text
stringlengths
15
7.82k
ids
sequencelengths
1
7
def METHOD_NAME(line): """Test sub header wrong.""" assert config._sub_header_re.match(line) is None
[ 9, 1066, 572, 2647, 909 ]
def METHOD_NAME(self, event): selected_rows = {i.row() for i in self.selectedIndexes()} breakpoints = [self.breakpoint_mgr.breakpoints[r] for r in selected_rows] menu = QMenu("", self) if len(breakpoints): if len(breakpoints) == 1: menu.addAction("Edit breakpoint", lambda: self.edit_breakpoint(breakpoints[0])) menu.addAction( "Remove breakpoint" + ("s" if len(breakpoints) > 1 else ""), lambda: self.remove_breakpoints(breakpoints), ) menu.addSeparator() menu.addAction("New breakpoint", self.new_breakpoint) menu.exec_(event.globalPos())
[ 198, 2470, 417 ]
def METHOD_NAME(self, idempotency_key=None, **params): return self._request( "get", "/v1/sources/{source}/source_transactions".format( source=util.sanitize_id(self.get("id")) ), idempotency_key=idempotency_key, params=params, )
[ 245, 1458, 1465 ]
def METHOD_NAME(self): self.tube_settings[Tags.STRUCTURE_START_MM] = [0.5, 0, 0.5] self.tube_settings[Tags.STRUCTURE_END_MM] = [0.5, 5, 0.5] self.tube_settings[Tags.STRUCTURE_RADIUS_MM] = 0.4 ts = CircularTubularStructure(self.global_settings, self.tube_settings) assert 0 < ts.geometrical_volume[0, 0, 0] < 1 assert 0 < ts.geometrical_volume[0, 4, 0] < 1
[ 9, 16237, 3811, 2351, 2276, 1516, 206 ]
def METHOD_NAME(fname, info, data_name="data"): """Load continuous (raw) data from a FieldTrip preprocessing structure. This function expects to find single trial raw data (FT_DATATYPE_RAW) in the structure data_name is pointing at. .. warning:: FieldTrip does not normally store the original information concerning channel location, orientation, type etc. It is therefore **highly recommended** to provide the info field. This can be obtained by reading the original raw data file with MNE functions (without preload). The returned object contains the necessary info field. Parameters ---------- fname : path-like Path and filename of the ``.mat`` file containing the data. info : dict or None The info dict of the raw data file corresponding to the data to import. If this is set to None, limited information is extracted from the FieldTrip structure. data_name : str Name of heading dict/variable name under which the data was originally saved in MATLAB. Returns ------- raw : instance of RawArray A Raw Object containing the loaded data. See :class:`mne.io.Raw` for documentation of attributes and methods. See Also -------- mne.io.Raw : Documentation of attributes and methods of RawArray. """ read_mat = _import_pymatreader_funcs("FieldTrip I/O") fname = _check_fname(fname, overwrite="read", must_exist=True) ft_struct = read_mat(fname, ignore_fields=["previous"], variable_names=[data_name]) # load data and set ft_struct to the heading dictionary ft_struct = ft_struct[data_name] _validate_ft_struct(ft_struct) info = _create_info(ft_struct, info) # create info structure data = np.array(ft_struct["trial"]) # create the main data array if data.ndim > 2: data = np.squeeze(data) if data.ndim == 1: data = data[np.newaxis, ...] if data.ndim != 2: raise RuntimeError( "The data you are trying to load does not seem to " "be raw data" ) raw = RawArray(data, info) # create an MNE RawArray return raw
[ 203, 772, -1 ]
def METHOD_NAME(self, request): """ Extract relevant information from request to build a ClientValidationJWT :param PreparedRequest request: request we will extract information from. :return: ValidationPayload """ parsed = urlparse(request.url) path = parsed.path query_string = parsed.query or "" return ValidationPayload( method=request.method, path=path, query_string=query_string, all_headers=request.headers, signed_headers=ValidationClient.__SIGNED_HEADERS, body=request.body or "", )
[ 56, 437, 288 ]
def METHOD_NAME(self, request: Dict) -> Dict: return self._rm_client.create_simulation_application(**request)
[ 579, 202, 377 ]
def METHOD_NAME(): df1 = GeoDataFrame({"col1": [1, 2], "geometry": s1}, crs=None) df2 = GeoDataFrame({"col1": [1, 2], "geometry": s1}, crs={}) assert_geodataframe_equal(df1, df2)
[ 9, 654, 8901 ]
def METHOD_NAME(match): return '#' + match.group()
[ 826, 4635 ]
def METHOD_NAME(self): object_name = 'Crab' mission = 'integral_rev3_scw' heasarc = Heasarc() with self.isdc_context: table = heasarc.query_object( object_name, mission=mission, radius='1 degree', time="2020-09-01 .. 2020-12-01", resultmax=10, good_isgri=">1000", cache=False ) assert len(table) > 0
[ 9, 343, 335 ]
def METHOD_NAME(rconfig_mock, bridged): rconfig_mock.networks = { TESTNET1: create_network_config( 'nic', IFACE0, bridged=bridged, vlan=VLAN101 ) } networks = { TESTNET1: create_network_config( 'nic', IFACE0, bridged=bridged, vlan=VLAN102 ) } state = nmstate.generate_state(networks=networks, bondings={}) vlan102_state = create_vlan_iface_state(IFACE0, VLAN102) disable_iface_ip(vlan102_state) base_nic_state = create_ethernet_iface_state(IFACE0) disable_iface_ip(base_nic_state) remove_vlan101_state = { nmstate.Interface.NAME: f'{IFACE0}.{VLAN101}', nmstate.Interface.STATE: nmstate.InterfaceState.ABSENT, } expected_state = { nmstate.Interface.KEY: [ vlan102_state, remove_vlan101_state, base_nic_state, ] } if bridged: iface_bridge_state = create_bridge_iface_state( TESTNET1, f'{IFACE0}.{VLAN102}', options=generate_bridge_options(stp_enabled=False), ) disable_iface_ip(iface_bridge_state) expected_state[nmstate.Interface.KEY].append(iface_bridge_state) sort_by_name(expected_state[nmstate.Interface.KEY]) assert expected_state == state
[ 9, 2004, 1228, 4838, 147 ]
