text
stringlengths 15
7.82k
| ids
sequencelengths 1
7
|
---|---|
def METHOD_NAME(_):
return {
"avatar": (str, none_type),
"banner": (int, none_type),
"created_at": (datetime,),
"description": (str, none_type),
"handle": (str,),
"hidden_modules": ([str],),
"link_count": (int,),
"modified_at": (datetime,),
"name": (str,),
"summary": (str, none_type),
"user_count": (int,),
"visible_modules": ([str],),
} | [
4597,
119
] |
def METHOD_NAME(
self, execute_task, download_path: Path, sftp_fs: TestSFTPFileSystem
):
remote_file: Path = sftp_fs.create_file('file.mkv', 100)
execute_task('sftp_download_file_delete_origin_true')
assert not remote_file.exists() | [
9,
1130,
136,
171,
61,
34
] |
def METHOD_NAME(x):
""" return the contribution to the loss function of residual x. Placeholder for rebust methods to come """
return x**2 | [
1572,
717
] |
def METHOD_NAME(self) -> str:
"""
The geo-location where the resource lives
"""
return pulumi.get(self, "location") | [
708
] |
def METHOD_NAME(self):
if CONTIPPSETUP.niInterfaceLib is None:
try:
CONTIPPSETUP.niInterfaceLib = CDLL("libNiInterface.so")
except:
Data.execute('DevLogErr($1,$2)', self.getNid(),
'Cannot load libNiInterface.so')
raise mdsExceptions.TclFAILED_ESSENTIAL | [
1032,
100
] |
async def METHOD_NAME(self) -> None:
await self._client.METHOD_NAME() | [
1462
] |
def METHOD_NAME(significand, exponent, stream=None):
"""Return a new array of floating point values composed from the
entries of `significand` and `exponent`, paired together as
`result = significand * 2**exponent`.
"""
if not significand.flags.forc or not exponent.flags.forc:
raise RuntimeError(
"only contiguous arrays may " "be used as arguments to this operation"
)
result = gpuarray.GPUArray(significand.shape, significand.dtype)
func = elementwise.get_ldexp_kernel()
func.prepared_async_call(
significand._grid,
significand._block,
stream,
significand.gpudata,
exponent.gpudata,
result.gpudata,
significand.mem_size,
)
return result | [
6199
] |
def METHOD_NAME(self, builder):
if self.parent:
return self.parent.METHOD_NAME(builder)
self.definitions.add(builder) | [
238,
1208
] |
def METHOD_NAME(index: int) -> qulacs_core.ClsOneQubitGate: ... | [
2079
] |
def METHOD_NAME(
cls: typing.Type[object],
class_path: str,
default: typing.Any = __DEFAULT__):
"""
Get class go thru it's annotations using class_path
cls: list, dict, instance or class
class_path: string of data path
detault: if provided, in case of it can't reach data default value will be returned,
otherwise ValueError will be raised
data_path example = attr1.attr2.attr3 , using this example you will
get attr3 of attr2 of attr1 of the class you provide into cls.
"""
current = cls
for param_name in class_path.split('.'):
value = __DEFAULT__
if hasattr(current, '__annotations__'):
value = current.__annotations__.get(param_name, __DEFAULT__)
if value is __DEFAULT__:
if default is __DEFAULT__:
raise ValueError(f"Can't find {class_path} in data {cls.__name__}")
return default
current = value
return current | [
19,
2,
604,
157
] |
def METHOD_NAME(self):
return self.C_hvdc_bus_f * np.arange(self.C_hvdc_bus_f.shape[1]) | [
19,
2583,
1894,
474
] |
def METHOD_NAME(name, size, ty=''):
ty_annot = ' : ' + ty if ty else ''
return ', '.join(f'%{name}{i}{ty_annot}' for i in range(size)) | [
811
] |
def METHOD_NAME(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs))
nll_loss_sum = utils.item(
sum(log.get("nll_loss", 0) for log in logging_outputs)
)
alignment_loss_sum = utils.item(
sum(log.get("alignment_loss", 0) for log in logging_outputs)
)
ntokens = utils.item(sum(log.get("ntokens", 0) for log in logging_outputs))
sample_size = utils.item(
sum(log.get("sample_size", 0) for log in logging_outputs)
)
metrics.log_scalar(
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
metrics.log_scalar(
"nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, round=3
)
metrics.log_scalar(
"alignment_loss",
alignment_loss_sum / sample_size / math.log(2),
sample_size,
round=3,
)
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
) | [
332,
1097
] |
def METHOD_NAME(self):
comments = self.ogr_project.get_pr(4).get_comments(
filter_regex="^regex", author="mfocko"
)
assert len(comments) == 1
assert comments[0].body.endswith("test") | [
9,
1933,
3528,
2997,
211
] |
def METHOD_NAME(self, registry, serializer):
with pytest.raises(DeserializationError):
registry.deserialize(MyObj, {"val": 1}) | [
9,
13057,
427,
241,
217,
654,
281
] |
def METHOD_NAME(self, app):
self.client_id = app.config["SALESFORCE_CLIENT_ID"]
self.username = app.config["SALESFORCE_USERNAME"]
self.password = app.config["SALESFORCE_PASSWORD"]
self.security_token = app.config["SALESFORCE_SECURITY_TOKEN"]
self.domain = app.config["SALESFORCE_DOMAIN"]
self.generic_account_id = app.config["SALESFORCE_GENERIC_ACCOUNT_ID"] | [
176,
991
] |
def METHOD_NAME(self):
form = {
'id': 'form_id',
'xmlns': TARGET_XMLNS,
'domain': 'champ_cameroon',
'form': {
