text
stringlengths
15
7.82k
ids
sequencelengths
1
7
def METHOD_NAME(config: OpenMetadataConnection) -> AuthenticationProvider: warn_auth_deprecation(config.authProvider) return AzureAuthenticationProvider.create(config)
[ 1507, 2433, 176 ]
def METHOD_NAME(self, request, user, data): return data
[ 1356 ]
def METHOD_NAME(self) -> str: """ The provisioning state of the route table resource. """ return pulumi.get(self, "provisioning_state")
[ 1994, 551 ]
def METHOD_NAME(self, ctx:STIXPatternParser.OrderableLiteralContext): return self.visitChildren(ctx)
[ 716, 15914, 1479 ]
def METHOD_NAME(test, params, env): """ Executes dd with defined parameters and checks the return number and output Test steps: 1). wait guest boot up 2). run dd command in guest with special params(eg. oflag, bs and so on) 3). check command exit stauts and output """ def _get_file(filename, select, test=test): """ Picks the actual file based on select value """ if filename == "NULL": return "/dev/null" elif filename == "ZERO": return "/dev/zero" elif filename == "RANDOM": return "/dev/random" elif filename == "URANDOM": return "/dev/urandom" elif filename in params.objects("images"): drive_id = params["blk_extra_params_%s" % filename].split("=")[1] drive_path = utils_misc.get_linux_drive_path(session, drive_id) if drive_path: return drive_path test.error("Failed to get '%s' drive path" % filename) else: # get all matching filenames try: disks = sorted(session.cmd("ls -1d %s" % filename).split('\n')) except aexpect.ShellCmdError: # No matching file (creating new?) disks = [filename] if disks[-1] == '': disks = disks[:-1] try: return disks[select] except IndexError: err = ("Incorrect cfg: dd_select out of the range (disks=%s," " select=%s)" % (disks, select)) test.log.error(err) test.error(err) def _check_disk_partitions_number(): """ Check the data disk partitions number. """ del partitions[:] partitions.extend(re.findall( r'%s\d+' % dev_id, ' '.join(utils_disk.get_linux_disks(session, True)))) return len(partitions) == bs_count vm = env.get_vm(params['main_vm']) timeout = int(params.get("login_timeout", 360)) error_context.context("Wait guest boot up", test.log.info) session = vm.wait_for_login(timeout=timeout) dd_keys = ['dd_if', 'dd_of', 'dd_bs', 'dd_count', 'dd_iflag', 'dd_oflag', 'dd_skip', 'dd_seek'] dd_params = {key: params.get(key, None) for key in dd_keys} if dd_params['dd_bs'] is None: dd_params['dd_bs'] = '512' dd_params['dd_bs'] = dd_params['dd_bs'].split() bs_count = len(dd_params['dd_bs']) dd_timeout = int(params.get("dd_timeout", 180)) dd_output = params.get("dd_output", "") dd_stat = int(params.get("dd_stat", 0)) dev_partitioned = [] for arg in ['dd_if', 'dd_of']: filename = dd_params[arg] path = _get_file(filename, int(params.get('%s_select' % arg, '-1'))) if (bs_count > 1 and filename in params.objects('images')): psize = float( utils_numeric.normalize_data_size( params.get("partition_size", '2G') ) ) start = 0.0 dev_id = os.path.split(path)[-1] dev_partitioned.append(dev_id) utils_disk.create_partition_table_linux(session, dev_id, 'gpt') for i in range(bs_count): utils_disk.create_partition_linux(session, dev_id, '%fM' % psize, '%fM' % start) start += psize partitions = [] if not utils_misc.wait_for(_check_disk_partitions_number, 30, step=3.0): test.error('Failed to get %d partitions on %s.' % (bs_count, dev_id)) partitions.sort() dd_params[arg] = [path.replace(dev_id, part) for part in partitions] else: dd_params[arg] = [path] if bs_count > 1 and not dev_partitioned: test.error('with multiple bs, either dd_if or \ dd_of must be a block device') dd_cmd = ['dd'] for key in dd_keys: value = dd_params[key] if value is None: continue arg = key.split('_')[-1] if key in ['dd_if', 'dd_of', 'dd_bs']: part = '%s=%s' % (arg, '{}') else: part = '%s=%s' % (arg, value) dd_cmd.append(part) dd_cmd = ' '.join(dd_cmd) remaining = [dd_params[key] for key in ['dd_if', 'dd_of', 'dd_bs']] if len(dd_params['dd_if']) != bs_count: fillvalue = dd_params['dd_if'][-1] else: fillvalue = dd_params['dd_of'][-1] cmd = [dd_cmd.format(*t) for t in zip_longest(*remaining, fillvalue=fillvalue)] cmd = ' & '.join(cmd) test.log.info("Using '%s' cmd", cmd) try: error_context.context("Execute dd in guest", test.log.info) try: (stat, out) = session.cmd_status_output(cmd, timeout=dd_timeout) except aexpect.ShellTimeoutError: err = ("dd command timed-out (cmd='%s', timeout=%d)" % (cmd, dd_timeout)) test.fail(err) except aexpect.ShellCmdError as details: stat = details.status out = details.output error_context.context("Check command exit status and output", test.log.info) test.log.debug("Returned dd_status: %s\nReturned output:\n%s", stat, out) if stat != dd_stat: err = ("Return code doesn't match (expected=%s, actual=%s)\n" "Output:\n%s" % (dd_stat, stat, out)) test.fail(err) if dd_output not in out: err = ("Output doesn't match:\nExpected:\n%s\nActual:\n%s" % (dd_output, out)) test.fail(err) test.log.info("dd test succeeded.") finally: for dev_id in dev_partitioned: utils_disk.clean_partition_linux(session, dev_id) session.close()
[ 22 ]
async def METHOD_NAME(cc_targets: AllCCTargets) -> CCFilesMapping: stripped_file_per_target = await MultiGet( Get(StrippedFileName, StrippedFileNameRequest(tgt[CCSourceField].file_path)) for tgt in cc_targets ) stripped_files_to_addresses: dict[str, Address] = {} stripped_files_with_multiple_owners: DefaultDict[str, set[Address]] = defaultdict(set) for tgt, stripped_file in zip(cc_targets, stripped_file_per_target): if stripped_file.value in stripped_files_to_addresses: stripped_files_with_multiple_owners[stripped_file.value].update( {stripped_files_to_addresses[stripped_file.value], tgt.address} ) else: stripped_files_to_addresses[stripped_file.value] = tgt.address # Remove files with ambiguous owners. for ambiguous_stripped_f in stripped_files_with_multiple_owners: stripped_files_to_addresses.pop(ambiguous_stripped_f) mapping_not_stripped = {tgt[CCSourceField].file_path: tgt.address for tgt in cc_targets} return CCFilesMapping( mapping=FrozenDict(sorted(stripped_files_to_addresses.items())), ambiguous_files=FrozenDict( (k, tuple(sorted(v))) for k, v in sorted(stripped_files_with_multiple_owners.items()) ), mapping_not_stripped=FrozenDict(mapping_not_stripped), )
