text
stringlengths
15
7.82k
ids
sequencelengths
1
7
def METHOD_NAME(self): return "int"
[ 865, 285, 724 ]
def METHOD_NAME(snow_fraction, phase, expected): """Test specific values give expected results, including all meta-data""" input_cube = set_up_variable_cube( np.full((2, 2), fill_value=snow_fraction, dtype=np.float32), name="snow_fraction", units="1", standard_grid_metadata="uk_ens", ) result = SignificantPhaseMask()(input_cube, phase) assert isinstance(result, iris.cube.Cube) assert result.name() == f"{phase}_mask" assert str(result.units) == "1" assert result.dtype == np.int8 assert (result.data == expected).all()
[ 9, 199 ]
def METHOD_NAME(): output = io.BytesIO() im = hopper() im.save(output, "BMP") output.seek(0) with Image.open(output) as reloaded: assert im.mode == reloaded.mode assert im.size == reloaded.size assert reloaded.format == "BMP"
[ 9, 73, 24, 321 ]
def METHOD_NAME(self): if self.geom_gcn_preprocess: for filename in self.raw_file_names[:2]: url = f'{self.processed_url}/new_data/{self.name}/{filename}' download_url(url, self.raw_dir) for filename in self.raw_file_names[2:]: url = f'{self.processed_url}/splits/{filename}' download_url(url, self.raw_dir) else: download_url(f'{self.raw_url}/{self.name}.npz', self.raw_dir)
[ 136 ]
def METHOD_NAME(self, bitChainF): fmap = self.getFileMapF() return self._getCodes(fmap, bitChainF)
[ 19, 171, 1114, 474 ]
def METHOD_NAME(self, client): result = client.get_service_statistics() assert isinstance(result, dict) assert set(result.keys()) == {"counters", "limits"}
[ 9, 19, 549, 68 ]
def METHOD_NAME(self, env): # We don't want an AMREX_HOME the user may have set already env.unset("AMREX_HOME") # Help force Amrvis to not pick up random system compilers if "+mpi" in self.spec: env.set("MPI_HOME", self.spec["mpi"].prefix) env.set("CC", self.spec["mpi"].mpicc) env.set("CXX", self.spec["mpi"].mpicxx) env.set("F77", self.spec["mpi"].mpif77) env.set("FC", self.spec["mpi"].mpifc) # Set CONFIG_FILEPATH so Amrvis can find the configuration # file, amrvis.defaults. env.set("CONFIG_FILEPATH", self.spec.prefix.etc)
[ 102, 56, 1027 ]
def METHOD_NAME(data_fixture): user = data_fixture.create_user() builder = data_fixture.create_builder_application() page = data_fixture.create_builder_page(builder=builder) with pytest.raises(UserNotInWorkspace): PageService().update_page(user, page, name="test")
[ 9, 86, 1174, 21, 130, 623, 1976 ]
def METHOD_NAME(self, cdb: CDB, count: int) -> None: """Save the CDB as the latest checkpoint. Args: cdb (medcat.CDB): The MedCAT CDB object to be checkpointed. count (count): The number of the finished steps. """ ckpt_file_path = os.path.join(os.path.abspath(self._dir_path), "checkpoint-%s-%s" % (self.steps, count)) while len(self._file_paths) >= self._max_to_keep: to_remove = self._file_paths.pop(0) os.remove(to_remove) cdb.METHOD_NAME(ckpt_file_path) logger.debug("Checkpoint saved: %s", ckpt_file_path) self._file_paths.append(ckpt_file_path) self._count = count
[ 73 ]
def METHOD_NAME(*args): """Join paths to create a real path.""" return osp.abspath(osp.join(*args))
[ -1 ]
def METHOD_NAME(data: bytes) -> List[bool]: """Create bit list out of a bytestring. :param data: The modbus data packet to decode example:: bytes = "bytes to decode" result = unpack_bitstring(bytes) """ byte_count = len(data) bits = [] for byte in range(byte_count): value = int(int(data[byte])) for _ in range(8): bits.append((value & 1) == 1) value >>= 1 return bits
[ 789, 7691 ]
def METHOD_NAME(self): self.client.login(username=self.username, password=self.password) with domain_fixture("public", allow_domain_requests=True): response = self.client.get(reverse("domain_homepage", args=["public"]), follow=True) self.assertEqual(response.status_code, 200)
[ 9, 2569, 1674, 311 ]
def METHOD_NAME(self, spec, prefix): return ["--cpp_implementation"]
[ 428, 1881 ]
def METHOD_NAME(self, scan_settings: model.ScanSettings): return self.client.METHOD_NAME(scan_settings)
[ 447, 793 ]
def METHOD_NAME(self): sfp_quantity = 8 sfp_i2c_start_bus = 10 #Celestica Blacklist file blacklist_file_path="/etc/modprobe.d/celestica-blacklist.conf" #Blacklist the unuse module. if os.path.exists(blacklist_file_path): os.system("rm {0}".format(blacklist_file_path)) os.system("touch {0}".format(blacklist_file_path)) cel_paths = "/lib/modules/{0}/onl/celestica/".format(os.uname()[2]) cel_dirs = os.listdir(cel_paths) for dir in cel_dirs: full_cel_path=cel_paths+dir if os.path.isdir(full_cel_path): modules=os.listdir(full_cel_path) for module in modules: os.system("echo 'blacklist {0}' >> {1}".format(module[0:-3],blacklist_file_path)) print("Initialize and Install the driver here") self.insmod("platform_cpld.ko") self.insmod("platform_psu.ko") self.insmod("platform_fan.ko") # Add drivers os.system("modprobe i2c-ismt") os.system("modprobe optoe") self.new_i2c_device('24c64', 0x52, 1) # os.system("i2cset -y 1 0x70 0x10 0x00 0x01 i") # reset pca9548 self.new_i2c_device('pca9548', 0x70, 1) self.new_i2c_device('fan', 0x32, 2) self.new_i2c_device('24c64', 0x53, 2) self.new_i2c_device('24c64', 0x50, 3) self.new_i2c_device('24c02', 0x50, 4) self.new_i2c_device('24c02', 0x51, 4) # reinstall fsp550 because it may fail to create fanx_input node if there's error 0x80 in 0x7e register when driver probes ret = self.register_hwdevice_multi_times('fsp550', 4, 0x58, 6, 'fan1_input') if ret is False: print("*** # Fail to register fsp550 on 4-0058, please check...") ret = self.register_hwdevice_multi_times('fsp550', 4, 0x59, 6, 'fan1_input') if ret is False: print("*** # Fail to register fsp550 on 4-0059, please check...") self.new_i2c_device('lm75b', 0x48, 5) self.new_i2c_device('lm75b', 0x49, 5) self.new_i2c_device('lm75b', 0x49, 6) self.new_i2c_device('lm75b', 0x4a, 6) self.new_i2c_device('pca9548', 0x71, 9) # initialize SFP devices name for actual_i2c_port in range(sfp_i2c_start_bus, sfp_i2c_start_bus+sfp_quantity): self.new_i2c_device('optoe2', 0x50, actual_i2c_port) port_number = actual_i2c_port - (sfp_i2c_start_bus-1) os.system("echo 'SFP{1}' > /sys/bus/i2c/devices/i2c-{0}/{0}-0050/port_name".format(actual_i2c_port,port_number)) # get fan direction from FRU eeprom os.system("i2cset -y 1 0x52 0x00 0xb0") status,fan_direction = self.run_command("i2cget -y 0x1 0x52") # set fan direction, B2F/F2B if fan_direction.strip() == "0xbf": os.system("i2cset -y -f 2 0x32 0x88 0x7") else: os.system("i2cset -y -f 2 0x32 0x88 0x0") return True
[ 6068 ]
def METHOD_NAME(show): """Build NFO file for TV Show""" tags = { 'title': show['title'], 'showtitle': show['title'], 'plot': show.get('synopsis'), 'id': show['id'], 'mpaa': show.get('rating') } # Try get the year from the first season year = show.get('seasons', [{}])[0].get('year') if year: # Since we have the year only, so we hardcode the month/day tags['premiered'] = f'{year}-01-01' root = _build_root_node('tvshow', tags) _add_poster(root, show) _add_fanart(root, show) return root
