text
stringlengths
15
7.82k
ids
sequencelengths
1
7
def METHOD_NAME(audiopath: str): if audiopath[-4:] == ".wav": audio, lsr = load_wav_to_torch(audiopath) elif audiopath[-4:] == ".mp3": audio, lsr = librosa.load(audiopath, sr=None) audio = torch.FloatTensor(audio) else: assert False, f"Unsupported audio format provided: {audiopath[-4:]}" # Remove any channel data. if len(audio.shape) > 1: if audio.shape[0] < 5: audio = audio[0] else: assert audio.shape[1] < 5 audio = audio[:, 0] return audio, lsr
[ 203, 1747, 171 ]
def METHOD_NAME(self): return "MgmtErrorFormat"
[ 168, 275 ]
def METHOD_NAME(map_file, function_file, argument_file, result_file): """ Wrapper function to deploy with FunctionCall as serverless tasks. """ from parsl.executors.taskvine.exec_parsl_function import run run(map_file, function_file, argument_file, result_file)
[ 22, -1, 559 ]
def METHOD_NAME(self): item = self.findSelectedItem() if item: for row in range(item.childCount() - 2, -1, -1): if item.child(row).isSelected(): i = item.takeChild(row) item.insertChild(row + 1, i) i.setSelected(True)
[ 132, 449, 2189, 481 ]
def METHOD_NAME(self,state,id,events): global IsPlaying global CurrentFile global SoundObjIndex global TriggeringAvatar if not state: return if id == actTrigger.id: TriggeringAvatar = PtFindAvatar(events) respOneShot.run(self.key, events = events) elif id == respOneShot.id: self.NextSong() respStop.run(self.key) if CurrentFile: soSoundObj.value.setSoundFilename(SoundObjIndex, CurrentFile[0], CurrentFile[1]) respStart.run(self.key) currentSong = (CurrentFile[0],) else: currentSong = ("",) playerid = PtGetClientIDFromAvatarKey(TriggeringAvatar.getKey()) localClient = PtGetLocalClientID() islocalavatar = (playerid == localClient) sdlvarisvalid = sdlCurrentSongVar.value if islocalavatar and sdlvarisvalid: PtDebugPrint("Setting cur song var to: ", currentSong) ageSDL = PtGetAgeSDL() ageSDL[sdlCurrentSongVar.value] = currentSong
[ 69, 959 ]
def METHOD_NAME(): out = subprocess.check_output(["git", "tag", "--points-at", "HEAD"]) return out.decode().split("\n")[0]
[ 19, 1056, 1493, 82 ]
def METHOD_NAME(): # Ensure the policy is set test_setting = "Success" win_lgpo.set_computer_policy( name="Audit User Account Management", setting=test_setting ) assert ( win_lgpo.get_policy( policy_name="Audit User Account Management", policy_class="machine" ) == test_setting )
[ 0, 54 ]
def METHOD_NAME(cubes_with_wrong_air_pressure): """Test ``fix_metadata`` for ``hus``.""" vardef = get_var_info('CMIP6', 'Amon', 'hus') fix = Hus(vardef) out_cubes = fix.fix_metadata(cubes_with_wrong_air_pressure) assert len(out_cubes) == 2 hus_cube = out_cubes.extract_cube('hus') zg_cube = out_cubes.extract_cube('zg') assert hus_cube.var_name == 'hus' assert zg_cube.var_name == 'zg' np.testing.assert_allclose(hus_cube.coord('air_pressure').points, [1000.0, 601.0, 200.0]) np.testing.assert_allclose(hus_cube.coord('air_pressure').bounds, [[1200.0, 800.0], [800.0, 401.0], [401.0, 2.0]]) np.testing.assert_allclose(zg_cube.coord('air_pressure').points, [1000.09, 600.6, 200.0]) np.testing.assert_allclose(zg_cube.coord('air_pressure').bounds, [[1200.00001, 800], [800, 400.8], [400.8, 1.9]])
[ 9, -1, 1112, 773 ]
def METHOD_NAME(logging_outputs): """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) agg_output = { "loss": loss_sum / nsentences, "ntokens": ntokens, "nsentences": nsentences, "sample_size": sample_size, } return agg_output
[ 3428, 663, 141 ]
def METHOD_NAME(): # check that FirebaseError is raised when send_message returns it so Celery task can retry with patch.object( FCMDevice, "send_message", return_value=FirebaseError(code="test_error_code", message="test_error_message") ): with pytest.raises(FirebaseError): fcm_relay_async(token="test_token", data={}, apns={})
[ 9, 3805, 4208, 958, 2052 ]
def METHOD_NAME(self) -> str: """Generate a license plate.""" pattern: str = self.random_element(self.license_plate_formats) return self.generator.parse(pattern)
[ 2130, 7777 ]
def METHOD_NAME(s): return qs(**{field.db_field: s}).clear_cls_query().limit(1).count(True) > 0
[ 954 ]
def METHOD_NAME(self, text): self._input = text self._current_position = 0 self._current_state = CLL_NORMAL self._paren_balance = 0
[ 362 ]
def METHOD_NAME(self, waypoint: FlightWaypoint) -> timedelta | None: return None
[ 6545, 104, 43, 4599 ]
def METHOD_NAME(self, target): """Returns all the location types supported for the given target. This is an implementation for an abstract method. Parameters ---------- target : any The UI target for which supported location types are queried. Returns ------- locators_classes : set Supported locator types for the given target type. """ return set()
[ 19, 1081 ]
def METHOD_NAME(fdp, dict_size): dictionary = {} for _ in range(dict_size): dictionary[fdp.ConsumeUnicodeNoSurrogates(20)] = fdp.ConsumeIntListInRange(4, 1, 100) return dictionary
[ 1049, 2445, 41, 245 ]
def METHOD_NAME(): METHOD_NAME = mock.Mock(spec=Repository) METHOD_NAME.owner = "SalesforceFoundation" METHOD_NAME.name = "TestRepo" return METHOD_NAME
[ 522 ]
def METHOD_NAME( user_profile: UserProfile, *, acting_user: Optional[UserProfile] ) -> None: assert user_profile.bot_owner is not None new_owner_subscribed_private_streams = get_subscribed_private_streams_for_user( user_profile.bot_owner ) new_owner_subscribed_private_stream_ids = [ stream.id for stream in new_owner_subscribed_private_streams ] bot_subscribed_private_streams = get_subscribed_private_streams_for_user(user_profile) bot_subscribed_private_stream_ids = [stream.id for stream in bot_subscribed_private_streams] stream_ids_to_unsubscribe = set(bot_subscribed_private_stream_ids) - set( new_owner_subscribed_private_stream_ids ) unsubscribed_streams = [ stream for stream in bot_subscribed_private_streams if stream.id in stream_ids_to_unsubscribe ] bulk_remove_subscriptions( user_profile.realm, [user_profile], unsubscribed_streams, acting_user=acting_user )
[ 188, 1227, 280, 13509, 547, 1196 ]
def METHOD_NAME(self, setup_logging): """Test for when the user is not using pyramid_sawing.""" bodhi_logging.setup() setup_logging.assert_called_once_with('/test/file')
