text
stringlengths
15
7.82k
ids
sequencelengths
1
7
def METHOD_NAME(set_configdir): """Compares internal actor representation to what was saved in the file.""" cfg = config("good_config.yaml") cfg.createConfig() cfg.saveActors() with open("good_config_actors.yaml") as savedConfig: data = yaml.safe_load(savedConfig) savedKeys = len(data.keys()) originalKeys = len(cfg.actors.keys()) assert savedKeys == originalKeys
[ 9, 73, 8770, 1356 ]
def METHOD_NAME(client): admin_login_url = reverse("admin:login") response = client.get(admin_login_url) # Admin login page redirects to account login page assert response.status_code == 302 assert reverse("account-login") in response["Location"]
[ 9, 2870, 273, 274 ]
def METHOD_NAME(self, privilege, grant_target_name, user_name, node=None): """Check that user is only able to execute `SHOW CREATE USER` when they have the necessary privilege. """ exitcode, message = errors.not_enough_privileges(name=user_name) if node is None: node = self.context.node with Scenario("SHOW CREATE USER without privilege"): target_user_name = f"target_user_{getuid()}" with user(node, target_user_name): with When("I grant the user NONE privilege"): node.query(f"GRANT NONE TO {grant_target_name}") with And("I grant the user USAGE privilege"): node.query(f"GRANT USAGE ON *.* TO {grant_target_name}") with Then("I check the user can't use SHOW CREATE USER"): node.query(f"SHOW CREATE USER {target_user_name}", settings=[("user",user_name)], exitcode=exitcode, message=message) with Scenario("SHOW CREATE USER with privilege"): target_user_name = f"target_user_{getuid()}" with user(node, target_user_name): with When(f"I grant {privilege}"): node.query(f"GRANT {privilege} ON *.* TO {grant_target_name}") with Then("I check the user can use SHOW CREATE USER"): node.query(f"SHOW CREATE USER {target_user_name}", settings = [("user", f"{user_name}")]) with Scenario("SHOW CREATE USER with revoked privilege"): target_user_name = f"target_user_{getuid()}" with user(node, target_user_name): with When(f"I grant {privilege}"): node.query(f"GRANT {privilege} ON *.* TO {grant_target_name}") with And(f"I revoke {privilege}"): node.query(f"REVOKE {privilege} ON *.* FROM {grant_target_name}") with Then("I check the user cannot use SHOW CREATE USER"): node.query(f"SHOW CREATE USER {target_user_name}", settings=[("user",user_name)], exitcode=exitcode, message=message)
[ 697, 129 ]
def METHOD_NAME(value): """cirq.testing.assert_equivalent_repr with cirq_google.workflow imported.""" return cirq.testing.assert_equivalent_repr(value, global_vals={'cirq_google': cg})
[ 10452, 638, 639, 92 ]
def METHOD_NAME(self): try: with self.assertWarns(DeprecationWarning): from super_gradients.training.models import make_divisible # noqa assert make_divisible(1, 1) == 1 except ImportError: self.fail("ImportError raised unexpectedly for make_divisible")
[ 9, 2497, 93, 4794 ]
def METHOD_NAME(self): """Test MessageCache.get_message""" cache = ForwardMsgCache() session = _create_mock_session() msg = _create_dataframe_msg([1, 2, 3]) msg_hash = populate_hash_if_needed(msg) cache.add_message(msg, session, 0) self.assertEqual(msg, cache.get_message(msg_hash))
[ 9, 19, 277 ]
def METHOD_NAME(self, move=None): a = self.angle ar = math.radians(a) h = self.h t = self.thickness sh = math.sin(ar)*6*t + math.cos(ar)*h tw = self.edges["a"].margin() + math.sin(ar)*h + math.cos(ar)*6*t th = sh + 6 if self.move(tw, th, move, True): return self.moveTo(self.edges["a"].margin()) self.polyline(math.sin(ar)*h, a, 4*t) self.fingerHolesAt(-3.5*t, 0, h/2, 90) self.edgeCorner("e", "h") self.edges["h"](h) self.polyline(0, 90-a, math.cos(ar)*6*t, 90) self.edges["a"](sh) self.corner(90) self.move(tw, th, move)
[ 142, 6806 ]
def METHOD_NAME(seek_data): seek_flag, seek_dest = seek_data ctx = ucx_api.UCXContext({}) mem = ucx_api.UCXMemoryHandle.alloc(ctx, 1024) msg_size = mem.length packed_rkey = mem.pack_rkey() worker = ucx_api.UCXWorker(ctx) ep = ucx_api.UCXEndpoint.create_from_worker_address( worker, worker.get_address(), endpoint_error_handling=True, ) rkey = ep.unpack_rkey(packed_rkey) uio = ucx_api.UCXIO(mem.address, msg_size, rkey) send_msg = bytes(os.urandom(msg_size)) uio.write(send_msg) uio.seek(seek_dest, seek_flag) recv_msg = uio.read(4) assert recv_msg == send_msg[seek_dest : seek_dest + 4]
[ 9, 13895, 336, 3026 ]
def METHOD_NAME(self, get_stats=False): """Get the schema structure (prefixes, graphs).""" schema = dict() schema["1"] = { "name": "-> Common Prefixes <-", "columns": self._get_common_prefixes_schema(), } schema["2"] = {"name": "-> Graphs <-", "columns": self._get_graphs_schema()} # schema.update(self._get_query_schema()) logger.info(f"Getting Schema Values: {schema.values()}") return schema.values()
[ 19, 135 ]
def METHOD_NAME(): output = json.loads(r2.vtysh_cmd("show ip bgp neighbor 192.168.255.1 json")) expected = { "192.168.255.1": { "lastNotificationReason": "Hold Timer Expired", } } return topotest.json_cmp(output, expected)
[ 2260, 250, 4461, 2401, 7740, 2293 ]
f METHOD_NAME(self):
[ 9, 2017, 590, 747, 41, 733 ]
def METHOD_NAME(self, variable: ASTVariable) -> str: """ Converts for a handed over symbol the corresponding name of the buffer to a nest processable format. :param variable: a single variable symbol. :return: the corresponding representation as a string """ variable_symbol = variable.get_scope().resolve_to_symbol(variable.get_complete_name(), SymbolKind.VARIABLE) if variable_symbol.is_spike_input_port(): var_name = variable_symbol.get_symbol_name().upper() if variable_symbol.get_vector_parameter() is not None: vector_parameter = ASTUtils.get_numeric_vector_size(variable_symbol) var_name = var_name + "_" + str(vector_parameter) return "spike_inputs_grid_sum_[node." + var_name + " - node.MIN_SPIKE_RECEPTOR]" return variable_symbol.get_symbol_name() + '_grid_sum_'