'locations': {
'district': 'test district',
'cbo': 'test cbo',
'clienttype': 'fsw_test_client_type',
'userpl': 'test userpl'
},
'fiscal_year': '2017',
'target_kp_prev': 15,
'target_htc_tst': 54,
'target_htc_pos': 35,
'target_care_new': 16,
'target_tx_new': 11,
'target_tx_undetect': 20
}
}
district = self.get_expression('district', 'string')
cbo = self.get_expression('cbo', 'string')
clienttype = self.get_expression('clienttype', 'string')
userpl = self.get_expression('userpl', 'string')
fiscal_year = self.get_expression('fiscal_year', 'integer')
target_kp_prev = self.get_expression('target_kp_prev', 'integer')
target_htc_tst = self.get_expression('target_htc_tst', 'integer')
target_htc_pos = self.get_expression('target_htc_pos', 'integer')
target_care_new = self.get_expression('target_care_new', 'integer')
target_tx_new = self.get_expression('target_tx_new', 'integer')
target_tx_undetect = self.get_expression('target_tx_undetect', 'integer')
self.assertEqual(
district(form, EvaluationContext(form, 0)), 'test district'
)
self.assertEqual(
cbo(form, EvaluationContext(form, 0)), 'test cbo'
)
self.assertEqual(
clienttype(form, EvaluationContext(form, 0)), 'fsw'
)
self.assertEqual(
userpl(form, EvaluationContext(form, 0)), 'test userpl'
)
self.assertEqual(
fiscal_year(form, EvaluationContext(form, 0)), '2017'
)
self.assertEqual(
target_kp_prev(form, EvaluationContext(form, 0)), 15
)
self.assertEqual(
target_htc_tst(form, EvaluationContext(form, 0)), 54
)
self.assertEqual(
target_htc_pos(form, EvaluationContext(form, 0)), 35
)
self.assertEqual(
target_care_new(form, EvaluationContext(form, 0)), 16
)
self.assertEqual(
target_tx_new(form, EvaluationContext(form, 0)), 11
)
self.assertEqual(
target_tx_undetect(form, EvaluationContext(form, 0)), 20
) | [
9,
1030,
1029,
748
] |
def METHOD_NAME(self) -> ConflictTheater:
with self.descriptor_path.open(encoding="utf-8") as descriptor_file:
data = yaml.safe_load(descriptor_file)
return ConflictTheater(
TERRAINS_BY_NAME[data.get("pydcs_name", data["name"])],
load_landmap(self.landmap_path),
datetime.timezone(datetime.timedelta(hours=data["timezone"])),
self._load_seasonal_conditions(data["climate"]),
self._load_daytime_map(data["daytime"]),
) | [
557
] |
def METHOD_NAME(sqlite_path, tmp_path, set_sqlalchemy_silence_uber_warning):
cache_dir = tmp_path / "cache"
output_sqlite_path = os.path.join(cache_dir, "tmp.sql")
dataset = SqlDatasetReader("dataset", "sqlite:///" + sqlite_path, cache_dir=cache_dir).read()
SqlDatasetWriter(dataset, "dataset", "sqlite:///" + output_sqlite_path, num_proc=2).write()
original_sql = iter_sql_file(sqlite_path)
expected_sql = iter_sql_file(output_sqlite_path)
for row1, row2 in zip(original_sql, expected_sql):
assert row1 == row2 | [
9,
126,
24,
1621,
15882
] |
def METHOD_NAME(key, default=False):
try:
value = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_value = default
else:
# KEY is set, convert it to True or False.
try:
_value = strtobool(value)
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f"If set, {key} must be yes or no.")
return _value | [
214,
584,
280,
485
] |
def METHOD_NAME(self, test_data, device, args):
model = self.model
model.to(device)
model.eval()
metrics = {
"test_correct": 0,
"test_loss": 0,
"test_precision": 0,
"test_recall": 0,
"test_total": 0,
}
"""
stackoverflow_lr is the task of multi-label classification
please refer to following links for detailed explainations on cross-entropy and corresponding implementation of tff research:
https://towardsdatascience.com/cross-entropy-for-classification-d98e7f974451
https://github.com/google-research/federated/blob/49a43456aa5eaee3e1749855eed89c0087983541/optimization/stackoverflow_lr/federated_stackoverflow_lr.py#L131
"""
if args.dataset == "stackoverflow_lr":
criterion = nn.BCELoss(reduction="sum").to(device)
else:
criterion = nn.CrossEntropyLoss().to(device)
with torch.no_grad():
for batch_idx, (x, target) in enumerate(test_data):
x = x.to(device)
target = target.to(device)
pred = model(x)
loss = criterion(pred, target) # pylint: disable=E1102
if args.dataset == "stackoverflow_lr":
predicted = (pred > 0.5).int()
correct = predicted.eq(target).sum(axis=-1).eq(target.size(1)).sum()
true_positive = ((target * predicted) > 0.1).int().sum(axis=-1)
precision = true_positive / (predicted.sum(axis=-1) + 1e-13)
recall = true_positive / (target.sum(axis=-1) + 1e-13)
metrics["test_precision"] += precision.sum().item()
metrics["test_recall"] += recall.sum().item()
else:
_, predicted = torch.max(pred, 1)
correct = predicted.eq(target).sum()
metrics["test_correct"] += correct.item()
metrics["test_loss"] += loss.item() * target.size(0)
if len(target.size()) == 1: #
metrics["test_total"] += target.size(0)
elif len(target.size()) == 2: # for tasks of next word prediction
metrics["test_total"] += target.size(0) * target.size(1)
return metrics | [
9
] |
def METHOD_NAME(self, sport_id):
"""Get the sport with the specified id.
