text
stringlengths
15
7.82k
ids
listlengths
1
7
def METHOD_NAME(model_id): subprocess.Popen("heroku apps:destroy %s --confirm %s" % (model_id, model_id))
[ 2656 ]
def METHOD_NAME(self): # @TODO support eval here expressions = { # Unpacking non-sequence 'a, *b = 7': (TypeError, 'cannot unpack non-iterable int object'), # Unpacking sequence too short 'a, *b, c, d, e = range(3)': (ValueError, 'not enough values to unpack (expected at least 4, got 3)'), # Unpacking sequence too short and target appears last 'a, b, c, d, *e = range(3)' : (ValueError, 'not enough values to unpack (expected at least 4, got 3)'), # Unpacking a sequence where the test for too long raises a different kind of error 'a, *b, c, d, e = BadSeq()' : (BozoError, ''), # general tests all fail 'a, *b, c, *d, e = range(10)' : (SyntaxError, 'multiple starred expressions in assignment'), '[*b, *c] = range(10)': (SyntaxError, 'multiple starred expressions in assignment'), 'a,*b,*c,*d = range(4)': (SyntaxError, 'multiple starred expressions in assignment'), '*a = range(10)': (SyntaxError, 'starred assignment target must be in a list or tuple'), '*a' : (SyntaxError, 'can\'t use starred expression here'), '*1': (SyntaxError, 'can\'t use starred expression here'), 'x = *a': (SyntaxError, 'can\'t use starred expression here'), } jseval("Sk.retainGlobals = true") # use globals from this module # use this to test syntax errors and their respective mssages eval_alt = "Sk.importMainWithBody('test_unpack', false, '{0}', true)" for expr, (error, msg) in expressions.items(): try: jseval(eval_alt.format(expr)) except error as e: self.assertIn(msg, str(e)) else: self.fail(f'{error} not raised for {expr}') jseval("Sk.retainGlobals = false")
[ 9, 789, 216 ]
def METHOD_NAME(gridfile): """ Run grdview by passing in a grid and setting a perspective viewpoint with an azimuth from the SouthEast and an elevation angle 15 degrees from the z-plane. """ fig = Figure() fig.grdview(grid=gridfile, projection="Q15c+", perspective=[135, 15], frame=True) return fig
[ 9, 7052, 41, 6161 ]
METHOD_NAME(self, exit_on_release):
[ 0, 538, 69, 586 ]
def METHOD_NAME(cls, *args, **kwargs): if cls._args_schema is not None: return cls._args_schema cls._args_schema = super().METHOD_NAME(*args, **kwargs) # define Arg Group "" _args_schema = cls._args_schema _args_schema.link_name = AAZStrArg( options=["-n", "--name", "--link-name"], help="The name of the NSP link.", required=True, id_part="child_name_1", ) _args_schema.perimeter_name = AAZStrArg( options=["--perimeter-name"], help="The name of the network security perimeter.", required=True, id_part="name", ) _args_schema.resource_group = AAZResourceGroupNameArg( required=True, ) return cls._args_schema
[ 56, 134, 135 ]
def METHOD_NAME(env): cppdefines = env.get('CPPDEFINES', {}) if cppdefines is None: return {} if SCons.Util.is_Sequence(cppdefines): result = {} for c in cppdefines: if SCons.Util.is_Sequence(c): result[c[0]] = c[1] else: result[c] = None return result if not SCons.Util.is_Dict(cppdefines): return {cppdefines : None} return cppdefines
[ 16518, 16519 ]
def METHOD_NAME(self, tpc_phase, transaction_id, transaction): """ Undo a transaction identified by transaction_id. transaction_id is the base 64 encoding of an 8 byte tid. Undo by writing new data that reverses the action taken by the transaction. """ # This is called directly from code in DB.py on a new instance # (created either by new_instance() or a special # undo_instance()). That new instance is never asked to load # anything, or poll invalidations, so our storage cache is ineffective # (unless we had loaded persistent state files) # # TODO: Implement 'undo_instance' to make this clear. # # A regular Connection going through two-phase commit will # call tpc_begin(), do a bunch of store() from its commit(), # then tpc_vote(), tpc_finish(). # # During undo, we get a tpc_begin(), then a bunch of undo() from # ZODB.DB.TransactionalUndo.commit(), then tpc_vote() and tpc_finish(). tpc_phase.METHOD_NAME(transaction_id, transaction)
