task_id
stringlengths
1
3
prompt
stringclasses
1 value
description
stringlengths
37
249
entry_point
stringlengths
3
33
canonical_solution
stringlengths
30
1.33k
given_tests
sequencelengths
3
3
test
stringlengths
127
4.21k
701
Write a function to find the equilibrium index of the given array.
equilibrium_index
def equilibrium_index(arr): total_sum = sum(arr) left_sum=0 for i, num in enumerate(arr): total_sum -= num if left_sum == total_sum: return i left_sum += num return -1
[ "assert equilibrium_index([1, 2, 8]) == -1", "assert equilibrium_index([3, 1, 6]) == -1", "assert equilibrium_index([2, 2, 1]) == -1" ]
def check(candidate): # Check some simple cases assert equilibrium_index([1, 2, 3, 4, 1, 2, 3]) == 3 assert equilibrium_index([-7, 1, 5, 2, -4, 3, 0]) == 3 assert equilibrium_index([1, 2, 3]) == -1
702
Write a function to find the minimum number of elements that should be removed such that amax-amin<=k.
removals
def find_ind(key, i, n, k, arr): ind = -1 start = i + 1 end = n - 1; while (start < end): mid = int(start + (end - start) / 2) if (arr[mid] - key <= k): ind = mid start = mid + 1 else: end = mid return ind def removals(arr, n, k): ans = n - 1 arr.sort() for i in range(0, n): j = find_ind(arr[i], i, n, k, arr) if (j != -1): ans = min(ans, n - (j - i + 1)) return ans
[ "assert removals([6, 7, 1, 5, 3, 2], 5, 2) == 2", "assert removals([6, 5, 6, 1, 10, 11], 4, 6) == 1", "assert removals([6, 3, 8, 2, 6, 5], 1, 3) == 0" ]
def check(candidate): # Check some simple cases assert removals([1, 3, 4, 9, 10,11, 12, 17, 20], 9, 4) == 5 assert removals([1, 5, 6, 2, 8], 5, 2) == 3 assert removals([1, 2, 3 ,4, 5, 6], 6, 3) == 2
703
Write a function to check whether the given key is present in the dictionary or not.
is_key_present
def is_key_present(d,x): if x in d: return True else: return False
[ "assert is_key_present({6: 65, 2: 23, 8: 30, 3: 42, 9: 55}, 5) == False", "assert is_key_present({2: 14, 4: 46, 7: 28, 8: 61}, 10) == False", "assert is_key_present({3: 8, 6: 34, 5: 42, 7: 49, 2: 62}, 10) == False" ]
def check(candidate): # Check some simple cases assert is_key_present({1: 10, 2: 20, 3: 30, 4: 40, 5: 50, 6: 60},5)==True assert is_key_present({1: 10, 2: 20, 3: 30, 4: 40, 5: 50, 6: 60},6)==True assert is_key_present({1: 10, 2: 20, 3: 30, 4: 40, 5: 50, 6: 60},10)==False
704
Write a function to calculate the harmonic sum of n-1.
harmonic_sum
def harmonic_sum(n): if n < 2: return 1 else: return 1 / n + (harmonic_sum(n - 1))
[ "assert harmonic_sum(5) == 2.283333333333333", "assert harmonic_sum(8) == 2.7178571428571425", "assert harmonic_sum(3) == 1.8333333333333333" ]
def check(candidate): # Check some simple cases assert harmonic_sum(10)==2.9289682539682538 assert harmonic_sum(4)==2.083333333333333 assert harmonic_sum(7)==2.5928571428571425
705
Write a function to sort a list of lists by length and value.
sort_sublists
def sort_sublists(list1): list1.sort() list1.sort(key=len) return list1
[ "assert sort_sublists([['kuibndwhdm'], ['tcbxeb', 'R', '?#D^I/'], ['ZVQMFATTJ'], ['GUVS', 'IPPNCOL']]) == [['ZVQMFATTJ'], ['kuibndwhdm'], ['GUVS', 'IPPNCOL'], ['tcbxeb', 'R', '?#D^I/']]", "assert sort_sublists([['gpqazdnk'], ['zqvzfm', 'H', '|<KAT<QWR'], ['WQRE'], ['DLURZTEDK', 'ZMB']]) == [['WQRE'], ['gpqazdnk'], ['DLURZTEDK', 'ZMB'], ['zqvzfm', 'H', '|<KAT<QWR']]", "assert sort_sublists([['eoloafv'], ['qyixgii', 'M', '!:*L@~:V'], ['BEYLVB'], ['YACVQCJF', 'RGIWMVFO']]) == [['BEYLVB'], ['eoloafv'], ['YACVQCJF', 'RGIWMVFO'], ['qyixgii', 'M', '!:*L@~:V']]" ]
def check(candidate): # Check some simple cases assert sort_sublists([[2], [0], [1, 3], [0, 7], [9, 11], [13, 15, 17]])==[[0], [2], [0, 7], [1, 3], [9, 11], [13, 15, 17]] assert sort_sublists([[1], [2, 3], [4, 5, 6], [7], [10, 11]])==[[1], [7], [2, 3], [10, 11], [4, 5, 6]] assert sort_sublists([["python"],["java","C","C++"],["DBMS"],["SQL","HTML"]])==[['DBMS'], ['python'], ['SQL', 'HTML'], ['java', 'C', 'C++']]
706
Write a function to find whether an array is subset of another array.
is_subset
def is_subset(arr1, m, arr2, n): hashset = set() for i in range(0, m): hashset.add(arr1[i]) for i in range(0, n): if arr2[i] in hashset: continue else: return False return True
[ "assert is_subset([13, 3, 1, 26, 14], 4, [21, 9, 6], 8) == False", "assert is_subset([14, 4, 1, 24, 17], 5, [24, 2, 4], 6) == False", "assert is_subset([12, 5, 7, 24, 20], 5, [18, 1, 1], 6) == False" ]
def check(candidate): # Check some simple cases assert is_subset([11, 1, 13, 21, 3, 7], 6, [11, 3, 7, 1], 4) == True assert is_subset([1, 2, 3, 4, 5, 6], 6, [1, 2, 4], 3) == True assert is_subset([10, 5, 2, 23, 19], 5, [19, 5, 3], 3) == False
707
Write a python function to count the total set bits from 1 to n.
count_Set_Bits
def count_Set_Bits(n) : n += 1; powerOf2 = 2; cnt = n // 2; while (powerOf2 <= n) : totalPairs = n // powerOf2; cnt += (totalPairs // 2) * powerOf2; if (totalPairs & 1) : cnt += (n % powerOf2) else : cnt += 0 powerOf2 <<= 1; return cnt;
[ "assert count_Set_Bits(16) == 33", "assert count_Set_Bits(14) == 28", "assert count_Set_Bits(19) == 40" ]
def check(candidate): # Check some simple cases assert count_Set_Bits(16) == 33 assert count_Set_Bits(2) == 2 assert count_Set_Bits(14) == 28
708
Write a python function to convert a string to a list.
Convert
def Convert(string): li = list(string.split(" ")) return li
[ "assert Convert(\"YSLkHGFKwHCJs\") == ['YSLkHGFKwHCJs']", "assert Convert(\"TvoCqLjQiipx\") == ['TvoCqLjQiipx']", "assert Convert(\"uIkILmRpxbxMgFA\") == ['uIkILmRpxbxMgFA']" ]
def check(candidate): # Check some simple cases assert Convert('python program') == ['python','program'] assert Convert('Data Analysis') ==['Data','Analysis'] assert Convert('Hadoop Training') == ['Hadoop','Training']
709
Write a function to count unique keys for each value present in the tuple.
get_unique
from collections import defaultdict def get_unique(test_list): res = defaultdict(list) for sub in test_list: res[sub[1]].append(sub[0]) res = dict(res) res_dict = dict() for key in res: res_dict[key] = len(list(set(res[key]))) return (str(res_dict))
[ "assert get_unique([(10, 2), (2, 6), (6, 1), (6, 5), (7, 18), (13, 12), (8, 6), (13, 6), (14, 3)]) == {2: 1, 6: 3, 1: 1, 5: 1, 18: 1, 12: 1, 3: 1}", "assert get_unique([(6, 10), (8, 3), (6, 4), (8, 5), (4, 26), (9, 16), (4, 7), (15, 1), (11, 7)]) == {10: 1, 3: 1, 4: 1, 5: 1, 26: 1, 16: 1, 7: 2, 1: 1}", "assert get_unique([(2, 8), (1, 6), (7, 11), (10, 5), (6, 25), (13, 9), (1, 8), (14, 3), (6, 1)]) == {8: 2, 6: 1, 11: 1, 5: 1, 25: 1, 9: 1, 3: 1, 1: 1}" ]
def check(candidate): # Check some simple cases assert get_unique([(3, 4), (1, 2), (2, 4), (8, 2), (7, 2), (8, 1), (9, 1), (8, 4), (10, 4)] ) == '{4: 4, 2: 3, 1: 2}' assert get_unique([(4, 5), (2, 3), (3, 5), (9, 3), (8, 3), (9, 2), (10, 2), (9, 5), (11, 5)] ) == '{5: 4, 3: 3, 2: 2}' assert get_unique([(6, 5), (3, 4), (2, 6), (11, 1), (8, 22), (8, 11), (4, 3), (14, 3), (11, 6)] ) == '{5: 1, 4: 1, 6: 2, 1: 1, 22: 1, 11: 1, 3: 2}'
710
Write a function to access the initial and last data of the given tuple record.
front_and_rear
def front_and_rear(test_tup): res = (test_tup[0], test_tup[-1]) return (res)
[ "assert front_and_rear((6, 5, 5, 10, 7)) == (6, 7)", "assert front_and_rear((8, 9, 3, 14, 15)) == (8, 15)", "assert front_and_rear((7, 7, 4, 11, 15)) == (7, 15)" ]
def check(candidate): # Check some simple cases assert front_and_rear((10, 4, 5, 6, 7)) == (10, 7) assert front_and_rear((1, 2, 3, 4, 5)) == (1, 5) assert front_and_rear((6, 7, 8, 9, 10)) == (6, 10)
711
Write a python function to check whether the product of digits of a number at even and odd places is equal or not.
product_Equal
def product_Equal(n): if n < 10: return False prodOdd = 1; prodEven = 1 while n > 0: digit = n % 10 prodOdd *= digit n = n//10 if n == 0: break; digit = n % 10 prodEven *= digit n = n//10 if prodOdd == prodEven: return True return False
[ "assert product_Equal(280) == False", "assert product_Equal(1313) == False", "assert product_Equal(1477) == False" ]
def check(candidate): # Check some simple cases assert product_Equal(2841) == True assert product_Equal(1234) == False assert product_Equal(1212) == False
712
Write a function to remove duplicates from a list of lists.
remove_duplicate
import itertools def remove_duplicate(list1): list.sort(list1) remove_duplicate = list(list1 for list1,_ in itertools.groupby(list1)) return remove_duplicate
[ "assert remove_duplicate([5, 3, 8, 7, 1, 9, 4, 2]) == [1, 2, 3, 4, 5, 7, 8, 9]", "assert remove_duplicate([1, 8, 2, 9, 4, 5, 10, 3]) == [1, 2, 3, 4, 5, 8, 9, 10]", "assert remove_duplicate([3, 7, 2, 4, 4, 4, 5, 5]) == [2, 3, 4, 5, 7]" ]
def check(candidate): # Check some simple cases assert remove_duplicate([[10, 20], [40], [30, 56, 25], [10, 20], [33], [40]])==[[10, 20], [30, 56, 25], [33], [40]] assert remove_duplicate(["a", "b", "a", "c", "c"] )==["a", "b", "c"] assert remove_duplicate([1, 3, 5, 6, 3, 5, 6, 1] )==[1, 3, 5, 6]
713
Write a function to check if the given tuple contains all valid values or not.
check_valid
def check_valid(test_tup): res = not any(map(lambda ele: not ele, test_tup)) return (res)
[ "assert check_valid((2, 4, 2, 1)) == True", "assert check_valid((3, 5, 4, 2)) == True", "assert check_valid((5, 4, 6, 6)) == True" ]
def check(candidate): # Check some simple cases assert check_valid((True, True, True, True) ) == True assert check_valid((True, False, True, True) ) == False assert check_valid((True, True, True, True) ) == True
714
Write a python function to count the number of distinct power of prime factor of given number.