[ 422, 1298, 1537 ]
def METHOD_NAME(self): """ _tearDownCouch_ call this in tearDown to erase all evidence of your couch misdemeanours """ for database in self.databases: self.couch.drop(database)
[ 531, 481, 4400 ]
def METHOD_NAME( self, mock_set_form_data, mock_update_job ): app._got_first_request = False async_query_manager.init_app(app) user = security_manager.find_user("gamma") form_data = {} job_metadata = { "channel_id": str(uuid4()), "job_id": str(uuid4()), "user_id": user.id, "status": "pending", "errors": [], } with pytest.raises(SupersetException): load_explore_json_into_cache(job_metadata, form_data) mock_set_form_data.assert_called_once_with(form_data) errors = ["The dataset associated with this chart no longer exists"] mock_update_job.assert_called_once_with(job_metadata, "error", errors=errors)
[ 9, 557, 1176, 763, 409, 596, 168 ]
def METHOD_NAME(self): FecDataWriter.METHOD_NAME(self) self._set_min_delay(1)
[ 248 ]
def METHOD_NAME(cli, ckan_config): """Config file not ignored when displaying usage. """ result = cli.invoke(ckan, [u'-c', ckan_config[u'__file__'], u'-h']) assert not result.exit_code
[ 9, 668, 200, 41, 40 ]
def METHOD_NAME(cls, key, catalog): assert key assert catalog return catalog.key + '/' + key
[ 56, 157 ]
def METHOD_NAME(widths): """Given a list of glyph widths, or dictionary mapping glyph width to number of glyphs having that, returns a tuple of best CFF default and nominal glyph widths. This algorithm is linear in UPEM+numGlyphs.""" if not hasattr(widths, "items"): d = defaultdict(int) for w in widths: d[w] += 1 widths = d keys = sorted(widths.keys()) minw, maxw = keys[0], keys[-1] domain = list(range(minw, maxw + 1)) # Cumulative sum/max forward/backward. cumFrqU = cumSum(widths, op=add) cumMaxU = cumSum(widths, op=max) cumFrqD = cumSum(widths, op=add, decreasing=True) cumMaxD = cumSum(widths, op=max, decreasing=True) # Cost per nominal choice, without default consideration. nomnCostU = missingdict( lambda x: cumFrqU[x] + cumFrqU[x - 108] + cumFrqU[x - 1132] * 3 ) nomnCostD = missingdict( lambda x: cumFrqD[x] + cumFrqD[x + 108] + cumFrqD[x + 1132] * 3 ) nomnCost = missingdict(lambda x: nomnCostU[x] + nomnCostD[x] - widths[x]) # Cost-saving per nominal choice, by best default choice. dfltCostU = missingdict( lambda x: max(cumMaxU[x], cumMaxU[x - 108] * 2, cumMaxU[x - 1132] * 5) ) dfltCostD = missingdict( lambda x: max(cumMaxD[x], cumMaxD[x + 108] * 2, cumMaxD[x + 1132] * 5) ) dfltCost = missingdict(lambda x: max(dfltCostU[x], dfltCostD[x])) # Combined cost per nominal choice. bestCost = missingdict(lambda x: nomnCost[x] - dfltCost[x]) # Best nominal. nominal = min(domain, key=lambda x: bestCost[x]) # Work back the best default. bestC = bestCost[nominal] dfltC = nomnCost[nominal] - bestCost[nominal] ends = [] if dfltC == dfltCostU[nominal]: starts = [nominal, nominal - 108, nominal - 1132] for start in starts: while cumMaxU[start] and cumMaxU[start] == cumMaxU[start - 1]: start -= 1 ends.append(start) else: starts = [nominal, nominal + 108, nominal + 1132] for start in starts: while cumMaxD[start] and cumMaxD[start] == cumMaxD[start + 1]: start += 1 ends.append(start) default = min(ends, key=lambda default: byteCost(widths, default, nominal)) return default, nominal
[ 5107, 6265 ]
def METHOD_NAME(): return { salt_monitor: { "__salt__": { "test.ping": mock_test_ping, "test.version": mock_test_version, "cmd.run": mock_test, "test.false": mock_test_false, } } }
[ 111, 467, 468 ]
def METHOD_NAME(x, bins): """Pearson's Chi-squared test.""" x = np.ravel(x) n = len(x) histogram, _ = np.histogram(x, bins=bins, range=(0, 1)) expected = n / float(bins) return np.sum(np.square(histogram - expected) / expected)
[ 10356, 9702 ]
def METHOD_NAME(gtest): with pytest.raises( AssertionError, match=r"gTest error, mismatched tests. Expected id.suite_name.test0 but got None", ): process_logs( gtest, [ SAMPLE_GTEST_START, SAMPLE_GTEST_FMT.format( state=GTEST_START_STATE, suite="suite_name", test="test0" ), SAMPLE_GTEST_FMT.format( state=GTEST_PASS_STATE, suite="suite_name", test="test1" ), ], )
[ 9, 6227, 4030, 1571 ]
def METHOD_NAME(port, http_request): request = http_request("POST", "http://localhost:{}/basic/string".format(port)) with RequestsTransport() as sender: response = sender.send(request) auto_headers = response.internal_response.request.headers assert "Content-Type" not in auto_headers
[ 9, 311, 803, 2131 ]
def METHOD_NAME(X: Series) -> bool: type_family = get_type_family_raw(X.dtype) if type_family != "object": return False if len(X) > 5000: # Sample to speed-up type inference X = X.sample(n=5000, random_state=0) X_unique = X.unique() num_unique = len(X_unique) num_rows = len(X) unique_ratio = num_unique / num_rows if unique_ratio <= 0.01: return False try: avg_words = Series(X_unique).str.split().str.len().mean() except AttributeError: return False if avg_words < 3: return False return True
[ 250, 217, 7138, 964 ]
def METHOD_NAME(self, ins: t.Any = None) -> t.Callable: func = self.func if ins is not None: func = functools.partial(func, ins) return func
[ 1179, 717 ]
def METHOD_NAME(): net = pn.case30() pp.runpp(net) assert net.converged _ppc_element_test(net, 30, 41, 6, True)
[ 9, -1 ]
def METHOD_NAME(self): """ See :meth:`AdaptiveCovarianceMC._generate_proposal()`. """ proposed = np.random.multivariate_normal( self._current, np.exp(self._log_lambda) * self._sigma[self._proposal_count]) return proposed
[ 567, 4229 ]
def METHOD_NAME(rebulk: Rebulk, config: dict, options: dict = None): """ Load patterns defined in given config. :param rebulk: Rebulk builder to use. :param config: dict containing pattern definition. :param options: Additional pattern options to use. :type options: Dict[Dict[str, str]] A dict where key is the pattern type (regex, string, functional) and value is the default kwargs options to pass. :return: """ if options is None: options = {} for value, raw_entries in config.items(): entries = raw_entries if isinstance(raw_entries, list) else [raw_entries] for entry in entries: if isinstance(entry, dict) and "callable" in entry.keys(): _process_callable_entry(entry.pop("callable"), rebulk, entry) continue entry_decl = _build_entry_decl(entry, options, value) for pattern_type in _pattern_types: patterns = entry_decl.get(pattern_type) if not patterns: continue if not isinstance(patterns, list): patterns = [patterns] patterns_entry_decl = dict(entry_decl) for pattern_type_to_remove in _pattern_types: patterns_entry_decl.pop(pattern_type_to_remove, None) current_pattern_options = dict(options) current_pattern_options[None] = patterns_entry_decl load_patterns(rebulk, pattern_type, patterns, current_pattern_options)