[ 9, 529, -1 ]
def METHOD_NAME(self, x_start, tol): """Tests that momentum optimizer takes one and two steps correctly for univariate functions.""" stepsize, gamma = 0.1, 0.5 mom_opt = MomentumOptimizer(stepsize, momentum=gamma) univariate_funcs = [np.sin, lambda x: np.exp(x / 10.0), lambda x: x**2] grad_uni_fns = [ lambda x: (np.cos(x),), lambda x: (np.exp(x / 10.0) / 10.0,), lambda x: (2 * x,), ] for gradf, f in zip(grad_uni_fns, univariate_funcs): mom_opt.reset() x_onestep = mom_opt.step(f, x_start) x_onestep_target = x_start - gradf(x_start)[0] * stepsize assert np.allclose(x_onestep, x_onestep_target, atol=tol) x_twosteps = mom_opt.step(f, x_onestep) momentum_term = gamma * gradf(x_start)[0] x_twosteps_target = x_onestep - (gradf(x_onestep)[0] + momentum_term) * stepsize assert np.allclose(x_twosteps, x_twosteps_target, atol=tol)
[ 9, 11057, 968, 7167 ]
def METHOD_NAME(self) -> 'outputs.AssessmentStatusResponse': """ The result of the assessment """ return pulumi.get(self, "status")
[ 452 ]
def METHOD_NAME(self, multihost): """ :title: config: sssd --genconf-section only refreshes those sections given on the command line :id: 011bf2ad-4a2a-4350-adfa-7826349e262f """ multihost.master[0].service_sssd('restart') self._assert_config_value(multihost, 'pam', 'debug_level', '9') self._assert_config_value(multihost, 'nss', 'debug_level', '9') set_param(multihost, 'pam', 'debug_level', '1') set_param(multihost, 'nss', 'debug_level', '1') multihost.master[0].run_command( '/usr/sbin/sssd --genconf-section=pam') # We only told genconf to touch the pam section.. self._assert_config_value(multihost, 'pam', 'debug_level', '1') # ..so the NSS section shouldn't be updated at all self._assert_config_value(multihost, 'nss', 'debug_level', '9') set_param(multihost, 'nss', 'debug_level', '9') set_param(multihost, 'pam', 'debug_level', '9')
[ 9, 10205, 10856, 1287, 246 ]
def METHOD_NAME(self, policy_owner): return policy_owner in self.policy_owner_list
[ 416, 54, 2013 ]
def METHOD_NAME(package, from_version, to_version, *, api_key): from_version = parse_version(from_version) to_version = parse_version(to_version) changelog = {} r = requests.get( "https://pyup.io/api/v1/changelogs/{}/".format(package), headers={"X-Api-Key": api_key} ) if r.status_code == 200: data = r.json() if data: # sort the changelog by release sorted_log = sorted(data.items(), key=lambda v: parse_version(v[0]), reverse=True) # go over each release and add it to the log if it's within the "upgrade # range" e.g. update from 1.2 to 1.3 includes a changelog for 1.2.1 but # not for 0.4. for version, log in sorted_log: parsed_version = parse_version(version) if parsed_version > from_version and parsed_version <= to_version: changelog[version] = log return changelog
[ 1047, 3838 ]
def METHOD_NAME(resp: requests.Response) -> bool: if resp.status_code == 408: return True if resp.status_code >= 500 and resp.status_code <= 599: return True return False
[ 12189 ]
def METHOD_NAME(bytesequence, outputfile, xres, yres, pixelformat): image = [] if (pixelformat == "YUV422"): imagepixels = yuv422_to_rgb(bytesequence) elif (pixelformat == "RGB555"): imagepixels = rgb555_to_rgb(bytesequence) elif (pixelformat == "RGB565"): imagepixels = rgb565_to_rgb(bytesequence) elif (pixelformat == "RGB888"): imagepixels = rgb888_to_rgb(bytesequence) elif (pixelformat == "GRAYSCALE"): #Black and white yuv422 imagepixels = blackAndWhite_to_rgb(bytesequence) elif (pixelformat == "BAYER"): #Black and white raw imagepixels = blackAndWhite_to_rgb(bytesequence) offset = 0 for i in range(yres): line = [] offset = (xres * 3) * i for j in range(xres * 3): line.append(imagepixels[j + offset]) image.append(line) print("Output image to file xres {}, yres {}".format(xres,yres), flush=True) g_pil_image = generate_img(outputfile, (0, 0, 0), (xres, yres)) x = 0 y = 0 for i in range(int(len(imagepixels) / 3)): color_r = imagepixels[i * 3 + 0] color_g = imagepixels[i * 3 + 1] color_b = imagepixels[i * 3 + 2] g_pil_image.putpixel( (x, y), (color_r, color_g, color_b, 255)) x = x + 1 if x > (xres - 1): x = 0 y = y + 1 if y > (yres - 1): break g_pil_image.save(outputfile)
[ 197 ]
def METHOD_NAME(self, mock_subprocess_run, mock_robot_run): """Verifies that pabot-specific options are not passed on when processes=1""" mock_robot_run.return_value = 0 task = create_task( Robot, { "suites": "tests", "processes": 1, "testlevelsplit": "true", "ordering": "./robot/order.txt", }, ) task() mock_subprocess_run.assert_not_called() outputdir = str(Path(".").resolve()) mock_robot_run.assert_called_once_with( "tests", listener=[], outputdir=outputdir, variable=["org:test"], tagstatexclude=["cci_metric_elapsed_time", "cci_metric"], stdout=sys.stdout, stderr=sys.stderr, )
[ 9, -1, 335, 356, 2338, 313 ]
def METHOD_NAME(u): return translate([1, 2, 3])
[ 711, 1224 ]
def METHOD_NAME(self): """Test function multivariate_ttest. Tested against the R package Hotelling and real-statistics.com. """ np.random.seed(123) # With 2 variables mean, cov, n = [4, 6], [[1, 0.5], [0.5, 1]], 30 Z = np.random.multivariate_normal(mean, cov, n) # One-sample test multivariate_ttest(Z, Y=None, paired=False) multivariate_ttest(Z, Y=[4, 5], paired=False) # With 3 variables # Two-sample independent stats = multivariate_ttest(X, Y) assert round(stats.at["hotelling", "F"], 3) == 1.327 assert stats.at["hotelling", "df1"] == 3 assert stats.at["hotelling", "df2"] == 32 assert round(stats.loc["hotelling", "pval"], 3) == 0.283 # Paired test with NaN values stats = multivariate_ttest(X_na, Y, paired=True) assert stats.at["hotelling", "df1"] == 3 assert stats.at["hotelling", "df2"] == X.shape[0] - 1 - X.shape[1]
[ 9, 4049, 4883 ]
def METHOD_NAME(self): """Returns gyroscope vector in degrees/sec.""" mv = memoryview(self.scratch_int) f = self.scale_gyro self.i2c.readfrom_mem_into(self.address_gyro, OUT_G | 0x80, mv) return (mv[0] / f, mv[1] / f, mv[2] / f)
[ 203, -1 ]
def METHOD_NAME(self, input: DOMInputSource) -> ExpatBuilder | ExpatBuilderNS: ...