[ 38, 2376, 99 ]
def METHOD_NAME(io): raise Exception()
[ 1208 ]
def METHOD_NAME(self): return 'ROLE'
[ 19, 44 ]
def METHOD_NAME(path): """Get the library path of a virtualenv.""" subdir = 'Scripts' if os.name == 'nt' else 'bin' executable = os.path.join(path, subdir, 'python') return run_py(executable, 'from sysconfig import get_path', 'print(get_path("platlib"))')
[ 19, 4188, 124, 157 ]
def METHOD_NAME(A, basis_element): """Hilbert schmidt product where the basis elements are hermitian""" return jnp.trace(basis_element @ A)
[ 12607, 16943 ]
def METHOD_NAME(self, s): return self.ffi.new("wchar_t []", s)
[ -1 ]
def METHOD_NAME(self, xtest, info): data = self.prepare_data(info) pred_on_test_set = self.best_model.predict(data) return pred_on_test_set
[ 539 ]
def METHOD_NAME(self) -> Datasplit: """ :return: the data subset used to score the model. """ pass
[ 9 ]
def METHOD_NAME(self, module_file): content = textwrap.dedent("""\ set(GEOTIFF_FOUND ${GeoTIFF_FOUND}) if(DEFINED GeoTIFF_INCLUDE_DIR) set(GEOTIFF_INCLUDE_DIR ${GeoTIFF_INCLUDE_DIR}) endif() if(DEFINED GeoTIFF_LIBRARIES) set(GEOTIFF_LIBRARIES ${GeoTIFF_LIBRARIES}) endif() """) save(self, module_file, content)
[ 129, 334, 298, 2045 ]
def METHOD_NAME(): import traceback tb = traceback.extract_stack() # strip itself and the caller from the output tb = tb[:-2] result = [] for back in tb: # (filename, line number, function name, text) key = back[:3] result.append('%s:%d(%s)' % func_shorten(key)) return result
[ 2575, 1501 ]
def METHOD_NAME(self, *args, **options): muis_url = 'https://www.muis.ee/OAIService/OAIService' all_person_album_ids_set = set() photos = Photo.objects.filter(source_url__contains='muis.ee') for photo in photos: try: parser = ET.XMLParser(encoding="utf-8") list_identifiers_url = f'{muis_url}?verb=GetRecord&identifier={photo.external_id}&metadataPrefix=lido' url_response = urllib.request.urlopen(list_identifiers_url) tree = ET.fromstring(url_response.read(), parser=parser) ns = {'d': 'http://www.openarchives.org/OAI/2.0/', 'lido': 'http://www.lido-schema.org'} rec = tree.find('d:GetRecord/d:record', ns) record = 'd:metadata/lido:lidoWrap/lido:lido/' object_identification_wrap = f'{record}lido:descriptiveMetadata/lido:objectIdentificationWrap/' object_description_wraps = \ f'{object_identification_wrap}lido:objectDescriptionWrap/lido:objectDescriptionSet' title_wrap = f'{object_identification_wrap}lido:titleWrap/' event_wrap = f'{record}lido:descriptiveMetadata/lido:eventWrap/' actor_wrap = f'{event_wrap}lido:eventSet/lido:event/lido:eventActor/' person_album_ids = [] title_find = rec.find(f'{title_wrap}lido:titleSet/lido:appellationValue', ns) title = title_find.text \ if title_find is not None \ else None photo = reset_modeltranslated_field(photo, 'title', title) photo.light_save() dating = None photo, dating = set_text_fields_from_muis(photo, dating, rec, object_description_wraps, ns) photo.light_save() creation_date_earliest = None creation_date_latest = None date_prefix_earliest = None date_prefix_latest = None date_earliest_has_suffix = False date_latest_has_suffix = False location = [] events = rec.findall(f'{event_wrap}lido:eventSet/lido:event', ns) existing_dating = Dating.objects.filter(photo=photo, profile=None).first() if events is not None and len(events) > 0: location, \ creation_date_earliest, \ creation_date_latest, \ date_prefix_earliest, \ date_prefix_latest, \ date_earliest_has_suffix, \ date_latest_has_suffix, \ = extract_dating_from_event( events, location, creation_date_earliest, creation_date_latest, dating is not None and existing_dating is None, ns ) if dating is not None and existing_dating is None: creation_date_earliest, date_prefix_earliest, date_earliest_has_suffix = \ get_muis_date_and_prefix(dating, False) creation_date_latest, date_prefix_latest, date_latest_has_suffix = \ get_muis_date_and_prefix(dating, True) actors = rec.findall(f'{actor_wrap}lido:actorInRole', ns) person_album_ids, author = add_person_albums(actors, person_album_ids, ns) if author is not None: photo.author = author if location != []: photo = add_geotag_from_address_to_photo(photo, location) photo = add_dating_to_photo( photo, creation_date_earliest, creation_date_latest, date_prefix_earliest, date_prefix_latest, Dating, date_earliest_has_suffix, date_latest_has_suffix ) dt = datetime.utcnow() dt.replace(tzinfo=timezone.utc) photo.muis_update_time = dt.replace(tzinfo=timezone.utc).isoformat() photo.light_save() person_albums = Album.objects.filter(id__in=person_album_ids) if person_albums is not None: for album in person_albums: if not album.cover_photo: album.cover_photo = photo ap = AlbumPhoto(photo=photo, album=album, type=AlbumPhoto.FACE_TAGGED) ap.save() all_person_album_ids_set.add(album.id) photo.set_calculated_fields() except Exception as e: exception = ApplicationException(exception=e, photo=photo) exception.save() all_person_album_ids = list(all_person_album_ids_set) all_person_albums = Album.objects.filter(id__in=all_person_album_ids) if all_person_albums is not None: for person_album in all_person_albums: person_album.set_calculated_fields() person_album.save()
[ 276 ]
def METHOD_NAME(self): pass
[ 709, 710 ]
def METHOD_NAME(key, where=lambda e: True): return [e[key] for e in events if where(e)]
[ 1472 ]
f METHOD_NAME(self):
[ 9, 245, 760 ]
def METHOD_NAME(self) -> str: """ The resource name. """ return pulumi.get(self, "name")