[ 2796 ]
def METHOD_NAME(cls, source): """Get record by online harvested source. :param source: the record source :return: Organisation record or None. """ results = OrganisationsSearch().filter( 'term', online_harvested_source=source).scan() try: return Organisation.get_record_by_pid(next(results).pid) except StopIteration: return None
[ 19, 148, 604, 6779, 15566, 1458 ]
def METHOD_NAME(resize_input=True, normalize_input=True): r"""InceptionV3 network for the evaluation of Inception Score (IS). Args: resize_input: whether or not to resize the input to (299, 299). normalize_input: whether or not to normalize the input from range (0, 1) to range(-1, 1). """ from artist.models import InceptionV3 return InceptionV3( output_blocks=(4, ), resize_input=resize_input, normalize_input=normalize_input, requires_grad=False, use_fid_inception=False).eval().requires_grad_(False)
[ 19, 137, 819 ]
def METHOD_NAME(self): db = ZODB.DB(self.storage) cn = db.open() rt = cn.root() # Create a bunch of objects; the Data.fs is about 100KB. for i in range(50): d = rt[i] = PersistentMapping() transaction.commit() for j in range(50): d[j] = "a" * j transaction.commit()
[ 3914 ]
def METHOD_NAME(logical=True): import psutil return psutil.cpu_count(logical=logical)
[ 19, 2265, 29, 10274 ]
def METHOD_NAME(self): values = list(self.statistic.values()) self.avg = np.average(values) self.std = np.std(values)
[ 1407, 1576, 11528, 1260 ]
def METHOD_NAME(df, col): """True if no duplicate values""" return ~df.duplicated(subset=[col]).any()
[ 654, 2968 ]
def METHOD_NAME(values): """Encodes values using 4 bits per sample, packing the result into bytes. """ b = encode_4bit_base(values).reshape(-1, 2) b <<= shift04 return b[:, 0] | b[:, 1]
[ 421, 16662 ]
def METHOD_NAME(self, include_optional): """Test V2beta1ListRunsResponse include_option is a boolean, when False only required params are included, when True both required and optional params are included """ # model = kfp_server_api.models.v2beta1_list_runs_response.V2beta1ListRunsResponse() # noqa: E501 if include_optional : return V2beta1ListRunsResponse( runs = [ kfp_server_api.models.v2beta1_run.v2beta1Run( experiment_id = '0', run_id = '0', display_name = '0', storage_state = 'STORAGE_STATE_UNSPECIFIED', description = '0', pipeline_version_id = '0', pipeline_spec = kfp_server_api.models.pipeline_spec.pipeline_spec(), pipeline_version_reference = kfp_server_api.models.v2beta1_pipeline_version_reference.v2beta1PipelineVersionReference( pipeline_id = '0', pipeline_version_id = '0', ), runtime_config = kfp_server_api.models.v2beta1_runtime_config.v2beta1RuntimeConfig( parameters = { 'key' : None }, pipeline_root = '0', ), service_account = '0', created_at = datetime.datetime.strptime('2013-10-20 19:20:30.00', '%Y-%m-%d %H:%M:%S.%f'), scheduled_at = datetime.datetime.strptime('2013-10-20 19:20:30.00', '%Y-%m-%d %H:%M:%S.%f'), finished_at = datetime.datetime.strptime('2013-10-20 19:20:30.00', '%Y-%m-%d %H:%M:%S.%f'), state = 'RUNTIME_STATE_UNSPECIFIED', error = kfp_server_api.models.googlerpc_status.googlerpcStatus( code = 56, message = '0', details = [ kfp_server_api.models.protobuf_any.protobufAny( type_url = '0', value = 'YQ==', ) ], ), run_details = kfp_server_api.models.v2beta1_run_details.v2beta1RunDetails( pipeline_context_id = '0', pipeline_run_context_id = '0', task_details = [ kfp_server_api.models.v2beta1_pipeline_task_detail.v2beta1PipelineTaskDetail( run_id = '0', task_id = '0', display_name = '0', create_time = datetime.datetime.strptime('2013-10-20 19:20:30.00', '%Y-%m-%d %H:%M:%S.%f'), start_time = datetime.datetime.strptime('2013-10-20 19:20:30.00', '%Y-%m-%d %H:%M:%S.%f'), end_time = datetime.datetime.strptime('2013-10-20 19:20:30.00', '%Y-%m-%d %H:%M:%S.