task_type
stringclasses
1 value
dataset
stringclasses
1 value
input
sequence
output
stringlengths
40
314
situation
stringclasses
1 value
label
stringclasses
1 value
extra
stringclasses
1 value
instruction
stringclasses
2 values
generation
mams
[ "The dessert was as good as the waiter said it would be." ]
[['food', 'positive'], ['staff', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The Food The menu is better suited to the snacking at the long bar than dining in the compact dining area." ]
[['food', 'positive'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "After asking several different people find our waiter, he returned to say he couldn't find any wine and begged us to order sake instead." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "When we asked if the waiter could put the lights back on, he said:we have this complaint every night but the owner thinks it's more 'Parisian'!" ]
[['staff', 'negative'], ['ambience', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "i have been waiting for 15 mn ( no food menu , no cocktail menu , no one even say hi to me )." ]
[['service', 'neutral'], ['menu', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Summary - good food which they rush you through and do everything to up your bill." ]
[['food', 'positive'], ['price', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The high light was the fondue, that we never got because again the server said the kitchen was too busy." ]
[['food', 'positive'], ['staff', 'neutral'], ['place', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The waiters have been there for YEARS and they know their steak is amazing." ]
[['staff', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The deli-diner-soul-food menu, featuring everything from matzo balls to barbecued chicken and ribs to 10-ounce burgers, is available until late." ]
[['menu', 'positive'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Very claustrophobic place so expect it to be really crowded during lunch." ]
[['place', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Not the best ambience and the service is sometimes just mediocre, but the quality of the food is incredible." ]
[['ambience', 'negative'], ['service', 'negative'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I have to say that I've been there only during brunch time but the service even though slow, it was good." ]
[['food', 'neutral'], ['service', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The service is friendly, if not the most prompt in the world, the food is great, and the prices, while not cheap, won't put your wallet out of commission." ]
[['service', 'positive'], ['food', 'positive'], ['price', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The portions are like a buffett for breakfast." ]
[['miscellaneous', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Service is FAST so if you are dining, order entrees after receiving apps." ]
[['service', 'positive'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Dinner is okay - not many vegetarian options, and the portions are small." ]
[['food', 'neutral'], ['miscellaneous', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "When the manager was asked for things did imporve but 2 hours to get our meal." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Bread bar couldn't get anything right except water refills (good job to the water guy)." ]
[['place', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The Food Chef Tom Kearney (Blue Hill, Jean-Georges) presides over the contemporary, pared-down menu." ]
[['staff', 'positive'], ['menu', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Service was slow and spotty; had to flag the waiter down many a time to get drink and food orders in." ]
[['service', 'negative'], ['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Although the place had an actual makeover not long ago, the food or chef needs to be changed." ]
[['place', 'neutral'], ['food', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The place looks like the inside of a factory, with its steel drums, over-amped A/C and hard wooden benches, and the industrial decor seeps into overly streamlined menu and passionless food." ]
[['menu', 'neutral'], ['food', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I had to try the sweet tea, which was served in a plastic cup at room temperture." ]
[['food', 'positive'], ['service', 'neutral'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I can only say that the soup dumplings are almost as good as Joe's Shanghai and some dishes I had (like Eight Spice appetizer) were tasty while others (Shanghai style Shumai) were less so." ]
[['food', 'positive'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "We were a large group and would highly recommend all the drinks and foodThe manager on duty was understanding that our friends were very late and held our reservation." ]
[['food', 'positive'], ['staff', 'positive'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Start off with an expertly mixed cocktail or glass of wine at the beautiful bar." ]
[['food', 'neutral'], ['place', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The wait staff is slow, full of attitude and forgettful--often taking 20 minutes to bring another round of food and drinks." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The menu contains both Japanese fusion and plain Italian dishes - everyone should be able to find something they like." ]
[['menu', 'neutral'], ['miscellaneous', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "We waited half an hour just to get menus, and watched another table of 10 people leave because they had been ignored by the (single) waiter." ]
[['menu', 'neutral'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "If you don't mind interacting with sour-puss employees, then by all means, enjoy the treats at Sweet Melissa." ]
[['staff', 'neutral'], ['service', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The Scene The consistent lines at this bustling Japanese tapas hot spot don't lie: Yokocho's fresh, reasonably priced comfort food and social atmosphere draw a youthful clientele of cultural natives and gaijin alike." ]
[['miscellaneous', 'neutral'], ['food', 'positive'], ['ambience', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Upon reading the $44 prix fixe menu (a fair price for good food), we realized half of the Appetizers and Entrees required an additional supplement ranging from five dollars to $105!" ]
[['menu', 'neutral'], ['price', 'positive'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "There are times when there is a long wait at lunch so be safe and make a reservation." ]
[['service', 'negative'], ['food', 'neutral'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Our meal was interrupted several times by the arguments between our waiter and the maitre 'd." ]
[['food', 'neutral'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "for ANYONE to come and take our dessert order (we had previously seen our waitress going outside for a cigarette break and never coming back)." ]