If no sport with the given id exists then None is returned."""
if sport_id is None:
raise ValueError("Sport id cannot be None")
try:
return self._ddbb.session.query(Sport).filter(Sport.id == sport_id).one()
except NoResultFound:
return None | [
19,
8053
] |
def METHOD_NAME(self):
super().METHOD_NAME()
vocab = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.special_tokens_map = {
"unk_token": "[UNK]",
"sep_token": "[SEP]",
"bos_token": "[SEP]",
"eos_token": "[SEP]",
"cls_token": "[CLS]",
"x_sep_token": "[X_SEP]",
"pad_token": "[PAD]",
"mask_token": "[MASK]",
}
self.vocab_file = os.path.join(self.tmpdirname, ProphetNetTokenizer.resource_files_names["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) | [
0,
1
] |
def METHOD_NAME(self, index=np.s_[:]):
"""
@brief 根据散度定理计算多边形的面积
@note 请注意下面的计算方式不方便实现部分单元面积的计算
"""
NC = self.number_of_cells()
node = self.entity('node')
edge = self.entity('edge')
edge2cell = self.ds.edge_to_cell()
t = self.edge_tangent()
val = t[:, 1]*node[edge[:, 0], 0] - t[:, 0]*node[edge[:, 0], 1]
a = np.zeros(NC, dtype=self.ftype)
np.add.at(a, edge2cell[:, 0], val)
isInEdge = (edge2cell[:, 0] != edge2cell[:, 1])
np.add.at(a, edge2cell[isInEdge, 1], -val[isInEdge])
a /= 2.0
return a[index] | [
118,
690
] |
def METHOD_NAME(m, i):
return (
m.QuantitySubQuotaSold[i]
+ m.QuantitySuperQuotaSold[i]
- (farmer.crop_yield[scenario][i] * m.devoted_acreage[i])
<= 0.0
) | [
1467,
4757,
-1,
446
] |
def METHOD_NAME(self):
Utility.console_log('{} connected to server'.format(self.address)) | [
276,
2261
] |
def METHOD_NAME(self, method):
# in theory, we can override this with
# profile/etc info
return getattr(self.ts, method) | [
19,
103
] |
def METHOD_NAME():
self.session_dict[request.sid].cb('data-from-blockchain') | [
276,
417
] |
def METHOD_NAME(y, i, q):
r = y + 0.948262*i + 0.624013*q
g = y - 0.276066*i - 0.639810*q
b = y - 1.105450*i + 1.729860*q
#if r < 0.0: r = 0.0
r = r*(r > 0.0)
#if g < 0.0: g = 0.0
g = g*(g > 0.)
#if b < 0.0: b = 0.0
b = b*(b < 0.)
#if r > 1.0: r = 1.0
r = np.minimum(r, 1.0)
#if g > 1.0: g = 1.0
g = np.minimum(g, 1.0)
#if b > 1.0: b = 1.0
b = np.minimum(b, 1.0)
return (r, g, b) | [
4613,
24,
2310
] |
def METHOD_NAME(start_binary):
start_binary(TELESCOPE_BINARY)
out = gdb.execute("telescope -r 2", to_string=True).splitlines()
rsp = pwndbg.gdblib.regs.rsp
assert out == ["00:0000│ %#x ◂— 0x0" % (rsp - 8), "01:0008│ rsp %#x ◂— 0x1" % rsp] | [
9,
11919,
462,
41,
85,
947,
29
] |
def METHOD_NAME(resultsdir):
"""
Retrieves the job pwd from the results directory.
"""
recorded_pwd = _retrieve(resultsdir, PWD_FILENAME)
if recorded_pwd is None:
return None
with open(recorded_pwd, "r", encoding="utf-8") as pwd_file:
return pwd_file.read() | [
404,
13107
] |
def METHOD_NAME():
cases = [('abs(x)', 'Abs(x)'),
('max(x, y)', 'Max(x, y)'),
('min(x, y)', 'Min(x, y)'),
('pow(x, y)', 'Pow(x, y)')]
for built_in_func_call, sympy_func_call in cases:
assert parse_expr(built_in_func_call) == parse_expr(sympy_func_call)
assert parse_expr('pow(38, -1)') == Rational(1, 38)
# issue sympy/sympy#22322
assert parse_expr('abs(-42)', evaluate=False) == Abs(-42, evaluate=False) | [
9,
4298
] |
def METHOD_NAME(network, outdir, dotFilename):
callgraph = pydot.Dot(graph_type="graph", rankdir="LR")
_dot_create(network, callgraph)
dot_filename = os.path.join(outdir, dotFilename)
callgraph.write(dot_filename)
try:
# dot crashes if the figure is extremely wide.
# So avoid terminating simulation unnecessarily
callgraph.write_svg(dot_filename + ".svg", prog="neato")
callgraph.write_pdf(dot_filename + ".pdf", prog="neato")
except:
warn("failed to generate dot output from %s", dot_filename) | [
74,
1903
] |
def METHOD_NAME(rho, sigma, N=3, method="rouwenhorst", m=2):
"""
Discretize an VAR(1) into a markov chain. The autoregression matrix is supposed to be a scalar.