[ 557, 200, 5230 ]
def METHOD_NAME(self, command): """send command via serial""" self.serial_needed() self.log.debug("Send serial command: "+command) serial_str=command+"\n" self._serial.write(bytes(serial_str, 'ascii'));
[ -1 ]
def METHOD_NAME(self, pyramid_request): return AdminOrganizationViews(pyramid_request)
[ 4632 ]
def METHOD_NAME(cls, filename: Union[os.PathLike, str]): """Load the default configuration.""" new = cls() mapping = _read_config_file(filename) # Add defaults that are not available in esmvalcore/config-user.yml mapping['check_level'] = CheckLevels.DEFAULT mapping['config_file'] = filename mapping['diagnostics'] = None mapping['extra_facets_dir'] = tuple() mapping['max_datasets'] = None mapping['max_years'] = None mapping['resume_from'] = [] mapping['run_diagnostic'] = True mapping['skip_nonexistent'] = False new.update(mapping) return new
[ 557, 235, 200 ]
def METHOD_NAME(self): self.zoom_x_limits = self.ax.get_xlim() self.zoom_y_limits = self.ax.get_ylim()
[ 2560, 2093 ]
f METHOD_NAME(self, grad, var):
[ 231, 3829 ]
async def METHOD_NAME(self) -> None: for container_name in list(self._log_processor_tasks.keys()): await self.stop_log_fetching(container_name)
[ 631, 7715 ]
def METHOD_NAME(self, es_results): results = [] time_change = datetime.timedelta(days=92) for x in es_results.aggs.to_dict().get("time_period", {}).get("buckets", []): date = datetime.datetime.strptime(x.get("key_as_string"), "%Y-%m-%d") date = date + time_change if self.group == "month": time_period = {"fiscal_year": f"{date.year}", self.group: f"{date.month}"} elif self.group == "quarter": time_period = {"fiscal_year": f"{date.year}", self.group: f"{int(date.month/3) + (date.month % 3>0)}"} else: time_period = {"fiscal_year": f"{date.year}"} results.append( { "new_award_count_in_period": x.get("award_count", {}).get("value", 0), "time_period": time_period, } ) results = self.complete_missing_periods(results) return results
[ 275, 51 ]
def METHOD_NAME(rise_times, test=False): """ duplicate the plot from Figure 2.7 of Kris Vorren's thesis. need to fit the e_ftp peak to the HPGe peakshape function (same as in calibration.py) and plot the resulting FWHM^2 vs. the ramp time. """ out_dir = "~/Data/cage" opt_file = f"{out_dir}/cage_ds3_optimize.h5" print("input file:", opt_file) # match keys to settings; should maybe do this in prev function as attrs. with pd.HDFStore(opt_file, 'r') as store: keys = [key[1:] for key in store.keys()] # remove leading '/' settings = {keys[i] : rise_times[i] for i in range(len(keys))} # loop over the keys and fit each e_ftp spectrum to the peakshape function fwhms = {} for key, rt in settings.items(): t2df = pd.read_hdf(opt_file, key=key) # histogram spectrum near the uncalibrated peak -- have to be careful here xlo, xhi, xpb = 2550, 2660, 1 hE, xE, vE = ph.get_hist(t2df["e_ftp"], range=(xlo, xhi), dx=xpb, trim=False) # set initial guesses for the peakshape function. most are pretty rough mu = xE[np.argmax(hE)] sigma = 5 hstep = 0.001 htail = 0.5 tau = 10 bg0 = np.mean(hE[:20]) amp = np.sum(hE) x0 = [mu, sigma, hstep, htail, tau, bg0, amp] xF, xF_cov = pf.fit_hist(pf.radford_peak, hE, xE, var=vE, guess=x0) fwhms[key] = xF[1] * 2.355 if test: plt.cla() # peakshape function plt.plot(xE, pf.radford_peak(xE, *x0), c='orange', label='guess') plt.plot(xE, pf.radford_peak(xE, *xF), c='r', label='peakshape') plt.axvline(mu, c='g') # plot individual components # tail_hi, gaus, bg, step, tail_lo = pf.radford_peak(xE, *xF, components=True) # gaus = np.array(gaus) # step = np.array(step) # tail_lo = np.array(tail_lo) # plt.plot(xE, gaus * tail_hi, ls="--", lw=2, c='g', label="gaus+hi_tail") # plt.plot(xE, step + bg, ls='--', lw=2, c='m', label='step + bg') # plt.plot(xE, tail_lo, ls='--', lw=2, c='k', label='tail_lo') plt.plot(xE[1:], hE, ls='steps', lw=1, c='b', label="data") plt.plot(np.nan, np.nan, c='w', label=f"fwhm = {results['fwhm']:.2f} uncal.") plt.xlabel("Energy (uncal.)", ha='right', x=1) plt.ylabel("Counts", ha='right', y=1) plt.legend(loc=2) plt.show()
[ 5107, 5770 ]
def METHOD_NAME(self, step: int, epoch: int, train_metrics: Dict) -> None: if len(jax.devices()) > 1: train_metrics = jax_utils.unreplicate(train_metrics) metrics = {"train/loss": train_metrics["loss"], "epoch": epoch} wandb.log(metrics, step=step + 1)
[ 390, 2277 ]
def METHOD_NAME( self, angle_list: List[float], q_controls: Sequence[QubitSpecifier], q_target: QubitSpecifier ): r"""Attach a uniformly controlled (also called multiplexed) Ry rotation gate to a circuit. The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al. Args: angle_list (List[float]): list of (real) rotation angles :math:`[a_0,...,a_{2^k-1}]` q_controls (Sequence[QubitSpecifier]): list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if ``q_controls=[q[0],q[1]]`` (with ``q = QuantumRegister(2)``), the rotation ``Ry(a_0)`` is performed if ``q[0]`` and ``q[1]`` are in the state zero, the rotation ``Ry(a_1)`` is performed if ``q[0]`` is in the state one and ``q[1]`` is in the state zero, and so on q_target (QubitSpecifier): target qubit, where we act on with the single-qubit rotation gates Returns: QuantumCircuit: the uniformly controlled rotation gate is attached to the circuit. Raises: QiskitError: if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type """ if isinstance(q_controls, QuantumRegister): q_controls = q_controls[:] if isinstance(q_target, QuantumRegister): q_target = q_target[:] if len(q_target) == 1: q_target = q_target[0] else: raise QiskitError( "The target qubit is a QuantumRegister containing more than one qubit." ) # Check if q_controls has type "list" if not isinstance(angle_list, list): raise QiskitError("The angles must be provided as a list.") num_contr = math.log2(len(angle_list)) if num_contr < 0 or not num_contr.is_integer(): raise QiskitError( "The number of controlled rotation gates is not a non-negative power of 2." ) # Check if number of control qubits does correspond to the number of rotations if num_contr != len(q_controls): raise QiskitError( "Number of controlled rotations does not correspond to the number of control-qubits." ) return self.append(UCRYGate(angle_list), [q_target] + q_controls, [])