[ 129, 697, 6723 ]
def METHOD_NAME(self, show, episode): self.prompt_for_add.emit(show, episode)
[ 2995, 43, 238 ]
def METHOD_NAME(index_name, doc_dir): if args.search_engine == "milvus": document_store = MilvusDocumentStore( embedding_dim=args.embedding_dim, host=args.host, index=args.index_name, port=args.port, index_param={"M": 16, "efConstruction": 50}, index_type="HNSW", ) else: launch_es() document_store = ElasticsearchDocumentStore( host=args.host, port=args.port, username="", password="", embedding_dim=args.embedding_dim, index=index_name, ) if args.embedding_type == "image": docs = [ Document(content=f"./{args.doc_dir}/{filename}", content_type="image") for filename in os.listdir(args.doc_dir) ] elif args.embedding_type == "text": docs = convert_files_to_dicts(dir_path=args.doc_dir, split_paragraphs=True, encoding="utf-8") else: raise NotImplementedError print(docs[:3]) # 文档数据写入数据库 document_store.write_documents(docs) if args.embedding_type == "image": # 文搜图,对image做embedding retriever_mm = MultiModalRetriever( document_store=document_store, query_embedding_model=args.query_embedding_model, query_type="text", document_embedding_models={"image": args.document_embedding_model}, ) else: # 图搜文,对text做embedding retriever_mm = MultiModalRetriever( document_store=document_store, query_embedding_model=args.query_embedding_model, query_type="image", document_embedding_models={"text": args.document_embedding_model}, ) # 建立索引库 document_store.update_embeddings(retriever_mm)
[ 8024, 5165 ]
def METHOD_NAME(media_file): # This attr was added for 1.8. It is not computed for older projects. if (not hasattr(media_file, "info")): media_file.info = None # We need this in all media files, used only by img seq media. if not hasattr(media_file, "ttl"): media_file.ttl = None # Add container data if not found. if not hasattr(media_file, "container_data"): media_file.container_data = None # ContainerClipMediaItem objects were missing this but it mostly didn't cause problems. if type(media_file).__name__ == "ContainerClipMediaItem": if not hasattr(media_file, "current_frame"): media_file.current_frame = 0
[ 7279, 1104, 7280, 4197, -1, 385, 16461 ]
def METHOD_NAME(self, obj): # serialize the data before acquiring the lock obj = dumps(obj, reducers=self._reducers) if self._wlock is None: # writes to a message oriented win32 pipe are atomic self._writer.send_bytes(obj) else: with self._wlock: self._writer.send_bytes(obj)
[ 1276 ]
def METHOD_NAME(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id")
[ 147 ]
def METHOD_NAME(self): self.precision = 1.e-6 self.beta = 50.0
[ 0, 1 ]
def METHOD_NAME(self): """ Generates ryu requests for subscriber flows Based on the provided ip create 2 flows, that are matched based on dst/src ip and set value of the direction register. Additional reg values are set from set_reg_value """ uplink = copy.deepcopy(self._request) downlink = copy.deepcopy(self._request) uplink["instructions"].append({ "type": "APPLY_ACTIONS", "actions": self._reg_sets + [self._ulink_action], }) downlink["instructions"].append({ "type": "APPLY_ACTIONS", "actions": self._reg_sets + [self._dlink_action], }) ip_addr = convert_ip_str_to_ip_proto(self._ip) if ip_addr.version == IPAddress.IPV4: uplink["match"].update( {"ipv4_src": self._ip}, ) downlink["match"].update( {"ipv4_dst": self._ip}, ) else: uplink["match"].update( {"ipv6_src": self._ip}, ) downlink["match"].update( {"ipv6_dst": self._ip}, ) return [uplink, downlink]
[ 129, 2042, 1213, 311 ]
def METHOD_NAME(coords): return int(np.average(coords, weights=mask * grey_image))
[ 4430 ]
def METHOD_NAME(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict())
[ 24, 3 ]
def METHOD_NAME(): frr = MagicMock() frr.get_config = MagicMock(return_value = """! text1 ! comment text2 text3 ! comment text4 """) c = ConfigMgr(frr) c.update() assert c.current_config_raw == [' text1', ' text2', ' text3', ' text4', ' ', ' '] assert c.current_config == [['text1'], ['text2'], ['text3'], ['text4']]
[ 9, 86 ]
def METHOD_NAME(self, num_classes, global_pool='avg'): self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.num_classes = num_classes self.classifier = nn.Linear( self.num_features * self.global_pool.feat_mult(), num_classes) if self.num_classes else None
[ 656, 810 ]
def METHOD_NAME(self, newBuildCallback, flushErrors=False): newConsumer = yield self.master.mq.startConsuming( newBuildCallback, ('builds', None, 'new')) build = yield self.doForceBuild(wantSteps=True, useChange=self.change, wantLogs=True) self.assertBuildIsCancelled(build) newConsumer.stopConsuming() builds = yield self.master.data.get(("builds",)) for b in builds: self.assertBuildIsCancelled(b) if flushErrors: self.flushLoggedErrors()
[ 22, 9 ]
def METHOD_NAME(self) -> str: """ the ARN of the custom plugin. """ return pulumi.get(self, "arn")
[ 1059 ]
def METHOD_NAME( get_ocr_analyzer_results ): ocr_result, text, recognizer_result = get_ocr_analyzer_results mapped_entities = ImageAnalyzerEngine.map_analyzer_results_to_bounding_boxes( recognizer_result, ocr_result, text, allow_list=["Katie", "Cromley."] ) assert len(mapped_entities) == 0
[ 9, 1393, 2569, 245, 868, 422, 2224 ]
def METHOD_NAME(self, hash): hash_str = hash.hex().lower() return self._cache_dir / hash_str[:2] / hash_str[2:]
[ 1161, 157 ]
def METHOD_NAME(self): """Verify the responded queryset.""" # Create a question, there shouldn't be any responded yet. q = QuestionFactory() self.assertEqual(0, Question.objects.responded().count()) # Add an answer, there should be one responded. a = AnswerFactory(question=q) self.assertEqual(1, Question.objects.responded().count()) # Add an answer by the creator, there should be none responded. a = AnswerFactory(creator=q.creator, question=q) self.assertEqual(0, Question.objects.responded().count()) # Add another answer, there should be one responded. a = AnswerFactory(question=q) self.assertEqual(1, Question.objects.responded().count()) # Lock it, there should be none responded. q.is_locked = True q.save() self.assertEqual(0, Question.objects.responded().count()) # Unlock it and mark solved, there should be none responded. q.is_locked = False q.solution = a q.save() self.assertEqual(0, Question.objects.responded().count())
[ 9, -1 ]
def METHOD_NAME(self): """Print memory usage average over time. We would like this value to be as high as possible.""" assert self.track_usage, 'You need to enable track usage.' if torch.distributed.get_rank() == 0: print(' > usage of {} memory buffer: {:.2f} %'.format( self.name, self.in_use_value * 100.0 / self.total_value), flush=True)
[ 38, 1867, 558 ]