:param rho:
:param sigma:
:param N:
:param method:
:param m:
:return:
"""
# rho is assumed to be a scalar
# sigma is a positive symmetric matrix
# N number of points in each non-degenerate dimension
# m : standard deviations to approximate
import scipy.linalg
from itertools import product
d = sigma.shape[1]
sigma = sigma.copy()
zero_columns = np.where(sigma.sum(axis=0) == 0)[0]
for i in zero_columns:
sigma[i, i] = 1
L = scipy.linalg.cholesky(sigma)
N = int(N)
if method == "tauchen":
[nodes_1d, probas_1d] = tauchen(N, 0, rho, 1, m=m)
elif method == "rouwenhorst":
[nodes_1d, probas_1d] = rouwenhorst(rho, 1, N)
markov_nodes = np.array(list(product(*([nodes_1d] * d)))).T
markov_indices = np.array(list(product(*([range(N)] * d)))).T
markov_nodes = np.dot(L, markov_nodes)
transition_matrix = 1
for i in range(d):
transition_matrix = np.kron(transition_matrix, probas_1d)
markov_nodes = np.ascontiguousarray(markov_nodes.T)
for i in zero_columns:
markov_nodes[:, i] = 0
return [markov_nodes, transition_matrix] | [
9544,
18093
] |
def METHOD_NAME():
t_coeff = np.array([0.0, 1.0, 1.0, 1.0, 0.0])
base_length = 2.0
position = np.linspace(0, base_length, 10)
my_spline, ctr_pts, ctr_coeffs = _bspline(t_coeff, base_length)
correct_values = np.array(
[
0.0,
0.52949246,
0.82853224,
0.96296296,
0.99862826,
0.99862826,
0.96296296,
0.82853224,
0.52949246,
0.0,
]
)
test_values = my_spline(position)
assert_allclose(test_values, correct_values, atol=Tolerance.atol()) | [
9,
16500,
3212
] |
def METHOD_NAME(self) -> str:
"""
The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts"
"""
return pulumi.get(self, "type") | [
44
] |
def METHOD_NAME(self):
images = []
labels = []
import csv
with open(self.label_path, "r") as f:
reader = csv.reader(f)
# skip the header
_ = next(reader)
for row in reader:
_img = row[0]
_label = row[5:]
_img = os.path.join(*_img.split("/")[2:])
for i in range(len(_label)):
if _label[i] == "" or float(_label[i]) == -1:
_label[i] = 0 if self.policy == "zeros" else 1
else:
_label[i] = int(float(_label[i]))
images.append(_img)
labels.append(_label)
return images, labels | [
56,
4146
] |
def METHOD_NAME(self) -> bool: ... | [
137,
4143
] |
def METHOD_NAME(self):
self.cpp_info.set_property("cmake_file_name", "oatpp-postgresql")
self.cpp_info.set_property("cmake_target_name", "oatpp::oatpp-postgresql")
# TODO: back to global scope in conan v2 once legacy generators removed
self.cpp_info.components["_oatpp-postgresql"].includedirs = [
os.path.join("include", f"oatpp-{self.version}", "oatpp-postgresql")
]
self.cpp_info.components["_oatpp-postgresql"].libdirs = [os.path.join("lib", f"oatpp-{self.version}")]
if self.settings.os == "Windows" and self.options.shared:
self.cpp_info.components["_oatpp-postgresql"].bindirs = [os.path.join("bin", f"oatpp-{self.version}")]
else:
self.cpp_info.components["_oatpp-postgresql"].bindirs = []
self.cpp_info.components["_oatpp-postgresql"].libs = ["oatpp-postgresql"]
if self.settings.os in ["Linux", "FreeBSD"]:
self.cpp_info.components["_oatpp-postgresql"].system_libs = ["pthread"]
# TODO: to remove in conan v2 once legacy generators removed
self.cpp_info.filenames["cmake_find_package"] = "oatpp-postgresql"
self.cpp_info.filenames["cmake_find_package_multi"] = "oatpp-postgresql"
self.cpp_info.names["cmake_find_package"] = "oatpp"
self.cpp_info.names["cmake_find_package_multi"] = "oatpp"
self.cpp_info.components["_oatpp-postgresql"].names["cmake_find_package"] = "oatpp-postgresql"
self.cpp_info.components["_oatpp-postgresql"].names["cmake_find_package_multi"] = "oatpp-postgresql"
self.cpp_info.components["_oatpp-postgresql"].set_property("cmake_target_name", "oatpp::oatpp-postgresql")
self.cpp_info.components["_oatpp-postgresql"].requires = ["oatpp::oatpp", "libpq::libpq"] | [
360,
100
] |
def METHOD_NAME(self, **kwargs):
# TODO; code needs to be refactored.
# example : hdl_identifer not used anywhere
# original code from https://github.com/EUDAT-B2SHARE/b2share/pull/1813
input_record = request.view_args['record_id']
if input_record is None:
return abort(400)
linkset = []
try:
rec_pid = RecordUUIDProvider.METHOD_NAME(input_record).pid
record = Record.get_record(rec_pid.object_uuid)
except:
return abort(404, "Record not found!")
try:
landingpage = current_app.config.METHOD_NAME(
'PREFERRED_URL_SCHEME',
'') + '://' + current_app.config.METHOD_NAME(
'JSONSCHEMAS_HOST', '') + '/records/' + input_record
citations = []
doi_identifier = None
for p in record.METHOD_NAME('_pid'):
if p.METHOD_NAME('type') == 'DOI':
doi_identifier = p.METHOD_NAME('value')
cite = {'href' : 'https://doi.org/' + doi_identifier}
citations.append(cite)
if doi_identifier is None and record.METHOD_NAME('alternate_identifiers') is not None:
for ai in record.METHOD_NAME('alternate_identifiers'):
if ai.METHOD_NAME('alternate_identifier_type') == 'DOI':
doi_identifier = ai.METHOD_NAME('alternate_identifier')
cite = {'href' : 'https://doi.org/' + doi_identifier}
citations.append(cite)
hdl_identifer = None
if doi_identifier is None:
#Identifier is required
current_app.logger.error('No alternate_identifiers for record {record_id}'.format(record_id=rec_pid.object_uuid))
rec_license = record.METHOD_NAME('license')
license = {}
if rec_license is not None:
license = { 'href': rec_license.METHOD_NAME('license_uri')}
#Todo: According to Signposting spec: License cardinality is 1. What we will do for the following case?
