const __m128 vs_hi7 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn7, 1)), 23)); const __m256 vs7 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo7), vs_hi7, 1); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); __m256 vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_hi), vz0); __m256 vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_hi), vz1); __m256 vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_hi), vz2); __m256 vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_hi), vz3); __m256 vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_hi), vz4); __m256 vt5 = _mm256_add_ps(_mm256_mul_ps(vn5, vminus_ln2_hi), vz5); __m256 vt6 = _mm256_add_ps(_mm256_mul_ps(vn6, vminus_ln2_hi), vz6); __m256 vt7 = _mm256_add_ps(_mm256_mul_ps(vn7, vminus_ln2_hi), vz7); vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_lo), vt0); vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_lo), vt1); vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_lo), vt2); vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_lo), vt3); vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_lo), vt4); vt5 = _mm256_add_ps(_mm256_mul_ps(vn5, vminus_ln2_lo), vt5); vt6 = _mm256_add_ps(_mm256_mul_ps(vn6, vminus_ln2_lo), vt6); vt7 = _mm256_add_ps(_mm256_mul_ps(vn7, vminus_ln2_lo), vt7); __m256 vp0 = _mm256_add_ps(_mm256_mul_ps(vc5, vt0), vc4); __m256 vp1 = _mm256_add_ps(_mm256_mul_ps(vc5, vt1), vc4); __m256 vp2 = _mm256_add_ps(_mm256_mul_ps(vc5, vt2), vc4); __m256 vp3 = _mm256_add_ps(_mm256_mul_ps(vc5, vt3), vc4); __m256 vp4 = _mm256_add_ps(_mm256_mul_ps(vc5, vt4), vc4); __m256 vp5 = _mm256_add_ps(_mm256_mul_ps(vc5, vt5), vc4); __m256 vp6 = _mm256_add_ps(_mm256_mul_ps(vc5, vt6), vc4); __m256 vp7 = _mm256_add_ps(_mm256_mul_ps(vc5, vt7), vc4); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc3); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc3); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc3); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc3); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc3); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc3); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc3); vp7 = _mm256_add_ps(_mm256_mul_ps(vp7, vt7), vc3); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc2); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc2); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc2); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc2); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc2); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc2); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc2); vp7 = _mm256_add_ps(_mm256_mul_ps(vp7, vt7), vc2); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc1); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc1); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc1); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc1); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc1); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc1); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc1); vp7 = _mm256_add_ps(_mm256_mul_ps(vp7, vt7), vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); const __m256 ve0 = _mm256_add_ps(_mm256_mul_ps(vt0, vp0), vs0); const __m256 ve1 = _mm256_add_ps(_mm256_mul_ps(vt1, vp1), vs1); const __m256 ve2 = _mm256_add_ps(_mm256_mul_ps(vt2, vp2), vs2); const __m256 ve3 = _mm256_add_ps(_mm256_mul_ps(vt3, vp3), vs3); const __m256 ve4 = _mm256_add_ps(_mm256_mul_ps(vt4, vp4), vs4); const __m256 ve5 = _mm256_add_ps(_mm256_mul_ps(vt5, vp5), vs5); const __m256 ve6 = _mm256_add_ps(_mm256_mul_ps(vt6, vp6), vs6); const __m256 ve7 = _mm256_add_ps(_mm256_mul_ps(vt7, vp7), vs7); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); const __m256 vd4 = _mm256_add_ps(ve4, vone); const __m256 vd5 = _mm256_add_ps(ve5, vone); const __m256 vd6 = _mm256_add_ps(ve6, vone); const __m256 vd7 = _mm256_add_ps(ve7, vone); __m256 vr0 = _mm256_rcp_ps(vd0); __m256 vr1 = _mm256_rcp_ps(vd1); __m256 vr2 = _mm256_rcp_ps(vd2); __m256 vr3 = _mm256_rcp_ps(vd3); __m256 vr4 = _mm256_rcp_ps(vd4); __m256 vr5 = _mm256_rcp_ps(vd5); __m256 vr6 = _mm256_rcp_ps(vd6); __m256 vr7 = _mm256_rcp_ps(vd7); vr0 = _mm256_mul_ps(vr0, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr0, vd0))); vr0 = _mm256_mul_ps(vr0, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr0, vd0))); vr1 = _mm256_mul_ps(vr1, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr1, vd1))); vr1 = _mm256_mul_ps(vr1, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr1, vd1))); vr2 = _mm256_mul_ps(vr2, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr2, vd2))); vr2 = _mm256_mul_ps(vr2, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr2, vd2))); vr3 = _mm256_mul_ps(vr3, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr3, vd3))); vr3 = _mm256_mul_ps(vr3, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr3, vd3))); vr4 = _mm256_mul_ps(vr4, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr4, vd4))); vr4 = _mm256_mul_ps(vr4, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr4, vd4))); vr5 = _mm256_mul_ps(vr5, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr5, vd5))); vr5 = _mm256_mul_ps(vr5, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr5, vd5))); vr6 = _mm256_mul_ps(vr6, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr6, vd6))); vr6 = _mm256_mul_ps(vr6, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr6, vd6))); vr7 = _mm256_mul_ps(vr7, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr7, vd7))); vr7 = _mm256_mul_ps(vr7, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr7, vd7))); __m256 vf0 = _mm256_mul_ps(ve0, vr0); __m256 vf1 = _mm256_mul_ps(ve1, vr1); __m256 vf2 = _mm256_mul_ps(ve2, vr2); __m256 vf3 = _mm256_mul_ps(ve3, vr3); __m256 vf4 = _mm256_mul_ps(ve4, vr4); __m256 vf5 = _mm256_mul_ps(ve5, vr5); __m256 vf6 = _mm256_mul_ps(ve6, vr6); __m256 vf7 = _mm256_mul_ps(ve7, vr7); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vz7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4); vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5); vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6); vf7 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf7), vf7, vx7); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); output += 64; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx_rr2_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
16,964
49.044248
119