def METHOD_NAME(self, mock_query): # Create a job that appears to be in progress job = HarvesterBackgroundTask.prepare("testuser") job.start() job.save(blocking=True) job2 = HarvesterBackgroundTask.prepare("testuser") task = HarvesterBackgroundTask(job2) BackgroundApi.execute(task) assert not mock_query.called, "mock_query was called when it shouldn't have been" time.sleep(1) job3 = models.BackgroundJob.pull(job2.id) assert job3.status == "error", "expected 'error', got '{x}'".format(x=job3.status)
[ 9, 447, 107 ]
def METHOD_NAME(self, size=None): if self._remaining == 0: return b"" if size is None: e = self._base_data_length else: e = size e = min(e, self._remaining) if e > self._base_data_length: self._base_data = urandom(e) self._base_data_length = e self._remaining = self._remaining - e return self._base_data[:e]
[ 203 ]
def METHOD_NAME(self, event): builtins.width = int(self.size[0]) builtins.height = int(self.size[1]) p5.renderer.reset_view() with p5.renderer.draw_loop(): p5.renderer.clear()
[ 69, 1128 ]
def METHOD_NAME(self, data): self.stack[-1][2].append(data)
[ 238, 5859, 365 ]
def METHOD_NAME(self): results = [] todo = list(providedBy(self.context)) done = [] while todo: interface = todo.pop() done.append(interface) for base in interface.__bases__: if base not in todo and base not in done: todo.append(base) markers = self._getDirectMarkersOf(interface) for interface in markers: if interface not in results and \ not interface.providedBy(self.context): results.append(interface) todo += markers return tuple(results)
[ 19, 1272, 703 ]
def METHOD_NAME(self): return list(map(self.generate_data_file, self.src_img_tags))
[ 370, 2405, 1537 ]
def METHOD_NAME(self): """ For data blocks, convert known Relion columns to sensible types. """ _blocks = OrderedDict() for block_name, block in self.blocks.items(): _blocks[block_name] = dict_to_relion_types(block) self.blocks = _blocks
[ 197, 4303 ]
f METHOD_NAME(self):
[ 9, 1950, 1770, 573, 45 ]
def METHOD_NAME(header: str, content: str, node_link: str, header_index_offset: int) -> str: # Downgrade headers and use HTML to avoid creating sidebar items for them for header_index in range(4, 0, -1): markdown_header_prefix = '#' * header_index parts = re.split(f'\n{markdown_header_prefix} ([^\n]*)\n', content) # Nothing to do if len(parts) == 1: continue # We could start a section without a header if len(parts) % 2: section_headers = ['', *parts[1::2]] section_contents = parts[0::2] else: section_headers = parts[0::2] section_contents = parts[1::2] content = '' for section_header, section_content in zip(section_headers, section_contents): if not section_header: content += section_content continue header_html = build_header( header=section_header, header_index=(header_index + header_index_offset), node_link=node_link, ) content += f'\n{header_html}\n{section_content}' return content
[ 369, 2131 ]
def METHOD_NAME( self, render_map: Map, ) -> List[Tuple[Layer, BaseMapServerLayerFactory]]: layers_plus_factories = [] type_to_layer_factory = {} for layer in render_map.layers: layer_type = type(layer) if layer_type in type_to_layer_factory: factory = type_to_layer_factory[layer_type] else: factory = self._get_layer_factory(layer_type) type_to_layer_factory[layer_type] = factory layers_plus_factories.append((layer, factory())) return layers_plus_factories
[ 19, 2315, 222, 7291 ]
def METHOD_NAME(self): self.assertEqual( available_namespaces(), ("hdmf-common", "hdmf-experimental", "core") )
[ 9, 1272, 6824 ]
def METHOD_NAME(self, string, message=None, policy=None): if policy is None: policy = self.policy if message is None: message = self.message return email.message_from_string(string, message, policy=policy)
[ 3, 169 ]
def METHOD_NAME(self): self.pkgdesc = f"{pkgdesc} (demo applications)" return [ "usr/bin/gtk4-demo", "usr/bin/gtk4-widget-factory", "usr/bin/gtk4-demo-application", "usr/bin/gtk4-print-editor", "usr/bin/gtk4-node-editor", "usr/share/man/man1/gtk4-demo.1", "usr/share/man/man1/gtk4-widget-factory.1", "usr/share/man/man1/gtk4-demo-application.1", "usr/share/man/man1/gtk4-node-editor.1", "usr/share/metainfo/org.gtk.Demo4.appdata.xml", "usr/share/metainfo/org.gtk.WidgetFactory4.appdata.xml", "usr/share/metainfo/org.gtk.gtk4.NodeEditor.appdata.xml", "usr/share/gtk-4.0/gtk4builder.rng", "usr/share/glib-2.0/schemas/org.gtk.Demo4.gschema.xml", "usr/share/applications/org.gtk.Demo4.desktop", "usr/share/applications/org.gtk.PrintEditor4.desktop", "usr/share/applications/org.gtk.WidgetFactory4.desktop", "usr/share/applications/org.gtk.gtk4.NodeEditor.desktop", "usr/share/icons/hicolor/scalable/apps/org.gtk.Demo4.svg", "usr/share/icons/hicolor/symbolic/apps/org.gtk.Demo4-symbolic.svg", "usr/share/icons/hicolor/scalable/apps/org.gtk.PrintEditor4.svg", "usr/share/icons/hicolor/symbolic/apps/org.gtk.PrintEditor4-symbolic.svg", "usr/share/icons/hicolor/scalable/apps/org.gtk.PrintEditor4.Devel.svg", "usr/share/icons/hicolor/scalable/apps/org.gtk.WidgetFactory4.svg", "usr/share/icons/hicolor/symbolic/apps/org.gtk.WidgetFactory4-symbolic.svg", "usr/share/icons/hicolor/scalable/apps/org.gtk.gtk4.NodeEditor.Devel.svg", "usr/share/icons/hicolor/scalable/apps/org.gtk.gtk4.NodeEditor.svg", "usr/share/icons/hicolor/symbolic/apps/org.gtk.gtk4.NodeEditor-symbolic.svg", ]
[ 2660 ]
def METHOD_NAME(process): from FWCore.ParameterSet.Config import Task l = [ p for p in process.producers.values()] l.extend( (f for f in process.filters.values()) ) return Task(*l)
[ 129, 758, 41, 75, 9145, 61, 469 ]
f METHOD_NAME(self):
[ 9, 1195, 747, 2282, 1234 ]
def METHOD_NAME(src_obj_metadata, progress=0, user_project=None): """Returns download serialization data. There are five entries: auto_transfer: JSON-specific field, always False. progress: How much of the download has already been completed. total_size: Total object size. url: Implementation-specific field used for saving a metadata get call. For JSON, this the download URL of the object. For XML, this is a pickled boto key. user_project: Project to be billed to, added as query param. Args: src_obj_metadata: Object to be downloaded. progress: See above. user_project: User project to add to query string. Returns: Serialization data for use with Cloud API GetObjectMedia. """ url = src_obj_metadata.mediaLink if user_project: url = AddQueryParamToUrl(url, 'userProject', user_project) if six.PY3: if isinstance(url, bytes): url = url.decode('ascii') serialization_dict = { 'auto_transfer': 'False', 'progress': progress, 'total_size': src_obj_metadata.size, 'url': url } return json.dumps(serialization_dict)
[ 19, 136, 2109, 365 ]
def METHOD_NAME(xml_file): try: doc = xml.dom.minidom.parse(xml_file) except: print("Error: invalid xml file", file=sys.stderr) sys.exit(-1) invocation_labels = [] for method in doc.getElementsByTagName("method"): invocation_labels.append((str(method.getAttribute("id")), str(condition_to_cpp(method.getElementsByTagName("condition"))))) return invocation_labels
