task_type
stringclasses
1 value
dataset
stringclasses
1 value
input
sequence
output
stringlengths
40
314
situation
stringclasses
1 value
label
stringclasses
1 value
extra
stringclasses
1 value
instruction
stringclasses
2 values
generation
mams
[ "However, didnt take too long to get drinks and the hostess seated us promptly." ]
[['food', 'neutral'], ['staff', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The prices are decent for this type of food and dining experience." ]
[['price', 'positive'], ['food', 'neutral'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Interesting crowd for people watching - old school Italian music cranking - friendly Italian waitress brought us our wine garlic bread in no time." ]
[['ambience', 'positive'], ['staff', 'positive'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Their relatively recent introduction of a version of the Sicilian pie is called the Grandma pie featuring a thin crust, much sauce, with less cheese, and chopped Basil." ]
[['food', 'positive'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Went on a Saturday with out of town tickets and the food was great but the service was awful, even surely." ]
[['food', 'positive'], ['service', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Whatever happen to FAMILY STYLE Thai cooking, the portion are too small and tradtional thai cooking uses MSG which I prefer not to have in my body." ]
[['food', 'neutral'], ['miscellaneous', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "They have possibly the worst service in New York I have waited until the waiter has finished his paper, begged for water and waited over an hour for my meal." ]
[['service', 'negative'], ['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "By the end of the meal, we were shaking hands with/hugging our waiter as we stumbled/rolled out the door." ]
[['food', 'neutral'], ['staff', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The waitress at the bar was very nasty to me because she mistakenly took an order for thai ice tea from me when I asked for thai lemonade in a to-go cup." ]
[['staff', 'negative'], ['place', 'neutral'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "If you don't want to wait 45 minutes for a table or a long time for service then don't go @ 9pm on a Friday or Saturday night." ]
[['miscellaneous', 'neutral'], ['service', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The manager also refused to remove the drink from the check, suggesting that if we didnt like it, we could simply remove the corn ourselves." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The space is cool, but the food and service were awful." ]
[['place', 'positive'], ['food', 'negative'], ['service', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The place is full of flavor and color and the music just puts you in the mood for food and drinks." ]
[['place', 'neutral'], ['ambience', 'positive'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I loved the food and service here, the only downside was the decor was dissappointing and the prices are a bit high (about $30 for an entree." ]
[['food', 'positive'], ['service', 'positive'], ['ambience', 'negative'], ['price', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Plus, everything comes in small to average portions, so the next time you get a sushi craving, I don't recommend that you go here." ]
[['miscellaneous', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "we had dinner at becco on a friday night, and were seated in the left bar area, which while pretty crowded, had a manageable noise level." ]
[['food', 'neutral'], ['ambience', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "We had a 9:30pm reservation for two which stretched out to an hour wait." ]
[['miscellaneous', 'neutral'], ['service', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "If only they'd get a better wine list - the reds are all so mediocre - this would be the perfect meal." ]
[['miscellaneous', 'negative'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Special touch -- my dessert plate had Happy Birthday drizzled in chocolate." ]
[['miscellaneous', 'positive'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The service isn't fantastic and the seating is a bit tight but if you aren't looking Four Seasons type quality, then this is the perfect spot to meet some friends for dinner or lunch." ]
[['service', 'negative'], ['place', 'negative'], ['miscellaneous', 'neutral'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "This is the perfect spot to meet up with friends and have a drink at the bar or stay a while and enjoy the scene and savor the food." ]
[['miscellaneous', 'positive'], ['food', 'positive'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "We got the tasting menu($100 for two), which was a selection of the signature dishes." ]
[['menu', 'positive'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The arrogant maitre'd was annoyed when i asked about sitting down those tables are for other reservations low and behold those tables were still open as my wife and I finished dinner." ]
[['staff', 'negative'], ['miscellaneous', 'neutral'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Don't go if you want a serene environment to go with your sushi." ]
[['ambience', 'positive'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "the food is still awesome - the twist on mexican is perfect - but the service is terrible - from the apathetic hosts to the unbelievably slow servers." ]
