text
stringlengths
15
7.82k
ids
sequencelengths
1
7
def METHOD_NAME(self): class Foo(object): @PropertySub def spam(self): """spam wrapped in property subclass""" return 1 self.assertEqual( Foo.spam.__doc__, "spam wrapped in property subclass")
[ 9, 2573, 215 ]
def METHOD_NAME( state: "State", host: "Host", remote_filename, filename_or_io, remote_temp_filename=None, # ignored print_output: bool = False, print_input: bool = False, **command_kwargs, ): """ Download a local file by copying it to a temporary location and then writing it to our filename or IO object. """ _, temp_filename = mkstemp() try: # Copy the file using `cp` such that we support sudo/su status, _, stderr = run_shell_command( state, host, "cp {0} {1}".format(remote_filename, temp_filename), print_output=print_output, print_input=print_input, **command_kwargs, ) if not status: raise IOError("\n".join(stderr)) # Load our file or IO object and write it to the temporary file with open(temp_filename, encoding="utf-8") as temp_f: with get_file_io(filename_or_io, "wb") as file_io: data_bytes: bytes data = temp_f.read() if isinstance(data, str): data_bytes = data.encode() else: data_bytes = data file_io.write(data_bytes) finally: os.remove(temp_filename) if print_output: click.echo( "{0}file copied: {1}".format(host.print_prefix, remote_filename), err=True, ) return True
[ 19, 171 ]
def METHOD_NAME(self): result = self.test_send_file() pubnub.download_file().\ channel(CHANNEL).\ file_id(result.file_id).\ file_name(result.name).pn_async(self.callback) self.event.wait() assert not self.status.is_error() assert isinstance(self.response, PNDownloadFileResult) assert self.response.data.decode("utf-8") == self.file_upload_test_data["FILE_CONTENT"]
[ 9, 353, 61, 136, 171 ]
async def METHOD_NAME( self, wallet_id: int, spend: CoinSpend, height: uint32, ) -> None: """ Appends (or replaces) entries in the DB. The new list must be at least as long as the existing list, and the parent of the first spend must already be present in the DB. Note that this is not committed to the DB until db_wrapper.commit() is called. However it is written to the cache, so it can be fetched with get_all_state_transitions. """ async with self.db_wrapper.writer_maybe_transaction() as conn: # find the most recent transition in wallet_id rows = list( await conn.execute_fetchall( "SELECT transition_index, height, coin_spend " "FROM pool_state_transitions " "WHERE wallet_id=? " "ORDER BY transition_index DESC " "LIMIT 1", (wallet_id,), ) ) serialized_spend = bytes(spend) if len(rows) == 0: transition_index = 0 else: existing = list( await conn.execute_fetchall( "SELECT COUNT(*) " "FROM pool_state_transitions " "WHERE wallet_id=? AND height=? AND coin_spend=?", (wallet_id, height, serialized_spend), ) ) if existing[0][0] != 0: # we already have this transition in the DB return row = rows[0] if height < row[1]: raise ValueError("Height cannot go down") prev = CoinSpend.from_bytes(row[2]) if spend.coin.parent_coin_info != prev.coin.name(): raise ValueError("New spend does not extend") transition_index = row[0] cursor = await conn.execute( "INSERT OR IGNORE INTO pool_state_transitions VALUES (?, ?, ?, ?)", ( transition_index + 1, wallet_id, height, serialized_spend, ), ) await cursor.close()
[ 238, 10840 ]
def METHOD_NAME(self) -> str: """ The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" """ return pulumi.get(self, "type")
[ 44 ]
def METHOD_NAME(self): self.scriptedEffect.setParameter("ObjectScaleMm", self.objectScaleMmSlider.value)
[ 86, 5243, 280, 2139 ]
def METHOD_NAME(registry_name: Optional[str] = None, resource_group_name: Optional[str] = None, scope_map_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetScopeMapResult: """ Gets the properties of the specified scope map. :param str registry_name: The name of the container registry. :param str resource_group_name: The name of the resource group. The name is case insensitive. :param str scope_map_name: The name of the scope map. """ __args__ = dict() __args__['registryName'] = registry_name __args__['resourceGroupName'] = resource_group_name __args__['scopeMapName'] = scope_map_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure-native:containerregistry/v20221201:getScopeMap', __args__, opts=opts, typ=GetScopeMapResult).value return AwaitableGetScopeMapResult( actions=pulumi.get(__ret__, 'actions'), creation_date=pulumi.get(__ret__, 'creation_date'), description=pulumi.get(__ret__, 'description'), id=pulumi.get(__ret__, 'id'), name=pulumi.get(__ret__, 'name'), provisioning_state=pulumi.get(__ret__, 'provisioning_state'), system_data=pulumi.get(__ret__, 'system_data'), type=pulumi.get(__ret__, 'type'))
[ 19, 913, 422 ]
def METHOD_NAME(self): poly = self.setup() p = np.array([2, 2]) inside = pp.geometry_property_checks.point_in_polygon(poly, p) self.assertTrue(not inside[0])
[ 9, 261 ]
def METHOD_NAME(topology_st, request): """Create a user and make sure ou=pople exists """ sys.stdout = io.StringIO() users = UserAccounts(topology_st.standalone, DEFAULT_SUFFIX) users.ensure_state(properties=TEST_USER_PROPERTIES) ou = OrganizationalUnits(topology_st.standalone, DEFAULT_SUFFIX) ou.ensure_state(properties={'ou': 'people'})
[ 74, 102 ]
def METHOD_NAME(self, node=None): """Check that a user is able to execute `DROP SETTINGS PROFILE` with privileges are granted directly. """ user_name = f"user_{getuid()}" if node is None: node = self.context.node with user(node, f"{user_name}"): Suite(run=drop_settings_profile, examples=Examples("privilege grant_target_name user_name", [ tuple(list(row)+[user_name,user_name]) for row in drop_settings_profile.examples ], args=Args(name="privilege={privilege}", format_name=True)))
[ 7969, 2321, 2322 ]
def METHOD_NAME(self): return """\ x Numeric vector, representing the X coordinate for each vertex. y Numeric vector, representing the Y coordinate for each vertex. z Numeric vector, representing the Z coordinate for each vertex. """
[ 1302, 1303 ]
def METHOD_NAME( precision: None | SupportsIndex = ..., threshold: None | int = ..., edgeitems: None | int = ..., linewidth: None | int = ..., suppress: None | bool = ..., nanstr: None | str = ..., infstr: None | str = ..., formatter: None | _FormatDict = ..., sign: Literal[None, "-", "+", " "] = ..., floatmode: None | _FloatMode = ..., *, legacy: Literal[None, False, "1.13", "1.21"] = ... ) -> _GeneratorContextManager[_FormatOptions]: ...