[ 214, 399 ]
def METHOD_NAME(self): mapping = {0.5: 1, 1.5: 0} a_result = np.array([[6.0, 1.0], [1.0, 0.0]]) a = nx.attribute_mixing_matrix( self.F, "margin", mapping=mapping, normalized=False ) np.testing.assert_equal(a, a_result) a = nx.attribute_mixing_matrix(self.F, "margin", mapping=mapping) np.testing.assert_equal(a, a_result / a_result.sum())
[ 9, 309, 11704, 430, 1819 ]
def METHOD_NAME(freqs, decays, amplitudes, phases, time_step): t = np.arange(NTIME) complex_amplitudes = amplitudes * np.exp(1j * phases) complex_freqs = 2 * np.pi * freqs - 1j * decays signal = np.zeros(len(t), dtype=complex) for i in range(len(freqs)): signal += complex_amplitudes[i] * np.exp(-1j * complex_freqs[i] * t * time_step) return signal
[ 567, 900 ]
def METHOD_NAME(self, scheduler, alias): super(ZooKeeperJobStore, self).METHOD_NAME(scheduler, alias) if not self.client.connected: self.client.METHOD_NAME()
[ 447 ]
def METHOD_NAME(service_allowed_endpoint): """Check correct headers for every endpoint.""" methods, request, svc_client = service_allowed_endpoint method = request["allowed_method"] client_method = methods.pop(method) response = client_method(request["url"], headers=request["headers"]) assert_rpc_response(response, "error") assert UserAnonymousError.code == response.json["error"]["code"]
[ 9, 2433, 2131, 242 ]
def METHOD_NAME(request): if request.param == "interval": base = UnitIntervalMesh(4) elif request.param == "square": base = UnitSquareMesh(5, 4) elif request.param == "quad-square": base = UnitSquareMesh(4, 6, quadrilateral=True) return ExtrudedMesh(base, layers=10, layer_height=0.1, extrusion_type="uniform", name=mesh_name)
[ 4431, 1949 ]
def METHOD_NAME(self, value): """ :type value: file-like object :param value: A file-like object containing the content of the message. The actual content will be stored in S3 and a link to the S3 object will be stored in the message body. """ bucket_name, key_name = self._get_bucket_key(self.s3_url) if bucket_name and key_name: return self.s3_url key_name = uuid.uuid4() s3_conn = boto.connect_s3() s3_bucket = s3_conn.get_bucket(bucket_name) key = s3_bucket.new_key(key_name) key.set_contents_from_file(value) self.s3_url = 's3://%s/%s' % (bucket_name, key_name) return self.s3_url
[ 421 ]
def METHOD_NAME(): headers = make_headers("unsupported-type", "predict") data = "aW1hZ2UgYnl0ZXM=" for MODEL_NAME in MODEL_NAMES: response = requests.post(INVOCATION_URL.format(MODEL_NAME), data=data, headers=headers) assert 500 == response.status_code assert "unsupported content type" in response.text
[ 9, 1950, 459, 44 ]
def METHOD_NAME(gcs_client, target_bucket_name, log_table_id) -> bool: """ Function to check file exist in gcs bucket """ bucket = gcs_client.bucket(target_bucket_name) return storage.Blob(bucket=bucket, name=log_table_id).exists(gcs_client)
[ 171, 1985 ]
def METHOD_NAME(self): self._backup_platform = sys.platform self._backup_get_config_var = sysconfig.get_config_var class CompilerWrapper(UnixCCompiler): def rpath_foo(self): return self.runtime_library_dir_option('/foo') self.cc = CompilerWrapper()
[ 0, 1 ]
def METHOD_NAME(self): # Mine some blocks and have them mature. self.nodes[0].generate(101) utxo = self.nodes[0].listunspent(10) txid = utxo[0]["txid"] vout = utxo[0]["vout"] value = utxo[0]["amount"] fee = Decimal("0.0002") # MAX_ANCESTORS transactions off a confirmed tx should be fine chain = [] for _ in range(4): (txid, sent_value) = self.chain_transaction( self.nodes[0], [txid], [vout], value, fee, 2 ) vout = 0 value = sent_value chain.append([txid, value]) for _ in range(MAX_ANCESTORS - 4): (txid, sent_value) = self.chain_transaction( self.nodes[0], [txid], [0], value, fee, 1 ) value = sent_value chain.append([txid, value]) (second_chain, second_chain_value) = self.chain_transaction( self.nodes[0], [utxo[1]["txid"]], [utxo[1]["vout"]], utxo[1]["amount"], fee, 1, ) # Check mempool has MAX_ANCESTORS + 1 transactions in it assert_equal(len(self.nodes[0].getrawmempool(True)), MAX_ANCESTORS + 1) # Adding one more transaction on to the chain should fail. assert_raises_rpc_error( -26, "too-long-mempool-chain, too many unconfirmed ancestors [limit: 25]", self.chain_transaction, self.nodes[0], [txid], [0], value, fee, 1, ) # ...even if it chains on from some point in the middle of the chain. assert_raises_rpc_error( -26, "too-long-mempool-chain, too many descendants", self.chain_transaction, self.nodes[0], [chain[2][0]], [1], chain[2][1], fee, 1, ) assert_raises_rpc_error( -26, "too-long-mempool-chain, too many descendants", self.chain_transaction, self.nodes[0], [chain[1][0]], [1], chain[1][1], fee, 1, ) # ...even if it chains on to two parent transactions with one in the chain. assert_raises_rpc_error( -26, "too-long-mempool-chain, too many descendants", self.chain_transaction, self.nodes[0], [chain[0][0], second_chain], [1, 0], chain[0][1] + second_chain_value, fee, 1, ) # ...especially if its > 40k weight assert_raises_rpc_error( -26, "too-long-mempool-chain, too many descendants", self.chain_transaction, self.nodes[0], [chain[0][0]], [1], chain[0][1], fee, 350, ) # But not if it chains directly off the first transaction self.chain_transaction(self.nodes[0], [chain[0][0]], [1], chain[0][1], fee, 1) # and the second chain should work just fine self.chain_transaction( self.nodes[0], [second_chain], [0], second_chain_value, fee, 1 ) # Finally, check that we added two transactions assert_equal(len(self.nodes[0].getrawmempool(True)), MAX_ANCESTORS + 3)
[ 22, 9 ]
def METHOD_NAME(self, g, indices): """Sampling function Parameters ---------- g : DGLGraph The graph to sample from. indices : Tensor Placeholder not used. Returns ------- DGLGraph The sampled subgraph. """ node_ids = self.sampler(g) sg = g.subgraph( node_ids, relabel_nodes=True, output_device=self.output_device ) set_node_lazy_features(sg, self.prefetch_ndata) set_edge_lazy_features(sg, self.prefetch_edata) return sg
[ 734 ]
nc def METHOD_NAME(self, request, response):
[ 69, 123, 17 ]
def METHOD_NAME(): status = namedtuple('status', 'status color code sort_value') return status
[ 176, 452 ]