%f'), executor_detail = kfp_server_api.models.v2beta1_pipeline_task_executor_detail.v2beta1PipelineTaskExecutorDetail( main_job = '0', pre_caching_check_job = '0', failed_main_jobs = [ '0' ], failed_pre_caching_check_jobs = [ '0' ], ), execution_id = '0', inputs = { 'key' : kfp_server_api.models.v2beta1_artifact_list.v2beta1ArtifactList( artifact_ids = [ '0' ], ) }, outputs = { 'key' : kfp_server_api.models.v2beta1_artifact_list.v2beta1ArtifactList() }, parent_task_id = '0', state_history = [ kfp_server_api.models.v2beta1_runtime_status.v2beta1RuntimeStatus( update_time = datetime.datetime.strptime('2013-10-20 19:20:30.00', '%Y-%m-%d %H:%M:%S.%f'), ) ], pod_name = '0', child_tasks = [ kfp_server_api.models.pipeline_task_detail_child_task.PipelineTaskDetailChildTask( task_id = '0', pod_name = '0', ) ], ) ], ), recurring_run_id = '0', state_history = [ kfp_server_api.models.v2beta1_runtime_status.v2beta1RuntimeStatus( update_time = datetime.datetime.strptime('2013-10-20 19:20:30.00', '%Y-%m-%d %H:%M:%S.%f'), ) ], ) ], total_size = 56, next_page_token = '0' ) else : return V2beta1ListRunsResponse( )
[ 93, 89 ]
def METHOD_NAME(argv): """Parse command line arguments""" parser = argparse.ArgumentParser(description="Set surface climatology fields.") parser.add_argument( "-p", "--path-to-defns", dest="path_to_defns", required=True, help="Path to var_defns file.", ) parser.add_argument('-d', '--debug', action='store_true', help='Script will be run in debug mode with more verbose output') return parser.METHOD_NAME(argv)
[ 214, 335 ]
def METHOD_NAME(severity, label, message): logger.warning( "severity: %s, label: %s, message: %s.", severity, label, message )
[ 339, 417 ]
def METHOD_NAME(email_address, sub_type, num_records=1): bounced_email = BouncedEmail.objects.create(email=email_address) for rec_num in range(0, num_records): PermanentBounceMeta.objects.create( bounced_email=bounced_email, timestamp=datetime.datetime.utcnow(), sub_type=sub_type, )
[ 129, 1377, 1094 ]
def METHOD_NAME(self, inputs): """Shallow Copy the inputs. The Variable copied is different from the original once, but the actual data and grad are different. """ inps_cp = [] for inp in inputs: i = inp.get_unlinked_variable(need_grad=inp.need_grad) inps_cp.append(i) return inps_cp
[ 215, 1461 ]
def METHOD_NAME( fp, proc_num, proc_index, index, header_row, offset, chunk_size, read_block_delimiter, writer, ): try: total_size = fp.size() except TypeError: total_size = fp.size part_size = (total_size - offset) // proc_num begin = part_size * proc_index + offset end = total_size if proc_index == proc_num - 1 else begin + part_size # See Note [Semantic of read_block with delimiter]. if index == 0 and proc_index == 0: begin -= int(header_row) first_chunk = True while begin < end: buffer = read_block( fp, begin, min(chunk_size, end - begin), delimiter=read_block_delimiter, ) if first_chunk: # strip the UTF-8 BOM if buffer[0:3] == b'\xef\xbb\xbf': buffer = buffer[3:] first_chunk = False size = len(buffer) if size <= 0: break begin += size if size > 0: chunk = writer.next(size) vineyard.memory_copy(chunk, 0, buffer)
[ 203, 1544, 37 ]
def METHOD_NAME(pair): """ Returns True if a depends on b. """ a, b = pair return any(bout in a.inputs for bout in b.outputs) or any( METHOD_NAME((ainp.owner, b)) for ainp in a.inputs if ainp.owner )
[ 5253 ]
def METHOD_NAME(d, config, rename_keys_prefix=rename_keys_prefix): new_d = OrderedDict() new_d["visual_bert.embeddings.position_ids"] = torch.arange(config.max_position_embeddings).expand((1, -1)) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue new_key = key for name_pair in rename_keys_prefix: new_key = new_key.replace(name_pair[0], name_pair[1]) new_d[new_key] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately new_d["cls.predictions.decoder.bias"] = new_d["cls.predictions.bias"] return new_d
[ 19, 80, 553 ]
