text
stringlengths
15
7.82k
ids
listlengths
1
7
def METHOD_NAME(args, string): if args.verbose: print(string)
[ 15428, 38 ]
def METHOD_NAME(keep_in_memory, text_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = TextDatasetReader(text_path, cache_dir=cache_dir, keep_in_memory=keep_in_memory).read() _check_text_dataset(dataset, expected_features)
[ 9, 126, 280, 526, 2947, 623, 1645 ]
def METHOD_NAME(ctx: Context, actor: Actor) -> Optional[str]: book_plain = get_slot("cur_book_plain")(ctx, actor) if not book_plain: return None return get_published_year(book_plain)
[ 19, 4884, 842 ]
def METHOD_NAME(self, v): return struct.pack("<I", v)
[ 77, 1715, 2236 ]
def METHOD_NAME( make_organization, make_user, make_alert_receive_channel, make_alert_group, ): organization = make_organization() user_1 = make_user( organization=organization, role=LegacyAccessControlRole.VIEWER, _verified_phone_number="1234567890" ) alert_receive_channel = make_alert_receive_channel(organization=organization) alert_group = make_alert_group(alert_receive_channel=alert_receive_channel) notify_user_task(user_1.pk, alert_group.pk) error_log_record = UserNotificationPolicyLogRecord.objects.last() assert error_log_record.type == UserNotificationPolicyLogRecord.TYPE_PERSONAL_NOTIFICATION_FAILED assert error_log_record.reason == NOTIFICATION_UNAUTHORIZED_MSG assert error_log_record.notification_error_code == UserNotificationPolicyLogRecord.ERROR_NOTIFICATION_FORBIDDEN
[ 9, 959, 21, 168, 217, 1574 ]
def METHOD_NAME(band: tuple): ctx = get_context() assert band == ctx.band return np.random.rand(3, 3)
[ 3938 ]
def METHOD_NAME(deploy_cfn_template, aws_client): secret_name = f"secret-{short_uid()}" stack = deploy_cfn_template(template=TEST_TEMPLATE_11, parameters={"SecretName": secret_name}) rs = aws_client.secretsmanager.describe_secret(SecretId=secret_name) assert rs["Name"] == secret_name assert "DeletedDate" not in rs aws_client.cloudformation.delete_stack(StackName=stack.stack_name) assert wait_until( lambda: aws_client.cloudformation.describe_stacks(StackName=stack.stack_id)["Stacks"][0][ "StackStatus" ] == "DELETE_COMPLETE" ) rs = aws_client.secretsmanager.describe_secret(SecretId=secret_name) assert "DeletedDate" in rs
[ 9, 6397, 276, 11255, 444 ]
def METHOD_NAME(integration_check, pg_instance): """ If no relation metrics are being collected, autodiscovery should not run. """ pg_instance["database_autodiscovery"] = DISCOVERY_CONFIG pg_instance['relations'] = [] del pg_instance['dbname'] check = integration_check(pg_instance) run_one_check(check, pg_instance) assert check.autodiscovery is None
[ 9, 15055, 1015, 1295 ]
def METHOD_NAME(T, m, dask_cluster): with Client(dask_cluster) as dask_client: for width in range(T.shape[0]): for i in range(T.shape[0] - width): include = np.asarray(range(i, i + width + 1)) excl_zone = int(np.ceil(m / 4)) ref_P, ref_I = naive.maamp(T, m, excl_zone, include) comp_P, comp_I = maamped(dask_client, T, m, include) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I)
[ 9, 11758, 1872 ]
def METHOD_NAME(sa): df = pd.DataFrame({"col": [True, False]}) validator = build_sa_validator_with_data( df=df, sa_engine_name="sqlite", table_name="expect_column_values_to_be_in_type_list_dialect_pyathena_boolean_1", ) # Monkey-patch dialect for testing purposes. validator.execution_engine.dialect_module = aws.sqlalchemy_athena result = validator.expect_column_values_to_be_in_type_list( "col", type_list=["string", "boolean"] ) assert result == ExpectationValidationResult( success=True, expectation_config={ "expectation_type": "expect_column_values_to_be_in_type_list", "kwargs": { "column": "col", "type_list": ["string", "boolean"], }, "meta": {}, }, result={ "element_count": 2, "unexpected_count": 0, "unexpected_percent": 0.0, "partial_unexpected_list": [], "missing_count": 0, "missing_percent": 0.0, "unexpected_percent_total": 0.0, "unexpected_percent_nonmissing": 0.0, }, exception_info={ "raised_exception": False, "exception_traceback": None, "exception_message": None, }, meta={}, )
[ 9, 1297, 105, 199, 24, 673, 623 ]
def METHOD_NAME(self, thumbnails_dir): current_time = time.time() for root, _, filenames in os.walk(thumbnails_dir): for filename in filenames: path = os.path.join(root, filename) modification_time = os.path.getmtime(path) if current_time - modification_time > self._days_alive_secs: os.remove(path)
[ 1587, 950 ]
def METHOD_NAME(cur): cmd = "select relname from pg_class where relkind='r' and relname !~ '^(pg_|sql_)';" log.debug("SQL Query: %s", cmd) cur.execute(cmd) result = cur.fetchall() return [x[0] for x in result]
[ 245, 2253 ]