def METHOD_NAME(self): """Configure build: <single-line description how this deviates from standard configure>""" # set generic make options self.cfg.update('buildopts', 'CC="%s" OPTFLAGS="%s"' % (os.getenv('MPICC'), os.getenv('CFLAGS'))) if LooseVersion(self.version) >= LooseVersion("3.2"): # set correct start_dir dir, and change into it # test whether it already contains 'src', since a reprod easyconfig would if os.path.basename(self.cfg['start_dir']) != 'src': self.cfg['start_dir'] = os.path.join(self.cfg['start_dir'], 'src') try: os.chdir(self.cfg['start_dir']) except OSError as err: raise EasyBuildError("Failed to change to correct source dir %s: %s", self.cfg['start_dir'], err) # run autoconf to generate configure script cmd = "autoconf" run_cmd(cmd) # set config opts beagle = get_software_root('beagle-lib') if beagle: self.cfg.update('configopts', '--with-beagle=%s' % beagle) else: if get_software_root('BEAGLE'): self.log.nosupport('BEAGLE module as dependency, should be beagle-lib', '2.0') raise EasyBuildError("beagle-lib module not loaded?") if self.toolchain.options.get('usempi', None): self.cfg.update('configopts', '--enable-mpi') # configure super(EB_MrBayes, self).METHOD_NAME() else: # no configure script prior to v3.2 self.cfg.update('buildopts', 'MPI=yes')
[ 111, 367 ]
def METHOD_NAME( self, filename_or_file: str | IO[AnyStr] | None = None, indent: str = " ", newl: str = ..., encoding: str = "UTF-8" ) -> None: ...
[ 13556 ]
def METHOD_NAME(line): features = tf.decode_csv(line, record_defaults=DEFAULTS) features = dict(zip(CSV_COLUMNS, features)) labels = features.pop(LABEL_COLUMN) return features, labels
[ 1268, 732 ]
def METHOD_NAME(filename): top_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) script_file = os.path.join(top_dir, filename) with open(script_file, "r") as f: out = f.read() return out
[ 203, 782 ]
def METHOD_NAME(self): escrow_address = create_escrow(self.w3) with patch("src.chain.escrow.get_web3") as mock_function: with patch("src.chain.escrow.EscrowClient") as mock_client: mock_escrow_client = mock_client.return_value mock_escrow_client.get_manifest_url.return_value = "invalid_url" mock_function.return_value = self.w3 with self.assertRaises(StorageClientError) as error: get_escrow_manifest(self.w3.eth.chain_id, escrow_address) self.assertEqual(f"Invalid URL: invalid_url", str(error.exception))
[ 9, 19, 9913, 1220, 532, 274 ]
def METHOD_NAME(self, request): """ View to handle final steps of OAuth based authentication where the user gets redirected back to from the service provider """ login_done_url = reverse(self.adapter.provider_id + "_callback") client = self._get_client(request, login_done_url) if not client.is_valid(): if "denied" in request.GET: error = AuthError.CANCELLED else: error = AuthError.UNKNOWN extra_context = dict(oauth_client=client) return render_authentication_error( request, self.adapter.provider_id, error=error, extra_context=extra_context, ) app = self.adapter.get_provider().app try: access_token = client.get_access_token() token = SocialToken( app=app, token=access_token["oauth_token"], # .get() -- e.g. Evernote does not feature a secret token_secret=access_token.get("oauth_token_secret", ""), ) login = self.adapter.complete_login( request, app, token, response=access_token ) login.token = token login.state = SocialLogin.unstash_state(request) return complete_social_login(request, login) except OAuthError as e: return render_authentication_error( request, self.adapter.provider_id, exception=e )
[ 2506 ]
def METHOD_NAME(self): # use this method to get the object from the whole organization instead of the current team pk = self.kwargs["pk"] organization = self.request.auth.organization try: obj = organization.webhooks.filter(*self.available_teams_lookup_args).distinct().get(public_primary_key=pk) except ObjectDoesNotExist: raise NotFound # May raise a permission denied self.check_object_permissions(self.request, obj) return obj
[ 19, 279, 280, 1044 ]
def METHOD_NAME(self): self._build_with_qmake() self._build_with_meson() self._build_with_cmake_find_package_multi()
[ 56 ]
def METHOD_NAME(cls, **cfg) -> Container: cfg = Container(cfg) workspace = Workspace(cfg.workspace) fix_random_seeds() upstream = cfg.upstream() stats = Container( feat_frame_shift=upstream.downsample_rate, ) logger.info("Preparing corpus") train_data, valid_data, test_data, corpus_stats = cfg.corpus().split(3) stats = corpus_stats.add(stats) logger.info("Preparing train data") train_dataset = cfg.train_datapipe(**stats)(train_data, **stats) train_sampler = cfg.train_sampler(train_dataset) stats.override(train_dataset.all_tools()) workspace.environ.update(stats) logger.info("Preparing valid data") valid_dataset = cfg.valid_datapipe(**dict(workspace.environ))( valid_data, **dict(workspace.environ) ) valid_sampler = cfg.valid_sampler(valid_dataset) logger.info("Preparing test data") test_dataset = cfg.test_datapipe(**dict(workspace.environ))( test_data, **dict(workspace.environ) ) test_sampler = cfg.test_sampler(test_dataset) logger.info("Preparing model and task") downstream = cfg.downstream(upstream.output_size, **dict(workspace.environ)) model = UpstreamDownstreamModel(upstream, downstream) task = cfg.task(model, **dict(workspace.environ)) workspace["train_data"] = train_data workspace["valid_data"] = valid_data workspace["test_data"] = test_data workspace["train_dataset"] = train_dataset workspace["train_sampler"] = train_sampler workspace["valid_dataset"] = valid_dataset workspace["valid_sampler"] = valid_sampler workspace["test_dataset"] = test_dataset workspace["test_sampler"] = test_sampler workspace["task"] = task
[ 102 ]
def METHOD_NAME( user: AnyUser, payload: Payload, type: str, # pylint: disable=redefined-builtin permission: Permission, kwargs: Dict[str, Any] ) -> Iterable[Any]: """ Gets the objects corresponding to a permission. Raises AuthenticationFailed if the user doesn't have permission. Create permissions do not have objects, so they should return empty lists if kwargs are otherwise ok. """ global _jwt_accessible_managers # pylint: disable=global-variable-not-assigned cls = _jwt_accessible_managers.get(type) if cls is None: # Fail by default logger.info(f"Missing jwt class for type {type}") # pylint: disable=logging-fstring-interpolation raise AuthenticationFailed(format_lazy( _("NO_JWT_PERMISSION -- {permission}, {type}, {kwargs}"), permission=permission, type=type, kwargs=kwargs )) items = cls.from_jwt_permission(user, payload, permission, kwargs, auth_settings().DISABLE_LOGIN_CHECKS) if items is None: logger.info( # pylint: disable=logging-fstring-interpolation f"{payload.sub} (signed by {payload.iss}) tried to get {permission} access to {type} with {kwargs}" ) raise AuthenticationFailed(format_lazy( _("NO_JWT_PERMISSION -- {permission}, {type}, {kwargs}"), permission=permission, type=type, kwargs=kwargs )) return items
[ 19, 635, 280, 204 ]