[ 5228 ]
def METHOD_NAME(basename): fullpath = join_tmp(basename) return ( os.path.isdir(fullpath) and basename.startswith(TMPDIR_PREFIX) and os.access(fullpath, os.R_OK) )
[ 137, 1205, 9, 4015 ]
def METHOD_NAME(data): try: data = validate_format(data) except Exception as e: return labels = data[0] max_label_len = reduce(lambda x,y: max(x,len(y)), labels, 0)+1 data = data[1:] subsequent_indent = "" for i in range(max_label_len+3): subsequent_indent += " " fmt = " %-"+str(max_label_len)+"s " for j, d in enumerate(data): print("-") for i, label in enumerate(labels): val = '\n'.join(wrap(convert(d[i] or ""), initial_indent = "", subsequent_indent = subsequent_indent, width=78 )) try: print(utilities.render.color.colorize(fmt % (label+":"), utilities.render.color.color.LIGHTBLUE), val) except UnicodeEncodeError: print(utilities.render.color.colorize(fmt % (label+":"), utilities.render.color.color.LIGHTBLUE), val.encode("utf-8"))
[ 38, 410, 235 ]
def METHOD_NAME(self, apps): """ Register non-plugins - i.e. modules that do not have a KolibriPluginBase derived class in their kolibri_plugin.py module - these cannot be enabled and disabled by the Kolibri plugin machinery, but may wish to still register Kolibri Hooks """ for app in apps: app = parse_installed_app_entry(app) if app not in self._apps: try: initialize_kolibri_plugin(app) # Raise an error here because non-plugins should raise a PluginDoesNotExist exception # if they are properly configured. raise PluginExistsInApp( "Django app {} contains a plugin definition".format(app) ) except MultiplePlugins: raise PluginExistsInApp( "Django app {} contains multiple plugin definitions".format(app) ) except PluginDoesNotExist: # Register so that we don't do this twice. self._apps[app] = None
[ 372, 256, 1294 ]
def METHOD_NAME(self, js, video_id, timestamp): data = self._parse_json(js, video_id, transform_source=js_to_json) title = unescapeHTML(data['title']) live_starter = try_get(data, lambda x: x['plugins']['liveStarter'], dict) if live_starter: data.update(live_starter) formats = [] for tracks in data.get('tracks', {}).values(): for video in tracks: video_url = video.get('src') if not video_url: continue video_type = video.get('type') ext = determine_ext(video_url, mimetype2ext(video_type)) if video_type == 'application/vnd.apple.mpegurl' or ext == 'm3u8': formats.extend(self._extract_m3u8_formats( video_url, video_id, 'mp4', entry_protocol='m3u8_native', m3u8_id='hls', fatal=False)) elif video_type == 'application/dash+xml' or ext == 'mpd': formats.extend(self._extract_mpd_formats( video_url, video_id, mpd_id='dash', fatal=False)) else: label = video.get('label') height = self._search_regex( r'^(\d+)[pP]', label or '', 'height', default=None) format_id = ['http'] for f in (ext, label): if f: format_id.append(f) formats.append({ 'url': video_url, 'format_id': '-'.join(format_id), 'height': int_or_none(height), }) self._sort_formats(formats) return { 'id': data.get('mediaid') or video_id, 'title': title, 'description': data.get('description'), 'thumbnail': data.get('image'), 'duration': int_or_none(data.get('duration')), 'timestamp': int_or_none(timestamp), 'formats': formats }
[ 214, 1781, 773 ]
def METHOD_NAME(self, sheet_name: Any): ...