[ 156 ]
def METHOD_NAME(self) -> Optional[str]: """ The credentials are stored for this upstream or login server. """ return pulumi.get(self, "login_server")
[ 273, 163 ]
def METHOD_NAME(track, groups): """ Given an array of groups, sets them on a track Returns true if successful, false if there was an error """ grouping = ' '.join(sorted('_'.join(group.split()) for group in groups)) track.set_tag_raw(get_tagname(), grouping) if not track.write_tags(): dialogs.error( None, "Error writing tags to %s" % GObject.markup_escape_text(track.get_loc_for_io()), ) return False return True
[ 0, 3068, 861 ]
def METHOD_NAME(self): A = num.array(3) B = mk_0to1_array(num, (2, 2)) C = mk_0to1_array(num, (2, 2)) arrays = [A, B, C] with pytest.raises(ValueError): num.linalg.multi_dot(arrays)
[ 9, 532, 877, 3014, 313 ]
def METHOD_NAME(self, message): # The node will send us invs for other blocks. Ignore them. pass
[ 69, 5862 ]
def METHOD_NAME(MatchList): RegList = [] for regexp in MatchList: a = re.compile(regexp) RegList.append(a) return RegList
[ 0, 1, 527 ]
def METHOD_NAME(builder, string): builder.string(string) return builder
[ 238, 385, 144 ]
def METHOD_NAME( dirpath: str, name: str, url: str, process_fn: Callable[[Dict[str, Any]], Dict[str, Any]], ) -> Dict[str, Any]: """ This fetch and cache utils allows sharing between different process. """ path = os.path.join(dirpath, name) print(f"Downloading {url} to {path}") def is_cached_file_valid() -> bool: # Check if the file is new enough (see: FILE_CACHE_LIFESPAN_SECONDS). A real check # could make a HEAD request and check/store the file's ETag fname = pathlib.Path(path) now = datetime.datetime.now() mtime = datetime.datetime.fromtimestamp(fname.stat().st_mtime) diff = now - mtime return diff.total_seconds() < FILE_CACHE_LIFESPAN_SECONDS if os.path.exists(path) and is_cached_file_valid(): # Another test process already download the file, so don't re-do it with open(path) as f: return cast(Dict[str, Any], json.load(f)) for _ in range(3): try: contents = urlopen(url, timeout=5).read().decode("utf-8") processed_contents = process_fn(json.loads(contents)) with open(path, "w") as f: f.write(json.dumps(processed_contents)) return processed_contents except Exception as e: print(f"Could not download {url} because: {e}.") print(f"All retries exhausted, downloading {url} failed.") return {}
[ 1047, 61, 596 ]
def METHOD_NAME(): """ Get a list of python plugins that were registered through kwiver.python_plugin_registration :return: A list of zero or more python modules containing registration functions """ py_modules = [] try: for entry_point in iter_entry_points(PYTHON_PLUGIN_ENTRYPOINT): try: py_modules.append(entry_point.load()) except ImportError: logger.warn("Failed to load entry point: {0}".format(entry_point)) except DistributionNotFound: pass return py_modules
[ 19, 440, 1294, 280, 7187 ]
def METHOD_NAME(self): """ Initializes a connection pool for a Vertica. Uses the vertica_python Python package. """ try: # Construct the connection string connection_string = f"vertica://{self.username}:{self.password}@{self.host}:{self.port}/{self.dbname}" logger.info("Connecting to the vertica Database...") # Connect to Vertica conn = vertica_python.connect(connection_string) return conn except Exception as error: logger.error("Connection Has Failed... %s", str(error)) sys.exit(1)
[ 707, 13790, 4579 ]
def METHOD_NAME(self, x, y): self.x = x self.y = y self.update()
[ 0, 934 ]
def METHOD_NAME(config, capsys): # Get the merged list and ensure we get our defaults with capsys.disabled(): output = _bootstrap("list") assert "github-actions" in output # Ask for a specific scope and check that the list of sources is empty with capsys.disabled(): output = _bootstrap("list", "--scope", "user") assert "No method available" in output
[ 9, 245, 505 ]
def METHOD_NAME(title, filename, fix=None): """ Creates a formated (title, text) desciption of an issue. TODO use this function and issue_str_line for all issues, so the format can be easily changed (exta text, colors, etc) """ return (title, filename, fix)
[ 946, 3 ]
def METHOD_NAME(self, lr): """Set the learning rate.""" for param_group in self.param_groups: param_group["lr"] = lr
[ 0, 6941 ]
def METHOD_NAME(file_path): file_type = filetype.guess(file_path) if file_type: return file_type.mime else: return "text/html"
[ 19, 1322 ]
def METHOD_NAME(self): self._result = 1 self.close()
[ 69, 1828, 401 ]
def METHOD_NAME(): """Returns the Parser object required to take inputs to data_prep.py""" parser = argparse.ArgumentParser( description="LRS-3 Data Preparation steps", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--train_val_path", type=str, help="Path to the Train/ Validation files" ) parser.add_argument("--test_path", type=str, help="Path to the Test files") return parser
[ 19, 1319 ]
def METHOD_NAME(model): metric.reset() session = ort.InferenceSession(model.SerializeToString(), providers=ort.get_available_providers()) ort_inputs = {} len_inputs = len(session.get_inputs()) inputs_names = [session.get_inputs()[i].name for i in range(len_inputs)] for idx, (inputs, labels) in enumerate(dataloader): if not isinstance(labels, list): labels = [labels] if len_inputs == 1: ort_inputs.update( inputs if isinstance(inputs, dict) else {inputs_names[0]: inputs} ) else: assert len_inputs == len(inputs), 'number of input tensors must align with graph inputs' if isinstance(inputs, dict): ort_inputs.update(inputs) else: for i in range(len_inputs): if not isinstance(inputs[i], np.ndarray): ort_inputs.update({inputs_names[i]: np.array(inputs[i])}) else: ort_inputs.update({inputs_names[i]: inputs[i]}) predictions = session.run(None, ort_inputs) predictions, labels = postprocess((predictions, labels)) metric.update(predictions, labels) return metric.result()