def METHOD_NAME(self): url = 'https://kinozal.tv/details.php?id=1496310' expected = KinozalDateParser.tz_moscow.localize(datetime(2017, 1, 20, 1, 30)).astimezone(pytz.utc) server_now = datetime(2017, 1, 20, 12, 0, 0, tzinfo=pytz.utc) MockDatetime.mock_now = server_now with patch('monitorrent.plugins.trackers.kinozal.datetime.datetime', MockDatetime): assert self.tracker.get_last_torrent_update(url) == expected
[ 9, 19, 679, 3564, 86, 43, 3758 ]
def METHOD_NAME(account_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableListAccountKeysResult: """ Get the keys to use with the Maps APIs. A key is used to authenticate and authorize access to the Maps REST APIs. Only one key is needed at a time; two are given to provide seamless key regeneration. :param str account_name: The name of the Maps Account. :param str resource_group_name: The name of the Azure Resource Group. """ __args__ = dict() __args__['accountName'] = account_name __args__['resourceGroupName'] = resource_group_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure-native:maps/v20180501:listAccountKeys', __args__, opts=opts, typ=ListAccountKeysResult).value return AwaitableListAccountKeysResult( id=pulumi.get(__ret__, 'id'), primary_key=pulumi.get(__ret__, 'primary_key'), secondary_key=pulumi.get(__ret__, 'secondary_key'))
[ 245, 598, 219 ]
def METHOD_NAME(self): test_edge = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2]) t1 = np.all(self.mesh2.edge_lengths == test_edge) self.assertTrue(t1)
[ 9, 540, 988, 227 ]
def METHOD_NAME(): return datetime.utcnow()
[ 4607 ]
def METHOD_NAME(self) -> str: """ The name of the resource """ return pulumi.get(self, "name")
[ 156 ]
def METHOD_NAME(ctx, param, value): """Print version information.""" if not value or ctx.resilient_parsing: return v = packaging.version.Version(molecule.__version__) color = "bright_yellow" if v.is_prerelease else "green" msg = f"molecule [{color}]{v}[/] using python [repr.number]{sys.version_info[0]}.{sys.version_info[1]}[/] \n" msg += f" [repr.attrib_name]ansible[/][dim]:[/][repr.number]{app.runtime.version}[/]" for driver in drivers(): msg += f"\n [repr.attrib_name]{driver!s}[/][dim]:[/][repr.number]{driver.version}[/][dim] from {driver.module}" if driver.required_collections: msg += " requiring collections:" for name, version in driver.required_collections.items(): msg += f" [repr.attrib_name]{name}[/]>=[repr.number]{version}[/]" msg += "[/]" console.print(msg, highlight=False) ctx.exit()
[ 38, 281 ]
def METHOD_NAME(self, input: Any) -> Any: pass
[ 90, 1542 ]
def METHOD_NAME(): """Main method.""" # Set the values of the client ID, tenant ID, and client secret of the AAD application as # environment variables: # AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET, CONFIDENTIALLEDGER_ENDPOINT try: ledger_endpoint = os.environ["CONFIDENTIALLEDGER_ENDPOINT"] except KeyError: LOG.error( "Missing environment variable 'CONFIDENTIALLEDGER_ENDPOINT' - " "please set it before running the example" ) sys.exit(1) # Under the current URI format, the ledger id is the first part of the ledger endpoint. # i.e. https://<ledger id>.confidential-ledger.azure.com ledger_id = ledger_endpoint.replace("https://", "").split(".")[0] identity_service_client = ConfidentialLedgerCertificateClient() # type: ignore[call-arg] ledger_certificate = identity_service_client.get_ledger_identity(ledger_id) # The Confidential Ledger's TLS certificate must be written to a file to be used by the # ConfidentialLedgerClient. Here, we write it to a temporary file so that is is cleaned up # automatically when the program exits. with tempfile.TemporaryDirectory() as tempdir: ledger_cert_file = os.path.join(tempdir, f"{ledger_id}.pem") with open(ledger_cert_file, "w") as outfile: outfile.write(ledger_certificate["ledgerTlsCertificate"]) print( f"Ledger certificate has been written to {ledger_cert_file}. " "It will be deleted when the script completes." ) # Build a client through AAD ledger_client = ConfidentialLedgerClient( ledger_endpoint, credential=DefaultAzureCredential(), ledger_certificate_path=ledger_cert_file, ) # Write