def METHOD_NAME(patch_inspect=True): """ Main entry point for patching the ``collections.abc`` and ``inspect`` standard library modules. """ PATCHED['collections.abc.Generator'] = _collections_abc.Generator = Generator PATCHED['collections.abc.Coroutine'] = _collections_abc.Coroutine = Coroutine PATCHED['collections.abc.Awaitable'] = _collections_abc.Awaitable = Awaitable if patch_inspect: import inspect PATCHED['inspect.isawaitable'] = inspect.isawaitable = isawaitable
[ 1575 ]
def METHOD_NAME(kafka_broker): return kafka_broker.host + ':' + str(kafka_broker.port)
[ 19, 707, 3 ]
def METHOD_NAME(dist_path, version, appimage_filename): """ Creates an AppImage file from the build artefacts created so far. """ copy_metadata_files(dist_path, version) try: os.remove(os.path.join(dist_path, appimage_filename)) # Ensure any old file is removed, if it exists. except FileNotFoundError: pass # If it didn't exist, that's even better. generate_appimage(dist_path, appimage_filename) sign_appimage(dist_path, appimage_filename)
[ 56, -1 ]
def METHOD_NAME(self): if not self.success_url_name: raise ImproperlyConfigured( "Subclasses of wagtail.admin.views.generic.base.BaseOperationView must provide a " "success_url_name attribute or a get_success_url method" ) if self.next_url: return self.next_url return reverse(self.success_url_name, args=[quote(self.object.pk)])
[ 19, 1434, 274 ]
def METHOD_NAME(a, b=0, *arg, k1, k2=0, **kwargs): return a + b + k1 + k2 + sum(arg) + sum(kwargs.values())
[ 6330, 2241 ]
def METHOD_NAME(self): self.resource.get_by.return_value = [NETWORK_SET] self.mock_ansible_module.params = PARAMS_FOR_PRESENT NetworkSetModule().run() self.mock_ansible_module.exit_json.assert_called_once_with( changed=False, msg=NetworkSetModule.MSG_ALREADY_PRESENT, ansible_facts=dict(network_set=NETWORK_SET) )
[ 9, 427, 130, 86, 1646, 365, 137 ]
def METHOD_NAME(state: State, blurpool_instance: BlurPool): assert blurpool_instance.match(Event.INIT, state) == True
[ 9, 10942, 668, 417 ]
def METHOD_NAME(self): ''' The interface object for the :doc:`Tenable Identity Exposure Lockout Policy APIs <lockout_policy>`. ''' return LockoutPolicyAPI(self)
[ 15059, 54 ]
def METHOD_NAME(val, validator_aok): coerce_val = validator_aok.validate_coerce(val) if isinstance(val, np.ndarray): assert np.array_equal(coerce_val, val) elif isinstance(val, list): assert validator_aok.present(coerce_val) == tuple(val) else: assert coerce_val == val
[ 9, 2290, 9463, 988, 227 ]
def METHOD_NAME(self): spec = self.spec # hsa-rocr-dev wants the directory containing the header files, but # libelf adds an extra path (include/libelf) compared to elfutils libelf_include = os.path.dirname( find_headers("libelf", spec["elf"].prefix.include, recursive=True)[0] ) args = [ self.define("LIBELF_INCLUDE_DIRS", libelf_include), self.define_from_variant("BUILD_SHARED_LIBS", "shared"), ] if self.spec.satisfies("@3.7.0:"): args.append(self.define_from_variant("IMAGE_SUPPORT", "image")) # device libs is bundled with llvm-amdgpu (default) or standalone if self.spec.satisfies("^rocm-device-libs"): bitcode_dir = spec["rocm-device-libs"].prefix.amdgcn.bitcode else: bitcode_dir = spec["llvm-amdgpu"].prefix.amdgcn.bitcode args.append(self.define("BITCODE_DIR", bitcode_dir)) return args
[ 334, 335 ]
def METHOD_NAME(self): self.assertTrue(self.song.can_change_images)
[ 9, 1046, 194, 3669 ]
def METHOD_NAME(): zone = np.asarray(["z1", "z2", "z2", "z1"]) assert_near(P.single.owner[zone], [100, 200, 200, 100])
[ 9, 69, 3802 ]
def METHOD_NAME(config, json_parsing=False): admin_client = namespace["admin_client"] cluster = namespace["cluster"] projects = admin_client.list_project(name="System", clusterId=cluster.id).data assert len(projects) == 1 project = projects[0] name = random_test_name("project-fluentd") return admin_client.METHOD_NAME(name=name, projectId=project.id, fluentForwarderConfig=config, enableJSONParsing=json_parsing, outputFlushInterval=5 )
[ 129, 155, 663 ]
def METHOD_NAME(self): # If we run the normalization for the first time during the runtime, we have to gather the activity from DB self.total_activity = self.total_activity or orm.sum(g.votes for g in db.ChannelMetadata) channel_count = orm.count(db.ChannelMetadata.select(lambda g: g.status != LEGACY_ENTRY)) if not channel_count: return if self.total_activity > 0.0: self.rescale(self.total_activity / channel_count) self.bump_amount = 1.0
[ 1137 ]
f METHOD_NAME(self, flag):
[ 9, 256, 40, 584 ]
def METHOD_NAME(db, client, username, password): client.login(username=username, password=password) url = reverse('upload') response = client.post(url) assert response.status_code == status_map['upload_post_empty'][username] if not password: assert response.url.startswith('/account/login/'), response.content
[ 9, 172, 72, 35 ]
def METHOD_NAME(upgrader, pce_fcc_other_experiment): value = upgrader.upgrade('functional_characterization_experiment', pce_fcc_other_experiment, current_version='5', target_version='6') assert value['schema_version'] == '6' assert value['plasmids_library_type'] == 'elements cloning' assert value['notes'] == 'The plasmids_library_type of this pooled clone sequencing experiment needs to be checked as it was automatically upgraded by ENCD-5303.'
[ 9, 4167, 2037, 2355, 738, 822, 24 ]
def METHOD_NAME(self): data = {2: set([11]), 9: set([11, 8]), 10: set([11, 3]), 11: set([7, 5]), 8: set([7, 3, 8]), # includes something self-referential } orig = data.copy() results = list(toposort(data)) assert data == orig
[ 9, 362, 130, 680 ]
def METHOD_NAME(self): rospy.logwarn("[PX4-SITL] Launching") start_time = rospy.get_time() args = ["./PX4-Autopilot/build/px4_sitl_default/bin/px4-commander", "--instance", "0", "check"] while rospy.get_time() - start_time < TIMEOUT: process = spawn_process(args, insert_vglrun=False) with process.stdout: for line in iter(process.stdout.readline, ''): if ("Prearm check: OK" in line): return True rospy.sleep(2) return False
[ -1 ]
def METHOD_NAME(self, name: str, mode: int = 0o777) -> None: ...