[['food', 'positive'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "We were here for lunch and were seated promptly in the bright, comfortable dining room." ]
[['food', 'neutral'], ['service', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Caravan can be a little slow sometimes, but more than makes up for it in the quality of the food and the care of wait staff." ]
[['food', 'positive'], ['service', 'neutral'], ['staff', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Bland food, arroganrt waiters." ]
[['food', 'positive'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The service is a bit slow, but harkens back to my years growing up in Napoli, Italy where things are not rushed and when you sit down for dinner the table is yours all night." ]
[['service', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I will definitely try dinner, but they do need to fix the kitchen shifts so that people get served in a reasonable time." ]
[['food', 'positive'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I went to Ciao on a Saturday evening and the food was not up to the price asked for." ]
[['food', 'negative'], ['price', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "My group and I cancelled whatever drinks we ordered (no food order since there was NO wait staff) and left." ]
[['food', 'neutral'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The waiters do not tell you that and our large party wound up with over $100 extra food because all members thought dessert, coffee/tea were included - which they lead you to believe - and they weren't." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "On the menu, unusual offerings like mango salad, Kashmiri chicken and whole fish cooked in mustard sauce refute the strip's infamous reputation for one-sauce-fits-all cooking." ]
[['menu', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Knock off 15-20% of the prices and you have a decent night out." ]
[['price', 'neutral'], ['miscellaneous', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "had to ask the host for the check because the waitress was sitting at another table taking their order." ]
[['staff', 'negative'], ['price', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "However for one appetizer, three entree's, one shared dessert, and two bottles of white, the bill was a cool $100!" ]
[['food', 'neutral'], ['price', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "We sat at the bar so the service wasn't too bad." ]
[['place', 'neutral'], ['service', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I liked the hummos platter, the brie sandwich, and about 20 other things on the menu (if they still have the chocolate cake you need to get it)." ]
[['miscellaneous', 'positive'], ['food', 'positive'], ['menu', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "But in my opinion, a great experience doesn't just pertain to food, and an evening of dining is certainly given a bad taste when the service is not up to par." ]
[['food', 'neutral'], ['service', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "A regular Japanese menu is available for those who would like to experience traditional Japanese cuisine." ]
[['menu', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "It's in a less travelled spot on 3rd, but the intimate setting is great and romantic." ]
[['miscellaneous', 'negative'], ['ambience', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The kitchen staff either cannot or will not accomodate special diets which is surprising given that there are so many fine dining establishments that do have special menus to cater to vegetarians." ]
[['staff', 'negative'], ['menu', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "It's a good place to meet up with a friend while shopping, grab lunch (although the lines do get long), dining solo, or to take home after work." ]
[['miscellaneous', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The server also forgot about our dessert." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The only thing that I was unhappy about was that one time, the restaurant received a delivery of supplies and the rolled it in through the dining area into the back kitchen, with the deliverymen shouting loud things to each other in chinese." ]
[['place', 'neutral'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "It came with a (small) salad, large bowl of udon, and 6 pieces of sushi plus wrapped rice (not sure what that was called." ]
[['food', 'neutral'], ['miscellaneous', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "We sat at the bar and were constantly bumped by the waitress flying past; had fabulously fresh raw oysters with pieces of shell in every bite; lobsters rolls were tasty but the large pieces of meat were tough; the apple crumble was excellent but the ice cream was over-frozen and the stench of frying oil was nearly unbearable." ]
[['place', 'neutral'], ['staff', 'negative'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "best chicken in queens." ]
[['food', 'positive'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Reservations for parties under 5 people isn't allowed but their yummy cocktails and handsome waiters help soothe the pain." ]
[['miscellaneous', 'neutral'], ['staff', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Interior is limited, but there is a second floor for dining to avoid some of the main floor chatter." ]
