text
stringlengths
15
7.82k
ids
sequencelengths
1
7
def METHOD_NAME(xml_file): """Parse the xml file to create types, scaling factor types, and scales.""" tree = ElementTree() tree.parse(xml_file) for param in tree.find("parameters"): VARIABLES[param.get("name")] = param.get("value") types_scales = {} for prod in tree.find("product"): ascii = (prod.tag in ["mphr", "sphr"]) res = [] for i in prod: lres = CASES[i.tag](i, ascii) if lres is not None: res.append(lres) types_scales[(prod.tag, int(prod.get("subclass")))] = res types = {} stypes = {} scales = {} for key, val in types_scales.items(): types[key] = to_dtype(val) stypes[key] = to_scaled_dtype(val) scales[key] = to_scales(val) return types, stypes, scales
[ 214, 275 ]
def METHOD_NAME(self): self.assertRaises(TypeError, copyreg.pickle, type(1), int, "not a callable")
[ 9, 17095, 2821 ]
def METHOD_NAME(self): store = self.StoreClass() # Initial value is None assert store.gettargetlanguage() is None # sourcelanguage shouldn't change the targetlanguage store.setsourcelanguage("en") assert store.gettargetlanguage() is None # targetlanguage setter works correctly store.settargetlanguage("de") assert store.gettargetlanguage() == "de" # explicit targetlanguage wins over filename store.filename = "Project/it.lproj/Localizable.stringsdict" assert store.gettargetlanguage() == "de"
[ 9, 17134, 235, -1 ]
def METHOD_NAME(unit, axis): """Set the axis label based on unit Parameters ---------- unit : Unit object, string, or tuple This parameter comes from unyt_arrayConverter.default_units() or from user code such as Axes.plot(), Axis.set_units(), etc. In user code, it is possible to convert the plotted units by specifing the new unit as a string, such as "ms", or as a tuple, such as ("J", "thermal") following the call signature of unyt_array.convert_to_units(). axis : Axis object Returns ------- AxisInfo object with the label formatted as in-line math latex """ if isinstance(unit, tuple): unit = unit[0] unit_obj = unit if isinstance(unit, Unit) else Unit(unit) name = unyt_arrayConverter._axisnames.get(axis, "") if unit_obj.is_dimensionless: label = name else: name += " " unit_str = unit_obj.latex_representation() if unyt_arrayConverter._labelstyle == "[]": label = name + "$\\left[" + unit_str + "\\right]$" elif unyt_arrayConverter._labelstyle == "/": axsym = "$q_{\\rm" + axis.axis_name + "}$" name = axsym if name == " " else name if "/" in unit_str: label = name + "$\\;/\\;\\left(" + unit_str + "\\right)$" else: label = name + "$\\;/\\;" + unit_str + "$" else: label = name + "$\\left(" + unit_str + "\\right)$" return AxisInfo(label=label.strip())
[ 6314 ]
def METHOD_NAME(monkeypatch): monkeypatch.setenv("GIT_AUTHOR_NAME", "John Doe") monkeypatch.setenv("GIT_AUTHOR_EMAIL", "[email protected]") assert info.is_git_configured()
[ 9, 1493, 137, 4196, 2499, 485, 1659 ]
def METHOD_NAME(self): """Testing a valid file""" self.assertNotEqual(utils.loadModule(Path("../depthai_sdk/utils.py")), None)
[ 9, 557, 16860 ]
def METHOD_NAME(self): ...
[ 962, 768 ]
def METHOD_NAME(used_numexpr: bool) -> None: global _TEST_RESULT if used_numexpr: _TEST_RESULT.append(used_numexpr)
[ 1308, 9, 1571 ]
def METHOD_NAME(self): self.build_dir = None self.scripts = None self.force = None self.executable = None
[ 15, 1881 ]
def METHOD_NAME(parent_key, parent_chain_code, i): """ Derives a child key from an existing key, i is current derivation parameter. Logic adapted from https://github.com/satoshilabs/slips/blob/master/slip-0010/testvectors.py. """ assert len(parent_key) == 32 assert len(parent_chain_code) == 32 k = parent_chain_code if (i & BIP32_PRIVDEV) != 0: key = b'\x00' + parent_key else: key = derive_public_key(parent_key) d = key + struct.pack('>L', i) while True: h = hmac.new(k, d, hashlib.sha512).digest() key, chain_code = h[:32], h[32:] a = int.from_bytes(key, byteorder='big') b = int.from_bytes(parent_key, byteorder='big') key = (a + b) % BIP32_CURVE.order if a < BIP32_CURVE.order and key != 0: key = int(key).to_bytes(32, byteorder='big') break d = b'\x01' + h[32:] + struct.pack('>L', i) return key, chain_code
[ 229, -1 ]
def METHOD_NAME(packer, es_lkas_state_msg, enabled, visual_alert, left_line, right_line, left_lane_depart, right_lane_depart): values = {s: es_lkas_state_msg[s] for s in [ "CHECKSUM", "COUNTER", "LKAS_Alert_Msg", "Signal1", "LKAS_ACTIVE", "LKAS_Dash_State", "Signal2", "Backward_Speed_Limit_Menu", "LKAS_Left_Line_Enable", "LKAS_Left_Line_Light_Blink", "LKAS_Right_Line_Enable", "LKAS_Right_Line_Light_Blink", "LKAS_Left_Line_Visible", "LKAS_Right_Line_Visible", "LKAS_Alert", "Signal3", ]} # Filter the stock LKAS "Keep hands on wheel" alert if values["LKAS_Alert_Msg"] == 1: values["LKAS_Alert_Msg"] = 0 # Filter the stock LKAS sending an audible alert when it turns off LKAS if values["LKAS_Alert"] == 27: values["LKAS_Alert"] = 0 # Filter the stock LKAS sending an audible alert when "Keep hands on wheel" alert is active (2020+ models) if values["LKAS_Alert"] == 28 and values["LKAS_Alert_Msg"] == 7: values["LKAS_Alert"] = 0 # Filter the stock LKAS sending an audible alert when "Keep hands on wheel OFF" alert is active (2020+ models) if values["LKAS_Alert"] == 30: values["LKAS_Alert"] = 0 # Filter the stock LKAS sending "Keep hands on wheel OFF" alert (2020+ models) if values["LKAS_Alert_Msg"] == 7: values["LKAS_Alert_Msg"] = 0 # Show Keep hands on wheel alert for openpilot steerRequired alert if visual_alert == VisualAlert.steerRequired: values["LKAS_Alert_Msg"] = 1 # Ensure we don't overwrite potentially more important alerts from stock (e.g. FCW) if visual_alert == VisualAlert.ldw and values["LKAS_Alert"] == 0: if left_lane_depart: values["LKAS_Alert"] = 12 # Left lane departure dash alert elif right_lane_depart: values["LKAS_Alert"] = 11 # Right lane departure dash alert values["LKAS_ACTIVE"] = 1 # Show LKAS lane lines values["LKAS_Dash_State"] = 2 if enabled else 0 # Green enabled indicator values["LKAS_Left_Line_Visible"] = int(left_line) values["LKAS_Right_Line_Visible"] = int(right_line) return packer.make_can_msg("ES_LKAS_State", CanBus.main, values)