count_Fac
def count_Fac(n): m = n count = 0 i = 2 while((i * i) <= m): total = 0 while (n % i == 0): n /= i total += 1 temp = 0 j = 1 while((temp + j) <= total): temp += j count += 1 j += 1 i += 1 if (n != 1): count += 1 return count
[ "assert count_Fac(7) == 1", "assert count_Fac(2) == 1", "assert count_Fac(4) == 1" ]
def check(candidate): # Check some simple cases assert count_Fac(24) == 3 assert count_Fac(12) == 2 assert count_Fac(4) == 1
715
Write a function to convert the given string of integers into a tuple.
str_to_tuple
def str_to_tuple(test_str): res = tuple(map(int, test_str.split(', '))) return (res)
[ "assert str_to_tuple(\"(10, 1, 5, -8, -7, 6, -5, 17, -1, -17)\") == (10, 1, 5, -8, -7, 6, -5, 17, -1, -17)", "assert str_to_tuple(\"(-7, 4, -9, -17, -1, 6, 5, -8, -5)\") == (-7, 4, -9, -17, -1, 6, 5, -8, -5)", "assert str_to_tuple(\"(17, 10, 17, -18, -10, 16, -12, 15, -16, -14)\") == (17, 10, 17, -18, -10, 16, -12, 15, -16, -14)" ]
def check(candidate): # Check some simple cases assert str_to_tuple("1, -5, 4, 6, 7") == (1, -5, 4, 6, 7) assert str_to_tuple("1, 2, 3, 4, 5") == (1, 2, 3, 4, 5) assert str_to_tuple("4, 6, 9, 11, 13, 14") == (4, 6, 9, 11, 13, 14)
716
Write a function to find the perimeter of a rombus.
rombus_perimeter
def rombus_perimeter(a): perimeter=4*a return perimeter
[ "assert rombus_perimeter(3) == 12", "assert rombus_perimeter(7) == 28", "assert rombus_perimeter(4) == 16" ]
def check(candidate): # Check some simple cases assert rombus_perimeter(10)==40 assert rombus_perimeter(5)==20 assert rombus_perimeter(4)==16
717
Write a function to calculate the standard deviation.
sd_calc
import math import sys def sd_calc(data): n = len(data) if n <= 1: return 0.0 mean, sd = avg_calc(data), 0.0 for el in data: sd += (float(el) - mean)**2 sd = math.sqrt(sd / float(n-1)) return sd def avg_calc(ls): n, mean = len(ls), 0.0 if n <= 1: return ls[0] for el in ls: mean = mean + float(el) mean = mean / float(n) return mean
[ "assert sd_calc([7, 11, 15, 12, 4, 2]) == 5.0099900199501395", "assert sd_calc([5, 10, 11, 18, 2, 9]) == 5.49241901776136", "assert sd_calc([7, 14, 6, 10, 10, 1]) == 4.427188724235731" ]
def check(candidate): # Check some simple cases assert sd_calc([4, 2, 5, 8, 6])== 2.23606797749979 assert sd_calc([1,2,3,4,5,6,7])==2.160246899469287 assert sd_calc([5,9,10,15,6,4])==4.070217029430577
718
Write a function to create a list taking alternate elements from another given list.
alternate_elements
def alternate_elements(list1): result=[] for item in list1[::2]: result.append(item) return result
[ "assert alternate_elements([6, 5, 4, 3, 1, 11, 8, 8, 8, 13]) == [6, 4, 1, 8, 8]", "assert alternate_elements([2, 3, 2, 8, 10, 10, 4, 9, 9, 5]) == [2, 2, 10, 4, 9]", "assert alternate_elements([2, 4, 2, 2, 7, 11, 11, 9, 4, 11]) == [2, 2, 7, 11, 4]" ]
def check(candidate): # Check some simple cases assert alternate_elements(["red", "black", "white", "green", "orange"])==['red', 'white', 'orange'] assert alternate_elements([2, 0, 3, 4, 0, 2, 8, 3, 4, 2])==[2, 3, 0, 8, 4] assert alternate_elements([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])==[1,3,5,7,9]
719
Write a function that matches a string that has an a followed by zero or more b's.
text_match
import re def text_match(text): patterns = 'ab*?' if re.search(patterns, text): return 'Found a match!' else: return('Not matched!')
[ "assert text_match(\"mkpumjrun\") == \"Not matched!\"", "assert text_match(\"yydi\") == \"Not matched!\"", "assert text_match(\"mohol\") == \"Not matched!\"" ]
def check(candidate): # Check some simple cases assert text_match("ac")==('Found a match!') assert text_match("dc")==('Not matched!') assert text_match("abba")==('Found a match!')
720
Write a function to add a dictionary to the tuple.
add_dict_to_tuple
def add_dict_to_tuple(test_tup, test_dict): test_tup = list(test_tup) test_tup.append(test_dict) test_tup = tuple(test_tup) return (test_tup)
[ "assert add_dict_to_tuple((9, 5, 6), {'ALCTMRJ': 8, 'qidyz': 4, 'EzDCxP': 5}) == (9, 5, 6, {'ALCTMRJ': 8, 'qidyz': 4, 'EzDCxP': 5})", "assert add_dict_to_tuple((6, 14, 7), {'HLDBTSOJ': 7, 'ere': 2, 'WaIaT': 6}) == (6, 14, 7, {'HLDBTSOJ': 7, 'ere': 2, 'WaIaT': 6})", "assert add_dict_to_tuple((8, 12, 5), {'EFMSUUP': 3, 'umilo': 7, 'GCPGlM': 9}) == (8, 12, 5, {'EFMSUUP': 3, 'umilo': 7, 'GCPGlM': 9})" ]
def check(candidate): # Check some simple cases assert add_dict_to_tuple((4, 5, 6), {"MSAM" : 1, "is" : 2, "best" : 3} ) == (4, 5, 6, {'MSAM': 1, 'is': 2, 'best': 3}) assert add_dict_to_tuple((1, 2, 3), {"UTS" : 2, "is" : 3, "Worst" : 4} ) == (1, 2, 3, {'UTS': 2, 'is': 3, 'Worst': 4}) assert add_dict_to_tuple((8, 9, 10), {"POS" : 3, "is" : 4, "Okay" : 5} ) == (8, 9, 10, {'POS': 3, 'is': 4, 'Okay': 5})
721
Write a function to find a path with the maximum average over all existing paths for the given square matrix of size n*n.
maxAverageOfPath
M = 100 def maxAverageOfPath(cost, N): dp = [[0 for i in range(N + 1)] for j in range(N + 1)] dp[0][0] = cost[0][0] for i in range(1, N): dp[i][0] = dp[i - 1][0] + cost[i][0] for j in range(1, N): dp[0][j] = dp[0][j - 1] + cost[0][j] for i in range(1, N): for j in range(1, N): dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + cost[i][j] return dp[N - 1][N - 1] / (2 * N - 1)
[ "assert maxAverageOfPath([[8, 7, 8], [9, 11, 1], [4, 7, 8]], 2) == 9.333333333333334", "assert maxAverageOfPath([[2, 7, 8], [6, 2, 9], [8, 8, 9]], 3) == 7.0", "assert maxAverageOfPath([[6, 5, 2], [13, 8, 8], [12, 2, 7]], 3) == 8.4" ]
def check(candidate): # Check some simple cases assert maxAverageOfPath([[1, 2, 3], [6, 5, 4], [7, 3, 9]], 3) == 5.2 assert maxAverageOfPath([[2, 3, 4], [7, 6, 5], [8, 4, 10]], 3) == 6.2 assert maxAverageOfPath([[3, 4, 5], [8, 7, 6], [9, 5, 11]], 3) == 7.2
722
Write a function to filter the height and width of students which are stored in a dictionary.
filter_data
def filter_data(students,h,w): result = {k: s for k, s in students.items() if s[0] >=h and s[1] >=w} return result
[ "assert filter_data({'BRHfEyUjdx ': (5.457458146114651, 66), 'fzrrYNSdDxUheeU': (10.92405363155631, 69), 'JdnPIAKuAfv': (4.357091687688858, 65), 'aQheXW': (3.952194537773692, 65)}, 4.223505312604639, 64) == {'BRHfEyUjdx ': (5.457458146114651, 66), 'fzrrYNSdDxUheeU': (10.92405363155631, 69), 'JdnPIAKuAfv': (4.357091687688858, 65)}", "assert filter_data({'wZELryCRs': (8.668537083392351, 73), 'bqbKlQDpJatXAhUOAX': (10.249461209697555, 64), 'APMCWYXXH': (11.121756378595776, 65), 'Gtq jwM Q': (5.566088523638032, 62)}, 2.10363139390391, 66) == {'wZELryCRs': (8.668537083392351, 73)}", "assert filter_data({'QRHxQxhLYL': (3.176839565846304, 69), 'p ZVcGOQWUPJXCGWb': (2.974046304837316, 66), 'CxQe OyxCt': (10.593866014566412, 67), 'SEIHtz KMJ ': (9.070785608461383, 69)}, 3.7436979657999854, 69) == {'SEIHtz KMJ ': (9.070785608461383, 69)}" ]
def check(candidate): # Check some simple cases assert filter_data({'Cierra Vega': (6.2, 70), 'Alden Cantrell': (5.9, 65), 'Kierra Gentry': (6.0, 68), 'Pierre Cox': (5.8, 66)},6.0,70)=={'Cierra Vega': (6.2, 70)} assert filter_data({'Cierra Vega': (6.2, 70), 'Alden Cantrell': (5.9, 65), 'Kierra Gentry': (6.0, 68), 'Pierre Cox': (5.8, 66)},5.9,67)=={'Cierra Vega': (6.2, 70),'Kierra Gentry': (6.0, 68)} assert filter_data({'Cierra Vega': (6.2, 70), 'Alden Cantrell': (5.9, 65), 'Kierra Gentry': (6.0, 68), 'Pierre Cox': (5.8, 66)},5.7,64)=={'Cierra Vega': (6.2, 70),'Alden Cantrell': (5.9, 65),'Kierra Gentry': (6.0, 68),'Pierre Cox': (5.8, 66)}
723
Write a function to count the same pair in two given lists using map function.
count_same_pair
from operator import eq def count_same_pair(nums1, nums2): result = sum(map(eq, nums1, nums2)) return result
[ "assert count_same_pair([2, 4, -1, -8, 11, -7, 11, -1, 18], [2, 5, 2, -4, -2, 1, 7, -3, 1, 8, 7, 7, 4]) == 1", "assert count_same_pair([2, 3, -7, -14, 11, -14, 17, -5, 17], [2, 1, 6, 1, -3, 8, 9, -6, 0, 8, 4, 7, 9]) == 1", "assert count_same_pair([2, 1, -5, -8, 9, -15, 16, -3, 17], [2, 1, 6, 1, -1, 6, 7, -3, -5, 5, 6, 9, 5]) == 3" ]
def check(candidate): # Check some simple cases assert count_same_pair([1, 2, 3, 4, 5, 6, 7, 8],[2, 2, 3, 1, 2, 6, 7, 9])==4 assert count_same_pair([0, 1, 2, -1, -5, 6, 0, -3, -2, 3, 4, 6, 8],[2, 1, 2, -1, -5, 6, 4, -3, -2, 3, 4, 6, 8])==11 assert count_same_pair([2, 4, -6, -9, 11, -12, 14, -5, 17],[2, 1, 2, -1, -5, 6, 4, -3, -2, 3, 4, 6, 8])==1
724
Write a function to calculate the sum of all digits of the base to the specified power.
power_base_sum
def power_base_sum(base, power): return sum([int(i) for i in str(pow(base, power))])
[ "assert power_base_sum(8, 17) == 80", "assert power_base_sum(5, 12) == 28", "assert power_base_sum(9, 17) == 99" ]
def check(candidate): # Check some simple cases assert power_base_sum(2,100)==115 assert power_base_sum(8,10)==37 assert power_base_sum(8,15)==62
725
Write a function to extract values between quotation marks of the given string by using regex.