[ 6403 ]
def METHOD_NAME(self): self.verbose = 1 self.tests_dir = "tests" self.filter = None
[ 15, 1881 ]
def METHOD_NAME( environment_api_key: "EnvironmentAPIKey", ) -> None: # Given expected_client_api_key = environment_api_key.environment.api_key expected_created_at = environment_api_key.created_at.isoformat() expected_key = environment_api_key.key # When result = dynamodb.map_environment_api_key_to_environment_api_key_document( environment_api_key, ) # Then assert result == { "active": True, "client_api_key": expected_client_api_key, "created_at": expected_created_at, "expires_at": None, "id": Decimal(environment_api_key.pk), "key": expected_key, "name": "Test API Key", }
[ 9, 422, 1027, 58, 59, 24, 1027 ]
def METHOD_NAME(self): """get symbol points as line and test coords""" symbol = self.map.symbolset.getSymbol(1) assert symbol.name == 'circle' line = symbol.getPoints() assert line.numpoints == 1, line.numpoints pt = self.getPointFromLine(line, 0) self.assertPointsEqual(pt, mapscript.pointObj(1.0, 1.0))
[ 9, 19, 182 ]
def METHOD_NAME(a, axis=None, dtype=None, out=None, ddof=0, keepdims=None, combine_size=None): """ Compute the standard deviation along the specified axis. Returns the standard deviation, a measure of the spread of a distribution, of the tensor elements. The standard deviation is computed for the flattened tensor by default, otherwise over the specified axis. Parameters ---------- a : array_like Calculate the standard deviation of these values. axis : None or int or tuple of ints, optional Axis or axes along which the standard deviation is computed. The default is to compute the standard deviation of the flattened tensor. If this is a tuple of ints, a standard deviation is performed over multiple axes, instead of a single axis or all the axes as before. dtype : dtype, optional Type to use in computing the standard deviation. For tensors of integer type the default is float64, for tensors of float types it is the same as the array type. out : Tensor, optional Alternative output tensor in which to place the result. It must have the same shape as the expected output but the type (of the calculated values) will be cast if necessary. ddof : int, optional Means Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. By default `ddof` is zero. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input tensor. If the default value is passed, then `keepdims` will not be passed through to the `std` method of sub-classes of `Tensor`, however any non-default value will be. If the sub-classes `sum` method does not implement `keepdims` any exceptions will be raised. combine_size: int, optional The number of chunks to combine. Returns ------- standard_deviation : Tensor, see dtype parameter above. If `out` is None, return a new tensor containing the standard deviation, otherwise return a reference to the output array. See Also -------- var, mean, nanmean, nanstd, nanvar Notes ----- The standard deviation is the square root of the average of the squared deviations from the mean, i.e., ``std = sqrt(mean(abs(x - x.mean())**2))``. The average squared deviation is normally calculated as ``x.sum() / N``, where ``N = len(x)``. If, however, `ddof` is specified, the divisor ``N - ddof`` is used instead. In standard statistical practice, ``ddof=1`` provides an unbiased estimator of the variance of the infinite population. ``ddof=0`` provides a maximum likelihood estimate of the variance for normally distributed variables. The standard deviation computed in this function is the square root of the estimated variance, so even with ``ddof=1``, it will not be an unbiased estimate of the standard deviation per se. Note that, for complex numbers, `std` takes the absolute value before squaring, so that the result is always real and nonnegative. For floating-point input, the *std* is computed using the same precision the input has. Depending on the input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-accuracy accumulator using the `dtype` keyword can alleviate this issue. Examples -------- >>> import mars.tensor as mt >>> a = mt.array([[1, 2], [3, 4]]) >>> mt.std(a).execute() 1.1180339887498949 >>> mt.std(a, axis=0).execute() array([ 1., 1.]) >>> mt.std(a, axis=1).execute() array([ 0.5, 0.5]) In single precision, std() can be inaccurate: >>> a = mt.zeros((2, 512*512), dtype=mt.float32) >>> a[0, :] = 1.0 >>> a[1, :] = 0.1 >>> mt.std(a).execute() 0.45000005 Computing the standard deviation in float64 is more accurate: >>> mt.std(a, dtype=mt.float64).execute() 0.44999999925494177 """ ret = sqrt( var( a, axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims, combine_size=combine_size, ) ) if dtype is not None and ret.dtype != dtype: ret = ret.astype(dtype) return ret
[ 1396 ]
def METHOD_NAME(self, request, *args, **kwargs): jamf_instance = get_object_or_404(JamfInstance, pk=kwargs["pk"]) api_client = APIClient(**jamf_instance.serialize(decrypt_password=True)) jamf_instance_base_url = jamf_instance.base_url() try: setup_msg = api_client.setup() except APIClientError: msg = "Could not setup webhooks on {}.".format(jamf_instance_base_url) messages.warning(request, msg) logger.exception(msg) else: msg = "{}: {}".format(jamf_instance_base_url, setup_msg) messages.info(request, msg) logger.info(msg) return redirect(jamf_instance)
[ 19 ]
def METHOD_NAME(self): """ Test cluster SQL statement """ query = urllib.parse.quote("select count(*), min(indexid), max(indexid), avg(indexid) from txtai where text='This is a test'") self.assertEqual( self.client.get(f"search?query={query}").json(), [{"count(*)": 28, "min(indexid)": 0, "max(indexid)": 14, "avg(indexid)": 6.5}] ) query = urllib.parse.quote("select count(*), text txt from txtai group by txt order by count(*) desc") self.assertEqual( self.client.get(f"search?query={query}").json(), [{"count(*)": 28, "txt": "And another test"}, {"count(*)": 24, "txt": "This is a test"}], ) query = urllib.parse.quote("select count(*), text from txtai group by text order by count(*) asc") self.assertEqual( self.client.get(f"search?query={query}").json(), [{"count(*)": 24, "text": "This is a test"}, {"count(*)": 28, "text": "And another test"}], ) query = urllib.parse.quote("select count(*) from txtai group by id order by count(*)") self.assertEqual(self.client.get(f"search?query={query}").json(), [{"count(*)": 52}])
[ 9, 1621 ]
def METHOD_NAME(self, node: ASTComparisonOperator) -> str: return self._expression_printer.METHOD_NAME(node)
[ 38, 713, 837 ]
def METHOD_NAME(dtype, tIndex, fitResults, fitError=None, startParams=None, slicesUsed=None, resultCode=-1, **kwargs): dtype = np.dtype(dtype) if fitError is None: fitError = -5e3 + 0 * fitResults if startParams is None: startParams = -5e3 + 0 * fitResults slicesUsed = fmtSlicesUsed(slicesUsed) ns = locals() ns.update(kwargs) res = np.zeros(1, dtype=dtype) for n in dtype.names: res[n] = _tuplify(ns[n]) return res
[ 1699, 2187 ]
