text
stringlengths 15
7.82k
| ids
sequencelengths 1
7
|
---|---|
def METHOD_NAME(tensor_parallel_degree, tensor_parallel_rank, hidden_size, intermediate_size):
def fn(x):
if x is None:
return None
x = merge_o_tensor_parallel_weight(
x,
tensor_parallel_degree=tensor_parallel_degree,
hidden_size=hidden_size,
intermediate_size=intermediate_size,
)
return x
return fn | [
1857,
5786,
411,
667
] |
def METHOD_NAME(self):
parent_path = os.path.dirname(os.path.realpath(__file__))
project_location = os.path.join(parent_path, 'res_test_red_library_autodiscover', 'python_libs')
python_paths, class_paths = _collect_source_paths(project_location, False)
self.assertEqual(python_paths, [project_location,
os.path.join(project_location, 'a'),
os.path.join(project_location, 'other')])
self.assertEqual(class_paths, []) | [
9,
217,
612,
3336,
472,
130,
12265
] |
def METHOD_NAME(nlp_doc):
negation_tokens = list(filter(lambda tok: tok.dep_ == "neg", nlp_doc))
negated_entities = list(filter(lambda tok: tok._.negex, nlp_doc.ents))
return {
"negation_words": len(negation_tokens),
"negated_entities": len(negated_entities)} | [
2991,
5245,
1473,
61,
5399
] |
def METHOD_NAME(self, lines):
source_unit = None
comment = ""
if not isinstance(lines, list):
lines = lines.split(b"\n")
for lineoffset, line in enumerate(lines):
if line.endswith(b"\r"):
self.eol = "\r\n"
line = line.decode(self.encoding).rstrip("\n").rstrip("\r")
if lineoffset == 0 and line == "## active ##":
self.is_active = True
continue
header_meta_data = (
line.startswith("## ")
and not line.startswith("## TAG")
and not line.startswith("## MAX_LENGTH")
)
if header_meta_data:
self._headers.append(line)
continue
if len(line) == 0 and not source_unit:
if len(self.units) == 0:
self._headers.append(line) # Append blank lines to header
# else skip blank lines
continue
if source_unit:
# If we have a source_unit get the target
source_unit.rawtarget = line
if line != source_unit.source:
source_unit.target = strip_ok(line)
else:
source_unit.target = ""
source_unit = None
continue
is_comment = line.startswith("#") and (
not line.startswith("##")
or line.startswith("## TAG")
or line.startswith("## MAX_LENGTH")
)
if is_comment:
# Read comments, *including* meta tags (e.g. '## TAG')
comment += line[1:].strip() + "\n"
if line.startswith(";"):
source_unit = self.addsourceunit(line[1:])
source_unit.eol = self.eol
source_unit.addlocation(
"%s:%d" % (self.filename[len(self.location_root) :], lineoffset + 1)
)
if comment is not None:
source_unit.addnote(comment[:-1], "developer")
comment = "" | [
214
] |
def METHOD_NAME(minimal_swagger_spec):
response_spec = {
'description': 'Address',
'schema': {
'type': 'object',
'properties': {
'first_name': {
'type': 'string',
},
'last_name': {
'type': 'string',
},
},
},
}
op = Operation(
minimal_swagger_spec, '/foo', 'get',
op_spec={'produces': ['application/json']},
)
response = Mock(
spec=OutgoingResponse,
content_type='application/json',
json=Mock(
spec=dict,
return_value={
'first_name': 'darwin',
'last_name': 'niwrad',
},
),
)
validate_response_body(op, response_spec, response) | [
9,
1434,
763,
17
] |
def METHOD_NAME(self):
self.assertEqual(
app_has_been_submitted_to_in_last_30_days(self.domain, self.app_id),
True) | [
9,
991,
220,
8615,
4912,
24,
623
] |
def METHOD_NAME():
im = RatioImage()
im.prepare_image(data, 1)
im.image()
data_out = get_arr_from_imager(im, data.y)
im.xpaset("quit")
# All values but the first will be 1, because the first
# model pixel will be zero, and therefore the ratio function
# reassigns the ratio there to be one.
expval = np.ones(data.y.shape)
expval[0, 0] = 0
assert data_out == pytest.approx(expval) | [
9,
4517,
660
] |
def METHOD_NAME(self):
""" Check that nothing is updated if orc8r is unreachable """
rules_by_sid = {}
rules_by_basename = {
"bn1": ChargingRuleNameSet(
RuleNames=["p4", "p5"],
),
}
reauth_handler = ReAuthHandler(
rules_by_sid,
MockSessionProxyResponderStub(),
)
servicer = PolicyRpcServicer(
reauth_handler,
rules_by_basename,
MockPolicyAssignmentControllerStub2(),
)
# Bind the rpc server to a free port
thread_pool = futures.ThreadPoolExecutor(max_workers=10)
rpc_server = grpc.server(thread_pool)
port = rpc_server.add_insecure_port('0.0.0.0:0')
# Create a mock "mconfig" for the servicer to use
mconfig = unittest.mock.Mock()
mconfig.ip_block = None
# Add the servicer
servicer.add_to_server(rpc_server)
rpc_server.start()
# Create a rpc stub
channel = grpc.insecure_channel('0.0.0.0:{}'.format(port))
stub = PolicyDBStub(channel)
req = EnableStaticRuleRequest(
imsi="s1",
rule_ids=["p1", "p2", "p3"],
base_names=["bn1"],
)
with self.assertRaises(grpc.RpcError):
stub.EnableStaticRules(req)
self.assertFalse(
"s1" in rules_by_sid,
"There should be no installed policies for s1",
) | [
9,
180,
17867
] |
def METHOD_NAME(self):
return self.PORT_START | [
237,
447
] |
def METHOD_NAME(
cpu_only, py3_only, ecs_container_instance, mxnet_training, training_cmd, ecs_cluster_name
):
"""
CPU Gluon NLP for MXNet Training
Instance Type - c5.9xlarge
DGL is only supported in py3, hence we have used the "py3_only" fixture to ensure py2 images don't run
on this function.
Given above parameters, registers a task with family named after this test, runs the task, and waits for
the task to be stopped before doing teardown operations of instance and cluster.