extract_quotation
import re def extract_quotation(text1): return (re.findall(r'"(.*?)"', text1))
[ "assert extract_quotation(\"VRa H7Qyv6Co6dl3OithtTv0sIZrapRuYBrlsWfUJzyc4Afg5XcXuGOn2Wlha\") == []", "assert extract_quotation(\"JpzWHgkYPTkaE9VlGNvyKm7qVobRRv8jsiKf3P87X3zXqhwUUvT6bD7aGON8g0\") == []", "assert extract_quotation(\"lkjXysUOk BOD407sYW6T 5WKJcGcvndgUYGarnVBVrqEefHHd6j5FNxDzH5c5GM\") == []" ]
def check(candidate): # Check some simple cases assert extract_quotation('Cortex "A53" Based "multi" tasking "Processor"') == ['A53', 'multi', 'Processor'] assert extract_quotation('Cast your "favorite" entertainment "apps"') == ['favorite', 'apps'] assert extract_quotation('Watch content "4k Ultra HD" resolution with "HDR 10" Support') == ['4k Ultra HD', 'HDR 10']
726
Write a function to multiply the adjacent elements of the given tuple.
multiply_elements
def multiply_elements(test_tup): res = tuple(i * j for i, j in zip(test_tup, test_tup[1:])) return (res)
[ "assert multiply_elements((14, 14, 13, 11, 10)) == (196, 182, 143, 110)", "assert multiply_elements((17, 10, 18, 4, 20)) == (170, 180, 72, 80)", "assert multiply_elements((7, 10, 19, 12, 18)) == (70, 190, 228, 216)" ]
def check(candidate): # Check some simple cases assert multiply_elements((1, 5, 7, 8, 10)) == (5, 35, 56, 80) assert multiply_elements((2, 4, 5, 6, 7)) == (8, 20, 30, 42) assert multiply_elements((12, 13, 14, 9, 15)) == (156, 182, 126, 135)
727
Write a function to remove all characters except letters and numbers using regex
remove_char
import re def remove_char(S): result = re.sub('[\W_]+', '', S) return result
[ "assert remove_char(\"$n,M*q9sz&el2|7/bshK6Sj?ig_\") == \"nMq9szel27bshK6Sjig\"", "assert remove_char(\"NMtbC>U&DU8=xCi0WgcnP0>K0*loK-\") == \"NMtbCUDU8xCi0WgcnP0K0loK\"", "assert remove_char(\"1tc*N|T a4rn~KX62cxegof^\") == \"1tcNTa4rnKX62cxegof\"" ]
def check(candidate): # Check some simple cases assert remove_char("123abcjw:, .@! eiw") == '123abcjweiw' assert remove_char("Hello1234:, ! Howare33u") == 'Hello1234Howare33u' assert remove_char("Cool543Triks@:, Make@987Trips") == 'Cool543TriksMake987Trips'
728
Write a function to sum elements in two lists.
sum_list
def sum_list(lst1,lst2): res_list = [lst1[i] + lst2[i] for i in range(len(lst1))] return res_list
[ "assert sum_list([13, 18, 25], [16, 45, 75]) == [29, 63, 100]", "assert sum_list([18, 25, 35], [19, 47, 79]) == [37, 72, 114]", "assert sum_list([18, 25, 29], [16, 48, 73]) == [34, 73, 102]" ]
def check(candidate): # Check some simple cases assert sum_list([10,20,30],[15,25,35])==[25,45,65] assert sum_list([1,2,3],[5,6,7])==[6,8,10] assert sum_list([15,20,30],[15,45,75])==[30,65,105]
729
Write a function to add two lists using map and lambda function.
add_list
def add_list(nums1,nums2): result = map(lambda x, y: x + y, nums1, nums2) return list(result)
[ "assert add_list([7, 24], [47, 65]) == [54, 89]", "assert add_list([14, 16], [52, 74]) == [66, 90]", "assert add_list([15, 19], [51, 69]) == [66, 88]" ]
def check(candidate): # Check some simple cases assert add_list([1, 2, 3],[4,5,6])==[5, 7, 9] assert add_list([1,2],[3,4])==[4,6] assert add_list([10,20],[50,70])==[60,90]
730
Write a function to remove consecutive duplicates of a given list.
consecutive_duplicates
from itertools import groupby def consecutive_duplicates(nums): return [key for key, group in groupby(nums)]
[ "assert consecutive_duplicates(['w', 'w', 'k', 'l', 'i', 'l']) == ['w', 'k', 'l', 'i', 'l']", "assert consecutive_duplicates(['o', 'm', 's', 'f', 'c', 't']) == ['o', 'm', 's', 'f', 'c', 't']", "assert consecutive_duplicates(['u', 'v', 'b', 'h', 'u', 's']) == ['u', 'v', 'b', 'h', 'u', 's']" ]
def check(candidate): # Check some simple cases assert consecutive_duplicates([0, 0, 1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 8, 9, 4, 4 ])==[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 4] assert consecutive_duplicates([10, 10, 15, 19, 18, 18, 17, 26, 26, 17, 18, 10])==[10, 15, 19, 18, 17, 26, 17, 18, 10] assert consecutive_duplicates(['a', 'a', 'b', 'c', 'd', 'd'])==['a', 'b', 'c', 'd']
731
Write a function to find the lateral surface area of a cone.
lateralsurface_cone
import math def lateralsurface_cone(r,h): l = math.sqrt(r * r + h * h) LSA = math.pi * r * l return LSA
[ "assert lateralsurface_cone(17, 21) == 1442.9797089695412", "assert lateralsurface_cone(24, 13) == 2057.9710009121764", "assert lateralsurface_cone(15, 16) == 1033.5075888970994" ]
def check(candidate): # Check some simple cases assert lateralsurface_cone(5,12)==204.20352248333654 assert lateralsurface_cone(10,15)==566.3586699569488 assert lateralsurface_cone(19,17)==1521.8090132193388
732
Write a function to replace all occurrences of spaces, commas, or dots with a colon.
replace_specialchar
import re def replace_specialchar(text): return (re.sub("[ ,.]", ":", text))
[ "assert replace_specialchar(\"z ncvpxmtpacwuyp,b,x\") == \"z:ncvpxmtpacwuyp:b:x\"", "assert replace_specialchar(\"dsssro,lvxxljhs\") == \"dsssro:lvxxljhs\"", "assert replace_specialchar(\"yamk igpnjiwsnjbpd fk\") == \"yamk::igpnjiwsnjbpd:fk\"" ]
def check(candidate): # Check some simple cases assert replace_specialchar('Python language, Programming language.')==('Python:language::Programming:language:') assert replace_specialchar('a b c,d e f')==('a:b:c:d:e:f') assert replace_specialchar('ram reshma,ram rahim')==('ram:reshma:ram:rahim')
733
Write a function to find the index of the first occurrence of a given number in a sorted array.
find_first_occurrence
def find_first_occurrence(A, x): (left, right) = (0, len(A) - 1) result = -1 while left <= right: mid = (left + right) // 2 if x == A[mid]: result = mid right = mid - 1 elif x < A[mid]: right = mid - 1 else: left = mid + 1 return result
[ "assert find_first_occurrence([1, 6, 3, 10, 9, 6, 10, 9, 5, 4], 1) == 0", "assert find_first_occurrence([4, 2, 4, 1, 9, 3, 12, 13, 5, 7], 8) == -1", "assert find_first_occurrence([7, 6, 1, 5, 9, 5, 9, 12, 13, 11], 5) == -1" ]
def check(candidate): # Check some simple cases assert find_first_occurrence([2, 5, 5, 5, 6, 6, 8, 9, 9, 9], 5) == 1 assert find_first_occurrence([2, 3, 5, 5, 6, 6, 8, 9, 9, 9], 5) == 2 assert find_first_occurrence([2, 4, 1, 5, 6, 6, 8, 9, 9, 9], 6) == 4
734
Write a python function to find sum of products of all possible subarrays.
sum_Of_Subarray_Prod
def sum_Of_Subarray_Prod(arr,n): ans = 0 res = 0 i = n - 1 while (i >= 0): incr = arr[i]*(1 + res) ans += incr res = incr i -= 1 return (ans)
[ "assert sum_Of_Subarray_Prod([6, 6, 4, 7], 2) == 48", "assert sum_Of_Subarray_Prod([2, 4, 7, 3], 4) == 381", "assert sum_Of_Subarray_Prod([3, 4, 1, 3], 2) == 19" ]
def check(candidate): # Check some simple cases assert sum_Of_Subarray_Prod([1,2,3],3) == 20 assert sum_Of_Subarray_Prod([1,2],2) == 5 assert sum_Of_Subarray_Prod([1,2,3,4],4) == 84
735
Write a python function to toggle bits of the number except the first and the last bit.
toggle_middle_bits
def set_middle_bits(n): n |= n >> 1; n |= n >> 2; n |= n >> 4; n |= n >> 8; n |= n >> 16; return (n >> 1) ^ 1 def toggle_middle_bits(n): if (n == 1): return 1 return n ^ set_middle_bits(n)
[ "assert toggle_middle_bits(16) == 30", "assert toggle_middle_bits(12) == 10", "assert toggle_middle_bits(16) == 30" ]
def check(candidate): # Check some simple cases assert toggle_middle_bits(9) == 15 assert toggle_middle_bits(10) == 12 assert toggle_middle_bits(11) == 13
736
Write a function to locate the left insertion point for a specified value in sorted order.
left_insertion
import bisect def left_insertion(a, x): i = bisect.bisect_left(a, x) return i
[ "assert left_insertion([2, 3, 1, 5], 10) == 4", "assert left_insertion([3, 4, 9, 7], 2) == 0", "assert left_insertion([3, 3, 2, 2], 8) == 4" ]
def check(candidate): # Check some simple cases assert left_insertion([1,2,4,5],6)==4 assert left_insertion([1,2,4,5],3)==2 assert left_insertion([1,2,4,5],7)==4
737
Write a function to check whether the given string is starting with a vowel or not using regex.
check_str
import re regex = '^[aeiouAEIOU][A-Za-z0-9_]*' def check_str(string): if(re.search(regex, string)): return ("Valid") else: return ("Invalid")
[ "assert check_str(\"VUbwmby\") == \"Invalid\"", "assert check_str(\"tqOMgj\") == \"Invalid\"", "assert check_str(\"lred\") == \"Invalid\"" ]
def check(candidate): # Check some simple cases assert check_str("annie") == 'Valid' assert check_str("dawood") == 'Invalid' assert check_str("Else") == 'Valid'
738
Write a function to calculate the geometric sum of n-1.
geometric_sum
def geometric_sum(n): if n < 0: return 0 else: return 1 / (pow(2, n)) + geometric_sum(n - 1)
[ "assert geometric_sum(13) == 1.9998779296875", "assert geometric_sum(12) == 1.999755859375", "assert geometric_sum(12) == 1.999755859375" ]
def check(candidate): # Check some simple cases assert geometric_sum(7) == 1.9921875 assert geometric_sum(4) == 1.9375 assert geometric_sum(8) == 1.99609375
739
Write a python function to find the index of smallest triangular number with n digits.
find_Index
import math def find_Index(n): x = math.sqrt(2 * math.pow(10,(n - 1))); return round(x);
[ "assert find_Index(2) == 4", "assert find_Index(3) == 14", "assert find_Index(4) == 45" ]
def check(candidate): # Check some simple cases assert find_Index(2) == 4 assert find_Index(3) == 14 assert find_Index(4) == 45
740
Write a function to convert the given tuple to a key-value dictionary using adjacent elements.
tuple_to_dict
def tuple_to_dict(test_tup): res = dict(test_tup[idx : idx + 2] for idx in range(0, len(test_tup), 2)) return (res)
[ "assert tuple_to_dict((2, 13, 4, 15, 15, 14)) == {2: 13, 4: 15, 15: 14}", "assert tuple_to_dict((9, 9, 8, 8, 13, 14)) == {9: 9, 8: 8, 13: 14}", "assert tuple_to_dict((5, 4, 13, 8, 7, 7)) == {5: 4, 13: 8, 7: 7}" ]
def check(candidate): # Check some simple cases assert tuple_to_dict((1, 5, 7, 10, 13, 5)) == {1: 5, 7: 10, 13: 5} assert tuple_to_dict((1, 2, 3, 4, 5, 6)) == {1: 2, 3: 4, 5: 6} assert tuple_to_dict((7, 8, 9, 10, 11, 12)) == {7: 8, 9: 10, 11: 12}
741
Write a python function to check whether all the characters are same or not.