[ -1 ]
def METHOD_NAME(self, request, format=None): # List invitations sent by user. username = request.user.username invitations = [] for e in Invitation.objects.get_by_inviter(username): invitations.append(e.to_dict()) return Response(invitations)
[ 19 ]
def METHOD_NAME(self, title, message, sound=None, userKey=None, apiKey=None, force=False): """ Sends a pushover notification based on the provided info or SC config title: The title of the notification to send message: The message string to send sound: The notification sound to use userKey: The userKey to send the notification to apiKey: The apiKey to use to send the notification force: Enforce sending, for instance for testing """ if not settings.USE_PUSHOVER and not force: logger.debug("Notification for Pushover not enabled, skipping this notification") return False logger.debug("Sending notification for " + message) return self._send_pushover(message, title, sound=sound, userKey=userKey, apiKey=apiKey)
[ 959, 7004 ]
async def METHOD_NAME(self, app, prefix_message_text): handler = self.make_default_handler( self.callback_regex2, filters=filters.Regex("one") & filters.Regex("two") ) await self._test_context_args_or_regex(app, handler, prefix_message_text)
[ 9, 198, 107, 211 ]
def METHOD_NAME(self): energy_list = [] with open(os.path.join(output_dir, "{}_energy.dat".format(header))) as f: lines = f.readlines() for line in lines: words = line.split() if len(words) != 0 and words[0] == "Energy": energy_list.append(float(words[1])) self.energy_list = energy_list self.ene_min = energy_list[0] self.ene_max = energy_list[len(energy_list)-1] for T in T_list: eta_ene = np.exp(-(self.ene_max-self.ene_min)/T) print("T = {}: exp[-beta(ene_max-ene_mix)] = {}".format(T, eta_ene)) if eta_ene > eta: print("Warning: At T = {}, eta_ene is larger than eta.".format(T)) return energy_list
[ 19, 1811 ]
def METHOD_NAME(private_endpoint_connection_name: Optional[str] = None, resource_group_name: Optional[str] = None, server_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetPrivateEndpointConnectionResult: """ Gets a private endpoint connection. :param str private_endpoint_connection_name: The name of the private endpoint connection. :param str resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :param str server_name: The name of the server. """ __args__ = dict() __args__['privateEndpointConnectionName'] = private_endpoint_connection_name __args__['resourceGroupName'] = resource_group_name __args__['serverName'] = server_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure-native:dbformariadb/v20180601privatepreview:getPrivateEndpointConnection', __args__, opts=opts, typ=GetPrivateEndpointConnectionResult).value return AwaitableGetPrivateEndpointConnectionResult( id=pulumi.get(__ret__, 'id'), name=pulumi.get(__ret__, 'name'), private_endpoint=pulumi.get(__ret__, 'private_endpoint'), private_link_service_connection_state=pulumi.get(__ret__, 'private_link_service_connection_state'), provisioning_state=pulumi.get(__ret__, 'provisioning_state'), type=pulumi.get(__ret__, 'type'))
[ 19, 547, 841, 550 ]
def METHOD_NAME(self): return ["{}.envs".format(x) for x in self.backends]
[ 219 ]
def METHOD_NAME(self, name: str, *args: Any) -> None: self._bus.METHOD_NAME(None, self._path, self._interface_name, name, self._prepare_arguments(self._signals[name], args))
[ 2648, 900 ]
async def METHOD_NAME(api: OT3API, sig_name: str) -> None: assert sig_name in SIGNAL_TEST_NAMES if sig_name == "nsync": stop = MoveStopCondition.sync_line else: stop = MoveStopCondition.none _move_group_nsync = _build_move_group(MOVING_DISTANCE, MOVING_SPEED, stop) runner = MoveGroupRunner(move_groups=[[_move_group_nsync]]) if api.is_simulator: # test that the required functionality exists assert runner.run else: backend: OT3Controller = api._backend # type: ignore[assignment] messenger = backend._messenger if sig_name == "nsync": engage = api._backend.release_sync # type: ignore[union-attr] release = api._backend.engage_sync # type: ignore[union-attr] elif sig_name == "estop": engage = api._backend.engage_estop # type: ignore[union-attr] release = api._backend.release_estop # type: ignore[union-attr] async def _sleep_then_activate_stop_signal() -> None: if "external" in sig_name: print("waiting for EXTERNAL E-Stop button") return pause_seconds = MOVE_SECONDS / 2 print( f"pausing {round(pause_seconds, 1)} second before activating {sig_name}" ) await asyncio.sleep(pause_seconds) try: print(f"activating {sig_name}") await engage() print(f"pausing 1 second before deactivating {sig_name}") await asyncio.sleep(1) finally: print(f"deactivating {sig_name}") await release() await asyncio.sleep(0.5) async def _do_the_moving() -> None: print(f"moving {MOVING_DISTANCE} at speed {MOVING_SPEED}") try: await runner.run(can_messenger=messenger) except MotionFailedError: print("caught MotionFailedError from estop") await asyncio.sleep(0.25) # what is this doing? move_coro = _do_the_moving() stop_coro = _sleep_then_activate_stop_signal() await asyncio.gather(stop_coro, move_coro)
[ 132, 61, 1771, 41, 900 ]
def METHOD_NAME(self, X, y, queue=None): return super()._fit(X, y, _backend.linear_model.regression, queue)
[ 90 ]
def METHOD_NAME(fn): '''Indicate that a function is final and cannot be overridden.''' fn._rfm_final = True return fn
[ 2316 ]
def METHOD_NAME(help: dict, scope: str) -> tuple[frozenset[str], frozenset[str]]: """scope represents the goal or subsystem of interest Returns a tuple containing the scoped options, followed by unscoped.""" scoped_help_info = help["scope_to_help_info"][scope] scoped_options = [] unscoped_options = [] for option in scoped_help_info["basic"] + scoped_help_info["advanced"]: scoped_options.extend(option["scoped_cmd_line_args"]) unscoped_options.extend(option["unscoped_cmd_line_args"]) return ( frozenset(scoped_options), frozenset(unscoped_options), )