[ 1171, 717 ]
def METHOD_NAME(processor, test_trace, data_source, peer_service_config): processor._set_defaults_enabled = False span = test_trace[0] span.set_tag(data_source, "test_value") processor.process_trace(test_trace) assert span.get_tag(peer_service_config.tag_name) is None assert span.get_tag(peer_service_config.source_tag_name) is None
[ 9, 1295, 502, 549 ]
def METHOD_NAME(self): return [ RadialCTFFilter(5, 200, defocus=d, Cs=2.0, alpha=0.1) for d in np.linspace(1.5e4, 2.5e4, 7) ]
[ 469 ]
def METHOD_NAME(): p = (packages.PackageRestriction("one", values.AlwaysTrue),) p2 = (packages.PackageRestriction("one", values.AlwaysFalse),) v = values.AlwaysTrue v2 = values.AlwaysFalse assert packages.Conditional("use", v, p) == packages.Conditional("use", v, p) assert packages.Conditional("use", v2, p) != packages.Conditional("use", v, p) assert packages.Conditional("use", v, p) != packages.Conditional("use", v, p2) assert packages.Conditional("use1", v, p) != packages.Conditional("use", v, p)
[ 9, 869 ]
def METHOD_NAME(self): multisig_tx = MultisigTransactionFactory(trusted=False) self.assertFalse( is_relevant_notification(multisig_tx.__class__, multisig_tx, created=False) ) multisig_tx.trusted = True self.assertTrue( is_relevant_notification(multisig_tx.__class__, multisig_tx, created=False) ) multisig_tx.created -= timedelta(minutes=75) self.assertTrue( is_relevant_notification(multisig_tx.__class__, multisig_tx, created=False) ) multisig_tx.modified -= timedelta(minutes=75) self.assertFalse( is_relevant_notification(multisig_tx.__class__, multisig_tx, created=False) )
[ 9, 137, 8816, 857, 2363, 1853 ]
def METHOD_NAME( cls, pex_version, # type: str style, # type: LockStyle.Value requires_python, # type: Iterable[str] target_systems, # type: Iterable[TargetSystem.Value] requirements, # type: Iterable[Union[Requirement, ParsedRequirement]] constraints, # type: Iterable[Requirement] allow_prereleases, # type: bool allow_wheels, # type: bool allow_builds, # type: bool prefer_older_binary, # type: bool use_pep517, # type: Optional[bool] build_isolation, # type: bool transitive, # type: bool locked_resolves, # type: Iterable[LockedResolve] source=None, # type: Optional[str] pip_version=None, # type: Optional[PipVersionValue] resolver_version=None, # type: Optional[ResolverVersion.Value] ): # type: (...) -> Lockfile pin_by_local_project_directory = {} # type: Dict[str, Pin] requirement_by_local_project_directory = {} # type: Dict[str, Requirement] for locked_resolve in locked_resolves: for locked_requirement in locked_resolve.locked_requirements: if isinstance(locked_requirement.artifact, LocalProjectArtifact): local_directory = locked_requirement.artifact.directory local_pin = locked_requirement.pin pin_by_local_project_directory[local_directory] = local_pin requirement_by_local_project_directory[ local_directory ] = local_pin.as_requirement() def extract_requirement(req): # type: (Union[Requirement, ParsedRequirement]) -> Requirement if isinstance(req, Requirement): return req if isinstance(req, LocalProjectRequirement): local_project_directory = os.path.abspath(req.path) pin = pin_by_local_project_directory[local_project_directory] requirement = Requirement.parse( "{project_name}{extras}=={version}{marker}".format( project_name=pin.project_name, extras="[{extras}]".format(extras=",".join(req.extras)) if req.extras else "", version=pin.version, marker="; {marker}".format(marker=req.marker) if req.marker else "", ) ) # N.B.: We've already mapped all available local projects above, but the user may # have supplied the local project requirement with more specific constraints ( # extras and / or marker restrictions) and we need to honor those; so we over-write. requirement_by_local_project_directory[local_project_directory] = requirement return requirement return req.requirement resolve_requirements = OrderedSet(extract_requirement(req) for req in requirements) pip_ver = pip_version or PipVersion.DEFAULT return cls( pex_version=pex_version, style=style, requires_python=SortedTuple(requires_python), target_systems=SortedTuple(target_systems), pip_version=pip_ver, resolver_version=resolver_version or ResolverVersion.default(pip_ver), requirements=SortedTuple(resolve_requirements, key=str), constraints=SortedTuple(constraints, key=str), allow_prereleases=allow_prereleases, allow_wheels=allow_wheels, allow_builds=allow_builds, prefer_older_binary=prefer_older_binary, use_pep517=use_pep517, build_isolation=build_isolation, transitive=transitive, locked_resolves=SortedTuple(locked_resolves), local_project_requirement_mapping=requirement_by_local_project_directory, source=source, )
[ 129 ]
def METHOD_NAME(self): self.input_message = IP_REPORT self.run_bot() self.assertMessageEqual(0, IP_EVENTS)
[ 9, 1213 ]