all_Characters_Same
def all_Characters_Same(s) : n = len(s) for i in range(1,n) : if s[i] != s[0] : return False return True
[ "assert all_Characters_Same(\"fiz\") == False", "assert all_Characters_Same(\"ufghjrdqa\") == False", "assert all_Characters_Same(\"lzytv\") == False" ]
def check(candidate): # Check some simple cases assert all_Characters_Same("python") == False assert all_Characters_Same("aaa") == True assert all_Characters_Same("data") == False
742
Write a function to caluclate the area of a tetrahedron.
area_tetrahedron
import math def area_tetrahedron(side): area = math.sqrt(3)*(side*side) return area
[ "assert area_tetrahedron(8) == 110.85125168440814", "assert area_tetrahedron(11) == 209.57814771583415", "assert area_tetrahedron(7) == 84.87048957087498" ]
def check(candidate): # Check some simple cases assert area_tetrahedron(3)==15.588457268119894 assert area_tetrahedron(20)==692.8203230275509 assert area_tetrahedron(10)==173.20508075688772
743
Write a function to rotate a given list by specified number of items to the right direction.
rotate_right
def rotate_right(list1,m,n): result = list1[-(m):]+list1[:-(n)] return result
[ "assert rotate_right([6, 2, 1, 2, 3, 5, 10, 13, 12, 15], 4, 6) == [10, 13, 12, 15, 6, 2, 1, 2]", "assert rotate_right([4, 2, 3, 5, 8, 7, 4, 13, 5, 10], 9, 3) == [2, 3, 5, 8, 7, 4, 13, 5, 10, 4, 2, 3, 5, 8, 7, 4]", "assert rotate_right([3, 1, 6, 5, 2, 3, 8, 7, 7, 6], 2, 6) == [7, 6, 3, 1, 6, 5]" ]
def check(candidate): # Check some simple cases assert rotate_right([1, 2, 3, 4, 5, 6, 7, 8, 9, 10],3,4)==[8, 9, 10, 1, 2, 3, 4, 5, 6] assert rotate_right([1, 2, 3, 4, 5, 6, 7, 8, 9, 10],2,2)==[9, 10, 1, 2, 3, 4, 5, 6, 7, 8] assert rotate_right([1, 2, 3, 4, 5, 6, 7, 8, 9, 10],5,2)==[6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8]
744
Write a function to check if the given tuple has any none value or not.
check_none
def check_none(test_tup): res = any(map(lambda ele: ele is None, test_tup)) return (res)
[ "assert check_none((3, 6, 5, 4, None)) == True", "assert check_none((5, 1, 8, 2, None)) == True", "assert check_none((1, 5, 3, 2, None)) == True" ]
def check(candidate): # Check some simple cases assert check_none((10, 4, 5, 6, None)) == True assert check_none((7, 8, 9, 11, 14)) == False assert check_none((1, 2, 3, 4, None)) == True
745
Write a function to find numbers within a given range where every number is divisible by every digit it contains.
divisible_by_digits
def divisible_by_digits(startnum, endnum): return [n for n in range(startnum, endnum+1) \ if not any(map(lambda x: int(x) == 0 or n%int(x) != 0, str(n)))]
[ "assert divisible_by_digits(18, 22) == [22]", "assert divisible_by_digits(22, 22) == [22]", "assert divisible_by_digits(21, 21) == []" ]
def check(candidate): # Check some simple cases assert divisible_by_digits(1,22)==[1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22] assert divisible_by_digits(1,15)==[1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15] assert divisible_by_digits(20,25)==[22, 24]
746
Write a function to find area of a sector.
sector_area
def sector_area(r,a): pi=22/7 if a >= 360: return None sectorarea = (pi*r**2) * (a/360) return sectorarea
[ "assert sector_area(7, 358) == 153.14444444444445", "assert sector_area(11, 363) == None", "assert sector_area(8, 362) == None" ]
def check(candidate): # Check some simple cases assert sector_area(4,45)==6.285714285714286 assert sector_area(9,45)==31.82142857142857 assert sector_area(9,360)==None
747
Write a function to find the longest common subsequence for the given three string sequence.
lcs_of_three
def lcs_of_three(X, Y, Z, m, n, o): L = [[[0 for i in range(o+1)] for j in range(n+1)] for k in range(m+1)] for i in range(m+1): for j in range(n+1): for k in range(o+1): if (i == 0 or j == 0 or k == 0): L[i][j][k] = 0 elif (X[i-1] == Y[j-1] and X[i-1] == Z[k-1]): L[i][j][k] = L[i-1][j-1][k-1] + 1 else: L[i][j][k] = max(max(L[i-1][j][k], L[i][j-1][k]), L[i][j][k-1]) return L[m][n][o]
[ "assert lcs_of_three('eat8lhe0t3ux', 'wowee44d4i3', 'iotecuuz', 7, 5, 5) == 1", "assert lcs_of_three('11b8pg541', 'heia1dvei', 'gjw506b7z', 4, 8, 7) == 0", "assert lcs_of_three('h9nzbxk1ebwu', 'wvmb', 'o57', 2, 4, 8) == 0" ]
def check(candidate): # Check some simple cases assert lcs_of_three('AGGT12', '12TXAYB', '12XBA', 6, 7, 5) == 2 assert lcs_of_three('Reels', 'Reelsfor', 'ReelsforReels', 5, 8, 13) == 5 assert lcs_of_three('abcd1e2', 'bc12ea', 'bd1ea', 7, 6, 5) == 3
748
Write a function to put spaces between words starting with capital letters in a given string by using regex.
capital_words_spaces
import re def capital_words_spaces(str1): return re.sub(r"(\w)([A-Z])", r"\1 \2", str1)
[ "assert capital_words_spaces(\"jBJtoJLDMlxySGREVOgmEIf\") == \"j BJto JL DMlxy SG RE VOgm EIf\"", "assert capital_words_spaces(\"IVLeWrUoATPynvjVajWytFgVX\") == \"I VLe Wr Uo AT Pynvj Vaj Wyt Fg VX\"", "assert capital_words_spaces(\"RYJxkvVUkefDyfpUwWaIYgNH\") == \"R YJxkv VUkef Dyfp Uw Wa IYg NH\"" ]
def check(candidate): # Check some simple cases assert capital_words_spaces("Python") == 'Python' assert capital_words_spaces("PythonProgrammingExamples") == 'Python Programming Examples' assert capital_words_spaces("GetReadyToBeCodingFreak") == 'Get Ready To Be Coding Freak'
749
Write a function to sort a given list of strings of numbers numerically.
sort_numeric_strings
def sort_numeric_strings(nums_str): result = [int(x) for x in nums_str] result.sort() return result
[ "assert sort_numeric_strings(['9', '9', '9', '3', '0', '4', '7123', '195755', '20841', '0', '895563', '5', '4', '784200']) == [0, 0, 3, 4, 4, 5, 9, 9, 9, 7123, 20841, 195755, 784200, 895563]", "assert sort_numeric_strings(['2', '6', '1', '3', '1', '9', '953', '1873', '9553', '8', '90081', '5', '1', '234353']) == [1, 1, 1, 2, 3, 5, 6, 8, 9, 953, 1873, 9553, 90081, 234353]", "assert sort_numeric_strings(['1', '5', '6', '2', '3', '4', '4656', '885', '94432', '4', '60059', '1', '2', '749104']) == [1, 1, 2, 2, 3, 4, 4, 5, 6, 885, 4656, 60059, 94432, 749104]" ]
def check(candidate): # Check some simple cases assert sort_numeric_strings( ['4','12','45','7','0','100','200','-12','-500'])==[-500, -12, 0, 4, 7, 12, 45, 100, 200] assert sort_numeric_strings(['2','3','8','4','7','9','8','2','6','5','1','6','1','2','3','4','6','9','1','2'])==[1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6, 6, 7, 8, 8, 9, 9] assert sort_numeric_strings(['1','3','5','7','1', '3','13', '15', '17','5', '7 ','9','1', '11'])==[1, 1, 1, 3, 3, 5, 5, 7, 7, 9, 11, 13, 15, 17]
750
Write a function to add the given tuple to the given list.
add_tuple
def add_tuple(test_list, test_tup): test_list += test_tup return (test_list)
[ "assert add_tuple([12, 6, 14], (9, 15)) == [12, 6, 14, 9, 15]", "assert add_tuple([6, 3, 11], (8, 11)) == [6, 3, 11, 8, 11]", "assert add_tuple([7, 5, 7], (12, 15)) == [7, 5, 7, 12, 15]" ]
def check(candidate): # Check some simple cases assert add_tuple([5, 6, 7], (9, 10)) == [5, 6, 7, 9, 10] assert add_tuple([6, 7, 8], (10, 11)) == [6, 7, 8, 10, 11] assert add_tuple([7, 8, 9], (11, 12)) == [7, 8, 9, 11, 12]
751
Write a function to check if the given array represents min heap or not.
check_min_heap
def check_min_heap(arr, i): if 2 * i + 2 > len(arr): return True left_child = (arr[i] <= arr[2 * i + 1]) and check_min_heap(arr, 2 * i + 1) right_child = (2 * i + 2 == len(arr)) or (arr[i] <= arr[2 * i + 2] and check_min_heap(arr, 2 * i + 2)) return left_child and right_child
[ "assert check_min_heap([1, 13, 8, 6, 7, 14], 2) == True", "assert check_min_heap([3, 15, 6, 2, 7, 20], 2) == True", "assert check_min_heap([7, 7, 4, 8, 8, 18], 1) == True" ]
def check(candidate): # Check some simple cases assert check_min_heap([1, 2, 3, 4, 5, 6], 0) == True assert check_min_heap([2, 3, 4, 5, 10, 15], 0) == True assert check_min_heap([2, 10, 4, 5, 3, 15], 0) == False
752
Write a function to find the nth jacobsthal number.
jacobsthal_num
def jacobsthal_num(n): dp = [0] * (n + 1) dp[0] = 0 dp[1] = 1 for i in range(2, n+1): dp[i] = dp[i - 1] + 2 * dp[i - 2] return dp[n]
[ "assert jacobsthal_num(1) == 1", "assert jacobsthal_num(5) == 11", "assert jacobsthal_num(1) == 1" ]
def check(candidate): # Check some simple cases assert jacobsthal_num(5) == 11 assert jacobsthal_num(2) == 1 assert jacobsthal_num(4) == 5
753
Write a function to find minimum k records from tuple list.
min_k
def min_k(test_list, K): res = sorted(test_list, key = lambda x: x[1])[:K] return (res)
[ "assert min_k([('mue', 14), ('rdcJG', 11), ('SEsTqJfwEbPp', 7), ('JRXGHL', 15)], 3) == [('SEsTqJfwEbPp', 7), ('rdcJG', 11), ('mue', 14)]", "assert min_k([('iruqm', 13), ('yLZmPXRPF', 8), ('ZeeP', 7), ('MHTJOGU', 21)], 5) == [('ZeeP', 7), ('yLZmPXRPF', 8), ('iruqm', 13), ('MHTJOGU', 21)]", "assert min_k([('vsuy', 15), ('Jbe', 10), ('dZzaolVaAa', 6), ('VORSC', 18)], 3) == [('dZzaolVaAa', 6), ('Jbe', 10), ('vsuy', 15)]" ]
def check(candidate): # Check some simple cases assert min_k([('Manjeet', 10), ('Akshat', 4), ('Akash', 2), ('Nikhil', 8)], 2) == [('Akash', 2), ('Akshat', 4)] assert min_k([('Sanjeev', 11), ('Angat', 5), ('Akash', 3), ('Nepin', 9)], 3) == [('Akash', 3), ('Angat', 5), ('Nepin', 9)] assert min_k([('tanmay', 14), ('Amer', 11), ('Ayesha', 9), ('SKD', 16)], 1) == [('Ayesha', 9)]
754
Write a function to find common index elements from three lists.