def METHOD_NAME( self, resource_group_name: str, account_name: str, target_region: str, filter: str, **kwargs: Any ) -> AsyncIterable["_models.PercentileMetric"]: """Retrieves the metrics determined by the given filter for the given account target region. This url is only for PBS and Replication Latency data. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param account_name: Cosmos DB database account name. Required. :type account_name: str :param target_region: Target region to which data is written. Cosmos DB region, with spaces between words and each word capitalized. Required. :type target_region: str :param filter: An OData filter expression that describes a subset of metrics to return. The parameters that can be filtered are name.value (name of the metric, can have an or of multiple names), startTime, endTime, and timeGrain. The supported operator is eq. Required. :type filter: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either PercentileMetric or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.cosmosdb.models.PercentileMetric] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.PercentileMetricListResult] = kwargs.pop("cls", None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_metrics_request( resource_group_name=resource_group_name, account_name=account_name, target_region=target_region, subscription_id=self._config.subscription_id, filter=filter, api_version=api_version, template_url=self.METHOD_NAME.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("PercentileMetricListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data)
[ 245, 1097 ]
def METHOD_NAME(): """ There's a small optimization for literals to avoid creating unnecessary temps >>> optimize_literals1() 10 """ x = 5 return (x := 10)
[ 5107, -1 ]
def METHOD_NAME(ftylist_or_function=(), **kws): """vectorize(ftylist_or_function=(), target='cpu', identity=None, **kws) A decorator that creates a NumPy ufunc object using Numba compiled code. When no arguments or only keyword arguments are given, vectorize will return a Numba dynamic ufunc (DUFunc) object, where compilation/specialization may occur at call-time. Args ----- ftylist_or_function: function or iterable When the first argument is a function, signatures are dealt with at call-time. When the first argument is an iterable of type signatures, which are either function type object or a string describing the function type, signatures are finalized at decoration time. Keyword Args ------------ target: str A string for code generation target. Default to "cpu". identity: int, str, or None The identity (or unit) value for the element-wise function being implemented. Allowed values are None (the default), 0, 1, and "reorderable". cache: bool Turns on caching. Returns -------- A NumPy universal function Examples ------- @vectorize(['float32(float32, float32)', 'float64(float64, float64)'], identity=0) def sum(a, b): return a + b @vectorize def sum(a, b): return a + b @vectorize(identity=1) def mul(a, b): return a * b """ if isinstance(ftylist_or_function, str): # Common user mistake ftylist = [ftylist_or_function] elif inspect.isfunction(ftylist_or_function): return dufunc.DUFunc(ftylist_or_function, **kws) elif ftylist_or_function is not None: ftylist = ftylist_or_function def wrap(func): vec = Vectorize(func, **kws) for sig in ftylist: vec.add(sig) if len(ftylist) > 0: vec.disable_compile() return vec.build_ufunc() return wrap
[ 9768 ]
def METHOD_NAME(cls, data, scales, **params): if params["breaks"] is not None: breaks = np.asarray(params["breaks"]) if hasattr(scales.x, "transform"): breaks = scales.x.transform(breaks) elif params["binwidth"] is not None: breaks = breaks_from_binwidth( scales.x.dimension(), params["binwidth"], params["center"], params["boundary"], ) else: breaks = breaks_from_bins( scales.x.dimension(), params["bins"], params["center"], params["boundary"], ) new_data = assign_bins( data["x"], breaks, data.get("weight"), params["pad"], params["closed"], ) return new_data
[ 226, 846 ]
def METHOD_NAME(monkeypatch, capsys) -> None: class MyObject(Generic): def action(self, pose: Pose, *, an: None | str = None) -> None: pass action.__action__ = ActionMetadata() # type: ignore # @action tries to read from stdin sio = io.StringIO() sio.fileno = lambda: 0 # type: ignore # fake whatever fileno monkeypatch.setattr("sys.stdin", sio) obj_id = "123" pose = Pose(Position(0, 0, 0), Orientation(1, 0, 0, 0)) setattr(pose, AP_ID_ATTR, "pose") # set pose id (simulate pose declaration in scene json) my_obj = MyObject(obj_id, "") my_obj.action(pose) assert action._executed_action is None out_before, _ = capsys.readouterr() assert not out_before patch_object_actions(MyObject) setattr(MyObject, ACTION_NAME_ID_MAPPING_ATTR, {"name": "id"}) # this simulates what patch_with_action_mapping does my_obj.action(pose, an="name") assert action._executed_action is None out_after, _ = capsys.readouterr() arr = out_after.strip().split("\n") assert len(arr) == 2 before_evt = ActionStateBefore.from_json(arr[0]) after_evt = ActionStateAfter.from_json(arr[1]) assert before_evt.data.action_id == "id" assert after_evt.data.action_id == "id" assert before_evt.data.action_point_ids is not None assert "pose" in before_evt.data.action_point_ids with pytest.raises(Arcor2Exception): my_obj.action(pose) assert action._executed_action is None with pytest.raises(Arcor2Exception): my_obj.action(pose, an="unknown_action_name") assert action._executed_action is None
[ 9, 1575, 279, 1116 ]
def METHOD_NAME(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "privacydeclaration", sa.Column("id", sa.String(length=255), nullable=False), sa.Column( "created_at", sa.DateTime(timezone=True), server_default=sa.text("now()"), nullable=True, ), sa.Column( "updated_at", sa.DateTime(timezone=True), server_default=sa.text("now()"), nullable=True, ), sa.Column("name", sa.String(), nullable=True), sa.Column("egress", sa.ARRAY(sa.String()), nullable=True), sa.Column("ingress", sa.ARRAY(sa.String()), nullable=True), sa.Column("data_use", sa.String(), nullable=False), sa.Column("data_categories", sa.ARRAY(sa.String()), nullable=True), sa.Column("data_qualifier", sa.String(), nullable=True), sa.Column("data_subjects", sa.ARRAY(sa.String()), nullable=True), sa.Column("dataset_references", sa.ARRAY(sa.String()), nullable=True), sa.Column("system_id", sa.String(), nullable=False), sa.ForeignKeyConstraint( ["system_id"], ["ctl_systems.id"], ), sa.PrimaryKeyConstraint("id"), ) op.create_index( op.f("ix_privacydeclaration_data_use"), "privacydeclaration", ["data_use"], unique=False, ) op.create_index( op.f("ix_privacydeclaration_id"), "privacydeclaration", ["id"], unique=False ) op.create_index( op.f("ix_privacydeclaration_name"), "privacydeclaration", ["name"], unique=False ) op.create_index( op.f("ix_privacydeclaration_system_id"), "privacydeclaration", ["system_id"], unique=False, ) # Data migration bind = op.get_bind() existing_declarations = bind.execute( text("SELECT id, privacy_declarations FROM ctl_systems;") ) for row in existing_declarations: system_id = row["id"] old_privacy_declarations = row["privacy_declarations"] for privacy_declaration in old_privacy_declarations: new_privacy_declaration_id: str = "pri_" + str(uuid.uuid4()) new_data = { **privacy_declaration, "system_id": system_id, "id": new_privacy_declaration_id, } insert_privacy_declarations_query = text( "INSERT INTO privacydeclaration (id, name, data_categories, data_qualifier, data_subjects, dataset_references, egress, ingress, system_id, data_use) " "VALUES (:id, :name, :data_categories, :data_qualifier, :data_subjects, :dataset_references, :egress, :ingress, :system_id, :data_use)" ) bind.execute( insert_privacy_declarations_query, new_data, ) op.drop_column("ctl_systems", "privacy_declarations") # ### end Alembic commands ###