[ 214, 40, 43, 1881 ]
def METHOD_NAME(self, x: np.ndarray, y: Optional[np.ndarray] = None, **kwargs) -> np.ndarray: """ Infer the attacked feature. :param x: Input to attack. Includes all features except the attacked feature. :param y: Not used. :param values: Possible values for attacked feature. :type values: list :param priors: Prior distributions of attacked feature values. Same size array as `values`. :type priors: list :return: The inferred feature values. :rtype: `np.ndarray` """ priors: Optional[list] = kwargs.get("priors") values: Optional[list] = kwargs.get("values") # Checks: if self.estimator.input_shape[0] != x.shape[1] + 1: # pragma: no cover raise ValueError("Number of features in x + 1 does not match input_shape of classifier") if priors is None or values is None: # pragma: no cover raise ValueError("`priors` and `values` are required as inputs.") if len(priors) != len(values): # pragma: no cover raise ValueError("Number of priors does not match number of values") if self.attack_feature >= x.shape[1]: # pragma: no cover raise ValueError("attack_feature must be a valid index to a feature in x") n_samples = x.shape[0] # Calculate phi for each possible value of the attacked feature # phi is the total number of samples in all tree leaves corresponding to this value phi = self._calculate_phi(x, values, n_samples) # Will contain the probability of each value prob_values = [] for i, value in enumerate(values): # prepare data with the given value in the attacked feature v_full = np.full((n_samples, 1), value).astype(x.dtype) x_value = np.concatenate((x[:, : self.attack_feature], v_full), axis=1) x_value = np.concatenate((x_value, x[:, self.attack_feature :]), axis=1) # find the relative probability of this value for all samples being attacked prob_value = [ ( (self.estimator.get_samples_at_node(self.estimator.get_decision_path([row])[-1]) / n_samples) * priors[i] / phi[i] ) for row in x_value ] prob_values.append(prob_value) # Choose the value with highest probability for each sample return np.array([values[np.argmax(list(prob))] for prob in zip(*prob_values)])
[ 1852 ]
def METHOD_NAME(): key = "SYSTEM\\CurrentControlSet\\Services\\NTDS\\Parameters" vname = "LdapEnforceChannelBinding" setting = "Always" win_reg.delete_value(hive="HKLM", key=key, vname=vname) try: win_lgpo.set_computer_policy(name=vname, setting=setting) result = win_reg.read_value(hive="HKLM", key=key, vname=vname) assert result["vdata"] == 2 finally: win_reg.delete_value(hive="HKLM", key=key, vname=vname)
[ 9, 5817, 307, 4320, 2659 ]
def METHOD_NAME(self): """Check with path from str and database directory as Path""" path = "does/not/exist" location_name = "test_location_A" mapset_name = "test_mapset_1" full_path = Path(path) / location_name / mapset_name mapset_path = MapsetPath( path=str(full_path), directory=Path(path), location=location_name, mapset=mapset_name, ) # Paths are currently stored as is (not resolved). self.assertEqual(mapset_path.directory, path) self.assertEqual(mapset_path.location, location_name) self.assertEqual(mapset_path.mapset, mapset_name) self.assertEqual(mapset_path.path, Path(path) / location_name / mapset_name)
[ 9, 3934, 280, 3 ]
def METHOD_NAME(file, data, type): if type not in TypeNames.keys(): raise ValueError( f"Trying to write number with unknown dataformat.\n" f"Input: {type}\n" f"Supported types: {list(TypeNames.keys())}" ) np.array(data).astype(TypeNames[type]).tofile(file)
[ 77, 5455 ]
def METHOD_NAME(self): try: self.ws.close() except websocket.WebSocketConnectionClosedException: pass
[ 602, 4703 ]
def METHOD_NAME(client: Client): res = btc.verify_message( client, "Bitcoin", "1KzXE97kV7DrpxCViCN3HbGbiKhzzPM7TQ", bytes.fromhex( "1cc694f0f23901dfe3603789142f36a3fc582d0d5c0ec7215cf2ccd641e4e37228504f3d4dc3eea28bbdbf5da27c49d4635c097004d9f228750ccd836a8e1460c0" ), "\u017elu\u0165ou\u010dk\xfd k\u016f\u0148 \xfap\u011bl \u010f\xe1belsk\xe9 \xf3dy", ) assert res is True
[ 9, 1162, 7364 ]
def METHOD_NAME(self) -> bytes: return ( self.ground_level.METHOD_NAME(2, "little", signed=True) + self.dungeon_id.METHOD_NAME(1, "little", signed=False) + self.unk2.METHOD_NAME(1, "little", signed=False) + self.unk3.METHOD_NAME(4, "little", signed=False) )
[ 24, 321 ]
def METHOD_NAME(opts): """ Return a unique ID for this proxy minion. This ID MUST NOT CHANGE. If it changes while the proxy is running the salt-master will get really confused and may stop talking to this minion """ r = salt.utils.http.query( opts["proxy"]["url"] + "id", decode_type="json", decode=True ) return r["dict"]["id"].encode("ascii", "ignore")
[ 147 ]
def METHOD_NAME(process, network, timestamp=True): DPT = DESCRIPTOR_PIPELINE_TEMPLATE return DPT.format(process=process, network=network) + ( "connect from images.timestamp to descriptors.timestamp\n" if timestamp else '' )
[ 56, 2701, 1148 ]
def METHOD_NAME(self) -> typing.Dict[str, ROIExtractionProfile]: warnings.warn("segmentation_profiles is deprecated, use roi_profiles", DeprecationWarning, stacklevel=2) return self.roi_profiles
[ 2738, 1348 ]
def METHOD_NAME(self): # Invalid JAnalyzer, make sure we get an exception. with self.assertRaises(TypeError): Analyzer('str')
[ 9, 532, 2224, 291 ]
def METHOD_NAME(data): """deserialize_data""" return pyarrow.deserialize(data, context=context)
[ 2696, 365 ]
def METHOD_NAME(self): self.conf.fill(0)
[ 656 ]
def METHOD_NAME(): circuits = [circ, 3 * circ] true_values = [-2.0, -2.0] num_qubits = len(qreg) p0 = 0.2 p1 = 0.1 inverse_confusion_matrix = generate_inverse_confusion_matrix( num_qubits, p0=p0, p1=p1 ) @rem_decorator(inverse_confusion_matrix=inverse_confusion_matrix) def noisy_readout_batched(circuits) -> List[MeasurementResult]: return [noisy_readout_executor(c, p0=p0, p1=p1) for c in circuits] noisy_executor = partial(noisy_readout_executor, p0=p0, p1=p1) base_values = [ raw_execute(c, noisy_executor, observable) for c in circuits ] rem_values = Executor(noisy_readout_batched).evaluate(circuits, observable) for true_val, base, rem_val in zip(true_values, base_values, rem_values): assert abs(true_val - rem_val) < abs(true_val - base) assert np.isclose(true_val, rem_val, atol=0.05)