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx-rr2-p5-nr2-x72.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx-rr2-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx_rr2_p5_nr2_x72( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx_rr2_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx_rr2_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx_rr2_p5.log2e); const __m256 vminus_ln2_hi = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_hi); const __m256 vminus_ln2_lo = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_lo); const __m256 vc5 = _mm256_load_ps(params->avx_rr2_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx_rr2_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx_rr2_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx_rr2_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx_rr2_p5.c1); const __m256 vone = _mm256_load_ps(params->avx_rr2_p5.one); const __m256 vtwo = _mm256_load_ps(params->avx_rr2_p5.two); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx_rr2_p5.denorm_cutoff); for (; batch >= 72 * sizeof(float); batch -= 72 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); const __m256 vx8 = _mm256_loadu_ps(input + 64); input += 72; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask); const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask); const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask); const __m256 vz7 = _mm256_or_ps(vx7, vsign_mask); const __m256 vz8 = _mm256_or_ps(vx8, vsign_mask); __m256 vn0 = _mm256_add_ps(_mm256_mul_ps(vz0, vlog2e), vmagic_bias); __m256 vn1 = _mm256_add_ps(_mm256_mul_ps(vz1, vlog2e), vmagic_bias); __m256 vn2 = _mm256_add_ps(_mm256_mul_ps(vz2, vlog2e), vmagic_bias); __m256 vn3 = _mm256_add_ps(_mm256_mul_ps(vz3, vlog2e), vmagic_bias); __m256 vn4 = _mm256_add_ps(_mm256_mul_ps(vz4, vlog2e), vmagic_bias); __m256 vn5 = _mm256_add_ps(_mm256_mul_ps(vz5, vlog2e), vmagic_bias); __m256 vn6 = _mm256_add_ps(_mm256_mul_ps(vz6, vlog2e), vmagic_bias); __m256 vn7 = _mm256_add_ps(_mm256_mul_ps(vz7, vlog2e), vmagic_bias); __m256 vn8 = _mm256_add_ps(_mm256_mul_ps(vz8, vlog2e), vmagic_bias); const __m128 vs_lo0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn0)), 23)); const __m128 vs_hi0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn0, 1)), 23)); const __m256 vs0 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo0), vs_hi0, 1); const __m128 vs_lo1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn1)), 23)); const __m128 vs_hi1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn1, 1)), 23)); const __m256 vs1 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo1), vs_hi1, 1); const __m128 vs_lo2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn2)), 23)); const __m128 vs_hi2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn2, 1)), 23)); const __m256 vs2 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo2), vs_hi2, 1); const __m128 vs_lo3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn3)), 23)); const __m128 vs_hi3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn3, 1)), 23)); const __m256 vs3 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo3), vs_hi3, 1); const __m128 vs_lo4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn4)), 23)); const __m128 vs_hi4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn4, 1)), 23)); const __m256 vs4 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo4), vs_hi4, 1); const __m128 vs_lo5 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn5)), 23)); const __m128 vs_hi5 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn5, 1)), 23)); const __m256 vs5 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo5), vs_hi5, 1); const __m128 vs_lo6 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn6)), 23)); const __m128 vs_hi6 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn6, 1)), 23)); const __m256 vs6 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo6), vs_hi6, 1); const __m128 vs_lo7 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn7)), 23)); const __m128 vs_hi7 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn7, 1)), 23)); const __m256 vs7 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo7), vs_hi7, 1); const __m128 vs_lo8 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn8)), 23)); const __m128 vs_hi8 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn8, 1)), 23)); const __m256 vs8 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo8), vs_hi8, 1); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); __m256 vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_hi), vz0); __m256 vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_hi), vz1); __m256 vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_hi), vz2); __m256 vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_hi), vz3); __m256 vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_hi), vz4); __m256 vt5 = _mm256_add_ps(_mm256_mul_ps(vn5, vminus_ln2_hi), vz5); __m256 vt6 = _mm256_add_ps(_mm256_mul_ps(vn6, vminus_ln2_hi), vz6); __m256 vt7 = _mm256_add_ps(_mm256_mul_ps(vn7, vminus_ln2_hi), vz7); __m256 vt8 = _mm256_add_ps(_mm256_mul_ps(vn8, vminus_ln2_hi), vz8); vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_lo), vt0); vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_lo), vt1); vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_lo), vt2); vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_lo), vt3); vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_lo), vt4); vt5 = _mm256_add_ps(_mm256_mul_ps(vn5, vminus_ln2_lo), vt5); vt6 = _mm256_add_ps(_mm256_mul_ps(vn6, vminus_ln2_lo), vt6); vt7 = _mm256_add_ps(_mm256_mul_ps(vn7, vminus_ln2_lo), vt7); vt8 = _mm256_add_ps(_mm256_mul_ps(vn8, vminus_ln2_lo), vt8); __m256 vp0 = _mm256_add_ps(_mm256_mul_ps(vc5, vt0), vc4); __m256 vp1 = _mm256_add_ps(_mm256_mul_ps(vc5, vt1), vc4); __m256 vp2 = _mm256_add_ps(_mm256_mul_ps(vc5, vt2), vc4); __m256 vp3 = _mm256_add_ps(_mm256_mul_ps(vc5, vt3), vc4); __m256 vp4 = _mm256_add_ps(_mm256_mul_ps(vc5, vt4), vc4); __m256 vp5 = _mm256_add_ps(_mm256_mul_ps(vc5, vt5), vc4); __m256 vp6 = _mm256_add_ps(_mm256_mul_ps(vc5, vt6), vc4); __m256 vp7 = _mm256_add_ps(_mm256_mul_ps(vc5, vt7), vc4); __m256 vp8 = _mm256_add_ps(_mm256_mul_ps(vc5, vt8), vc4); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc3); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc3); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc3); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc3); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc3); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc3); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc3); vp7 = _mm256_add_ps(_mm256_mul_ps(vp7, vt7), vc3); vp8 = _mm256_add_ps(_mm256_mul_ps(vp8, vt8), vc3); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc2); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc2); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc2); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc2); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc2); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc2); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc2); vp7 = _mm256_add_ps(_mm256_mul_ps(vp7, vt7), vc2); vp8 = _mm256_add_ps(_mm256_mul_ps(vp8, vt8), vc2); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc1); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc1); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc1); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc1); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc1); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc1); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc1); vp7 = _mm256_add_ps(_mm256_mul_ps(vp7, vt7), vc1); vp8 = _mm256_add_ps(_mm256_mul_ps(vp8, vt8), vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); const __m256 ve0 = _mm256_add_ps(_mm256_mul_ps(vt0, vp0), vs0); const __m256 ve1 = _mm256_add_ps(_mm256_mul_ps(vt1, vp1), vs1); const __m256 ve2 = _mm256_add_ps(_mm256_mul_ps(vt2, vp2), vs2); const __m256 ve3 = _mm256_add_ps(_mm256_mul_ps(vt3, vp3), vs3); const __m256 ve4 = _mm256_add_ps(_mm256_mul_ps(vt4, vp4), vs4); const __m256 ve5 = _mm256_add_ps(_mm256_mul_ps(vt5, vp5), vs5); const __m256 ve6 = _mm256_add_ps(_mm256_mul_ps(vt6, vp6), vs6); const __m256 ve7 = _mm256_add_ps(_mm256_mul_ps(vt7, vp7), vs7); const __m256 ve8 = _mm256_add_ps(_mm256_mul_ps(vt8, vp8), vs8); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); const __m256 vd4 = _mm256_add_ps(ve4, vone); const __m256 vd5 = _mm256_add_ps(ve5, vone); const __m256 vd6 = _mm256_add_ps(ve6, vone); const __m256 vd7 = _mm256_add_ps(ve7, vone); const __m256 vd8 = _mm256_add_ps(ve8, vone); __m256 vr0 = _mm256_rcp_ps(vd0); __m256 vr1 = _mm256_rcp_ps(vd1); __m256 vr2 = _mm256_rcp_ps(vd2); __m256 vr3 = _mm256_rcp_ps(vd3); __m256 vr4 = _mm256_rcp_ps(vd4); __m256 vr5 = _mm256_rcp_ps(vd5); __m256 vr6 = _mm256_rcp_ps(vd6); __m256 vr7 = _mm256_rcp_ps(vd7); __m256 vr8 = _mm256_rcp_ps(vd8); vr0 = _mm256_mul_ps(vr0, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr0, vd0))); vr0 = _mm256_mul_ps(vr0, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr0, vd0))); vr1 = _mm256_mul_ps(vr1, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr1, vd1))); vr1 = _mm256_mul_ps(vr1, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr1, vd1))); vr2 = _mm256_mul_ps(vr2, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr2, vd2))); vr2 = _mm256_mul_ps(vr2, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr2, vd2))); vr3 = _mm256_mul_ps(vr3, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr3, vd3))); vr3 = _mm256_mul_ps(vr3, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr3, vd3))); vr4 = _mm256_mul_ps(vr4, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr4, vd4))); vr4 = _mm256_mul_ps(vr4, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr4, vd4))); vr5 = _mm256_mul_ps(vr5, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr5, vd5))); vr5 = _mm256_mul_ps(vr5, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr5, vd5))); vr6 = _mm256_mul_ps(vr6, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr6, vd6))); vr6 = _mm256_mul_ps(vr6, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr6, vd6))); vr7 = _mm256_mul_ps(vr7, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr7, vd7))); vr7 = _mm256_mul_ps(vr7, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr7, vd7))); vr8 = _mm256_mul_ps(vr8, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr8, vd8))); vr8 = _mm256_mul_ps(vr8, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr8, vd8))); __m256 vf0 = _mm256_mul_ps(ve0, vr0); __m256 vf1 = _mm256_mul_ps(ve1, vr1); __m256 vf2 = _mm256_mul_ps(ve2, vr2); __m256 vf3 = _mm256_mul_ps(ve3, vr3); __m256 vf4 = _mm256_mul_ps(ve4, vr4); __m256 vf5 = _mm256_mul_ps(ve5, vr5); __m256 vf6 = _mm256_mul_ps(ve6, vr6); __m256 vf7 = _mm256_mul_ps(ve7, vr7); __m256 vf8 = _mm256_mul_ps(ve8, vr8); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vz7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vz8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4); vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5); vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6); vf7 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf7), vf7, vx7); vf8 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf8), vf8, vx8); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); output += 72; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx_rr2_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
18,430
49.914365
119
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx-rr2-p5-nr2-x8.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx-rr2-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx_rr2_p5_nr2_x8( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx_rr2_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx_rr2_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx_rr2_p5.log2e); const __m256 vminus_ln2_hi = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_hi); const __m256 vminus_ln2_lo = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_lo); const __m256 vc5 = _mm256_load_ps(params->avx_rr2_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx_rr2_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx_rr2_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx_rr2_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx_rr2_p5.c1); const __m256 vone = _mm256_load_ps(params->avx_rr2_p5.one); const __m256 vtwo = _mm256_load_ps(params->avx_rr2_p5.two); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx_rr2_p5.denorm_cutoff); for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx_rr2_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
5,120
37.795455
119
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx-rr2-p5-nr2-x80.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx-rr2-p5.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx_rr2_p5_nr2_x80( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx_rr2_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx_rr2_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx_rr2_p5.log2e); const __m256 vminus_ln2_hi = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_hi); const __m256 vminus_ln2_lo = _mm256_load_ps(params->avx_rr2_p5.minus_ln2_lo); const __m256 vc5 = _mm256_load_ps(params->avx_rr2_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx_rr2_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx_rr2_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx_rr2_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx_rr2_p5.c1); const __m256 vone = _mm256_load_ps(params->avx_rr2_p5.one); const __m256 vtwo = _mm256_load_ps(params->avx_rr2_p5.two); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx_rr2_p5.denorm_cutoff); for (; batch >= 80 * sizeof(float); batch -= 80 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); const __m256 vx8 = _mm256_loadu_ps(input + 64); const __m256 vx9 = _mm256_loadu_ps(input + 72); input += 80; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask); const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask); const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask); const __m256 vz7 = _mm256_or_ps(vx7, vsign_mask); const __m256 vz8 = _mm256_or_ps(vx8, vsign_mask); const __m256 vz9 = _mm256_or_ps(vx9, vsign_mask); __m256 vn0 = _mm256_add_ps(_mm256_mul_ps(vz0, vlog2e), vmagic_bias); __m256 vn1 = _mm256_add_ps(_mm256_mul_ps(vz1, vlog2e), vmagic_bias); __m256 vn2 = _mm256_add_ps(_mm256_mul_ps(vz2, vlog2e), vmagic_bias); __m256 vn3 = _mm256_add_ps(_mm256_mul_ps(vz3, vlog2e), vmagic_bias); __m256 vn4 = _mm256_add_ps(_mm256_mul_ps(vz4, vlog2e), vmagic_bias); __m256 vn5 = _mm256_add_ps(_mm256_mul_ps(vz5, vlog2e), vmagic_bias); __m256 vn6 = _mm256_add_ps(_mm256_mul_ps(vz6, vlog2e), vmagic_bias); __m256 vn7 = _mm256_add_ps(_mm256_mul_ps(vz7, vlog2e), vmagic_bias); __m256 vn8 = _mm256_add_ps(_mm256_mul_ps(vz8, vlog2e), vmagic_bias); __m256 vn9 = _mm256_add_ps(_mm256_mul_ps(vz9, vlog2e), vmagic_bias); const __m128 vs_lo0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn0)), 23)); const __m128 vs_hi0 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn0, 1)), 23)); const __m256 vs0 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo0), vs_hi0, 1); const __m128 vs_lo1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn1)), 23)); const __m128 vs_hi1 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn1, 1)), 23)); const __m256 vs1 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo1), vs_hi1, 1); const __m128 vs_lo2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn2)), 23)); const __m128 vs_hi2 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn2, 1)), 23)); const __m256 vs2 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo2), vs_hi2, 1); const __m128 vs_lo3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn3)), 23)); const __m128 vs_hi3 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn3, 1)), 23)); const __m256 vs3 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo3), vs_hi3, 1); const __m128 vs_lo4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn4)), 23)); const __m128 vs_hi4 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn4, 1)), 23)); const __m256 vs4 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo4), vs_hi4, 1); const __m128 vs_lo5 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn5)), 23)); const __m128 vs_hi5 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn5, 1)), 23)); const __m256 vs5 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo5), vs_hi5, 1); const __m128 vs_lo6 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn6)), 23)); const __m128 vs_hi6 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn6, 1)), 23)); const __m256 vs6 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo6), vs_hi6, 1); const __m128 vs_lo7 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn7)), 23)); const __m128 vs_hi7 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn7, 1)), 23)); const __m256 vs7 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo7), vs_hi7, 1); const __m128 vs_lo8 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn8)), 23)); const __m128 vs_hi8 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn8, 1)), 23)); const __m256 vs8 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo8), vs_hi8, 1); const __m128 vs_lo9 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn9)), 23)); const __m128 vs_hi9 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn9, 1)), 23)); const __m256 vs9 = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo9), vs_hi9, 1); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); vn9 = _mm256_sub_ps(vn9, vmagic_bias); __m256 vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_hi), vz0); __m256 vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_hi), vz1); __m256 vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_hi), vz2); __m256 vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_hi), vz3); __m256 vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_hi), vz4); __m256 vt5 = _mm256_add_ps(_mm256_mul_ps(vn5, vminus_ln2_hi), vz5); __m256 vt6 = _mm256_add_ps(_mm256_mul_ps(vn6, vminus_ln2_hi), vz6); __m256 vt7 = _mm256_add_ps(_mm256_mul_ps(vn7, vminus_ln2_hi), vz7); __m256 vt8 = _mm256_add_ps(_mm256_mul_ps(vn8, vminus_ln2_hi), vz8); __m256 vt9 = _mm256_add_ps(_mm256_mul_ps(vn9, vminus_ln2_hi), vz9); vt0 = _mm256_add_ps(_mm256_mul_ps(vn0, vminus_ln2_lo), vt0); vt1 = _mm256_add_ps(_mm256_mul_ps(vn1, vminus_ln2_lo), vt1); vt2 = _mm256_add_ps(_mm256_mul_ps(vn2, vminus_ln2_lo), vt2); vt3 = _mm256_add_ps(_mm256_mul_ps(vn3, vminus_ln2_lo), vt3); vt4 = _mm256_add_ps(_mm256_mul_ps(vn4, vminus_ln2_lo), vt4); vt5 = _mm256_add_ps(_mm256_mul_ps(vn5, vminus_ln2_lo), vt5); vt6 = _mm256_add_ps(_mm256_mul_ps(vn6, vminus_ln2_lo), vt6); vt7 = _mm256_add_ps(_mm256_mul_ps(vn7, vminus_ln2_lo), vt7); vt8 = _mm256_add_ps(_mm256_mul_ps(vn8, vminus_ln2_lo), vt8); vt9 = _mm256_add_ps(_mm256_mul_ps(vn9, vminus_ln2_lo), vt9); __m256 vp0 = _mm256_add_ps(_mm256_mul_ps(vc5, vt0), vc4); __m256 vp1 = _mm256_add_ps(_mm256_mul_ps(vc5, vt1), vc4); __m256 vp2 = _mm256_add_ps(_mm256_mul_ps(vc5, vt2), vc4); __m256 vp3 = _mm256_add_ps(_mm256_mul_ps(vc5, vt3), vc4); __m256 vp4 = _mm256_add_ps(_mm256_mul_ps(vc5, vt4), vc4); __m256 vp5 = _mm256_add_ps(_mm256_mul_ps(vc5, vt5), vc4); __m256 vp6 = _mm256_add_ps(_mm256_mul_ps(vc5, vt6), vc4); __m256 vp7 = _mm256_add_ps(_mm256_mul_ps(vc5, vt7), vc4); __m256 vp8 = _mm256_add_ps(_mm256_mul_ps(vc5, vt8), vc4); __m256 vp9 = _mm256_add_ps(_mm256_mul_ps(vc5, vt9), vc4); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc3); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc3); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc3); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc3); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc3); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc3); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc3); vp7 = _mm256_add_ps(_mm256_mul_ps(vp7, vt7), vc3); vp8 = _mm256_add_ps(_mm256_mul_ps(vp8, vt8), vc3); vp9 = _mm256_add_ps(_mm256_mul_ps(vp9, vt9), vc3); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc2); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc2); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc2); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc2); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc2); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc2); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc2); vp7 = _mm256_add_ps(_mm256_mul_ps(vp7, vt7), vc2); vp8 = _mm256_add_ps(_mm256_mul_ps(vp8, vt8), vc2); vp9 = _mm256_add_ps(_mm256_mul_ps(vp9, vt9), vc2); vp0 = _mm256_add_ps(_mm256_mul_ps(vp0, vt0), vc1); vp1 = _mm256_add_ps(_mm256_mul_ps(vp1, vt1), vc1); vp2 = _mm256_add_ps(_mm256_mul_ps(vp2, vt2), vc1); vp3 = _mm256_add_ps(_mm256_mul_ps(vp3, vt3), vc1); vp4 = _mm256_add_ps(_mm256_mul_ps(vp4, vt4), vc1); vp5 = _mm256_add_ps(_mm256_mul_ps(vp5, vt5), vc1); vp6 = _mm256_add_ps(_mm256_mul_ps(vp6, vt6), vc1); vp7 = _mm256_add_ps(_mm256_mul_ps(vp7, vt7), vc1); vp8 = _mm256_add_ps(_mm256_mul_ps(vp8, vt8), vc1); vp9 = _mm256_add_ps(_mm256_mul_ps(vp9, vt9), vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); vt9 = _mm256_mul_ps(vt9, vs9); const __m256 ve0 = _mm256_add_ps(_mm256_mul_ps(vt0, vp0), vs0); const __m256 ve1 = _mm256_add_ps(_mm256_mul_ps(vt1, vp1), vs1); const __m256 ve2 = _mm256_add_ps(_mm256_mul_ps(vt2, vp2), vs2); const __m256 ve3 = _mm256_add_ps(_mm256_mul_ps(vt3, vp3), vs3); const __m256 ve4 = _mm256_add_ps(_mm256_mul_ps(vt4, vp4), vs4); const __m256 ve5 = _mm256_add_ps(_mm256_mul_ps(vt5, vp5), vs5); const __m256 ve6 = _mm256_add_ps(_mm256_mul_ps(vt6, vp6), vs6); const __m256 ve7 = _mm256_add_ps(_mm256_mul_ps(vt7, vp7), vs7); const __m256 ve8 = _mm256_add_ps(_mm256_mul_ps(vt8, vp8), vs8); const __m256 ve9 = _mm256_add_ps(_mm256_mul_ps(vt9, vp9), vs9); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); const __m256 vd4 = _mm256_add_ps(ve4, vone); const __m256 vd5 = _mm256_add_ps(ve5, vone); const __m256 vd6 = _mm256_add_ps(ve6, vone); const __m256 vd7 = _mm256_add_ps(ve7, vone); const __m256 vd8 = _mm256_add_ps(ve8, vone); const __m256 vd9 = _mm256_add_ps(ve9, vone); __m256 vr0 = _mm256_rcp_ps(vd0); __m256 vr1 = _mm256_rcp_ps(vd1); __m256 vr2 = _mm256_rcp_ps(vd2); __m256 vr3 = _mm256_rcp_ps(vd3); __m256 vr4 = _mm256_rcp_ps(vd4); __m256 vr5 = _mm256_rcp_ps(vd5); __m256 vr6 = _mm256_rcp_ps(vd6); __m256 vr7 = _mm256_rcp_ps(vd7); __m256 vr8 = _mm256_rcp_ps(vd8); __m256 vr9 = _mm256_rcp_ps(vd9); vr0 = _mm256_mul_ps(vr0, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr0, vd0))); vr0 = _mm256_mul_ps(vr0, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr0, vd0))); vr1 = _mm256_mul_ps(vr1, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr1, vd1))); vr1 = _mm256_mul_ps(vr1, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr1, vd1))); vr2 = _mm256_mul_ps(vr2, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr2, vd2))); vr2 = _mm256_mul_ps(vr2, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr2, vd2))); vr3 = _mm256_mul_ps(vr3, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr3, vd3))); vr3 = _mm256_mul_ps(vr3, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr3, vd3))); vr4 = _mm256_mul_ps(vr4, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr4, vd4))); vr4 = _mm256_mul_ps(vr4, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr4, vd4))); vr5 = _mm256_mul_ps(vr5, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr5, vd5))); vr5 = _mm256_mul_ps(vr5, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr5, vd5))); vr6 = _mm256_mul_ps(vr6, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr6, vd6))); vr6 = _mm256_mul_ps(vr6, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr6, vd6))); vr7 = _mm256_mul_ps(vr7, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr7, vd7))); vr7 = _mm256_mul_ps(vr7, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr7, vd7))); vr8 = _mm256_mul_ps(vr8, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr8, vd8))); vr8 = _mm256_mul_ps(vr8, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr8, vd8))); vr9 = _mm256_mul_ps(vr9, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr9, vd9))); vr9 = _mm256_mul_ps(vr9, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr9, vd9))); __m256 vf0 = _mm256_mul_ps(ve0, vr0); __m256 vf1 = _mm256_mul_ps(ve1, vr1); __m256 vf2 = _mm256_mul_ps(ve2, vr2); __m256 vf3 = _mm256_mul_ps(ve3, vr3); __m256 vf4 = _mm256_mul_ps(ve4, vr4); __m256 vf5 = _mm256_mul_ps(ve5, vr5); __m256 vf6 = _mm256_mul_ps(ve6, vr6); __m256 vf7 = _mm256_mul_ps(ve7, vr7); __m256 vf8 = _mm256_mul_ps(ve8, vr8); __m256 vf9 = _mm256_mul_ps(ve9, vr9); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vz7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vz8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vz9, vdenorm_cutoff, _CMP_LT_OS), vf9); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4); vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5); vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6); vf7 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf7), vf7, vx7); vf8 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf8), vf8, vx8); vf9 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf9), vf9, vx9); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); _mm256_storeu_ps(output + 72, vf9); output += 80; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx_rr2_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias); const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23)); const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23)); const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz); vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt); __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2); vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd))); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
19,896
50.680519
119
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx2-rr1-p5-div-x16.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx2_rr1_p5_div_x16( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx2_rr1_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vone = _mm256_load_ps(params->avx2_rr1_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); input += 16; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0); const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); __m256 vf0 = _mm256_div_ps(ve0, vd0); __m256 vf1 = _mm256_div_ps(ve1, vd1); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); output += 16; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
5,796
33.301775
120
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx2-rr1-p5-div-x24.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx2_rr1_p5_div_x24( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx2_rr1_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vone = _mm256_load_ps(params->avx2_rr1_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); for (; batch >= 24 * sizeof(float); batch -= 24 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); input += 24; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0); const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1); const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); __m256 vf0 = _mm256_div_ps(ve0, vd0); __m256 vf1 = _mm256_div_ps(ve1, vd1); __m256 vf2 = _mm256_div_ps(ve2, vd2); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); output += 24; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
6,695
35
120
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx2-rr1-p5-div-x32.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx2_rr1_p5_div_x32( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx2_rr1_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vone = _mm256_load_ps(params->avx2_rr1_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); for (; batch >= 32 * sizeof(float); batch -= 32 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); input += 32; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0); const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1); const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2); const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); __m256 vf0 = _mm256_div_ps(ve0, vd0); __m256 vf1 = _mm256_div_ps(ve1, vd1); __m256 vf2 = _mm256_div_ps(ve2, vd2); __m256 vf3 = _mm256_div_ps(ve3, vd3); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); output += 32; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