def METHOD_NAME(self): """ Test loading separate module configs """ self.render_config_template( reload_path=self.working_dir + "/configs/*.yml", reload_type="modules", inputs=False, ) os.mkdir(self.working_dir + "/logs/") os.mkdir(self.working_dir + "/configs/") logfile1 = self.working_dir + "/logs/test1.log" logfile2 = self.working_dir + "/logs/test2.log" with open(self.working_dir + "/configs/module1.yml", 'w') as f: f.write(moduleConfigTemplate.format( self.working_dir + "/logs/test1.log")) with open(self.working_dir + "/configs/module2.yml", 'w') as f: f.write(moduleConfigTemplate.format( self.working_dir + "/logs/test2.log")) proc = self.start_beat() with open(logfile1, 'w') as f: f.write("Hello 1\n") self.wait_until(lambda: self.output_lines() == 1) with open(logfile2, 'w') as f: f.write("Hello 2\n") self.wait_until(lambda: self.output_lines() == 2) output = self.read_output() # Reloading stopped. self.wait_until( lambda: self.log_contains("Loading of config files completed."), max_timeout=15) # Make sure the correct lines were picked up assert self.output_lines() == 2 assert output[0]["message"] == "Hello 1" assert output[1]["message"] == "Hello 2" proc.check_kill_and_wait()
[ 9, 557, 736 ]
def METHOD_NAME(): # Compatibility alias. return os.path.abspath(common.GetDrakePath())
[ 19, 6415, 157 ]
def METHOD_NAME(self): optlist, args = getopt.getopt(sys.argv[1:], 'shl:') for key, val in optlist: if key == '-s': self.silent_mode = True elif key == '-l': self.target_logfile = val elif key == '-h': self.help() if self.target_logfile is None: self.help()
[ 250, 134 ]
def METHOD_NAME(cls, course): """ Returns the grading policy hash for the given course. """ ordered_policy = json.dumps( course.grading_policy, separators=(',', ':'), # Remove spaces from separators for more compact representation sort_keys=True, ) return b64encode(sha1(ordered_policy.encode('utf-8')).digest()).decode('utf-8')
[ 5840, 54, 1161 ]
def METHOD_NAME(item, selfref=ref(self)): self = selfref() if self is not None: if self._iterating: self._pending_removals.append(item) else: self.data.discard(item)
[ 188 ]
def METHOD_NAME(result_part: list, tmpdir: Optional[str] = None ) -> Optional[list]: """Collect results on cpu mode. Saves the results on different gpus to 'tmpdir' and collects them by the rank 0 worker. Args: result_part (list): The part of prediction results. tmpdir (str): Path of directory to save the temporary results from different gpus under cpu mode. If is None, use `tempfile.mkdtemp()` to make a temporary path. Defaults to None. Returns: list or None: The collected results. """ rank, world_size = get_dist_info() if world_size == 1: return result_part # create a tmp dir if it is not specified if tmpdir is None: MAX_LEN = 512 # 32 is whitespace dir_tensor = torch.full((MAX_LEN, ), 32, dtype=torch.uint8) if rank == 0: mkdir_or_exist('.dist_test') tmpdir = tempfile.mkdtemp(dir='.dist_test') tmpdir = torch.tensor( bytearray(tmpdir.encode()), dtype=torch.uint8) dir_tensor[:len(tmpdir)] = tmpdir broadcast(dir_tensor, 0) tmpdir = dir_tensor.numpy().tobytes().decode().rstrip() else: mkdir_or_exist(tmpdir) # dump the part result to the dir with open(osp.join(tmpdir, f'part_{rank}.pkl'), 'wb') as f: # type: ignore pickle.dump(result_part, f, protocol=2) barrier() # collect all parts if rank != 0: return None else: # load results of all parts from tmp dir part_list = [] for i in range(world_size): path = osp.join(tmpdir, f'part_{i}.pkl') # type: ignore with open(path, 'rb') as f: part_list.extend(pickle.load(f)) shutil.rmtree(tmpdir) return part_list
[ 1444, 1151, 51, 2265 ]
f METHOD_NAME(self):
[ 0, 1 ]
def METHOD_NAME(x, axis): return op("squeeze", [x, axis]).as_tensor()
[ 3822 ]
def METHOD_NAME(request, record_schema) -> ConfiguredAirbyteCatalog: record_schema = request.param if hasattr(request, "param") else record_schema stream = ConfiguredAirbyteStream( stream=AirbyteStream(name="my_stream", json_schema=record_schema, supported_sync_modes=[SyncMode.full_refresh]), sync_mode=SyncMode.full_refresh, destination_sync_mode=DestinationSyncMode.append, ) return ConfiguredAirbyteCatalog(streams=[stream])
[ 2824, 1964 ]
def METHOD_NAME(gradle_file_with_dependencies): gradle_file, expected_regular_dependencies, expected_test_dependencies = gradle_file_with_dependencies regular_dependencies, test_dependencies = utils.parse_dependencies(gradle_file) assert len(regular_dependencies) == len(expected_regular_dependencies) assert all([regular_dependency in expected_regular_dependencies for regular_dependency in regular_dependencies]) assert len(test_dependencies) == len(expected_test_dependencies) assert all([test_dependency in expected_test_dependencies for test_dependency in test_dependencies])
[ 9, 214, 2410 ]
def METHOD_NAME(self): fileNames, _ = QFileDialog.getOpenFileNames(self, "Open File(s)") if fileNames: self.tabManager.setCurrentWidget(self.replayWindow) for fileName in fileNames: self.replayWindow.openFile(fileName)
[ 69, 1452, 171 ]
def METHOD_NAME(self, neighborsToCut = "const FieldList<%(Dimension)s, std::vector<std::vector<int>>>&"): """Remove connectivity between neighbors.