a ledger entry and wait for the transaction to be committed. try: entry_contents = "Hello world!" post_poller = ledger_client.begin_create_ledger_entry( # type: ignore[attr-defined] {"contents": entry_contents} ) post_entry_result = post_poller.result() transaction_id = post_entry_result["transactionId"] print( f"Wrote '{entry_contents}' to the ledger at transaction {transaction_id}." ) except HttpResponseError as e: if e.response != None: print("Request failed: {}".format(e.response.json())) # type: ignore[union-attr] else: print("No response found") raise # Get a receipt for a ledger entry. # A receipt can be retrieved for any transaction id to provide cryptographic proof of the # contents of the transaction. try: print( f"Retrieving a receipt for {transaction_id}. The receipt may be used to " "cryptographically verify the contents of the transaction." ) print( "For more information about receipts, please see " "https://microsoft.github.io/CCF/main/audit/receipts.html#receipts" ) get_receipt_poller = ledger_client.begin_get_receipt(transaction_id) # type: ignore[attr-defined] get_receipt_result = get_receipt_poller.result() print(f"Receipt for transaction id {transaction_id}: {get_receipt_result}") except HttpResponseError as e: if e.response != None: print("Request failed: {}".format(e.response.json())) # type: ignore[union-attr] else: print("No response found") raise # Read content of service certificate file saved in previous step. with open(ledger_cert_file, "r") as service_cert_file: service_cert_content = service_cert_file.read() # Optionally read application claims, if any application_claims = get_receipt_result.get("applicationClaims", None) try: # Verify the contents of the receipt. verify_receipt( get_receipt_result["receipt"], service_cert_content, application_claims=application_claims, ) print(f"Receipt for transaction id {transaction_id} successfully verified") except ValueError: print(f"Receipt verification for transaction id {transaction_id} failed") raise
[ 57 ]
def METHOD_NAME(self, routerName: str) -> BgpLookingGlassServer: """! @brief add looking glass node on the router identified by given name. @param routerName name of the router @returns self, for chaining API calls. """ self.__routers.add(routerName) return self return self
[ 645 ]
def METHOD_NAME(self, path, qref): self.qrefs[path] = qref
[ 372, -1 ]
def METHOD_NAME(self): index = self.start_index while index < self.blob_end: yield index index += self.chunk_size
[ 19, 464, 2964 ]
def METHOD_NAME(self): if self.tb_writer is not None: self.tb_writer.close()
[ 1843 ]
def METHOD_NAME(*, session: "Session"): """ Make a snapshot of current counters :param session: Database session in use. """ select_counters_stmt = select( models.AccountUsage.rse_id, models.AccountUsage.account, models.AccountUsage.files, models.AccountUsage.bytes, literal(datetime.datetime.utcnow()), ) stmt = insert( models.AccountUsageHistory ).from_select( ['rse_id', 'account', 'files', 'bytes', 'updated_at'], select_counters_stmt ) session.execute(stmt)
[ 1917, 598, 2469, 351, 410 ]
def METHOD_NAME(self): # Verify that decode() will refuse to overwrite an existing file f = None try: f = io.BytesIO(encodedtextwrapped(0o644, self.tmpout)) f = open(self.tmpin, 'rb') uu.decode(f) f.close() f = open(self.tmpin, 'rb') self.assertRaises(uu.Error, uu.decode, f) f.close() finally: self._kill(f)
[ 9, 5510 ]
def METHOD_NAME(self, key_event): ret = super(PyDMDateTimeEdit, self).METHOD_NAME(key_event) if key_event.key() in [QtCore.Qt.Key_Return, QtCore.Qt.Key_Enter]: self.returnPressed.emit() return ret
[ 59, 2971, 417 ]
def METHOD_NAME(caplog): class T(m.Product): x = m.Bit y = m.Bit class U(m.Product): x = T y = T class Foo(m.Circuit): io = m.IO(A=m.Out(U), B=m.In(T), C=m.Out(m.Bit)) io.A.x @= io.B io.C @= 0 with pytest.raises(Exception) as e: m.compile("build/Foo", Foo) assert caplog.messages[0] == "Foo.A not driven" assert caplog.messages[1] == "Foo.A" assert caplog.messages[2] == " Foo.A.x: Connected" assert caplog.messages[3] == " Foo.A.y: Unconnected"