[ 214 ]
def METHOD_NAME( self, connection_id: str = None, monitor_ids: List[str] = None, poll_interval: int = 60, raise_on_failure: bool = False, ) -> None: print('Metaplane process started.') if not monitor_ids and connection_id: print(f'Fetching monitors for connection ID {connection_id}.') monitors = self.monitors(connection_id)['data'] monitor_ids = [m['id'] for m in monitors] time.sleep(10) monitors_started = {} print(f'Running {len(monitor_ids)} monitor(s).') for monitor_id in monitor_ids: print(f'Running monitor ID {monitor_id}.') now = datetime.utcnow() status = self.run_monitors([monitor_id])['status'] print(f'Monitor ID {monitor_id} ran with status {status}.') if 200 == status: monitors_started[monitor_id] = now monitors_completed = {} while len(monitors_completed) < len(monitors_started): for monitor_id in monitor_ids: print(f'Checking status for monitor ID {monitor_id}.') monitor_status = self.monitor_status(monitor_id) start_date = monitors_started[monitor_id] status_date = dateutil.parser.parse(monitor_status['createdAt']) completed = status_date.timestamp() >= start_date.timestamp() print(f'Monitor ID {monitor_id} completed: {completed}; started {start_date}, ' f'last created {status_date}).') if completed: passed = monitor_status['passed'] if raise_on_failure and not passed: raise Exception(f'Monitor ID {monitor_id} didn’t pass.') monitors_completed[monitor_id] = passed print(f'Monitor ID {monitor_id} passed: {passed}.') if len(monitors_completed) < len(monitors_started): time.sleep(poll_interval) print('Metaplane process completed.')
[ 356 ]
def METHOD_NAME(): """ Transducer for 20-99 e.g hai ba -> 23 """ graph_one = pynini.cross("mốt", "1") graph_four = pynini.cross("tư", "4") graph_five = pynini.cross("lăm", "5") graph_ten = pynini.cross("mươi", "") optional_ten = pynini.closure(delete_space + graph_ten, 0, 1) graph = pynini.union( ties_graph + optional_ten + delete_space + (graph_digit | graph_one | graph_four | graph_five), ties_graph + delete_space + graph_ten + pynutil.insert("0"), ) return graph
[ 19, 30, 303 ]
f METHOD_NAME(self):
[ 9, 3533, 40, 41, 3239, 641, 1745 ]
def METHOD_NAME(match: re.Match[str]): return " " * int(match.group(1))
[ 369, 2882, 41, 1041 ]
def METHOD_NAME(self, poll_interval): """ Query stats until we receive startup flows """ while not self._flows_received: if self._datapath: self._poll_all_tables(self._datapath) hub.sleep(poll_interval)
[ 1237, 4294, 7923 ]
def METHOD_NAME(): """Test functional implementation of metric with empty inputs.""" assert edit_distance([], []) == 0
[ 9, 2004, 35, 4167 ]
def METHOD_NAME(self): # enable compression return {}
[ 19, 4483, 1881 ]
def METHOD_NAME(self, swagger_client_factory): # given self._get_swagger_client_mock(swagger_client_factory, min_compatible="0.5.14") # expect with self.assertRaises(UnsupportedClientVersion) as ex: HostedNeptuneBackendApiClient(api_token=API_TOKEN) self.assertTrue("Please install neptune-client>=0.5.14" in str(ex.exception))
[ 9, 1835, 3892, 281, 180 ]
def METHOD_NAME(choice): if(choice!=1 and choice!=2): if(choice == 0): print("Testing step 4. Remove all the intermediate testing files.\n") dest_dir =os.getcwd() for file in glob.glob('*.h5'): os.remove(file) for file in glob.glob('*.h5.dmrpp'): os.remove(file) os.remove('mh5_sha256')
[ 5528, 1617, 1537 ]
def METHOD_NAME(self): request = self.req_blank response = estimator(request, dob="1955-05-05") self.assertTrue(response.status_code == 400)
[ 9, 5175, 539, 365, 2882, 11439 ]
def METHOD_NAME(self, satellite=None): # Set Satellite URL for puppet-server-foreman-url if satellite is not None: satellite_url = f'https://{satellite.hostname}' PUPPET_COMMON_INSTALLER_OPTS['puppet-server-foreman-url'] = satellite_url enable_capsule_cmd = InstallerCommand( installer_args=PUPPET_CAPSULE_INSTALLER, installer_opts=PUPPET_COMMON_INSTALLER_OPTS ) result = self.execute(enable_capsule_cmd.get_command(), timeout='20m') assert result.status == 0 assert 'Success!' in result.stdout return self
[ 1317, 12595, 14457 ]
def METHOD_NAME( self, shape: BluemiraWire, degree: float = 360.0, ) -> List[PhysicalComponent]: """ Build the xyz representation of the PF coil. Parameters ---------- shape: The xz cross-section shape of the coil. degree: The angle [°] around which to build the components, by default 360.0. Returns ------- The component grouping the results in 3D (xyz). """ sector_degree, n_sectors = get_n_sectors(self.params.n_TF.value, degree) # I doubt this is floating-point safe to collisions... xz_components = self.build_xz(shape) components = [] for c in xz_components: shape = revolve_shape(c.shape, degree=sector_degree * n_sectors) c_xyz = PhysicalComponent(c.name, shape) apply_component_display_options( c_xyz, color=c.plot_options.face_options["color"] ) components.append(c_xyz) return components
[ 56, 2846 ]
def METHOD_NAME(lst): lst = sorted(lst) mid, odd = divmod(len(lst), 2) if odd: return lst[mid] else: return (lst[mid - 1] + lst[mid]) / 2.0
[ 6778 ]