[ 129, 2752, 2542, 551 ]
def METHOD_NAME(data_ds, aug_type, num_aug=10, percent=0.1, aug_base="mlm", example_keys=None): """ Extend train dataset with augmentation. """ if example_keys is None: return data_ds if aug_type is None or aug_type == "None": return data_ds if aug_type == "delete": aug = WordDelete(create_n=num_aug, aug_percent=percent) elif aug_type == "substitute": aug = WordSubstitute(aug_base, create_n=num_aug, aug_percent=percent) elif aug_type == "insert": aug = WordInsert(aug_base, create_n=num_aug, aug_percent=percent) elif aug_type == "swap": aug = WordSwap(create_n=num_aug, aug_percent=percent) else: raise ValueError("Unsupported data augment strategy `{}`".format(aug_type)) aug_data = [] for example in data_ds: for key in example_keys: text_aug = aug.augment(example[key]) for text in text_aug: new_example = example.copy() example[key] = text aug_data.append(new_example) data_ds = MapDataset([x for x in data_ds] + aug_data) return data_ds
[ 978, 41, 365, 3725 ]
def METHOD_NAME(args): dicom_dataset = pydicom.read_file(args.input_file, force=True) new_dicom_dataset = adjust_machine_name(dicom_dataset, args.new_machine_name) pydicom.write_file(args.output_file, new_dicom_dataset)
[ 270, 1600, 156, 615 ]
def METHOD_NAME(self, *args, **options): migrator = ServiceMigrator() # make sure we have our new list of services created_service_list = migrator.create_provider_service_list() self.stdout.write( self.style.SUCCESS( "Created our updated list of services" f"Created {len(created_service_list)} new services" ) ) # Migrate these services using the appropriate mappings for slug in MIGRATION_DICT.keys(): migrator.migrate_service_tags_to_service(slug, MIGRATION_DICT[slug]) # remove previous tags for service_tag_id in SERVICES_TO_DELETE: tag_models.Tag.objects.get(id=service_tag_id).delete() self.stdout.write(self.style.SUCCESS("All done!"))
[ 276 ]
def METHOD_NAME(x, w): new_data = 0 if isinstance(x, SparseVector): for idx, v in x.get_all_data(): # if idx < len(w): new_data += v * w[idx] else: new_data = np.dot(x, w) return new_data
[ 3203, 1903 ]
def METHOD_NAME(v: type) -> TypeGuard[type[IDTypeSubclass]]: return IDTypeSubclassHint.is_bearable(v)
[ 137, 147, 44, 9260 ]
def METHOD_NAME(self) -> None: if not self._is_upload_required(): return datetime_portion = datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S") s3_folder_location = "{base_directory}/{datetime_portion}".format( base_directory=self.base_amundsen_data_path, datetime_portion=datetime_portion, ) self.upload_files(s3_folder_location) bulk_upload_response = self.neptune_api_client.load( s3_object_key=s3_folder_location, failOnError=self.fail_on_error ) try: load_id = bulk_upload_response['payload']['loadId'] except KeyError: raise Exception("Failed to load csv. Response: {0}".format(str(bulk_upload_response))) load_status = "LOAD_NOT_STARTED" all_errors: List[NeptuneBulkLoaderLoadStatusErrorLogEntry] = [] while load_status in ("LOAD_IN_PROGRESS", "LOAD_NOT_STARTED", "LOAD_IN_QUEUE"): time.sleep(self.status_polling_period) load_status, errors = self._poll_status(load_id) all_errors.extend(errors) for error in all_errors: exception_message = """ Error Code: {error_code} Error Message: {error_message} Failed File: {s3_path} """.format( error_code=error.get('errorCode'), error_message=error.get('errorMessage'), s3_path=error.get('fileName') ) LOGGER.exception(exception_message)
[ 2411, 2581 ]
def METHOD_NAME(self): """The name of the code in human-readable form""" return self.name.replace('_', ' ').title()
[ 156, 10730 ]
def METHOD_NAME(self) -> str: """ Status of address validation """ return pulumi.get(self, "address_validation_status")
[ 85, 437, 452 ]
def METHOD_NAME(data): # with FSDP, module params will be on CUDA, so we cast them back to CPU # so that the RNG is consistent with and without FSDP data.copy_(data.cpu().METHOD_NAME(mean=0.0, std=0.02).to(data.device))
[ 1576 ]
def METHOD_NAME(self): """ close the window containing this panel """ self.close()
[ 69, 1462 ]
def METHOD_NAME(volume, _): verts, faces, normals, values = marching_cubes_lewiner(volume, 1) faces = correct_mesh_orientation(volume, verts, faces) return verts, None, faces
[ 10246 ]
METHOD_NAME(self) -> None:
[ 0, 1 ]
def METHOD_NAME(ctx: AnalysisContext, rpm: Artifact, href: str) -> Artifact: out = ctx.actions.declare_output("xml.json") ctx.actions.run( cmd_args( ctx.attrs.makechunk[RunInfo], cmd_args(rpm, format = "--rpm={}"), cmd_args(out.as_output(), format = "--out={}"), "--href={}".format(href), ), category = "makexml", ) return out
[ 93, 399 ]
async def METHOD_NAME( domain_with_response_ids: Domain, default_tracker: DialogueStateTracker, mock_nlg_endpoint: MagicMock, ) -> None: callback_nlg = CallbackNaturalLanguageGenerator(mock_nlg_endpoint) output_channel = CollectingOutputChannel() events = await ActionBotResponse("utter_multiple_ids").run( output_channel, callback_nlg, default_tracker, domain_with_response_ids ) expected_body = nlg_request_format( "utter_multiple_ids", default_tracker, output_channel.name(), response_id="2", ) mock_nlg_endpoint.request.assert_called_once_with( method="post", json=expected_body, timeout=DEFAULT_REQUEST_TIMEOUT ) assert len(events) == 1 assert events[0].metadata == {"utter_action": "utter_multiple_ids"}