[ 188, 1939 ]
def METHOD_NAME(now): docs = [{"lu": now, "k": k, "v": "old", "state": "failed"} for k in range(3)] docs.extend([{"lu": now, "k": k, "v": "old", "state": "failed"} for k in range(18, 20)]) return docs
[ 3368, 1423, 2228, 672 ]
async def METHOD_NAME(self) -> None: if not OPENCV_AVAILABLE: logger.error( "Can't use red eye removal filter if OpenCV and NumPy are not available." ) return faces = [ face for face in self.context.request.focal_points if face.origin == "Face Detection" ] if not faces: return mode, data = self.engine.image_data_as_rgb() mode = mode.lower() size = self.engine.size image = np.ndarray( shape=(size[1], size[0], 4 if mode == "rgba" else 3), dtype="|u1", buffer=data, ).copy() for face in faces: face_x = int(face.x - face.width / 2) face_y = int(face.y - face.height / 2) face_image = image[ face_y : face_y + face.height, face_x : face_x + face.width ] eye_rects = self.cascade.detectMultiScale( face_image, scaleFactor=HAAR_SCALE, minNeighbors=MIN_NEIGHBORS, minSize=MIN_SIZE, ) for pos_x, pos_y, width, height in eye_rects: # Crop the eye region eye_image = face_image[ pos_y : pos_y + height, pos_x : pos_x + width ] # split the images into 3 channels red, green, blue = cv2.split(eye_image) # Add blue and green channels blue_green = cv2.add(blue, green) mean = blue_green // 2 # threshold the mask based on red color and combination of blue and green color mask = ((red > RED_THRESHOLD * mean) & (red > 60)).astype( np.uint8 ) * 255 # Some extra region may also get detected , we find the largest region # find all contours contours_return = cv2.findContours( mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE ) # It return contours and Hierarchy if len(contours_return) == 2: contours, _ = contours_return else: _, contours, _ = contours_return # find contour with max area max_area = 0 max_cont = None for cont in contours: area = cv2.contourArea(cont) if area > max_area: max_area = area max_cont = cont if max_cont is None: continue mask = mask * 0 # Reset the mask image to complete black image # draw the biggest contour on mask cv2.drawContours(mask, [max_cont], 0, (255), -1) # Close the holes to make a smooth region mask = cv2.morphologyEx( mask, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_DILATE, (5, 5)), ) mask = cv2.dilate(mask, (3, 3), iterations=3) # The information of only red color is lost, # So we fill the mean of blue and green color in all # three channels(BGR) to maintain the texture # Fill this black mean value to masked image mean = cv2.bitwise_and(mean, mask) # mask the mean image mean = cv2.cvtColor( mean, cv2.COLOR_GRAY2RGB ) # convert mean to 3 channel mask = cv2.cvtColor( mask, cv2.COLOR_GRAY2RGB ) # convert mask to 3 channel eye = ( cv2.bitwise_and(~mask, eye_image) + mean ) # Copy the mean color to masked region to color image face_image[pos_y : pos_y + height, pos_x : pos_x + width] = eye self.engine.set_image_data(image.tobytes())
[ 4420, 4421 ]
def METHOD_NAME(self): return os.path.join("lib", "cmake", f"conan-official-{self.name}-targets.cmake")
[ 298, 171, 2071, 157 ]
def METHOD_NAME(): data = {"key_1": "v1", "key_2": "v2", "key_3": "v3"} form = ".{}:{}" keys, serialized_data = serialize_dict(data, form) assert Counter(keys) == Counter(data.keys()) data_parts = serialized_data.split(".")[1:] for index, part in enumerate(data_parts): key, value = part.split(":") assert key == keys[index] assert value == data[key]
[ 9, 183 ]
def METHOD_NAME(self): context = command_context.JobRunContext(self.filler) todays_date = datetime.date.today().strftime("%Y-%m-%d") assert_equal(context["shortdate"], todays_date)
[ 9, 5991, 41, 202, 22, 5181 ]
def METHOD_NAME() -> List[str]: return ["namesilo.com"]
[ 19, 5356 ]
METHOD_NAME(self, *names: str, user=None, shared=None) -> int:
[ 954 ]
def METHOD_NAME(url_root): """ Show documentation about officeRetrieve """ required_query_parameter_list = [ { 'name': 'voter_device_id', 'value': 'string', # boolean, integer, long, string 'description': 'An 88 character unique identifier linked to a voter record on the server', }, { 'name': 'api_key', 'value': 'string (from post, cookie, or get (in that order))', # boolean, integer, long, string 'description': 'The unique key provided to any organization using the WeVoteServer APIs', }, { 'name': 'office_id', 'value': 'integer', # boolean, integer, long, string 'description': 'The unique internal identifier for this office ' '(either office_id OR office_we_vote_id required -- not both. ' 'If it exists, office_id is used instead of office_we_vote_id)', }, { 'name': 'office_we_vote_id', 'value': 'string', # boolean, integer, long, string 'description': 'The unique identifier for this office across all networks ' '(either office_id OR office_we_vote_id required -- not both.) NOTE: In the future we ' 'might support other identifiers used in the industry.', }, ] optional_query_parameter_list = [ ] potential_status_codes_list = [ { 'code': 'VALID_VOTER_DEVICE_ID_MISSING', 'description': 'Cannot proceed. A valid voter_device_id parameter was not included.', }, { 'code': 'VALID_VOTER_ID_MISSING', 'description': 'Cannot proceed. A valid voter_id was not found.', }, ] try_now_link_variables_dict = { 'office_we_vote_id': 'wv01off922', } api_response = '{\n' \ ' "status": string,\n' \ ' "success": boolean,\n' \ ' "ballot_item_display_name": string,\n' \ ' "ballotpedia_id": string,\n' \ ' "ballotpedia_office_id": integer,\n' \ ' "ballotpedia_office_name": string,\n' \ ' "ballotpedia_office_url": string,\n' \ ' "ballotpedia_race_id": integer,\n' \ ' "ballotpedia_race_office_level": string,\n' \ ' "district_name": string,\n' \ ' "google_civic_election_id": integer,\n' \ ' "id": integer,\n' \ ' "kind_of_ballot_item": string (CANDIDATE, MEASURE),\n' \ ' "last_updated": string (time in this format %Y-%m-%d %H:%M:%S),\n' \ ' "maplight_id": string,\n' \ ' "number_voting_for": integer,\n' \ ' "number_elected": integer,\n' \ ' "ocd_division_id": string,\n' \ ' "primary_party": string,\n' \ ' "race_office_level": string,\n' \ ' "state_code": string,\n' \ ' "we_vote_id": string,\n' \ ' "wikipedia_id": string,\n' \ '}' template_values = { 'api_name': 'officeRetrieve', 'api_slug': 'officeRetrieve', 'api_introduction': "Retrieve detailed information about one office.", 'try_now_link': 'apis_v1:officeRetrieveView', 'try_now_link_variables_dict': try_now_link_variables_dict, 'url_root': url_root, 'get_or_post': 'GET', 'required_query_parameter_list': required_query_parameter_list, 'optional_query_parameter_list': optional_query_parameter_list, 'api_response': api_response, 'api_response_notes': "", 'potential_status_codes_list': potential_status_codes_list, } return template_values
[ 1902, 404, 366, 671, 199 ]
def METHOD_NAME(self, mock_glob): """ Ensure that if we don't have any go sources the build system is not suitable """ mock_glob.return_value = [] self.assertEqual(self.buildsystem.probe("src"), 0)
