text
stringlengths 15
7.82k
| ids
sequencelengths 1
7
|
---|---|
def METHOD_NAME(self) -> None:
expected_topic = "student-yqqtag"
expected_message = "**student-yqqtag** commented on the task [Sails unspread it stopped at kearney](https://codein.withgoogle.com/dashboard/task-instances/6296903092273152/)."
self.check_webhook("student_commented_on_task", expected_topic, expected_message) | [
9,
1591,
417,
277
] |
def METHOD_NAME(df, col="abs"):
"""Compute DataFrame with single column, absolute value of rows of df."""
return absq_rows(df, col=col) ** 0.5 | [
4120,
1346
] |
def METHOD_NAME(test, params, env):
r"""
Test for virt-win-reg.
(1).Get parameters from params.
(2).Build the full command of virt-win-reg.
(3).Login vm to get a session.
(4).Prepare for test.
(5).Run virt-win-reg command.
Command virt-win-reg is used to export and merge Windows Registry
entries from a Windows guest. We can do add/remove/modify/query with
it.
Example:
* add:
Make sure there is no value named AddTest in
[HKLM\SYSTEM\ControlSet001\Control\ComputerName\ComputerName]
# cat reg_file.reg
[HKLM\SYSTEM\ControlSet001\Control\ComputerName\ComputerName]
"AddTest" = "VIRTTEST"
# virt-win-reg Guestname/disk --merge reg_file.reg
* remove:
# cat reg_file.reg
[HKLM\SYSTEM\ControlSet001\Control\ComputerName\ComputerName]
"ComputerName" = -
# virt-win-reg Guestname/disk --merge reg_file.reg
* modify:
# cat reg_file.reg
[HKLM\SYSTEM\ControlSet001\Control\ComputerName\ComputerName]
"ComputerName" = "VIRTTEST_v2"
# virt-win-reg Guestname/disk --merge reg_file.reg
* query:
# virt-win-reg domname
'HKLM\SYSTEM\ControlSet001\Control\ComputerName\ComputerName'
ComputerName
(6).Verify the result.
(7).Clean up.
"""
try:
virt_win_reg_exec = path.command("virt-win-reg")
except ValueError:
test.cancel("Not find virt-win-reg command.")
# Get parameters.
vm_name = params.get("main_vm")
vm = env.get_vm(vm_name)
# Get parameters for remote.
remote_yes = (params.get("virt_win_reg_remote", "no") == "yes")
remote_uri = params.get("virt_win_reg_remote_uri", "ENTER.YOUR.REMOTE")
if remote_yes and remote_uri.count("ENTER"):
test.cancel("Remote Test is skipped.")
# Get parameters about reg value.
computer_name = params.get("virt_win_reg_computer_name")
computer_name_v2 = params.get("virt_win_reg_computer_name_v2")
key_path = params.get("virt_win_reg_key_path")
value_name = params.get("virt_win_reg_value_name")
# Get vm_ref.
vm_ref = params.get("virt_win_reg_vm_ref")
if vm_ref == "domname":
vm_ref = vm_name
elif vm_ref == "image_name":
disks = vm.get_disk_devices()
vm_ref = list(disks.values())[0]['source']
# Get information about operations.
operation = params.get("virt_win_reg_operation")
virt_win_reg_cmd = params.get("virt_win_reg_cmd")
prepare_reg_cmd = params.get("prepare_reg_cmd")
verify_reg_cmd = params.get("verify_reg_cmd")
if not (virt_win_reg_cmd and prepare_reg_cmd and verify_reg_cmd):
test.cancel("Missing command for virt_win_reg or"
" cmd in guest to check result.")
# Build a command.
command = virt_win_reg_exec
if remote_yes:
command += " -c %s" % remote_uri
command += " %s" % vm_name
else:
command += " %s" % vm_ref
command += " %s" % virt_win_reg_cmd
reg_file = None
if not operation == "query":
# Prepare a file for virt-win-reg --merge
lines = []
lines.append("[%s]\n" % key_path)
if operation == "add":
lines.append("\"%s\"=\"%s\"" % (value_name, computer_name))
elif operation == "remove":
lines.append("\"%s\"=-" % (value_name))
elif operation == "modify":
lines.append("\"%s\"=\"%s\"" % (value_name, computer_name_v2))
with open(os.path.join(data_dir.get_tmp_dir(), "merge.reg"), "w") as reg_file:
reg_file.writelines(lines)
command += " %s" % reg_file.name
session = vm.wait_for_login()
try:
status, output = session.cmd_status_output(prepare_reg_cmd)
if status:
logging.debug("Preparation is already done.")
vm.destroy()
result = process.METHOD_NAME(command, ignore_status=True, shell=True)
if result.exit_status:
test.fail(result)
output_virt_win_reg = result.stdout_text.strip()
if not vm.is_alive():
vm.start()
session = vm.wait_for_login()
status, output = session.cmd_status_output(verify_reg_cmd)
if operation == "query":
output_in_guest = output.split()[-1].strip()
if not output_in_guest == output_virt_win_reg:
test.fail("Information are not equal from "
"virt_win_reg and from cmd in guest.\n"
"virt_win_reg: %s\n"
"cmd_in_guest: %s" %
(output_virt_win_reg, output_in_guest))
elif operation == "remove":
if not status:
test.fail("Get the value of computer %s in remove"
" test.\nSo it means the virt-win-reg"
"to remove it failed." % output)
elif operation == "modify":
output_in_guest = output.split()[-1].strip()
if not output_in_guest == computer_name_v2:
test.fail("Modify test failed. The value of"
"computer after virt-win-reg is %s."
"But our expected value is %s." %
(output_in_guest, computer_name_v2))
elif operation == "add":
if status:
test.fail("Add test failed. Get the computer_name"
"failed after virt-win-reg command."
"Detail: %s." % output)
finally:
# Clean up.
session.close()
# remove temp file.
if reg_file and os.path.exists(reg_file.name):
os.remove(reg_file.name) | [
22
] |
def METHOD_NAME(self, bk_biz_id, scope_type, combine):
scope = {"business": "bk_alarm_shield_business", "IP": "bk_alarm_shield_IP", "node": "bk_alarm_shield_node"}
scope_value = combine.get(scope[scope_type])
return scope_value | [
19,
913,
99
] |
def METHOD_NAME(self) -> Sequence['outputs.SubResourceResponse']:
"""
The list of virtual networks associated with the DDoS protection plan resource. This list is read-only.