[ 9, 1006, 1227, 17, 1076, 41, 107 ]
def METHOD_NAME(): utils.fix_output_encoding() settings = ComicTaggerSettings() # this can only work with files with ComicRack tags style = MetaDataStyle.CIX if len(sys.argv) < 2: print >> sys.stderr, "Usage: {0} [comic_folder]".format(sys.argv[0]) return filelist = utils.get_recursive_filelist(sys.argv[1:]) # first make a list of all comic archive files comics_list = [] max_name_len = 2 fmt_str = u"{{0:{0}}}".format(max_name_len) for filename in filelist: ca = ComicArchive(filename, settings.rar_exe_path) if ca.seemsToBeAComicArchive(): # Check the images in the file, see if we need to reduce any for idx in range(ca.getNumberOfPages()): in_data = ca.getPage(idx) if in_data is not None: try: im = Image.open(StringIO.StringIO(in_data)) w, h = im.size if h > max_height: comics_list.append(ca) max_name_len = max(max_name_len, len(filename)) fmt_str = u"{{0:{0}}}".format(max_name_len) print >> sys.stderr, fmt_str.format(filename) + "\r", sys.stderr.flush() break except IOError: # doesn't appear to be an image pass print >> sys.stderr, fmt_str.format("") + "\r", print "--------------------------------------------------------------------------" print "Found {0} comics with over-large pages".format(len(comics_list)) print "--------------------------------------------------------------------------" for item in comics_list: print item.path # now actually process those files with over-large pages for ca in comics_list: filename = ca.path curr_folder = os.path.dirname(filename) curr_subfolder = os.path.join(curr_folder, subfolder_name) # skip any of our generated subfolders... if os.path.basename(curr_folder) == subfolder_name: continue sys.stdout.write("Processing: " + filename) # verify that we can write to current folder if not os.access(filename, os.W_OK): print "Can't move: {0}: skipped!".format(filename) continue if not os.path.exists(curr_subfolder) and not os.access(curr_folder, os.W_OK): print "Can't create subfolder here: {0}: skipped!".format(filename) continue if not os.path.exists(curr_subfolder): os.mkdir(curr_subfolder) if not os.access(curr_subfolder, os.W_OK): print "Can't write to the subfolder here: {0}: skipped!".format(filename) continue # generate a new file with temp name tmp_fd, tmp_name = tempfile.mkstemp(dir=os.path.dirname(filename)) os.close(tmp_fd) cix_md = None if ca.hasCIX(): cix_md = ca.readCIX() try: zout = zipfile.ZipFile(tmp_name, "w") # Check the images in the file, see if we want to reduce them page_count = ca.getNumberOfPages() for idx in range(ca.getNumberOfPages()): name = ca.getPageName(idx) in_data = ca.getPage(idx) out_data = in_data if in_data is not None: try: im = Image.open(StringIO.StringIO(in_data)) w, h = im.size if h > max_height: # resize the image hpercent = max_height / float(h) wsize = int((float(w) * float(hpercent))) size = (wsize, max_height) im = im.resize(size, Image.ANTIALIAS) output = StringIO.StringIO() im.save(output, format="JPEG", quality=85) out_data = output.getvalue() output.close() except IOError: # doesn't appear to be an image pass else: # page is empty?? nothing to write out_data = "" sys.stdout.write(".") sys.stdout.flush() # write out the new resized image zout.writestr(name, out_data) # preserve the old comment comment = ca.archiver.getArchiveComment() if comment is not None: zout.comment = ca.archiver.getArchiveComment() except Exception as e: print "Failure creating new archive: {0}!".format(filename) print e, sys.exc_info()[0] zout.close() os.unlink(tmp_name) else: zout.close() # Success! Now move the files shutil.move(filename, curr_subfolder) os.rename(tmp_name, filename) # TODO: We might have converted a rar to a zip, and should probably change # the extension, as needed. print "Done!".format(filename) # Create a new archive object for the new file, and write the old # CIX data, w/o page info if cix_md is not None: ca = ComicArchive(filename, settings.rar_exe_path) cix_md.pages = [] ca.writeCIX(cix_md)
[ 57 ]
def METHOD_NAME(self) -> str: """ Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} """ return pulumi.get(self, "id")
[ 147 ]
f METHOD_NAME(self, experience):
[ 86, 6171, 664 ]
def METHOD_NAME( algorithm_io_image, settings, django_capture_on_commit_callbacks ): # Override the celery settings settings.task_eager_propagates = (True,) settings.task_always_eager = (True,) alg = AlgorithmFactory() image = AlgorithmImageFactory( algorithm=alg, is_manifest_valid=True, image__from_path=algorithm_io_image, ) assert not image.is_in_registry with django_capture_on_commit_callbacks(execute=True): upload_to_registry_and_sagemaker( pk=image.pk, app_label=image._meta.app_label, model_name=image._meta.model_name, mark_as_desired=False, ) image = AlgorithmImage.objects.get(pk=image.pk) assert image.is_in_registry assert not image.is_desired_version with django_capture_on_commit_callbacks(execute=True): upload_to_registry_and_sagemaker( pk=image.pk, app_label=image._meta.app_label, model_name=image._meta.model_name, mark_as_desired=True, ) image = AlgorithmImage.objects.get(pk=image.pk) assert image.is_in_registry assert image.is_desired_version
[ 9, 172, 24, 510, 61, 9638 ]