[ 4501, 604, 156 ]
def METHOD_NAME(self): categories = {'all': _('All'), 'changed': _('Changed')} for setting, kwargs in self._registry.items(): category_slug = kwargs.get('category_slug', None) if category_slug is None or category_slug in categories: continue if category_slug == 'user': categories['user'] = _('User') categories['user-defaults'] = _('User-Defaults') else: categories[category_slug] = kwargs.get('category', None) or category_slug return categories
[ 19, 3024, 2065 ]
f METHOD_NAME(self,*arg,**kw):
[ 2671, 171 ]
def METHOD_NAME(self, request: HttpRequest, **kwargs: Any) -> HttpResponse: """Runs the network request through the client's chained policies. >>> from azure.core.rest import HttpRequest >>> request = HttpRequest("GET", "https://www.example.org/") <HttpRequest [GET], url: 'https://www.example.org/'> >>> response = client._send_request(request) <HttpResponse: 200 OK> For more information on this code flow, see https://aka.ms/azsdk/dpcodegen/python/send_request :param request: The network request you want to make. Required. :type request: ~azure.core.rest.HttpRequest :keyword bool stream: Whether the response payload will be streamed. Defaults to False. :return: The response of your network call. Does not do error handling on your response. :rtype: ~azure.core.rest.HttpResponse """ request_copy = deepcopy(request) request_copy.url = self._client.format_url(request_copy.url) return self._client.send_request(request_copy, **kwargs)
[ 353, 377 ]
def METHOD_NAME(mock_agent_event_publisher): return MSSQLFingerprinter(AGENT_ID, mock_agent_event_publisher)
[ -1 ]
def METHOD_NAME(): c = topology.Layer(thickness=150, stack_index=0) r = topology.Stack(children=[c]) topology.create_topology([r], np.array([0, 0, 0]), np.array([100, 100, 100])) return r, c
[ 97, 94 ]
def METHOD_NAME(test_file_or_folder): path, _ = os.path.split(__file__) return os.path.join(path, "data", "test_results", test_file_or_folder)
[ 19, 9, 146 ]
def METHOD_NAME(diff_entry, new_object_hash): check_call( [ "git", "update-index", "--cacheinfo", "%s,%s,%s" % (diff_entry["dst_mode"], new_object_hash, diff_entry["src_path"]), ] )
[ 86, 171, 724 ]
def METHOD_NAME(command_id: str) -> Dict[str, Any]: return get_task_info("command", command_id)
[ 19, 462, 100 ]
def METHOD_NAME(tmp_path, inventory): file = tmp_path / "foobar.lxd.yml" file.touch() assert inventory.verify_file(str(file)) is True
[ 9, 1162, 171 ]
def METHOD_NAME(self, p): """ Insert input of this op also maintain the output of previous op p: a node or a list of node """ if isinstance(p, list): for i in p: self.prev[i.name] = i i.ops[self.name] = self elif isinstance(p, NetDefNode): self.prev[p.name] = p p.ops[self.name] = self
[ 408, 362 ]
def METHOD_NAME(self): # HACK: we still want to build modules when forcing static we just ignore them result = super().METHOD_NAME if "-static" in result: result.remove("-static") return result
[ 235, -1 ]
def METHOD_NAME(self): """ Descript. : """ return
[ 263, 954 ]
def METHOD_NAME(self): """test scenario for TrunkedNetwork CRUD operations""" call_scenario1(self)
[ 9, -1, 7851 ]
def METHOD_NAME(self): tokenizer = self.tokenizer_class(self.vocab_file) tokens = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [9, 6, 7, 12, 10, 11])
[ 9, 324, 1345 ]
def METHOD_NAME(weight_decay=0.0005): with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=tf.nn.relu, biases_initializer=tf.constant_initializer(0.1), weights_regularizer=slim.l2_regularizer(weight_decay)): with slim.arg_scope([slim.conv2d], padding='SAME'): with slim.arg_scope([slim.max_pool2d], padding='VALID') as arg_sc: return arg_sc
[ 10981, 820, 718, 913 ]
def METHOD_NAME(): i: i32 i = isqrt(15) assert i == 3
[ 9, 17199 ]
def METHOD_NAME(self) -> str: """ Resource type. """ return pulumi.get(self, "type")
[ 44 ]
def METHOD_NAME(self, comp): self.__target_comp = comp
[ 0, 1030, 1653 ]
def METHOD_NAME(self) -> CDLL: self.session._setSessionId() # noqa return self._libraryInstance.lib # type: ignore
[ 124 ]
def METHOD_NAME(): # all have short alias all_alias = [] for field in _ContentWithShortNames.__fields__.values(): assert field.alias assert field.alias not in all_alias all_alias.append(field.alias)
[ 9, 75, 4568, 342, 384, 1707, 61 ]
def METHOD_NAME( user_api_client, checkout_with_items ): checkout = checkout_with_items line = checkout.lines.first() second_line = checkout.lines.last() first_line_id = graphene.Node.to_global_id("CheckoutLine", line.pk) second_line_id = graphene.Node.to_global_id("CheckoutLine", second_line.pk) lines_list = [first_line_id, second_line_id] variables = { "id": graphene.Node.to_global_id("Checkout", checkout.pk), "linesIds": lines_list, } checkout.delete() response = user_api_client.post_graphql(MUTATION_CHECKOUT_LINES_DELETE, variables) content = get_graphql_content(response) errors = content["data"]["checkoutLinesDelete"]["errors"][0] assert errors["code"] == CheckoutErrorCode.NOT_FOUND.name
[ 9, 2170, 513, 34, 532, 2170, 147 ]
def METHOD_NAME(self): """Enables to connect inputs to the operator Returns -------- inputs : InputsEntityExtractor """ return super().METHOD_NAME
[ 1461 ]
def METHOD_NAME(self): """Run for an appropriate number of steps to improve the current value. If self.full is True, will run until no further improvements can be found. """ if self.short_circuit(): return if self.full: prev = -1 while self.changes != prev: prev = self.changes self.run_step() else: self.run_step() self.debug("COMPLETE")
[ 22 ]
def METHOD_NAME() -> Gdk.RGBA: """ Generate a new random color. Alpha is always 1. """ return RGBA(random.uniform(0.0, 1.0), random.uniform(0.0, 1.0), random.uniform(0.0, 1.0), 1.0)
[ 236, 36 ]
def METHOD_NAME(self) -> None: self.assertEqual(job_run_result.JobRunResult.accumulate([]), [])
[ 9, 6294, 41, 35, 245 ]
def METHOD_NAME(self): assert hasattr(self, "_onedal_estimator") self.labels_ = self._onedal_estimator.labels_ self.core_sample_indices_ = self._onedal_estimator.core_sample_indices_ self.components_ = self._onedal_estimator.components_ self.n_features_in_ = self._onedal_estimator.n_features_in_