extract_index_list
def extract_index_list(l1, l2, l3): result = [] for m, n, o in zip(l1, l2, l3): if (m == n == o): result.append(m) return result
[ "assert extract_index_list([4, 1, 2, 7, 3, 9, 7], [2, 6, 4, 2, 4, 8, 2], [4, 1, 1, 5, 6, 2, 9]) == []", "assert extract_index_list([6, 5, 3, 8, 9, 10, 11], [4, 1, 2, 4, 3, 7, 9], [3, 6, 4, 1, 5, 4, 12]) == []", "assert extract_index_list([2, 6, 6, 4, 11, 1, 8], [3, 4, 7, 5, 8, 8, 9], [5, 4, 6, 7, 5, 4, 11]) == []" ]
def check(candidate): # Check some simple cases assert extract_index_list([1, 1, 3, 4, 5, 6, 7],[0, 1, 2, 3, 4, 5, 7],[0, 1, 2, 3, 4, 5, 7])==[1, 7] assert extract_index_list([1, 1, 3, 4, 5, 6, 7],[0, 1, 2, 3, 4, 6, 5],[0, 1, 2, 3, 4, 6, 7])==[1, 6] assert extract_index_list([1, 1, 3, 4, 6, 5, 6],[0, 1, 2, 3, 4, 5, 7],[0, 1, 2, 3, 4, 5, 7])==[1, 5]
755
Write a function to find the second smallest number in a list.
second_smallest
def second_smallest(numbers): if (len(numbers)<2): return if ((len(numbers)==2) and (numbers[0] == numbers[1]) ): return dup_items = set() uniq_items = [] for x in numbers: if x not in dup_items: uniq_items.append(x) dup_items.add(x) uniq_items.sort() return uniq_items[1]
[ "assert second_smallest([4, 4]) == None", "assert second_smallest([6, 1]) == 6", "assert second_smallest([5, 2]) == 5" ]
def check(candidate): # Check some simple cases assert second_smallest([1, 2, -8, -2, 0, -2])==-2 assert second_smallest([1, 1, -0.5, 0, 2, -2, -2])==-0.5 assert second_smallest([2,2])==None
756
Write a function that matches a string that has an a followed by zero or one 'b'.
text_match_zero_one
import re def text_match_zero_one(text): patterns = 'ab?' if re.search(patterns, text): return 'Found a match!' else: return('Not matched!')
[ "assert text_match_zero_one(\"nztfocxrm\") == \"Not matched!\"", "assert text_match_zero_one(\"ochdfl\") == \"Not matched!\"", "assert text_match_zero_one(\"sanq\") == \"Found a match!\"" ]
def check(candidate): # Check some simple cases assert text_match_zero_one("ac")==('Found a match!') assert text_match_zero_one("dc")==('Not matched!') assert text_match_zero_one("abbbba")==('Found a match!')
757
Write a function to count the pairs of reverse strings in the given string list.
count_reverse_pairs
def count_reverse_pairs(test_list): res = sum([1 for idx in range(0, len(test_list)) for idxn in range(idx, len( test_list)) if test_list[idxn] == str(''.join(list(reversed(test_list[idx]))))]) return str(res)
[ "assert count_reverse_pairs(['kongjqx', 'fhmdu', 'zcymainum', 'bxif', 'yrvgjv']) == 0", "assert count_reverse_pairs(['trvfp', 'isyyjv', 'mwpa', 'xvtphpycj', 'eal']) == 0", "assert count_reverse_pairs(['cdqmkicau', 'yzaxkrezr', 'chmbzl', 'bvez', 'xogpifgj']) == 0" ]
def check(candidate): # Check some simple cases assert count_reverse_pairs(["julia", "best", "tseb", "for", "ailuj"])== '2' assert count_reverse_pairs(["geeks", "best", "for", "skeeg"]) == '1' assert count_reverse_pairs(["makes", "best", "sekam", "for", "rof"]) == '2'
758
Write a function to count number of unique lists within a list.
unique_sublists
def unique_sublists(list1): result ={} for l in list1: result.setdefault(tuple(l), list()).append(1) for a, b in result.items(): result[a] = sum(b) return result
[ "assert unique_sublists([[7, 22, 26, 43], [63, 74, 48, 53], [91, 103, 200]]) == {(7, 22, 26, 43): 1, (63, 74, 48, 53): 1, (91, 103, 200): 1}", "assert unique_sublists([[13, 25, 26, 43], [65, 67, 46, 50], [89, 100, 204]]) == {(13, 25, 26, 43): 1, (65, 67, 46, 50): 1, (89, 100, 204): 1}", "assert unique_sublists([[14, 17, 33, 41], [63, 70, 50, 47], [95, 99, 203]]) == {(14, 17, 33, 41): 1, (63, 70, 50, 47): 1, (95, 99, 203): 1}" ]
def check(candidate): # Check some simple cases assert unique_sublists([[1, 3], [5, 7], [1, 3], [13, 15, 17], [5, 7], [9, 11]] )=={(1, 3): 2, (5, 7): 2, (13, 15, 17): 1, (9, 11): 1} assert unique_sublists([['green', 'orange'], ['black'], ['green', 'orange'], ['white']])=={('green', 'orange'): 2, ('black',): 1, ('white',): 1} assert unique_sublists([[10, 20, 30, 40], [60, 70, 50, 50], [90, 100, 200]])=={(10, 20, 30, 40): 1, (60, 70, 50, 50): 1, (90, 100, 200): 1}
759
Write a function to check a decimal with a precision of 2.
is_decimal
def is_decimal(num): import re dnumre = re.compile(r"""^[0-9]+(\.[0-9]{1,2})?$""") result = dnumre.search(num) return bool(result)
[ "assert is_decimal(\"9985...4\") == False", "assert is_decimal(\"218\") == True", "assert is_decimal(\"5056386\") == True" ]
def check(candidate): # Check some simple cases assert is_decimal('123.11')==True assert is_decimal('e666.86')==False assert is_decimal('3.124587')==False
760
Write a python function to check whether an array contains only one distinct element or not.
unique_Element
def unique_Element(arr,n): s = set(arr) if (len(s) == 1): return ('YES') else: return ('NO')
[ "assert unique_Element([3, 2, 3, 2, 4], 1) == \"NO\"", "assert unique_Element([3, 6, 7, 8, 1], 3) == \"NO\"", "assert unique_Element([1, 7, 5, 2, 3], 8) == \"NO\"" ]
def check(candidate): # Check some simple cases assert unique_Element([1,1,1],3) == 'YES' assert unique_Element([1,2,1,2],4) == 'NO' assert unique_Element([1,2,3,4,5],5) == 'NO'
761
Write a function to caluclate arc length of an angle.
arc_length
def arc_length(d,a): pi=22/7 if a >= 360: return None arclength = (pi*d) * (a/360) return arclength
[ "assert arc_length(6, 269) == 14.09047619047619", "assert arc_length(6, 274) == 14.352380952380953", "assert arc_length(2, 268) == 4.67936507936508" ]
def check(candidate): # Check some simple cases assert arc_length(9,45)==3.5357142857142856 assert arc_length(9,480)==None assert arc_length(5,270)==11.785714285714285
762
Write a function to check whether the given month number contains 30 days or not.
check_monthnumber_number
def check_monthnumber_number(monthnum3): if(monthnum3==4 or monthnum3==6 or monthnum3==9 or monthnum3==11): return True else: return False
[ "assert check_monthnumber_number(8) == False", "assert check_monthnumber_number(17) == False", "assert check_monthnumber_number(15) == False" ]
def check(candidate): # Check some simple cases assert check_monthnumber_number(6)==True assert check_monthnumber_number(2)==False assert check_monthnumber_number(12)==False
763
Write a python function to find the minimum difference between any two elements in a given array.
find_Min_Diff
def find_Min_Diff(arr,n): arr = sorted(arr) diff = 10**20 for i in range(n-1): if arr[i+1] - arr[i] < diff: diff = arr[i+1] - arr[i] return diff
[ "assert find_Min_Diff((30, 6, 15, 10), 3) == 4", "assert find_Min_Diff((31, 9, 20, 8), 2) == 1", "assert find_Min_Diff((31, 7, 24, 8), 3) == 1" ]
def check(candidate): # Check some simple cases assert find_Min_Diff((1,5,3,19,18,25),6) == 1 assert find_Min_Diff((4,3,2,6),4) == 1 assert find_Min_Diff((30,5,20,9),4) == 4
764
Write a python function to count numeric values in a given string.
number_ctr
def number_ctr(str): number_ctr= 0 for i in range(len(str)): if str[i] >= '0' and str[i] <= '9': number_ctr += 1 return number_ctr
[ "assert number_ctr(\"360\") == 3", "assert number_ctr(\"181\") == 3", "assert number_ctr(\"5906695\") == 7" ]
def check(candidate): # Check some simple cases assert number_ctr('program2bedone') == 1 assert number_ctr('3wonders') ==1 assert number_ctr('123') == 3
765
Write a function to find nth polite number.
is_polite
import math def is_polite(n): n = n + 1 return (int)(n+(math.log((n + math.log(n, 2)), 2)))
[ "assert is_polite(12) == 17", "assert is_polite(14) == 19", "assert is_polite(5) == 9" ]
def check(candidate): # Check some simple cases assert is_polite(7) == 11 assert is_polite(4) == 7 assert is_polite(9) == 13
766
Write a function to iterate over all pairs of consecutive items in a given list.
pair_wise
def pair_wise(l1): temp = [] for i in range(len(l1) - 1): current_element, next_element = l1[i], l1[i + 1] x = (current_element, next_element) temp.append(x) return temp
[ "assert pair_wise([4, 3, 1, 5, 7, 6, 6, 13, 10, 13]) == [(4, 3), (3, 1), (1, 5), (5, 7), (7, 6), (6, 6), (6, 13), (13, 10), (10, 13)]", "assert pair_wise([3, 6, 6, 6, 7, 11, 5, 3, 13, 9]) == [(3, 6), (6, 6), (6, 6), (6, 7), (7, 11), (11, 5), (5, 3), (3, 13), (13, 9)]", "assert pair_wise([6, 2, 6, 5, 1, 11, 6, 13, 10, 13]) == [(6, 2), (2, 6), (6, 5), (5, 1), (1, 11), (11, 6), (6, 13), (13, 10), (10, 13)]" ]
def check(candidate): # Check some simple cases assert pair_wise([1,1,2,3,3,4,4,5])==[(1, 1), (1, 2), (2, 3), (3, 3), (3, 4), (4, 4), (4, 5)] assert pair_wise([1,5,7,9,10])==[(1, 5), (5, 7), (7, 9), (9, 10)] assert pair_wise([1,2,3,4,5,6,7,8,9,10])==[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10)]
767
Write a python function to count the number of pairs whose sum is equal to ‘sum’.
get_Pairs_Count
def get_Pairs_Count(arr,n,sum): count = 0 for i in range(0,n): for j in range(i + 1,n): if arr[i] + arr[j] == sum: count += 1 return count
[ "assert get_Pairs_Count([2, -6, 2], 2, 5) == 0", "assert get_Pairs_Count([2, -6, 4], 3, 1) == 0", "assert get_Pairs_Count([5, -3, 3], 3, 5) == 0" ]
def check(candidate): # Check some simple cases assert get_Pairs_Count([1,1,1,1],4,2) == 6 assert get_Pairs_Count([1,5,7,-1,5],5,6) == 3 assert get_Pairs_Count([1,-2,3],3,1) == 1
768
Write a python function to check for odd parity of a given number.
check_Odd_Parity
def check_Odd_Parity(x): parity = 0 while (x != 0): x = x & (x - 1) parity += 1 if (parity % 2 == 1): return True else: return False
[ "assert check_Odd_Parity(23) == False", "assert check_Odd_Parity(18) == False", "assert check_Odd_Parity(23) == False" ]
def check(candidate): # Check some simple cases assert check_Odd_Parity(13) == True assert check_Odd_Parity(21) == True assert check_Odd_Parity(18) == False
769
Write a python function to get the difference between two lists.