[['food', 'neutral'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "not only were we waiting for half an hour with reservations, once we got seated we waited another 15+ minutes for the waiter to come and take out drink menu." ]
[['service', 'neutral'], ['miscellaneous', 'neutral'], ['menu', 'neutral'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Evidently, our waiter went to the Mediterrean for our humus pita because it took about 25 minutes." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The Food There's no need to slump into a well-known comfort zone of teriyaki and udon." ]
[['ambience', 'positive'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The outdoor patio is really nice in good weather, but what ambience the indoors possesses is negated by the noise and the crowds." ]
[['place', 'positive'], ['ambience', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I'm not going to trash the place simply because I had a bad experience there, but here's the facts: the food is very good, the portions are small-to-medium, and the prices are large." ]
[['place', 'negative'], ['food', 'positive'], ['miscellaneous', 'negative'], ['price', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The bar was a disaster because there were no tables for anyone, and drinks took 20 minutes to receive." ]
[['place', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "For spending over $100 per person for dinner, i would think that the waiter would put my plate of food down for me instead of handing me my dish." ]
[['food', 'neutral'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Called to make a reservation and b/c the man who answered was so nice decided to chance it." ]
[['miscellaneous', 'neutral'], ['staff', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I have told so many people to come here even my friend from Japan and we all love it, especially when we get the room for all of us to sit in our own little world eating tons of good sushi!" ]
[['place', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "it's one of the cheapest eats in the city and the food is not bad if you sit at the bar only - they have a decent chicken and/or beef tender tips but they cook with a lot of garlic so beware." ]
[['place', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Once we had our menus we were nearly assaulted by wait staff asking if we were ready to order." ]
[['menu', 'neutral'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The staff is constantly disappearing from the restaurant, making it impossible to get drink refills or to get the check." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "They bought the same surly staff, it still took way too long for food, drink, ANY SERVICE and the food is still $ 12." ]
[['staff', 'negative'], ['food', 'neutral'], ['service', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Overall, I would rather go to a chain coffee house up the street for the same priced coffee, but a much more relaxing atmosphere, and no one forgetting my order." ]
[['food', 'negative'], ['ambience', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Cheese on the bottom, sauce on top - not too thick or doughy." ]
[['food', 'negative'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I went for lunch yesterday and had a lovely time." ]
[['food', 'neutral'], ['miscellaneous', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "yes as I sat at the table waiting just under 1 HOUR for my food, i was quite tempted to step across the road for a quick snack." ]
[['service', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Forget Brunch- there are usually people waiting outside, although the brunches are delish as well!" ]
[['service', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "We didn't see the solitary waitress after seating ourself for over 10 minutes." ]
[['staff', 'negative'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Don't expect trendy atmosphere: room looks like it could have been designed in 1940s, but who cares - it's actually comfortable and inviting; with great food and unbeatable value, you can't go wrong." ]
[['ambience', 'negative'], ['food', 'positive'], ['miscellaneous', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The hostess was inefficiently seating people and disappeared for minutes at a time, letting the line grow to 15+ people waiting to put their names on the list." ]
[['staff', 'negative'], ['place', 'neutral'], ['service', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The pizza is baked in a wood burning oven and the flavor is fantastic." ]
[['food', 'neutral'], ['ambience', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The cultured wait staff were accommodating and helped explain and pronounce the items off the menu." ]
[['staff', 'positive'], ['menu', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Our waitress was pleasant but slow, and the food is simply not good enough to be treated like a nuisance." ]
[['staff', 'positive'], ['food', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "After 2 tries by the waiter to take it away (we hadn't even looked at it yet, we had full beers yet to drink), the manager approached and told us they needed the table for people with reservations." ]
[['staff', 'negative'], ['food', 'positive'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Although we were seated right away and the waiter brought menus promptly as well as drink, he was almost never at our table despite being at the other tables right next to ours." ]
[['staff', 'positive'], ['menu', 'neutral'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The waiter was conspicuously eyeing our table the entire meal and there was a lot of scurrying by the wait staff in general." ]
[['staff', 'negative'], ['miscellaneous', 'neutral'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "We were rudely told by the waiter that chips are only available at the bar." ]
[['staff', 'negative'], ['food', 'neutral'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "AND, the waitstaff likes to lick its fingers when cutting cakes/pies and serves hot and cold drinks by holding the glass or cup around the brim/top." ]
[['staff', 'negative'], ['food', 'neutral'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "It's very reasonably priced considering the size of portions." ]
[['price', 'positive'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Disappointed in the selection on the restaurant week menu (which did not include any steak entrees) but impressed with the actual food- everything was very good- fresh and innovative- saffron risotto was not too powerful and the entrees were all good." ]
[['menu', 'neutral'], ['food', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Its not cheap, it was $10 for a burger and fries, and when i was there, the waiter had dropped a FULL glass of coke on a patron, soaking her through!" ]
[['food', 'neutral'], ['staff', 'negative'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The specials of the day are the way to go." ]