[ 738 ]
def METHOD_NAME(self): """Return the max speech and sentence length allowed by the task.""" return (self.args.max_source_positions, self.args.max_target_positions)
[ 232, 2758 ]
def METHOD_NAME(geo_type, late_value): """ Export a dataset to S3 as a UTF-8 CSV file. We add single quotes to FIPS codes so Excel doesn't strip leading zeros. geo_types are County, MetroArea or State. late_values are percent_30_60 or percent_90. Non-Metro areas are added to the MetroArea CSV. Each CSV is to start with a National row for comparison. CSVs are posted at https://files.consumerfinance.gov/data/mortgage-performance/downloads/ The script also stores URLs and file sizes for use in page footnotes. """ date_list = FIPS.short_dates thru_date = FIPS.dates[-1] thru_month = thru_date[:-3] geo_dict = { "County": { "queryset": CountyMortgageData.objects.filter(county__valid=True), "headings": ["RegionType", "State", "Name", "FIPSCode"], "fips_list": sorted( [county.fips for county in County.objects.filter(valid=True)] ), }, "MetroArea": { "queryset": MSAMortgageData.objects.filter(msa__valid=True), "headings": ["RegionType", "Name", "CBSACode"], "fips_list": sorted( [metro.fips for metro in MetroArea.objects.filter(valid=True)] ), }, "NonMetroArea": { "queryset": NonMSAMortgageData.objects.filter( state__non_msa_valid=True ), "headings": ["RegionType", "Name", "CBSACode"], "fips_list": sorted( [ "{}-non".format(state.fips) for state in State.objects.filter(non_msa_valid=True) ] ), }, "State": { "queryset": StateMortgageData.objects.all(), "headings": ["RegionType", "Name", "FIPSCode"], "fips_list": sorted( [ state.fips for state in State.objects.exclude( fips__in=STATES_TO_IGNORE ) ] ), }, } slug = "{}Mortgages{}DaysLate-thru-{}".format( geo_type, LATE_VALUE_TITLE[late_value], thru_month ) _map = geo_dict.get(geo_type) fips_list = _map["fips_list"] csvfile = StringIO() writer = csv.writer(csvfile) writer.writerow(_map["headings"] + date_list) nation_starter = [NATION_STARTER[heading] for heading in _map["headings"]] nation_ender = FIPS.nation_row[late_value] writer.writerow(nation_starter + nation_ender) for fips in fips_list: records = _map["queryset"].filter(fips=fips) record_starter = row_starter(geo_type, records.first()) record_ender = [ round_pct(getattr(record, late_value)) for record in records ] writer.writerow(record_starter + record_ender) if geo_type == "MetroArea": non_map = geo_dict["NonMetroArea"] for fips in non_map["fips_list"]: records = non_map["queryset"].filter(fips=fips) record_starter = row_starter("NonMetroArea", records.first()) record_ender = [ round_pct(getattr(record, late_value)) for record in records ] writer.writerow(record_starter + record_ender) bake_csv_to_s3( slug, csvfile, sub_bucket="{}/downloads".format(MORTGAGE_SUB_BUCKET) ) logger.info("Baked {} to S3".format(slug)) csvfile.seek(0, 2) bytecount = csvfile.tell() csv_size = format_file_size(bytecount) save_metadata(csv_size, slug, thru_month, late_value, geo_type)
[ 294, 15277, 732 ]
def METHOD_NAME(BSP_ROOT, dist_dir): import sys cwd_path = os.getcwd() sys.path.append(os.path.join(os.path.dirname(BSP_ROOT), 'tools')) from sdk_dist import dist_do_building dist_do_building(BSP_ROOT, dist_dir)
[ 1260, 276 ]
def METHOD_NAME(self): """ Returns True if the zvol exists and the pool imported """ if not self.has_it(): return False return self.is_up_prop()
[ 137, 1 ]
def METHOD_NAME(self, parser): """Add command line options. Derived classes should override this method to add more options.""" parser.add_option("--debug", dest="debug", action="store_true", help="display diagnostic information while running") parser.add_option("-y", dest="noprompt", action="store_true", help="answer yes to every prompt")
[ 238, 1881 ]
def METHOD_NAME(self) -> Optional[APIModule]: if self.api.has_service("code"): res = self.api.services.METHOD_NAME # the order is important here # its also important that patching only happens once if not self.__api_patched: self._request_code_execution = res.request_code_execution self.__api_patched = True res.request_code_execution = self.request_code_execution return res return None
[ 544 ]
def METHOD_NAME(): verify_lstm( "llvm", tvm.cpu(0), 1, 1, 1, 1, 0, True, True, False, False, "IFGO", ) verify_lstm( "llvm", tvm.cpu(0), 8, 4, 8, 16, 0, True, False, False, False, "IFGO", )
[ 9, 1376 ]
def METHOD_NAME(self): return """\ column If there is a layout grid, use the domain for this column in the grid for this table trace . row If there is a layout grid, use the domain for this row in the grid for this table trace . x Sets the horizontal domain of this table trace (in plot fraction). y Sets the vertical domain of this table trace (in plot fraction). """
[ 1302, 1303 ]
def METHOD_NAME(self) -> str: """ Resource type. """ return pulumi.get(self, "type")
[ 44 ]
def METHOD_NAME(self, parsed_indicator): if parsed_indicator.is_legacy: indicator = getattr(self, parsed_indicator.category) setattr(self, 'legacy_{}'.format(parsed_indicator.category), True) if parsed_indicator.date_range: date_range = parsed_indicator.date_range if isinstance(indicator, ByTypeWithTotal): indicator.totals.date_ranges.add(date_range) else: indicator.date_ranges.add(date_range) elif parsed_indicator.category == const.CUSTOM_FORM: self.custom_form.append( TypedIndicator( enabled=True, date_range=parsed_indicator.date_range, type=parsed_indicator.type ) ) elif parsed_indicator.category == const.FORMS_SUBMITTED: self.forms_submitted.enabled = True if parsed_indicator.date_range: self.forms_submitted.date_ranges.add(parsed_indicator.date_range) else: indicator = getattr(self, parsed_indicator.category) if parsed_indicator.type: indicator = indicator.get_or_add_for_type(parsed_indicator.type) else: indicator = indicator.totals indicator.enabled = True if parsed_indicator.date_range: indicator.date_ranges.add(parsed_indicator.date_range)
[ 0, 662 ]
def METHOD_NAME( __key: _KeyType, __value_name: str | None, __reserved: Any, __type: int, __value: str | int ) -> None: ... # reserved is ignored
[ 0, 99, 2258 ]
def METHOD_NAME(self): """Ebuilds with matching DIST_VERSION and package version.""" for PVR in ("1.7.0-r0", "1.7.0", "1.7.0-r100"): self.assertNoReport(self.mk_check(), self.mk_pkg(PVR, "1.007"))
[ 9, 3626 ]
def METHOD_NAME(): global _listening _listening = False
[ 5787, 158 ]
def METHOD_NAME(self, property_id=None): # A * (rho * t + nsm) if property_id is None: property_id = self.property_id n = len(property_id) i = arange(n) else: self.model.log.debug('property_id = %r' % property_id) n = len(property_id) i = searchsorted(self.property_id, property_id) mpa = zeros(n, dtype='float64') rho = self.model.materials.get_density_by_material_id(self.material_id) mpa = rho * self.thickness[i] + self.nsm[i] return mpa
[ 19, 2858, 2735, 690 ]
def METHOD_NAME(self, event): if event.text == ' ': if self.timer.running: self.timer.stop() else: self.timer.start()
[ 69, 59, 2971 ]
def METHOD_NAME(self, *args, **kwargs): if not self._is_built: self._build() return super().METHOD_NAME(*args, **kwargs)