[['place', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Handsome baritone Nordic waiters patrol the room, proffering fresh-squeezed juices and $4-a-person pots of French press coffee." ]
[['staff', 'positive'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The bartender said that they didn't have one, but did say, We have mixed drinks." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "It seemed to take the new staff forever to figure out what they were doing; I had one nightmare of a brunch where the registers didn't seem to work and it literally took over an hour to get our check." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The waitress was slow and forgot drinks and food we ordered." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The waiter was not attentive he gave me the wrong drink twice and the bill for three people who had appertizers, a drink and an entree was $200." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "A bustling crew of sage green-shirted servers whisk plates of luncheon and light dinner favorites to power lunchers, tourists, and ladies who lunch." ]
[['staff', 'negative'], ['miscellaneous', 'neutral'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "the place has an awesome decore, with fish swiming below certain tables." ]
[['ambience', 'positive'], ['food', 'positive'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "When one purchases a bottle of wine, it's fairly common practice for a server to come by and refill your glass, but not the case here; 2." ]
[['staff', 'negative'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Service: Below Average, the staff joked stood around in the dinning room joking around with each other." ]
[['service', 'negative'], ['staff', 'negative'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Although the dining area is a bit small you'll feel at home as the owner is very friendly and talkative." ]
[['place', 'negative'], ['staff', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "In April, the service was fair but again, the food was at best only warm." ]
[['service', 'positive'], ['food', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Increedible value, 3 courses $20 price fixe(menu changes everyday), organic seldom seen wines all around $20." ]
[['miscellaneous', 'positive'], ['menu', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Perhaps it was because the 20% tip was already added to the bill, but the waiter brought us plain gazpacho without any of the other ingredients described on the menu; later, when we complained, he brought us saucers of garnish instead of new bowls of the soup properly prepared." ]
[['price', 'neutral'], ['staff', 'negative'], ['food', 'neutral'], ['miscellaneous', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Yes the wait is dreafully long, the place feels a bit uncomfortable to talk in with your dining partner, but the food is excellent none the less." ]
[['service', 'negative'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The host came by and told us that they made a mistake and would have to seat us at a two-person table." ]
[['staff', 'negative'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The atmosphere couldn't be better, and the service was outstanding -- at the time there were only two people working the entire bar, and we still got taken care of like it was a five star restaurant." ]
[['ambience', 'positive'], ['service', 'positive'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The food was great so that made up for the lack of service from the waitress." ]
[['food', 'positive'], ['service', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The waitress apologized for the long wait and said they would give us some free drinks or desert since they forgot about our orders but we never received anything and by the time we got the bill we just wanted to pay and leave." ]
[['staff', 'negative'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "When my family and I visited, we were hearded in and out of the restaurant like cattle; not once did our waiter ask how are meal was, and the waitress mixed up our steaks." ]
[['food', 'neutral'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Music is a nice mix of everything from Aerosmith to James Brown to Metallica to disco to whatever else there is." ]
[['ambience', 'neutral'], ['miscellaneous', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The Food The menu is a paper buffet--pick your cut of meat, dress it in either a sauce or a baked-on chapeau and then pick accessories, such as Yukon gold mashed potatoes, bitter greens or wilted tomatoes with blue cheese." ]
[['menu', 'neutral'], ['food', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Our waiter (the one with the Spanish accent) was a bit pre-occupied with other things- hardly coming around to the table and nowhere to be seen most of the time." ]
[['staff', 'negative'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "If you want peace quiet, ambience and patient service, go elsewhere." ]
[['ambience', 'neutral'], ['service', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The only time the waitress paid any attention to us was when she took our order and at the end of our meal to ask if we wanted dessert (by then we had already packed up our leftovers and were waiting for change from our bill)." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Great food -- but some of the worst service in the neighborhood." ]