"""
instance_id, cluster_arn = ecs_container_instance
ecs_utils.ecs_training_test_executor(
ecs_cluster_name, cluster_arn, training_cmd, mxnet_training, instance_id
) | [
9,
2906,
3591,
2685,
3592,
2265
] |
def METHOD_NAME(self):
self.model = pin.buildSampleModelHumanoidRandom()
self.parent_idx = self.model.getJointId("rarm2_joint") if self.model.existJointName("rarm2_joint") else (self.model.njoints-1)
self.frame_name = self.model.names[self.parent_idx] + "_frame"
self.frame_placement = pin.SE3.Random()
self.frame_type = pin.FrameType.OP_FRAME
self.model.addFrame(pin.Frame(self.frame_name, self.parent_idx, 0, self.frame_placement, self.frame_type))
self.frame_idx = self.model.getFrameId(self.frame_name) | [
0,
1
] |
async def METHOD_NAME(request: web.Request):
req_ctx = _RequestContext.parse_obj(request)
path_params = parse_request_path_parameters_as(_WalletsGroupsPathParams, request)
body_params = await parse_request_body_as(_WalletsGroupsBodyParams, request)
wallet_groups: WalletGroupGet = await _groups_api.METHOD_NAME(
request.app,
user_id=req_ctx.user_id,
wallet_id=path_params.wallet_id,
group_id=path_params.group_id,
read=body_params.read,
write=body_params.write,
delete=body_params.delete,
)
return envelope_json_response(wallet_groups, web.HTTPCreated) | [
129,
2945,
846
] |
def METHOD_NAME():
print """This script mainly serves as the basis of your customizations. | [
38,
40
] |
def METHOD_NAME(env_var, value):
"""Sets the env variable to 'value'; unsets it when 'value' is None."""
if value is not None:
environ[env_var] = value
elif env_var in environ:
del environ[env_var] | [
0,
485,
486
] |
def METHOD_NAME(arr):
a = numpy.array(arr)
dpnp_a = dpnp.array(arr)
expected = numpy.repeat(a, 2)
result = dpnp.repeat(dpnp_a, 2)
assert_array_equal(expected, result) | [
9,
5293
] |
def METHOD_NAME(*args, sender: Consumer = None, **kwargs):
logger.info(f"worker {sender.hostname} ready")
queue = sender.hostname.split("_", maxsplit=1)[1]
logger.info(f"Updating repositories inside {queue}")
if settings.REPO_DOWNLOADER_ENABLED and queue == get_queue_name(DEFAULT_QUEUE):
for task in PeriodicTask.objects.filter(
enabled=True, queue=queue, task="intel_owl.tasks.update"
):
config_pk = task.kwargs["config_pk"]
logger.info(f"Updating {config_pk}")
update(config_pk) | [
1794,
1338,
707
] |
def METHOD_NAME(self):
tools.get(**self.conan_data["sources"][self.version], strip_root=True, destination=self._source_subfolder) | [
1458
] |
def METHOD_NAME(test_file: str, check_gas_left: bool) -> None:
run_control_flow_ops_vm_test(test_file, check_gas_left=check_gas_left) | [
9,
15595
] |
def METHOD_NAME(modernize_project_name: Optional[pulumi.Input[str]] = None,
resource_group_name: Optional[pulumi.Input[str]] = None,
subscription_id: Optional[pulumi.Input[Optional[str]]] = None,
workload_instance_name: Optional[pulumi.Input[str]] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetWorkloadInstanceResult]:
"""
Gets the details of the workload instance.
:param str modernize_project_name: ModernizeProject name.
:param str resource_group_name: Name of the Azure Resource Group that project is part of.
:param str subscription_id: Azure Subscription Id in which project was created.
:param str workload_instance_name: Workload instance name.
"""
... | [
19,
2454,
89,
146
] |
f METHOD_NAME(self) -> None: | [
2656
] |
def METHOD_NAME(self) -> list[Filter]:
"""
Load and return the release filtering plugin objects
Returns
-------
list of bandersnatch.filter.Filter:
List of objects derived from the bandersnatch.filter.Filter class
"""
if RELEASE_PLUGIN_RESOURCE not in self.loaded_filter_plugins:
self._load_filters([RELEASE_PLUGIN_RESOURCE])
return self.loaded_filter_plugins[RELEASE_PLUGIN_RESOURCE] | [
527,
586,
1294
] |
def METHOD_NAME(part_id, stored_subs, language):
stored_sub = stored_subs.get_any(part_id, language)
if stored_sub and stored_sub.storage_type == "filesystem":
return True | [
220,
751,
3332
] |
def METHOD_NAME():
# Avidin protein sequence
seq1 = seq.ProteinSequence("MVHATSPLLLLLLLSLALVAPGLSARKCSLTGKWTNDLGSNMTIGAVNSRGEFTGTYITAVTATSNEIKESPLHGTQNTINKRTQP"
"TFGFTVNWKFSESTTVFTGQCFIDRNGKEVLKTMWLLRSSVNDIGDDWKATRVGINIFTRLRTQKE")
# Streptavidin protein sequence
seq2 = seq.ProteinSequence("MRKIVVAAIAVSLTTVSITASASADPSKDSKAQVSAAEAGITGTWYNQLGSTFIVTAGADGALTGTYESAVGNAESRYVLTGRYDSA"
"PATDGSGTALGWTVAWKNNYRNAHSATTWSGQYVGGAEARINTQWLLTSGTTEANAWKSTLVGHDTFTKVKPSAASIDAAKKAGVNN"
"GNPLDAVQQ")
matrix = align.SubstitutionMatrix.std_protein_matrix()
alignment = align.align_optimal(seq1, seq2, matrix)[0]
profile = seq.SequenceProfile.from_alignment(alignment)
assert seq.ProteinSequence("MRHIATAAIALSLLLLSITALASADPGKDSKAQLSAAEAGITGKWTNDLGSNFIIGAVGADGAFTGTYESAVGNAESNEIKEGPLD"
"GAPATDGKGTALGWTFAFKNNWKFAESATTFSGQCFGGADARINGKELLTKGTMEANAWKSTLLGHDSFSKVKDIAADIDAAKKAG"
"INIFNPLDAQKE") == profile.to_consensus() | [
9,
24,
1810,
12514
] |
def METHOD_NAME(self, elements, size):
groups = []
offsets = list(range(0, len(elements), size)) + [None]
for i in range(0, len(offsets) - 1):
groups.append(elements[offsets[i]:offsets[i+1]])
return groups | [
93,
861
] |
def METHOD_NAME(self) -> int:
"""
How many steps in the forward and backwards direction
:return: Number of steps in float, indicates half steps
"""
return self.distance / self.torso_step_length | [
1783,
367,
29
] |
def METHOD_NAME(mock_alembic, mock_database):
mock_database()
alembic_util = mlrun.api.utils.db.alembic.AlembicUtil(pathlib.Path(""))
alembic_util.init_alembic()
assert mock_alembic.upgrade_calls == ["head"] | [
9,
463,
954,
654,
71
] |
def METHOD_NAME(switch_driver) -> None:
"""
to check the protection mode (34934A module only)
"""
assert switch_driver.module[1].protection_mode() == 'AUTO100' | [
9,
9089,
854
] |
def METHOD_NAME(
databin_dir,
direction, spm_vocab=SPM_VOCAB, prefix='',
splits=['train', 'test', 'valid'],
pairs_per_shard=None,
):
def move_databin_files(from_folder, to_folder):
for bin_file in glob.glob(f"{from_folder}/*.bin") \
+ glob.glob(f"{from_folder}/*.idx") \
+ glob.glob(f"{from_folder}/dict*"):
try:
shutil.move(bin_file, to_folder)
except OSError as error:
print(error)