[ 1100 ]
def METHOD_NAME(func): return _inner_wrapper(func, CLOSE_PERMIT)
[ 139, 1018, 1462, 6310 ]
def METHOD_NAME(args, shortopts, longopts = []): """getopt(args, options[, long_options]) -> opts, args This function works like getopt(), except that GNU style scanning mode is used by default. This means that option and non-option arguments may be intermixed. The getopt() function stops processing options as soon as a non-option argument is encountered. If the first character of the option string is `+', or if the environment variable POSIXLY_CORRECT is set, then option processing stops as soon as a non-option argument is encountered. """ opts = [] prog_args = [] if isinstance(longopts, str): longopts = [longopts] else: longopts = list(longopts) # Allow options after non-option arguments? if shortopts.startswith('+'): shortopts = shortopts[1:] all_options_first = True elif os.environ.get("POSIXLY_CORRECT"): all_options_first = True else: all_options_first = False while args: if args[0] == '--': prog_args += args[1:] break if args[0][:2] == '--': opts, args = do_longs(opts, args[0][2:], longopts, args[1:]) elif args[0][:1] == '-' and args[0] != '-': opts, args = do_shorts(opts, args[0][1:], shortopts, args[1:]) else: if all_options_first: prog_args += args break else: prog_args.append(args[0]) args = args[1:] return opts, prog_args
[ 4693, 2857 ]
def METHOD_NAME(repo): """ Given - A pack with 2 scripts - An ID set including only one script When - running the create-content-artifacts command. Then - Verify that only the script in the ID set is exported to the pack artifacts. """ pack = repo.create_pack("Joey") pack.pack_metadata.write_json( { "name": "Joey", } ) script1 = pack.create_script("HowYouDoing") script2 = pack.create_script("ShareFood") repo.id_set.write_json( { "Packs": { "Joey": { "ContentItems": { "scripts": [ "HowYouDoing", ], }, }, }, } ) dir_path = repo.make_dir() with ChangeCWD(repo.path): runner = CliRunner() result = runner.invoke( main, [ ARTIFACTS_CMD, "-a", dir_path, "--no-zip", "-fbi", "-idp", repo.id_set.path, "-p", "Joey", ], ) assert result.exit_code == 0 scripts_folder_path = Path(dir_path) / "content_packs" / pack.name / "Scripts" assert (scripts_folder_path / f"script-{script1.name}.yml").exists() assert not (scripts_folder_path / f"script-{script2.name}.yml").exists()
[ 9, 129, 8557, 41, 527, 604, 147 ]
def METHOD_NAME(self, samples: Samples, last_samples: Samples): data: List[Union[float, List[Optional[Union[float, bool]]]]] = [] timestamp = time.time() self.next_timestamp = timestamp for metricinfo in self.metrics: value = samples[metricinfo.desc.name] if metricinfo.desc.instanced: old_value = last_samples[metricinfo.desc.name] assert isinstance(value, dict) assert isinstance(old_value, dict) # If we have less or more keys the data changed, send a meta message. if value.keys() != old_value.keys(): self.need_meta = True if metricinfo.derive == 'rate': instances: List[Optional[Union[float, bool]]] = [] for key, val in value.items(): instances.append(self.calculate_sample_rate(val, old_value.get(key))) data.append(instances) else: data.append(list(value.values())) else: old_value = last_samples.get(metricinfo.desc.name) assert not isinstance(value, dict) assert not isinstance(old_value, dict) if metricinfo.derive == 'rate': data.append(self.calculate_sample_rate(value, old_value)) else: data.append(value) if self.need_meta: self.send_meta(samples, timestamp) self.last_timestamp = self.next_timestamp self.send_data(json.dumps([data]).encode())
[ 353, 682 ]
f METHOD_NAME(self,s):
[ 7432 ]
def METHOD_NAME(vm): """Compiles the MKL FFT interfaces. Args: vm: Virtual Machine to compile on. """ vm.Install('build_tools') mpi_lib = 'openmpi' make_options = ('PRECISION=MKL_DOUBLE ' 'interface=ilp64 ' f'mpi={mpi_lib} ' 'compiler=gnu') for interface in ('fftw2xc', 'fftw2xf', 'fftw3xc', 'fftw3xf'): cmd = (f'cd /opt/intel/mkl/interfaces/{interface} && ' f'sudo make libintel64 {make_options}') vm.RemoteCommand(cmd)
[ 296, 703 ]
def METHOD_NAME(self, project): run_dbt(["seed"]) run_dbt(["run"])
[ 484, 61, 22 ]
def METHOD_NAME(): mode = get_default_mode() mode = mode.including("specialize", "local_mul_s_d") for sp_format in sparse.sparse_formats: inputs = [getattr(pytensor.sparse, sp_format + "_matrix")(), matrix()] f = pytensor.function(inputs, sparse.mul_s_d(*inputs), mode=mode) assert not any( isinstance(node.op, sparse.MulSD) for node in f.maker.fgraph.toposort() )
[ 9, 125, 1998, 1305, 227 ]
def METHOD_NAME( self, unknown_type_sample_path, unknown_type_template_path, generic_converter ): """Test getting state dict.""" generic_converter.parse(unknown_type_sample_path) assert generic_converter.get_state_dict() == { "expression_prefix": "o~", "has_leading": {"/lala//iela": "/", "/lala/iela": "/", "lala/la": "/"}, "regex": "([\\/]?[\\w|\\/|-]+)~([\\+]?.*\\)|\\-|\\>[A-Za-z_]\\w*)", "template": open(unknown_type_template_path).read(), }
[ 9, 19, 551, 553 ]
def METHOD_NAME(self): """ An occurence test of returned and removed element from container """ uid, d = self.sessions.make() self.sessions.pop(uid) self.assertNotIn(uid, self.sessions)
[ 2580, 130, 954, 217, 760 ]
def METHOD_NAME(self, msg, *args): if len(args) > 0: self._logs.append(msg % args) else: self._logs.append(msg)
[ 390 ]
def METHOD_NAME(self): lti = Client( client_key=OTHER_LTI_CONSUMER_KEY, client_secret=OTHER_LTI_CONSUMER_SECRET, signature_type=SIGNATURE_TYPE_BODY, ) (uri, _headers, body) = lti.sign( uri=self.url_prefix + LTI_TPA_LOGIN_URL, http_method='POST', headers={'Content-Type': FORM_ENCODED}, body={ 'user_id': LTI_USER_ID, 'custom_tpa_next': '/account/finish_auth/?course_id=my_course_id&enrollment_action=enroll', } ) with self.settings(SOCIAL_AUTH_LTI_CONSUMER_SECRETS={OTHER_LTI_CONSUMER_KEY: OTHER_LTI_CONSUMER_SECRET}): login_response = self.client.post(path=uri, content_type=FORM_ENCODED, data=body) # The user should be redirected to the registration form assert login_response.status_code == 302 assert login_response['Location'].endswith(reverse('signin_user')) register_response = self.client.get(login_response['Location']) self.assertContains( register_response, '"currentProvider": "Tool Consumer with Secret in Settings"', ) self.assertContains(register_response, '"errorMessage": null')
[ 9, 1046, 557, 3553, 444, 280, 817 ]
def METHOD_NAME(scores, classes, boxes, raw_cls_masks, im_h, im_w, im_scale_y=None, im_scale_x=None, im_scale=None, full_image_masks=True, encode_masks=False, confidence_threshold=0.0, segmentoly_type=False): no_detections = (np.empty((0, ), dtype=np.float32), np.empty((0, ), dtype=np.float32), np.empty((0, 4), dtype=np.float32), []) if scores is None: return no_detections scale = im_scale if scale is None: assert (im_scale_x is not None) and (im_scale_y is not None) scale = [im_scale_x, im_scale_y, im_scale_x, im_scale_y] confidence_filter = scores > confidence_threshold scores = scores[confidence_filter] classes = classes[confidence_filter] boxes = boxes[confidence_filter] if raw_cls_masks is not None: raw_cls_masks = [segm for segm, is_valid in zip(raw_cls_masks, confidence_filter) if is_valid] if len(scores) == 0: return no_detections boxes = boxes / scale classes = classes.astype(np.uint32) if raw_cls_masks is not None: masks = [] for box, cls, raw_mask in zip(boxes, classes, raw_cls_masks): raw_cls_mask = raw_mask[cls, ...] if segmentoly_type else raw_mask mask = segm_postprocess(box, raw_cls_mask, im_h, im_w, full_image_masks, encode_masks) masks.append(mask) else: masks = None return scores, classes, boxes, masks