[ 9, 2570, 654, 1515, 505 ]
def METHOD_NAME(response): return HelperClient.is_response_contain(response, text="Эта страница доступна только участникам Клуба")
[ 137, 1089, 4496 ]
def METHOD_NAME(s: BinaryIO, tag: Tag, isConstruct: bool) -> int: """ Unpack contextual tag and return the tag length. :param s: stream :param tag: BER tag :param isConstruct: True if a construct is expected """ byte = Uint8.unpack(s.read(1)) if byte != ((Class.BER_CLASS_CTXT | berPC(isConstruct)) | (Tag.BER_TAG_MASK & tag)): raise ValueError("Unexpected contextual tag") return readLength(s)
[ 203, 17191, 82 ]
def METHOD_NAME(ansible_module): """ :Title: Run tps-activity-find help :Description: Run tps-activity-find help :Requirement: TPS Server CLI Tests :Setup: Use subsystems setup via ansible playbooks :Steps: Setup Dogtagpki using ansible playbooks :Expectedresults: Dogtagpki should be setup via ansible playbooks :Automated: Yes :CaseComponent: \- """ activity_help_output = ansible_module.command('pki tps-activity-find --help') for result in activity_help_output.values(): assert "--help Show help options" in result['stdout'] assert "--size <size> Page size" in result['stdout'] assert "--start <start> Page start" in result['stdout']
[ 9, 14825, 416, 40 ]
async def METHOD_NAME(self, store_id: bytes32) -> Dict[str, Any]: response = await self.fetch("get_local_root", {"id": store_id.hex()}) return response
[ 19, 125, 1563 ]
def METHOD_NAME(): """ JavaScript specific to gizmo to be placed in the {% block scripts %} block """ return ("tethys_gizmos/js/select_input.js",)
[ 19, 16825, 3382 ]
def METHOD_NAME(self, timestamp: Timestamp) -> bool: now = timestamp.total_wct.seconds if now - self.last_check >= self.window_size: self.last_check = now return True return False
[ 250 ]
def METHOD_NAME(self, comm, dtype): """ Setup mesh and tacs assembler for problem we will be testing. """ # Overwrite default check values if dtype == complex: self.rtol = 5e-8 self.dh = 1e-50 else: self.rtol = 1e-1 self.dh = 1e-7 # Only check for relative tolerance self.atol = 1e99 # Create the stiffness object props = constitutive.MaterialProperties(rho=2570.0, E=70e9, nu=0.3, ys=350e6) stiff = constitutive.IsoShellConstitutive(props, t=0.1, tNum=0) # Set up the element transform ref_axis = np.array([0.0, 1.0, 1.0], dtype=dtype) transform = elements.ShellRefAxisTransform(ref_axis) elem = elements.Tri3Shell(transform, stiff) # Allocate the TACSCreator object vars_per_node = elem.getVarsPerNode() creator = TACS.Creator(comm, vars_per_node) if comm.rank == 0: num_elems = 2 * nx * ny num_nodes = (nx + 1) * (ny + 1) # discretize plate x = np.linspace(0, Lx, nx + 1, dtype) y = np.linspace(0, Ly, ny + 1, dtype) xyz = np.zeros([nx + 1, ny + 1, 3], dtype) xyz[:, :, 0], xyz[:, :, 1] = np.meshgrid(x, y, indexing="ij") node_ids = np.arange(num_nodes).reshape(nx + 1, ny + 1) # Set connectivity for each element conn = [] for i in range(nx): for j in range(ny): conn.append( [node_ids[i, j], node_ids[i + 1, j], node_ids[i + 1, j + 1]] ) conn.append( [node_ids[i + 1, j + 1], node_ids[i, j + 1], node_ids[i, j]] ) conn = np.array(conn, dtype=np.intc).flatten() ptr = np.arange(0, 3 * num_elems + 1, 3, dtype=np.intc) comp_ids = np.zeros(num_elems, dtype=np.intc) creator.setGlobalConnectivity(num_nodes, ptr, conn, comp_ids) # Set up the boundary conditions (fixed at left hand edge) bcnodes = np.array(node_ids[0, :], dtype=np.intc) creator.setBoundaryConditions(bcnodes) # Set the node locations creator.setNodes(xyz.flatten()) # Set the elements for each (only one) component element_list = [elem] creator.setElements(element_list) # Create the tacs assembler object assembler = creator.createTACS() # Get number of elements on this processor local_num_elems = assembler.getNumElements() # Create object to hold pressures aux_elems = TACS.AuxElements() # Add gravity load to all elements grav = elem.createElementInertialForce(g) for elem_id in range(local_num_elems): aux_elems.addElement(elem_id, grav) # Set tractions in assembler assembler.setAuxElements(aux_elems) return assembler
[ 102, 9096 ]
def METHOD_NAME(self, service_name, username): return self.items[service_name][username]
[ 19, 2897 ]
def METHOD_NAME(self, o, expr, multiindex): o = self.reuse_if_untouched(o, expr, multiindex) self.nodetype[o] = self.nodetype[expr] return o
[ 3460 ]
def METHOD_NAME(module, name, code): """Unregister an extension code. For testing only.""" key = (module, name) if (_extension_registry.get(key) != code or _inverted_registry.get(code) != key): raise ValueError("key %s is not registered with code %s" % (key, code)) del _extension_registry[key] del _inverted_registry[code] if code in _extension_cache: del _extension_cache[code]
[ 188, 2916 ]
def METHOD_NAME(self, system_frame): m = system_frame add_costing(m) m.fs.costing.initialize() results = solve(m) assert_optimal_termination(results) # check costing assert value(m.fs.costing.LCOT) == pytest.approx(3.224725, rel=1e-3) assert value(m.fs.costing.LCOW) == pytest.approx(3.224725, rel=1e-3)
[ 9, 1431 ]
def METHOD_NAME(self): spec, subprocesses = self.load_collaboration('collaboration.bpmn', 'my_collaboration') # Only executable processes should be started self.assertIn('process_buddy', subprocesses) self.assertNotIn('random_person_process', subprocesses) self.workflow = BpmnWorkflow(spec, subprocesses) start = self.workflow.get_tasks_from_spec_name('Start')[0] # Set up some data to be evaluated so that the workflow can proceed start.data['lover_name'] = 'Peggy' self.workflow.do_engine_steps() # Call activities should be created for executable processes and be reachable buddy = self.workflow.get_tasks_from_spec_name('process_buddy')[0] self.assertIsInstance(buddy.task_spec, CallActivity) self.assertEqual(buddy.task_spec.spec, 'process_buddy') self.assertEqual(buddy.state, TaskState.WAITING)
[ 9, 11284 ]
def METHOD_NAME(self, request: HttpRequest, **kwargs: Any) -> HttpResponse: """Runs the network request through the client's chained policies. >>> from azure.core.rest import HttpRequest >>> request = HttpRequest("GET", "https://www.example.org/") <HttpRequest [GET], url: 'https://www.example.org/'> >>> response = client._send_request(request) <HttpResponse: 200 OK> For more information on this code flow, see https://aka.ms/azsdk/dpcodegen/python/send_request :param request: The network request you want to make. Required. :type request: ~azure.core.rest.HttpRequest :keyword bool stream: Whether the response payload will be streamed. Defaults to False. :return: The response of your network call. Does not do error handling on your response. :rtype: ~azure.core.rest.HttpResponse """ request_copy = deepcopy(request) request_copy.url = self._client.format_url(request_copy.url) return self._client.send_request(request_copy, **kwargs)
[ 353, 377 ]
async def METHOD_NAME(self, ctx): """Manage mee6 conversions."""