# https://b2share.eudat.eu/api/oai2d?verb=ListRecords&metadataPrefix=oai_dc
# <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
# <dc:rights>GNU General Public License 3 (GPL-3.0)</dc:rights>
describedbys = []
if doi_identifier is not None:
describedby = {'href':'https://citation.crosscite.org/format?style=bibtex&doi=' + doi_identifier,
'type':'application/x-bibtex'}
describedbys.append(describedby)
items = []
fs = []
bucket = None
if len(record.METHOD_NAME('_files', [])) > 0:
# if record contains files, check for user's permissions to access those files
bucket = record.METHOD_NAME('_files')[0].METHOD_NAME("bucket")
user_has_permission = \
allow_public_file_metadata(record) if bucket \
is None else files_permission_factory(
bucket, 'bucket-read').can()
if user_has_permission:
for file in record.METHOD_NAME('_files', []):
fmimetype = fm.ObjectVersion.METHOD_NAME(
file.METHOD_NAME('bucket'), file.METHOD_NAME('key'),
file.METHOD_NAME('version_id')).mimetype
file_location = current_app.config.METHOD_NAME(
'PREFERRED_URL_SCHEME',
'') + '://' + current_app.config.METHOD_NAME(
'JSONSCHEMAS_HOST', '') + '/api/files/' + file.METHOD_NAME(
'bucket') + '/' + file.METHOD_NAME('key')
file.update({'file-location': file_location})
item_file = {'href': file_location, 'type':fmimetype}
items.append(item_file)
item_anchor = {'anchor':file_location, 'collection':[{'href':landingpage, 'type':'text/html'}]}
fs.append(item_anchor)
types = []
type_about_page = {'href':'https://schema.org/AboutPage'}
types.append(type_about_page)
element = {'anchor': landingpage, 'type':types, 'cite-as': citations, 'item':items, 'describedby':describedbys, 'license':license}
linkset.append(element)
for a in fs:
linkset.append(a)
return {'linkset': linkset}
except:
return abort(404) | [
19
] |
def METHOD_NAME(self):
self.bdist_base = None
self.plat_name = None
self.formats = None
self.dist_dir = None
self.skip_build = 0
self.group = None
self.owner = None | [
15,
1881
] |
def METHOD_NAME(self):
"""Check different error conditions.
"""
for scenario in loads(current_module(), Scenario):
Scenario(run=scenario, flags=TE) | [
964
] |
def METHOD_NAME(self, dashboard_id, cell, **kwargs): ... | [
1276,
4774,
147,
383,
41,
721,
100
] |
def METHOD_NAME():
return MockIOManager() | [
248,
249,
722
] |
def METHOD_NAME(a: BlockAccess | Right, curr_time: datetime):
if a.duration and a.accessible_to:
return min(a.duration, a.accessible_to - curr_time)
return a.duration | [
19,
2205,
4607
] |
def METHOD_NAME(self):
new_dict = self.gruneisen_obj.as_dict()
self.gruneisen_obj2 = GruneisenParameter.from_dict(new_dict) | [
9,
6524,
7040
] |
METHOD_NAME(self): | [
86,
459
] |
def METHOD_NAME(sender, **_kwargs):
request = sender.app.webapp_bootstrap()
sender.app.request = request | [
904,
1794
] |
def METHOD_NAME(name):
return name.replace(" ", "_").lower() | [
1907
] |
def METHOD_NAME(self):
return "MgmtErrorFormat" | [
168,
275
] |
def METHOD_NAME(self):
pass | [
241,
43,
452
] |
def METHOD_NAME(self):
self.dialog.ui.doubleSpinBoxCarrierFreq.setValue(1e9)
self.dialog.ui.doubleSpinBoxCarrierFreq.editingFinished.emit()
self.assertEqual(self.dialog.current_modulator.carrier_freq_hz, 1e9)
self.dialog.ui.doubleSpinBoxCarrierPhase.setValue(100)
self.dialog.ui.doubleSpinBoxCarrierPhase.editingFinished.emit()
self.assertEqual(self.dialog.current_modulator.carrier_phase_deg, 100) | [
9,
2004,
2591
] |
async def METHOD_NAME():
# total roundtrip takes ~5s
print('heavylifting other io-bound jobs, e.g. download, upload, file io')
await asyncio.sleep(5)
print('heavylifting done after 5s') | [
5893,
38
] |
def METHOD_NAME(self, level_req, string):
if self.debug_level >= level_req:
self.printfunc(string) | [
290
] |
def METHOD_NAME(self, state, dict_, passive=attributes.PASSIVE_OFF):
if self.key in dict_:
return dict_[self.key]
# Retrieve the session bound to the state in order to perform
# a lazy query for the attribute.
session = _state_session(state)
if session is None:
# State is not bound to a session; we cannot proceed.
return None
# Find class for discriminator.
# TODO: Perhaps optimize with some sort of lookup?
discriminator = self.get_state_discriminator(state)
target_class = _get_class_registry(state.class_).METHOD_NAME(discriminator)
if target_class is None:
# Unknown discriminator; return nothing.
return None
id = self.get_state_id(state)
try:
target = session.METHOD_NAME(target_class, id)
except AttributeError:
# sqlalchemy 1.3
target = session.query(target_class).METHOD_NAME(id)