[ 73, 177 ]
f METHOD_NAME(self):
[ 567, 795 ]
def METHOD_NAME(self): self.tb = gr.top_block()
[ 0, 1 ]
def METHOD_NAME(self, get_nodes_plugin): return [get_nodes_plugin, GetNodesPlugin(project_name="test2")]
[ 19, 480, 1294 ]
def METHOD_NAME(self): f = gen.tools.generate_base_points pts = f(20, domain_size=[1, 1, 1], reflect=False) assert pts.shape == (20, 3) pts = f(20, domain_size=[1, 1, 1], reflect=True) assert pts.shape == (140, 3) pts = f(20, domain_size=[1, 1, 0], reflect=False) assert pts.shape == (20, 3) pts = f(20, domain_size=[1, 1, 0], reflect=True) assert pts.shape == (100, 3) pts = f(20, domain_size=[1, 1], reflect=False) assert pts.shape == (20, 3) pts = f(20, domain_size=[1, 1], reflect=True) assert pts.shape == (120, 3) pts = f(20, domain_size=[1, 0], reflect=False) assert pts.shape == (20, 3) pts = f(20, domain_size=[1, 0], reflect=True) assert pts.shape == (40, 3) pts = f(20, domain_size=[1], reflect=False) assert pts.shape == (20, 3) pts = f(20, domain_size=[1], reflect=True) assert pts.shape == (40, 3)
[ 9, 567, 414, 182, 61, 6044 ]
def METHOD_NAME(function, factory, mesh, bc=None, bc_zero=None, name=None, ops=None, coeffs=None, negative=False, functional=False): def assemble_op(f, name): coeff, params = f.to_fenics(mesh) return FenicsMatrixBasedOperator(factory(coeff), params, bc=bc, bc_zero=bc_zero, functional=functional, name=name) if isinstance(function, LincombFunction): operators = [assemble_op(f, f'{name}_{i}') for i, f in enumerate(function.functions)] cfs = [-c if negative else c for c in function.coefficients] if ops is not None: ops.extend(operators) coeffs.extend(cfs) else: return LincombOperator(operators, cfs, name=name) elif function is not None: operator = assemble_op(function, name) if ops is not None: ops.append(operator) coeffs.append(-1 if negative else 1.) else: return -operator if negative else operator
[ 1893, 837 ]
def METHOD_NAME(self): eio_1 = EnkelvoudigInformatieObjectFactory.create() eio_1_url = f"http://example.com{reverse(eio_1)}" eio_2 = EnkelvoudigInformatieObjectFactory.create() eio_2_url = f"http://example.com{reverse(eio_2)}" GebruiksrechtenCMISFactory(informatieobject=eio_1_url) GebruiksrechtenCMISFactory(informatieobject=eio_2_url) response = self.client.get(reverse("gebruiksrechten-list")) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(len(response.data), 2) self.assertTrue( eio_1_url == response.data[0]["informatieobject"] or eio_1_url == response.data[1]["informatieobject"] ) self.assertTrue( eio_2_url == response.data[0]["informatieobject"] or eio_2_url == response.data[1]["informatieobject"] )
[ 9, 404, 107, 16909 ]
def METHOD_NAME(xml_list): """ Finds the difference between topology XML files, ignoring ordering and names in "connection" tags Iterate through root tag elements Create a dictionary with file_dict[tag] = [list of tag objects] """ if len(xml_list) < 2: print("Less than two XML files were specified. Exiting.") return master_tag_dict = {} for xml_path in xml_list: # Create etree object fd = open(xml_path, "r") xml_parser = etree.XMLParser(remove_comments=True) element_tree = etree.parse(fd, parser=xml_parser) fd.close() # Internal Parsing xml_dict = recursive_xml_parse(element_tree.getroot()) for tag_obj in xml_dict[2]: if tag_obj[0] == "connection": tag_obj[1] = [] pickled_obj = pickle.dumps(tag_obj) if pickled_obj not in master_tag_dict: # del master_tag_dict[pickled_obj] master_tag_dict[pickled_obj] = [] master_tag_dict[pickled_obj].append(xml_path) # Separate by XML path tag_to_object = {} # tag_to_object[xml_path] = [obj] for pickled_obj in master_tag_dict: if len(master_tag_dict[pickled_obj]) == 1: if master_tag_dict[pickled_obj][0] not in tag_to_object: tag_to_object[master_tag_dict[pickled_obj][0]] = [] tag_to_object[master_tag_dict[pickled_obj][0]].append(pickled_obj) for xml_path in tag_to_object: print(xml_path + "\n") # sort pickled obj lists tag_to_object[xml_path].sort() for pickled_obj in tag_to_object[xml_path]: tag_obj = pickle.loads(pickled_obj) print(tag_object_to_string(tag_obj)) print("\n") print("\n")
[ 2443, 1537 ]
def METHOD_NAME(version_info, in_develop=True): version = '.'.join(str(v) for v in version_info[:3]) if not in_develop and version_info[3] != 'final': version += version_info[3][0] + str(version_info[4]) return version
[ 7810, 281 ]
def METHOD_NAME(ast_lifted): ''' Recursively resolve all setting references to concrete values. There's not a lot of type safety in this resolution process because the attributes themselves inherently aren't strongly typed. We rely on the type checking done when freeze is called on an assembly. ''' to_resolve = [] assembly = ast_lifted.assembly new_settings = [] for s in assembly.configuration.settings: if isinstance(s.value, AttributeReference): to_resolve.append(s) else: new_settings.append(s) def sub_resolve(setting, depth): ''' Recursive function for resolving setting references. If a setting is a reference to another setting we try and resolve the next one (depth first). If there is a circular reference we error out. If any setting doesn't have a setting to resolve to, but has a default attribute value we use that. If there is no default and no setting then we 'forget' the alias so that we can fall back to defaults that other attributes have. An attribute that doesn't get a setting or a default will not generate a symbol in the generated template. Thus if the attribute requires a setting the code compiler should generate an error later. ''' if setting.value.reference in depth: errstring = "" for value in depth: errstring += value + "<-" raise ParseError('Loop detected in attribute references: %s<-...' % (errstring+setting.value.reference), setting.location) # TODO Refactor AttributeReference to handle namespacing better than a # string containing '.' characters. instance_name, attribute_name = setting.value.reference.rsplit('.', 1) referents = [x for x in assembly.configuration.settings if x.instance == instance_name