"""
return pulumi.get(self, "virtual_networks") | [
162,
7479
] |
def METHOD_NAME(self):
assert invoke.StreamWatcher is invoke.METHOD_NAME.StreamWatcher
assert invoke.Responder is invoke.METHOD_NAME.Responder
assert invoke.FailingResponder is invoke.METHOD_NAME.FailingResponder | [
2388
] |
def METHOD_NAME(self):
if self._maxsize > 0:
return self.qsize() < self._maxsize
else:
return True | [
-1
] |
def METHOD_NAME(self, epoch: int):
# We sample as many architectures as we need
if epoch < self.population_size:
logger.info("Start sampling architectures to fill the population")
# If there is no scope defined, let's use the search space default one
model = (
torch.nn.Module()
)
model.arch = self.search_space.clone()
model.arch.sample_random_architecture(dataset_api=self.dataset_api)
model.accuracy = model.arch.query(
self.performance_metric, self.dataset, dataset_api=self.dataset_api
)
self.population.append(model)
self._update_history(model)
log_every_n_seconds(
logging.INFO, "Population size {}".format(len(self.population))
)
else:
sample = []
while len(sample) < self.sample_size:
candidate = np.random.choice(list(self.population))
sample.append(candidate)
parent = max(sample, key=lambda x: x.accuracy)
child = (
torch.nn.Module()
)
child.arch = self.search_space.clone()
child.arch.mutate(parent.arch, dataset_api=self.dataset_api)
child.accuracy = child.arch.query(
self.performance_metric, self.dataset, dataset_api=self.dataset_api
)
self.population.append(child)
self._update_history(child) | [
80,
1165
] |
def METHOD_NAME(self, console: "Console") -> Iterator[Callable[[str], None]]:
"""Given a Console, yields a function for writing data to stdout, or a file.
The passed options instance will generally be the `Goal.Options` of an `Outputting` `Goal`.
"""
with self.output_sink(console) as output_sink:
yield lambda msg: output_sink.write(msg) # type: ignore[no-any-return] | [
146
] |
def METHOD_NAME(url, data=None, **kwargs):
r"""Sends a PATCH request.
:param url: URL for the new :class:`Request` object.
:param data: (optional) Dictionary, list of tuples, bytes, or file-like
object to send in the body of the :class:`Request`.
:param json: (optional) json data to send in the body of the :class:`Request`.
:param \*\*kwargs: Optional arguments that ``request`` takes.
:return: :class:`Response <Response>` object
:rtype: requests.Response
"""
return request("patch", url, data=data, **kwargs) | [
1575
] |
def METHOD_NAME():
assert normalize_and_validate([("foo", "bar")]) == [(b"foo", b"bar")]
assert normalize_and_validate([(b"foo", b"bar")]) == [(b"foo", b"bar")]
# no leading/trailing whitespace in names
with pytest.raises(LocalProtocolError):
normalize_and_validate([(b"foo ", "bar")])
with pytest.raises(LocalProtocolError):
normalize_and_validate([(b" foo", "bar")])
# no weird characters in names
with pytest.raises(LocalProtocolError) as excinfo:
normalize_and_validate([(b"foo bar", b"baz")])
assert "foo bar" in str(excinfo.value)
with pytest.raises(LocalProtocolError):
normalize_and_validate([(b"foo\x00bar", b"baz")])
# Not even 8-bit characters:
with pytest.raises(LocalProtocolError):
normalize_and_validate([(b"foo\xffbar", b"baz")])
# And not even the control characters we allow in values:
with pytest.raises(LocalProtocolError):
normalize_and_validate([(b"foo\x01bar", b"baz")])
# no return or NUL characters in values
with pytest.raises(LocalProtocolError) as excinfo:
normalize_and_validate([("foo", "bar\rbaz")])
assert "bar\\rbaz" in str(excinfo.value)
with pytest.raises(LocalProtocolError):
normalize_and_validate([("foo", "bar\nbaz")])
with pytest.raises(LocalProtocolError):
normalize_and_validate([("foo", "bar\x00baz")])
# no leading/trailing whitespace
with pytest.raises(LocalProtocolError):
normalize_and_validate([("foo", "barbaz ")])
with pytest.raises(LocalProtocolError):
normalize_and_validate([("foo", " barbaz")])
with pytest.raises(LocalProtocolError):
normalize_and_validate([("foo", "barbaz\t")])
with pytest.raises(LocalProtocolError):
normalize_and_validate([("foo", "\tbarbaz")])
# content-length
assert normalize_and_validate([("Content-Length", "1")]) == [
(b"content-length", b"1")
]
with pytest.raises(LocalProtocolError):
normalize_and_validate([("Content-Length", "asdf")])
with pytest.raises(LocalProtocolError):
normalize_and_validate([("Content-Length", "1x")])
with pytest.raises(LocalProtocolError):
normalize_and_validate([("Content-Length", "1"), ("Content-Length", "2")])
assert normalize_and_validate(
[("Content-Length", "0"), ("Content-Length", "0")]
) == [(b"content-length", b"0")]
assert normalize_and_validate([("Content-Length", "0 , 0")]) == [
(b"content-length", b"0")
]
with pytest.raises(LocalProtocolError):
normalize_and_validate(
[("Content-Length", "1"), ("Content-Length", "1"), ("Content-Length", "2")]
)
with pytest.raises(LocalProtocolError):
normalize_and_validate([("Content-Length", "1 , 1,2")])
# transfer-encoding
assert normalize_and_validate([("Transfer-Encoding", "chunked")]) == [
(b"transfer-encoding", b"chunked")
]
assert normalize_and_validate([("Transfer-Encoding", "cHuNkEd")]) == [
(b"transfer-encoding", b"chunked")
]
with pytest.raises(LocalProtocolError) as excinfo:
normalize_and_validate([("Transfer-Encoding", "gzip")])
assert excinfo.value.error_status_hint == 501 # Not Implemented
with pytest.raises(LocalProtocolError) as excinfo:
normalize_and_validate(
[("Transfer-Encoding", "chunked"), ("Transfer-Encoding", "gzip")]
)
assert excinfo.value.error_status_hint == 501 # Not Implemented | [
9,
1137,
61,
187
] |
def METHOD_NAME(self):
super(GpSegStart, self).METHOD_NAME() | [
531,
481
] |
def METHOD_NAME(self) -> SupervisorJob:
"""Return current job of the asyncio task.
Must be called from within a job. Raises RuntimeError if there is no current job.