def METHOD_NAME(assert_pixels): assert_pixels(''' ____ ____ ____ ____ ''', ''' <style> @page { size: 4px 4px } svg { display: block } </style> <svg width="4px" height="4px" xmlns="http://www.w3.org/2000/svg"> <That’s bad! </svg> ''')
[ 9, 660, 10129, 909 ]
def METHOD_NAME(A: dace.int64, B: dace.int64[5, 5]): return A > B
[ 9, 18009 ]
def METHOD_NAME(c): for i in c: print("%02x" % i8(i), end=" ") print()
[ 278 ]
def METHOD_NAME(checkpoint_path): sd = torch.load(checkpoint_path, map_location="cpu") return sd
[ 557, 551, 553 ]
def METHOD_NAME(self): """ Ensure that the FlowTest can raise an exception via the screen_return_value. """ # A generic Exception should be caught by the Controller and routed to the # UnhandledExceptionView. self.run_sequence([ FlowStep(MainMenuView, screen_return_value=Exception("Test exception")), FlowStep(UnhandledExceptionView), ])
[ 9, 241, 442, 2499, 5099, 1413, 99 ]
def METHOD_NAME(self): for line in self.pipe.stdout: print(line.decode("utf-8").strip())
[ 22 ]
def METHOD_NAME(self): self.assertFalse(self.test_table.show_table_style_last_column) self.test_table.show_table_style_last_column = True self.assertTrue(self.test_table.show_table_style_last_column) self.test_table.show_table_style_last_column = False
[ 9, 697, 410, 641, 679, 105 ]
def METHOD_NAME(code, filename): return os.path.join(code, os.path.basename(filename))
[ 3095, 2851, 171 ]
def METHOD_NAME(self): x = java.util.HashMap() x.put('a', 1) x.put('b', 2) x.put('c', 3) x.put((1,2), "xyz") y = dict(x) self.assertEqual(set(y.items()), set([('a', 1), ('b', 2), ('c', 3), ((1,2), "xyz")]))
[ 9, 17871 ]
def METHOD_NAME(self): meta_info = dict( img_size=[256, 256], scale_factor=np.array([1.5, 1.5]), img_shape=torch.rand(4)) det_data_sample = DetDataSample(metainfo=meta_info) assert 'img_size' in det_data_sample assert det_data_sample.img_size == [256, 256] assert det_data_sample.get('img_size') == [256, 256]
[ 9, 176 ]
def METHOD_NAME( self, configuration: Optional[ExpectationConfiguration] = None ) -> None: """Validates the configuration for the Expectation. For `expect_column_values_to_match_like_pattern` we require that the `configuraton.kwargs` contain a `like_pattern_list` key that is either a `list` or `dict`. Args: configuration: The ExpectationConfiguration to be validated. Raises: InvalidExpectationConfigurationError: The configuraton does not contain the values required by the Expectation """ super().METHOD_NAME(configuration) configuration = configuration or self.configuration try: assert ( "like_pattern_list" in configuration.kwargs ), "Must provide like_pattern_list" assert isinstance( configuration.kwargs.get("like_pattern_list"), (list, dict) ), "like_pattern_list must be a list" assert isinstance(configuration.kwargs.get("like_pattern_list"), dict) or ( len(configuration.kwargs.get("like_pattern_list")) > 0 ), "At least one like_pattern must be supplied in the like_pattern_list." if isinstance(configuration.kwargs.get("like_pattern_list"), dict): assert "$PARAMETER" in configuration.kwargs.get( "like_pattern_list" ), 'Evaluation Parameter dict for like_pattern_list kwarg must have "$PARAMETER" key.' except AssertionError as e: raise InvalidExpectationConfigurationError(str(e))
[ 187, 830 ]
def METHOD_NAME(self): result = LookupMethods().property_icontains("Abc", "a") self.assertTrue(result)
[ 9, 8115 ]
def METHOD_NAME(preds, labels): pearson_corr = pearsonr(preds, labels)[0] spearman_corr = spearmanr(preds, labels)[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, }
[ 4752, 61, 4753 ]
def METHOD_NAME(self) -> None: run_result = job_run_result.JobRunResult(stdout='abc', stderr='123') self.assertEqual( repr(run_result), 'JobRunResult(stdout="abc", stderr="123")')
[ 9, 92 ]
def METHOD_NAME( self, num_params=41, dtypes=[torch.float32, torch.float16, torch.float64], devices=['cuda', 'cpu'], max_norm=0.54321, norm_type=2.0, rtol=1e-3, atol=1e-20, ): """Make sure PyTorch and Apex gradient clipping produce same results""" # Construct identical sets of parameters torch_params, apex_params = make_params( num_params, dtypes=dtypes, devices=devices, make_copy=True, ) # Apply gradient clipping torch_norm = torch.nn.utils.clip_grad_norm_( torch_params, max_norm, norm_type=norm_type, ) apex_norm = clip_grad_norm_( apex_params, max_norm, norm_type=norm_type, ) # Make sure PyTorch and Apex get same results torch.testing.assert_close( apex_norm, torch_norm, rtol=rtol, atol=atol, check_dtype=False, ) for torch_p, apex_p in zip(torch_params, apex_params): torch.testing.assert_close( apex_p, torch_p, rtol=0, atol=0, ) # Params should be unaffected torch.testing.assert_close( apex_p.grad, torch_p.grad, rtol=rtol, atol=atol, )
[ 9, 855, 3299 ]
def METHOD_NAME(self): self.fp.METHOD_NAME()
[ 1462 ]
def METHOD_NAME(query: str) -> Dict: data = json.dumps({ 'query': query }) r = requests.post(GH_GQL_ENDPOINT, data, headers=HEADERS) return r.json()
[ 74, 3776 ]
def METHOD_NAME(refresh=False, *args, **kwargs): """ The tera base model on 960hr refresh (bool): whether to download ckpt/config again if existed """ return tera_logMelBase_T_F_M_AdamW_b32_1m_960hr_drop1(refresh, *args, **kwargs)
[ 6336, -1 ]
f METHOD_NAME(self, np_window_fn, tf_window_fn):
[ 979, 1092, 5685 ]
def METHOD_NAME(self): tt = self.res.t_test(np.eye(len(self.res.params))) from scipy import stats pvalue = stats.norm.sf(np.abs(tt.tvalue)) * 2 assert_almost_equal(tt.tvalue, self.res.tvalues, DEC) assert_almost_equal(pvalue, self.res.pvalues, DEC)
[ 9, 4883 ]
def METHOD_NAME(self): """ Clears the screen. All pixels on the screen will be set to Color.WHITE. """ ...