and x.attribute == attribute_name] if len(referents) == 0: # No existing settings for the attribute that our current attribute # refers to. Check if it has a default value and use that. attribute = assembly.get_attribute(instance_name, attribute_name) if attribute is not None and attribute.default is not None: setting.value = attribute.default return True # If we didn't find a default, then try and use our own default if we have one attribute = assembly.get_attribute(setting.instance, setting.attribute) if attribute is not None and attribute.default is not None: setting.value = attribute.default return True setting.value = None return False elif len(referents) > 1: raise ParseError('setting refers to an attribute that ' 'is set multiple times', setting.location) if isinstance(referents[0].value, AttributeReference): if not sub_resolve(referents[0], depth + [setting.value.reference]): setting.value = None return False setting.value = referents[0].value elif setting.value.dict_lookup and isinstance(referents[0].value, dict): value = referents[0].value for key in setting.value.dict_lookup.lookup: value = value[key] setting.value = value else: setting.value = referents[0].value return True # Iterate through each setting we need to resolve for setting in to_resolve: if isinstance(setting.value, AttributeReference): if sub_resolve(setting, []): new_settings.append(setting) elif setting.value != None: # Already resolved new_settings.append(setting) assembly.configuration.settings = new_settings assembly.claim_children()
[ 1014 ]
def METHOD_NAME(self, issue): self.data = (type(self).__name__,) + tuple(map(lambda t: str(t.children[0]), self.grammar.METHOD_NAME(issue.title).children)) self.body = issue.body
[ 214 ]
def METHOD_NAME(x): return 1
[ 10027 ]
def METHOD_NAME(self, node: AsyncFunctionDef) -> None: self.visit_FunctionDef(node)
[ 716, 958, 559, 2483 ]
def METHOD_NAME(self, path): """Return full path to an Info.plist if 'path' is actually a bundle, otherwise None.""" bundle_info_path = None if os.path.isdir(path): test_info_path = os.path.join(path, "Contents/Info.plist") if os.path.exists(test_info_path): try: with open(test_info_path, "rb") as f: plist = plistlib.load(f) except Exception: raise ProcessorError( f"File {path} looks like a bundle, but its " "'Contents/Info.plist' file cannot be parsed." ) if plist: bundle_info_path = test_info_path return bundle_info_path
[ 19, 1727, 100, 157 ]
def METHOD_NAME(self): # We don't know if the task in question already exists, so we try a few times. Checking # beforehand would not be an option because a concurrent unit test could potentially # create the same task and make this unit test fail (i.e. getting a dataset and creating # a task for it is not atomic). compatible_datasets = self._get_compatible_rand_dataset() for i in range(100): try: dataset_id = compatible_datasets[i % len(compatible_datasets)] # TODO consider implementing on the diff task types. task = create_task( task_type=self.task_type, dataset_id=dataset_id, target_name=self._get_random_feature(dataset_id), estimation_procedure_id=self.estimation_procedure, ) task.publish() TestBase._mark_entity_for_removal("task", task.id) TestBase.logger.info( "collected from {}: {}".format(__file__.split("/")[-1], task.id) ) # success break except OpenMLServerException as e: # Error code for 'task already exists' # Should be 533 according to the docs # (# https://www.openml.org/api_docs#!/task/post_task) if e.code == 614: continue else: raise e else: raise ValueError( "Could not create a valid task for task type ID {}".format(self.task_type) )
[ 9, 172, 758 ]
async def METHOD_NAME(next_link=None): request = prepare_request(next_link) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response
[ 19, 243 ]
def METHOD_NAME(self, old, new): if new > old: for i in range(old, new): self._add_row(i) else: for i in range(new, old): self._remove_row(i) self.request_redraw()
[ 1346, 1180 ]
def METHOD_NAME(t_block, reference_run): """ Test that the ``voltmeter`` and ``spike_recorder`` yield identical results independent simulation time blocking. """ srs, vms = build_net() with nest.RunManager(): while nest.biological_time < total_sim_time: nest.Run(t_block) srs_times = srs.get("events", "times") vms_recs = vms.get("events", "V_m") srs_reference, vms_reference = reference_run # Test that recorders give identical results independent of simulation time blocking nptest.assert_array_equal(srs_reference, srs_times) nptest.assert_array_equal(vms_reference, vms_recs)
[ 9, 944, 61, 2457, 3117, 1101, 146 ]
def METHOD_NAME(self, out_dir, filename_tmpl='epoch_{}.pth', save_optimizer=True, meta=None, create_symlink=True): """Save the checkpoint. Args: out_dir (str): The directory that checkpoints are saved. filename_tmpl (str, optional): The checkpoint filename template, which contains a placeholder for the epoch number. Defaults to 'epoch_{}.pth'. save_optimizer (bool, optional): Whether to save the optimizer to the checkpoint. Defaults to True. meta (dict, optional): The meta information to be saved in the checkpoint. Defaults to None. create_symlink (bool, optional): Whether to create a symlink "latest.pth" to point to the latest checkpoint. Defaults to True. """ if meta is None: meta = {} elif not isinstance(meta, dict): raise TypeError( f'meta should be a dict or None, but got {type(meta)}') if self.meta is not None: meta.update(self.meta) # Note: meta.update(self.meta) should be done before # meta.update(epoch=self.epoch + 1, iter=self.iter) otherwise # there will be problems with resumed checkpoints. # More details in https://github.com/open-mmlab/mmcv/pull/1108 meta.update(epoch=self.epoch + 1, iter=self.iter) filename = filename_tmpl.format(self.epoch + 1) filepath = osp.join(out_dir, filename) optimizer = self.optimizer if save_optimizer else None METHOD_NAME(self.model, filepath, optimizer=optimizer, meta=meta) # in some environments, `os.symlink` is not supported, you may need to # set `create_symlink` to False if create_symlink: dst_file = osp.join(out_dir, 'latest.pth') if platform.system() != 'Windows': mmcv.symlink(filename, dst_file) else: shutil.copy(filepath, dst_file)