[ -1 ]
def METHOD_NAME(self): bootstrap = Bootstrap(ztps_default_config=True) config = random_string() url = "http://{}/{}".format(bootstrap.server, config) bootstrap.ztps.set_definition_response( actions=[{"action": "test_action", "attributes": {"url": url}}] ) bootstrap.ztps.set_action_response("test_action", get_action("replace_config")) contents = random_string() bootstrap.ztps.set_file_response(config, contents) bootstrap.start_test() try: self.assertTrue(os.path.isfile(bootstrap.startup_config)) self.assertTrue(contents.split() == file_log(bootstrap.startup_config)) self.assertTrue(bootstrap.success()) except AssertionError as assertion: print("Output: {}".format(bootstrap.output)) print("Error: {}".format(bootstrap.error)) raise_exception(assertion) finally: bootstrap.end_test()
[ 9, 274, 1434 ]
def METHOD_NAME(self): """Take the parsed stats from the sargasso report and add them to the basic stats table at the top of the report""" headers = OrderedDict() headers["sargasso_percent_assigned"] = { "title": "% Assigned", "description": "Sargasso % Assigned reads", "max": 100, "min": 0, "suffix": "%", "scale": "RdYlGn", } headers["Assigned-Reads"] = { "title": "{} Assigned".format(config.read_count_prefix), "description": "Sargasso Assigned reads ({})".format(config.read_count_desc), "min": 0, "scale": "PuBu", "modify": lambda x: float(x) * config.read_count_multiplier, "shared_key": "read_count", } self.general_stats_addcols(self.sargasso_data, headers)
[ 11511, 577, 410 ]
def METHOD_NAME(db, collection): del collection['meta'] collection = Collection().save(collection) assert 'meta' not in collection yield collection
[ 2228, 1098 ]
def METHOD_NAME(self): input_dominoes = [(1, 2), (2, 3), (3, 1), (4, 5), (5, 6), (6, 4)] output_chain = can_chain(input_dominoes) self.refute_correct_chain(input_dominoes, output_chain)
[ 9, 2018, 2756, -1, 5359 ]
def METHOD_NAME(s3_seekable_obj, s3_client_stub): s3_client_stub.add_response("head_object", {"ContentLength": 1000}) assert s3_seekable_obj.seek(0, io.SEEK_END) == 1000 assert s3_seekable_obj.tell() == 1000
[ 9, 336, 1798 ]
def METHOD_NAME(self) -> float: if not self._pending_claims: return 0.0 now = time.time() return min([0, *[ready_at - now for ready_at in self._pending_timeouts.values()]])
[ 3223, 24, 243, 1359, 2556, 250 ]
def METHOD_NAME(sock, timeout=None): """Waits for writing to be available on a given socket. Returns True if the socket is readable, or False if the timeout expired. """ return wait_for_socket(sock, write=True, timeout=timeout)
[ 618, 43, 77 ]
def METHOD_NAME(self, command: Command) -> None: """Sets the id for the pipette""" self._pipette_id.update(self._mount_strings(command))
[ 0, 5302, 147 ]
def METHOD_NAME(param_kwargs): """Remove 'data' and 'cmd' keys, if present.""" arguments = param_kwargs arguments.pop("data", None) arguments.pop("cmd", None) return arguments
[ 1702, 1475 ]
def METHOD_NAME(self) -> _TypeCode: ...