[ 9, 1188, 2351, 612, 5955 ]
def METHOD_NAME(filename): print(f'checking if {filename} exists') if filename == valid: return True return False
[ 921 ]
def METHOD_NAME(node): """ instead this could be composed of multiple calls to 'get_indices_from_groupnum' function """ socket_index = 1 vis_dict = {} vis_dict[0] = True # selector always visible, first socket for group_index in range(node.max_groups): vis_dict[socket_index] = group_index < node.num_visible_groups socket_index += 1 for set_item in range(node.max_items_per_group): vis_dict[socket_index] = (group_index < node.num_visible_groups and set_item < node.num_items_per_group) socket_index += 1 # g = "".join(["01"[k] for k in node.values()]) # print(g) return vis_dict
[ 19, 1894, 3800, 427, 673, 2999 ]
def METHOD_NAME(self): from stig.client.ttypes import TorrentFilePriority self.check_filter(FileFilter, filter_names=('priority', 'prio'), items=({'id': 1, 'priority': TorrentFilePriority(-2)}, # off {'id': 2, 'priority': TorrentFilePriority(-1)}, # low {'id': 3, 'priority': TorrentFilePriority(0)}, # normal {'id': 4, 'priority': TorrentFilePriority(1)}), # high test_cases=(('{name}', (1, 2, 4)), ('!{name}', (3,)), ('{name}=low', (2,)), ('{name}<low', (1,)), ('{name}<=low', (1, 2)), ('{name}>low', (3, 4)), ('{name}>=low', (2, 3, 4))))
[ 9, 2654 ]
def METHOD_NAME(field, value): return get_default_field_value(field, value)
[ 89, 4560, 15699 ]
async def METHOD_NAME(self, *tileables, **kwargs): extra_config = kwargs.pop("extra_config", dict()) if kwargs: unexpected_keys = ", ".join(list(kwargs.keys())) raise TypeError(f"`fetch` got unexpected arguments: {unexpected_keys}") self._check_options = self._extract_check_options(extra_config) results = await super().METHOD_NAME(*tileables) return results
[ 1047 ]
def METHOD_NAME(code, otherdata): logger.info('#' * 75) logger.info('Actual Rule: %s', code) inputstream = InputStream(code) lexer = comparatorLexer(inputstream) stream = CommonTokenStream(lexer) parser = comparatorParser(stream) tree = parser.expression() print('#' * 50) print(tree.toStringTree(recog=parser)) children = [] for child in tree.getChildren(): children.append((child.getText())) logger.info('*' * 50) logger.debug("All the parsed tokens: %s", children) r_i = RuleInterpreter(children, **otherdata) print(r_i.compare())
[ 57, 2403 ]
def METHOD_NAME(duthosts, rand_one_dut_hostname): """ Setup/teardown fixture for ntp server config Args: duthosts: list of DUTs. rand_selected_dut: The fixture returns a randomly selected DuT. """ duthost = duthosts[rand_one_dut_hostname] create_checkpoint(duthost) init_ntp_servers = running_ntp_servers(duthost) yield try: logger.info("Rolled back to original checkpoint") rollback_or_reload(duthost) cur_ntp_servers = running_ntp_servers(duthost) pytest_assert(cur_ntp_servers == init_ntp_servers, "ntp servers {} do not match {}.".format(cur_ntp_servers, init_ntp_servers)) finally: delete_checkpoint(duthost)
[ 102, 485 ]
def METHOD_NAME(handler: Handler): @functools.wraps(handler) async def wrapper(request: web.Request) -> web.StreamResponse: try: return await handler(request) except TagNotFoundError as exc: raise web.HTTPNotFound(reason=f"{exc}") from exc except TagOperationNotAllowed as exc: raise web.HTTPUnauthorized(reason=f"{exc}") from exc return wrapper
[ 276, 114, 504 ]
async def METHOD_NAME(producer): sequence_body = [b'message', 123.456, True] footer = {'footer_key': 'footer_value'} properties = {"subject": "sequence"} application_properties = {"body_type": "sequence"} sequence_message = AmqpAnnotatedMessage( sequence_body=sequence_body, footer=footer, properties=properties, application_properties=application_properties ) await producer.send_batch([sequence_message]) print("Message of sequence body sent.")