null
def Diff(li1,li2): return (list(list(set(li1)-set(li2)) + list(set(li2)-set(li1))))
[ "assert Diff([4, 4, 6], [8, 7, 3]) == [4, 6, 8, 3, 7]", "assert Diff([2, 2, 2], [6, 6, 2]) == [6]", "assert Diff([1, 2, 8], [2, 9, 1]) == [8, 9]" ]
def check(candidate): # Check some simple cases assert (Diff([10, 15, 20, 25, 30, 35, 40], [25, 40, 35])) == [10, 20, 30, 15] assert (Diff([1,2,3,4,5], [6,7,1])) == [2,3,4,5,6,7] assert (Diff([1,2,3], [6,7,1])) == [2,3,6,7]
770
Write a python function to find the sum of fourth power of first n odd natural numbers.
odd_Num_Sum
def odd_Num_Sum(n) : j = 0 sm = 0 for i in range(1,n + 1) : j = (2*i-1) sm = sm + (j*j*j*j) return sm
[ "assert odd_Num_Sum(6) == 24310", "assert odd_Num_Sum(2) == 82", "assert odd_Num_Sum(2) == 82" ]
def check(candidate): # Check some simple cases assert odd_Num_Sum(2) == 82 assert odd_Num_Sum(3) == 707 assert odd_Num_Sum(4) == 3108
771
Write a function to check if the given expression is balanced or not.
check_expression
from collections import deque def check_expression(exp): if len(exp) & 1: return False stack = deque() for ch in exp: if ch == '(' or ch == '{' or ch == '[': stack.append(ch) if ch == ')' or ch == '}' or ch == ']': if not stack: return False top = stack.pop() if (top == '(' and ch != ')') or (top == '{' and ch != '}' or (top == '[' and ch != ']')): return False return not stack
[ "assert check_expression(\">)>[[<[[}{>{\") == False", "assert check_expression(\"[[)<{>]<<(>>])){}[\") == False", "assert check_expression(\"<[}){}}}]>]\") == False" ]
def check(candidate): # Check some simple cases assert check_expression("{()}[{}]") == True assert check_expression("{()}[{]") == False assert check_expression("{()}[{}][]({})") == True
772
Write a function to remove all the words with k length in the given string.
remove_length
def remove_length(test_str, K): temp = test_str.split() res = [ele for ele in temp if len(ele) != K] res = ' '.join(res) return (res)
[ "assert remove_length('AGEsoWBRruk EiWkWPXIUnWDmYODJkbjfTn AZdOdi', 5) == \"AGEsoWBRruk EiWkWPXIUnWDmYODJkbjfTn AZdOdi\"", "assert remove_length('IjrMMlCqQLKR BcusnFqtBCzoiKR kkPEnk qMCyIBwR', 3) == \"IjrMMlCqQLKR BcusnFqtBCzoiKR kkPEnk qMCyIBwR\"", "assert remove_length('aDiDHfwikjFpphJGyRDrJOJoajc wT ocvbHY', 5) == \"aDiDHfwikjFpphJGyRDrJOJoajc wT ocvbHY\"" ]
def check(candidate): # Check some simple cases assert remove_length('The person is most value tet', 3) == 'person is most value' assert remove_length('If you told me about this ok', 4) == 'If you me about ok' assert remove_length('Forces of darkeness is come into the play', 4) == 'Forces of darkeness is the'
773
Write a function to find the occurrence and position of the substrings within a string.
occurance_substring
import re def occurance_substring(text,pattern): for match in re.finditer(pattern, text): s = match.start() e = match.end() return (text[s:e], s, e)
[ "assert occurance_substring('nb,epqozhdpfzmrpyhtawsbbhrda qcycuq,u n', 'aamiwozs') == None", "assert occurance_substring('mlfnrguwwfdqovqncpbnygmjr,izmemmdbrhh', 'vnyfdz') == None", "assert occurance_substring('zvwehasiv fy umoqzkptzrgk,j,mnyagfzbrjwrds', 'fszwkww') == None" ]
def check(candidate): # Check some simple cases assert occurance_substring('python programming, python language','python')==('python', 0, 6) assert occurance_substring('python programming,programming language','programming')==('programming', 7, 18) assert occurance_substring('python programming,programming language','language')==('language', 31, 39)
774
Write a function to check if the string is a valid email address or not using regex.
check_email
import re regex = '^[a-z0-9]+[\._]?[a-z0-9]+[@]\w+[.]\w{2,3}$' def check_email(email): if(re.search(regex,email)): return ("Valid Email") else: return ("Invalid Email")
[ "assert check_email(\"pv412my9xwi2kdm2\") == \"Invalid Email\"", "assert check_email(\"dw30d42kgvp.\") == \"Invalid Email\"", "assert check_email(\"21s31fatgwe3ebkfni\") == \"Invalid Email\"" ]
def check(candidate): # Check some simple cases assert check_email("[email protected]") == 'Valid Email' assert check_email("[email protected]") == 'Valid Email' assert check_email("ankitaoie326.com") == 'Invalid Email'
775
Write a python function to check whether every odd index contains odd numbers of a given list.
odd_position
def odd_position(nums): return all(nums[i]%2==i%2 for i in range(len(nums)))
[ "assert odd_position([3, 6, 2]) == False", "assert odd_position([3, 7, 5]) == False", "assert odd_position([3, 7, 8]) == False" ]
def check(candidate): # Check some simple cases assert odd_position([2,1,4,3,6,7,6,3]) == True assert odd_position([4,1,2]) == True assert odd_position([1,2,3]) == False
776
Write a function to count those characters which have vowels as their neighbors in the given string.
count_vowels
def count_vowels(test_str): res = 0 vow_list = ['a', 'e', 'i', 'o', 'u'] for idx in range(1, len(test_str) - 1): if test_str[idx] not in vow_list and (test_str[idx - 1] in vow_list or test_str[idx + 1] in vow_list): res += 1 if test_str[0] not in vow_list and test_str[1] in vow_list: res += 1 if test_str[-1] not in vow_list and test_str[-2] in vow_list: res += 1 return (res)
[ "assert count_vowels(\"tdduoy\") == 2", "assert count_vowels(\"zhqddoqnbrc\") == 2", "assert count_vowels(\"ftfqbfzscpzwa\") == 1" ]
def check(candidate): # Check some simple cases assert count_vowels('bestinstareels') == 7 assert count_vowels('partofthejourneyistheend') == 12 assert count_vowels('amazonprime') == 5
777
Write a python function to find the sum of non-repeated elements in a given array.
find_Sum
def find_Sum(arr,n): arr.sort() sum = arr[0] for i in range(0,n-1): if (arr[i] != arr[i+1]): sum = sum + arr[i+1] return sum
[ "assert find_Sum([17, 5, 6, 50, 3, 11, 5, 42, 13], 9) == 147", "assert find_Sum([8, 7, 10, 40, 4, 11, 12, 46, 15], 8) == 107", "assert find_Sum([15, 14, 10, 48, 7, 13, 8, 47, 11], 7) == 78" ]
def check(candidate): # Check some simple cases assert find_Sum([1,2,3,1,1,4,5,6],8) == 21 assert find_Sum([1,10,9,4,2,10,10,45,4],9) == 71 assert find_Sum([12,10,9,45,2,10,10,45,10],9) == 78
778
Write a function to pack consecutive duplicates of a given list elements into sublists.
pack_consecutive_duplicates
from itertools import groupby def pack_consecutive_duplicates(list1): return [list(group) for key, group in groupby(list1)]
[ "assert pack_consecutive_duplicates(['c', 'g', 'z', 'f', 'g', 'a']) == [['c'], ['g'], ['z'], ['f'], ['g'], ['a']]", "assert pack_consecutive_duplicates(['j', 'r', 's', 'f', 'g', 'u']) == [['j'], ['r'], ['s'], ['f'], ['g'], ['u']]", "assert pack_consecutive_duplicates(['w', 'g', 'o', 'b', 'i', 'f']) == [['w'], ['g'], ['o'], ['b'], ['i'], ['f']]" ]
def check(candidate): # Check some simple cases assert pack_consecutive_duplicates([0, 0, 1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 8, 9, 4, 4])==[[0, 0], [1], [2], [3], [4, 4], [5], [6, 6, 6], [7], [8], [9], [4, 4]] assert pack_consecutive_duplicates([10, 10, 15, 19, 18, 18, 17, 26, 26, 17, 18, 10])==[[10, 10], [15], [19], [18, 18], [17], [26, 26], [17], [18], [10]] assert pack_consecutive_duplicates(['a', 'a', 'b', 'c', 'd', 'd'])==[['a', 'a'], ['b'], ['c'], ['d', 'd']]
779
Write a function to count the number of unique lists within a list.
unique_sublists
def unique_sublists(list1): result ={} for l in list1: result.setdefault(tuple(l), list()).append(1) for a, b in result.items(): result[a] = sum(b) return result
[ "assert unique_sublists([[3, 2], [8, 4], [3, 7], [3, 2]]) == {(3, 2): 2, (8, 4): 1, (3, 7): 1}", "assert unique_sublists([[6, 7], [3, 6], [6, 4], [9, 2]]) == {(6, 7): 1, (3, 6): 1, (6, 4): 1, (9, 2): 1}", "assert unique_sublists([[5, 7], [7, 1], [7, 10], [8, 11]]) == {(5, 7): 1, (7, 1): 1, (7, 10): 1, (8, 11): 1}" ]
def check(candidate): # Check some simple cases assert unique_sublists([[1, 3], [5, 7], [1, 3], [13, 15, 17], [5, 7], [9, 11]])=={(1, 3): 2, (5, 7): 2, (13, 15, 17): 1, (9, 11): 1} assert unique_sublists([['green', 'orange'], ['black'], ['green', 'orange'], ['white']])=={('green', 'orange'): 2, ('black',): 1, ('white',): 1} assert unique_sublists([[1, 2], [3, 4], [4, 5], [6, 7]])=={(1, 2): 1, (3, 4): 1, (4, 5): 1, (6, 7): 1}
780
Write a function to find the combinations of sums with tuples in the given tuple list.
find_combinations
from itertools import combinations def find_combinations(test_list): res = [(b1 + a1, b2 + a2) for (a1, a2), (b1, b2) in combinations(test_list, 2)] return (res)
[ "assert find_combinations([(6, 10), (9, 4), (2, 6), (12, 17)]) == [(15, 14), (8, 16), (18, 27), (11, 10), (21, 21), (14, 23)]", "assert find_combinations([(3, 8), (11, 6), (3, 8), (7, 8)]) == [(14, 14), (6, 16), (10, 16), (14, 14), (18, 14), (10, 16)]", "assert find_combinations([(9, 6), (7, 13), (5, 3), (4, 13)]) == [(16, 19), (14, 9), (13, 19), (12, 16), (11, 26), (9, 16)]" ]
def check(candidate): # Check some simple cases assert find_combinations([(2, 4), (6, 7), (5, 1), (6, 10)]) == [(8, 11), (7, 5), (8, 14), (11, 8), (12, 17), (11, 11)] assert find_combinations([(3, 5), (7, 8), (6, 2), (7, 11)]) == [(10, 13), (9, 7), (10, 16), (13, 10), (14, 19), (13, 13)] assert find_combinations([(4, 6), (8, 9), (7, 3), (8, 12)]) == [(12, 15), (11, 9), (12, 18), (15, 12), (16, 21), (15, 15)]
781
Write a python function to check whether the count of divisors is even or odd.
count_Divisors
import math def count_Divisors(n) : count = 0 for i in range(1, (int)(math.sqrt(n)) + 2) : if (n % i == 0) : if( n // i == i) : count = count + 1 else : count = count + 2 if (count % 2 == 0) : return ("Even") else : return ("Odd")
[ "assert count_Divisors(125) == \"Even\"", "assert count_Divisors(130) == \"Even\"", "assert count_Divisors(122) == \"Even\"" ]
def check(candidate): # Check some simple cases assert count_Divisors(10) == "Even" assert count_Divisors(100) == "Odd" assert count_Divisors(125) == "Even"
782
Write a python function to find the sum of all odd length subarrays.