[ 1710 ]
def METHOD_NAME(data_connector_id: Optional[str] = None, resource_group_name: Optional[str] = None, workspace_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetOfficeATPDataConnectorResult: """ Gets a data connector. :param str data_connector_id: Connector ID :param str resource_group_name: The name of the resource group. The name is case insensitive. :param str workspace_name: The name of the workspace. """ __args__ = dict() __args__['dataConnectorId'] = data_connector_id __args__['resourceGroupName'] = resource_group_name __args__['workspaceName'] = workspace_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure-native:securityinsights/v20230801preview:getOfficeATPDataConnector', __args__, opts=opts, typ=GetOfficeATPDataConnectorResult).value return AwaitableGetOfficeATPDataConnectorResult( data_types=pulumi.get(__ret__, 'data_types'), etag=pulumi.get(__ret__, 'etag'), id=pulumi.get(__ret__, 'id'), kind=pulumi.get(__ret__, 'kind'), name=pulumi.get(__ret__, 'name'), system_data=pulumi.get(__ret__, 'system_data'), tenant_id=pulumi.get(__ret__, 'tenant_id'), type=pulumi.get(__ret__, 'type'))
[ 19, 1902, 14698, 365, 4059 ]
def METHOD_NAME(cfg, data, kernel, strides, padding, dilation, out_dtype): """Compute function for v7e-m DSP instructions of conv1d on NWC layout.""" if isinstance(strides, (tuple, list)): strides = strides[0] if isinstance(dilation, (tuple, list)): dilation = dilation[0] batch_size, data_width, in_channels = data.shape kernel_size, out_channels, _ = kernel.shape # Compute the output shape dilated_kernel_size = (kernel_size - 1) * dilation + 1 pad_left, pad_right = get_pad_tuple1d(padding, (dilated_kernel_size,)) out_channels = simplify(out_channels) out_width = simplify((data_width - dilated_kernel_size + pad_left + pad_right) // strides + 1) # Apply padding pad_before = [0, pad_left, 0] pad_after = [0, pad_right, 0] padded_data = pad(data, pad_before, pad_after, name="padded_data") # Compute graph rc = te.reduce_axis((0, in_channels), name="rc") rw = te.reduce_axis((0, kernel_size), name="rw") conv = te.compute( (batch_size, out_width, out_channels), lambda b, w, c: te.sum( padded_data[b, w * strides + rw * dilation, rc].astype(out_dtype) * kernel[rw, c, rc].astype(out_dtype), axis=[rw, rc], ), name="conv1d", tag="conv1d_nwc", ) ########################### # Config Space Definition # ########################### n, ow, co = ( cfg.axis(batch_size.value), cfg.axis(out_width.value), cfg.axis(out_channels.value), ) kw, ci = ( cfg.reduce_axis(kernel_size.value), cfg.reduce_axis(in_channels.value), ) owo, owi = cfg.define_split("tile_ow", ow, policy="factors", num_outputs=2) cio, cii = cfg.define_split( "tile_ci", ci, policy="factors", num_outputs=2, # TODO: check case with in_channels.value % 4 != 0 with AutoTVM filter=None if cfg.is_fallback else lambda x: x.size[-1] % 4 == 0, ) coo, coi = cfg.define_split("tile_co", co, policy="factors", num_outputs=2) cfg.define_reorder( "reorder_0_simd", [n, owo, owi, coo, coi, kw, cio, cii], policy="candidate", candidate=[ [n, kw, owo, coo, cio, owi, coi, cii], [n, kw, coo, owo, cio, owi, coi, cii], [n, kw, owo, coo, cio, owi, coi, cii], [n, kw, coo, owo, cio, owi, coi, cii], ], ) cfg.define_knob("auto_unroll_max_step", [0, 2, 4, 8, 16, 32]) cfg.define_knob("unroll_explicit", [0, 1]) if cfg.is_fallback: cfg.fallback_split("tile_ow", [-1, out_width.value]) cfg.fallback_split("tile_ci", [-1, in_channels.value]) cfg.fallback_split("tile_co", [-1, out_channels.value]) return conv
[ 3518, 8240, 8241, 226 ]
def METHOD_NAME(request, conference_slug, proposal_slug): return proposal_vote(request, conference_slug, proposal_slug, None)
[ 4229, 9811, 188 ]
def METHOD_NAME(self, enabled): self._is_running = enabled self._update_state()
[ 86, 146 ]
f METHOD_NAME(self):
[ 9, 340, 9250, 97, 636 ]
def METHOD_NAME(self): obj = self.base_factory() self.submission_factory(**{self.relation_to_app: obj}) base_qs = RoundsAndLabs.objects.with_progress() fetched_obj = base_qs.active().first() self.assertEqual(fetched_obj, obj) self.assertFalse(base_qs.inactive().exists())
[ 9, 923 ]
def METHOD_NAME(t): """This is for debugging purposes. Normally prefer to pass it around.""" global TIMING log.info("Setting global profiler in process %r", psutil.Process()) TIMING = t
[ 176, 285, 7275 ]
def METHOD_NAME(self, path_to_src=None, generator=None, coverage_output_type=None, debug=False, valgrind=False): """ Create Makefiles and prepare targets with CMake. Keyword arguments: path_to_src - Path to source directory generator - Type of Makefiles to generate coverage_output_type - Generate HTML, XML or both reports debug - Target debug or release build """ if generator is None: generator = DEFAULT_CMAKE_GENERATORS.get(self.make_program, "Unix Makefiles") cmake = get_cmake_tool() if cmake is None: logging.error( "No CMake found in Path. Install all the required tools.") sys.exit(1) args = [cmake, "-G", generator, "-DBUILD_TESTING=ON" "-DCMAKE_MAKE_PROGRAM=%s" % self.make_program, "-DCMAKE_CXX_COMPILER=%s" % get_cxx_tool(), "-DCMAKE_C_COMPILER=%s" % get_c_tool()] if debug: args.append("-DCMAKE_BUILD_TYPE=Debug") if coverage_output_type: args.append("-DCOVERAGE:STRING=%s" % coverage_output_type) if valgrind: valgrind = get_valgrind_tool() if valgrind is None: logging.error( "No Valgrind found in Path. Install all the required tools.\n") sys.exit(1) args.append("-DVALGRIND=1") args.append("-DMEMORYCHECK_COMMAND_OPTIONS=\"--track-origins=yes\" \"--leak-check=full\" \"--show-reachable=yes\" \"--error-exitcode=1\"") else: args.append("-DVALGRIND=0") if path_to_src is not None: args.append(path_to_src) execute_program(args, "CMake failed to run successfully. See error message.")
[ 129, 16290 ]
def METHOD_NAME(): if not os.path.exists(LARGE_TXT_FILE): with open(LARGE_TXT_FILE, "w") as file: file.truncate(10 ** 8) # ~ 100MB return LARGE_TXT_FILE
[ 129, 1953, 310, 171 ]
def METHOD_NAME(): timeout = 2 socket.setdefaulttimeout(timeout) for host in __check_internet_hosts__: try: for var in ("HTTP_PROXY", "HTTPS_PROXY"): if not os.getenv(var) and not os.getenv(var.lower()): continue requests.get("http://%s" % host, allow_redirects=False, timeout=timeout) return True # try to resolve `host` for both AF_INET and AF_INET6, and then try to connect # to all possible addresses (IPv4 and IPv6) in turn until a connection succeeds: s = socket.create_connection((host, 80)) s.close() return True except: # pylint: disable=bare-except pass return False
[ 2813, 69 ]
def METHOD_NAME(): pyblish.register_host("flame") pyblish.register_plugin_path(PUBLISH_PATH) register_loader_plugin_path(LOAD_PATH) register_creator_plugin_path(CREATE_PATH) log.info("OpenPype Flame plug-ins registered ...") # register callback for switching publishable pyblish.register_callback("instanceToggled", on_pyblish_instance_toggled) log.info("OpenPype Flame host installed ...")