[ 537 ]
def METHOD_NAME(self, webpage, video_id, name, is_live): window_stores = self._extract_pagestore(webpage, video_id) movie_stores = [ # extract all three important data (most of data are duplicated each other, but slightly different!) traverse_obj(window_stores, ('v8', 'state', 'movie'), expected_type=dict), traverse_obj(window_stores, ('v8', 'movie'), expected_type=dict), traverse_obj(window_stores, 'movieStore', expected_type=dict), ] if not any(movie_stores): raise ExtractorError(f'Failed to extract {name} info') formats = list(self._expand_media(video_id, get_first(movie_stores, 'media'))) if not formats: # archived livestreams or subscriber-only videos cookies = self._get_cookies('https://www.openrec.tv/') detail = self._download_json( f'https://apiv5.openrec.tv/api/v5/movies/{video_id}/detail', video_id, headers={ 'Origin': 'https://www.openrec.tv', 'Referer': 'https://www.openrec.tv/', 'access-token': try_get(cookies, lambda x: x.get('access_token').value), 'uuid': try_get(cookies, lambda x: x.get('uuid').value), }) new_media = traverse_obj(detail, ('data', 'items', ..., 'media'), get_all=False) formats = list(self._expand_media(video_id, new_media)) is_live = False return { 'id': video_id, 'title': get_first(movie_stores, 'title'), 'description': get_first(movie_stores, 'introduction'), 'thumbnail': get_first(movie_stores, 'thumbnailUrl'), 'formats': formats, 'uploader': get_first(movie_stores, ('channel', 'user', 'name')), 'uploader_id': get_first(movie_stores, ('channel', 'user', 'id')), 'timestamp': int_or_none(get_first(movie_stores, ['publishedAt', 'time']), scale=1000) or unified_timestamp(get_first(movie_stores, 'publishedAt')), 'is_live': is_live, }
[ 297, 1786 ]
def METHOD_NAME(self, ttype): """ Set the type of p grid generator. """ if ttype == TYPE_UNIFORM or ttype == TYPE_BIUNIFORM: self.type = ttype else: raise DREAMException("PGrid {}: Unrecognized grid type specified: {}.".format(self.name, self.type))
[ 0, 44 ]
def METHOD_NAME(payload, serialized_event_request): request = EventRequest.deserialize(serialized_event_request) metadata = EventMetadata(request=request) event = InventoryCleanupFinished(metadata, {"cleanup": payload}) event.post()
[ 72, 950, 1756, 417 ]
def METHOD_NAME(self, pred, bitmap, dest_width, dest_height): """ bitmap: single map with shape (H, W), whose values are binarized as {0, 1} """ assert len(bitmap.shape) == 2 height, width = bitmap.shape contours, _ = cv2.findContours( (bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) num_contours = min(len(contours), self.max_candidates) boxes = np.zeros((num_contours, 4, 2), dtype=np.int16) scores = np.zeros((num_contours,), dtype=np.float32) for index in range(num_contours): contour = contours[index].squeeze(1) points, sside = self.get_mini_boxes(contour) if sside < self.min_size: continue points = np.array(points) score = self.box_score_fast(pred, contour) if self.box_thresh > score: continue box = self.unclip( points, unclip_ratio=self.unclip_ratio).reshape(-1, 1, 2) box, sside = self.get_mini_boxes(box) if sside < self.min_size + 2: continue box = np.array(box) if not isinstance(dest_width, int): dest_width = dest_width.item() dest_height = dest_height.item() box[:, 0] = np.clip( np.round(box[:, 0] / width * dest_width), 0, dest_width) box[:, 1] = np.clip( np.round(box[:, 1] / height * dest_height), 0, dest_height) boxes[index, :, :] = box.astype(np.int16) scores[index] = score return boxes, scores
[ 2877, 280, 5651 ]
def METHOD_NAME(upgrader, pooled_clone_sequencing_not_control): value = upgrader.upgrade('functional_characterization_experiment', pooled_clone_sequencing_not_control, current_version='9', target_version='10') assert value['schema_version'] == '10' assert value['control_type'] == "control"
[ 9, 4167, 2037, 2355, 738, 1136, 24 ]
def METHOD_NAME(self): """ :return: rms value of background noise """ if self._background_rms is None: if self._noise_map is None: raise ValueError( "rms background value as 'background_rms' not specified!" ) self._background_rms = np.median(self._noise_map) return self._background_rms
[ 2272, 6984 ]
def METHOD_NAME(self): """An ordered list of upcoming events. Events are named tuples with fields for: time, priority, action, arguments """ # Use heapq to sort the queue rather than using 'sorted(self._queue)'. # With heapq, two events scheduled at the same time will show in # the actual order they would be retrieved. events = self._queue[:] return map(heapq.heappop, [events]*len(events))
[ 651 ]
def METHOD_NAME(self, task): """ Job End notification """ print("Job ended") return
[ 202, 1798 ]
f METHOD_NAME(self, lr, initial_period_steps, t_mul, iters):
[ 19, 16083, 199 ]
def METHOD_NAME(): b64art = create_artifact("http://sp.example.com/saml.xml", b"aabbccddeeffgghhiijj") art = base64.b64decode(b64art.encode("ascii")) assert art[:2] == ARTIFACT_TYPECODE assert int(art[2:4]) == 0 s = sha1(b"http://sp.example.com/saml.xml") assert art[4:24] == s.digest()
[ 9, 129, 1831 ]
def METHOD_NAME(self, get_components): DG = nx.path_graph(5, create_using=nx.DiGraph) G = nx.disjoint_union(DG, DG) seen = set() for component in get_components(G): assert len(seen & component) == 0 seen.update(component) component.clear()
[ 9, 2261, 9901 ]
def METHOD_NAME(self): logger.debug("Reading discover data from %s.", self.path) try: fo = open(self.path, 'rb') except IOError as e: logger.debug("Failed to read manifest: %s.", e) return self.data with fo: self.json = fo.METHOD_NAME() self.etag = self.file_etag = compute_etag(self.json) try: data = json.loads(self.json.decode('utf-8')) except json.JSONDecodeError as e: raise UserError("Malformed manifest: %s" % e) if not isinstance(data, dict): raise UserError("Malformed manifest: not a mapping") self.data.update(data) self.mtime = os.stat(self.path).st_mtime return self.data
[ 203 ]
def METHOD_NAME(self): app = web.Application() app.on_response_prepare.append(set_default_headers) app.add_routes([ web.get('/json', self.json), web.get('/overview', self.overview), web.get('/', self.index) ]) return app
[ 129, 991 ]