bpe_databin_dir = f"{BPE_DIR}/{direction}{prefix}_databin"
bpe_dir = f"{BPE_DIR}/{direction}{prefix}"
if pairs_per_shard is None:
binarize_(bpe_dir, bpe_databin_dir, direction, spm_vocab=spm_vocab, splits=splits)
move_databin_files(bpe_databin_dir, databin_dir)
else:
# binarize valid and test which will not be sharded
binarize_(
bpe_dir, bpe_databin_dir, direction,
spm_vocab=spm_vocab, splits=[s for s in splits if s != "train"])
for shard_bpe_dir in glob.glob(f"{bpe_dir}/shard*"):
path_strs = os.path.split(shard_bpe_dir)
shard_str = path_strs[-1]
shard_folder = f"{bpe_databin_dir}/{shard_str}"
databin_shard_folder = f"{databin_dir}/{shard_str}"
print(f'working from {shard_folder} to {databin_shard_folder}')
os.makedirs(databin_shard_folder, exist_ok=True)
binarize_(
shard_bpe_dir, shard_folder, direction,
spm_vocab=spm_vocab, splits=["train"])
for test_data in glob.glob(f"{bpe_databin_dir}/valid.*") + glob.glob(f"{bpe_databin_dir}/test.*"):
filename = os.path.split(test_data)[-1]
try:
os.symlink(test_data, f"{databin_shard_folder}/{filename}")
except OSError as error:
print(error)
move_databin_files(shard_folder, databin_shard_folder) | [
8431
] |
def METHOD_NAME(path, base_port, long_timeout_commit=False):
config = "configs/default.jsonnet"
if long_timeout_commit is True:
config = "configs/long_timeout_commit.jsonnet"
cfg = Path(__file__).parent / config
yield from setup_custom_evmos(path, base_port, cfg) | [
102,
4723
] |
def METHOD_NAME(node_index, node_label, gnn_model, graph, criterion):
gnn_model.METHOD_NAME()
pred = gnn_model(graph, graph.node_feat["words"])
pred = paddle.gather(pred, node_index)
loss = criterion(pred, node_label)
acc = paddle.metric.accuracy(input=pred, label=node_label, k=1)
return loss, acc | [
1171
] |
def METHOD_NAME(field, value):
return get_default_field_value(field, value) | [
89,
2897
] |
def METHOD_NAME(self):
self.fernet_mock.decrypt.return_value = 'a' * 32
self.db.router.get_uaid.return_value = dict(
uaid=dummy_uaid,
chid=dummy_chid,
)
resp = yield self.client.post(
self.url(api_ver='v1', token='ignored'),
headers={'authorization': 'webpush dummy.key'}
)
assert resp.get_status() == 410 | [
9,
377,
654,
2501,
44
] |
def METHOD_NAME(self) -> bool:
"""Return True if the alert has a Log Analytics WorkspaceID."""
return "WorkspaceId" in self._ids and "AgentId" in self._ids | [
137,
623,
1976
] |
def METHOD_NAME(self) -> Headers:
METHOD_NAME = self.__class__()
METHOD_NAME._dict = self._dict.METHOD_NAME()
METHOD_NAME._list = self._list.METHOD_NAME()
return METHOD_NAME | [
215
] |
def METHOD_NAME(op, data, index, **kwargs):
return data.apply(
lambda array, index=index: (
array[index] if -len(array) <= index < len(array) else None
)
) | [
750,
877,
724
] |
def METHOD_NAME():
param_names = ['cls', 'tilemap', 'start_rect', 'dx', 'dy', 'expect_dxdy']
scenaries = [ d for d in aux.case_generator(aux.first_expansion(maps_cache, aux.common_base_cases))]
sufixes_parametrized_tests = []
cases = []
for cls in [RectMapCollider, RectMapWithPropsCollider]:
for d in scenaries:
d['cls'] = cls
test_sufix, params = scenario_to_test_sufix_and_tuple_params(d)
sufixes_parametrized_tests.append(test_sufix)
cases.append(params)
return (param_names, cases, False, sufixes_parametrized_tests) | [
434,
43,
9,
654,
7457
] |
def METHOD_NAME(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.nominal import PearsonsContingencyCoefficient
>>> metric = PearsonsContingencyCoefficient(num_classes=5)
>>> metric.update(torch.randint(0, 4, (100,)), torch.randint(0, 4, (100,)))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.nominal import PearsonsContingencyCoefficient
>>> metric = PearsonsContingencyCoefficient(num_classes=5)
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(torch.randint(0, 4, (100,)), torch.randint(0, 4, (100,))))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax) | [
1288
] |
def METHOD_NAME():
paddle.set_device(args.device)
model = ErnieForGeneration.from_pretrained(args.model_name_or_path)
if "ernie-tiny" in args.model_name_or_path:
tokenizer = ErnieTinyTokenizer.from_pretrained(args.model_name_or_path)
elif "ernie" in args.model_name_or_path:
tokenizer = ErnieTokenizer.from_pretrained(args.model_name_or_path)
elif "roberta" in args.model_name_or_path or "rbt" in args.model_name_or_path:
tokenizer = RobertaTokenizer.from_pretrained(args.model_name_or_path)
elif "electra" in args.model_name_or_path:
tokenizer = ElectraTokenizer.from_pretrained(args.model_name_or_path)
else:
tokenizer = BertTokenizer.from_pretrained(args.model_name_or_path)
dev_dataset = load_dataset("poetry", splits=("dev"), lazy=False)
attn_id = tokenizer.vocab["[ATTN]"] if "[ATTN]" in tokenizer.vocab else tokenizer.vocab["[MASK]"]
tgt_type_id = model.sent_emb.weight.shape[0] - 1
trans_func = convert_example(
tokenizer=tokenizer,
attn_id=attn_id,
tgt_type_id=tgt_type_id,
max_encode_len=args.max_encode_len,
max_decode_len=args.max_decode_len,
)
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id), # src_ids
Pad(axis=0, pad_val=tokenizer.pad_token_id), # src_pids
Pad(axis=0, pad_val=tokenizer.pad_token_id), # src_sids
Pad(axis=0, pad_val=tokenizer.pad_token_id), # tgt_ids
Pad(axis=0, pad_val=tokenizer.pad_token_id), # tgt_pids
Pad(axis=0, pad_val=tokenizer.pad_token_id), # tgt_sids
Pad(axis=0, pad_val=tokenizer.pad_token_id), # attn_ids
Pad(axis=0, pad_val=tokenizer.pad_token_id), # tgt_labels
): after_padding(fn(samples))
dev_dataset = dev_dataset.map(trans_func)
dev_batch_sampler = paddle.io.BatchSampler(dev_dataset, batch_size=args.batch_size, shuffle=False)
data_loader = DataLoader(
dataset=dev_dataset, batch_sampler=dev_batch_sampler, collate_fn=batchify_fn, num_workers=0, return_list=True
)
rouge1 = Rouge1()
rouge2 = Rouge2()
if args.init_checkpoint:
model_state = paddle.load(args.init_checkpoint)
model.set_state_dict(model_state)
model.eval()
vocab = tokenizer.vocab
eos_id = vocab[tokenizer.sep_token]
sos_id = vocab[tokenizer.cls_token]
pad_id = vocab[tokenizer.pad_token]
unk_id = vocab[tokenizer.unk_token]
vocab_size = len(vocab)
evaluated_sentences_ids = []
reference_sentences_ids = []
logger.info("Evaluating...")