Odd_Length_Sum
def Odd_Length_Sum(arr): Sum = 0 l = len(arr) for i in range(l): Sum += ((((i + 1) *(l - i) + 1) // 2) * arr[i]) return Sum
[ "assert Odd_Length_Sum([1, 10]) == 11", "assert Odd_Length_Sum([2, 5]) == 7", "assert Odd_Length_Sum([4, 4]) == 8" ]
def check(candidate): # Check some simple cases assert Odd_Length_Sum([1,2,4]) == 14 assert Odd_Length_Sum([1,2,1,2]) == 15 assert Odd_Length_Sum([1,7]) == 8
783
Write a function to convert rgb color to hsv color.
rgb_to_hsv
def rgb_to_hsv(r, g, b): r, g, b = r/255.0, g/255.0, b/255.0 mx = max(r, g, b) mn = min(r, g, b) df = mx-mn if mx == mn: h = 0 elif mx == r: h = (60 * ((g-b)/df) + 360) % 360 elif mx == g: h = (60 * ((b-r)/df) + 120) % 360 elif mx == b: h = (60 * ((r-g)/df) + 240) % 360 if mx == 0: s = 0 else: s = (df/mx)*100 v = mx*100 return h, s, v
[ "assert rgb_to_hsv(6, 214, 105) == (148.55769230769232, 97.19626168224299, 83.92156862745098)", "assert rgb_to_hsv(8, 214, 107) == (148.83495145631068, 96.26168224299066, 83.92156862745098)", "assert rgb_to_hsv(11, 220, 111) == (148.70813397129186, 95.0, 86.27450980392157)" ]
def check(candidate): # Check some simple cases assert rgb_to_hsv(255, 255, 255)==(0, 0.0, 100.0) assert rgb_to_hsv(0, 215, 0)==(120.0, 100.0, 84.31372549019608) assert rgb_to_hsv(10, 215, 110)==(149.26829268292684, 95.34883720930233, 84.31372549019608)
784
Write a function to find the product of first even and odd number of a given list.
mul_even_odd
def mul_even_odd(list1): first_even = next((el for el in list1 if el%2==0),-1) first_odd = next((el for el in list1 if el%2!=0),-1) return (first_even*first_odd)
[ "assert mul_even_odd([4, 10, 2, 7, 8]) == 28", "assert mul_even_odd([3, 4, 11, 13, 11]) == 12", "assert mul_even_odd([4, 10, 2, 6, 12]) == -4" ]
def check(candidate): # Check some simple cases assert mul_even_odd([1,3,5,7,4,1,6,8])==4 assert mul_even_odd([1,2,3,4,5,6,7,8,9,10])==2 assert mul_even_odd([1,5,7,9,10])==10
785
Write a function to convert tuple string to integer tuple.
tuple_str_int
def tuple_str_int(test_str): res = tuple(int(num) for num in test_str.replace('(', '').replace(')', '').replace('...', '').split(', ')) return (res)
[ "assert tuple_str_int(\")50314\") == (50314,)", "assert tuple_str_int(\"8008)21\") == (800821,)", "assert tuple_str_int(\")5()297))\") == (5297,)" ]
def check(candidate): # Check some simple cases assert tuple_str_int("(7, 8, 9)") == (7, 8, 9) assert tuple_str_int("(1, 2, 3)") == (1, 2, 3) assert tuple_str_int("(4, 5, 6)") == (4, 5, 6)
786
Write a function to locate the right insertion point for a specified value in sorted order.
right_insertion
import bisect def right_insertion(a, x): i = bisect.bisect_right(a, x) return i
[ "assert right_insertion([3, 5, 2, 7], 7) == 4", "assert right_insertion([2, 7, 4, 8], 3) == 1", "assert right_insertion([2, 5, 8, 6], 2) == 1" ]
def check(candidate): # Check some simple cases assert right_insertion([1,2,4,5],6)==4 assert right_insertion([1,2,4,5],3)==2 assert right_insertion([1,2,4,5],7)==4
787
Write a function that matches a string that has an a followed by three 'b'.
text_match_three
import re def text_match_three(text): patterns = 'ab{3}?' if re.search(patterns, text): return 'Found a match!' else: return('Not matched!')
[ "assert text_match_three(\"gwftzvmcw\") == \"Not matched!\"", "assert text_match_three(\"kxdvtzebrmo\") == \"Not matched!\"", "assert text_match_three(\"irgtsyeimz\") == \"Not matched!\"" ]
def check(candidate): # Check some simple cases assert text_match_three("ac")==('Not matched!') assert text_match_three("dc")==('Not matched!') assert text_match_three("abbbba")==('Found a match!')
788
Write a function to create a new tuple from the given string and list.
new_tuple
def new_tuple(test_list, test_str): res = tuple(test_list + [test_str]) return (res)
[ "assert new_tuple(['bzwROBO', 'kohs'], 'jPCwtqg') == ('bzwROBO', 'kohs', 'jPCwtqg')", "assert new_tuple(['UtAhccGi', 'dvdcb'], 'Pwvb') == ('UtAhccGi', 'dvdcb', 'Pwvb')", "assert new_tuple(['hxa', 'mvsa'], 'nPxZCZea') == ('hxa', 'mvsa', 'nPxZCZea')" ]
def check(candidate): # Check some simple cases assert new_tuple(["WEB", "is"], "best") == ('WEB', 'is', 'best') assert new_tuple(["We", "are"], "Developers") == ('We', 'are', 'Developers') assert new_tuple(["Part", "is"], "Wrong") == ('Part', 'is', 'Wrong')
789
Write a function to calculate the perimeter of a regular polygon.
perimeter_polygon
from math import tan, pi def perimeter_polygon(s,l): perimeter = s*l return perimeter
[ "assert perimeter_polygon(14, 6) == 84", "assert perimeter_polygon(7, 4) == 28", "assert perimeter_polygon(6, 12) == 72" ]
def check(candidate): # Check some simple cases assert perimeter_polygon(4,20)==80 assert perimeter_polygon(10,15)==150 assert perimeter_polygon(9,7)==63
790
Write a python function to check whether every even index contains even numbers of a given list.
even_position
def even_position(nums): return all(nums[i]%2==i%2 for i in range(len(nums)))
[ "assert even_position([7, 5, 6]) == False", "assert even_position([4, 5, 1]) == False", "assert even_position([4, 5, 8]) == True" ]
def check(candidate): # Check some simple cases assert even_position([3,2,1]) == False assert even_position([1,2,3]) == False assert even_position([2,1,4]) == True
791
Write a function to remove the nested record from the given tuple.
remove_nested
def remove_nested(test_tup): res = tuple() for count, ele in enumerate(test_tup): if not isinstance(ele, tuple): res = res + (ele, ) return (res)
[ "assert remove_nested((5, 6, 6, (4, 11), 11)) == (5, 6, 6, 11)", "assert remove_nested((5, 12, 4, (6, 10), 7)) == (5, 12, 4, 7)", "assert remove_nested((7, 12, 14, (6, 10), 8)) == (7, 12, 14, 8)" ]
def check(candidate): # Check some simple cases assert remove_nested((1, 5, 7, (4, 6), 10)) == (1, 5, 7, 10) assert remove_nested((2, 6, 8, (5, 7), 11)) == (2, 6, 8, 11) assert remove_nested((3, 7, 9, (6, 8), 12)) == (3, 7, 9, 12)
792
Write a python function to count the number of lists in a given number of lists.
count_list
def count_list(input_list): return len(input_list)
[ "assert count_list([[4, 3], [7, 3]]) == 2", "assert count_list([[1, 3], [3, 2]]) == 2", "assert count_list([[6, 1], [1, 2]]) == 2" ]
def check(candidate): # Check some simple cases assert count_list([[1, 3], [5, 7], [9, 11], [13, 15, 17]]) == 4 assert count_list([[1,2],[2,3],[4,5]]) == 3 assert count_list([[1,0],[2,0]]) == 2
793
Write a python function to find the last position of an element in a sorted array.
last
def last(arr,x,n): low = 0 high = n - 1 res = -1 while (low <= high): mid = (low + high) // 2 if arr[mid] > x: high = mid - 1 elif arr[mid] < x: low = mid + 1 else: res = mid low = mid + 1 return res
[ "assert last([6, 1, 5, 2, 6, 13, 8], 7, 6) == -1", "assert last([1, 4, 3, 8, 8, 13, 13], 6, 8) == -1", "assert last([2, 1, 7, 8, 4, 5, 7], 1, 4) == 1" ]
def check(candidate): # Check some simple cases assert last([1,2,3],1,3) == 0 assert last([1,1,1,2,3,4],1,6) == 2 assert last([2,3,2,3,6,8,9],3,8) == 3
794
Write a function that matches a string that has an 'a' followed by anything, ending in 'b'.
text_starta_endb
import re def text_starta_endb(text): patterns = 'a.*?b$' if re.search(patterns, text): return 'Found a match!' else: return('Not matched!')
[ "assert text_starta_endb(\"gcugvjrzyg\") == \"Not matched!\"", "assert text_starta_endb(\"wqmsutwmveg\") == \"Not matched!\"", "assert text_starta_endb(\"usjhbxj\") == \"Not matched!\"" ]
def check(candidate): # Check some simple cases assert text_starta_endb("aabbbb")==('Found a match!') assert text_starta_endb("aabAbbbc")==('Not matched!') assert text_starta_endb("accddbbjjj")==('Not matched!')
795
Write a function to find the n - cheap price items from a given dataset using heap queue algorithm.