[ 428 ]
def METHOD_NAME(module): # tools must be installed if module.get_bin_path('systemctl'): # check if /sbin/init is a symlink to systemd # on SUSE, /sbin/init may be missing if systemd-sysvinit package is not installed. if os.path.islink('/sbin/init') and os.path.basename(os.readlink('/sbin/init')) == 'systemd': return True return False
[ 137, 4658, 3627, 8024 ]
def METHOD_NAME(): global net net = BitcoinSimnet
[ 0, -1 ]
def METHOD_NAME(self): path = "Phylip/one.dat" with open(path) as handle: phylip_text = handle.read() path = "Phylip/three.dat" with open(path) as handle: phylip_text3 = handle.read() path = "Phylip/four.dat" with open(path) as handle: phylip_text4 = handle.read() handle = StringIO(phylip_text4 + "\n" + phylip_text4) self.assertEqual(len(list(PhylipIterator(handle))), 2) handle = StringIO(phylip_text3 + "\n" + phylip_text4 + "\n\n\n" + phylip_text) self.assertEqual(len(list(PhylipIterator(handle))), 3)
[ 9, 8587 ]
def METHOD_NAME(self): """ Retrieves the name of the component Returns: A string containing the name of the component """ return self.name
[ 19, 156 ]
def METHOD_NAME(self): """ Necessary to implement for `HybridSplitQKVContainer` """ self.qw = self.policy.client_module.attn.attention.q_proj.weight self.qb = None self.kw = self.policy.client_module.attn.attention.k_proj.weight self.kb = None self.vw = self.policy.client_module.attn.attention.v_proj.weight self.vb = None
[ 0, 1010, 4407, 585 ]
def METHOD_NAME(arg): arg_type, arg_name, arg_default, arg_desc = arg def k(*xs): if arg_type_post == ' or None': return None elif len(xs) == 1: return xs[0] else: return xs def m(f): def w(x): if arg_type_post == ' or None': return f(x) if x else None else: return f(x) if x else f() return w arg_type_post = '' if arg_name == 'SRC' or arg_name == 'DST': return if arg_type.startswith("optional "): arg_type = arg_type[len("optional "):] arg_type_post = ' or None' if arg_type == "vec3f": arg_value = repr(tuple(map(m(float), arg_default.split(","))) if arg_default else k(0, 0, 0)) elif arg_type == "vec3i": arg_value = repr(tuple(map(m(int), arg_default.split(","))) if arg_default else k(0, 0, 0)) elif arg_type == "vec2f": arg_value = repr(tuple(map(m(float), arg_default.split(","))) if arg_default else k(0, 0)) elif arg_type == "vec2i": arg_value = repr(tuple(map(m(int), arg_default.split(","))) if arg_default else k(0, 0)) elif arg_type == "vec4f": arg_value = repr(tuple(map(m(float), arg_default.split(","))) if arg_default else k(0, 0, 0, 0)) elif arg_type == "vec4i": arg_value = repr(tuple(map(m(int), arg_default.split(","))) if arg_default else k(0, 0, 0, 0)) elif arg_type == "float": arg_value = repr(m(float)(arg_default)) elif arg_type == "int": arg_value = repr(m(int)(arg_default)) elif arg_type == "bool": arg_value = repr(m(bool)(arg_default)) elif arg_type in ("string", "multiline_string", "readpath", "writepath"): if arg_type == "readpath": arg_type = "str, readable path" elif arg_type == "writepath": arg_type = "str, writeable path" elif arg_type == "multiline_string": arg_type = "str, may have multiple lines" else: arg_type = "str" arg_value = repr(arg_default if arg_default else f'<{arg_name}>') elif arg_type in ("list", "ListObject"): arg_type = "list" arg_value = repr(list()) elif arg_type in ("dict", "DictObject"): arg_type = "dict" arg_value = repr(dict()) elif arg_type in ("prim", "primitive", "PrimitiveObject"): arg_type = "ze.ZenoPrimitiveObject" arg_value = f"<{arg_name}>" elif arg_type in ("numeric", "NumericObject"): arg_type = "any numeric types including int float vec3f vec3i" arg_value = str(m(float)(arg_default) if ',' in arg_default else tuple(map(m(float), arg_default.split(",")))) elif arg_type in ("zany", "IObject"): arg_type = "any type" arg_value = f"<{arg_name}>" elif arg_type.startswith("enum "): options = arg_type[len("enum "):].split() if options and arg_default not in options: arg_default = options[0] arg_value = repr(arg_default) arg_type = f"options are: {' '.join(options)}" else: # if arg_type != "": # print(f"warning: unknown type {arg_type}") if arg_type == "" and not arg_type_post: arg_default = repr(None) arg_value = arg_default or f'<{arg_name}>' p(f" {arg_name}={arg_value}," + ("" if not arg_type and not arg_type_post and not arg_desc else f" # {arg_type}{arg_type_post}{', ' + arg_desc if arg_desc and (arg_type or arg_type_post) else ''}"))
[ -1 ]
def METHOD_NAME(inactive=False, **kw): """Fetch all labels by a catalog query """ catalog = SETUP_CATALOG query = { "portal_type": "Label", "is_active": True, "sort_on": "title", } # Allow to update the query with the keywords query.update(kw) if inactive: del query["is_active"] return search(query, catalog)
[ 539, 415 ]
def METHOD_NAME(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[0.0, 5.0, 4.0]]) self._gradient_input_test_assert(net, net.relu, inp, 1, [[1.0, 1.0, 1.0]])
[ 9, 53, 1789, 362, 10097 ]
def METHOD_NAME(log_file, verbosity, append): level = {0: logging.ERROR, 1: logging.WARNING, 2: logging.INFO}.get(verbosity, logging.DEBUG) if log_file is not None: handler = logging.FileHandler(log_file, mode=(append and 'a' or 'w')) else: handler = logging.StreamHandler() handler.setFormatter(logging.Formatter( "%(threadName)s::%(levelname)s::%(asctime)s::%(module)s::" + "%(lineno)d::%(name)s::(%(funcName)s) %(message)s")) root_logger = logging.getLogger('') root_logger.setLevel(level) root_logger.addHandler(handler)
[ 102, 663 ]
def METHOD_NAME(self, node): return [u for u, v in self.graph.in_edges(node)]
[ 19, 2189 ]
def METHOD_NAME(case_factory, event, attendees): event_case_id = event._case_id.hex event_group_id = event.event_id.hex attendee_case_type = get_attendee_case_type(event.domain) attendee_case_ids = (c.case_id for c in attendees) case_structures = [] for case_id in attendee_case_ids: event_host = CaseStructure(case_id=event_case_id) attendee_host = CaseStructure(case_id=case_id) case_structures.append(CaseStructure( indices=[ CaseIndex( relationship='extension', identifier='event-host', related_structure=event_host, related_type=EVENT_CASE_TYPE, ), CaseIndex( relationship='extension', identifier='attendee-host', related_structure=attendee_host, related_type=attendee_case_type, ), ], attrs={ 'case_type': EVENT_ATTENDEE_CASE_TYPE, 'owner_id': event_group_id, 'create': True, }, )) case_factory.create_or_update_cases(case_structures)
[ 0, 391, 1229 ]
def METHOD_NAME(self): pass
[ 709, 710 ]
def METHOD_NAME(tmpdir): tmpdir = str(tmpdir) dirstructure = [ '/cal1/public/', '/cal1/private/', '/cal2/public/', '/cal3/public/', '/cal3/work/', '/cal3/home/', '/cal4/cfgcolor/', '/cal4/dircolor/', '/cal4/cfgcolor_again/', '/cal4/cfgcolor_once_more/', '/singlecollection/', ] for one in dirstructure: os.makedirs(tmpdir + one) filestructure = [ ('/cal1/public/displayname', 'my calendar'), ('/cal1/public/color', 'dark blue'), ('/cal1/private/displayname', 'my private calendar'), ('/cal1/private/color', '#FF00FF'), ('/cal4/dircolor/color', 'dark blue'), ] for filename, content in filestructure: with open(tmpdir + filename, 'w') as metafile: metafile.write(content) return tmpdir
[ -1 ]
def METHOD_NAME(self, PanelItem, ItemsNumber): log.debug("VFS.FreeVirtualFindData({0}, {1})".format(PanelItem, ItemsNumber))
[ 3712, 162, 416, 365 ]
def METHOD_NAME(): global _objects t = TestRequired() _objects['test_required_t'] = t t.put() return t
[ 9, 984 ]