def METHOD_NAME(cls, message, message_queue=None): topic = message.topic.name system_properties = message.system_properties message_id = system_properties.message_id body_digest = system_properties.body_digest check_sum = body_digest.checksum raw = message.body corrupted = False digest_type = body_digest.type # Digest Type check if digest_type == ProtoDigestType.CRC32: expected_check_sum = format(binascii.crc32(raw) & 0xFFFFFFFF, '08X') if not expected_check_sum == check_sum: corrupted = True elif digest_type == ProtoDigestType.MD5: expected_check_sum = hashlib.md5(raw).hexdigest() if not expected_check_sum == check_sum: corrupted = True elif digest_type == ProtoDigestType.SHA1: expected_check_sum = hashlib.sha1(raw).hexdigest() if not expected_check_sum == check_sum: corrupted = True elif digest_type in [ProtoDigestType.unspecified, None]: print(f"Unsupported message body digest algorithm, digestType={digest_type}, topic={topic}, messageId={message_id}") # Body Encoding check body_encoding = system_properties.body_encoding body = raw if body_encoding == ProtoEncoding.GZIP: body = gzip.decompress(message.body) elif body_encoding in [ProtoEncoding.IDENTITY, None]: pass else: print(f"Unsupported message encoding algorithm, topic={topic}, messageId={message_id}, bodyEncoding={body_encoding}") tag = system_properties.tag message_group = system_properties.message_group delivery_time = system_properties.delivery_timestamp keys = list(system_properties.keys) born_host = system_properties.born_host born_time = system_properties.born_timestamp delivery_attempt = system_properties.delivery_attempt queue_offset = system_properties.queue_offset properties = {key: value for key, value in message.user_properties.items()} receipt_handle = system_properties.receipt_handle return cls(message_id, topic, body, tag, message_group, delivery_time, keys, properties, born_host, born_time, delivery_attempt, message_queue, receipt_handle, queue_offset, corrupted)
[ 280, 5150 ]
def METHOD_NAME(self, obj=None): """Render self.parameters as a Jinja2 template with the given object as context.""" try: return {key: render_jinja2(value, {"obj": obj}) for key, value in self.parameters.items()} except (TemplateSyntaxError, UndefinedError) as exc: raise SecretParametersError(self, registry["secrets_providers"].get(self.provider), str(exc)) from exc
[ 10056, 386 ]
async def METHOD_NAME( default_processor: MessageProcessor, ) -> DialogueStateTracker: reminders = [ ReminderScheduled("greet", datetime.now(), kill_on_user_message=False), ReminderScheduled( intent="greet", entities=[{"entity": "name", "value": "Jane Doe"}], trigger_date_time=datetime.now(), kill_on_user_message=False, ), ReminderScheduled( intent="default", entities=[{"entity": "name", "value": "Jane Doe"}], trigger_date_time=datetime.now(), kill_on_user_message=False, ), ReminderScheduled( intent="greet", entities=[{"entity": "name", "value": "Bruce Wayne"}], trigger_date_time=datetime.now(), kill_on_user_message=False, ), ReminderScheduled("default", datetime.now(), kill_on_user_message=False), ReminderScheduled( "default", datetime.now(), kill_on_user_message=False, name="special" ), ] sender_id = uuid.uuid4().hex tracker = await default_processor.tracker_store.get_or_create_tracker(sender_id) for reminder in reminders: tracker.update(UserUttered("test")) tracker.update(ActionExecuted("action_reminder_reminder")) tracker.update(reminder) await default_processor.tracker_store.save(tracker) return tracker
[ 4102, 41, 26, 2462, 7388 ]
def METHOD_NAME(): # define the functor for evaluating the norm of the L1 error vector ref_table = "input/vlct/MHD_shock_tube/rj2a_shock_tube_t0.2_res256.csv" l1_func= CalcTableL1Norm(["density","velocity_x","velocity_y","velocity_z", "pressure","bfield_x","bfield_y","bfield_z"], default_ref_table = ref_table) err_compare = partial(analyze_shock, target_template = "method_vlct-1-{:s}_rj2a_N256_0.2", name_template = "{}-axis rj2a shock tube N=256", l1_functor = l1_func) r = [] # check the average L1-Norm along the active axis (averaged over multiple # slices along the active axis) # check that the standard deviation of the L1-Norms computed along the # active axis (There should be no definitely be no differences if we only # use 1 block - if we use more than one block, it's unclear to me if it's # ok to have round-off errors) r.append(err_compare(0.012523489882320429, "x")) r.append(err_compare(0.0, "x", std_dev=True)) r.append(err_compare(0.012523489882320308, "y")) r.append(err_compare(0.0, "y", std_dev=True)) r.append(err_compare(0.012523489882320315, "z")) r.append(err_compare(0.0, "z", std_dev=True)) n_passed = np.sum(r) n_tests = len(r) print("{:d} Tests passed out of {:d} Tests.".format(n_passed,n_tests)) return n_passed == n_tests
[ 902, 450 ]
f METHOD_NAME(self):
[ 9, 5144, 24, -1, 10618, 227 ]
def METHOD_NAME(self): timings = {"model_creation": datetime.datetime.now()} logger = logging.getLogger("calliope.testlogger") # TODO: capture logging output and check that comment is in string log_time(logger, timings, "test", comment="test_comment", level="info") assert isinstance(timings["test"], datetime.datetime) log_time(logger, timings, "test2", comment=None, level="info") assert isinstance(timings["test2"], datetime.datetime) # TODO: capture logging output and check that time_since_solve_start is in the string log_time( logger, timings, "test", comment=None, level="info", time_since_solve_start=True, )
[ 9, 845, 390 ]
def METHOD_NAME(self): limit = self.cleaned_data['limit'] return 20 if limit is None else limit
[ 1356, 1467 ]
async def METHOD_NAME(pipeline_response): deserialized = self._deserialize("UsageListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return None, AsyncList(list_of_elem)
[ 297, 365 ]
def METHOD_NAME(in_str: str): """Base-64 encode non-printable characters in test names so we can handle that obnoxious names module""" if in_str.isprintable() and not any((c in in_str) for c in {'"', "'", ";"}): return f'"{in_str}"' else: return f"str(b64decode(\"{b64encode(in_str.encode('utf-8')).decode('utf-8')}\"), 'utf-8')"
[ 4748, 1051 ]