for data in tqdm(data_loader):
(src_ids, src_sids, src_pids, _, _, _, _, _, _, _, _, raw_tgt_labels) = data # never use target when infer
# Use greedy_search_infilling or beam_search_infilling to get predictions
output_ids = beam_search_infilling(
model,
src_ids,
src_sids,
eos_id=eos_id,
sos_id=sos_id,
attn_id=attn_id,
pad_id=pad_id,
unk_id=unk_id,
vocab_size=vocab_size,
max_decode_len=args.max_decode_len,
max_encode_len=args.max_encode_len,
beam_width=args.beam_width,
length_penalty=args.length_penalty,
tgt_type_id=tgt_type_id,
)
for ids in output_ids.tolist():
if eos_id in ids:
ids = ids[: ids.index(eos_id)]
evaluated_sentences_ids.append(ids)
for ids in raw_tgt_labels.numpy().tolist():
ids = ids[: ids.index(eos_id)]
reference_sentences_ids.append(ids)
score1 = rouge1.score(evaluated_sentences_ids, reference_sentences_ids)
score2 = rouge2.score(evaluated_sentences_ids, reference_sentences_ids)
logger.info("Rouge-1: %.5f ,Rouge-2: %.5f" % (score1 * 100, score2 * 100)) | [
1195
] |
def METHOD_NAME(identifier, case_id):
return case_search.reverse_index_case_query(case_id, identifier) | [
724,
527
] |
def METHOD_NAME(self):
raise NotImplementedError | [
86,
907
] |
def METHOD_NAME(self):
self.acknowledge_lock.acquire()
acknowledge = self.acknowledge
self.acknowledge_lock.release()
return acknowledge | [
19,
7197
] |
def METHOD_NAME(self) -> str:
"""
Primary connection string of the alias if GEO DR is enabled
"""
return pulumi.get(self, "alias_primary_connection_string") | [
533,
1379,
550,
144
] |
def METHOD_NAME(self):
self._stack.append((self._current, self._key)) | [
1013
] |
def METHOD_NAME(self) -> str:
"""
The name of the ARM resource.
"""
return pulumi.get(self, "name") | [
156
] |
def METHOD_NAME(dash_duo):
"""Raising PreventUpdate OR returning no_update prevents update and
triggering dependencies."""
initial_input = "initial input"
initial_output = "initial output"
app = Dash(__name__)
app.layout = html.Div(
[
dcc.Input(id="input", value=initial_input),
html.Div(initial_output, id="output1"),
html.Div(initial_output, id="output2"),
]
)
callback1_count = Value("i", 0)
callback2_count = Value("i", 0)
@app.callback(Output("output1", "children"), [Input("input", "value")])
def callback1(value):
callback1_count.value += 1
if callback1_count.value > 2:
return no_update
raise PreventUpdate("testing callback does not update")
return value
@app.callback(Output("output2", "children"), [Input("output1", "children")])
def callback2(value):
callback2_count.value += 1
return value
dash_duo.start_server(app)
input_ = dash_duo.find_element("#input")
for i, key in enumerate("xyz"):
input_.send_keys(key)
until(
lambda: callback1_count.value == i + 2,
timeout=3,
msg="callback1 runs 4x (initial page load and 3x through send_keys)",
)
dash_duo.wait_for_text_to_equal("#input", "initial inputxyz")
assert (
callback2_count.value == 0
), "callback2 is never triggered, even on initial load"
# double check that output1 and output2 children were not updated
assert dash_duo.find_element("#output1").text == initial_output
assert dash_duo.find_element("#output2").text == initial_output
assert not dash_duo.get_logs()
dash_duo.percy_snapshot(name="aborted") | [
9,
-1,
10630,
1076
] |
def METHOD_NAME(x, i, v, op):
"""Applies an inplace op on (x, i, v).
op is one of gen_array_ops.alias_inplace_update,
gen_array_ops.alias_inplace_add, or gen_array_ops.alias_inplace_sub.
If i is None, x and v must be the same shape. Computes
x op v;
If i is a scalar, x has a rank 1 higher than v's. Computes
x[i, :] op v;
Otherwise, x and v must have the same rank. Computes
x[i, :] op v;
Args:
x: A Tensor.
i: None, a scalar or a vector.
v: A Tensor.
op: alias_inplace_update, alias_inplace_add, or alias_inplace_sub.
Returns:
Returns x.
"""
x = ops.convert_to_tensor(x)
v = ops.convert_to_tensor(v, x.dtype)
if i is None:
# Full tensor.
return array_ops.reshape(
op(array_ops.reshape(x, [1, -1]), [0], array_ops.reshape(v, [1, -1])),
array_ops.shape(x))
i = math_ops.cast(i, dtypes.int32)
if i.get_shape().ndims == 0:
# Single 0-dim update.
return op(x, array_ops.reshape(i, [1]), array_ops.expand_dims(v, 0))
return op(x, i, v) | [
5920,
1087
] |
def METHOD_NAME(self, flag):
"""
Tells what trust applies for the given flag -- True if trusted, False if explicitly
not trusted, or None if trust for that flag has not been evaluated.
"""
if (self._affirmed & flag) == flag: return True
if (self._denied & flag) == flag: return False
return None | [
9144,
43
] |
def METHOD_NAME(*args, **kwargs):
hit_limit = limit and Scope.profile_count > limit
if hit_limit or random.random() > probability:
return f(*args, **kwargs)
else:
Scope.profile_count += 1
# Add a timestamp to the profile output when the callable
# is actually called.
final_log_file = '{}-{}{}'.format(base, datetime.now().isoformat(), ext)
prof = cProfile.Profile()
try:
ret = prof.runcall(f, *args, **kwargs)
finally:
prof.dump_stats(final_log_file)
return ret | [
921
] |
def METHOD_NAME(
self, item: __item_type__, column_desc: ColumnDesc
) -> Optional[QtGui.QColor]:
if column_desc == self.NAME:
return self._get_subscription_color(item, column_desc)
else:
return None | [
19,
7466,
36
] |
def METHOD_NAME(self):
self.num_nodes = 2
self.extra_args = [['-txindex'], ['-paytxfee=0.003']]
self.setup_clean_chain = True | [
0,
9,
434
] |
def METHOD_NAME(self):
"""
Try to create/destroy an utf-8 database name from an sls file #8947
"""
expected_result = {
"mysql_database_|-A_|-foo \xe6\xba\x96`bar_|-present": {
"__run_num__": 0,
"comment": "The database foo \xe6\xba\x96`bar has been created",
"result": True,
},
"mysql_database_|-B_|-foo \xe6\xba\x96`bar_|-absent": {
"__run_num__": 1,
"comment": "Database foo \xe6\xba\x96`bar has been removed",
"result": True,
},
}
result = {}
ret = self.run_function("state.sls", mods="mysql_utf8")
if not isinstance(ret, dict):
raise AssertionError(
("Unexpected result while testing external mysql utf8 sls: {}").format(
repr(ret)
)
)
for item, descr in ret.items():
result[item] = {
"__run_num__": descr["__run_num__"],
"comment": descr["comment"],
"result": descr["result"],
}
self.assertEqual(expected_result, result) | [
9,
3690,
280,
4687,
171
] |
def METHOD_NAME(StringList):
return map(lambda s: "'" + s.replace("'", "''") + "'", StringList) | [
197,
24,
1621,
144
] |
def METHOD_NAME(self,
component_config: Union[Dict, GoodWeBatSetup, GoodWeCounterSetup, GoodWeInverterSetup]) -> None:
if isinstance(component_config, Dict):
component_type = component_config["type"]
else:
component_type = component_config.type
component_config = dataclass_from_dict(COMPONENT_TYPE_TO_MODULE[
component_type].component_descriptor.configuration_factory,
component_config)
if component_type in self.COMPONENT_TYPE_TO_CLASS:
self.components["component" + str(component_config.id)] = (self.COMPONENT_TYPE_TO_CLASS[component_type](
self.device_config.configuration.modbus_id, component_config, self.client))
else:
raise Exception(
"illegal component type " + component_type + ". Allowed values: " +
','.join(self.COMPONENT_TYPE_TO_CLASS.keys())
) | [
238,
1007
] |
def METHOD_NAME(self):
url = self.base_url + '?namespace=mynamespace'
resp = self.client.get(url).json()
assert len(resp['collection']['results']) == 10
assert resp['collection']['count'] == self.num_collections
assert resp['collection']['results'][0]['name'] == \
self.collections[0].name
assert resp['collection']['results'][9]['name'] == \
self.collections[9].name
assert len(resp['repository']['results']) == 0
assert resp['repository']['count'] == self.num_repositories | [
9,
19,
1174,
1170
] |
def METHOD_NAME(self):
"""Add all selected items from the current scene"""
with preserve_expanded_rows(self.view):
with preserve_selection(self.view):
self.clear()
nodes = commands.get_selected_nodes()
items = commands.create_items_from_nodes(nodes)
self.add_items(items) | [
19,
449,
3407
] |
def METHOD_NAME():
"""Test method"""
testFailCount = 0
testMessages = []
unitTaskName = "unitTask"
unitProcessName = "TestProcess"
unitTestSim = SimulationBaseClass.SimBaseClass()
testProcessRate = macros.sec2nano(0.5)
testProc = unitTestSim.CreateNewProcess(unitProcessName)
testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
# setup module to be tested
module = mappingInstrument.MappingInstrument()
module.ModelTag = "mappingInstrumentTag"
unitTestSim.AddModelToTask(unitTaskName, module)
module.nodeBaudRate = 1.
# Configure blank module input messages
accessInMsgData1 = messaging.AccessMsgPayload()
accessInMsgData1.hasAccess = 1
accessInMsg1 = messaging.AccessMsg().write(accessInMsgData1)
accessInMsgData2 = messaging.AccessMsgPayload()
accessInMsgData2.hasAccess = 0
accessInMsg2 = messaging.AccessMsg().write(accessInMsgData2)
# subscribe input messages to module
module.addMappingPoint(accessInMsg1, '1')
module.addMappingPoint(accessInMsg2, 'data2')
# setup output message recorder objects
dataLogs = []
for idx in range(0, 2):
dataLogs.append(module.dataNodeOutMsgs[idx].recorder())
unitTestSim.AddModelToTask(unitTaskName, dataLogs[idx])
unitTestSim.InitializeSimulation()
unitTestSim.ConfigureStopTime(macros.sec2nano(1.0))
unitTestSim.ExecuteSimulation()
# pull module data and make sure it is correct
dataAmt = []
dataNames = []
for idx in range(0, 2):
dataNames.append(dataLogs[idx].dataName)
dataAmt.append(dataLogs[idx].baudRate)
dataAmt = np.array(dataAmt)
dataNames = np.array(dataNames)
if not np.array_equal(dataAmt[0,:], np.array([1., 1., 1.])):
testFailCount += 1
if not np.array_equal(dataAmt[1,:], np.array([0., 0., 0.])):
testFailCount += 1
if not np.array_equal(dataNames[0,:], np.array(['1', '1', '1'])):
testFailCount += 1
if not np.array_equal(dataNames[1,:], np.array(['data2', 'data2', 'data2'])):
testFailCount += 1
if testFailCount == 0:
print("PASSED: " + module.ModelTag)
else:
print(testMessages)
return [testFailCount, "".join(testMessages)] | [
445,
2933,
9,
559
] |
def METHOD_NAME(
exploiter_config,
callback,
scan_completed,
stop,
hosts_to_exploit,
):
callback_barrier_count = 2
def _callback(*_):