def METHOD_NAME(self): app = flask.Flask(__name__) app.config.update( SERVER_NAME='localhost.localdomain:5000' ) @app.route('/') def index(): return None @app.route('/', subdomain='foo') def sub(): return None with app.test_request_context('/'): self.assert_equal(flask.url_for('index', _external=True), 'http://localhost.localdomain:5000/') with app.test_request_context('/'): self.assert_equal(flask.url_for('sub', _external=True), 'http://foo.localhost.localdomain:5000/') try: with app.test_request_context('/', environ_overrides={'HTTP_HOST': 'localhost'}): pass except Exception as e: self.assert_true(isinstance(e, ValueError)) self.assert_equal(str(e), "the server name provided " + "('localhost.localdomain:5000') does not match the " + \ "server name from the WSGI environment ('localhost')") try: app.config.update(SERVER_NAME='localhost') with app.test_request_context('/', environ_overrides={'SERVER_NAME': 'localhost'}): pass except ValueError as e: raise ValueError( "No ValueError exception should have been raised \"%s\"" % e ) try: app.config.update(SERVER_NAME='localhost:80') with app.test_request_context('/', environ_overrides={'SERVER_NAME': 'localhost:80'}): pass except ValueError as e: raise ValueError( "No ValueError exception should have been raised \"%s\"" % e )
[ 9, 3736, 9, 377, 198 ]
def METHOD_NAME(self, filename): name = os.path.basename(filename) if self.editor.protoPalette.findItem(name): item = self.tree.traverse(self.tree.root, name) if item: self.tree.DeleteItem(item) modelname = Filename.fromOsSpecific(filename).getFullpath() if modelname.endswith('.mb') or\ modelname.endswith('.ma'): self.editor.convertMaya(modelname, self.addNewItem) return itemData = ObjectBase(name=name, model=modelname, actor=True) self.editor.protoPalette.add(itemData) newItem = self.tree.AppendItem(self.editor.ui.protoPaletteUI.tree.root, name) self.tree.SetItemPyData(newItem, itemData) self.tree.ScrollTo(newItem)
[ -1, 171 ]
f METHOD_NAME(self, statement, channel_name=None):
[ 539 ]
def METHOD_NAME(self, base_path: Union[str, PathLike]) -> None: if not self.docker: return if not self.docker.get(self.BUILD) or not self.docker[self.BUILD].get(self.DOCKERFILE): return dockerfile_file = self.docker[self.BUILD][self.DOCKERFILE] if not dockerfile_file.startswith(FILE_PREFIX): return dockerfile_file = self._parse_file_path(dockerfile_file) with open(Path(base_path) / dockerfile_file, "r", encoding=DefaultOpenEncoding.READ) as f: self.docker[self.BUILD][self.DOCKERFILE] = f.read() self._docker_file_resolved = True return
[ 1014, 223, 1287 ]
def METHOD_NAME(platform): return f"brainarray-test/{platform}.json"
[ 19, 607, 59 ]
def METHOD_NAME( model: Input[BQMLModel], advanced_weights: Output[Artifact], gcp_resources: OutputPath(str), location: str = 'us-central1', query_parameters: List[str] = [], job_configuration_query: Dict[str, str] = {}, labels: Dict[str, str] = {}, project: str = _placeholders.PROJECT_ID_PLACEHOLDER,
[ 4701, 4702, 284, 733, 202 ]
def METHOD_NAME(font_key): """Return a previously cached font object appropriate to the backend based on a key generated by the backend. Will return a KeyError in the case of a missing font. """ font = font_cache[font_key] return font
[ 19, 596 ]
def METHOD_NAME(self, days=30): """ Remove expired elements from history :param days: number of days to keep """ date = datetime.today() - timedelta(days) self.db.action( 'DELETE ' 'FROM history ' 'WHERE date < ?', [date.strftime(History.date_format)] )
[ 1896 ]
def METHOD_NAME(self, request): return TestPrefixHandler.COMMANDS[: request.param]
[ 2458 ]
def METHOD_NAME( self, molecule, partial_charge_method=None, use_conformers=None, strict_n_conformers=False, normalize_partial_charges=True, _cls=None, ): """ Compute partial charges with the built-in toolkit using simple arithmetic operations, and assign the new values to the partial_charges attribute. .. warning :: This API is experimental and subject to change. Parameters ---------- molecule : openff.toolkit.topology.Molecule Molecule for which partial charges are to be computed partial_charge_method: str, optional, default=None The charge model to use. One of ['zeros', 'formal_charge']. If None, 'formal_charge' will be used. use_conformers : iterable of unit-wrapped numpy arrays, each with shape (n_atoms, 3) and dimension of distance. Optional, default = None Coordinates to use for partial charge calculation. If None, an appropriate number of conformers will be generated. strict_n_conformers : bool, default=False Whether to raise an exception if an invalid number of conformers is provided for the given charge method. If this is False and an invalid number of conformers is found, a warning will be raised instead of an Exception. normalize_partial_charges : bool, default=True Whether to offset partial charges so that they sum to the total formal charge of the molecule. This is used to prevent accumulation of rounding errors when the partial charge generation method has low precision. _cls : class Molecule constructor Raises ------ ChargeMethodUnavailableError if this toolkit cannot handle the requested charge method IncorrectNumConformersError if strict_n_conformers is True and use_conformers is provided and specifies an invalid number of conformers for the requested method ChargeCalculationError if the charge calculation is supported by this toolkit, but fails """ PARTIAL_CHARGE_METHODS = { "zeros": {"rec_confs": 0, "min_confs": 0, "max_confs": 0}, "formal_charge": {"rec_confs": 0, "min_confs": 0, "max_confs": 0}, } if partial_charge_method is None: partial_charge_method = "formal_charge" if _cls is None: from openff.toolkit.topology.molecule import Molecule _cls = Molecule # Make a temporary copy of the molecule, since we'll be messing with its conformers mol_copy = _cls(molecule) partial_charge_method = partial_charge_method.lower() if partial_charge_method not in PARTIAL_CHARGE_METHODS: raise ChargeMethodUnavailableError( f'Partial charge method "{partial_charge_method}"" is not supported by ' f"the Built-in toolkit. Available charge methods are " f"{list(PARTIAL_CHARGE_METHODS.keys())}" ) if use_conformers is None: # Note that this refers back to the GLOBAL_TOOLKIT_REGISTRY by default, since # BuiltInToolkitWrapper can't generate conformers mol_copy.generate_conformers( n_conformers=PARTIAL_CHARGE_METHODS[partial_charge_method]["rec_confs"] ) else: mol_copy._conformers = None for conformer in use_conformers: mol_copy._add_conformer(conformer) self._check_n_conformers( mol_copy, partial_charge_method=partial_charge_method, min_confs=0, max_confs=0, strict_n_conformers=strict_n_conformers, ) if partial_charge_method == "zeros": partial_charges = [0.0] * molecule.n_atoms elif partial_charge_method == "formal_charge": partial_charges = [float(atom.formal_charge.m) for atom in molecule.atoms] molecule.partial_charges = unit.Quantity( partial_charges, unit.elementary_charge ) if normalize_partial_charges: molecule._normalize_partial_charges()
[ 1283, 2351, 10231 ]
f METHOD_NAME(self):
[ 9, 1385, 1640, 4961 ]
def METHOD_NAME(self): if self._var_cache is None: script = self.var.get('_prepare', _eval=False, default='') + \ self.var.get('_run', _eval=False, default='') self._var_cache = [ (key, None) for key in self._extract_assignments(script)] return super().METHOD_NAME() + self._var_cache
[ 486, 100 ]
def METHOD_NAME(self): return MPTCPFlags.MPTCP_PM_ADDR_FLAG_BACKUP in self.flags
[ 137, 1001 ]
def METHOD_NAME(apps, schema_editor): """ Create profiles for all existing test users, with some defaults for required fields""" User = apps.get_model("users", "User") Profile = apps.get_model("users", "Profile") for user in User.objects.all().iterator(): Profile.objects.create( user=user, gender="o", birth_year="2000", company="MIT", job_title="Employee", )
[ 238, 1348 ]
def METHOD_NAME(queue, transfer_type, block_size, timer_factory=None): """Measures one-sided bandwidth.""" transfer = transfer_type(queue, block_size) return block_size/_get_time(queue, transfer.do, timer_factory=timer_factory)
[ 1286, 3490 ]
def METHOD_NAME(workflow_execution: PredictorEvaluationExecution, session, example_cv_result_dict): # Given session.set_response(example_cv_result_dict) # When results = workflow_execution["Example Evaluator"] # Then assert results.evaluator == PredictorEvaluationResult.build(example_cv_result_dict).evaluator expected_path = '/projects/{}/predictor-evaluation-executions/{}/results'.format( workflow_execution.project_id, workflow_execution.uid, ) assert session.last_call == FakeCall(method='GET', path=expected_path, params={"evaluator_name": "Example Evaluator"})
[ 9, 3855, 2046, 51 ]
def METHOD_NAME(element): return type(element) == nltk.Tree
[ 137, 151 ]
def METHOD_NAME(which: int) -> None: write(f'{CSI}{which}#Q')
[ 5099, 760, 424 ]
def METHOD_NAME(self, app, **kwargs): self.actions.append(("create", app.app_name, kwargs.copy())) # Remove arguments consumed by the underlying call to create_app() kwargs.pop("test_mode", None) return full_options({"create_state": app.app_name}, kwargs)
[ 129, 462 ]
def METHOD_NAME(): with pytest.raises(ValueError): Rotator(coord="CE", rot=[(0, 0, 90)])
[ 9, 11740, 362, 44 ]
def METHOD_NAME(): # parse args and config parser = argparse.ArgumentParser(description="Synthesize with JETS") # model parser.add_argument( '--config', type=str, default=None, help='Config of JETS.') parser.add_argument( '--ckpt', type=str, default=None, help='Checkpoint file of JETS.') parser.add_argument( "--phones_dict", type=str, default=None, help="phone vocabulary file.") parser.add_argument( "--speaker_dict", type=str, default=None, help="speaker id map file.") parser.add_argument( "--voice-cloning", type=str2bool, default=False, help="whether training voice cloning model.") # other parser.add_argument( "--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.") parser.add_argument("--test_metadata", type=str, help="test metadata.") parser.add_argument("--output_dir", type=str, help="output dir.") args = parser.METHOD_NAME() return args
[ 214, 335 ]
def METHOD_NAME(self): self.set_http_response(status_code=200) response = self.ec2.get_all_instance_types() self.assertEqual(len(response), 18) instance_type = response[0] self.assertEqual(instance_type.name, 'm1.small') self.assertEqual(instance_type.cores, '1') self.assertEqual(instance_type.disk, '5') self.assertEqual(instance_type.memory, '256') instance_type = response[17] self.assertEqual(instance_type.name, 'hs1.8xlarge') self.assertEqual(instance_type.cores, '48') self.assertEqual(instance_type.disk, '24000') self.assertEqual(instance_type.memory, '119808')
[ 9, 19, 89, 119 ]
def METHOD_NAME(): """Parse command line arguments.""" parser = argparse.ArgumentParser( description=""" Check for new lines in diff that introduce trailing whitespace or tab characters instead of spaces in unstaged changes, the previous n commits, or a commit-range. """, epilog=f""" You can manually set the commit-range with the COMMIT_RANGE environment variable (e.g. "COMMIT_RANGE='47ba2c3...ee50c9e' {sys.argv[0]}"). Defaults to current merge base when neither prev-commits nor the environment variable is set. """) parser.add_argument("--prev-commits", "-p", required=False, help="The previous n commits to check") return parser.METHOD_NAME()