# Return found (or not found) target.
return target | [
19
] |
def METHOD_NAME(self, dev_path):
return self.get_dev_mode(dev_path) == 'devdax' | [
137,
-1
] |
def METHOD_NAME(im, to_bgr=False):
im = np.swapaxes(im, 1, 2)
im = np.swapaxes(im, 1, 0)
if to_bgr:
im = im[[2, 1, 0], :, :]
return im | [
2755
] |
def METHOD_NAME(self):
self.tmpf.close()
os.unlink(self.tmpf.name) | [
531,
481
] |
def METHOD_NAME(self):
"""
Tests the return of running the -f list_nodes_full
command for ProfitBricks
"""
cmd = "-f list_nodes_full {}".format(self.PROVIDER)
list_nodes = self.run_cloud(cmd)
self.assertIn("state:", [i.strip() for i in list_nodes])
self.assertIn("name:", [i.strip() for i in list_nodes]) | [
9,
245,
480,
324
] |
def METHOD_NAME(self, model, positions, q, dofs,
ni, o1, e1, f1):
n = self.n
du_axial = zeros(n, 'float64')
for i in range(self.n):
n0, n1 = self.node_ids[i, :]
n11 = dofs[(n0, 1)]
n21 = dofs[(n1, 1)]
q_axial = array([
q[n11],
q[n21],
])
u_axial = q_axial
du_axial[i] = u_axial[0] - u_axial[1]
s = self.s
bi = self.B
e1[ni : ni+n] = du_axial * s
f1[ni : ni+n] = bi * du_axial
o1[ni : ni+n] = f1[ni: ni+n] * s
#return (axial_strain, axial_stress, axial_force) | [
6619,
2903
] |
def METHOD_NAME(self) -> str:
"""
dnc endpoint url that customers can use to connect to
"""
return pulumi.get(self, "dnc_endpoint") | [
4019,
841
] |
def METHOD_NAME(i):
# stop if already start
machines[i].run('tmux send-keys -t python-rc C-c')
time.sleep(2)
machines[i].kill_detach_tmux()
machines[i].run('rm -rf ~/.near')
# upload keys, config, genesis
machines[i].upload(str(get_node_dir(i)),
f'/home/{machines[i].username}/.near')
pbar.update(1) | [
172,
3842,
1537
] |
def METHOD_NAME(binning_method):
# load training data
X = np.random.rand(10, 1, 150)
y = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
word_length = 6
alphabet_size = 4
# SFA with ANOVA one-sided test
window_size = 32
p = SFA(
word_length=word_length,
anova=True,
alphabet_size=alphabet_size,
window_size=window_size,
binning_method=binning_method,
).fit(X, y)
assert p.breakpoints.shape == (word_length, alphabet_size)
_ = p.transform(X, y)
# SFA with first feq coefficients
p2 = SFA(
word_length=word_length,
anova=False,
alphabet_size=alphabet_size,
window_size=window_size,
binning_method=binning_method,
).fit(X, y)
assert p.dft_length != p2.dft_length
assert (p.breakpoints != p2.breakpoints).any()
_ = p2.transform(X, y) | [
9,
-1,
8233
] |
def METHOD_NAME(monkeypatch):
# given
img_data = BytesIO()
image = Image.new("RGB", size=(1, 1))
image.save(img_data, format="JPEG")
field = "image"
error_msg = "Test syntax error"
image_file_mock = Mock(side_effect=SyntaxError(error_msg))
monkeypatch.setattr(
"saleor.graphql.core.validators.file._validate_image_exif", image_file_mock
)
img = SimpleUploadedFile("product.jpg", img_data.getvalue(), "image/jpeg")
# when
with pytest.raises(ValidationError) as exc:
clean_image_file({field: img}, field, ProductErrorCode)
# then
assert error_msg in exc.value.args[0][field].message | [
9,
1356,
660,
171,
10093,
437,
3940
] |
def METHOD_NAME(get_fn):
# no hydrogens in this file -> no hydrogen bonds
t = md.load(get_fn('1bpi.pdb'))
eq(np.zeros((0, 3), dtype=int), md.baker_hubbard(t)) | [
9,
-1,
-1,
1170
] |
def METHOD_NAME(
self,
data: bytes,
pattern: bytes,
matcher: str | None = None,
matcher_kwargs: dict[str, str] | None = None
) -> bool:
"""Call the matcher."""
if matcher and not self._matchers.get(matcher):
raise self.MatcherNotInstalled(
f'No matcher installed for {matcher}'
)
match_func = self._matchers[matcher or 'glob']
if matcher in self.matcher_pattern_first:
first_arg = bytes_to_str(pattern)
second_arg = bytes_to_str(data)
else:
first_arg = bytes_to_str(data)
second_arg = bytes_to_str(pattern)
return match_func(first_arg, second_arg, **matcher_kwargs or {}) | [
590
] |
def METHOD_NAME(self):
self.pre_operations()
yield self.PrivateLinkScopesDelete(ctx=self.ctx)()
self.post_operations() | [
750,
710
] |
def METHOD_NAME(self, session):
pass | [
69,
1072
] |
def METHOD_NAME(context):
context.caller_stack._push_frame()
try:
context._push_buffer()
__M_writer = context.writer()
# SOURCE LINE 11
__M_writer('\n <div class="header">\n <h1><a href="/">Login</a></h1>\n </div>\n')
finally:
__M_buf, __M_writer = context._pop_buffer_and_writer()
context.caller_stack._pop_frame()
__M_writer(filters.trim(__M_buf.getvalue()))
return "" | [
338,
709
] |
def METHOD_NAME(self):
return """\
font
Sets this axis' title font. Note that the title's font
used to be customized by the now deprecated `titlefont`
attribute.
text
Sets the title of this axis. Note that before the
existence of `title.text`, the title's contents used to
be defined as the `title` attribute itself. This
behavior has been deprecated.