"""
try:
return self.get_job(_CURRENT_JOB.get())
except (LookupError, JobNotFound) as err:
capture_exception(err)
raise RuntimeError("No job for the current asyncio task!") from None | [
1056
] |
def METHOD_NAME():
records = [
{"buildingID": 0, "date": "6/1/13", "temp_diff": 12},
{"buildingID": 1, "date": "6/1/13", "temp_diff": 0},
{"buildingID": 2, "date": "6/1/14", "temp_diff": 11},
{"buildingID": 0, "date": "6/1/15", "temp_diff": 5},
{"buildingID": 1, "date": "6/1/16", "temp_diff": 19},
{"buildingID": 2, "date": "6/1/17", "temp_diff": 32},
]
df = pd.DataFrame(records)
encoding = Encoding()
ipywidget_factory = MagicMock()
ipywidget_factory.get_vbox.return_value = MagicMock(spec=Widget)
EncodingWidget(df, encoding, change_hook, ipywidget_factory, testing=True)
assert (
call(
description="X",
value=None,
options=[
("-", None),
("buildingID", "buildingID"),
("date", "date"),
("temp_diff", "temp_diff"),
],
)
in ipywidget_factory.get_dropdown.mock_calls
)
assert (
call(
description="Y",
value=None,
options=[
("-", None),
("buildingID", "buildingID"),
("date", "date"),
("temp_diff", "temp_diff"),
],
)
in ipywidget_factory.get_dropdown.mock_calls
)
assert (
call(
description="Func.",
value="none",
options=[
("-", "None"),
("Avg", "Avg"),
("Min", "Min"),
("Max", "Max"),
("Sum", "Sum"),
("Count", "Count"),
],
)
in ipywidget_factory.get_dropdown.mock_calls
) | [
9,
2300,
41,
75,
98,
1993,
1471
] |
def METHOD_NAME(api):
'''
test to raise the exception when type of name is not as defined
'''
with pytest.raises(TypeError):
api.target_groups.edit(1, 1) | [
9,
11300,
2004,
156,
3365
] |
def METHOD_NAME(obj, dtype: Union[type, Tuple[type, ...]]):
"""Check if an object has a specific dtype."""
if not isinstance(obj, dtype):
raise ValidationError(f"The dataobject is expected to be one of ({dtype},). But it is a {type(obj)}") | [
638,
137,
1249
] |
def METHOD_NAME(self):
t1 = time.gmtime()
t2 = type(t1)(t1)
self.assertEqual(t1, t2)
self.assertTrue(not (t1 < t2))
self.assertTrue(t1 <= t2)
self.assertTrue(not (t1 > t2))
self.assertTrue(t1 >= t2)
self.assertTrue(not (t1 != t2)) | [
9,
2014
] |
def METHOD_NAME(path, *args, **kwargs):
import torch
state = torch.load(path, map_location="cpu")
for key in list(state.keys()):
v = state.pop(key)
state[key] = v.numpy()
return state | [
557,
3296
] |
def METHOD_NAME(self):
g = bf.zeros_like(self.known_vals, space='cuda')
g[...] = self.known_vals
np.testing.assert_equal(g.copy('system'), self.known_vals)
g[:1,1:] = [[999]]
np.testing.assert_equal(g.copy('system'), np.array([[0,999],[2,3],[4,5]]))
g[0,0] = 888
np.testing.assert_equal(g.copy('system'), np.array([[888,999],[2,3],[4,5]]))
g[0] = [99,88]
np.testing.assert_equal(g.copy('system'), np.array([[99,88],[2,3],[4,5]]))
g[:,1] = [77,66,55]
np.testing.assert_equal(g.copy('system'), np.array([[99,77],[2,66],[4,55]])) | [
9,
5719
] |
METHOD_NAME(self,obj): | [
427,
0,
264,
24,
122
] |
def METHOD_NAME(self):
qs = Incident.objects.order_by("pk")
expected = qs.stateful()
result = IncidentFilter.incident_filter(qs, "stateful", True)
self.assertEqual(list(expected), list(result.order_by("pk"))) | [
9,
3103,
2019
] |
def METHOD_NAME(url: str, **values) -> Response:
if is_safe_url(url):
return redirect(url, **values)
return redirect(url_for("indexPage")) | [
1209,
1736
] |
f METHOD_NAME(self, value, timestamp): | [
1459
] |
def METHOD_NAME(self, obj):
"""For the given value, return its corresponding key."""
for key, val in self.items():
if val is obj:
return key
raise ValueError('The given object could not be found: %r' % obj) | [
59,
43
] |
def METHOD_NAME(files, dim):
paths = sorted(glob(files))
datasets = [xr.open_dataset(p) for p in paths]
combined = xr.concat(datasets, dim)
return combined | [
203,
-1
] |
def METHOD_NAME(remote_command_executor, submit_command, additional_files=None, children_number=0):
logging.debug("Submitting Batch job")
awsbatch_commands = AWSBatchCommands(remote_command_executor)
result = remote_command_executor.run_remote_command(submit_command, additional_files=additional_files)
job_id = awsbatch_commands.assert_job_submitted(result.stdout)
logging.debug("Submitted Batch job id: {0}".format(job_id))
awsbatch_commands.wait_job_completed(job_id)
try:
awsbatch_commands.assert_job_succeeded(job_id, children_number)
except AssertionError:
remote_command_executor.run_remote_command(f"awsbout {job_id}", raise_on_error=False, log_output=True)
raise | [
9,
202,
1978
] |
def METHOD_NAME():
# create Universe objects for tests
new_u = make_Universe(trajectory=True)
return new_u | [
4849,
4850
] |
def METHOD_NAME(self, others, merge_conditions, common_ancestor=None):
if common_ancestor is None:
merged = self.blank_copy()
options = []
for s, v in zip([self] + others, merge_conditions):
options.append(And(*([v] + s.constraints)))
merged.add([Or(*options)])
else:
merged = common_ancestor.branch()
merged.add([Or(*merge_conditions)])
return False, merged | [
411
] |
def METHOD_NAME(self, model: TModel) -> CompressionAlgorithmController:
pass | [
56,
2951
] |
def METHOD_NAME(
primary_client,
benchmark,
load,
incr_load,
num_runs,
clients,
nfs_mount,
benchmark_defination,
):
if SpecStorage(primary_client).run_spec_storage(
benchmark, load, incr_load, num_runs, clients, nfs_mount, benchmark_defination
):
raise OperationFailedError("SPECstorage run failed")
log.info("SPECstorage run completed") | [
22,
1457,
948,
249
] |
def METHOD_NAME(fl_model: FLModel, params_converter: Optional[ParamsConverter] = None) -> Shareable:
"""From FLModel to NVFlare side shareable.
This is a temporary solution to converts FLModel to the shareable of existing style,
so that we can reuse the existing components we have.
In the future, we should be using the to_dxo, from_dxo directly.
And all the components should be changed to accept the standard DXO.