7,594
36.413793
120
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx2-rr1-p5-div-x40.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx2_rr1_p5_div_x40( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx2_rr1_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vone = _mm256_load_ps(params->avx2_rr1_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); for (; batch >= 40 * sizeof(float); batch -= 40 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); input += 40; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask); __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0); const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1); const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2); const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3); const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); const __m256 vd4 = _mm256_add_ps(ve4, vone); __m256 vf0 = _mm256_div_ps(ve0, vd0); __m256 vf1 = _mm256_div_ps(ve1, vd1); __m256 vf2 = _mm256_div_ps(ve2, vd2); __m256 vf3 = _mm256_div_ps(ve3, vd3); __m256 vf4 = _mm256_div_ps(ve4, vd4); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); output += 40; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
8,493
37.609091
120
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx2-rr1-p5-div-x48.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx2_rr1_p5_div_x48( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx2_rr1_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vone = _mm256_load_ps(params->avx2_rr1_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); for (; batch >= 48 * sizeof(float); batch -= 48 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); input += 48; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask); const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask); __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0); const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1); const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2); const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3); const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4); const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); const __m256 vd4 = _mm256_add_ps(ve4, vone); const __m256 vd5 = _mm256_add_ps(ve5, vone); __m256 vf0 = _mm256_div_ps(ve0, vd0); __m256 vf1 = _mm256_div_ps(ve1, vd1); __m256 vf2 = _mm256_div_ps(ve2, vd2); __m256 vf3 = _mm256_div_ps(ve3, vd3); __m256 vf4 = _mm256_div_ps(ve4, vd4); __m256 vf5 = _mm256_div_ps(ve5, vd5); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4); vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); output += 48; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
9,392
38.632911
120
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx2-rr1-p5-div-x56.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx2_rr1_p5_div_x56( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx2_rr1_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vone = _mm256_load_ps(params->avx2_rr1_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); for (; batch >= 56 * sizeof(float); batch -= 56 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); input += 56; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask); const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask); const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask); __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vz6, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vz6); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0); const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1); const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2); const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3); const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4); const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5); const __m256 ve6 = _mm256_fmadd_ps(vt6, vp6, vs6); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); const __m256 vd4 = _mm256_add_ps(ve4, vone); const __m256 vd5 = _mm256_add_ps(ve5, vone); const __m256 vd6 = _mm256_add_ps(ve6, vone); __m256 vf0 = _mm256_div_ps(ve0, vd0); __m256 vf1 = _mm256_div_ps(ve1, vd1); __m256 vf2 = _mm256_div_ps(ve2, vd2); __m256 vf3 = _mm256_div_ps(ve3, vd3); __m256 vf4 = _mm256_div_ps(ve4, vd4); __m256 vf5 = _mm256_div_ps(ve5, vd5); __m256 vf6 = _mm256_div_ps(ve6, vd6); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4); vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5); vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); output += 56; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
10,291
39.519685
120
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx2-rr1-p5-div-x64.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx2_rr1_p5_div_x64( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx2_rr1_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vone = _mm256_load_ps(params->avx2_rr1_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); for (; batch >= 64 * sizeof(float); batch -= 64 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); input += 64; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask); const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask); const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask); const __m256 vz7 = _mm256_or_ps(vx7, vsign_mask); __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vz6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vz7, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vz6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vz7); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0); const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1); const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2); const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3); const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4); const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5); const __m256 ve6 = _mm256_fmadd_ps(vt6, vp6, vs6); const __m256 ve7 = _mm256_fmadd_ps(vt7, vp7, vs7); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); const __m256 vd4 = _mm256_add_ps(ve4, vone); const __m256 vd5 = _mm256_add_ps(ve5, vone); const __m256 vd6 = _mm256_add_ps(ve6, vone); const __m256 vd7 = _mm256_add_ps(ve7, vone); __m256 vf0 = _mm256_div_ps(ve0, vd0); __m256 vf1 = _mm256_div_ps(ve1, vd1); __m256 vf2 = _mm256_div_ps(ve2, vd2); __m256 vf3 = _mm256_div_ps(ve3, vd3); __m256 vf4 = _mm256_div_ps(ve4, vd4); __m256 vf5 = _mm256_div_ps(ve5, vd5); __m256 vf6 = _mm256_div_ps(ve6, vd6); __m256 vf7 = _mm256_div_ps(ve7, vd7); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vz7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4); vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5); vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6); vf7 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf7), vf7, vx7); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); output += 64; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