[['food', 'positive'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "We ended our great experience by having Gulab Jamun (dessert) recommended by the waiter." ]
[['food', 'positive'], ['staff', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Curries are another menu highlight, with several choices including Pa Nang with coconut milk, lemongrass leaves, onions and peppers, and Gang Paa with hot and spicy chili sauce." ]
[['menu', 'positive'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The only downer was the fruit fondue desert from the prie fixe menu wasn't as good as it looked (the chocolate was runny), and the wait between our salad and main course was too long." ]
[['food', 'negative'], ['menu', 'neutral'], ['service', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The food was very good but the portions are pretty small, so while the prices are low, the place is not quite a bargain it seems to be." ]
[['food', 'positive'], ['miscellaneous', 'negative'], ['price', 'positive'], ['place', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "They lost our reservations and the manager quickly came over and apologized and then gave us a free round of drinks and free dessert." ]
[['miscellaneous', 'neutral'], ['staff', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The service was unattentive and the only time she came over was to aggressively push drinks on us." ]
[['service', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "From the overstuffed menu to the placemats advertising spectacularly festive drinks, to the comfy booths, the decor signals -- this is indeed your grandfather's diner and thank goodness for it." ]
[['place', 'positive'], ['ambience', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "For the price you pay, you get good quality and deliciously thin sliced beef." ]
[['price', 'neutral'], ['miscellaneous', 'positive'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Our waitress brought him a regular coke instead of a diet coke, and the salsa had OIL floating at the top." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The Scene Cooing couples find some formality and open air up in the front room, while the subterranean back area offers hunkered-down seating for loungier dining." ]
[['miscellaneous', 'neutral'], ['ambience', 'positive'], ['place', 'neutral'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "This is definitely not a place to come for lunch because you can get the same food from a corner deli at half the price they charge here." ]
[['food', 'neutral'], ['price', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "For example, the last time I was there the bartender seemed visibly irritated that I would ask him for a drink instead of the waitress." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The food was pretty good, but a little flavorless and the portions very small, including dessert." ]
[['food', 'positive'], ['miscellaneous', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I went for lunch and the staff does not welcome you upon entering." ]
[['food', 'neutral'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I've had the ribeye, the salmon, and a burger/fries at the bar, and they were all exceptional." ]
[['food', 'positive'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I had the lentils and cous cous for lunch the next day because my friend and I had appetizers before our entrees-- portions are pretty decent for the price, and tasty to boot." ]
[['food', 'neutral'], ['miscellaneous', 'positive'], ['price', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "At least you have the ambiance and lovely live piano musice being played for you while you wait." ]
[['ambience', 'neutral'], ['miscellaneous', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "We asked for a side of dressing but the waiter told us that all the salads just had oil and vinegar so we should just use the oil and vinegar that was on the table." ]
[['food', 'neutral'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Growling at us when we asked for water is one thing, but to just lie and make NO effort to satisfy, or apologize at these moderately high prices ($12." ]
[['food', 'neutral'], ['price', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "My advice: go the bathroom at home, and then go to Ginza for EXCELLENT sushi and service." ]
[['place', 'neutral'], ['food', 'positive'], ['service', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Our meal was capped of with the waiter rudely saying he needed the table for other customers." ]
[['food', 'neutral'], ['staff', 'negative'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "but the Server informed us that they wanted to make the soup their own and that she hopes we like it." ]
[['staff', 'positive'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The hostess had us wait in the bar while our table was set up and we ordered what had to be the best mojitos in the city." ]
[['staff', 'neutral'], ['place', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "While the restaurant/space itself isn't so great (somewhat cramped cheesy interior, and the name implies its a burrito take-out place), the service and food outway its few cons." ]
[['place', 'negative'], ['food', 'positive'], ['service', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The music was a bit loud but the song selection was great, so we blew off desert and had another round of drinks at the bar." ]
[['miscellaneous', 'positive'], ['food', 'neutral'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Heartland is the best place in mid-town to grab a beer after work and meet the cuties that work in the building." ]
[['food', 'positive'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The service was nice, although our food took longer than usual to arrive because it had been brought to the wrong table and accidently eaten." ]
[['service', 'positive'], ['food', 'negative'], ['miscellaneous', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The server was dutiful yet insincere, the brunch drinks above average." ]
[['staff', 'negative'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "It looks like a dive but serves up fresh authentic Mexican fare you won't normally find in your average Tex-Mex style restaraunt." ]
[['food', 'positive'], ['place', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The food was very good but portions were small." ]
[['food', 'positive'], ['miscellaneous', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I prefer to sit at the bar as I don't have to listen to loud, boring conversations from the next table who always seem to be friends of the owner." ]
[['place', 'neutral'], ['miscellaneous', 'neutral'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I went there on my 2nd day in New York ever for a quick lunch and ended up staying and chatting with the owners wife and a waiter, Javi for two hours." ]
[['food', 'positive'], ['staff', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]