"""
if fl_model.params is None and fl_model.metrics is None:
raise ValueError("FLModel without params and metrics is NOT supported.")
elif fl_model.params is not None:
if fl_model.params_type is None:
raise ValueError(f"Invalid ParamsType: ({fl_model.params_type}).")
data_kind = params_type_to_data_kind.get(fl_model.params_type)
if data_kind is None:
raise ValueError(f"Invalid ParamsType: ({fl_model.params_type}).")
if params_converter is not None:
fl_model.params = params_converter.convert(fl_model.params)
if fl_model.metrics is None:
dxo = DXO(data_kind, data=fl_model.params, meta={})
else:
# if both params and metrics are presented, will be treated as initial evaluation on the global model
dxo = DXO(data_kind, data=fl_model.params, meta={MetaKey.INITIAL_METRICS: fl_model.metrics})
else:
dxo = DXO(DataKind.METRICS, data=fl_model.metrics, meta={})
meta = fl_model.meta if fl_model.meta is not None else {}
dxo.meta.update(meta)
shareable = dxo.METHOD_NAME()
if fl_model.current_round is not None:
shareable.set_header(AppConstants.CURRENT_ROUND, fl_model.current_round)
if fl_model.total_rounds is not None:
shareable.set_header(AppConstants.NUM_ROUNDS, fl_model.total_rounds)
if MetaKey.VALIDATE_TYPE in meta:
shareable.set_header(AppConstants.VALIDATE_TYPE, meta[MetaKey.VALIDATE_TYPE])
return shareable | [
24,
2881
] |
async def METHOD_NAME(self):
network = NetworkFactory(ip="192.168.0.0/24")
await network.remove()
with pytest.raises(TransitionNotAllowed, match=".*Can't stop when in removed.*"):
await network.remove() | [
9,
188,
1646,
674
] |
f METHOD_NAME(self): | [
9,
2216,
803,
656
] |
def METHOD_NAME(self):
with open(os.path.join(self.basepath_tmp, self.CFG_PREFIX),
'r') as f:
return json.load(f)[self.CFG_SACKS] | [
19,
948,
9441
] |
async def METHOD_NAME(self, device_name: str, name: str, resource_group_name: str, **kwargs: Any) -> _models.Job:
"""Gets the details of a specified job on a Data Box Edge/Data Box Gateway device.
Gets the details of a specified job on a Data Box Edge/Data Box Gateway device.
:param device_name: The device name. Required.
:type device_name: str
:param name: The job name. Required.
:type name: str
:param resource_group_name: The resource group name. Required.
:type resource_group_name: str
:keyword callable cls: A custom type or function that will be passed the direct response
:return: Job or the result of cls(response)
:rtype: ~azure.mgmt.databoxedge.v2022_03_01.models.Job
:raises ~azure.core.exceptions.HttpResponseError:
"""
error_map = {
401: ClientAuthenticationError,
404: ResourceNotFoundError,
409: ResourceExistsError,
304: ResourceNotModifiedError,
}
error_map.update(kwargs.pop("error_map", {}) or {})
_headers = kwargs.pop("headers", {}) or {}
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
api_version: Literal["2022-03-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-03-01"))
cls: ClsType[_models.Job] = kwargs.pop("cls", None)
request = build_get_request(
device_name=device_name,
name=name,
resource_group_name=resource_group_name,
subscription_id=self._config.subscription_id,
api_version=api_version,
template_url=self.METHOD_NAME.metadata["url"],
headers=_headers,
params=_params,
)
request = _convert_request(request)
request.url = self._client.format_url(request.url)
pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
request, stream=False, **kwargs
)
response = pipeline_response.http_response
if response.status_code not in [200]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
raise HttpResponseError(response=response, error_format=ARMErrorFormat)
deserialized = self._deserialize("Job", pipeline_response)
if cls:
return cls(pipeline_response, deserialized, {})
return deserialized | [
19
] |
def METHOD_NAME(self) -> int:
from poetry.factory import Factory
from poetry.pyproject.toml import PyProjectTOML
# Load poetry config and display errors, if any
poetry_file = self.poetry.file.path
config = PyProjectTOML(poetry_file).poetry_config
check_result = Factory.validate(config, strict=True)
# Validate trove classifiers
project_classifiers = set(config.get("classifiers", []))
errors, warnings = self._validate_classifiers(project_classifiers)
check_result["errors"].extend(errors)
check_result["warnings"].extend(warnings)
# Validate readme (files must exist)
if "readme" in config:
errors = self._validate_readme(config["readme"], poetry_file)
check_result["errors"].extend(errors)
# Verify that lock file is consistent
if self.option("lock") and not self.poetry.locker.is_locked():
check_result["errors"] += ["poetry.lock was not found."]
if self.poetry.locker.is_locked() and not self.poetry.locker.is_fresh():
check_result["errors"] += [
"poetry.lock is not consistent with pyproject.toml. Run `poetry"
" lock [--no-update]` to fix it."
]
if not check_result["errors"] and not check_result["warnings"]:
self.info("All set!")
return 0
for error in check_result["errors"]:
self.line_error(f"<error>Error: {error}</error>")
for error in check_result["warnings"]:
self.line_error(f"<warning>Warning: {error}</warning>")
return 1 | [
276
] |
def METHOD_NAME(self):
self.label1.setText("Parameters for TikTorch configuration:") | [
15,
1174
] |
def METHOD_NAME(self):
log_file = os.path.join(
self.out_dir, "impl", self.project_name + "_impl.par"
)
with open(log_file, 'r') as file:
for line in file:
line = line.strip()
if "Peak Memory Usage:" in line:
self.maximum_memory_use = line.split()[3]
return | [
238,
3624,
1645,
1080
] |
async def METHOD_NAME(spawn_client, fake2, snapshot, role, mongo):
client = await spawn_client(authorize=True, administrator=True)
user = await fake2.users.create()
resp = await client.put(f"/admin/users/{user.id}/role", {"role": role})
assert resp.status == 200
if role == AdministratorRole.FULL:
assert await get_one_field(mongo.users, "administrator", user.id) is True
assert await resp.json() == snapshot | [
9,
86,
2870,
1018
] |
def METHOD_NAME(predictions, gts, raw_df_lst, capacity,
output_len):
"""
Desc:
Some common metrics for regression problems
Args:
predictions:
gts: ground truth vector
raw_df_lst:
settings:
Returns:
A tuple of metrics
"""
all_mae, all_rmse = [], []
for i in range(capacity):
prediction = predictions[i]
gt = gts[i]
raw_df = raw_df_lst[i]
_mae, _rmse = turbine_scores(prediction, gt, raw_df, output_len, 1)
all_mae.append(_mae)
all_rmse.append(_rmse)
total_mae = np.array(all_mae).sum()
total_rmse = np.array(all_rmse).sum()
return total_mae, total_rmse | [
1981,
4814,
3295
] |
def METHOD_NAME(self):
data = b"Test data"
with patch("builtins.open", mock_open(read_data=data)):
res = utils.read_file_bytes("any path")
self.assertEqual(data, res) | [
9,
203,
171,
321
] |
def METHOD_NAME():
class TypesZone(Enum):
z1 = "Zone 1"
z2 = "Zone 2"
zone = np.asarray([TypesZone.z1, TypesZone.z2, TypesZone.z2, TypesZone.z1])
assert_near(P.single.owner[zone], [100, 200, 200, 100]) | [
9,
41,
1206
] |
def METHOD_NAME(self, name):
"""Get a single Role by name.