def METHOD_NAME(self): now = timezone.now() org = self.create_organization(owner=self.user) user2 = self.create_user() self.create_member(user=user2, organization=self.organization) entry1 = AuditLogEntry.objects.create( organization_id=org.id, event=audit_log.get_event_id("ORG_EDIT"), actor=self.user, datetime=now, ) AuditLogEntry.objects.create( organization_id=org.id, event=audit_log.get_event_id("ORG_EDIT"), actor=user2, datetime=now, ) response = self.get_success_response(org.slug, qs_params={"actor": self.user.id}) assert len(response.data["rows"]) == 1 assert response.data["rows"][0]["id"] == str(entry1.id)
[ 9, 527, 604, 21 ]
def METHOD_NAME(a: T.handle, b: T.handle): m = T.int64() A = T.match_buffer(a, (m * 2,)) B = T.match_buffer(b, (m, 2)) for i, j in T.grid(m, 2): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi * 2 + vj]
[ 57 ]
f METHOD_NAME(self, var0, var1, update_op):
[ 638, 3829, 668 ]
f METHOD_NAME(self, tpus):
[ 9, 930, 285, 24, 1794, 2400 ]
def METHOD_NAME() -> bool: USE_MIGRATIONS = "use-migrations" CREATE_TABLES = "create-tables" migrations_env = os.environ.get("QUETZ_TEST_DBINIT", CREATE_TABLES) if migrations_env.lower() == CREATE_TABLES: return False elif migrations_env.lower() == USE_MIGRATIONS: return True else: raise ValueError( f"QUETZ_TEST_DBINIT should be either {CREATE_TABLES} or {USE_MIGRATIONS}" )
[ 1080, 5213 ]
def METHOD_NAME(self): # print(f"\n{self.__class__.__name__}: {self.case}") self.prepare_inputs()
[ 0, 1 ]
def METHOD_NAME(account_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetAccountResult: """ The EngagementFabric account Azure REST API version: 2018-09-01-preview. :param str account_name: Account Name :param str resource_group_name: Resource Group Name """ __args__ = dict() __args__['accountName'] = account_name __args__['resourceGroupName'] = resource_group_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure-native:engagementfabric:getAccount', __args__, opts=opts, typ=GetAccountResult).value return AwaitableGetAccountResult( id=pulumi.get(__ret__, 'id'), location=pulumi.get(__ret__, 'location'), name=pulumi.get(__ret__, 'name'), sku=pulumi.get(__ret__, 'sku'), tags=pulumi.get(__ret__, 'tags'), type=pulumi.get(__ret__, 'type'))
[ 19, 598 ]
def METHOD_NAME(self, request, project_id): """查询业务实例拓扑""" try: lang = request.COOKIES.get(settings.LANGUAGE_COOKIE_NAME, settings.LANGUAGE_CODE) project = Project.get_project(request.user.token.access_token, project_id) topo_info = cc.BizTopoQueryService(request.user.username, project["cc_app_id"], lang).fetch() except CompParseBkCommonResponseError as e: raise error_codes.ComponentError(_('查询业务拓扑信息失败:{}').format(e)) except BaseCompError as e: logger.error('查询业务拓扑信息失败:%s', e) raise error_codes.ComponentError(_('发生未知错误,请稍候再试')) return Response(data=topo_info)
[ 1424, 2204, 5650 ]
def METHOD_NAME(self): """ Set with `self.shop_tab.set(main=self, left={index})` - index 1: Monthly shops 2: General supply shops """ grids = ButtonGrid( origin=(340, 93), delta=(189, 0), button_shape=(188, 54), grid_shape=(2, 1), name='SHOP_TAB') return Navbar( grids=grids, # Yellow bottom dash active_color=(255, 219, 83), active_threshold=221, active_count=100, # Black bottom dash inactive_color=(181, 178, 181), inactive_threshold=221, inactive_count=100, )
[ 873, 5678 ]
def METHOD_NAME(self, dts: Set[date], multiple: bool = False) -> None: """ When multiple is True, each holiday from a given date has its own observed date. """ for dt in sorted(dts): if not self._is_observed(dt): continue if multiple: for name in self.get_list(dt): self._add_observed(dt, name) else: self._add_observed(dt)
[ 3914, 2679 ]
def METHOD_NAME(self, mcmt_class): """Test that the MCMT can act as normal control gate.""" qc = QuantumCircuit(2) mcmt = mcmt_class(gate=CHGate(), num_ctrl_qubits=1, num_target_qubits=1) qc = qc.compose(mcmt, [0, 1]) ref = QuantumCircuit(2) ref.ch(0, 1) self.assertEqual(qc, ref)
[ 9, 3035, 947, 1576, 401 ]
def METHOD_NAME(self) -> tf.compat.v1.ConfigProto: return tf.compat.v1.ConfigProto( intra_op_parallelism_threads=1, inter_op_parallelism_threads=1 )
[ 240, 200 ]
async def METHOD_NAME(monkeypatch, transport, rule): channel = await transport.check_open('test') os.kill(rule.peer.transport._process.pid, 9) await transport.assert_msg('', command='close', channel=channel, problem='terminated')
[ 9, 5622 ]
def METHOD_NAME(num_channel_groups): return {"channel_groups": num_channel_groups, "filter_groups": num_channel_groups}
[ 10963, 1498, 1554 ]
def METHOD_NAME(api_client, checkout): # given checkout.metadata_storage.store_value_in_metadata({PUBLIC_KEY: PUBLIC_VALUE}) checkout.metadata_storage.save(update_fields=["metadata"]) checkout_id = graphene.Node.to_global_id("Checkout", checkout.pk) # when response = execute_clear_public_metadata_for_item( api_client, None, checkout_id, "Checkout", key="Not-exits" ) # then assert item_contains_proper_public_metadata( response["data"]["deleteMetadata"]["item"], checkout.metadata_storage, checkout_id, )
[ 9, 34, 1609, 773, 43, 130, 1985 ]
ync def METHOD_NAME(self):
[ 9, 5388, 200, 171 ]
def METHOD_NAME( io_loop, channel_minion_id, channel, server, received, timeout=60 ): log.info("TEST - BEFORE CHANNEL CONNECT") yield channel.connect() log.info("TEST - AFTER CHANNEL CONNECT") def cb(payload): log.info("TEST - PUB SERVER MSG %r", payload) received.append(payload) io_loop.stop() channel.on_recv(cb) server.publish({"tgt_type": "glob", "tgt": [channel_minion_id], "WTF": "SON"}) start = time.time() while time.time() - start < timeout: yield salt.ext.tornado.gen.sleep(1) io_loop.stop()
[ 707, 61, 2411 ]
def METHOD_NAME() -> RouteStringGenerator: return RouteStringGenerator()
[ 2476, 1443 ]