[ 9, 10771, 972, 3781 ]
def METHOD_NAME(): register_env("my_custom_multi_env_v1", make_custom_multi_env_func) global_model_factory().register_encoder_factory(make_custom_encoder)
[ 372, 343, 811 ]
def METHOD_NAME(self, nvt_pre_eq_job): name = 'npt' job = AMSNPTJob.restart_from( nvt_pre_eq_job, name=name, use_prerun=True, settings=self.settings, nsteps=self.nsteps[name], **self.kwargs, ) #@add_to_instance(job) #def prerun(self): # noqa F811 #self.get_velocities_from(nvt_pre_eq_job, update_molecule=True) self.children[name] = job return self.children[name]
[ 129, 14160, 202 ]
f METHOD_NAME(node):
[ 7810, 2189 ]
def METHOD_NAME(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "name": datasets.Value("string"), "page_no": datasets.Value("int32"), "text": datasets.features.Sequence(datasets.Value("string")), "bbox": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("int32"))), "segment_bbox": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("int32"))), "segment_id": datasets.features.Sequence(datasets.Value("int32")), "image": datasets.Value("string"), "width": datasets.Value("int32"), "height": datasets.Value("int32"), "md5sum": datasets.Value("string"), "qas": datasets.features.Sequence( { "question_id": datasets.Value("int32"), "question": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), "answer_end": datasets.Value("int32"), } ), } ), } ), supervised_keys=None, homepage="https://adamharley.com/rvl-cdip/", license=_LICENSE, citation=_CITATION, )
[ 100 ]
def METHOD_NAME(self) -> None: self.proto.lineReceived(b"echo test_`echo test`_test_`echo test`_test") self.assertEqual(self.tr.value(), b"test_test_test_test_test\n" + PROMPT)
[ 9, 1605, 462, -1 ]
def METHOD_NAME(self, size): a = c_char * size
[ 9, 1953, 877 ]
def METHOD_NAME(self, layer, event): pos = self._get_mouse_coordinates(event) dims_displayed = self._dims_displayed if event.button == 1: # left mouse click orig_pos = pos.copy() # recenter the point in the center of the image pixel pos[dims_displayed] = np.floor(pos[dims_displayed]) + 0.5 if not self.overlay.points: self._first_point_pos = np.array(event.pos) prev_point = ( self.overlay.points[-2] if self._num_points > 1 else None ) # Add a new point only if it differs from the previous one if prev_point is None or np.linalg.norm(pos - prev_point) > 0: self.overlay.points = self.overlay.points[:-1] + [ pos.tolist(), # add some epsilon to avoid points duplication, # the latest point is used only for visualization of the cursor (orig_pos + 1e-3).tolist(), ] elif event.button == 2 and self._num_points > 0: # right mouse click if self._num_points < 3: self.overlay.points = [] else: self.overlay.points = self.overlay.points[:-2] + [pos.tolist()]
[ 69, 2571, 2971 ]
def METHOD_NAME(self): self.assertEqual("Sweets", self.harvester_class.category())
[ 9, 253 ]
def METHOD_NAME(stations_dict: dict, param_dict: dict) -> pl.DataFrame: data = [ pl.DataFrame( schema={ Columns.DATE.value: pl.Datetime(time_zone="UTC"), Columns.PARAMETER.value: pl.Utf8, Columns.VALUE.value: pl.Float64, Columns.DISTANCE.value: pl.Float64, Columns.STATION_ID.value: pl.Utf8, } ) ] for parameter, param_data in param_dict.items(): param_df = pl.DataFrame({Columns.DATE.value: param_data.values.get_column(Columns.DATE.value)}) results = [] for row in param_data.values.select(pl.all().exclude("date")).iter_rows(named=True): results.append(apply_summary(row, stations_dict, parameter)) results = pl.DataFrame( results, schema={ Columns.PARAMETER.value: pl.Utf8, Columns.VALUE.value: pl.Float64, Columns.DISTANCE.value: pl.Float64, Columns.STATION_ID.value: pl.Utf8, }, ) param_df = pl.concat([param_df, results], how="horizontal") data.append(param_df) df = pl.concat(data) df = df.with_columns(pl.col(Columns.VALUE.value).round(2), pl.col(Columns.DISTANCE.value).round(2)) return df.sort( by=[ Columns.PARAMETER.value, Columns.DATE.value, ] )
[ 1593, 2718 ]
def METHOD_NAME(self, message: bytes) -> Signature: """ Signs the given message and returns a signature. :param message: The message to sign :return: Signature """ return Signer(self._privkey).METHOD_NAME(message)
[ 2452 ]
def METHOD_NAME(self, *args): app = Application.new_app('domain', 'Untitled Application') module = app.add_module(Module.new_module('Untitled Module', None)) module.case_type = 'patient' module.case_details.short.lookup_enabled = True module.case_details.short.lookup_action = "callout.commcarehq.org.dummycallout.LAUNCH" module.case_details.short.lookup_extras = [ {'key': 'action_0', 'value': 'com.biometrac.core.SCAN'}, {'key': "action_1", 'value': "com.biometrac.core.IDENTIFY"}, ] module.case_details.short.lookup_responses = [ {"key": "match_id_0"}, {"key": "match_id_1"}, ] expected = """ <partial> <lookup action="callout.commcarehq.org.dummycallout.LAUNCH"> <extra key="action_0" value="com.biometrac.core.SCAN"/> <extra key="action_1" value="com.biometrac.core.IDENTIFY"/> <response key="match_id_0"/> <response key="match_id_1"/> </lookup> </partial> """ self.assertXmlPartialEqual( expected, app.create_suite(), "./detail/lookup" )
[ 9, 331, 245, 1906, 2284, 6735, 61 ]
def METHOD_NAME(self): return NodeStates
[ 1716, 4085 ]
def METHOD_NAME(self, indexes: Tensor, preds: Tensor, target: Tensor): """Test dtype support of the metric on CPU.""" self.run_precision_test_cpu( indexes=indexes, preds=preds, target=target, metric_module=RetrievalMAP, metric_functional=retrieval_average_precision, )
[ 9, 1582, 2265 ]
def METHOD_NAME(self): dask_array = da.random.random((4, 4, 10, 15), chunks=(1, 1, 10, 15)) s = LazyCorrelation2D(dask_array) s.compute() assert s.__class__ == Correlation2D assert dask_array.shape == s.data.shape
[ 9, 6089, 365, 226 ]
def METHOD_NAME(state): start_batch = state.batch # Horovod: adjust number of steps based on number of GPUs. for batch_idx, (images, labels) in enumerate(dataset.skip(state.batch).take(100 // hvd.size())): state.batch = start_batch + batch_idx loss_value = training_step(images, labels) if state.batch % 10 == 0 and hvd.rank() == 0: print('Step #%d\tLoss: %.6f' % (state.batch, loss_value)) # Horovod: commit state at the end of each batch state.commit()