[ 214, 335 ]
def METHOD_NAME(n_jobs, monkeypatch): """Try building all the dependency graph, without the actual build operations""" class MockPackage(buildall.Package): def build(self, args: Any) -> None: raise ValueError("Failed build") monkeypatch.setattr(buildall, "Package", MockPackage) pkg_map = buildall.generate_dependency_graph(RECIPE_DIR, {"pkg_1"}) with pytest.raises(ValueError, match="Failed build"): buildall.build_from_graph( pkg_map, BuildArgs(), n_jobs=n_jobs, force_rebuild=True )
[ 9, 56, 168 ]
def METHOD_NAME(cls, *args, **kwargs): if cls._args_schema is not None: return cls._args_schema cls._args_schema = super().METHOD_NAME(*args, **kwargs) # define Arg Group "" _args_schema = cls._args_schema _args_schema.resource_group = AAZResourceGroupNameArg( required=True, ) _args_schema.table_name = AAZStrArg( options=["-n", "--name", "--table-name"], help="The name of the table.", required=True, id_part="child_name_1", ) _args_schema.workspace_name = AAZStrArg( options=["--workspace-name"], help="The name of the workspace.", required=True, id_part="name", fmt=AAZStrArgFormat( pattern="^[A-Za-z0-9][A-Za-z0-9-]+[A-Za-z0-9]$", max_length=63, min_length=4, ), ) return cls._args_schema
[ 56, 134, 135 ]
def METHOD_NAME(self, spec, prefix): corge_cc = """#include <iostream>
[ 428 ]
def METHOD_NAME(self, request: HttpRequest, **kwargs: Any) -> HttpResponse: """Runs the network request through the client's chained policies. >>> from azure.core.rest import HttpRequest >>> request = HttpRequest("GET", "https://www.example.org/") <HttpRequest [GET], url: 'https://www.example.org/'> >>> response = client._send_request(request) <HttpResponse: 200 OK> For more information on this code flow, see https://aka.ms/azsdk/dpcodegen/python/send_request :param request: The network request you want to make. Required. :type request: ~azure.core.rest.HttpRequest :keyword bool stream: Whether the response payload will be streamed. Defaults to False. :return: The response of your network call. Does not do error handling on your response. :rtype: ~azure.core.rest.HttpResponse """ request_copy = deepcopy(request) request_copy.url = self._client.format_url(request_copy.url) return self._client.send_request(request_copy, **kwargs)
[ 353, 377 ]
def METHOD_NAME(solc_version_string: str) -> str: solc_version_match = re.search(SOLC_FULL_VERSION_REGEX, solc_version_string) if solc_version_match is None: raise RuntimeError(f"Solc version could not be found in: {solc_version_string}.") return solc_version_match.group(1)
[ 214, -1, 281 ]
def METHOD_NAME(self): m = Memory(width=8, depth=4) self.assertEqual(m.width, 8) self.assertEqual(m.depth, 4)
[ 9, 1525 ]
def METHOD_NAME(Lmax,m,s,cos_theta,**kwargs): """ Gives spin-wieghted spherical harmonic functions on the Gauss quaduature grid. Returns an array with shape = ( Lmax - Lmin(m,s) + 1, len(z) ) or (Lmax - Lmin(m,s) + 1,) if z is a single point. Parameters ---------- Lmax: int >=0; spherical-harmonic degree. m,s : int spherical harmonic parameters. cos_theta: np.ndarray or float. dtype: output dtype. internal dtype = 'longdouble'. """ n,a,b = spin2Jacobi(Lmax,m,s) init = np.exp(0.5*Jacobi.measure(a,b,cos_theta,log=True)) init *= ((-1.)**max(m,-s)) return Jacobi.polynomials(n,a,b,cos_theta,init,**kwargs)
[ 6998 ]
def METHOD_NAME(self): # tuple iterator (like dict.items()) for item in self.REGISTRY.getBuiltins(): self.assertIsInstance(item, tuple) self.assertEqual(len(item), 2) self.assertIsInstance(item[0], STRING_TYPES) self.assertIsInstance(item[1], STRING_TYPES) # tuple unpacking support for style, desc in self.REGISTRY.getBuiltins(): # __getitem__ has correct result self.assertEqual(self.REGISTRY[style], desc) self.assertIsInstance(style, STRING_TYPES) self.assertIsInstance(desc, STRING_TYPES) # Test iterator instance iterator = self.REGISTRY.getBuiltins() self.assertIsInstance(iterator, Iterable) # Iterator size is available self.assertEqual(len(iterator), len(self.REGISTRY)) # Iterator supports range-based loop and indexing values = list(iterator) for i in range(len(iterator)): # Item at index matches list result self.assertEqual(iterator[i], values[i]) self.assertIsInstance(iterator[i], tuple) self.assertEqual(len(iterator[i]), 2) self.assertIsInstance(iterator[i][0], STRING_TYPES) self.assertIsInstance(iterator[i][1], STRING_TYPES)
[ 9, 19, 4298 ]
def METHOD_NAME(testrepo): blame = testrepo.blame(PATH) assert len(blame) == 3 for i, hunk in enumerate(blame): assert hunk.lines_in_hunk == 1 assert HUNKS[i][0] == hunk.final_commit_id assert HUNKS[i][1] == hunk.final_start_line_number assert HUNKS[i][2] == hunk.final_committer assert HUNKS[i][0] == hunk.orig_commit_id assert hunk.orig_path == PATH assert HUNKS[i][1] == hunk.orig_start_line_number assert HUNKS[i][2] == hunk.orig_committer assert HUNKS[i][3] == hunk.boundary
[ 9, 4016, 724 ]
def METHOD_NAME(self): self.coefficient_drag_area = self.drag_coeffiecient * ( (0.0293 * math.pow(self.height, 0.725)) * (math.pow(self.weight, 0.425)) + 0.0604 )
[ 86, -1 ]
def METHOD_NAME(self, frame): try: return self._material_ids.index(frame) except ValueError: raise KeyError(f"material id {frame} not among results!") from None
[ 711, 896 ]
def METHOD_NAME(obj): try: obj < obj return obj except TypeError: return repr(obj)
[ 93, 12751 ]