Args:
name (str): The name of the Role.
Returns:
(:obj:`Role`): The Role that matches the name or None.
"""
address = _create_role_address(name)
role_list_bytes = None
try:
role_list_bytes = self._state_view.get(address=address)
except KeyError:
return None
if role_list_bytes is not None:
role_list = _create_from_bytes(role_list_bytes,
identity_pb2.RoleList)
for role in role_list.roles:
if role.name == name:
return role
return None | [
19,
1018
] |
def METHOD_NAME(self, sql):
if sql.lower() == 'begin':
self.begin = True
elif sql.lower() == 'commit':
self.commit = True | [
248,
539
] |
def METHOD_NAME():
with patch("os.path.isfile", return_value=True):
yield | [
220,
6903,
171
] |
def METHOD_NAME(self) -> str:
"""
Description of the pool, if any.
"""
return pulumi.get(self, "description") | [
1067
] |
def METHOD_NAME(process, input):
if input:
try:
process.stdin.write(input)
except BrokenPipeError:
pass # communicate() must ignore broken pipe errors.
except ValueError:
pass # communicate() must ignore broken closed pipes
except OSError as exc:
if exc.errno == errno.EINVAL:
# bpo-19612, bpo-30418: On Windows, stdin.write() fails
# with EINVAL if the child process exited or if the child
# process is still running but closed the pipe.
pass
else:
raise
try:
process.stdin.close()
except BrokenPipeError:
pass # communicate() must ignore broken pipe errors.
except ValueError:
pass # communicate() must ignore broken closed pipes
except OSError as exc:
if exc.errno == errno.EINVAL:
pass
else:
raise | [
2195,
77
] |
def METHOD_NAME(self):
""" Test repetition parser class. """
word = parser.Letters()
whitespace = parser.Whitespace()
p = parser.Repetition(parser.Alternative((word, whitespace)))
# Test with ascii letters
input_output = (
("abc", ["abc"]),
("abc abc", ["abc", " ", "abc"]),
("abc abc\t\t\n cba", ["abc", " ", "abc", "\t\t\n ",
"cba"]),
)
self._test_single(p, input_output)
# Test with non-ascii letters
input_output = (
(u"êùö", [u"êùö"]),
(u"êùö êùö", [u"êùö", u" ", u"êùö"]),
(u"êùö êùö\t\t\n öùê", [
u"êùö", " ", u"êùö", u"\t\t\n ", u"öùê"]),
)
self._test_single(p, input_output) | [
9,
7963
] |
def METHOD_NAME(self):
self.assertIn(RO_CODE, self.tokenizer.all_special_ids)
generated_ids = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
expected_romanian = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
self.assertEqual(result, expected_romanian)
self.assertNotIn(self.tokenizer.eos_token, result) | [
9,
8265,
1345,
1268,
5472,
2938,
1114
] |
def METHOD_NAME(df: pd.DataFrame, npartitions: int = 1) -> dd.DataFrame:
return dd.from_pandas(df, npartitions=npartitions) | [
280,
2842
] |
def METHOD_NAME(client: Any) -> None:
"""Validate client and import weaviate library."""
try:
import weaviate # noqa: F401
from weaviate import Client
client = cast(Client, client)
except ImportError:
raise ImportError(
"Weaviate is not installed. "
"Please install it with `pip install weaviate-client`."
)
cast(Client, client) | [
187,
340
] |
def METHOD_NAME(self):
test_user = get_user_model().objects.first()
"""
If the input object is a ResourceBase, in favorite content type, should be saved he
subtype content type (Doc, Dataset, Map or GeoApp)
"""
create_single_dataset("foo_dataset")
resource = ResourceBase.objects.get(title="foo_dataset")
created_fav = Favorite.objects.create_favorite(resource, test_user)
self.assertEqual("dataset", created_fav.content_type.model)
"""
If the input object is a subtype, should save the relative content type
"""
test_document_1 = Document.objects.first()
self.assertIsNotNone(test_document_1)
Favorite.objects.create_favorite(test_document_1, test_user)
fav = Favorite.objects.last()
ct = ContentType.objects.get_for_model(test_document_1)
self.assertEqual(fav.content_type, ct) | [
9,
1393,
191,
414,
279,
5334,
1283
] |
def METHOD_NAME(self):
node = parser.DataNode(' ')
node.write(self.doc)
self.doc.handle_data.assert_called_once_with(' ')
self.doc.handle_data.reset_mock()
node = parser.DataNode(' ')
node.write(self.doc)
self.doc.handle_data.assert_called_once_with(' ') | [
9,
77,
173
] |
def METHOD_NAME(self,
keyspace: str = "keyspace1",
cf: str = "standard1",
scrub_mode: Optional[str] = None) -> Result:
params = {"keyspace": keyspace, "cf": cf, "scrub_mode": scrub_mode}
return self.storage_service_client.scrub_ks_cf(**params) | [
2117,
2825,
4713
] |
def METHOD_NAME(csv_file_basename, csv_content):
"""
Write the content of a list of list into a CSV file. Example of csv_content:
[
['Header_1', 'Header_2', 'Header_3' ...],
['Value_1', 'Value_2', 'Value_3' ...],
....
]
:param csv_file_basename: base name that should be given to the CSV
:type csv_file_basename: str
:param csv_content : list of list with the content of the future CSV file
:type csv_content : list
"""
csv_file = (
os.getcwd()
+ "/"
+ csv_file_basename
+ "_"
+ str(datetime.date.today())
+ ".csv"
)
with open(csv_file, "w", newline="") as file:
writer = csv.writer(file)
writer.writerows(csv_content) | [
77,
732,
171
] |
def METHOD_NAME(db):
questionset = QuestionSet.objects.first()
validator = QuestionSetUniqueURIValidator()
validator.set_context(QuestionSetSerializer(instance=questionset))
with pytest.raises(RestFameworkValidationError):
validator({
'uri_prefix': questionset.uri_prefix,
'key': questionset.section.questionsets.last().key,
'section': questionset.section
}) | [
9,
2768,
354,
2889,
1386,
86,
168
] |
f METHOD_NAME(self): | [
9,
401,
141
] |
def METHOD_NAME(self) -> None:
"""
L{FileLogObserver} does not write to the given file when it observes
events and C{formatEvent} returns C{""}.