[['food', 'positive'], ['service', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Worth the trip over the bridge, worth the search for parking, worth the wait for a table at dinner time and worthy of a ten rating." ]
[['miscellaneous', 'positive'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The atmosphere is perfect, whether sitting down for dinner or just having a drink at the bar and engaging the friendly bartenders in converasation." ]
[['ambience', 'positive'], ['food', 'neutral'], ['staff', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The server came to us and was sooo hot, he went over the menu and specials with us." ]
[['staff', 'positive'], ['menu', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The Service was en pointe and I felt like the servers were always aware of our wants, whether it was punctual refill of water, new napkins, etc." ]
[['staff', 'positive'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Reasonable prices for Cuban food in the city." ]
[['price', 'positive'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "This is the kind of place that is suppose to have pushy waiters and a loud atmosphere." ]
[['place', 'neutral'], ['staff', 'negative'], ['ambience', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Although the food was good, the way our waiter treated us was so rude and bad-mannered that it almost ruined our night and he even asked us to give him a better tip!!!" ]
[['food', 'positive'], ['staff', 'negative'], ['price', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "the pre dinner drink at the bar was very pleasant, good start, although we waited up to about an hour before our table was ready." ]
[['food', 'positive'], ['place', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "A simple dish like Fattouch or Tabbouleh are turned into the most delicious salad youll ever have." ]
[['food', 'positive'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I thought the service was a little slow and not attentive enough for the price but other than that I'll be back when I can afford to spend $60 on dinner!" ]
[['price', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Since I listened closely, I know they were a party of 2 without any reservation The manager then offered to seat us but we left." ]
[['miscellaneous', 'neutral'], ['staff', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The feeling of unwelcomeness was especially prevalent due to the fact that our waiter hovered over our table and immediately cleared the table of dishes and glasses, some of which were still full in order to get us out the door ASAP." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The menu features American bistro dishes like crab cakes, chicken under a brick, fresh oysters and various seafood dishes." ]
[['menu', 'neutral'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Another hour waiting for our food, we spoke to the manager, he told us he would give us a discount off our bill." ]
[['service', 'neutral'], ['food', 'neutral'], ['staff', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Went to Butter on Monday night for a friend's birthday dinner at like 11:00pm, the kitchen was supposedly closed, but we spoke to the manager and we were seated promptly." ]
[['food', 'neutral'], ['place', 'neutral'], ['staff', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "yes this place has good pizza but HORRIFIC HORRIFIC delivery service." ]
[['food', 'positive'], ['service', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "A simple shrimp seviche with fresh cocktail sauce shines on the lunch menu, while dinner items tend to be more sophisticated, such as turkey filet mignon with bacon and a bold mole negro." ]
[['food', 'positive'], ['menu', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Unless you like getting bumped by waiters and people walking by, do not sit at a middle table." ]
[['staff', 'negative'], ['miscellaneous', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Nice decor poor food poor service." ]
[['ambience', 'positive'], ['food', 'negative'], ['service', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "I expected high prices at Nello, but as I looked at the menu my eyes became as large as the Birkin Mary-Kate has been seen toting around these days--$18 for soup, $22 for a plate of mixed greens, $40 for pasta." ]
[['price', 'negative'], ['menu', 'neutral'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "While the food was good and reasonably priced, the service was horrible." ]
[['food', 'positive'], ['service', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "Atmosphere, I'd give to Rosa or Maya, but Mexican fare at Zarela is tops." ]
[['ambience', 'negative'], ['food', 'positive']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "not to mention that the waiter offered putting a scoop of ice cream on my dessert." ]
[['staff', 'negative'], ['food', 'neutral']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]
generation
mams
[ "The kitchen is fast, but you sometime may have trouble getting a seat, since this place is very small." ]
[['place', 'positive'], ['miscellaneous', 'negative']]
none
Task: Extracting aspect terms' aspect categories and their corresponding sentiment polarities. Input: A sentence. Output: A list of 2-tuples, where each tuple contains the extracted aspect category and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "Hostess was extremely accommodating when we arrived an hour early for our reservation." Output: [['staff', 'positive'], ['miscellaneous', 'neutral']]