# Block all threads here until 2 threads reach this barrier, then set stop
# and test that neither thread continues to scan.
_callback.barrier.wait()
stop.set()
_callback.barrier = Barrier(callback_barrier_count)
stoppable_callback = MagicMock(side_effect=_callback)
# Intentionally NOT setting scan_completed.set(); _callback() will set stop
e = Exploiter(MockPuppet(), callback_barrier_count + 2)
e.exploit_hosts(
exploiter_config, hosts_to_exploit, 1, SERVERS, stoppable_callback, scan_completed, stop
)
assert stoppable_callback.call_count == 2 | [
9,
631,
1887,
1076
] |
def METHOD_NAME(repo):
"""
Given: A modeling rule yml with schema key missing
When: running are_keys_empty_in_yml
Then: Validate that the modeling rule is invalid
"""
yml_dict = {
"id": "modeling-rule",
"name": "Modeling Rule",
"fromversion": 3.3,
"tags": "tag",
"rules": "",
}
pack = repo.create_pack("TestPack")
dummy_modeling_rule = pack.create_modeling_rule("MyRule")
structure_validator = StructureValidator(dummy_modeling_rule.yml.path)
dummy_modeling_rule.yml.write_dict(yml_dict)
with ChangeCWD(repo.path):
modeling_rule_validator = ModelingRuleValidator(structure_validator)
assert not modeling_rule_validator.are_keys_empty_in_yml() | [
9,
137,
1038,
59,
280,
5024
] |
def METHOD_NAME(code):
command = ['secretcli', 'query', 'compute', 'list-contract-by-code', code]
return json.loads(run_command(command)) | [
245,
1522,
604,
544
] |
def METHOD_NAME(self):
asset = presences.ActivityAssets(
application_id=None, large_image=None, large_text=None, small_image="meow:nyaa", small_text=None
)
with pytest.raises(RuntimeError, match="Unknown asset type"):
asset.make_small_image_url() | [
9,
93,
565,
660,
274,
1646,
46
] |
def METHOD_NAME(self)-> KeyBindingsBase:
"""All key binding for the Dialog with Navigation bar
Returns:
KeyBindings: The method according to the binding key
"""
kb = KeyBindings()
@kb.add('pageup', eager=True) ### eager neglect any other keybinding
def _go_pageup(event) -> None:
if self.navbar :
app = get_app()
self.navbar.go_up()
app.layout.focus(self.navbar)
@kb.add('pagedown', eager=True)
def _go_pagedown(event) -> None:
if self.navbar:
app = get_app()
self.navbar.go_down()
app.layout.focus(self.navbar)
@kb.add('f2', eager=True)
def _go_up(event) -> None:
if self.button_functions:
for k in range(len(self.button_functions)):
if str(self.button_functions[k][1]).lower() == 'save':
self.button_functions[k][0]()
return kb | [
19,
9105,
681,
59,
5992
] |
def METHOD_NAME(*args: Any, **kwargs: Any) -> RelativeLinksHelpExtension:
return RelativeLinksHelpExtension(*args, **kwargs) | [
93,
2916
] |
def METHOD_NAME(self):
class SelfCheckExceptionHandling(Exception):
pass
caller_thread_id = threading.current_thread().ident
@run_in_thread_with_timeout
def my_errant_function(*_args, **_kwargs):
if threading.current_thread().ident != caller_thread_id:
raise SelfCheckExceptionHandling()
# Suppress error output by redirecting to stringio_stderr
stringio_stderr = pika.compat.StringIO()
try:
with mock.patch.object(_ThreadedTestWrapper, '_stderr',
stringio_stderr):
with self.assertRaises(AssertionError) as exc_ctx:
my_errant_function()
self.assertIn('raise SelfCheckExceptionHandling()',
exc_ctx.exception.args[0])
expected_tail = 'SelfCheckExceptionHandling\n'
self.assertEqual(exc_ctx.exception.args[0][-len(expected_tail):],
expected_tail)
self.assertIn('raise SelfCheckExceptionHandling()',
stringio_stderr.getvalue())
self.assertEqual(stringio_stderr.getvalue()[-len(expected_tail):],
expected_tail)
except Exception:
try:
print('This stderr was captured from our thread wrapper:\n',
stringio_stderr.getvalue(),
file=sys.stderr)
except Exception: # pylint: disable=W0703
pass
raise | [
9,
2409,
47,
374,
280,
9,
2046
] |
def METHOD_NAME():
"""
"original": "None<br/><br/>Must be enrolled in Exercise Physiology (3871) <br/><br/>",
"processed": "Must be Exercise Physiology (3871)"
"""
return "3871" | [
6286,
790,
12545
] |
f METHOD_NAME(self): | [
9,
236,
2059
] |
def METHOD_NAME(python_app_type):
if python_app_type == "wsgi":
return """ | [
440,
991,
2433
] |
def METHOD_NAME():
"""
api: paddle.dist
op version: 12
"""
op = Net(p=float('-inf'))
op.eval()
# net, name, ver_list, delta=1e-6, rtol=1e-5
obj = APIOnnx(op, 'dist', [12])
obj.set_input_data(
"input_data",
paddle.to_tensor(
randtool("float", -1, 1, [3, 3, 3]).astype('float32')),
paddle.to_tensor(
randtool("float", -1, 1, [3, 3, 3]).astype('float32')))
obj.run() | [
9,
1260,
1962
] |
def METHOD_NAME(self):
pkgver = self.fields['pkgver'][0] if 'pkgver' in self.fields else None
if pkgver is not None:
m = re.search(br'-([^-])*$', pkgver)
if m:
return m.group(1)
return None | [
586
] |
def METHOD_NAME(self):
from traitsui.api import View, Item, Group, InstanceEditor, EnumEditor
from PYME.ui.custom_traits_editors import HistLimitsEditor, CBEditor
return View([#Group([
Item('dsname', label='Data', editor=EnumEditor(name='_datasource_choices')),
Item('method'),
Item('depth'),Item('min_points'),
#Item('vertexColour', editor=EnumEditor(name='_datasource_keys'), label='Colour'),
#Group([Item('clim', editor=HistLimitsEditor(data=self._get_cdata), show_label=False), ]),
Group([Item('cmap', label='LUT'), Item('alpha')])], )
# buttons=['OK', 'Cancel']) | [
235,
1179
] |
def METHOD_NAME(self):
if hasattr(self.optimizer, "supports_step_with_scale"):
return self.optimizer.METHOD_NAME
return False | [
1466,
367,
41,
930
] |
def METHOD_NAME(self, text):
"""
Set image type depending of user choice
"""
if "l2" in text:
self.uiTypeComboBox.setCurrentIndex(0) # L2 image
elif "l3" in text:
self.uiTypeComboBox.setCurrentIndex(1) # L3 image | [
660,
534,
2004,
526,
1180,
3572
] |
def METHOD_NAME(self, route_point, cleverage_resp):
logging.getLogger(__name__).debug('cleverage response: {}'.format(cleverage_resp))
line_code = route_point.fetch_line_id(self.object_id_tag)
schedules = next(
(line['schedules'] for line in cleverage_resp if line['code'].lower() == line_code.lower()), None
)
if schedules:
next_passages = []
for next_expected_st in schedules:
# for the moment we handle only the NextStop and the direction
dt = self._get_dt(next_expected_st['departure'])
direction = next_expected_st.get('destination_name')
is_real_time = next_expected_st.get('realtime') == '1'
next_passage = RealTimePassage(dt, direction, is_real_time)
next_passages.append(next_passage)
return next_passages
else:
return None | [
19,
14101
] |
def METHOD_NAME(
self, N, G, D, H, W, epsilon, order, gc, dc):
op = core.CreateOperator(
"GroupNorm",
["X", "gamma", "beta"],
["Y", "mean", "inv_std"],
group=G,
epsilon=epsilon,
order=order,
)
C = G * D
if order == "NCHW":
X = np.random.randn(N, C, H, W).astype(np.float32) + 1.0
else:
X = np.random.randn(N, H, W, C).astype(np.float32) + 1.0
gamma = np.random.randn(C).astype(np.float32)
beta = np.random.randn(C).astype(np.float32)
inputs = [X, gamma, beta]
def ref_op(X, gamma, beta):
if order == "NCHW":
return self.group_norm_nchw_ref(X, gamma, beta, G, epsilon)
else:
return self.group_norm_nhwc_ref(X, gamma, beta, G, epsilon)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=inputs,
reference=ref_op,
threshold=5e-3,
)
self.assertDeviceChecks(dc, op, inputs, [0, 1, 2]) | [
9,
846,
387,
1085
] |
METHOD_NAME(self): | [
9,
1024,
846
] |
def METHOD_NAME(self):
@dsl.container_component
def hello_world_io(
text: str,
text_output_path: dsl.OutputPath(str)) -> dsl.ContainerSpec:
"""Hello world component with input and output."""