[ 73, 1830 ]
def METHOD_NAME(inputs: Iterable[Tuple[str, pd.DataFrame]]) -> str: """ Returns a data profiling string over input data frame. :param inputs: Either a single "glimpse" DataFrame that contains the statistics, or a collection of (title, DataFrame) pairs where each pair names a separate "glimpse" and they are all visualized in comparison mode. :return: a data profiling string such as Pandas profiling ProfileReport. """ truncated_input = [truncate_pandas_data_profile(*input) for input in inputs] return pandas_renderer.get_html(truncated_input)
[ 19, 2842, 365, 1348 ]
def METHOD_NAME(self): """ L{fdesc.setNonBlocking} sets a file description to non-blocking. """ r, w = os.pipe() self.addCleanup(os.close, r) self.addCleanup(os.close, w) self.assertFalse(fcntl.fcntl(r, fcntl.F_GETFL) & os.O_NONBLOCK) fdesc.setNonBlocking(r) self.assertTrue(fcntl.fcntl(r, fcntl.F_GETFL) & os.O_NONBLOCK)
[ 9, 0, 256, 5999 ]
def METHOD_NAME(key, shape): import numpy as np x, y = np.ogrid[:shape[0], :shape[1]] x = 2* x.astype('f')/shape[0] - 1 y = 2* y.astype('f')/shape[1] - 1 x = x - x.mean() y = y - y.mean() c = x + 1j*y r = np.abs(c) theta = np.angle(c) return zernike(key, r, theta)*(r<1)
[ 17403, 4033 ]
def METHOD_NAME(self) -> Optional[str]: """ Etag of the azure resource """ return pulumi.get(self, "etag")
[ 431 ]
def METHOD_NAME(self) -> Dict[str, Any]: responses = [message for (method, message) in self.transcript] self.ensure_unique_response(responses) return responses[0]
[ 2768, 17 ]
f METHOD_NAME(self):
[ 9, 2346, 99, 168, 2927, 3875 ]
def METHOD_NAME(routes: RouteTableDef) -> str: fh = io.StringIO() print(routes, file=fh) for r in routes: print(" ", r, file=fh) return fh.getvalue()
[ 19, 3968, 1179 ]
def METHOD_NAME(self): for license in ("LICENSE", "NOTICE"): copy(self, license, src=self.source_folder, dst=os.path.join(self.package_folder, "licenses")) cmake = CMake(self) cmake.install() rmdir(self, os.path.join(self.package_folder, "share")) rmdir(self, os.path.join(self.package_folder, "lib", "pkgconfig")) rmdir(self, os.path.join(self.package_folder, "lib", "cmake")) rmdir(self, os.path.join(self.package_folder, "cmake"))
[ 360 ]
def METHOD_NAME(self): tc = CMakeToolchain(self) defs = self._public_defines defs["TRACE"] = self.options.trace # TODO: add as options and set libraries correctly defs["LAPACK"] = False defs["MKL"] = False # Set default values defs["SVR_REUSEADDR"] = True # reuse tcp server address defs["NOCALLOC"] = False # use calloc for zero matrix defs["CPUTIME_IN_GPST"] = False # cputime operated in gpst defs["RRCENA"] = False # enable rrc correction defs["OUTSTAT_AMB"] = False # output ambiguity parameters to solution status defs["IERS_MODEL"] = False # use IERS tide model if is_apple_os(self): # Add baud rates missing from termios.h for stream.c defs["B460800"] = 460800 defs["B921600"] = 921600 for k, v in defs.items(): if type(v) in (str, int): tc.preprocessor_definitions[k] = v elif v: tc.preprocessor_definitions[k] = "" tc.METHOD_NAME() tc = CMakeDeps(self) tc.METHOD_NAME()
[ 567 ]
def METHOD_NAME(self): pass
[ 3160 ]
def METHOD_NAME(self): pass
[ 72, 479 ]
def METHOD_NAME(self, name: str, item: Any) -> None: """ Store the :code:`item` in this dataset with the name :code:`name` so it can be used in :code:`__getitem__`. That is, you can retrieve the :code:`item` with the :code:`takes` argument of :obj:`add_dynamic_item`. .. code-block:: python def tokenize_func(tokenizer, text): return tokenizer(text) self.add_tool("tokenizer", tokenizer) self.add_dynamic_item(tokenize_func, takes=["tokenizer", "text"], provides="tokenized_ids") You can also later retreive this tool by :obj:`get_tool` or :obj:`all_tools` """ self._tools[name] = item self.add_dynamic_item( partial(self._dynamic_tools, name=name), takes="id", provides=name )
[ 238, 3081 ]
def METHOD_NAME(self): self.check('posprec',[1,2],[0,0], "(int,long) (long,int)")
[ 9, -1 ]
def METHOD_NAME(self, cfg_transform): scale = 1. mean = np.array([0.485, 0.456, 0.406], dtype=np.float32) std = np.array([0.229, 0.224, 0.225], dtype=np.float32) for item in cfg_transform: if 'NormalizeImage' in item: mean = np.array( item['NormalizeImage']['mean'], dtype=np.float32) std = np.array(item['NormalizeImage']['std'], dtype=np.float32) if item['NormalizeImage'].get('is_scale', True): scale = 1. / 255. break if self.data_format == 'NHWC': self.scale = paddle.to_tensor(scale / std).reshape((1, 1, 1, 3)) self.bias = paddle.to_tensor(-mean / std).reshape((1, 1, 1, 3)) else: self.scale = paddle.to_tensor(scale / std).reshape((1, 3, 1, 1)) self.bias = paddle.to_tensor(-mean / std).reshape((1, 3, 1, 1))
[ 557, 18140 ]
def METHOD_NAME(self, body: bytes | None = None, set_content_md5: bool = False) -> None: ...
[ 4179, 431 ]
def METHOD_NAME(): target = Basket(fruits__banana=Fruit()) target = target.bind(request=None) with pytest.raises(InvalidEndpointPathException) as e: perform_post_dispatch(root=target, path='/banana', value='') assert str(e.value) == "Target <tests.helpers.Fruit banana (bound) path:'banana'> has no registered post_handler"
[ 9, 407, 72, 2506, 168, 277 ]
def METHOD_NAME(self): # failure with self.assertRaises(AssertionError): self.test_instance.with_img_type(1234) # success result = self.test_instance.with_img_type(ImageTypeEnum.PNG) self.assertEqual(8, len(result)) result = self.test_instance.with_img_type(ImageTypeEnum.GEOTIFF) self.assertEqual(4, len(result))
[ 9, 41, 2029, 44 ]
def METHOD_NAME(self): return self.PORT_START
[ 237, 447 ]
def METHOD_NAME() -> torch.utils.data.Dataset: training_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32) training_data = torch.Tensor(training_data) training_labels = np.array([0, 1, 1, 0], dtype=np.float32) training_labels = torch.Tensor(training_labels) return torch.utils.data.TensorDataset(training_data, training_labels)
[ 93, 126 ]
def METHOD_NAME(self) -> _CommandResults: ...