"""
self._test_observeWrites("", 0) | [
9,
6427,
5033,
35
] |
def METHOD_NAME(dictionary):
"""
Return an identical copy of a dictionary
"""
return np.copy(np.array(dictionary)) | [
215,
2445
] |
def METHOD_NAME(self, mocker):
"""
Test with a gzipped file.
"""
prepare_mocker(mocker)
self.run_bot(parameters={'http_url': 'http://localhost/foobar.gz',
'extract_files': True,
'name': 'Example feed',
},
iterations=1)
output = OUTPUT[0].copy()
output['feed.url'] = 'http://localhost/foobar.gz'
del output['extra.file_name']
self.assertMessageEqual(0, output) | [
9,
6937
] |
def METHOD_NAME(graph, quant_groups):
return graph_utils.group_up(graph, quant_groups, NNDCT_OP.SQUEEZE) | [
1587,
2151,
3822
] |
def METHOD_NAME(*args):
return "test_single_exp" | [
668,
156
] |
def METHOD_NAME(self):
request = gateway.mapper.create_tracking_request(self.TrackingRequest)
self.assertEqual(request.serialize(), TrackingRequestJSON) | [
9,
129,
1151,
377
] |
def METHOD_NAME(self):
return UsersUser.objects.filter(id=self.lastedit_user_id).first() | [
-1,
21
] |
def METHOD_NAME(self, spawn, find_binary, tmp_path):
syncer = git.git_syncer(str(tmp_path), "git://blah.git")
syncer.sync(verbosity=-1)
assert "-q" == spawn.call_args[0][0][-1] | [
9,
4720,
164
] |
def METHOD_NAME(self):
"""
Assert that the Mach number check fires an exception.
"""
max_vel = 1.1 * self.lbf.mach_limit() * AGRID / TAU
vbb = espressomd.lb.VelocityBounceBack([0, 0, max_vel])
error_msg = 'Slip velocity exceeds Mach 0.35'
with self.assertRaisesRegex(ValueError, error_msg):
self.lbf[0, 0, 0].boundary = vbb
self.assertIsNone(self.lbf[0, 0, 0].boundary)
with self.assertRaisesRegex(ValueError, error_msg):
shape = espressomd.shapes.Wall(normal=[1, 0, 0], dist=AGRID)
self.lbf.add_boundary_from_shape(shape, vbb.velocity)
self.assertIsNone(self.lbf[0, 0, 0].boundary) | [
9,
14342,
1467,
250
] |
def METHOD_NAME(shape, yx=[0, 0], th=None):
"""2D array of x values.
Parameters
----------
shape : tuple of int
The shape of the resulting array, (y, x).
yx : tuple of float
Offset the array to align with this y, x center.
th : Quantity, optional
Place the x-axis along this position angle, measured
counterclockwise from the original x-axis.
Returns
-------
x : ndarray
An array of x values.
Examples
--------
>>> from sbpy.imageanalysis.utils import xarray
>>> x = xarray((10, 10))
>>> x[0, 3]
3
"""
import numpy as np
import astropy.units as u
y, x = np.indices(shape)[-2:]
y = y - yx[0]
x = x - yx[1]
if th is not None:
x = x * np.cos(th.to(u.rad).value) + y * np.sin(th.to(u.rad).value)
return x | [
7724
] |
async def METHOD_NAME(cls, client: GraphQLClient) -> str:
"""Determine whether the GitLab instance has the approved field for merge requests."""
response = await client.execute(MERGE_REQUEST_FIELDS_QUERY)
json = await response.json()
fields = [field["name"] for field in json["data"]["__type"]["fields"]]
return cls.APPROVED_FIELD if cls.APPROVED_FIELD in fields else "" | [
12427,
101
] |
def METHOD_NAME(self):
self.test_open_template(filename=os_helper.FakePath(self.fn)) | [
9,
11771,
157,
171,
1514
] |
def METHOD_NAME(local_filename, var_name):
from pyhdf.SD import SD, SDC
f = SD(local_filename, SDC.READ)
var = f.select(var_name)
data = var[:]
fill = ReflectanceCorrector._read_fill_value_from_hdf4(var, data.dtype)
return np.ma.MaskedArray(data, data == fill) | [
203,
486,
280,
-1,
171,
-1
] |
def METHOD_NAME():
self.gui.lap.unpause() | [
3609,
10412
] |
def METHOD_NAME(plugin, item_id, page, category_url, **kwargs):
"""Build playlists listing"""
resp = urlquick.get(category_url + '?paged=%s' % page)
root = resp.parse()
for playlist in root.iterfind(".//article"):
item = Listitem()
item.label = playlist.find('.//h2').find('a').get('title')
if playlist.find('.//img').get('data-src'):
item.art['thumb'] = item.art['landscape'] = playlist.find('.//img').get('data-src')
else:
item.art['thumb'] = item.art['landscape'] = playlist.find('.//img').get('src')
videos_url = URL_ROOT + playlist.find('.//h2').find('a').get('href')
item.set_callback(list_playlist_videos,
item_id=item_id,
videos_url=videos_url)
item_post_treatment(item)