def METHOD_NAME(data, fractions_desired, only_upper_part=False, _buffer_size=10): """ Computes for a given sampled distribution the highest density region of the desired fractions. Does not assume anything on the normalisation of the data. :param data: Sampled distribution :param fractions_desired: numpy.array Area/probability for which the hdr should be computed. :param _buffer_size: Size of the result buffer. The size is equivalent to the maximal number of allowed intervals. :param only_upper_part: Boolean, if true only computes area/probability between maximum and current height. :return: two arrays: The first one stores the start and inclusive endindex of the highest density region. The second array holds the amplitude for which the desired fraction was reached. Note: Also goes by the name highest posterior density. Please note, that the right edge corresponds to the right side of the sample. Hence the corresponding index is -= 1. """ fi = 0 # number of fractions seen # Buffer for the result if we find more then _buffer_size edges the function fails. # User can then manually increase the buffer if needed. res = np.zeros((len(fractions_desired), 2, _buffer_size), dtype=np.int32) res_amp = np.zeros(len(fractions_desired), dtype=np.float32) area_tot = np.sum(data) if area_tot <= 0: raise ValueError('Highest density regions are not defined for distributions ' 'with a total probability of less-equal 0.') # Need an index which sorted by amplitude max_to_min = np.argsort(data, kind='mergesort')[::-1] lowest_sample_seen = np.inf for j in range(1, len(data)): # Loop over indices compute fractions from max to min if lowest_sample_seen == data[max_to_min[j]]: # We saw this sample height already, so no need to repeat continue lowest_sample_seen = data[max_to_min[j]] lowest_sample_seen *= int(only_upper_part) sorted_data_max_to_j = data[max_to_min[:j]] fraction_seen = np.sum(sorted_data_max_to_j - lowest_sample_seen) / area_tot # Check if this height step exceeded at least one of the desired # fractions m = fractions_desired[fi:] <= fraction_seen if not np.any(m): # If we do not exceed go to the next sample. continue for fraction_desired in fractions_desired[fi:fi + np.sum(m)]: # Since we loop always to the height of the next highest sample # it might happen that we overshoot the desired fraction. Similar # to the area deciles algorithm we have now to figure out at which # height we actually reached the desired fraction and store the # corresponding height: g = fraction_desired / fraction_seen # The following gives the true height, to get here one has to # solve for h: # 1. fraction_seen = sum_{i=0}^j (y_i - y_j) / a_total # 2. fraction_desired = sum_{i=0}^j (y_i - h) / a_total # 3. g = fraction_desired/fraction_seen # j == number of seen samples # n == number of total samples in distribution true_height = (1 - g) * np.sum(sorted_data_max_to_j) / j + g * lowest_sample_seen res_amp[fi] = true_height # Find gaps and get edges of hdr intervals: ind = np.sort(max_to_min[:j]) gaps = np.arange(1, len(ind) + 1) g0 = 0 g_ind = -1 diff = ind[1:] - ind[:-1] gaps = gaps[:-1][diff > 1] if len(gaps) > _buffer_size: # This signal has more boundaries than the buffer can hold # hence set all entries to -1 instead. res[fi, 0, :] = -1 res[fi, 1, :] = -1 fi += 1 else: for g_ind, g in enumerate(gaps): # Loop over all gaps and get outer edges: interval = ind[g0:g] res[fi, 0, g_ind] = interval[0] res[fi, 1, g_ind] = interval[-1] + 1 g0 = g # Now we have to do the last interval: interval = ind[g0:] res[fi, 0, g_ind + 1] = interval[0] res[fi, 1, g_ind + 1] = interval[-1] + 1 fi += 1 if fi == (len(fractions_desired)): # Found all fractions so we are done return res, res_amp # If we end up here this might be due to an offset # of the distribution with respect to zero. In that case it can # happen that we do not find all desired fractions. # Hence we have to enforce to compute the last step from the last # lowest hight we have seen to zero. # Left and right edge is by definition 0 and len(data): res[fi:, 0, 0] = 0 res[fi:, 1, 0] = len(data) # Now we have to compute the heights for the fractions we have not # seen yet, since lowest_sample_seen == 0 and j == len(data) # the formula above reduces to: for ind, fraction_desired in enumerate(fractions_desired[fi:]): res_amp[fi+ind] = (1-fraction_desired) * np.sum(data)/len(data) return res, res_amp
[ 1211, 2915, 1216 ]
async def METHOD_NAME(api: OT3API, report: CSVReport, section: str) -> None: """Run.""" ax = Axis.P_L mount = OT3Mount.LEFT settings = helpers_ot3.get_gantry_load_per_axis_motion_settings_ot3(api, ax) default_current = settings.run_current default_speed = settings.max_speed _, _, blow_out, _ = helpers_ot3.get_plunger_positions_ot3(api, mount) async def _save_result(tag: str) -> bool: est, enc, aligned = await _is_plunger_still_aligned_with_encoder(api) print(f"Estimate: {est}") print(f"Encoder: {enc}") result = CSVResult.from_bool(aligned) report(section, tag, [est, enc, result]) return aligned await api.home_z(OT3Mount.LEFT) slot_5 = helpers_ot3.get_slot_calibration_square_position_ot3(5) home_pos = await api.gantry_position(OT3Mount.LEFT) await api.move_to(OT3Mount.LEFT, slot_5._replace(z=home_pos.z)) # LOOP THROUGH CURRENTS + SPEEDS currents = list(CURRENTS_SPEEDS.keys()) for current in sorted(currents, reverse=True): speeds = CURRENTS_SPEEDS[current] for speed in sorted(speeds, reverse=False): ui.print_header(f"CURRENT: {current}, SPEED: {speed}") # HOME print("homing...") await api.home([ax]) print(f"lowering run-current to {current} amps") await helpers_ot3.set_gantry_load_per_axis_current_settings_ot3( api, ax, run_current=current, ) await helpers_ot3.set_gantry_load_per_axis_motion_settings_ot3( api, ax, default_max_speed=speed ) # MOVE DOWN print(f"moving down {blow_out} mm at {speed} mm/sec") await _save_result(_get_test_tag(current, speed, "down", "start")) await helpers_ot3.move_plunger_absolute_ot3( api, mount, blow_out, speed=speed, motor_current=current ) down_passed = await _save_result( _get_test_tag(current, speed, "down", "end") ) # MOVE UP print(f"moving up {blow_out} mm at {speed} mm/sec") await _save_result(_get_test_tag(current, speed, "up", "start")) await helpers_ot3.move_plunger_absolute_ot3( api, mount, 0, speed=speed, motor_current=current ) up_passed = await _save_result(_get_test_tag(current, speed, "up", "end")) # RESET CURRENTS AND HOME print("homing...") await helpers_ot3.set_gantry_load_per_axis_current_settings_ot3( api, ax, run_current=default_current ) await helpers_ot3.set_gantry_load_per_axis_motion_settings_ot3( api, ax, default_max_speed=default_speed ) await api._backend.set_active_current({Axis.P_L: default_current}) await api.home([ax]) if not down_passed or not up_passed and not api.is_simulator: print(f"current {current} failed") print("skipping any remaining speeds at this current") break
[ 22 ]
async def METHOD_NAME(self, body): posters = await self.service.get_posters_presented_by_user( user_id=body["user_id"] ) await self.consumer.send_success(posters)
[ -1, 604, 21 ]
def METHOD_NAME(host): res = host.command("ntpstat", module_ignore_errors=True) if res['rc'] != 0: return False return True
[ 250, 10604, 452 ]