[ 8570 ]
def METHOD_NAME(self) -> Optional[str]: """ Path to the module containing this hard fork. """ return getattr(self.mod, "__path__", None)
[ 157 ]
def METHOD_NAME(s): return '\x1b[33m{}\x1b[0m'.format(s)
[ 16334 ]
def METHOD_NAME(self, ax, props): if len(self.axes) > 0: warnings.warn("multiple axes not yet supported") self.axes = [ dict(type="x", scale="x", ticks=10), dict(type="y", scale="y", ticks=10), ] self.scales = [ dict( name="x", domain=props["xlim"], type="linear", range="width", ), dict( name="y", domain=props["ylim"], type="linear", range="height", ), ]
[ 1452, 7272 ]
def METHOD_NAME(self): """ A method executed at the end of each model initialization, to execute code that needs the model's modules properly initialized (such as weight initialization). """ self.init_weights()
[ 72, 176 ]
def METHOD_NAME(): forwarded_for = request.headers.getlist("X-Forwarded-For") if len(forwarded_for): return forwarded_for[0] return request.remote_addr
[ 19, 2437, 1213 ]
def METHOD_NAME(self): origin_query_text = "SELECT * FROM fake WHERE id IN (SELECT id FROM fake_2 LIMIT 200) LIMIT 200" query_text = self.query_runner.apply_auto_limit(origin_query_text, True) self.assertEqual(origin_query_text, query_text)
[ 9, 231, 803, 1467, 1788, 384, 1467 ]
def METHOD_NAME(layer, func): for name, child in layer.named_children(): func(child) METHOD_NAME(child, func)
[ 231 ]
def METHOD_NAME(**kwargs) -> None: """Prints kwargs that have same cell.""" first_letters = [join_first_letters(k) for k in kwargs] if len(set(first_letters)) != len(first_letters): print( f"Possible name collision! {kwargs.keys()} " f"repeats first letters {first_letters}" "you can separate your arguments with underscores" " (delta_length -> DL, delta_width -> DW" )
[ 38, 865, 6503, 3437 ]
async def METHOD_NAME( concurrency_limit: schemas.actions.ConcurrencyLimitCreate, response: Response, db: PrefectDBInterface = Depends(provide_database_interface),
[ 129, 6050, 1467 ]
def METHOD_NAME(coverage_obj) -> str: report_data = io.StringIO() coverage_obj.report(file=report_data) return report_data.getvalue()
[ 19, 339, 3 ]
def METHOD_NAME(self, hit): if hasattr(hit.meta, "highlight"): for key in hit.meta.highlight: yield from hit.meta.highlight[key]
[ 19, 8186 ]
def METHOD_NAME(cls): if cls._schema_on_200 is not None: return cls._schema_on_200 cls._schema_on_200 = AAZObjectType() _schema_on_200 = cls._schema_on_200 _schema_on_200.id = AAZStrType( flags={"read_only": True}, ) _schema_on_200.location = AAZStrType() _schema_on_200.name = AAZStrType( flags={"read_only": True}, ) _schema_on_200.properties = AAZObjectType( flags={"client_flatten": True}, ) _schema_on_200.type = AAZStrType( flags={"read_only": True}, ) properties = cls._schema_on_200.properties properties.event_hub_authorization_rule_id = AAZStrType( serialized_name="eventHubAuthorizationRuleId", ) properties.event_hub_name = AAZStrType( serialized_name="eventHubName", ) properties.logs = AAZListType() properties.service_bus_rule_id = AAZStrType( serialized_name="serviceBusRuleId", ) properties.storage_account_id = AAZStrType( serialized_name="storageAccountId", ) properties.workspace_id = AAZStrType( serialized_name="workspaceId", ) logs = cls._schema_on_200.properties.logs logs.Element = AAZObjectType() _element = cls._schema_on_200.properties.logs.Element _element.category = AAZStrType() _element.enabled = AAZBoolType( flags={"required": True}, ) return cls._schema_on_200
[ 56, 135, 69, 1072 ]
def METHOD_NAME(self): """ tests desispec.scripts.submit_night.get_completed_tiles(testfile) to ensure that the tile selection logic matches the expectations. The test varies ZDONE, SURVEY, EFFTIME_SPEC, and FAPRGRM. """ from desispec.scripts.submit_night import get_completed_tiles rows = [] tiles_truth = [] row_names = ['ZDONE', 'SURVEY', 'EFFTIME_SPEC', 'GOALTIME', 'MINTFRAC', 'FAPRGRM', 'TILEID'] ## Test zdone always gives true ## nominal dark rows.append(['true', 'main', 1000., 1000., 0.85, 'dark', 1]) # pass rows.append(['true', 'sv', 1000., 1000., 0.85, 'dark', 2]) # pass ## med efftime backup rows.append(['true', 'main', 500., 1000., 0.85, 'dark', 3]) # pass rows.append(['true', 'sv', 500., 1000., 0.85, 'dark', 4]) # pass ## low efftime dark rows.append(['true', 'main', 10., 1000., 0.85, 'dark', 5]) # pass rows.append(['true', 'sv', 10., 1000., 0.85, 'dark', 6]) # pass ## nominal bright rows.append(['true', 'main', 180., 180., 0.85, 'bright', 7]) # pass rows.append(['true', 'sv', 180., 180., 0.85, 'bright', 8]) # pass ## med efftime backup rows.append(['true', 'main', 90., 180., 0.85, 'bright', 9]) # pass rows.append(['true', 'sv', 90., 180., 0.85, 'bright', 10]) # pass ## low efftime bright rows.append(['true', 'main', 10., 180., 0.85, 'bright', 11]) # pass rows.append(['true', 'sv', 10., 180., 0.85, 'bright', 