[ -1 ]
def METHOD_NAME(self, feat): """Encode feature in `beam_search` (optional). Args: x (numpy.ndarray): input feature (T, D) Returns: paddle.Tensor: encoded feature (T, D) """ raise NotImplementedError("encode method is not implemented")
[ 421 ]
def METHOD_NAME(self): self.pre_operations() self.AvailableEndpointServicesList(ctx=self.ctx)() self.post_operations()
[ 750, 710 ]
def METHOD_NAME(items): ret = {} for item in items: ret.update(eval(item)) return ret
[ 411, 553 ]
def METHOD_NAME(self): fields_string = api.portal.get_registry_record( 'plone.request_access_form_accepted_fields', default='', ) fields = [ field.strip() for field in fields_string.splitlines() if len(field.strip()) > 0 ] if len(fields) == 0: return self.default_fields return fields
[ 3242, 342 ]
def METHOD_NAME(signum: int, frame: typing.Optional[types.FrameType]) -> None: # The loop may or may not be running, depending on the state of the application when this occurs. # Signals on POSIX only occur on the main thread usually, too, so we need to ensure this is # threadsafe. # We log native thread IDs purely for debugging purposes. if _LOGGER.isEnabledFor(ux.TRACE): _LOGGER.log( ux.TRACE, "interrupt %s occurred on thread %s, process on thread %s will be notified shortly\n" "Stacktrace for developer sanity:\n%s", signum, threading.get_native_id(), loop_thread_id, "".join(traceback.format_stack(frame)), ) loop.call_soon_threadsafe(_raise_interrupt, signum)
[ 1519 ]
def METHOD_NAME(index, character): if not raise_on_unexpected: # not raising, so we dump the buffer into output and append this character output.extend(multibyte_buffer) multibyte_buffer.clear() output.append(character) nonlocal is_in_multibyte is_in_multibyte = False nonlocal multibytes_expected multibytes_expected = 0 else: raise ValueError(f"Expected multibyte continuation at index: {index}")
[ 276, 1068, 365 ]
def METHOD_NAME(self): all_scales = [] for dense_scale, qkv_scale, m4hh_scale, mh4h_scale in \ zip(self.dense_scales, self.qkv_scales, self.mlp4hh_scales, self.mlph4h_scales): all_scales.append(self.merge_layer_scales([qkv_scale, dense_scale, mh4h_scale, m4hh_scale])) return torch.cat(all_scales)
[ 411, 9005 ]
def METHOD_NAME(self): status, out = self._run_command([self.command, 'fetch']) if status != 0: raise RepositoryException("cannot fetch {}: {}".format(self, out))
[ 1047 ]
f METHOD_NAME(self, env_var_value, flag_value, expect_seg_fault):
[ 22, 61, 1162 ]
def METHOD_NAME(self): super().METHOD_NAME() self.data_source = get_sample_data_source() self.data_source.domain = self.domain self.data_source.save() self.report = get_sample_report_config() self.report.config_id = self.data_source.get_id self.report.domain = self.domain self.report.save()
[ 0, 1 ]
def METHOD_NAME(self, uf2block, expected_chip_id): flags = mkuf2.UF2Writer.UF2_FLAG_FAMILYID_PRESENT | mkuf2.UF2Writer.UF2_FLAG_MD5_PRESENT parsed_binaries = [] block_list = [] # collect block numbers here total_blocks = set() # collect total block numbers here for block in UF2BlockReader(uf2block).get(): if block.blockNo == 0: # new file has been detected base_addr = block.targetAddr current_addr = base_addr binary_writer = BinaryWriter(self.generate_binary(0)) self.assertEqual(len(block), mkuf2.UF2Writer.UF2_BLOCK_SIZE) self.assertEqual(block.magicStart0, mkuf2.UF2Writer.UF2_FIRST_MAGIC) self.assertEqual(block.magicStart1, mkuf2.UF2Writer.UF2_SECOND_MAGIC) self.assertEqual(block.flags & flags, flags) self.assertEqual(len(block.data), mkuf2.UF2Writer.UF2_DATA_SIZE) payload = block.data[:block.payloadSize] md5_obj = hashlib.md5(payload) md5_part = block.data[block.payloadSize:block.payloadSize + mkuf2.UF2Writer.UF2_MD5_PART_SIZE] address, length = struct.unpack('<II', md5_part[:-md5_obj.digest_size]) md5sum = md5_part[-md5_obj.digest_size:] self.assertEqual(address, block.targetAddr) self.assertEqual(length, block.payloadSize) self.assertEqual(md5sum, md5_obj.digest()) self.assertEqual(block.familyID, expected_chip_id) self.assertEqual(block.magicEnd, mkuf2.UF2Writer.UF2_FINAL_MAGIC) self.assertEqual(current_addr, block.targetAddr) binary_writer.append(payload) block_list.append(block.blockNo) total_blocks.add(block.numBlocks) if block.blockNo == block.numBlocks - 1: self.assertEqual(block_list, list(range(block.numBlocks))) # we have found all blocks and in the right order self.assertEqual(total_blocks, {block.numBlocks}) # numBlocks are the same in all the blocks del block_list[:] total_blocks.clear() parsed_binaries += [(base_addr, binary_writer.f_name)] current_addr += block.payloadSize return parsed_binaries
[ 356, 37 ]
def METHOD_NAME(self, mock_request, mock_session): session = ncclient.transport.SSHSession(self.device_handler) obj = Unlock(session, self.device_handler, raise_mode=RaiseMode.ALL) obj.request(target="running") node = new_ele("unlock") sub_ele(sub_ele(node, "target"), "running") xml = ElementTree.tostring(node) call = mock_request.call_args_list[0][0][0] call = ElementTree.tostring(call) self.assertEqual(call, xml)
[ 9, 2671 ]
def METHOD_NAME(self, func): arr = self.run_in_threads(func, n_threads=4) distinct = set(arr) self.assertEqual(len(distinct), 1, distinct)
[ 250, 4955, 10426 ]
def METHOD_NAME(self): raise NotImplementedError()
[ 19, 734, 797 ]
def METHOD_NAME(self): self.login_as(user=self.user) response = self.client.post(self.url, format="json") assert response.status_code == 201 assert ApiToken.objects.get(token=response.data["token"])
[ 9, 129, 466 ]
def METHOD_NAME(v, f, all_tris, epsilon, safe_check): for vertices, polygons in zip(*C([v, f])): yield bvh_tree_from_polygons(vertices, polygons, all_triangles=all_tris, epsilon=epsilon, safe_check=safe_check)
[ -1, 24, -1, 50 ]
def METHOD_NAME(cfg, box_coder): matcher = Matcher( cfg.MODEL.RPN.FG_IOU_THRESHOLD, cfg.MODEL.RPN.BG_IOU_THRESHOLD, allow_low_quality_matches=True, ) fg_bg_sampler = BalancedPositiveNegativeSampler( cfg.MODEL.RPN.BATCH_SIZE_PER_IMAGE, cfg.MODEL.RPN.POSITIVE_FRACTION ) loss_evaluator = RPNLossComputation( matcher, fg_bg_sampler, box_coder, generate_rpn_labels ) return loss_evaluator