return dsl.ContainerSpec(
image='python:3.7',
command=['echo'],
args=['--text', text, '--output_path', text_output_path])
self.assertIsInstance(hello_world_io,
container_component_class.ContainerComponent) | [
9,
717,
41,
53,
249
] |
def METHOD_NAME() -> None:
lex = FilterSyntaxLexer().lex
data = "string-2-2 string"
assert [(tok.type, tok.value) for tok in lex(data)] == [
("STRING", "string-2-2"),
("STRING", "string"),
] | [
9,
5886,
13616,
623,
144
] |
def METHOD_NAME(self, get_proxy: MagicMock, RequestParser: MagicMock) -> None:
input_data = [
json.dumps({
'anykey1': 'anyval1'
}),
json.dumps({
'anykey2': 'anyval2'
})
]
RequestParser().parse_args.return_value = dict(data=input_data, index='fake_index')
with self.assertRaises(ValidationError):
DocumentTablesAPI().put() | [
9,
1276,
107,
2253,
216
] |
def METHOD_NAME(self) -> None:
data = bytearray(ICON_BANNER_SIZE)
write_u16(data, self.version, 0x0)
data[0x20 : 0x20 + 0x200] = self.icon.bitmap
data[0x220 : 0x220 + 0x20] = self.icon.palette
data[0x240 : 0x240 + 0x100] = _utf16_encode_fixed(self.title_japanese)
data[0x340 : 0x340 + 0x100] = _utf16_encode_fixed(self.title_english)
data[0x440 : 0x440 + 0x100] = _utf16_encode_fixed(self.title_french)
data[0x540 : 0x540 + 0x100] = _utf16_encode_fixed(self.title_german)
data[0x640 : 0x640 + 0x100] = _utf16_encode_fixed(self.title_italian)
data[0x740 : 0x740 + 0x100] = _utf16_encode_fixed(self.title_spanish)
calculated_checksum = nds_crc16(data, 0x20, 0x820)
write_u16(data, calculated_checksum, 0x2)
self.rom.iconBanner = data | [
73,
24,
11121
] |
def METHOD_NAME(self, args: Dict[str, Any]) -> None:
"""
Run the notebook.
"""
# Exclude arguments that are not needed to be passed to the notebook
ignore_keys = {constants.LOG_LEVEL_ARG, constants.OUTPUT_NOTEBOOK_ARG}
nb_parameters = {key:val for key,val in args.items() if key not in ignore_keys}
# Get environment variables
env_vars = HiveToBigQueryScript.get_env_vars()
nb_parameters.update(env_vars)
# Run the notebook
output_path = args[constants.OUTPUT_NOTEBOOK_ARG]
pm.execute_notebook(
'hive2bq/HiveToBigquery_notebook.ipynb',
output_path,
parameters=nb_parameters,
log_output=True
) | [
22
] |
def METHOD_NAME(sym=None, with_private=False, with_color=True, color=None,
color2=None, truncate=True, with_methods=True, _larch=None):
"""show group members:
Options
-------
with_private: show 'private' members ('__private__') if True
with_color: show alternating lines in color if True and color is available.
truncate: truncate representation of lengthy lists and tuples if True
with_methods: suppress display of methods if False
"""
if sym is None:
sym = _larch.symtable
group = None
symtable = _larch.symtable
display = symtable._sys.display
with_color = with_color and display.use_color
title = sym
if symtable.isgroup(sym):
group = sym
title = repr(sym)[1:-1]
elif isinstance(sym, types.ModuleType):
group = sym
title = sym.__name__
if group is None:
_larch.writer.write("%s\n" % repr(sym))
return
if title.startswith(symtable.top_group):
title = title[6:]
if group == symtable:
title = 'Group _main'
## set colors for output
colopts1 = display.colors['text']
colopts2 = display.colors['text2']
if with_color:
if color is not None:
colopts1['color'] = color
if color2 is not None:
colopts2['color'] = color2
_copts = {1: colopts1, 0: colopts2}
members = dir(group)
dmembers = []
nmethods = 0
for item in members:
if (item.startswith('__') and item.endswith('__') and
not with_private):
continue
obj = getattr(group, item)
if callable(obj):
nmethods +=1
if not with_methods:
continue
dmembers.append((item, obj))
write = _larch.writer.write
color_output = hasattr(_larch.writer, 'set_textstyle')
title_fmt = '== %s: %i methods, %i attributes ==\n'
write(title_fmt % (title, nmethods, len(dmembers)-nmethods))
count = 0
for item, obj in dmembers:
if (isinstance(obj, numpy.ndarray) and
(len(obj) > 10 or len(obj.shape)>1)):
dval = "array<shape=%s, type=%s>" % (repr(obj.shape),
repr(obj.dtype))
elif isinstance(obj, (list, tuple)) and truncate and len(obj) > 5:
dval = "[%s, %s, ... %s, %s]" % (repr(obj[0]), repr(obj[1]),
repr(obj[-2]), repr(obj[-1]))
else:
try:
dval = repr(obj)
except:
dval = obj
if color_output:
_larch.writer.set_textstyle({True:'text', False:'text2'}[(count%2)==1])
count += 1
write(' %s: %s\n' % (item, dval))
if color_output:
_larch.writer.set_textstyle('text')
_larch.writer.flush() | [
697
] |
def METHOD_NAME():
"""
test install function with restart=True
"""
mock_retcode = MagicMock(return_value=0)
path = "C:\\KB123456.msu"
with patch.dict(win_wusa.__salt__, {"cmd.retcode": mock_retcode}):
assert win_wusa.install(path, restart=True) is True
mock_retcode.assert_called_once_with(
["wusa.exe", path, "/quiet", "/forcerestart"], ignore_retcode=True
) | [
9,
428,
1141
] |
def METHOD_NAME(
config_settings: Optional[Mapping[str, Any]] = None
) -> List[str]:
return [] | [
19,
139,
43,
56,
792
] |
def METHOD_NAME(actual, desired):
"""Assert all-close for `astropy.coordinates.SkyCoord` objects.
- Frames can be different, aren't checked at the moment.