def METHOD_NAME(self) -> bool: """``True`` if ``max_deadline`` is not over yet, or if no deadline is set.""" if self.deadline is None: return True return self.max_deadline >= now() if self.max_deadline else True
[ 137, 1452 ]
def METHOD_NAME(self) -> None: row = GroupAssigneeRow.from_bulk( { "project_id": "2", "group_id": "1359", "date_added": "2019-09-19 00:17:55+00", "user_id": "1", "team_id": "", } ) write_processed_messages( self.storage, [InsertBatch([row.to_clickhouse()], None)] ) ret = ( self.storage.get_cluster() .get_query_connection(ClickhouseClientSettings.QUERY) .execute("SELECT * FROM groupassignee_local;") .results ) assert ret[0] == ( 0, # offset 0, # deleted 2, # project_id 1359, # group_id datetime(2019, 9, 19, 0, 17, 55), 1, # user_id None, # team_id )
[ 9, 2278, 557 ]
def METHOD_NAME(feature: float, background: float) -> float: """The Weber contrast. Used for patterns with a small feature within a large background. Ranges from 0 to infinity. For backwards compatibility with previous versions, the absolute difference is used, making the range 0 to infinity vs -1 to infinity. .. seealso:: https://en.wikipedia.org/wiki/Contrast_(vision)#Weber_contrast .. danger:: The default definition does not use the absolute value. We only use it here for backwards compatibility. """ return abs(feature - background) / background
[ -1 ]
def METHOD_NAME(generator_helper, data_helper): # Given input_data = data_helper.generate_multi_feature_full() generator_1 = DatetimeFeatureGenerator() generator_2 = DatetimeFeatureGenerator(features=["hour"]) expected_feature_metadata_in_full = { ("datetime", ()): ["datetime"], ("object", ("datetime_as_object",)): ["datetime_as_object"], } expected_feature_metadata_full_1 = { ("int", ("datetime_as_int",)): [ "datetime", "datetime.year", "datetime.month", "datetime.day", "datetime.dayofweek", "datetime_as_object", "datetime_as_object.year", "datetime_as_object.month", "datetime_as_object.day", "datetime_as_object.dayofweek", ] } expected_feature_metadata_full_2 = { ("int", ("datetime_as_int",)): [ "datetime", "datetime.hour", "datetime_as_object", "datetime_as_object.hour", ] } expected_output_data_feat_datetime = [ 1533140820000000000, 1301322000000000000, 1301322000000000000, 1524238620000000000, 1524238620000000000, -5364662400000000000, 7289654340000000000, 1301322000000000000, 1301322000000000000, ] expected_output_data_feat_datetime_year = [ 2018, 2011, # blank and nan values are set to the mean of good values = 2011 2011, 2018, 2018, 1800, 2200, 2011, # 2700 and 1000 are out of range for a pandas datetime so they are set to the mean 2011, # see limits at https://pandas.pydata.org/docs/reference/api/pandas.Timestamp.max.html ] expected_output_data_feat_datetime_hour = [16, 14, 14, 15, 15, 0, 23, 14, 14] # When output_data_1 = generator_helper.fit_transform_assert( input_data=input_data, generator=generator_1, expected_feature_metadata_in_full=expected_feature_metadata_in_full, expected_feature_metadata_full=expected_feature_metadata_full_1, ) assert list(output_data_1["datetime"].values) == list(output_data_1["datetime_as_object"].values) assert expected_output_data_feat_datetime == list(output_data_1["datetime"].values) assert expected_output_data_feat_datetime_year == list(output_data_1["datetime.year"].values) output_data_2 = generator_helper.fit_transform_assert( input_data=input_data, generator=generator_2, expected_feature_metadata_in_full=expected_feature_metadata_in_full, expected_feature_metadata_full=expected_feature_metadata_full_2, ) assert list(output_data_2["datetime"].values) == list(output_data_2["datetime_as_object"].values) assert expected_output_data_feat_datetime == list(output_data_2["datetime"].values) assert expected_output_data_feat_datetime_hour == list(output_data_2["datetime.hour"].values)
[ 9, 884, 964, 1443 ]
def METHOD_NAME(self): """Test Inkbird parser for Inkbird iBBQ with 4 probes.""" data_string = "043e27020100001e6771c1e2a81b0201060302f0ff13ff00000000a8e2c171671e0000000000000000c2" data = bytes(bytearray.fromhex(data_string)) # pylint: disable=unused-variable ble_parser = BleParser() sensor_msg, tracker_msg = ble_parser.parse_raw_data(data) assert sensor_msg["firmware"] == "Inkbird" assert sensor_msg["type"] == "iBBQ-4" assert sensor_msg["mac"] == "A8E2C171671E" assert sensor_msg["packet"] == "no packet id" assert sensor_msg["data"] assert sensor_msg["temperature probe 1"] == 0 assert sensor_msg["temperature probe 2"] == 0 assert sensor_msg["temperature probe 3"] == 0 assert sensor_msg["temperature probe 4"] == 0 assert sensor_msg["rssi"] == -62
[ 9, 7847, 497, 3877, 1010, 1842, 7848 ]
def METHOD_NAME(self, handle): position = win32.GetConsoleScreenBufferInfo(handle).dwCursorPosition # Because Windows coordinates are 0-based, # and win32.SetConsoleCursorPosition expects 1-based. position.X += 1 position.Y += 1 return position
[ 19, 195 ]
def METHOD_NAME(account_name: Optional[pulumi.Input[str]] = None, filter: Optional[pulumi.Input[Optional[str]]] = None, orderby: Optional[pulumi.Input[Optional[str]]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, share_name: Optional[pulumi.Input[str]] = None, skip_token: Optional[pulumi.Input[Optional[str]]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[ListShareSynchronizationsResult]: """ List synchronizations of a share Azure REST API version: 2021-08-01. :param str account_name: The name of the share account. :param str filter: Filters the results using OData syntax. :param str orderby: Sorts the results using OData syntax. :param str resource_group_name: The resource group name. :param str share_name: The name of the share. :param str skip_token: Continuation token """ ...