""" | [
1302,
1303
] |
def METHOD_NAME(self):
if self.current_fold < self.n_folds - 1:
self.current_fold = self.current_fold + 1
else:
self.current_fold = 0 | [
243,
3848
] |
def METHOD_NAME(self):
self.nodes[LEADER].start()
self.simulator.go(config.LEADER_STARTUP_DELAY)
self.assertEqual(self.nodes[LEADER].get_state(), 'leader')
for i in range(2, 5):
self.nodes[i].start()
self.simulator.go(config.ROUTER_STARTUP_DELAY)
for i in range(2, 5):
self.assertEqual(self.nodes[i].get_state(), 'router')
self.simulator.go(config.MAX_ADVERTISEMENT_INTERVAL)
self.nodes[ED].start()
self.simulator.go(5)
self.assertEqual(self.nodes[ED].get_state(), 'child')
self.collect_ipaddrs()
addrs = self.nodes[ED].get_addrs()
for addr in addrs:
self.assertTrue(self.nodes[ROUTER3].ping(addr)) | [
9
] |
def METHOD_NAME(self):
tocrds = podpac.Coordinates([[39.1, 39.0, 38.9], [-77.1, -77, -77.2]], dims=["lat", "lon"], crs="EPSG:4326")
base = podpac.core.data.array_source.Array(
source=np.random.rand(3, 3), coordinates=tocrds.transform("EPSG:32618")
)
node = podpac.interpolators.Interpolate(source=base, interpolation="nearest")
o = node.eval(tocrds)
assert np.all((o.lat.data - tocrds["lat"].coordinates) == 0)
# now check the Mixin
node2 = podpac.core.data.array_source.Array(
source=np.random.rand(3, 3), coordinates=tocrds.transform("EPSG:32618")
).interpolate()
o = node2.eval(tocrds)
assert np.all((o.lat.data - tocrds["lat"].coordinates) == 0)
# now check the reverse operation
tocrds = podpac.Coordinates(
[podpac.clinspace(4307580, 4330177, 7), podpac.clinspace(309220, 327053, 8)],
dims=["lat", "lon"],
crs="EPSG:32618",
)
srccrds = podpac.Coordinates(
[podpac.clinspace(39.2, 38.8, 9), podpac.clinspace(-77.3, -77.0, 9)], dims=["lat", "lon"], crs="EPSG:4326"
)
node3 = podpac.core.data.array_source.Array(source=np.random.rand(9, 9), coordinates=srccrds).interpolate()
o = node3.eval(tocrds)
assert np.all((o.lat.data - tocrds["lat"].coordinates) == 0) | [
9,
8723,
1669,
8901,
9002
] |
def METHOD_NAME(osmid, tags, ref):
"""Add a new barrier to the list of barriers."""
if 'barrier' in tags:
settingsSection = Settings.get_section('barrier', tags['barrier'])
if settingsSection is None:
return
if Settings.has_option(settingsSection, 'ignore') and Settings.get(settingsSection, 'ignore') == 'TRUE':
return
barrier = Barrier()
barrier.OSMID = osmid
barrier.type = tags['barrier']
barrier.ref = ref
if 'height' in tags:
barrier.height = extract_float_from_string(tags['height'])
elif Settings.has_option(settingsSection, 'height'):
barrier.height = Settings.getfloat(settingsSection, 'height')
if 'width' in tags:
barrier.width = extract_float_from_string(tags['width'])
elif Settings.has_option(settingsSection, 'width'):
barrier.width = Settings.getfloat(settingsSection, 'width')
if WebotsObject.enable3D:
barrier.ref = Barrier.add_intermediate_point_where_needed(barrier.ref)
Barrier.list.append(barrier) | [
238,
24,
245
] |
def METHOD_NAME(q, k, v, extra_options):
#NOTE: In the reference code get_functions takes x (input of the transformer block) as the argument instead of q
#however from my basic testing it seems that using q instead gives better results
m, self.u = get_functions(q, ratio, extra_options["original_shape"])
return m(q), k, v | [
-1,
790
] |
def METHOD_NAME(img_dir, gt_dir):
"""Collect all images and their corresponding groundtruth files.
Args:
img_dir (str): The image directory
gt_dir (str): The groundtruth directory
Returns:
files (list): The list of tuples (img_file, groundtruth_file)
"""
assert isinstance(img_dir, str)
assert img_dir
assert isinstance(gt_dir, str)
assert gt_dir
ann_list, imgs_list = [], []
for img in os.listdir(img_dir):
imgs_list.append(osp.join(img_dir, img))
ann_list.append(osp.join(gt_dir, 'gt_' + img.replace('jpg', 'txt')))
files = list(zip(imgs_list, ann_list))
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
return files | [
1444,
1537
] |
def METHOD_NAME(branch_name):
outs, errs, exit_code = run_external_command(f"git switch {branch_name}")
if exit_code != 0:
raise RecipeException(errs) | [
1493,
705,
24
] |
def METHOD_NAME(input_blob):
result = input_blob.copy()
result[result < 0] *= alpha
return result, | [
2360
] |
def METHOD_NAME(
gym_env: gym.Env,
discount: types.Float = 1.0,
max_episode_steps: Optional[types.Int] = None,
gym_env_wrappers: Sequence[types.GymEnvWrapper] = (),
time_limit_wrapper: TimeLimitWrapperType = wrappers.TimeLimit,
env_wrappers: Sequence[types.PyEnvWrapper] = (),
spec_dtype_map: Optional[Dict[gym.Space, np.dtype]] = None,
auto_reset: bool = True,
render_kwargs: Optional[Dict[str, Any]] = None, | [
503,
485
] |
def METHOD_NAME(self, steps=None):
if steps is None:
function_call("{command} -c=volumeup".format(command=self.playout_control), shell=True)
else:
function_call("{command} -c=volumeup -v={steps}".format(steps=steps,
command=self.playout_control),
shell=True) | [
559,
128,
4076,
3597
] |
def METHOD_NAME(self):
"""Return `True` if the shutter is closed."""