def METHOD_NAME(test_case, input_dtype, device): sorted_sequence_1d = flow.tensor( np.array([1, 3, 5, 7, 9]), dtype=input_dtype, device=flow.device(device) ) values = flow.tensor( np.array([3, 6, 9]), dtype=input_dtype, device=flow.device(device) ) gt = np.array([1, 3, 4]) output = flow.searchsorted(sorted_sequence_1d, values) test_case.assertTrue(np.allclose(output.numpy(), gt, 0.0001, 0.0001)) test_case.assertTrue(output.dtype == flow.int64)
[ 9, 1070, 1389, 988 ]
def METHOD_NAME(self, datacollection_id): try: process_dir = os.path.join(self.xds_directory, "..") raw_process_dir = os.path.join(self.raw_data_input_file_dir, "..") for dir in (process_dir, raw_process_dir): for filename in ("x_geo_corr.cbf.bz2", "y_geo_corr.cbf.bz2"): dest = os.path.join(dir, filename) if os.path.exists(dest): continue shutil.copyfile( os.path.join("/data/id29/inhouse/opid291", filename), dest ) except Exception: logging.exception("Exception happened while copying geo_corr files") return ESRFMultiCollect.METHOD_NAME(self, datacollection_id)
[ 77, 362, 1537 ]
def METHOD_NAME(opts, flgs): TMPVECT = [] DEBUG = True if flgs["d"] else False atexit.register(cleanup, vect=TMPVECT, debug=DEBUG) # check input maps rhydro = ["kind_label", "discharge", "id_point", "id_plant"] rother = ["kind_label", "discharge", "id_point", "id_plant"] ovwr = overwrite() try: hydro = check_required_columns( opts["hydro"], int(opts["hydro_layer"]), rhydro, "hydro" ) if opts["other"]: other = check_required_columns( opts["other"], opts["other_layer"], rother, "other" ) else: other = None # minflow = check_float_or_raster(opts['minflow']) except ParameterError as exc: exception2error(exc) # start working hydro.open("r") el, mset = ( opts["elevation"].split("@") if "@" in opts["elevation"] else (opts["elevation"], "") ) elev = RasterRow(name=el, mapset=mset) elev.open("r") # import ipdb; ipdb.set_trace() plants, skipped = read_plants( hydro, elev=elev, restitution=opts["hydro_kind_turbine"], intake=opts["hydro_kind_intake"], ) hydro.close() rvname, rvmset = ( opts["river"].split("@") if "@" in opts["river"] else (opts["river"], "") ) vplants = opts["output_plants"] if opts["output_plants"] else "tmpplants" # FIXME: I try with tmpplants in my mapset and it doesn'work if opts["output_plants"] == "": TMPVECT.append(vplants) with VectorTopo(rvname, rvmset, mode="r") as river: write_plants(plants, vplants, river, elev, overwrite=ovwr) if skipped: for skip in skipped: print("Plant: %r, Point: %r, kind: %r" % skip) elev.close() # compute a buffer around the plants buff = vplants + "buff" v.buffer(input=vplants, type="line", output=buff, distance=0.1, overwrite=ovwr) TMPVECT.append(buff) # return all the river segments that are not already with plants v.overlay( flags="t", ainput=opts["river"], atype="line", binput=buff, operator="not", output=opts["output_streams"], overwrite=ovwr, )
[ 57 ]
def METHOD_NAME(self, desc, isrange, issolvable, hasprivatekeys): info = self.nodes[0].getdescriptorinfo(desc) assert_equal(info, self.nodes[0].getdescriptorinfo(descsum_create(desc))) assert_equal(info['descriptor'], descsum_create(desc)) assert_equal(info['isrange'], isrange) assert_equal(info['issolvable'], issolvable) assert_equal(info['hasprivatekeys'], hasprivatekeys)
[ 9, 1966 ]
def METHOD_NAME(self): for i in range(self.n_servers): self.start_server(i) time.sleep(1)
[ 447, 3356 ]
def METHOD_NAME(driver, key, settings, env, stdout, stderr, prefix_output_with_timestamp): def _exec_command(command, slot_info, events): host = slot_info.hostname local_rank = slot_info.local_rank verbose = settings.verbose result = rsh(driver.addresses(), key, host, command, env, local_rank, verbose, stdout, stderr, prefix_output_with_timestamp, False, events) return result, time.time() return _exec_command
[ 1005, 462, 667 ]
def METHOD_NAME(self, offset, magnitude): """ Stringify `offset` and `magnitude`. Expects the string to be shown top/left of the value it refers to. """ METHOD_NAME = "" if offset != 0.: METHOD_NAME += self.compact_exponential(offset) + " + " if magnitude != 1.: METHOD_NAME += self.compact_exponential(magnitude) + " × " return self.fix_minus(METHOD_NAME)
[ 426 ]
def METHOD_NAME(self): self.assertEqual(simple_marshal(True), ':boolean')
[ 9, 6617, 863 ]
def METHOD_NAME(job, *args, in_seconds=0, **kwargs): """ Start job async with redis or sync if redis is not connected :param job: Job function :param args: Function arguments :param in_seconds: Job will be delayed for in_seconds :param kwargs: Function keywords arguments :return: Job or function result """ redis = redis_connected() and kwargs.get('redis', True) queue_name = kwargs.get("queue_name", "default") if 'queue_name' in kwargs: del kwargs['queue_name'] if 'redis' in kwargs: del kwargs['redis'] job_timeout = None if 'job_timeout' in kwargs: job_timeout = kwargs['job_timeout'] del kwargs['job_timeout'] if redis: logger.info(f"Start async job {job.__name__} on queue {queue_name}.") queue = django_rq.get_queue(queue_name) enqueue_method = queue.enqueue if in_seconds > 0: enqueue_method = partial(queue.enqueue_in, timedelta(seconds=in_seconds)) job = enqueue_method( job, *args, **kwargs, job_timeout=job_timeout ) return job else: on_failure = kwargs.pop('on_failure', None) try: return job(*args, **kwargs) except Exception: exc_info = sys.exc_info() if on_failure: on_failure(job, *exc_info) raise
[ 447, 202, 958, 894, 164 ]
def METHOD_NAME(self): server = ('rotate.aprs.net', 'cwop.aprs.net')[self.fixed_data['passcode'] == '-1'] # give up after 50 seconds as there'll be new data to send instead timeout = time.time() + 50 try: while True: try: with self.connect(server) as METHOD_NAME: response = METHOD_NAME.recv(4096).decode('ASCII') logger.debug('server software: %s', response.strip()) yield METHOD_NAME, 'OK' break except socket.timeout: if time.time() > timeout: raise except Exception as ex: logger.error(str(ex)) yield None, repr(ex)
[ 240 ]
def METHOD_NAME(name: Union[nn.Module, str], inplace=None, **kwargs): act_layer = get_act_layer(name) if act_layer is None: return None if inplace is None: return act_layer(**kwargs) try: return act_layer(inplace=inplace, **kwargs) except TypeError: # recover if act layer doesn't have inplace arg return act_layer(**kwargs)
[ 129, 740, 94 ]