def METHOD_NAME(data): if len(data) == 0: return _data = {} for key, value in data.items(): _data[key] = pd.read_csv(StringIO(value)) merged_df = pd.concat([df.assign(key=key) for key, df in _data.items()]) col = merged_df.pop("key") if "Unnamed: 0" in merged_df.columns: merged_df.drop("Unnamed: 0", axis=1, inplace=True) merged_df.insert(0, "System", col) print(merged_df.to_string(index=False, justify="left"))
[ 38, 410 ]
def METHOD_NAME(name): # we need to postfix the directory name with .c to trick Bazel into thinking this is a valid input # Related GH issue: https://github.com/bazelbuild/bazel/issues/10552 return name + ".c"
[ 19, 1190, 156 ]
def METHOD_NAME(self): with environ({"MAX_RUNS": "10", "DEQUEUE_INTERVAL": "7"}): with instance_for_test( overrides={ "run_coordinator": { "module": "dagster._core.run_coordinator", "class": "QueuedRunCoordinator", "config": { "max_concurrent_runs": { "env": "MAX_RUNS", }, "tag_concurrency_limits": [ { "key": "foo", "value": {"applyLimitPerUniqueValue": True}, "limit": 3, }, {"key": "backfill", "limit": 2}, ], "dequeue_interval_seconds": { "env": "DEQUEUE_INTERVAL", }, }, } } ) as _: pass
[ 9, 200, 2768, 99 ]
def METHOD_NAME(self) -> None: sorted_tiles = visualization_registry.Registry.get_visualization_class( 'SortedTiles') option_names = { 'header': 'Pretty Tiles!', 'use_percentages': 'invalid_value' } sorted_tiles_instance = sorted_tiles( 'AnswerFrequencies', option_names, True) with self.assertRaisesRegex( Exception, 'Expected bool, received invalid_value'): sorted_tiles_instance.validate()
[ 9, 5721, 2, 41, 532, 1335, 99 ]
def METHOD_NAME(): underlying_future = cf.Future() wrapper_future = FluxFutureWrapper() wrapper_future._flux_future = underlying_future underlying_future.add_done_callback( lambda fut: _complete_future(".fluxexecutortest.txt", wrapper_future, fut) ) underlying_future.set_exception(ValueError()) assert wrapper_future.done() assert isinstance(wrapper_future.exception(), ValueError)
[ 9, 3637, 1076, 2158, 442 ]
def METHOD_NAME(local_seed): np.random.seed(local_seed) upstream_gradients = self._randomDataOp(output_shape, dtypes.float32) with backprop.GradientTape(persistent=True) as tape: tape.watch(input_image) output_image = image_ops.resize_bilinear( input_image, output_shape[1:3], align_corners=align_corners, half_pixel_centers=half_pixel_centers) gradient_injector_output = output_image * upstream_gradients return tape.gradient(gradient_injector_output, input_image)
[ 1128, 2488, 1784 ]
def METHOD_NAME(monkeypatch): query = "What is the Earth?" monkeypatch.setattr('builtins.input', lambda _: query) from src.gen import main all_generations = main(base_model='h2oai/h2ogpt-oig-oasst1-512-6_9b', cli=True, cli_loop=False, score_model='None') assert len(all_generations) == 1 assert "The Earth is a planet in the Solar System" in all_generations[0] or \ "The Earth is the third planet" in all_generations[0]
[ 9, 615, -1 ]
def METHOD_NAME(self): self.create_resolver(data.sepasswd_resolver)
[ 9, 1509, 8052, 1836, 581 ]
def METHOD_NAME(self, content): if len(content) == 0: print "Result is empty" sys.exit(1) xmldoc = parseString(content) itemlist = xmldoc.getElementsByTagName('aa') if itemlist.length <= 0: print "Result is empty" sys.exit(1) for item in itemlist: print "PDB_SITE" + ':' + item.getAttribute("pos") + item.getAttribute("aa") + ';'
[ 214, 146 ]
def METHOD_NAME(url_root): """ Show documentation about campaignListRetrieve (No CDN) """ required_query_parameter_list = [ { 'name': 'voter_device_id', 'value': 'string', # boolean, integer, long, string 'description': 'An 88 character unique identifier linked to a voter record on the server', }, { 'name': 'api_key', 'value': 'string (from post, cookie, or get (in that order))', # boolean, integer, long, string 'description': 'The unique key provided to any organization using the WeVoteServer APIs', }, ] optional_query_parameter_list = [ ] potential_status_codes_list = [ { 'code': 'VALID_VOTER_DEVICE_ID_MISSING', 'description': 'Cannot proceed. A valid voter_device_id parameter was not included.', }, { 'code': 'VALID_VOTER_ID_MISSING', 'description': 'Cannot proceed. A valid voter_id was not found.', }, ] try_now_link_variables_dict = { # 'campaignx_we_vote_id': 'wv85org1', } api_response = '{\n' \ ' "status": string,\n' \ ' "success": boolean,\n' \ ' "campaignx_list": list\n' \ ' [\n' \ ' "campaign_description": string,\n' \ ' "campaign_title": string,\n' \ ' "campaignx_we_vote_id": string,\n' \ ' "final_election_date_as_integer": integer,\n' \ ' "final_election_date_in_past": boolean,\n' \ ' "in_draft_mode": boolean,\n' \ ' "is_blocked_by_we_vote": boolean,\n' \ ' "is_blocked_by_we_vote_reason": string,\n' \ ' "is_supporters_count_minimum_exceeded": boolean,\n' \ ' "seo_friendly_path": string,\n' \ ' "supporters_count": integer,\n' \ ' "supporters_count_next_goal": integer,\n' \ ' "supporters_count_victory_goal": integer,\n' \ ' "visible_on_this_site": boolean,\n' \ ' "voter_can_send_updates_to_campaignx": boolean,\n' \ ' "voter_is_campaignx_owner": boolean,\n' \ ' "voter_signed_in_with_email": boolean,\n' \ ' "voter_we_vote_id": string,\n' \ ' "we_vote_hosted_campaign_photo_large_url": string,\n' \ ' "we_vote_hosted_campaign_photo_medium_url": string,\n' \ ' "we_vote_hosted_campaign_photo_small_url": string,\n' \ ' "campaignx_owner_list": list\n' \ ' [\n' \ ' "feature_this_profile_image": boolean,\n' \ ' "organization_name": string,\n' \ ' "organization_we_vote_id": string,\n' \ ' "we_vote_hosted_profile_image_url_medium": string,\n' \ ' "we_vote_hosted_profile_image_url_tiny": string,\n' \ ' "visible_to_public": boolean,\n' \ ' ],\n' \ ' "campaignx_politician_list": list\n' \ ' [\n' \ ' "campaignx_politician_id": integer,\n' \ ' "politician_name": string,\n' \ ' "politician_we_vote_id": string,\n' \ ' "state_code": string,\n' \ ' "we_vote_hosted_profile_image_url_large": string,\n' \ ' "we_vote_hosted_profile_image_url_medium": string,\n' \ ' "we_vote_hosted_profile_image_url_tiny": string,\n' \ ' ],\n' \ ' "campaignx_politician_list_exists": boolean,\n' \ ' "campaignx_politician_starter_list": list\n' \ ' [\n' \ ' "value": string,\n' \ ' "label": string,\n' \ ' ],\n' \ ' "seo_friendly_path_list": list\n' \ ' [],\n' \ ' ],\n' \ ' "campaign_list_found": boolean,\n' \ ' "promoted_campaignx_list_returned": boolean,\n' \ ' "promoted_campaignx_we_vote_ids": list [],\n' \ ' "voter_campaignx_supporter": {\n' \ ' "id": integer,\n' \ ' "campaign_supported": boolean,\n' \ ' "campaignx_we_vote_id": string,\n' \ ' "chip_in_total": string,\n' \ ' "date_last_changed": string,\n' \ ' "date_supported": string,\n' \ ' "organization_we_vote_id": string,\n' \ ' "supporter_endorsement": string,\n' \ ' "supporter_name": string,\n' \ ' "visible_to_public": boolean,\n' \ ' "voter_signed_in_with_email": boolean,\n' \ ' "voter_we_vote_id": string,\n' \ ' "we_vote_hosted_profile_image_url_tiny": string,\n' \ ' },\n' \ ' "voter_can_send_updates_campaignx_we_vote_ids": list [],\n' \ ' "voter_can_vote_for_politicians_list_returned": boolean,\n' \ ' "voter_can_vote_for_politician_we_vote_ids": list [],\n' \ ' "voter_owned_campaignx_list_returned": boolean,\n' \ ' "voter_owned_campaignx_we_vote_ids": list [],\n' \ ' "voter_started_campaignx_list_returned": boolean,\n' \ ' "voter_started_campaignx_we_vote_ids": list [],\n' \ ' "voter_supported_campaignx_list_returned": boolean,\n' \ ' "voter_supported_campaignx_we_vote_ids": list [],\n' \ '}' template_values = { 'api_name': 'campaignListRetrieve', 'api_slug': 'campaignListRetrieve', 'api_introduction': "", 'try_now_link': 'apis_v1:campaignListRetrieveView', 'try_now_link_variables_dict': try_now_link_variables_dict, 'url_root': url_root, 'get_or_post': 'GET', 'required_query_parameter_list': required_query_parameter_list, 'optional_query_parameter_list': optional_query_parameter_list, 'api_response': api_response, 'api_response_notes': "", 'potential_status_codes_list': potential_status_codes_list, } return template_values
[ 8852, 245, 404, 366, 671, 199 ]
def METHOD_NAME(progress): """When an event of compilation completes, this function will be called, and will update the progress bar indication. Args: progress: Number of tasks completed """ self.update(progress)
[ 86, 3064, 681 ]
def METHOD_NAME(self, repo, actor=None): pass
[ 34, 1230 ]
def METHOD_NAME(router, source, group, local, rp, spt_setup): "Expect MSDP SA." logger.info("waiting MSDP SA on router {}".format(router)) test_func = partial( topotest.router_json_cmp, tgen.gears[router], "show ip msdp sa json", {group: {source: {"local": local, "rp": rp, "sptSetup": spt_setup}}}, ) _, result = topotest.run_and_expect(test_func, None, count=30, wait=1) assertmsg = '"{}" MSDP SA failure'.format(router) assert result is None, assertmsg
[ 1297, 12391, 160 ]
def METHOD_NAME(*args, **kwargs): if args[3] in ["train", "test", "valid", "test_1", "test_2"]: data_path = args1.joinpath(f"rnn_input_{args[3]}.pkl") kwargs['data_path'] = data_path if args2: dataset = torch.load(data_path) return dataset return func(*args, **kwargs)
[ 291 ]
def METHOD_NAME(self, pattern, name=None): name = name or pattern return CombinedTagStat(pattern, name, self.get_doc(name), self.get_links(name))
[ 19, 1832, 1813 ]
def METHOD_NAME(self, size=None): X_train_new = self.featureTransform(self.X_train, self.shapelets) model = LogisticRegression(support_size=size) model.fit(X_train_new, self.y_train) self.index = np.nonzero(model.coef_)[0] X_test_new = self.featureTransform( self.X_test, self.shapelets, self.index) y_pred = model.predict(X_test_new) return y_pred
[ 90, 2103 ]
def METHOD_NAME(self) -> float: """The energy of the entry.""" raise NotImplementedError
[ 5121 ]
def METHOD_NAME(): plugin = PythonPlugin(part_name="my-part", options=lambda: None) assert plugin.get_build_packages() == {"findutils", "python3-venv", "python3-dev"}
[ 9, 19, 56, 2975 ]
def METHOD_NAME(self): cwd = os.getcwd() pack_path = os.path.join(cwd, 'exported_withTar') os.makedirs(name=pack_path) tar_arch = self.arch_dir_comp + '.tar.gz' pack_path_comp = os.path.join(pack_path, tar_arch) pack_path_csv = os.path.join(pack_path, 'export.csv') self.pr.pack(destination_path=pack_path_comp, csv_file_name=pack_path_csv, compress=True) pr = self.pr.open("nested2") pr_imp = pr.open("imported2") pr_imp.unpack(origin_path=pack_path_comp, csv_file_name=pack_path_csv, compress=True) # here the 7 is the length of '.tar.gz' string extract_archive(pack_path_comp[:-7]) compare_obj = dircmp(pack_path_comp[:-7], pr_imp.path) self.assertEqual(len(compare_obj.diff_files), 0) pr.remove(enable=True) try: rmtree(pack_path) except Exception as err_msg: print(f"deleting unsuccessful: {err_msg}")
[ 9, 512, 41, -1, 2916 ]
def METHOD_NAME(self): return len(self.w)
[ 799 ]
def METHOD_NAME(colorer, s, i): return colorer.match_plain_seq(s, i, kind="comment3", seq="--")
[ 397, 14909 ]