12]) # pass ## nominal backup rows.append(['true', 'main', 60., 60., 0.85, 'backup', 13]) # pass rows.append(['true', 'sv', 60., 60., 0.85, 'backup', 14]) # pass ## med efftime backup rows.append(['true', 'main', 30., 60., 0.85, 'backup', 15]) # pass rows.append(['true', 'sv', 30., 60., 0.85, 'backup', 16]) # pass ## low efftime backup rows.append(['true', 'main', 3., 60., 0.85, 'backup', 17]) # pass rows.append(['true', 'sv', 3., 60., 0.85, 'backup', 18]) # pass tiles_truth.extend(list(range(1,19))) ## Test other criteria when zdone false ## nominal dark rows.append(['false', 'main', 1000., 1000., 0.85, 'dark', 21]) # fail rows.append(['false', 'sv', 1000., 1000., 0.85, 'dark', 22]) # pass ## med efftime backup rows.append(['false', 'main', 500., 1000., 0.85, 'dark', 23]) # fail rows.append(['false', 'sv', 500., 1000., 0.85, 'dark', 24]) # pass ## low efftime dark rows.append(['false', 'main', 10., 1000., 0.85, 'dark', 25]) # fail rows.append(['false', 'sv', 10., 1000., 0.85, 'dark', 26]) # fail ## nominal bright rows.append(['false', 'main', 180., 180., 0.85, 'bright', 27]) # fail rows.append(['false', 'sv', 180., 180., 0.85, 'bright', 28]) # pass ## med efftime backup rows.append(['false', 'main', 90., 180., 0.85, 'bright', 29]) # fail rows.append(['false', 'sv', 90., 180., 0.85, 'bright', 30]) # pass ## low efftime bright rows.append(['false', 'main', 10., 180., 0.85, 'bright', 31]) # fail rows.append(['false', 'sv', 10., 180., 0.85, 'bright', 32]) # fail ## nominal backup rows.append(['false', 'main', 60., 60., 0.85, 'backup', 33]) # pass rows.append(['false', 'sv', 60., 60., 0.85, 'backup', 34]) # pass ## med efftime backup rows.append(['false', 'main', 30., 60., 0.85, 'backup', 35]) # pass rows.append(['false', 'sv', 30., 60., 0.85, 'backup', 36]) # pass ## low efftime backup rows.append(['false', 'main', 3., 60., 0.85, 'backup', 37]) # fail rows.append(['false', 'sv', 3., 60., 0.85, 'backup', 38]) # fail tiles_truth.extend([22, 24, 28, 30, 33, 34, 35, 36]) test_table = Table(names=row_names, rows=rows) testfile = f'test-{uuid4().hex}.ecsv' test_table.write(testfile, overwrite=True) tiles_test = list(get_completed_tiles(testfile)) if os.path.exists(testfile): os.remove(testfile) self.assertListEqual(tiles_truth, tiles_test)
[ 9, 19, 3097, 299 ]
def METHOD_NAME(self) -> None: with self.assertRaisesRegex( Exception, ( "manifest file test section 'dependencies' has " "'foo = bar' but this section doesn't allow " "specifying values for its entries" ), ): ManifestParser( "test", """
[ 9, 99, 623, 2410, 1287 ]
def METHOD_NAME(self): addon = addon_factory(summary='') item = DiscoveryItem.objects.create(addon=addon) assert self.serialize(item)['description_text'] is None with override_settings(DRF_API_GATES={'v5': ('l10n_flat_input_output',)}): assert self.serialize(item)['description_text'] == '' # with a lang specified with self.activate('fr'): item.reload() assert self.serialize(item, 'fr')['description_text'] is None with override_settings(DRF_API_GATES={'v5': ('l10n_flat_input_output',)}): assert self.serialize(item, 'fr')['description_text'] == ''
[ 9, 1067, 526, 35 ]
def METHOD_NAME(self): """Ensure handlers initialize fine without real input/output files""" for handler in [AbortHandler, FrozenJobErrorHandler, NumericalPrecisionHandler, UnconvergedScfErrorHandler]: handler()
[ 9, 1519, 11279 ]
def METHOD_NAME(url: str, dest: str = "."): subprocess.Popen(f"wget -N {url} -P /tmp".split()).wait() file_name = url.split("/")[-1] file_path = f"/tmp/{file_name}" assert os.path.exists(file_path) bin_path = None if file_name.endswith(".bin"): os.chmod(file_path, os.stat(file_path).st_mode | stat.S_IEXEC) subprocess.Popen(f"{file_path} -d {dest}".split()).wait() bin_path = f"{dest}/bin" elif file_name.endswith(".tgz"): with tarfile.open(f"/tmp/{file_name}") as tar: tar.extractall(dest) rel_bin_path = next( member.name for member in tar.getmembers() if "bin" in member.name) bin_path = os.path.join(dest, rel_bin_path) elif file_name.endswith(".jar"): shutil.copyfile(file_path, os.path.join(dest, file_name)) if bin_path is not None: append_bashrc(f"export PATH:$PATH:{bin_path}")
[ 1047, 893 ]
def METHOD_NAME(self): self.login() params = {"ses": self.ses} response = self.request("progress", params) return response
[ 19, 3064 ]
def METHOD_NAME(delete_node, dqlite_ep): if len(delete_node) > 0 and "127.0.0.1" not in delete_node[0]: for ep in dqlite_ep: try: cmd = ( "{snappath}/bin/dqlite -s file://{dbdir}/cluster.yaml -c {dbdir}/cluster.crt " "-k {dbdir}/cluster.key -f json k8s".format( snappath=snap_path, dbdir=cluster_dir ).split() ) cmd.append(".remove {}".format(delete_node[0])) subprocess.check_output(cmd) break except Exception as err: print("Contacting node {} failed. Error:".format(ep)) print(repr(err)) exit(2)
[ 34, 14822, 1716 ]