def METHOD_NAME(self): """ Retrieves the hardware revision of the device Returns: string: Revision value of device """ return "N/A"
[ 19, 71 ]
def METHOD_NAME(name): """ Finds the first matching file path within :py:attr:`files_paths`. :param name: Name of the file :type name: str :return: Found file path :rtype: str or None """ return current_actor().METHOD_NAME(name)
[ 19, 7675, 171, 157 ]
def METHOD_NAME(self, orc): old_orc = int(os.environ.get("DRGN_PREFER_ORC_UNWINDER", "0")) != 0 with setenv("DRGN_PREFER_ORC_UNWINDER", "1" if orc else "0"): if orc == old_orc: prog = self.prog else: prog = Program() prog.set_kernel() self._load_debug_info(prog) self._test_drgn_test_kthread_trace( prog.stack_trace(prog["drgn_test_kthread"].pid) )
[ 9, 604, 2243 ]
def METHOD_NAME(self) -> str: """ Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} """ return pulumi.get(self, "id")
[ 147 ]
def METHOD_NAME(self): no_backend = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")') self.assertIsNone(no_backend) simple_backend = find_backend(" if not is_tokenizers_available():") self.assertEqual(simple_backend, "tokenizers") backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") self.assertEqual(backend_with_underscore, "tensorflow_text") double_backend = find_backend(" if not (is_sentencepiece_available() and is_tokenizers_available()):") self.assertEqual(double_backend, "sentencepiece_and_tokenizers") double_backend_with_underscore = find_backend( " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" ) self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") triple_backend = find_backend( " if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):" ) self.assertEqual(triple_backend, "sentencepiece_and_tokenizers_and_vision")
[ 9, 416, 3127 ]
def METHOD_NAME(Run): # -- List of Primary Datasets: dbs_cmd = """ dbs search --query='find primds.name where run=%d and dataset like */RAW' """ % (Run) rows = subprocess.getoutput(dbs_cmd) lines = rows.split("\n") j=0 print("\nThe primary datasets for this run are: \n") for Line in lines: j=j+1 if j <=4: continue print(Line) line=Line.split() Datasets.append(line[0]) print(" ")
[ 1379, 4146 ]
def METHOD_NAME(self, *args, **kwargs): result = self.deserialize_output(self.ctx.vars.instance, client_flatten=True) return result
[ 146 ]
def METHOD_NAME(type_string): """ Return the `Node` sub class that corresponds to the given type string. :param type_string: the `type` string of the node :return: a sub class of `Node` """ from aiida.orm import Data, Node from aiida.plugins.entry_point import load_entry_point if type_string == '': return Node if type_string == 'data.Data.': return Data if not type_string.endswith('.'): raise exceptions.DbContentError(f'The type string `{type_string}` is invalid') try: base_path = type_string.rsplit('.', 2)[0] except ValueError: raise exceptions.EntryPointError from ValueError # This exception needs to be there to make migrations work that rely on the old type string starting with `node.` # Since now the type strings no longer have that prefix, we simply strip it and continue with the normal logic. if base_path.startswith('node.'): base_path = strip_prefix(base_path, 'node.') # Data nodes are the only ones with sub classes that are still external, so if the plugin is not available # we fall back on the base node type if base_path.startswith('data.'): entry_point_name = strip_prefix(base_path, 'data.') try: return load_entry_point('aiida.data', entry_point_name) except exceptions.MissingEntryPointError: return Data if base_path.startswith('process'): entry_point_name = strip_prefix(base_path, 'nodes.') return load_entry_point('aiida.node', entry_point_name) # At this point we really have an anomalous type string. At some point, storing nodes with unresolvable type strings # was allowed, for example by creating a sub class in a shell and then storing an instance. Attempting to load the # node then would fail miserably. This is now no longer allowed, but we need a fallback for existing cases, which # should be rare. We fallback on `Data` and not `Node` because bare node instances are also not storable and so the # logic of the ORM is not well defined for a loaded instance of the base `Node` class. warnings.warn(f'unknown type string `{type_string}`, falling back onto `Data` class') # pylint: disable=no-member return Data
[ 557, 1716, 2 ]
def METHOD_NAME(pg_repo_local): runner = CliRunner() # Uncheckout first result = runner.invoke(checkout_c, [str(pg_repo_local), "-u", "-f"]) assert result.exit_code == 0 assert pg_repo_local.head is None assert not get_engine().schema_exists(str(pg_repo_local)) result = runner.invoke(checkout_c, [str(pg_repo_local) + ":latest", "-l"]) assert result.exit_code == 0 assert pg_repo_local.head is not None assert get_engine().schema_exists(str(pg_repo_local)) assert get_engine().get_table_type(str(pg_repo_local), "fruits") == "VIEW" assert get_engine().get_table_type(str(pg_repo_local), WRITE_LOWER_PREFIX + "fruits") in ( "FOREIGN TABLE", "FOREIGN", ) assert ( get_engine().get_table_type(str(pg_repo_local), WRITE_UPPER_PREFIX + "fruits") == "BASE TABLE" )
[ 9, 4598, -1, 2170 ]
def METHOD_NAME(original_func, instance, args, kwargs): # Catching the name of the operation that called make_request() operation_name = None # Go up the stack until we get the first non-ddtrace module # DEV: For `lambda.list_functions()` this should be: # - ddtrace.contrib.boto.patch # - ddtrace.vendor.wrapt.wrappers # - boto.awslambda.layer1 (make_request) # - boto.awslambda.layer1 (list_functions) # But can vary depending on Python versions; that's why we use an heuristic frame = inspect.currentframe().f_back operation_name = None while frame: if frame.f_code.co_name == "make_request": operation_name = frame.f_back.f_code.co_name break frame = frame.f_back pin = Pin.get_from(instance) if not pin or not pin.enabled(): return original_func(*args, **kwargs) endpoint_name = instance.host.split(".")[0] with pin.tracer.trace( schematize_cloud_api_operation( "{}.command".format(endpoint_name), cloud_provider="aws", cloud_service=endpoint_name ), service=schematize_service_name("{}.