[ 849 ]
def METHOD_NAME(opt): """ Selection function for available networks. Args: opt: argparse.Namespace, contains all training-specific training parameters. Returns: Network of choice """ if opt.arch == "resnet50": network = ResNet50(opt) else: raise Exception("Network {} not available!".format(opt.arch)) if opt.resume: weights = torch.load(os.path.join(opt.save_path, opt.resume)) weights_state_dict = weights["state_dict"] if torch.cuda.device_count() > 1: encoder_state_dict = OrderedDict() for k, v in weights_state_dict.items(): k = k.replace("module.", "") encoder_state_dict[k] = v network.load_state_dict(encoder_state_dict) else: network.load_state_dict(weights_state_dict) # print("=================== network =======================") # for parameter in network.parameters(): # parameter.requires_grad = False # for parameter in network.layer_blocks[-1].parameters(): # parameter.requires_grad = True return network
[ -1 ]
def METHOD_NAME(string): _reader.putString(string)
[ 408, 526 ]
def METHOD_NAME(test_file): """ Test setting the owner of a file with test=True """ expected = { "comment": "", "changes": {"owner": "Backup Operators"}, "name": str(test_file), "result": None, } with patch.dict(win_dacl.__opts__, {"test": True}): result = win_file.check_perms( path=str(test_file), owner="Backup Operators", inheritance=None ) assert result == expected
[ 9, 250, 5363, 0, 2013, 9, 2019 ]
def METHOD_NAME(key, obj): value = obj.value.value_() return key - value
[ 2014 ]
def METHOD_NAME(self, node, results): one = results["while"] one.replace(Name(u"True", prefix=one.prefix))
[ 1053, 795 ]
def METHOD_NAME(): """ Get already existing authors in the file system """ global contest_to_authors default_value = { "normal": {}, "gym": {} } contest_to_authors = default_value try: file_obj = open(get_metadata_filename(), "r") except IOError: return contest_to_authors = json.loads(file_obj.read()) file_obj.close()
[ 19, 2471, 3654 ]
def METHOD_NAME(iterable): for x in iterable: x.a = x.a + x.b
[ 148, 84, 2124, 9677 ]
def METHOD_NAME(): del os.environ["DJANGO_SUPERUSER_PASSWORD"]
[ 656, 485 ]
def METHOD_NAME(): if sys.platform == "darwin": fh, filepath = tempfile.mkstemp(".jpg") os.close(fh) commands = [ 'set theFile to (open for access POSIX file "' + filepath + '" with write permission)', "try", " write (the clipboard as JPEG picture) to theFile", "end try", "close access theFile", ] script = ["osascript"] for command in commands: script += ["-e", command] subprocess.call(script) im = None if os.stat(filepath).st_size != 0: im = Image.open(filepath) im.load() os.unlink(filepath) return im elif sys.platform == "win32": fmt, data = Image.core.grabclipboard_win32() if fmt == "file": # CF_HDROP import struct o = struct.unpack_from("I", data)[0] if data[16] != 0: files = data[o:].decode("utf-16le").split("\0") else: files = data[o:].decode("mbcs").split("\0") return files[: files.index("")] if isinstance(data, bytes): import io data = io.BytesIO(data) if fmt == "png": from . import PngImagePlugin return PngImagePlugin.PngImageFile(data) elif fmt == "DIB": from . import BmpImagePlugin return BmpImagePlugin.DibImageFile(data) return None else: if shutil.which("wl-paste"): args = ["wl-paste"] elif shutil.which("xclip"): args = ["xclip", "-selection", "clipboard", "-t", "image/png", "-o"] else: msg = "wl-paste or xclip is required for ImageGrab.grabclipboard() on Linux" raise NotImplementedError(msg) fh, filepath = tempfile.mkstemp() subprocess.call(args, stdout=fh) os.close(fh) im = Image.open(filepath) im.load() os.unlink(filepath) return im
[ 11867 ]
def METHOD_NAME(self, id_: str) -> "StepBuilder": super().METHOD_NAME(id_) return self
[ 0, 147 ]
METHOD_NAME(self, ticket, count=1, observed=False):
[ 238, 374 ]
def METHOD_NAME(self): return self._port_to_i2cbus_mapping
[ 237, 24, 13347, 445 ]
def METHOD_NAME(self): # Simulates a multi-instance test component = "foo" orig_contents1 = "bar = 42" orig_contents2 = "bar = 17" contents_to_append = "baz = 101" # Setup filename1 = self.write_user_nl_file(component, orig_contents1, suffix="_0001") filename2 = self.write_user_nl_file(component, orig_contents2, suffix="_0002") # Exercise user_nl_utils.append_to_user_nl_files( caseroot=self._caseroot, component=component, contents=contents_to_append ) # Verify expected_contents1 = orig_contents1 + "\n" + contents_to_append + "\n" expected_contents2 = orig_contents2 + "\n" + contents_to_append + "\n" self.assertFileContentsEqual( expected_contents1, os.path.join(self._caseroot, filename1) ) self.assertFileContentsEqual( expected_contents2, os.path.join(self._caseroot, filename2) )
[ 9, 1459, 107, 1537 ]
def METHOD_NAME(self, *args): """Show popup dialog above the mouse cursor position.""" pos = QCursor().pos() # mouse position szhint = self.sizeHint() pos -= QPoint(szhint.width() // 2, szhint.height() + 14) self.move(pos) self.show()
[ 697, 4927, 2571 ]
def METHOD_NAME(self): # Attempting to clear an executing frame is forbidden. try: 1/0 except ZeroDivisionError as e: f = e.__traceback__.tb_frame with self.assertRaises(RuntimeError): f.clear() with self.assertRaises(RuntimeError): f.f_back.clear()
[ 9, 537, 4445 ]
def METHOD_NAME(self, data): """ The shape of data is [batch_size, mem_size], and the content is the id of each word """ q = np.ndarray([self.batch_size, self.edim], dtype=np.float32) q.fill(self.init_hid) q = paddle.to_tensor(q) time = np.ndarray([self.batch_size, self.mem_size], dtype=np.int64) for i in range(self.mem_size): time[:, i] = i time = paddle.to_tensor(time) for hop in range(self.nhop): A_in_c = self.A(data) # [batch_size, mem_size, edim] A_in_t = self.T_A(time) # [batch_size, mem_size, edim] A_in = paddle.add(A_in_c, A_in_t) # [batch_size, mem_size, edim] q_in = q.reshape([-1, 1, self.edim]) # [batch, 1, edim] A_out3d = paddle.matmul(q_in, A_in, transpose_y=True) # [batch, 1, mem_size] A_out2d = A_out3d.reshape([-1, self.mem_size]) p = nn.functional.softmax(A_out2d) # [batch, mem_size] C_in_c = self.C(data) C_in_t = self.T_C(time) C_in = paddle.add(C_in_c, C_in_t) # [batch_size, mem_size, edim] p_3d = p.reshape([-1, 1, self.mem_size]) # [batch, 1, mem_size] C_out3d = paddle.matmul(p_3d, C_in) # [batch, 1, edim] C_out2d = C_out3d.reshape([-1, self.edim]) # [batch, edim] # Linear mapping and addition q_mapped = self.H(q) q_out = paddle.add(C_out2d, q_mapped) if self.lindim == self.edim: q = q_out elif self.lindim == 0: q = nn.functional.relu(q_out) else: F = q_out[:, : self.lindim] G = q_out[:, self.lindim :] K = nn.functional.relu(G) q = paddle.concat([F, K], axis=-1) predict = self.W(q) return predict