yield item
# More videos...
yield Listitem.next_page(item_id=item_id,
category_url=category_url,
page=page + 1) | [
245,
9828
] |
def METHOD_NAME():
func = lambda x: x
rob = robjects.default_converter.py2rpy(func)
assert isinstance(rob, robjects.SignatureTranslatedFunction)
assert rob.typeof == rinterface.RTYPES.CLOSXP | [
9,
3782,
3952,
3264,
559
] |
def METHOD_NAME(self) -> GraphTraversalSource:
return self._graph | [
19,
303
] |
def METHOD_NAME():
da = make_binned_data_array(ndim=1)
sc.make_html(da['xx', 1].bins.data) | [
9,
382,
92,
10187,
1997,
365,
877
] |
def METHOD_NAME(csv_config: dict):
tap = SampleTapCountries(config=SAMPLE_TAP_CONFIG, state=None)
target = SampleTargetCSV(config=csv_config)
mapper = StreamTransform(config=COUNTRIES_STREAM_MAPS_CONFIG)
sync_end_to_end(tap, target, mapper) | [
9,
3235,
24,
732,
8568
] |
def METHOD_NAME(self, tb: str, column: sqlalchemy.sql.schema.Column) -> None:
if column.info.get("readonly"):
with tag(tb, "xsd:annotation"):
with tag(tb, "xsd:appinfo"):
with tag(tb, "readonly", {"value": "true"}):
pass | [
669,
1076
] |
def METHOD_NAME(
request,
kube_apis,
ingress_controller_prerequisites,
ingress_controller_endpoint,
ingress_controller,
test_namespace,
) -> TLSSetup:
print("------------------------- Deploy TLS setup -----------------------------------")
test_data_path = f"{TEST_DATA}/tls"
ingress_path = f"{test_data_path}/{request.param}/ingress.yaml"
create_ingress_from_yaml(kube_apis.networking_v1, test_namespace, ingress_path)
wait_before_test(1)
ingress_host = get_first_ingress_host_from_yaml(ingress_path)
secret_name = get_name_from_yaml(f"{test_data_path}/tls-secret.yaml")
ensure_connection_to_public_endpoint(
ingress_controller_endpoint.public_ip, ingress_controller_endpoint.port, ingress_controller_endpoint.port_ssl
)
def fin():
if request.config.getoption("--skip-fixture-teardown") == "no":
print("Clean up TLS setup")
delete_items_from_yaml(kube_apis, ingress_path, test_namespace)
if is_secret_present(kube_apis.v1, secret_name, test_namespace):
delete_secret(kube_apis.v1, secret_name, test_namespace)
request.addfinalizer(fin)
return TLSSetup(
ingress_host,
secret_name,
f"{test_data_path}/tls-secret.yaml",
f"{test_data_path}/new-tls-secret.yaml",
f"{test_data_path}/invalid-tls-secret.yaml",
) | [
1245,
102
] |
def METHOD_NAME(self, response: requests.Response) -> ResponseStatus:
request = response.request
if request not in self._last_request_to_attempt_count:
self._last_request_to_attempt_count = {request: 1}
else:
self._last_request_to_attempt_count[request] += 1
for response_filter in self.response_filters:
matched_status = response_filter.matches(
response=response, backoff_time=self._backoff_time(response, self._last_request_to_attempt_count[request])
)
if matched_status is not None:
return matched_status
if response.ok:
return response_status.SUCCESS
# Fail if the response matches no filters
return response_status.FAIL | [
1028,
17
] |
def METHOD_NAME():
mu = pt.constant(0)
sigma = pt.scalar("sigma")
x_rv = pt.random.normal(mu, sigma, name="x")
x_vv = pt.constant(0)
x_logp = logp(x_rv, x_vv)
x_logp_fn = function([sigma], x_logp)
with pytest.raises(ParameterValueError, match="sigma > 0"):
x_logp_fn(-1) | [
9,
250,
511
] |
def METHOD_NAME(self, gpxfile, tree):
tree.write(gpxfile, xml_declaration=True, encoding='UTF-8') | [
129,
2949,
16791
] |
def METHOD_NAME(self):
""" create a multistatus response for the prop names """
dc=self._dataclass
# create the document generator
doc = domimpl.createDocument(None, "multistatus", None)
ms = doc.documentElement
ms.setAttribute("xmlns:D", "DAV:")
ms.tagName = 'D:multistatus'
if self._depth=="0":
if self._uri in self._dataclass.get_childs(get_parenturi(self._uri),
self.filter):
pnames=dc.get_propnames(self._uri)
re=self.mk_propname_response(self._uri,pnames, doc)
ms.appendChild(re)
elif self._depth=="1":
if self._uri in self._dataclass.get_childs(get_parenturi(self._uri),
self.filter):
pnames=dc.get_propnames(self._uri)
re=self.mk_propname_response(self._uri,pnames, doc)
ms.appendChild(re)
for newuri in dc.get_childs(self._uri, self.filter):
pnames=dc.get_propnames(newuri)
re=self.mk_propname_response(newuri,pnames, doc)
ms.appendChild(re)
elif self._depth=='infinity':
uri_list = [self._uri]
while uri_list:
uri = uri_list.pop()
if uri in self._dataclass.get_childs(get_parenturi(uri),
self.filter):
pnames=dc.get_propnames(uri)
re=self.mk_propname_response(uri,pnames, doc)
ms.appendChild(re)
uri_childs = self._dataclass.get_childs(uri)
if uri_childs:
uri_list.extend(uri_childs)
return doc.toxml(encoding="utf-8") | [
129,
4062
] |
def METHOD_NAME(self) -> Optional[str]:
"""
When present, the value can be passed to a subsequent query call (together with the same query and scopes used in the current request) to retrieve the next page of data.
"""
return pulumi.get(self, "skip_token") | [
2423,
466
] |
def METHOD_NAME():
logging.debug("Creating buildpack launch environment...")
util.mkdir_p(PROFILE_DIR)
util.METHOD_NAME(DEPS_DIR, PROFILE_DIR) | [
0,
1,
1440,
1027
] |
async def METHOD_NAME(self,index,coords,viewer=0):
c= {
"command" : "crosshairs",
"coords" : [ 20+index*10,20+index*20,20+index*30 ],
"viewer" : viewer
};
await self.connections[index].send(json.dumps(c)); | [
0,
4645
] |
def METHOD_NAME(bq_client, table, rows):
"""Inserts rows into a BigQuery table.
Args:
bq_client: BigQuery client
table: table where rows must be inserted
rows: a list of rows to insert
"""
_batch_insert(bq_client, table, rows) | [
3578,
408,
1346
] |
def METHOD_NAME(self, *args, **kwargs):
"""
Pass get_backend_timeout cache method to _call_with_fallback
"""
return self._call_with_fallback("get_backend_timeout", *args, **kwargs) | [
19,
3127,
659
] |
def METHOD_NAME(self, mock_end_request):
"""An anonymous should not be able to end a classroom."""