[ 93, 4464, 1572, 8539 ]
def METHOD_NAME(f): """Return decorator swallowing the contest name if in multi contest mode. """ @wraps(f) def wrapped_f(self, *args): if self.is_multi_contest(): # Swallow the first argument (the contest name). f(self, *(args[1:])) else: # Otherwise, just forward all arguments. f(self, *args) return wrapped_f
[ 457, 8807 ]
def METHOD_NAME(self): """Test that we can create a fileset aggregation from a folder that contains one file and delete the aggregation through the api""" self.create_composite_resource() new_folder = 'fileset_folder' ResourceFile.create_folder(self.composite_resource, new_folder) # add the the txt file to the resource at the above folder self.add_file_to_resource(file_to_add=self.generic_file, upload_folder=new_folder) # there should be one resource file self.assertEqual(self.composite_resource.files.all().count(), 1) res_file = self.composite_resource.files.first() # file has a folder self.assertEqual(res_file.file_folder, new_folder) # check that the resource file is not part of an aggregation self.assertEqual(res_file.has_logical_file, False) self.assertEqual(FileSetLogicalFile.objects.count(), 0) # set folder to fileset logical file type (aggregation) set_type_url = reverse('set_file_type_public', kwargs={"pk": self.composite_resource.short_id, "file_path": "", "hs_file_type": "FileSet"}) self.client.post(set_type_url, data={"folder_path": new_folder}) res_file = self.composite_resource.files.first() # file has the same folder self.assertEqual(res_file.file_folder, new_folder) self.assertEqual(res_file.logical_file_type_name, self.logical_file_type_name) self.assertEqual(FileSetLogicalFile.objects.count(), 1) # aggregation dataset name should be same as the folder name self.assertEqual(res_file.logical_file.dataset_name, new_folder) delete_agg_url = reverse('delete_aggregation_public', kwargs={"resource_id": self.composite_resource.short_id, "file_path": new_folder, "hs_file_type": "FileSetLogicalFile"}) self.client.delete(delete_agg_url) self.assertEqual(FileSetLogicalFile.objects.count(), 0) self.assertEqual(self.composite_resource.files.all().count(), 0) self.composite_resource.delete()
[ 9, 5081, 129, 34 ]
def METHOD_NAME(self, captchaType, url, siteKey, captchaParams): taskID = None if not captchaParams.get('clientKey'): raise CaptchaParameter( "CapMonster: Missing clientKey parameter." ) self.clientKey = captchaParams.get('clientKey') if captchaParams.get('proxy') and not captchaParams.get('no_proxy'): hostParsed = urlparse(captchaParams.get('proxy', {}).get('https')) if not hostParsed.scheme: raise CaptchaParameter('Cannot parse proxy correctly, bad scheme') if not hostParsed.netloc: raise CaptchaParameter('Cannot parse proxy correctly, bad netloc') ports = { 'http': 80, 'https': 443 } self.proxy = { 'proxyType': hostParsed.scheme, 'proxyAddress': hostParsed.hostname, 'proxyPort': hostParsed.port if hostParsed.port else ports[self.proxy['proxyType']], 'proxyLogin': hostParsed.username, 'proxyPassword': hostParsed.password, } else: self.proxy = None try: taskID = self.requestSolve(captchaType, url, siteKey) return self.requestJob(taskID) except polling2.TimeoutException: try: if taskID: self.reportJob(taskID) except polling2.TimeoutException: raise CaptchaTimeout( "CapMonster: Captcha solve took to long and also failed " f"reporting the task with task id {taskID}." ) raise CaptchaTimeout( "CapMonster: Captcha solve took to long to execute " f"task id {taskID}, aborting." )
[ 19, 2244, 3485 ]
def METHOD_NAME(self, name): if hasattr(self, normalize(name)): raise AssertionError("Attribute '%s' should not be set" % name)
[ 250, 309, 130, 0 ]
def METHOD_NAME(batch: Dict[str, Any], batch_idx: int) -> int: values = batch["values"] batches = batch["batches"] num_values = len(values) num_batch_indexes = len(batches) num_timestamps = len(batch["timestamps"]) if num_values != num_batch_indexes or num_batch_indexes != num_timestamps: pytest.fail( f"mismatched slices: not ({num_values} == {num_batch_indexes} == {num_timestamps})" ) if not any(values): pytest.fail(f"received bad batch, something went wrong: {batch}") if batches[0] != batch_idx: pytest.fail( f"batch did not start at correct batch, {batches[0]} != {batch_idx}: {batch}" ) # Check batches are monotonic with no gaps. if not all(x + 1 == y for x, y in zip(batches, batches[1:])): pytest.fail(f"skips in batches sampled: {batch}") # 10 is just a threshold at which it would be really strange for a batch to be monotonic. if accumulated and len(values) > 10 and all(x < y for x, y in zip(values, values[1:])): pytest.fail( f"per batch accumulated metric was monotonic, which is really fishy: {batch}" ) return int(batches[-1]) + 1
[ 187, 845, 2277 ]
def METHOD_NAME(self): if self._token is None and self.user and self._password: self._token = self.__oidc.token(username=self.user, password=self._password) self._token['time'] = time.time() elif not self._token or not ('expires_in' in self._token and 'time' in self._token): # cannot refresh return elif self._token['expires_in'] < int(time.time()) - self._token['time'] + 10: try: self._token = self.__oidc.refresh_token(self._token['refresh_token']) self._token['time'] = time.time() except Exception: self._token = self.__oidc.token(username=self.user, password=self._password) self._token['time'] = time.time()
[ 19, 1089, 466, 280, 14710 ]
def METHOD_NAME(self, params, headers): """ Update URL parameters with values from self.gke_params. @inherits: :class:`GoogleBaseConnection.pre_connect_hook` """ params, headers = super().METHOD_NAME(params, headers) if self.gke_params: params.update(self.gke_params) return params, headers
[ 709, 707, 1021 ]
def METHOD_NAME(verbose=None): from test import test_cmd test_support.run_doctest(test_cmd, verbose) test_support.run_unittest(TestAlternateInput)