"""
assert isinstance(actual, SkyCoord)
assert isinstance(desired, SkyCoord)
assert_allclose(actual.data.lon.deg, desired.data.lon.deg)
assert_allclose(actual.data.lat.deg, desired.data.lat.deg) | [
638,
16055,
5362
] |
def METHOD_NAME(def_config, temp_db_conn, tiger_table, tokenizer_mock,
tmp_path):
freeze.drop_update_tables(temp_db_conn)
with pytest.raises(UsageError) as excinfo:
tiger_data.add_tiger_data(str(tmp_path), def_config, 1, tokenizer_mock())
assert "database frozen" in str(excinfo.value)
assert tiger_table.count() == 0 | [
9,
238,
10700,
365,
463,
2639
] |
def METHOD_NAME(request_body, mocker):
handler = RedirectHandlerFactory('all', False)
inst = handler()
req = urllib_request.Request(
'https://ansible.com/',
'POST'
)
req_mock = mocker.patch('ansible.module_utils.urls.RequestWithMethod')
inst.redirect_request(req, request_body, 301, '301 Moved Permanently', {}, 'https://docs.ansible.com/')
req_mock.assert_called_once_with('https://docs.ansible.com/', data=None, headers={}, method='GET', origin_req_host='ansible.com', unverifiable=True) | [
9,
75,
13958,
72
] |
def METHOD_NAME(user_rincewind: models.User) -> models.AccountPhone:
"""Phone number for user fixture."""
return user_rincewind.add_phone(TEST_NEW_PHONE) | [
-1,
17841
] |
def METHOD_NAME(client_id: int):
return f"site-{client_id}" | [
19,
340,
156
] |
def METHOD_NAME(lst: Iterator[Any]) -> List[Any]:
return [item for sublist in lst for item in sublist] | [
247
] |
def METHOD_NAME(settings):
global c
if c is None:
c = APIDiscourseClient(settings)
return c | [
19,
6994,
340
] |
def METHOD_NAME(value, key):
"""Lookup key in a dictionary"""
return value.get(key, value) | [
1906
] |
def METHOD_NAME():
self.is_connected = False | [
1790
] |
def METHOD_NAME(self, msg):
self.messages.append(msg) | [
697,
277
] |
def METHOD_NAME(self):
module = snippets.asm_to_gtirb(
"""
.ref:
adr r0, .data0
.load:
vld1.8 {d0}, [r0]
b .end
.data0:
.byte 0
.align 2
.end:
""",
arch=gtirb.Module.ISA.ARM,
)
accesses = snippets.parse_souffle_output(
module, "composite_data_access"
)
self.assertIn(
(
next(module.symbols_named(".ref")).referent.address,
next(module.symbols_named(".load")).referent.address,
next(module.symbols_named(".data0")).referent.address,
8,
),
accesses,
) | [
9,
3208,
3209,
3210
] |
def METHOD_NAME(app, url, destination, appVersion=""):
# First download the file
targzFile = "/tmp/xcarchive.tar.gz"
# Clean first
if os.path.exists("/tmp/%s.xcarchive" % app):
os.system("rm -rf /tmp/%s.xcarchive" % app)
responseCode = downloadFile(url, credentials.jenkins['login'], credentials.jenkins['password'], targzFile)
if 200 == responseCode:
# Not very nice: Let Mac OSX untargzipped everything
os.system("open %s" % targzFile)
print "Sleeping 5s to let time for the system to unzip xcarchive.tar.gz..."
time.sleep(5)
# And copy the symbol file at requested destination
if not os.path.exists(os.path.dirname(destination)):
os.makedirs(os.path.dirname(destination))
print "cp /tmp/%s.xcarchive/dSYMs/%s.app.dSYM/Contents/Resources/DWARF/%s %s" % (app, app, app, destination)
os.system("cp /tmp/%s.xcarchive/dSYMs/%s.app.dSYM/Contents/Resources/DWARF/%s %s" % (app, app, app, destination))
# Check the expected symbols file is here
if not os.path.exists(destination):
print "Error: Can't extract the symbols file"
responseCode = 404
return responseCode | [
136,
-1,
754,
755
] |
def METHOD_NAME(settings, max_blocks_per_call=10000):
rpc = BitcoinRPC(settings['host'], settings['port'],
settings['rpcuser'], settings['rpcpassword'])
height = settings['min_height']
while height < settings['max_height']+1:
num_blocks = min(settings['max_height']+1-height, max_blocks_per_call)
batch = []
for x in range(num_blocks):
batch.append(rpc.build_request(x, 'getblockhash', [height + x]))
reply = rpc.execute(batch)
if reply is None:
print('Cannot continue. Program will halt.')
return None
for x,resp_obj in enumerate(reply):
if rpc.response_is_error(resp_obj):
print('JSON-RPC: error at height', height+x, ': ', resp_obj['error'], file=sys.stderr)
sys.exit(1)
assert(resp_obj['id'] == x) # assume replies are in-sequence
if settings['rev_hash_bytes'] == 'true':
resp_obj['result'] = hex_switchEndian(resp_obj['result'])
print(resp_obj['result'])
height += num_blocks | [
19,
573,
2012
] |
def METHOD_NAME(self):
"""Returns the string representation of the model"""
return pprint.pformat(self.to_dict()) | [
24,
3
] |
def METHOD_NAME(self):
self.assertIn(self.profile, self.organizations['open'])
self.assertIn(self.profile.id, self.organizations['open'])
self.assertNotIn(self.users['superuser'].profile, self.organizations['open'])
self.assertNotIn(self.users['superuser'].profile.id, self.organizations['open'])
with self.assertRaisesRegex(TypeError, 'Organization membership test'):
'aaaa' in self.organizations['open'] | [
9,
1992
] |
def METHOD_NAME(self) -> str:
"""
The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts"
"""
return pulumi.get(self, "type") | [
44
] |
def METHOD_NAME(
column_type_mapping: Dict,
columns: List[str],
full_table_name: str,
key_properties: List[str],
schema: Dict,
unique_constraints: List[str] = None,
use_lowercase: bool = True,
) -> str:
columns_and_types = []
column_properties = schema['properties']
for col in columns:
column_name = clean_column_name(col, lower_case=use_lowercase)
column_type = column_type_mapping[col]['type_converted']
if COLUMN_TYPE_INTEGER == column_type_mapping[col]['type']:
column_type = 'INTEGER'
column_props = []
if COLUMN_TYPE_NULL not in column_properties.get(col).get('type', []):
column_props.append('NOT NULL')
col_statement = f'{column_name} {column_type}'
if len(column_props) >= 1:
col_statement = f"{col_statement} {' '.join(column_props)}"
columns_and_types.append(col_statement)
if unique_constraints:
unique_constraints = [clean_column_name(col, lower_case=use_lowercase)
for col in unique_constraints]
index_name = '_'.join([
clean_column_name(full_table_name, lower_case=use_lowercase),
] + unique_constraints)
index_name = f'unique{index_name}'[:64]
columns_and_types.append(f"CONSTRAINT {index_name} Unique({', '.join(unique_constraints)})")
if key_properties and len(key_properties) >= 1:
col = clean_column_name(key_properties[0], lower_case=use_lowercase)
columns_and_types.append(f'PRIMARY KEY ({col})')
return f"CREATE TABLE {full_table_name} ({', '.join(columns_and_types)})" | [
56,
129,
410,
462
] |
def METHOD_NAME() -> LitestarGroup:
import litestar.cli.main
return cast("LitestarGroup", importlib.reload(litestar.cli.main).litestar_group) | [
1563,
462
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.