def METHOD_NAME(): devs = GLOBALCONFIG["DEVS"] for index in range(len(devs) - 1, -1, -1): removeDev(devs[index]["bus"], devs[index]["loc"])
[ -1 ]
def METHOD_NAME(): mock_entrypoint = mock.Mock() mock_entrypoint.name = "mock-scheme" with mock.patch("entrypoints.get_group_all", return_value=[mock_entrypoint]): # Entrypoints are registered at import time, so we need to reload the # module to register the entrypoint given by the mocked # entrypoints.get_group_all reload(artifact_repository_registry) expected_artifact_repository_registry = { "", "s3", "gs", "wasbs", "ftp", "sftp", "dbfs", "mock-scheme", } assert expected_artifact_repository_registry.issubset( artifact_repository_registry._artifact_repository_registry._registry.keys() )
[ 9, 2356, 1831, 510 ]
def METHOD_NAME(self): t1 = time.gmtime() self.assertEqual(hash(t1), hash(tuple(t1)))
[ 9, 1161 ]
def METHOD_NAME(self): modules = [] for i in self.tree_node.iter_imports(): if i.is_star_import(): name = i.get_paths()[-1][-1] new = infer_import(self, name) for module in new: if isinstance(module, ModuleContext): modules += module.METHOD_NAME() modules += new return modules
[ 4889, 2460 ]
def METHOD_NAME(self, tool_consumer_instance_guid, resource_link_id): """Get an assignment by resource_link_id.""" return ( self._db.query(Assignment) .filter_by( tool_consumer_instance_guid=tool_consumer_instance_guid, resource_link_id=resource_link_id, ) .one_or_none() )
[ 19, 776 ]
def METHOD_NAME(signatures, examples_batch, single_feature_name="feature"): """Creates example parser from given signatures. Args: signatures: Dict of `TensorSignature` objects or single `TensorSignature`. examples_batch: string `Tensor` of serialized `Example` proto. single_feature_name: string, single feature name. Returns: features: `Tensor` or `dict` of `Tensor` objects. """ feature_spec = {} if not isinstance(signatures, dict): feature_spec[single_feature_name] = signatures.get_feature_spec() else: feature_spec = { key: signatures[key].get_feature_spec() for key in signatures } features = parsing_ops.parse_example(examples_batch, feature_spec) if not isinstance(signatures, dict): # Returns single feature, casts if needed. features = features[single_feature_name] if not signatures.dtype.is_compatible_with(features.dtype): features = math_ops.cast(features, signatures.dtype) return features # Returns dict of features, casts if needed. for name in features: if not signatures[name].dtype.is_compatible_with(features[name].dtype): features[name] = math_ops.cast(features[name], signatures[name].dtype) return features
[ 129, 1441, 1319, 280, 621 ]
def METHOD_NAME( get_with_offset: Callable[[int], T], offset: int = 0, pages: PageOpts = PageOpts.all, ) -> Iterator[T]: while True: resp = get_with_offset(offset) pagination = resp.pagination assert pagination is not None assert pagination.endIndex is not None assert pagination.total is not None yield resp if pagination.endIndex >= pagination.total or pages == PageOpts.single: break assert pagination.endIndex is not None offset = pagination.endIndex
[ 203, 5029 ]
def METHOD_NAME(client): """Test raising an exception if the index UID is None.""" with pytest.raises(Exception): client.get_index(uid=None)
[ 9, 19, 724, 41, 98, 3668 ]
def METHOD_NAME(self, attr, v): self.graph_attrs[attr] = v
[ 80, 303, 864 ]
def METHOD_NAME(self): query = f"""SELECT sequence_name FROM information_schema.sequences WHERE sequence_name LIKE '{self._act_prefix}form_%' OR sequence_name LIKE '{self._act_prefix}workflow_%';""" with connection.cursor() as cursor: cursor.execute(query, params=None) return [row[0] for row in cursor.fetchall()]
[ 19, 771, 245 ]
def METHOD_NAME(self, data, mode): """ Parse search results for items. :param data: The raw response from a search :param mode: The current mode used to search, e.g. RSS :return: A list of items found """ items = [] with BS4Parser(data, 'html5lib') as html: torrent_table = html.find('table', {'id': 'torrentsTable'}) torrent_rows = torrent_table.find_all('tr') if torrent_table else [] # Continue only if at least one release is found if len(torrent_rows) < 2: log.debug('Data returned from provider does not contain any torrents') return items # Skip column headers for row in torrent_rows[1:]: try: torrent_items = row.find_all('td') title = torrent_items[1].find('a').get_text(strip=True) download_url = torrent_items[2].find('a')['href'] if not all([title, download_url]): continue download_url = urljoin(self.url, download_url) seeders = try_int(torrent_items[5].get_text(strip=True)) leechers = try_int(torrent_items[6].get_text(strip=True)) # Filter unseeded torrent if seeders < self.minseed: if mode != 'RSS': log.debug("Discarding torrent because it doesn't meet the" ' minimum seeders: {0}. Seeders: {1}', title, seeders) continue torrent_size = torrent_items[4].get_text() size = convert_size(torrent_size) or -1 pubdate_raw = torrent_items[1].find('div').get_text() pubdate = self.parse_pubdate(pubdate_raw, human_time=True) item = { 'title': title, 'link': download_url, 'size': size, 'seeders': seeders, 'leechers': leechers, 'pubdate': pubdate, } if mode != 'RSS': log.debug('Found result: {0} with {1} seeders and {2} leechers', title, seeders, leechers) items.append(item) except (AttributeError, TypeError, KeyError, ValueError, IndexError): log.exception('Failed parsing provider') return items
[ 214 ]
def METHOD_NAME( kind: str, data: dict, target_datetime: datetime, ) -> pd.DataFrame: """ Filters out correct datetimes (source data is 12 hour format) """ assert len(data) > 0 assert kind != "" dt_12_hour = arrow.get(target_datetime.strftime("%Y-%m-%d %I:%M")).datetime datetime_col = KIND_MAPPING[kind]["datetime_column"] filtered_data = pd.DataFrame( [item for item in data if item[datetime_col].hour == dt_12_hour.hour] ) return filtered_data
[ 527, 772, 365 ]
def METHOD_NAME(self): self.with_xspec = False self.xspec_version = '12.12.0' self.xspec_include_dirs = '' self.xspec_lib_dirs = '' # This is set up for how CIAO builds XSPEC; other users may require more libraries self.xspec_libraries = 'XSFunctions XSUtil XS' self.cfitsio_include_dirs = '' self.cfitsio_lib_dirs = '' self.cfitsio_libraries = '' self.ccfits_include_dirs = '' self.ccfits_lib_dirs = '' self.ccfits_libraries = '' self.wcslib_include_dirs = '' self.wcslib_lib_dirs = '' self.wcslib_libraries = '' self.gfortran_include_dirs = '' self.gfortran_lib_dirs = '' self.gfortran_libraries = ''
[ 15, 1881 ]
def METHOD_NAME(self) -> None: # pylint: disable=R0916 if not isinstance(self.lam, (int, float, tuple)) or ( isinstance(self.lam, tuple) and ( len(self.lam) != 2 or not isinstance(self.lam[0], (int, float)) or not isinstance(self.lam[1], (int, float)) or self.lam[0] > self.lam[1] or self.lam[0] < 0.0 ) ): raise ValueError("The argument `lam` has to be a float or tuple of two float values as (min, max).")