[ 9, 57 ]
def METHOD_NAME(self) -> Optional[str]: """ Kind of resource. """ return pulumi.get(self, "kind")
[ 1253 ]
def METHOD_NAME(features, out_features, out_bp, indice_pairs, indice_pair_num): if features.dtype == torch.float32 or features.dtype == torch.half: return ext_module.METHOD_NAME(features, out_features, out_bp, indice_pairs, indice_pair_num) else: raise NotImplementedError
[ 15336, 7371, 2955 ]
def METHOD_NAME(num_dense_features, example): """Parser function for pre-processed Criteo TSV records.""" label_defaults = [[0.0]] int_defaults = [[0.0] for _ in range(num_dense_features)] categorical_defaults = [['00000000'] for _ in range(len(_VOCAB_SIZES))] record_defaults = label_defaults + int_defaults + categorical_defaults fields = tf.io.decode_csv( example, record_defaults, field_delim='\t', na_value='-1') num_labels = 1 features = {} features['targets'] = tf.reshape(fields[0], (-1,)) int_features = [] for idx in range(num_dense_features): positive_val = tf.nn.relu(fields[idx + num_labels]) int_features.append(tf.math.log(positive_val + 1)) int_features = tf.stack(int_features, axis=1) cat_features = [] for idx in range(len(_VOCAB_SIZES)): field = fields[idx + num_dense_features + num_labels] # We append the column index to the string to make the same id in different # columns unique. cat_features.append( tf.strings.to_hash_bucket_fast(field + str(idx), _VOCAB_SIZES[idx])) cat_features = tf.cast( tf.stack(cat_features, axis=1), dtype=int_features.dtype) features['inputs'] = tf.concat([int_features, cat_features], axis=1) return features
[ 214, 1441, 667 ]
f METHOD_NAME(self):
[ 9, 129, 280, 171, 7909, 41, 1205 ]
f METHOD_NAME(self,inputstr,typefunc):
[ 19, 15605, 44 ]
def METHOD_NAME(self, job): res = {"arch_seq": str(job.config["arch_seq"])} hp_names = self._problem._hp_space._space.get_hyperparameter_names() for hp_name in hp_names: if hp_name == "loss": res["loss"] = job.config["loss"] else: res[hp_name] = job.config["hyperparameters"][hp_name] return res
[ 2973, 219 ]
def METHOD_NAME(self): return str(date.today().year)
[ 19, 235, 339, 1201, 842 ]
def METHOD_NAME(self, path): if os.path.isdir(path): tools.rmdir(path) else: os.remove(path)
[ 188 ]
def METHOD_NAME(self, container, representation): self.update(container, representation)
[ 705 ]
def METHOD_NAME(self, serial_port_to_save): # Can be optionally overridden to save a serial port derived from a udev serial number to a cache self.serial_port = serial_port_to_save # upstream_config.serial_port = serial_port_to_save # upstream_config.save()
[ 73, 4364, 237 ]
def METHOD_NAME(self): backfills = [TEST_BACKFILL_2, TEST_BACKFILL_1] validate_entries_are_sorted(backfills)
[ 9, 109, 1389 ]
def METHOD_NAME(cls) -> bool: """Check if anything is selected at all.""" return bool(cls.__selection)
[ 220, 3115 ]
def METHOD_NAME( placement_verilog_d, concrete_name, nets_d, *, skip_globals=False): hpwl_top_down = calculate_HPWL_from_placement_verilog_d_top_down( placement_verilog_d, concrete_name, nets_d, skip_globals=skip_globals) hpwl_bottom_up = calculate_HPWL_from_placement_verilog_d_bottom_up( placement_verilog_d, concrete_name, skip_globals=skip_globals) if hpwl_top_down != hpwl_bottom_up: logger.warning( f'HPWL calculated in different ways differ: top_down: {hpwl_top_down} bottom_up: {hpwl_bottom_up}') return hpwl_top_down
[ 1593, 13674, 741, 280, 4764, 7149, 227 ]
def METHOD_NAME(self, mock_import_module): self.sat = Sat() self.solver = MagicMock() self.transaction = Mock() self.transaction.newpackages = Mock( return_value=[Mock()] ) self.selection = Mock() self.solver.transaction = Mock( return_value=self.transaction ) self.sat.pool.Solver = Mock( return_value=self.solver ) self.sat.pool.select = Mock( return_value=self.selection ) mock_import_module.assert_called_once_with('solv') self.solv = mock_import_module.return_value self.sat.pool.setarch.assert_called_once_with() self.sat.pool.setarch.reset_mock()
[ 102 ]
def METHOD_NAME(address: str) -> Optional[BTCAddress]: """ Converts a legacy BCH address to CashAddr format. Code is taken from: https://github.com/oskyk/cashaddress/blob/master/cashaddress/convert.py#L46 Returns None if an error occured during conversion. """ try: is_valid = is_valid_bitcoin_cash_address(address) if not is_valid: return None if address.startswith(_PREFIX) is False: address = _PREFIX + ':' + address _, base32string = address.split(':') decoded_string = _b32decode(base32string) converted_bits = bech32.convertbits(decoded_string, 5, 8) if converted_bits is None: return None version = _address_type('cash', converted_bits[0])[0] legacy_version = _address_type('legacy', version)[1] payload = converted_bits[1:-6] return BTCAddress(b58encode_check( _code_list_to_string([legacy_version] + payload), ).decode()) except ValueError: return None
[ 3513, 24, 3116, 85 ]
def METHOD_NAME(self): """The default options for Multiverse USD extraction.""" return { "writeAll": False, "writeTransforms": False, "writeVisibility": False, "writeAttributes": True, "writeMaterials": True, "writeVariants": False, "writeVariantsDefinition": False, "writeActiveState": False, "writeNamespaces": True, "numTimeSamples": 1, "timeSamplesSpan": 0.0 }
[ 235, 1881 ]
f METHOD_NAME(self, smoothing_coefficient, expected_actions):
[ 9, 3647, 1116 ]
def METHOD_NAME(): package1 = Requirement('test-package[ext1]>=1.1.1; extra == "group1"') assert format_requirement_string(package1) == 'Missing test-package[ext1]>=1.1.1; extra == "group1"' package2 = Requirement('test-package>=1.1.1; extra == "group1" or extra == "group2" or extra == "group3"') assert format_requirement_string( package2) == 'Missing test-package>=1.1.1; extra == "group1" or "group2" or "group3"' package3 = Requirement('test-package>=1.1.1') assert format_requirement_string(package3) == 'Missing test-package>=1.1.1'
[ 9, 275, 6577, 144 ]