return self.state.title() == "Closed" | [
137,
4703
] |
def METHOD_NAME(kubescape_exec: str):
return smoke_utils.run_command(command=[kubescape_exec, "scan", "framework", "nsa", all_files]) | [
793,
1486
] |
def METHOD_NAME(self, env, dependent_spec):
env.prepend_path("XDG_DATA_DIRS", self.prefix.share)
env.prepend_path("GI_TYPELIB_PATH", join_path(self.prefix.lib, "girepository-1.0")) | [
102,
1604,
22,
1027
] |
def METHOD_NAME(self):
# Check the repr, mainly to cover the code paths:
assert repr(SF(scaling=1.)) == "_ScaledFloatTestDType(scaling=1.0)" | [
9,
92
] |
def METHOD_NAME(self):
pass | [
72,
710
] |
def METHOD_NAME(art_warning, decision_tree_estimator):
try:
classifier = decision_tree_estimator()
with pytest.raises(ValueError):
_ = AttributeInferenceWhiteBoxLifestyleDecisionTree(classifier, attack_feature=-5)
except ARTTestException as e:
art_warning(e) | [
9,
250,
434
] |
def METHOD_NAME(cls):
cls.repeater.delete()
cls.teardown_subscriptions()
cls.domain_obj.delete()
clear_plan_version_cache()
super().METHOD_NAME() | [
531,
481,
2
] |
def METHOD_NAME(loglevel=None, logfile=None):
"""Setup logging."""
logger = logging.getLogger()
loglevel = get_loglevel(loglevel or 'ERROR')
logfile = logfile if logfile else sys.__stderr__
if not logger.handlers:
if hasattr(logfile, 'write'):
handler = logging.StreamHandler(logfile)
else:
handler = WatchedFileHandler(logfile)
logger.addHandler(handler)
logger.setLevel(loglevel)
return logger | [
102,
663
] |
def METHOD_NAME(self):
parameters = {
**self.serialize_header_param(
"Accept", "application/json",
),
}
return parameters | [
572,
386
] |
def METHOD_NAME(self):
pass | [
250,
562,
43,
136
] |
def METHOD_NAME(image_tag_string, client):
"""Try to retrieve a docker image using the docker API.
image_tag_string: can be in image:tag or image@digest_type:digest format"""
image = check_image(image_tag_string, client)
if image is None:
image = pull_image(image_tag_string, client)
return image | [
19,
223,
660
] |
def METHOD_NAME(disease_id):
return QueryEBIOLSExtended.__get_entity("get_disease", disease_id) | [
19,
12834,
1067
] |
def METHOD_NAME(
url: str,
root: TypePath,
filename: Optional[TypePath] = None,
md5: Optional[str] = None,
) -> None:
"""Download a file from a url and place it in root.
Args:
url: URL to download file from
root: Directory to place downloaded file in
filename: Name to save the file under.
If ``None``, use the basename of the URL
md5: MD5 checksum of the download. If None, do not check
"""
root = os.path.expanduser(root)
if not filename:
filename = os.path.basename(url)
fpath = os.path.join(root, filename)
os.makedirs(root, exist_ok=True)
# check if file is already present locally
if not check_integrity(fpath, md5):
try:
print('Downloading ' + url + ' to ' + fpath) # noqa: T201
urllib.request.urlretrieve(
url,
fpath,
reporthook=gen_bar_updater(),
)
except (urllib.error.URLError, OSError) as e:
if url[:5] == 'https':
url = url.replace('https:', 'http:')
message = (
'Failed download. Trying https -> http instead. Downloading '
+ url
+ ' to '
+ fpath
)
print(message) # noqa: T201
urllib.request.urlretrieve(
url,
fpath,
reporthook=gen_bar_updater(),
)
else:
raise e
# check integrity of downloaded file
if not check_integrity(fpath, md5):
raise RuntimeError('File not found or corrupted.') | [
136,
274
] |
def METHOD_NAME(self):
submodule = import_module('ziptestdata.subdirectory')
self.assertEqual(
set(resources.contents(submodule)),
{'__init__.py', 'binary.file'}) | [
9,
1599,
192
] |
def METHOD_NAME():
response.headers['Access-Control-Allow-Origin'] = '*'
response.headers['Access-Control-Allow-Headers'] = 'origin, content-type'
response.headers['Content-Type'] = 'application/json'
device = checkrunning(True)
if device:
return {
"status": "OK",
"device": device,
"version": VERSION
}
else:
return {
"status": "NO",
"version": VERSION
} | [
-1
] |
def METHOD_NAME(message, *args, **kwargs):
"""Log a message to specific logger instance."""
logfile = kwargs.pop("logfile", None)
record = logging.LogRecord(None, logging.INFO, None, None, message, args, None, None)
record.asctime = f"{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(record.created))},{record.msecs:03d}"
record.message = record.getMessage()
record.__dict__.update(kwargs)
for key, value in _loggers.items():
if logfile and key == logfile:
value.handle(record)
if logfile is None and key.endswith(".json"):
value.handle(record) | [
2034
] |
def METHOD_NAME(self) -> str:
"""
The provider-assigned unique ID for this managed resource.
"""
return pulumi.get(self, "id") | [
147
] |
def METHOD_NAME(
package: Package,
resource: Resource,
encoding: str = 'utf-8',
errors: str = 'strict',
) -> TextIO:
"""Return a file-like object opened for text reading of the resource."""
return TextIOWrapper(
open_binary(package, resource), encoding=encoding, errors=errors
) | [
1452,
526
] |
def METHOD_NAME(self):
"""
Is the current xml generator gccxml (version 0.7)?
Returns:
bool: is gccxml 0.7 being used?
"""
return self._xml_generator_version == self.__gccxml_07 | [
137,
7540,
4468
] |
def METHOD_NAME() -> List[bool]:
"""Return possible parameter values for the `boolean` parameter type (i.e. [True, False])"""
return [True, False] | [
1176,
201
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.