[ 353, 771, 277 ]
def METHOD_NAME(self): """Test with function calls""" CODE_FUNCTION_CALL = """
[ 9, 559, 128, 925 ]
def METHOD_NAME(self, locs): """Compute density field at locations. """ (npts, dim) = locs.shape METHOD_NAME = p_density * numpy.ones((1, npts, 1), dtype=numpy.float64) return METHOD_NAME
[ 2915 ]
def METHOD_NAME(self, bucket): self._buckets[bucket.name] = bucket.id_
[ 73, 2538 ]
def METHOD_NAME(self, comp): comp.set_solar_like(Z=0.02) molar = comp.get_molar() assert molar[Nucleus("he4")] == approx((0.3-0.02)/4.0)
[ 9, 19, 3851 ]
def METHOD_NAME(linter): linter.register_checker(RedundantAssignmentChecker(linter))
[ 372 ]
def METHOD_NAME(self, name: str) -> str: """Convert the given module name to safe snake case.""" return self.filters.METHOD_NAME(name)
[ 298, 156 ]
def METHOD_NAME(self, _manager: Manager, path: str) -> None: logging.info(f"Device removed {path}") for plugin in self.Plugins.get_loaded_plugins(AppletPlugin): plugin.METHOD_NAME(path)
[ 69, 398, 674 ]
def METHOD_NAME(buffers, g=None): """reconstruct an object serialized by serialize_object from data buffers. Parameters ---------- buffers : list of buffers/bytes g : globals to be used when uncanning Returns ------- (newobj, bufs) : unpacked object, and the list of remaining unused buffers. """ bufs = list(buffers) pobj = bufs.pop(0) canned = pickle.loads(pobj) # noqa if istype(canned, sequence_types) and len(canned) < MAX_ITEMS: for c in canned: _restore_buffers(c, bufs) newobj = uncan_sequence(canned, g) elif istype(canned, dict) and len(canned) < MAX_ITEMS: newobj = {} for k in sorted(canned): c = canned[k] _restore_buffers(c, bufs) newobj[k] = uncan(c, g) else: _restore_buffers(canned, bufs) newobj = uncan(canned, g) return newobj, bufs
[ 2696, 279 ]
def METHOD_NAME( cls: type[T], data: bytes, expected_identifier: int | None = None, ) -> T: """ Unpacks a series of packed bytes representing an application packet using :meth:`struct.Struct.unpack`, which produces the packet identifier and array of data. These values are then used to produce the new instance of the class. Args: data (bytes): The packed packet. expected_identifier (Optional[int]): The identifier that is expected to result from the packet. If ``None``, then the identifier is not verified. If this value is passed and the identifiers do not match, then the below error is thrown. Raises: ApplicationPacketWrongIdentifierException: If the ``expected_identifier`` does not match the identifier found in the packet, then this is raised. Returns: ApplicationPacket: The data represented as an application packet. """ payload_len = len(data) - 1 packet = cls(*struct.unpack(f"B{payload_len}s", data)) if expected_identifier is not None and expected_identifier != packet.identifier: raise ApplicationPacketWrongIdentifierException( packet.identifier, expected_identifier, ) return packet
[ 280, 321 ]
def METHOD_NAME(self): self.run_until_breakpoint("lookupObjMethod") try: s_func_vec = utils.Global("HPHP::Func::s_funcVec") except Exception: # lowptr builds don't have a funcVec return smart_ptr = utils.get(s_func_vec, "m_vals") self.assertEqual(utils.template_type(smart_ptr.type), "std::unique_ptr") raw_ptr = utils.rawptr(smart_ptr) self.assertEqual(utils.template_type(raw_ptr.type), "HPHP::detail::LowPtrImpl")
[ 9, 9315, 1396, 2768, 2980 ]
def METHOD_NAME(self): return getattr(self, "settings_build", self.settings)
[ 817, 56 ]
def METHOD_NAME(self): """Fulfill quest step A""" EvAdventureObject.create( key="quest obj", location=self.character, tags=(("QuestA", "quests"),) )
[ 9459, 385 ]
def METHOD_NAME(): url = f"{server_url}/api/v1/dataverses/sdsc-test-dataverse/contents" try: response = requests.get(url=url, headers=headers) except errors.RequestError: warnings.warn("Cannot clean up Dataverse datasets") return if response.status_code != 200: warnings.warn("Cannot clean up Dataverse datasets") return datasets = response.json().get("data", []) for dataset in datasets: id = dataset.get("id") if id is not None: url = f"https://demo.dataverse.org/api/v1/datasets/{id}" try: requests.delete(url=url, headers=headers) except errors.RequestError: pass
[ 188, 4146 ]
def METHOD_NAME(self, ip, data): try: if self._data[ip][-1][26] == data[26]: logging.warning("Skip this data item, duplicate of previous data item.") if self._data[ip][-1] != data: raise ValueError("Duplicate ID, but not duplicate data!") return # Every iCOM data item has an index, this check here is # making sure that the currently received data item is # incremented by exactly one compared to the most recently # received data item. if (self._data[ip][-1][26] + 1) % 256 != data[26]: raise ValueError("Data stream appears to be arriving out of order") self._data[ip].append(data) except KeyError: self._data[ip] = [data] timestamp = data[8:26].decode() shrunk_data, patient_id = extract.extract(data, "Patient ID") shrunk_data, patient_name = extract.extract(shrunk_data, "Patient Name") shrunk_data, machine_id = extract.extract(shrunk_data, "Machine ID") logging.info( # pylint: disable = logging-fstring-interpolation f"IP: {ip} | Timestamp: {timestamp} | " f"Patient ID: {patient_id} | " f"Patient Name: {patient_name} | Machine ID: {machine_id}" ) try: usage_start = self._usage_start[ip] except KeyError: usage_start = None if patient_id is not None: if usage_start is None: self._current_patient_data[ip] = [] timestamp = data[8:26].decode() iso_timestamp = f"{timestamp[0:10]}T{timestamp[10::]}" self._usage_start[ip] = iso_timestamp logging.debug( "Starting data collection for patient id %(patient_id)s. " "Recording started at %(usage_start)s.", {"usage_start": self._usage_start[ip], "patient_id": patient_id}, ) self._current_patient_data[ip].append(data) logging.debug( "iCOM stream appended to the data being collected for " "patient id %(patient_id)s.", {"patient_id": patient_id}, ) elif not usage_start is None: logging.debug( "Delivery that started at %(usage_start)s appears to " "have completed.", {"usage_start": usage_start}, ) save_patient_data( usage_start, self._current_patient_data[ip], self._output_dir ) self._current_patient_data[ip] = None self._usage_start[ip] = None else: logging.debug("No delivery is currently being recorded.")