classroom = ClassroomFactory()
response = self.client.patch(
f"/api/classrooms/{classroom.id}/end/",
)
self.assertEqual(response.status_code, 401)
mock_end_request.assert_not_called() | [
9,
58,
14247,
1798,
7758,
1946
] |
def METHOD_NAME(path):
return "".join([c if c.isalnum() else "_" for c in path.elems()]) | [
1702,
157
] |
def METHOD_NAME(self, date: str) -> List[dict]:
components = self.identify_vacant_components()
self.populate_num_untriaged_bugs(components)
return components | [
19,
487,
365
] |
def METHOD_NAME(self):
return self.settings.os == "Windows" and not is_msvc(self) | [
949,
-1
] |
def METHOD_NAME(xshape, wshape, stride, padding, dilation, use_cuda, nhwc):
if nhwc:
test_func = test_nhwc
else:
test_func = test_nchw
if use_cuda == 1:
op_name = "cudnn_conv"
else:
op_name = "mkl_conv"
with jt.log_capture_scope(use_cuda=use_cuda, enable_tuner=1,
log_v=1, log_vprefix="op.cc=1000,exe=1000,conv_t=1000", compile_options={"test":244}
) as raw_log:
x = jt.random(xshape)
w = jt.random(wshape)
y = test_func(x, w, stride, padding, dilation)
loss = y.mean()
dx, dw = jt.grad(loss, [x, w])
jt.sync([y, loss, dx, dw])
with jt.flag_scope(use_cuda=0, enable_tuner=0, compile_options={"test":233}):
cy = test_func(x, w, stride, padding, dilation)
closs = cy.mean()
cdx, cdw = jt.grad(closs, [x, w])
jt.sync([cy, closs, cdx, cdw])
logs = find_log_with_re(raw_log, "(Jit op key (not )?found: " + op_name + ".*)")
assert len(logs)==3 and "oihw" in logs[0][0], (logs)
assert np.allclose(y.data, cy.data, 1e-3)
assert np.allclose(dw.data, cdw.data, 1e-3), (dw.data, cdw.data)
assert np.allclose(dx.data, cdx.data, 1e-3), (dx.data, cdx.data, np.abs(cdx.data).max(), np.abs(dx.data - cdx.data).max()) | [
250,
2955
] |
def METHOD_NAME(test_case):
device = random_device()
input = random_tensor(ndim=2, dim0=2, dim1=2).to(device)
src = oneof(3.14, random_tensor(ndim=2, dim0=2, dim1=2).to(device))
inplace = oneof(True, False)
dim = oneof(0, 1, -1)
if inplace:
y = input + 1
y.scatter_(dim, oneof(*_get_indexes(device)), src)
return y
return input.scatter(dim, oneof(*_get_indexes(device)), src) | [
9,
2633,
236,
365
] |
def METHOD_NAME(self, nwkid, EPout, devunit, onoff):
"""
Levolo On/Off command are based on Level Control cluster
Level: 108/0x6C -> On
Level: 1/0x01 -> Off
Left Unit: Timing 1
Right Unit: Timing 2
"""
self.log.logging("Livolo", "Debug", "livolo_OnOff - devunit: %s, onoff: %s" % (devunit, onoff), nwkid=nwkid)
if onoff not in ("On", "Off", "Toggle"):
return
if devunit not in ("Left", "Right", "All"):
return
if onoff == "Toggle" and devunit == "All":
self.log.logging("Livolo", "Debug", "livolo_toggle", nwkid=nwkid)
zcl_toggle(self, nwkid, EPout)
else:
level_value = timing_value = None
if onoff == "On":
level_value = "%02x" % 108
elif onoff == "Off":
level_value = "%02x" % 1
if devunit == "Left":
timing_value = "0001"
elif devunit == "Right":
timing_value = "0002"
if level_value is not None and timing_value is not None:
self.log.logging(
"Livolo",
"Debug",
"livolo_OnOff - %s/%s Level: %s, Timing: %s" % (nwkid, EPout, level_value, timing_value),
nwkid=nwkid,
)
zcl_level_move_to_level( self, nwkid, EPout, "00", level_value, timing_value)
#sendZigateCmd(self, "0081", "02" + nwkid + ZIGATE_EP + EPout + "00" + level_value + timing_value)
else:
Domoticz.Error("livolo_OnOff - Wrong parameters sent ! onoff: %s devunit: %s" % (onoff, devunit)) | [
14236,
69,
3988
] |
def METHOD_NAME(cli):
if (not os.path.exists(cli.path)):
ch.FATAL("can’t copy: not found: %s" % cli.path)
pathstr = im.Reference.ref_to_pathstr(cli.image_ref)
if (cli.bucache == ch.Build_Mode.ENABLED):
# Un-tag previously deleted branch, if it exists.
bu.cache.tag_delete(pathstr, fail_ok=True)
dst = im.Image(im.Reference(cli.image_ref))
ch.INFO("importing: %s" % cli.path)
ch.INFO("destination: %s" % dst)
dst.unpack_clear()
if (os.path.isdir(cli.path)):
dst.copy_unpacked(cli.path)
else: # tarball, hopefully
dst.unpack([cli.path])
bu.cache.adopt(dst)
if (dst.metadata["history"] == []):
dst.metadata["history"].append({ "empty_layer": False,
"command": "ch-image import"})
dst.metadata_save()
ch.done_notify() | [
512
] |
async def METHOD_NAME(form: KeywordsFormArgs, offset: int, limit: int) -> Tuple[int, List[Dict[str, Any]]]:
path = _create_cache_path(form)
if not await aiofiles.os.path.exists(path):
raise KeywordsResultNotFound('The result does not exist')
else:
return await load_cached_partial(path, offset, limit) | [
208,
1153,
2537
] |
def METHOD_NAME(module_session) -> None:
module_session.execute(hades.radius_property.insert().values([
('payment_in_default',),
('traffic_limit_exceeded',),
])) | [
8568,
3662,
748
] |
def METHOD_NAME(hparams):
"""
This function prepares the datasets to be used in the brain class.
It also defines the data processing pipeline through user-defined
functions.
"""
data_folder = hparams["save_folder"]
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
)
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
)
test_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=hparams["test_csv"], replacements={"data_root": data_folder},
)
datasets = [train_data, valid_data, test_data]
# We get the tokenizer as we need it to encode the labels when creating
# mini-batches.
tokenizer = hparams["tokenizer"]
"""Define text pipeline"""
@sb.utils.data_pipeline.takes("words")
@sb.utils.data_pipeline.provides("words", "tokens_bos", "tokens_eos")
def text_pipeline(words):
yield words
tokens_list = tokenizer.encode_as_ids(words)
tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list))
yield tokens_bos
tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]])
yield tokens_eos
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
# 4. Set output:
sb.dataio.dataset.set_output_keys(
datasets, ["id", "words", "tokens_bos", "tokens_eos"],
)
return train_data, valid_data, test_data | [
-1,
123
] |
def METHOD_NAME(self):
# b larger than b
a = np.array([[1, 3, 3, 1, 7], [3, 3, 2, 3, 0]])
b = np.array([[3, 1, 2, 5, 3, 4, 7], [3, 3, 3, 1, 9, 9, 9]])
ma, ia = setmembership.ismember_rows(a, b)
ma_known = np.array([1, 1, 1, 1, 0], dtype=bool)
ia_known = np.array([1, 0, 2, 1])
self.assertTrue(np.allclose(ma, ma_known))
self.assertTrue(np.allclose(ia, ia_known)) | [
9,
9594,
1346,
5765,
3120,
988
] |
def METHOD_NAME():
"""Sums the runtime of all queries logged by django.db.connection.queries"""
runtimes = (float(query['time']) for query in django.db.connection.queries)
return sum(runtimes) | [
912,
5063,
815,
1888
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.