[ 245, 834, 836, 146 ]
def METHOD_NAME(self, conf): """ Render config as dictionary structure and delete keys from spec for null values :param spec: The facts tree, generated from the argspec :param conf: The configuration :rtype: dictionary :returns: The generated config """ config = {} location = {} civic_conf = "\n".join(filter(lambda x: ("civic-based" in x), conf)) elin_conf = "\n".join(filter(lambda x: ("elin" in x), conf)) coordinate_conf = "\n".join( filter(lambda x: ("coordinate-based" in x), conf) ) disable = "\n".join(filter(lambda x: ("disable" in x), conf)) coordinate_based_conf = self.parse_attribs( ["altitude", "datum", "longitude", "latitude"], coordinate_conf ) elin_based_conf = self.parse_lldp_elin_based(elin_conf) civic_based_conf = self.parse_lldp_civic_based(civic_conf) if disable: config["enable"] = False if coordinate_conf: location["coordinate_based"] = coordinate_based_conf config["location"] = location elif civic_based_conf: location["civic_based"] = civic_based_conf config["location"] = location elif elin_conf: location["elin"] = elin_based_conf config["location"] = location return utils.remove_empties(config)
[ 338, 200 ]
def METHOD_NAME(signal, frame): print()
[ 900, 684 ]
def METHOD_NAME(self): return GLiteJobFileFactory
[ 15568, 202, 171, 1155, 3847 ]
def METHOD_NAME(size1, size2): """ Returns a match score between *size1* and *size2*. If *size2* (the size specified in the font file) is 'scalable', this function always returns 0.0, since any font size can be generated. Otherwise, the result is the absolute distance between *size1* and *size2*, normalized so that the usual range of font sizes (6pt - 72pt) will lie between 0.0 and 1.0. """ if size2 == "scalable": return 0.0 # Size value should have already been try: sizeval1 = float(size1) except ValueError: return 1.0 try: sizeval2 = float(size2) except ValueError: return 1.0 return abs(sizeval1 - sizeval2) / 72.0
[ 747, 1318 ]
def METHOD_NAME(self, ver_and_role: str): repo = self.server.repo ver_str, sep, role = ver_and_role.rpartition(".") if sep == "": # 0 will lead to list lookup with -1, meaning latest version ver = 0 else: ver = int(ver_str) if role not in repo.role_cache or ver > len(repo.role_cache[role]): return None # return metadata return repo.role_cache[role][ver - 1].to_bytes(JSONSerializer())
[ 19, 773 ]
def METHOD_NAME(E): if np.sum(np.abs(E)) != 0: # check E != 0 for both floats and arrays try: m = _magn(E) assert ((1 <= m) & (m <= 5)).all() except AssertionError: print(("Warning. Input values may not be in cm-1", E, "cm-1?"))
[ 13083 ]
METHOD_NAME(self, *args):
[ 365, 773, 3758 ]
def METHOD_NAME(tmp_path): test_dir_a = tmp_path / 'a' test_dir_b = tmp_path / 'b' os.mkdir(test_dir_a) os.mkdir(test_dir_b) test_a = 'unittests/resources/checks/emptycheck.py' test_b = 'unittests/resources/checks/hellocheck.py' shutil.copyfile(test_a, test_dir_a / 'test.py') shutil.copyfile(test_b, test_dir_b / 'test.py') return RegressionCheckLoader( [test_dir_a.as_posix(), test_dir_b.as_posix()] )
[ 467, 41, 157, 4015 ]
def METHOD_NAME(resource_group_name: Optional[pulumi.Input[str]] = None, resource_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetIotHubResourceResult]: """ Get the non-security related metadata of an IoT hub. :param str resource_group_name: The name of the resource group that contains the IoT hub. :param str resource_name: The name of the IoT hub. """ ...
[ 19, 4254, 4031, 191, 146 ]
def METHOD_NAME( self, app, auth_client_header, third_party_user, group_payload ): group_payload["groupid"] = "group:[email protected]" headers = auth_client_header headers["X-Forwarded-User"] = third_party_user.userid app.post_json("/api/groups", group_payload, headers=headers) res = app.post_json( "/api/groups", group_payload, headers=headers, expect_errors=True ) assert res.status_code == 409
[ 9, 1807, 610, 17557, 2054, 4206, 217 ]
def METHOD_NAME(empty_study: FileStudy, command_context: CommandContext): study_path = empty_study.config.study_path area1 = "Area1" area1_id = transform_name_to_id(area1) CreateArea.parse_obj( { "area_name": area1, "command_context": command_context, } ).apply(empty_study) update_settings_command = UpdateConfig( target="settings/generaldata/optimization/simplex-range", data="day", command_context=command_context, ) output = update_settings_command.apply(empty_study) assert output.status generaldata = MultipleSameKeysIniReader().read(study_path / "settings/generaldata.ini") assert generaldata["optimization"]["simplex-range"] == "day" assert generaldata["optimization"]["transmission-capacities"] update_settings_command = UpdateConfig( target=f"input/areas/{area1_id}/optimization/nodal optimization/other-dispatchable-power", data=False, command_context=command_context, ) output = update_settings_command.apply(empty_study) assert output.status area_config = MultipleSameKeysIniReader().read(study_path / f"input/areas/{area1_id}/optimization.ini") assert not area_config["nodal optimization"]["other-dispatchable-power"] # test UpdateConfig with byte object which is necessary with the API PUT /v1/studies/{uuid}/raw data = json.dumps({"first_layer": {"0": "Nothing"}}).encode("utf-8") command = UpdateConfig( target="layers/layers", data=data, command_context=command_context, ) command.apply(empty_study) layers = MultipleSameKeysIniReader().read(study_path / "layers/layers.ini") assert layers == {"first_layer": {"0": "Nothing"}} new_data = json.dumps({"1": False}).encode("utf-8") command = UpdateConfig( target="layers/layers/first_layer", data=new_data, command_context=command_context, ) command.apply(empty_study) layers = MultipleSameKeysIniReader().read(study_path / "layers/layers.ini") assert layers == {"first_layer": {"1": False}}
[ 9, 86, 200 ]
def METHOD_NAME(self, client_info): # Precompute the wrapped methods. self._wrapped_methods = { self.import_taxonomies: gapic_v1.method.wrap_method( self.import_taxonomies, default_timeout=None, client_info=client_info, ), self.export_taxonomies: gapic_v1.method.wrap_method( self.export_taxonomies, default_timeout=None, client_info=client_info, ), }
[ 48, 2354, 1107 ]
def METHOD_NAME(self) -> np.ndarray: """ Calculate the updraught from CAPE data Calculation is 0.25 * sqrt(2 * cape) Returns zero where CAPE < 10 J kg-1 """ updraught = 0.25 * (2 * self.cape.data) ** 0.5 updraught[self.cape.data < self._minimum_cape] = 0.0 return updraught.astype(np.float32)
[ 11304, 280, 15634 ]
METHOD_NAME(self):
[ 187, 2277 ]
def METHOD_NAME(self) -> MatchProperties | None: """Return match properties if any.""" return self._match
[ 590 ]
def METHOD_NAME(self): """ Read email from stdin """ data = sys.stdin.readlines() for line in data: if not line.strip(): continue if line.startswith("To: "): self.email_to = line[3:].strip() elif line.startswith("Subject: "): self.email_subject = line[8:].strip() else: self.email_body.append(line.strip())
[ 203, 3562 ]
def METHOD_NAME( ver1, ver2 ): intVer1 = cmssw_version_to_int(ver1) intVer2 = cmssw_version_to_int(ver2) if intVer1<intVer2: return -1 elif intVer1>intVer2: return 1 else: return 0
[ 2014, 5575, 281 ]