[ 76 ]
def METHOD_NAME(self, stream_slice: Mapping[str, Any] = None, **kwargs) -> str: return self.form_id
[ 157 ]
def METHOD_NAME(): assert background_colour_string("#123456") == "\x1b[48:2::18:52:86m \x1b[49m" assert background_colour_string("#123") == "\x1b[48:2::1:2:3m \x1b[49m"
[ 9, 2272, 7604, 144 ]
def METHOD_NAME(tmpdir): """``verify_task_schema`` raises if the task doesn't match the schema.""" path = os.path.join(tmpdir, "schema.json") with open(path, "w") as fh: fh.write(json.dumps(FAKE_SCHEMA)) config = {"foo": {"bar": path}} client.verify_task_schema(config, {"list-of-strings": ["a"]}, "foo.bar") with pytest.raises(TaskVerificationError): client.verify_task_schema(config, {"list-of-strings": ["a", "a"]}, "foo.bar") with pytest.raises(TaskVerificationError): client.verify_task_schema(config, {"list-of-strings": ["a", "a"]}, "nonexistent_path")
[ 9, 1162, 758, 135 ]
def METHOD_NAME(self, info_buckets: List[dict]) -> List[dict]: temp_results = {} child_results = [] for bucket in info_buckets: child = self._build_child_json_result(bucket) child_results.append(child) for child in child_results: result = self._build_json_result(child) child.pop("parent_data") if result["id"] in temp_results.keys(): temp_results[result["id"]] = { "id": int(result["id"]), "code": result["code"], "description": result["description"], "award_count": temp_results[result["id"]]["award_count"] + result["award_count"], # the count of distinct awards contributing to the totals "obligation": temp_results[result["id"]]["obligation"] + result["obligation"], "outlay": temp_results[result["id"]]["outlay"] + result["outlay"], "face_value_of_loan": bucket["count_awards_by_dim"]["sum_loan_value"]["value"], "children": temp_results[result["id"]]["children"] + result["children"], } else: temp_results[result["id"]] = result results = [x for x in temp_results.values()] return results
[ 56, 5811, 1571 ]
def METHOD_NAME(path: str, epoch: int, model: torch.nn.Module, optimizer: Optional[ColossalaiOptimizer] = None, lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None, torch_load_kwargs: Optional[Dict] = None, load_state_dict_kwargs: Optional[Dict] = None): """load_checkpoint load a model, whose parameters are `ColoTensor`s. Args: path (str): directory to save the checkpoint files. epoch (int): the number of epoch model (torch.nn.Module): a torch module initialized by ColoInitContext optimizer (ColossalaiOptimizer, optional): optimizers. Defaults to None. lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): lr schedule. Defaults to None. torch_load_kwargs: (dict, optional): The kwargs of torch.load inside the function load_state_dict_kwargs (dict, optional): The kwargs of load_state_dict inside the function """ # initialize the default parameters if not torch_load_kwargs: torch_load_kwargs = dict() if not load_state_dict_kwargs: load_state_dict_kwargs = dict() rank = dist.get_rank() mapping = dict() for n, p in model.named_parameters(): if isinstance(p, ColoTensor): mapping[n] = p.dist_spec gather_tensor(p) if rank == 0: load_state = torch.load(path + '/epoch_{}_model.pth'.format(epoch), **torch_load_kwargs) model.load_state_dict(load_state['model'], **load_state_dict_kwargs) dist.barrier() # scatter loaded parameters for n, p in model.named_parameters(): if isinstance(p, ColoTensor): scatter_tensor(p, mapping[n]) if rank == 0: assert hasattr(p, 'save_ready') delattr(p, 'save_ready') del mapping if optimizer is not None: mapping = dict() for k, v in optimizer.state_dict()['state'].items(): for n, t in v.items(): if isinstance(t, ColoTensor): mapping[(k, n)] = t.dist_spec gather_tensor(t) if rank == 0: colo_checkpoint = torch.load(path + '/epoch_{}_optim.pth'.format(epoch), **torch_load_kwargs) optimizer.load_state_dict(colo_checkpoint['optim'], **load_state_dict_kwargs) dist.barrier() for k, v in optimizer.state_dict()['state'].items(): for n, t in v.items(): if isinstance(t, ColoTensor): scatter_tensor(t, mapping[(k, n)]) del mapping
[ 557, 1830 ]
f METHOD_NAME(O, event):
[ 69, 86 ]
def METHOD_NAME(msg): print("\nINFO: {}".format(msg))
[ 100 ]
def METHOD_NAME(caught_warnings, category: Type[Warning], message: str) -> bool: return any(issubclass(w.category, category) and str(w.message) == message for w in caught_warnings)
[ 1992, 3437 ]
def METHOD_NAME(tmpdir): # GIVEN output = Path(tmpdir) / "test.bin" allocator = MemoryAllocator() # WHEN with Tracker(output): with Pool(3) as p: p.map(multiproc_func, [1, 10, 100, 1000, 2000, 3000, 4000, 5000]) allocator.valloc(1234) allocator.free() relevant_records = list( filter_relevant_allocations(FileReader(output).get_allocation_records()) ) assert len(relevant_records) == 2 vallocs = [ record for record in relevant_records if record.allocator == AllocatorType.VALLOC ] assert len(vallocs) == 1 (valloc,) = vallocs assert valloc.size == 1234 frees = [ record for record in relevant_records if record.allocator == AllocatorType.FREE ] assert len(frees) == 1 # No files created by child processes child_files = Path(tmpdir).glob("test.bin.*") assert list(child_files) == []
[ 9, 8784, 41, 8785 ]
def METHOD_NAME(self) -> None: self.layout.paint() ui.refresh()
[ 5932 ]
def METHOD_NAME(self, obj): return format_html('<a href="{0}" target="_blank">{0}</a>', obj.path)
[ 4643, 157 ]
def METHOD_NAME(alias: str) -> int: """ We perform the calculation in a different way to verify correctness """ offset_dict = dict(zip(["A", "B", "C", "D", "R"], range(0, 32, 6))) return offset_dict[alias[0]] + int(alias[1:])
[ 1407, 307, 6166 ]
def METHOD_NAME(): bf = field.Boolean() assert not bf.deserialize("false") assert not bf.deserialize(False) assert not bf.deserialize("") assert not bf.deserialize(0) assert bf.deserialize(True) assert bf.deserialize("true") assert bf.deserialize(1)
[ 9, 201, 13057 ]