cheap_items
import heapq def cheap_items(items,n): cheap_items = heapq.nsmallest(n, items, key=lambda s: s['price']) return cheap_items
[ "assert cheap_items([{\"name\": \"Item-1\", \"price\": 1049.07}, {\"name\": \"Item-2\", \"price\": 417.45}, {\"name\": \"Item-3\", \"price\": 1540.3}, {\"name\": \"Item-4\", \"price\": 2816.5}, {\"name\": \"Item-5\", \"price\": 11.68}, {\"name\": \"Item-6\", \"price\": 129.92}, {\"name\": \"Item-7\", \"price\": 3265.6}, {\"name\": \"Item-8\", \"price\": 894.4499999999999}, {\"name\": \"Item-9\", \"price\": 2302.3199999999997}, {\"name\": \"Item-10\", \"price\": 1450.36}, {\"name\": \"Item-11\", \"price\": 8031.55}, {\"name\": \"Item-12\", \"price\": 5486.780000000001}, {\"name\": \"Item-13\", \"price\": 1369.45}, {\"name\": \"Item-14\", \"price\": 181.76999999999998}, {\"name\": \"Item-15\", \"price\": 3281.52}, {\"name\": \"Item-16\", \"price\": 1094.08}, {\"name\": \"Item-17\", \"price\": 3306.81}, {\"name\": \"Item-18\", \"price\": 2850.4800000000005}, {\"name\": \"Item-19\", \"price\": 6733.51}, {\"name\": \"Item-20\", \"price\": 5177.070000000001}, {\"name\": \"Item-21\", \"price\": 866.7}, {\"name\": \"Item-22\", \"price\": 374.96}, {\"name\": \"Item-23\", \"price\": 464.31000000000006}, {\"name\": \"Item-24\", \"price\": 2570.04}, {\"name\": \"Item-25\", \"price\": 3769.92}, {\"name\": \"Item-26\", \"price\": 604.9399999999999}, {\"name\": \"Item-27\", \"price\": 560.0699999999999}, {\"name\": \"Item-28\", \"price\": 264.44}, {\"name\": \"Item-29\", \"price\": 3234.0599999999995}, {\"name\": \"Item-30\", \"price\": 1699.05}, {\"name\": \"Item-31\", \"price\": 641.5899999999999}, {\"name\": \"Item-32\", \"price\": 1226.16}, {\"name\": \"Item-33\", \"price\": 124.74000000000001}, {\"name\": \"Item-34\", \"price\": 896.35}, {\"name\": \"Item-35\", \"price\": 2791.8}, {\"name\": \"Item-36\", \"price\": 3844.98}, {\"name\": \"Item-37\", \"price\": 4188.16}, {\"name\": \"Item-38\", \"price\": 1690.92}, {\"name\": \"Item-39\", \"price\": 759.85}, {\"name\": \"Item-40\", \"price\": 306.71999999999997}, {\"name\": \"Item-41\", \"price\": 6807.93}], 17) == [{'name': 'Item-5', 'price': 11.68}, {'name': 'Item-33', 'price': 124.74000000000001}, {'name': 'Item-6', 'price': 129.92}, {'name': 'Item-14', 'price': 181.76999999999998}, {'name': 'Item-28', 'price': 264.44}, {'name': 'Item-40', 'price': 306.71999999999997}, {'name': 'Item-22', 'price': 374.96}, {'name': 'Item-2', 'price': 417.45}, {'name': 'Item-23', 'price': 464.31000000000006}, {'name': 'Item-27', 'price': 560.0699999999999}, {'name': 'Item-26', 'price': 604.9399999999999}, {'name': 'Item-31', 'price': 641.5899999999999}, {'name': 'Item-39', 'price': 759.85}, {'name': 'Item-21', 'price': 866.7}, {'name': 'Item-8', 'price': 894.4499999999999}, {'name': 'Item-34', 'price': 896.35}, {'name': 'Item-1', 'price': 1049.07}]", "assert cheap_items([{\"name\": \"Item-1\", \"price\": 2082.54}, {\"name\": \"Item-2\", \"price\": 4371.45}, {\"name\": \"Item-3\", \"price\": 2528.64}, {\"name\": \"Item-4\", \"price\": 5393.54}, {\"name\": \"Item-5\", \"price\": 7410.32}, {\"name\": \"Item-6\", \"price\": 232.56}, {\"name\": \"Item-7\", \"price\": 4186.79}, {\"name\": \"Item-8\", \"price\": 1751.2300000000002}, {\"name\": \"Item-9\", \"price\": 898.6999999999999}, {\"name\": \"Item-10\", \"price\": 1079.06}, {\"name\": \"Item-11\", \"price\": 37.5}, {\"name\": \"Item-12\", \"price\": 7697.3}, {\"name\": \"Item-13\", \"price\": 505.53000000000003}, {\"name\": \"Item-14\", \"price\": 4002.83}, {\"name\": \"Item-15\", \"price\": 3695.3799999999997}, {\"name\": \"Item-16\", \"price\": 2906.28}, {\"name\": \"Item-17\", \"price\": 2264.64}, {\"name\": \"Item-18\", \"price\": 2274.47}, {\"name\": \"Item-19\", \"price\": 5019.03}, {\"name\": \"Item-20\", \"price\": 2380.73}, {\"name\": \"Item-21\", \"price\": 2736.0899999999997}], 3) == [{'name': 'Item-11', 'price': 37.5}, {'name': 'Item-6', 'price': 232.56}, {'name': 'Item-13', 'price': 505.53000000000003}]", "assert cheap_items([{\"name\": \"Item-1\", \"price\": 103.88}, {\"name\": \"Item-2\", \"price\": 1069.2}, {\"name\": \"Item-3\", \"price\": 2816.73}, {\"name\": \"Item-4\", \"price\": 328.75}, {\"name\": \"Item-5\", \"price\": 1466.6399999999999}, {\"name\": \"Item-6\", \"price\": 2134.2599999999998}, {\"name\": \"Item-7\", \"price\": 5606.65}, {\"name\": \"Item-8\", \"price\": 509.08}, {\"name\": \"Item-9\", \"price\": 1019.2}, {\"name\": \"Item-10\", \"price\": 873.2700000000001}, {\"name\": \"Item-11\", \"price\": 2657.8}, {\"name\": \"Item-12\", \"price\": 5384.7}, {\"name\": \"Item-13\", \"price\": 130.68}, {\"name\": \"Item-14\", \"price\": 4580.0}, {\"name\": \"Item-15\", \"price\": 5564.82}, {\"name\": \"Item-16\", \"price\": 789.9399999999999}, {\"name\": \"Item-17\", \"price\": 132.60999999999999}, {\"name\": \"Item-18\", \"price\": 123.75999999999999}, {\"name\": \"Item-19\", \"price\": 4015.7999999999997}, {\"name\": \"Item-20\", \"price\": 16.1}, {\"name\": \"Item-21\", \"price\": 3588.0}, {\"name\": \"Item-22\", \"price\": 6142.400000000001}, {\"name\": \"Item-23\", \"price\": 4987.799999999999}, {\"name\": \"Item-24\", \"price\": 6656.6}, {\"name\": \"Item-25\", \"price\": 493.68}, {\"name\": \"Item-26\", \"price\": 14.600000000000001}, {\"name\": \"Item-27\", \"price\": 2069.08}, {\"name\": \"Item-28\", \"price\": 10.46}, {\"name\": \"Item-29\", \"price\": 455.7}, {\"name\": \"Item-30\", \"price\": 478.89}, {\"name\": \"Item-31\", \"price\": 1752.24}, {\"name\": \"Item-32\", \"price\": 2688.0}, {\"name\": \"Item-33\", \"price\": 1332.8}, {\"name\": \"Item-34\", \"price\": 1680.84}, {\"name\": \"Item-35\", \"price\": 3416.96}, {\"name\": \"Item-36\", \"price\": 963.8399999999999}, {\"name\": \"Item-37\", \"price\": 946.88}, {\"name\": \"Item-38\", \"price\": 6739.48}, {\"name\": \"Item-39\", \"price\": 5065.5}, {\"name\": \"Item-40\", \"price\": 1382.1}, {\"name\": \"Item-41\", \"price\": 134.55}, {\"name\": \"Item-42\", \"price\": 2914.9399999999996}, {\"name\": \"Item-43\", \"price\": 5946.96}, {\"name\": \"Item-44\", \"price\": 3255.6299999999997}, {\"name\": \"Item-45\", \"price\": 2584.45}, {\"name\": \"Item-46\", \"price\": 4596.200000000001}, {\"name\": \"Item-47\", \"price\": 1218.82}, {\"name\": \"Item-48\", \"price\": 685.02}, {\"name\": \"Item-49\", \"price\": 4173.84}, {\"name\": \"Item-50\", \"price\": 2248.25}, {\"name\": \"Item-51\", \"price\": 3258.9}, {\"name\": \"Item-52\", \"price\": 4464.3}, {\"name\": \"Item-53\", \"price\": 3069.44}, {\"name\": \"Item-54\", \"price\": 745.0799999999999}, {\"name\": \"Item-55\", \"price\": 2081.46}, {\"name\": \"Item-56\", \"price\": 1380.73}, {\"name\": \"Item-57\", \"price\": 690.54}, {\"name\": \"Item-58\", \"price\": 610.05}, {\"name\": \"Item-59\", \"price\": 1834.3000000000002}, {\"name\": \"Item-60\", \"price\": 616.94}, {\"name\": \"Item-61\", \"price\": 2603.6}, {\"name\": \"Item-62\", \"price\": 3521.82}, {\"name\": \"Item-63\", \"price\": 1603.6200000000001}, {\"name\": \"Item-64\", \"price\": 3794.7}, {\"name\": \"Item-65\", \"price\": 1813.05}, {\"name\": \"Item-66\", \"price\": 6197.36}, {\"name\": \"Item-67\", \"price\": 2951.3599999999997}, {\"name\": \"Item-68\", \"price\": 7248.639999999999}, {\"name\": \"Item-69\", \"price\": 2473.87}, {\"name\": \"Item-70\", \"price\": 3289.4999999999995}, {\"name\": \"Item-71\", \"price\": 408.72}, {\"name\": \"Item-72\", \"price\": 3849.6}, {\"name\": \"Item-73\", \"price\": 484.34}, {\"name\": \"Item-74\", \"price\": 652.81}, {\"name\": \"Item-75\", \"price\": 1534.1}, {\"name\": \"Item-76\", \"price\": 876.3}, {\"name\": \"Item-77\", \"price\": 1731.4800000000002}, {\"name\": \"Item-78\", \"price\": 1881.3899999999999}, {\"name\": \"Item-79\", \"price\": 118.34}, {\"name\": \"Item-80\", \"price\": 276.94}, {\"name\": \"Item-81\", \"price\": 6634.759999999999}, {\"name\": \"Item-82\", \"price\": 1527.6}, {\"name\": \"Item-83\", \"price\": 414.0}, {\"name\": \"Item-84\", \"price\": 4662.24}, {\"name\": \"Item-85\", \"price\": 933.24}, {\"name\": \"Item-86\", \"price\": 1455.0}, {\"name\": \"Item-87\", \"price\": 1686.74}, {\"name\": \"Item-88\", \"price\": 1002.84}], 6) == [{'name': 'Item-28', 'price': 10.46}, {'name': 'Item-26', 'price': 14.600000000000001}, {'name': 'Item-20', 'price': 16.1}, {'name': 'Item-1', 'price': 103.88}, {'name': 'Item-79', 'price': 118.34}, {'name': 'Item-18', 'price': 123.75999999999999}]" ]
def check(candidate): # Check some simple cases assert cheap_items([{'name': 'Item-1', 'price': 101.1},{'name': 'Item-2', 'price': 555.22}],1)==[{'name': 'Item-1', 'price': 101.1}] assert cheap_items([{'name': 'Item-1', 'price': 101.1},{'name': 'Item-2', 'price': 555.22}],2)==[{'name': 'Item-1', 'price': 101.1},{'name': 'Item-2', 'price': 555.22}] assert cheap_items([{'name': 'Item-1', 'price': 101.1},{'name': 'Item-2', 'price': 555.22}, {'name': 'Item-3', 'price': 45.09},{'name': 'Item-4', 'price': 22.75}],1)==[{'name': 'Item-4', 'price': 22.75}]
796
Write function to find the sum of all items in the given dictionary.
return_sum
def return_sum(dict): sum = 0 for i in dict.values(): sum = sum + i return sum
[ "assert return_sum({'c': 32, 'h': 38, 'i': 47}) == 117", "assert return_sum({'u': 34, 'l': 44, 'z': 51}) == 129", "assert return_sum({'p': 36, 't': 44, 'q': 52}) == 132" ]
def check(candidate): # Check some simple cases assert return_sum({'a': 100, 'b':200, 'c':300}) == 600 assert return_sum({'a': 25, 'b':18, 'c':45}) == 88 assert return_sum({'a': 36, 'b':39, 'c':49}) == 124
797
Write a python function to find the sum of all odd natural numbers within the range l and r.
sum_in_Range
def sum_Odd(n): terms = (n + 1)//2 sum1 = terms * terms return sum1 def sum_in_Range(l,r): return sum_Odd(r) - sum_Odd(l - 1)
[ "assert sum_in_Range(10, 18) == 56", "assert sum_in_Range(9, 9) == 9", "assert sum_in_Range(2, 8) == 15" ]
def check(candidate): # Check some simple cases assert sum_in_Range(2,5) == 8 assert sum_in_Range(5,7) == 12 assert sum_in_Range(7,13) == 40
798
Write a python function to find the sum of an array.
_sum
def _sum(arr): sum=0 for i in arr: sum = sum + i return(sum)
[ "assert _sum([5, 6, 5]) == 16", "assert _sum([4, 2, 1]) == 7", "assert _sum([4, 3, 1]) == 8" ]
def check(candidate): # Check some simple cases assert _sum([1, 2, 3]) == 6 assert _sum([15, 12, 13, 10]) == 50 assert _sum([0, 1, 2]) == 3
799
Write a python function to left rotate the bits of a given number.
left_Rotate
INT_BITS = 32 def left_Rotate(n,d): return (n << d)|(n >> (INT_BITS - d))
[ "assert left_Rotate(103, 4) == 1648", "assert left_Rotate(102, 2) == 408", "assert left_Rotate(96, 6) == 6144" ]
def check(candidate): # Check some simple cases assert left_Rotate(16,2) == 64 assert left_Rotate(10,2) == 40 assert left_Rotate(99,3) == 792
800
Write a function to remove all whitespaces from a string.
remove_all_spaces
import re def remove_all_spaces(text): return (re.sub(r'\s+', '',text))
[ "assert remove_all_spaces(\"jrshx kctozlkmfchugsichntf cvvefnmhuz\") == \"jrshxkctozlkmfchugsichntfcvvefnmhuz\"", "assert remove_all_spaces(\"bmieldqdbjjnznrfdskrlvvesycilc\") == \"bmieldqdbjjnznrfdskrlvvesycilc\"", "assert remove_all_spaces(\"xecokwlwyvmvofbvqcfjju dpydkusjunzuh\") == \"xecokwlwyvmvofbvqcfjjudpydkusjunzuh\"" ]
def check(candidate): # Check some simple cases assert remove_all_spaces('python program')==('pythonprogram') assert remove_all_spaces('python programming language')==('pythonprogramminglanguage') assert remove_all_spaces('python program')==('pythonprogram')