{}".format(pin.service, endpoint_name)), span_type=SpanTypes.HTTP, ) as span: span.set_tag(SPAN_MEASURED_KEY) if args: http_method = get_argument_value(args, kwargs, 0, "method") span.resource = "%s.%s" % (endpoint_name, http_method.lower()) else: span.resource = endpoint_name if not config.boto["tag_no_params"] and config.boto["tag_all_params"]: aws.add_span_arg_tags(span, endpoint_name, args, AWS_AUTH_ARGS_NAME, AWS_AUTH_TRACED_ARGS) # Obtaining region name region_name = _get_instance_region_name(instance) meta = { aws.AGENT: "boto", aws.OPERATION: operation_name, } if region_name: meta[aws.REGION] = region_name meta[aws.AWSREGION] = region_name span.set_tags(meta) # Original func returns a boto.connection.HTTPResponse object result = original_func(*args, **kwargs) span.set_tag(http.STATUS_CODE, result.status) span.set_tag_str(http.METHOD, result._method) # set analytics sample rate span.set_tag(ANALYTICS_SAMPLE_RATE_KEY, config.boto.get_analytics_sample_rate()) span.set_tag_str(COMPONENT, config.boto.integration_name) # set span.kind to the type of request being performed span.set_tag_str(SPAN_KIND, SpanKind.CLIENT) return result
[ 1265, 2433, 377 ]
def METHOD_NAME(): model = PrinterOutputModel(MagicMock()) model.peripheralsChanged = MagicMock() peripheral = MagicMock(spec=Peripheral) peripheral.name = "test" peripheral2 = MagicMock(spec=Peripheral) peripheral2.name = "test2" model.addPeripheral(peripheral) assert model.peripheralsChanged.emit.call_count == 1 model.addPeripheral(peripheral2) assert model.peripheralsChanged.emit.call_count == 2 assert model.peripherals == "test, test2" model.removePeripheral(peripheral) assert model.peripheralsChanged.emit.call_count == 3 assert model.peripherals == "test2"
[ 9, -1 ]
def METHOD_NAME(self, vid, value, subgroup=None, ignore_type=False): """ check if vid is in test section of file """ newval = EnvBase.METHOD_NAME(self, vid, value, subgroup, ignore_type) if newval is None: tnode = self.get_optional_child("test") if tnode is not None: newval = self.set_element_text(vid, value, root=tnode) return newval
[ 0, 99 ]
def METHOD_NAME(self): return len(self.get_all_forecast_override_inputs_elements())
[ 19, 104, 661 ]
f METHOD_NAME(self, work_item):
[ 1283, 3160 ]
def METHOD_NAME(self): return util.safe_load_file(self.state_file)
[ 557, 171 ]
def METHOD_NAME(fid, node, matkind, indent=" ", transpose=False): """Read named matrix from the given node. Parameters ---------- fid : file The opened file descriptor. node : dict The node in the tree. matkind : int The type of matrix. transpose : bool If True, transpose the matrix. Default is False. %(verbose)s Returns ------- mat: dict The matrix data """ # Descend one level if necessary if node["block"] != FIFF.FIFFB_MNE_NAMED_MATRIX: for k in range(node["nchild"]): if node["children"][k]["block"] == FIFF.FIFFB_MNE_NAMED_MATRIX: if has_tag(node["children"][k], matkind): node = node["children"][k] break else: logger.info( indent + "Desired named matrix (kind = %d) not " "available" % matkind ) return None else: if not has_tag(node, matkind): logger.info( indent + "Desired named matrix (kind = %d) not " "available" % matkind ) return None # Read everything we need tag = find_tag(fid, node, matkind) if tag is None: raise ValueError("Matrix data missing") else: data = tag.data nrow, ncol = data.shape tag = find_tag(fid, node, FIFF.FIFF_MNE_NROW) if tag is not None and tag.data != nrow: raise ValueError( "Number of rows in matrix data and FIFF_MNE_NROW " "tag do not match" ) tag = find_tag(fid, node, FIFF.FIFF_MNE_NCOL) if tag is not None and tag.data != ncol: raise ValueError( "Number of columns in matrix data and " "FIFF_MNE_NCOL tag do not match" ) tag = find_tag(fid, node, FIFF.FIFF_MNE_ROW_NAMES) row_names = tag.data.split(":") if tag is not None else [] tag = find_tag(fid, node, FIFF.FIFF_MNE_COL_NAMES) col_names = tag.data.split(":") if tag is not None else [] mat = dict( nrow=nrow, ncol=ncol, row_names=row_names, col_names=col_names, data=data ) if transpose: _transpose_named_matrix(mat) return mat
[ 203, 1640, 430 ]
def METHOD_NAME(self): rack = create_object(tutobjects.TutorialWeaponRack, key="rack", location=self.room1) rack.db.available_weapons = ["sword"] self.call(tutobjects.CmdGetWeapon(), "", "You find Rusty sword.", obj=rack)
[ 9, -1 ]
def METHOD_NAME( text: TextData, current_user: User = Security(Authentication.get_current_user_and_bot, scopes=DESIGNER_ACCESS),
[ 73, 1227, 526 ]
def METHOD_NAME(monkeypatch, mock_snmp_get, mock_snmp_set) -> Callable[[], MagicMock]: monkeypatch.setattr("agent_plugins.exploiters.snmp.src.snmp_client.getCmd", mock_snmp_get) monkeypatch.setattr("agent_plugins.exploiters.snmp.src.snmp_client.setCmd", mock_snmp_set) return SNMPClient(snmp_request_timeout=0.5, snmp_retries=3)
[ 121, 340 ]
def METHOD_NAME(pipeline_response): deserialized = self._deserialize("VirtualMachineSizeListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, iter(list_of_elem)
[ 297, 365 ]
f METHOD_NAME(self):
[ 9, 719, 8669, 272, 928 ]
def METHOD_NAME(self): """ Uses QChem log files to test that molecular degrees of freedom can be properly read. """ log = QChemLog(os.path.join(self.data_path, "npropyl.out")) conformer, unscaled_frequencies = log.load_conformer() assert conformer.spin_multiplicity == 2 log = QChemLog(os.path.join(self.data_path, "co.out")) conformer, unscaled_frequencies = log.load_conformer() assert conformer.spin_multiplicity == 1
[ 9, 5548, 15207, 280, 12534, 390 ]
def METHOD_NAME(): fv3gfs = MockFV3GFS() mapper = FV3StateMapper(fv3gfs) with pytest.raises(KeyError): assert "not in fv3" not in mapper mapper["not in fv3"]
[ 9, 474, 7278, 551, 3782, 45, 59 ]
def METHOD_NAME( external_actor_id: int, organization: Organization ) -> ExternalActor: try: return ExternalActor.objects.get(id=external_actor_id, organization=organization) except ExternalActor.DoesNotExist: raise Http404
[ 19, 751, 7675, 894, 2121 ]
def METHOD_NAME(): in_img << imgIn[i, j] in_xm1 << xm1 in_ym1 << ym1 in_ym2 << ym2 out_y1 >> y1[i, j] out_xm1 >> xm1 out_ym1 >> ym1 out_ym2 >> ym2 out_y1 = a1 * in_img + a2 * in_xm1 + b1 * in_ym1 + b2 * in_ym2 out_xm1 = in_img out_ym2 = in_ym1 out_ym1 = out_y1
[ 1653, 15987 ]
def METHOD_NAME(self): return self.fn_wrap or self.fn
[ 4243, 667 ]