11,190
40.295203
120
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx2-rr1-p5-div-x72.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx2_rr1_p5_div_x72( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx2_rr1_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vone = _mm256_load_ps(params->avx2_rr1_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); for (; batch >= 72 * sizeof(float); batch -= 72 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); const __m256 vx8 = _mm256_loadu_ps(input + 64); input += 72; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask); const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask); const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask); const __m256 vz7 = _mm256_or_ps(vx7, vsign_mask); const __m256 vz8 = _mm256_or_ps(vx8, vsign_mask); __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vz6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vz7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vz8, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vz6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vz7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2, vz8); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0); const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1); const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2); const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3); const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4); const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5); const __m256 ve6 = _mm256_fmadd_ps(vt6, vp6, vs6); const __m256 ve7 = _mm256_fmadd_ps(vt7, vp7, vs7); const __m256 ve8 = _mm256_fmadd_ps(vt8, vp8, vs8); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); const __m256 vd4 = _mm256_add_ps(ve4, vone); const __m256 vd5 = _mm256_add_ps(ve5, vone); const __m256 vd6 = _mm256_add_ps(ve6, vone); const __m256 vd7 = _mm256_add_ps(ve7, vone); const __m256 vd8 = _mm256_add_ps(ve8, vone); __m256 vf0 = _mm256_div_ps(ve0, vd0); __m256 vf1 = _mm256_div_ps(ve1, vd1); __m256 vf2 = _mm256_div_ps(ve2, vd2); __m256 vf3 = _mm256_div_ps(ve3, vd3); __m256 vf4 = _mm256_div_ps(ve4, vd4); __m256 vf5 = _mm256_div_ps(ve5, vd5); __m256 vf6 = _mm256_div_ps(ve6, vd6); __m256 vf7 = _mm256_div_ps(ve7, vd7); __m256 vf8 = _mm256_div_ps(ve8, vd8); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vz7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vz8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4); vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5); vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6); vf7 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf7), vf7, vx7); vf8 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf8), vf8, vx8); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); output += 72; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
12,089
40.979167
120
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx2-rr1-p5-div-x8.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx2_rr1_p5_div_x8( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx2_rr1_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vone = _mm256_load_ps(params->avx2_rr1_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
3,885
32.791304
120
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx2-rr1-p5-div-x80.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx2_rr1_p5_div_x80( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx2_rr1_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vone = _mm256_load_ps(params->avx2_rr1_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); for (; batch >= 80 * sizeof(float); batch -= 80 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); const __m256 vx2 = _mm256_loadu_ps(input + 16); const __m256 vx3 = _mm256_loadu_ps(input + 24); const __m256 vx4 = _mm256_loadu_ps(input + 32); const __m256 vx5 = _mm256_loadu_ps(input + 40); const __m256 vx6 = _mm256_loadu_ps(input + 48); const __m256 vx7 = _mm256_loadu_ps(input + 56); const __m256 vx8 = _mm256_loadu_ps(input + 64); const __m256 vx9 = _mm256_loadu_ps(input + 72); input += 80; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask); const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask); const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask); const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask); const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask); const __m256 vz7 = _mm256_or_ps(vx7, vsign_mask); const __m256 vz8 = _mm256_or_ps(vx8, vsign_mask); const __m256 vz9 = _mm256_or_ps(vx9, vsign_mask); __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias); __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias); __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias); __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias); __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias); __m256 vn6 = _mm256_fmadd_ps(vz6, vlog2e, vmagic_bias); __m256 vn7 = _mm256_fmadd_ps(vz7, vlog2e, vmagic_bias); __m256 vn8 = _mm256_fmadd_ps(vz8, vlog2e, vmagic_bias); __m256 vn9 = _mm256_fmadd_ps(vz9, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23)); const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23)); const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23)); const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23)); const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23)); const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23)); const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23)); const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); vn2 = _mm256_sub_ps(vn2, vmagic_bias); vn3 = _mm256_sub_ps(vn3, vmagic_bias); vn4 = _mm256_sub_ps(vn4, vmagic_bias); vn5 = _mm256_sub_ps(vn5, vmagic_bias); vn6 = _mm256_sub_ps(vn6, vmagic_bias); vn7 = _mm256_sub_ps(vn7, vmagic_bias); vn8 = _mm256_sub_ps(vn8, vmagic_bias); vn9 = _mm256_sub_ps(vn9, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1); __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2); __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3); __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4); __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5); __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vz6); __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vz7); __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2, vz8); __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2, vz9); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4); __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); vp8 = _mm256_fmadd_ps(vp8, vt8, vc3); vp9 = _mm256_fmadd_ps(vp9, vt9, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); vp8 = _mm256_fmadd_ps(vp8, vt8, vc2); vp9 = _mm256_fmadd_ps(vp9, vt9, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); vp8 = _mm256_fmadd_ps(vp8, vt8, vc1); vp9 = _mm256_fmadd_ps(vp9, vt9, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); vt2 = _mm256_mul_ps(vt2, vs2); vt3 = _mm256_mul_ps(vt3, vs3); vt4 = _mm256_mul_ps(vt4, vs4); vt5 = _mm256_mul_ps(vt5, vs5); vt6 = _mm256_mul_ps(vt6, vs6); vt7 = _mm256_mul_ps(vt7, vs7); vt8 = _mm256_mul_ps(vt8, vs8); vt9 = _mm256_mul_ps(vt9, vs9); const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0); const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1); const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2); const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3); const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4); const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5); const __m256 ve6 = _mm256_fmadd_ps(vt6, vp6, vs6); const __m256 ve7 = _mm256_fmadd_ps(vt7, vp7, vs7); const __m256 ve8 = _mm256_fmadd_ps(vt8, vp8, vs8); const __m256 ve9 = _mm256_fmadd_ps(vt9, vp9, vs9); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); const __m256 vd2 = _mm256_add_ps(ve2, vone); const __m256 vd3 = _mm256_add_ps(ve3, vone); const __m256 vd4 = _mm256_add_ps(ve4, vone); const __m256 vd5 = _mm256_add_ps(ve5, vone); const __m256 vd6 = _mm256_add_ps(ve6, vone); const __m256 vd7 = _mm256_add_ps(ve7, vone); const __m256 vd8 = _mm256_add_ps(ve8, vone); const __m256 vd9 = _mm256_add_ps(ve9, vone); __m256 vf0 = _mm256_div_ps(ve0, vd0); __m256 vf1 = _mm256_div_ps(ve1, vd1); __m256 vf2 = _mm256_div_ps(ve2, vd2); __m256 vf3 = _mm256_div_ps(ve3, vd3); __m256 vf4 = _mm256_div_ps(ve4, vd4); __m256 vf5 = _mm256_div_ps(ve5, vd5); __m256 vf6 = _mm256_div_ps(ve6, vd6); __m256 vf7 = _mm256_div_ps(ve7, vd7); __m256 vf8 = _mm256_div_ps(ve8, vd8); __m256 vf9 = _mm256_div_ps(ve9, vd9); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2); vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3); vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4); vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5); vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6); vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vz7, vdenorm_cutoff, _CMP_LT_OS), vf7); vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vz8, vdenorm_cutoff, _CMP_LT_OS), vf8); vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vz9, vdenorm_cutoff, _CMP_LT_OS), vf9); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2); vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3); vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4); vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5); vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6); vf7 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf7), vf7, vx7); vf8 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf8), vf8, vx8); vf9 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf9), vf9, vx9); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); _mm256_storeu_ps(output + 16, vf2); _mm256_storeu_ps(output + 24, vf3); _mm256_storeu_ps(output + 32, vf4); _mm256_storeu_ps(output + 40, vf5); _mm256_storeu_ps(output + 48, vf6); _mm256_storeu_ps(output + 56, vf7); _mm256_storeu_ps(output + 64, vf8); _mm256_storeu_ps(output + 72, vf9); output += 80; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vf = _mm256_div_ps(ve, vd); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
12,988
41.586885
120
c
XNNPACK
XNNPACK-master/src/f32-vsigmoid/gen/f32-vsigmoid-avx2-rr1-p5-nr1fma-x16.c
// Auto-generated file. Do not edit! // Template: src/f32-vsigmoid/avx2-rr1-p5.c.in // Generator: tools/xngen // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include <assert.h> #include <immintrin.h> #include <xnnpack/common.h> #include <xnnpack/vunary.h> void xnn_f32_vsigmoid_ukernel__avx2_rr1_p5_nr1fma_x16( size_t batch, const float* input, float* output, const union xnn_f32_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(batch != 0); assert(batch % sizeof(float) == 0); assert(input != NULL); assert(output != NULL); const __m256 vsign_mask = _mm256_load_ps(params->avx2_rr1_p5.sign_mask); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p5.magic_bias); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p5.log2e); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p5.minus_ln2); const __m256 vc5 = _mm256_load_ps(params->avx2_rr1_p5.c5); const __m256 vc4 = _mm256_load_ps(params->avx2_rr1_p5.c4); const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p5.c3); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p5.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p5.c1); const __m256 vone = _mm256_load_ps(params->avx2_rr1_p5.one); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p5.denorm_cutoff); for (; batch >= 16 * sizeof(float); batch -= 16 * sizeof(float)) { const __m256 vx0 = _mm256_loadu_ps(input); const __m256 vx1 = _mm256_loadu_ps(input + 8); input += 16; const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias); __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias); const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); vn0 = _mm256_sub_ps(vn0, vmagic_bias); vn1 = _mm256_sub_ps(vn1, vmagic_bias); __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0); __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1); __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); vt0 = _mm256_mul_ps(vt0, vs0); vt1 = _mm256_mul_ps(vt1, vs1); const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0); const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1); const __m256 vd0 = _mm256_add_ps(ve0, vone); const __m256 vd1 = _mm256_add_ps(ve1, vone); __m256 vr0 = _mm256_rcp_ps(vd0); __m256 vr1 = _mm256_rcp_ps(vd1); vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0); vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1); __m256 vf0 = _mm256_mul_ps(ve0, vr0); __m256 vf1 = _mm256_mul_ps(ve1, vr1); vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); _mm256_storeu_ps(output, vf0); _mm256_storeu_ps(output + 8, vf1); output += 16; } for (; batch >= 8 * sizeof(float); batch -= 8 * sizeof(float)) { const __m256 vx = _mm256_loadu_ps(input); input += 8; const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); _mm256_storeu_ps(output, vf); output += 8; } if XNN_UNLIKELY(batch != 0) { assert(batch >= 1 * sizeof(float)); assert(batch <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &params->avx2_rr1_p5.mask_table[7] - batch)); const __m256 vx = _mm256_maskload_ps(input, vmask); const __m256 vz = _mm256_or_ps(vx, vsign_mask); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); vt = _mm256_mul_ps(vt, vs); const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); const __m256 vd = _mm256_add_ps(ve, vone); __m256 vr = _mm256_rcp_ps(vd); vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr); __m256 vf = _mm256_mul_ps(ve, vr); vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(float))) { _mm_storeu_ps(output, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); output += 4; } if (batch & (2 * sizeof(float))) { _mm_storel_pi((__m64*) output, vf_lo); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); output += 2; } if (batch & (1 * sizeof(float))) { _mm_store_ss(output, vf_lo); } } }
6,220
33.561111
120
c