[ 250, 434 ]
def METHOD_NAME(self) -> str: """ The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" """ return pulumi.get(self, "type")
[ 44 ]
def METHOD_NAME(module): if not HAS_JENKINS: module.fail_json( msg=missing_required_lib("python-jenkins", url="https://python-jenkins.readthedocs.io/en/latest/install.html"), exception=JENKINS_IMP_ERR)
[ 9, 2410 ]
def METHOD_NAME(self): if hasattr(self, "table"): self.table.destroy() self.keypoint_reorganizer = KeypointReorganizer( data_folder=self.data_folder.folder_path, pose_tool=self.pose_tool_dropdown.getChoices(), file_format=self.file_format.getChoices(), ) self.table = LabelFrame( self.main_frm, text="SET NEW ORDER", font=Formats.LABELFRAME_HEADER_FORMAT.value, pady=5, padx=5, ) self.current_order = LabelFrame(self.table, text="CURRENT ORDER:") self.new_order = LabelFrame(self.table, text="NEW ORDER:") self.table.grid(row=1, sticky=W, pady=10) self.current_order.grid(row=0, column=0, sticky=NW, pady=5) self.new_order.grid(row=0, column=1, sticky=NW, padx=5, pady=5) idx1, idx2, oldanimallist, oldbplist, self.newanimallist, self.newbplist = ( [0] * len(self.keypoint_reorganizer.bp_list) for i in range(6) ) if self.keypoint_reorganizer.animal_list: animal_list_reduced = list(set(self.keypoint_reorganizer.animal_list)) self.pose_tool = "maDLC" for i in range(len(self.keypoint_reorganizer.bp_list)): idx1[i] = Label(self.current_order, text=str(i + 1) + ".") oldanimallist[i] = Label( self.current_order, text=str(self.keypoint_reorganizer.animal_list[i]), ) oldbplist[i] = Label( self.current_order, text=str(self.keypoint_reorganizer.bp_list[i]) ) idx1[i].grid(row=i, column=0, sticky=W) oldanimallist[i].grid(row=i, column=1, sticky=W, ipady=5) oldbplist[i].grid(row=i, column=2, sticky=W, ipady=5) idx2[i] = Label(self.new_order, text=str(i + 1) + ".") self.newanimallist[i] = DropDownMenu( self.new_order, " ", animal_list_reduced, "10" ) self.newbplist[i] = DropDownMenu( self.new_order, " ", self.keypoint_reorganizer.bp_list, "10" ) self.newanimallist[i].setChoices( self.keypoint_reorganizer.animal_list[i] ) self.newbplist[i].setChoices(self.keypoint_reorganizer.bp_list[i]) idx2[i].grid(row=i, column=0, sticky=W) self.newanimallist[i].grid(row=i, column=1, sticky=W) self.newbplist[i].grid(row=i, column=2, sticky=W) else: self.pose_tool = "DLC" for i in range(len(self.keypoint_reorganizer.bp_list)): idx1[i] = Label(self.current_order, text=str(i + 1) + ".") oldbplist[i] = Label( self.current_order, text=str(self.keypoint_reorganizer.bp_list[i]) ) idx1[i].grid(row=i, column=0, sticky=W, ipady=5) oldbplist[i].grid(row=i, column=2, sticky=W, ipady=5) idx2[i] = Label(self.new_order, text=str(i + 1) + ".") self.newbplist[i] = StringVar() oldanimallist[i] = OptionMenu( self.new_order, self.newbplist[i], *self.keypoint_reorganizer.bp_list ) self.newbplist[i].set(self.keypoint_reorganizer.bp_list[i]) idx2[i].grid(row=i, column=0, sticky=W) oldanimallist[i].grid(row=i, column=1, sticky=W) button_run = Button( self.table, text="Run re-organization", command=lambda: self.run_reorganization(), ) button_run.grid(row=2, column=1, sticky=W)
[ 4695 ]
async def METHOD_NAME(self, relationship, constraints=None): """ Add a relationship to the internal store :param relationship: Relationship object to add :param constraints: optional constraints on the use of the relationship """ raise NotImplementedError
[ 238, 2924 ]
def METHOD_NAME(self, login, password): add_to_seclist(password) try: self.groups, self.org_id, self.user_id = getUserGroups(login, password) except rhnFault: e = sys.exc_info()[1] if e.code == 2: # invalid login/password; set timeout to baffle # brute force password guessing attacks (BZ 672163) time.sleep(2) raise log_debug(4, "Groups: %s; org_id: %s; user_id: %s" % ( self.groups, self.org_id, self.user_id))
[ 2433 ]
def METHOD_NAME(self, rhs): for out in divmod(self.p, rhs): assert_equal(out.symbol, 'z')
[ 9, 16933 ]
def METHOD_NAME(parallel_mode: ParallelMode, seed: int, overwrite: bool = False): """Adds a seed to the seed manager for `parallel_mode`. Args: parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode. seed (int): The seed to be added Raises: AssertionError: Raises an AssertionError if `parallel_mode` is not an instance of :class:`colossalai.context.ParallelMode` or the seed for `parallel_mode` has been added. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_. """ _SEED_MANAGER.METHOD_NAME(parallel_mode, seed, overwrite)
[ 238, 484 ]
def METHOD_NAME(self): basic_layout(self, src_folder="src")
[ 571 ]
def METHOD_NAME(mock_handler, mock_registry): mock_registry.settings = {"request_log_name": "request_logs"} yield request_logger.request_logger_tween_factory( mock_handler, mock_registry, )
[ 248, 1155 ]