[ 86, 365 ]
def METHOD_NAME(iToken, lTokens): for iIndex in range(iToken, len(lTokens)): if isinstance(lTokens[iIndex], parser.carriage_return): return iIndex return None
[ 416, 15824, 1413 ]
def METHOD_NAME(self, data, **kwargs): method = data["method"] method_callable = getattr( BeliefsDataFrame, method, None ) # what if the object which is applied to is not a BeliefsDataFrame... if not callable(method_callable): raise ValidationError( f"method {method} is not a valid BeliefsDataFrame method." ) method_signature = signature(method_callable) try: args = data.get("args", []).copy() _kwargs = data.get("kwargs", {}).copy() args.insert(0, BeliefsDataFrame) method_signature.bind(*args, **_kwargs) except TypeError: raise ValidationError( f"Bad arguments or keyword arguments for method {method}" )
[ 187, 103, 128 ]
def METHOD_NAME(e): obj = e.get_target() cont_a = lv.area_t() obj.get_coords(cont_a) #Add the faded area before the lines are drawn dsc = e.get_draw_part_dsc() if dsc.part == lv.PART.ITEMS: if not dsc.p1 or not dsc.p2: return # Add a line mask that keeps the area below the line line_mask_param = lv.draw_mask_line_param_t() line_mask_param.points_init(dsc.p1.x, dsc.p1.y, dsc.p2.x, dsc.p2.y, lv.DRAW_MASK_LINE_SIDE.BOTTOM) line_mask_id = lv.draw_mask_add(line_mask_param, None) #Draw a rectangle that will be affected by the mask draw_rect_dsc = lv.draw_rect_dsc_t() draw_rect_dsc.init() draw_rect_dsc.bg_opa = lv.OPA.COVER draw_rect_dsc.bg_color = dsc.line_dsc.color a = lv.area_t() a.x1 = dsc.p1.x a.x2 = dsc.p2.x a.y1 = min(dsc.p1.y, dsc.p2.y) a.y2 = cont_a.y2 - 13 # -13 cuts off where the rectangle draws over the chart margin. Without this an area of 0 doesn't look like 0 dsc.draw_ctx.rect(draw_rect_dsc, a) # Remove the mask lv.draw_mask_free_param(line_mask_param) lv.draw_mask_remove_id(line_mask_id)
[ 1100, 417, 905 ]
def METHOD_NAME(self): return { "list": InviteListSerializer, "retrieve": InviteListSerializer, "create": InviteSerializer, }.get(self.action, InviteListSerializer)
[ 19, 1386, 2 ]
def METHOD_NAME(self) -> None: net = BasicModel_MultiLayer() inp = torch.tensor([[3.0, 4.0, 0.0]], requires_grad=True) self._internal_influence_test_assert(net, net.relu, inp, [[1.0, 1.0, 1.0, 1.0]])
[ 9, 53, 3680, 2026, 1962 ]
def METHOD_NAME(): _fake_race_eth_data = [ ['ethnicity', 'race'], ['Hispanic/Latino', 'American Indian/Alaska Native'], ['Hispanic/Latino', 'Asian'], ['Hispanic/Latino', 'Multiple/Other'], ['Hispanic/Latino', 'White'], ['Hispanic/Latino', 'Native Hawaiian/Other Pacific Islander'], ['Hispanic/Latino', 'Black'], ['Hispanic/Latino', 'Unknown'], ['Hispanic/Latino', 'Missing'], ['Non-Hispanic/Latino', 'American Indian/Alaska Native'], ['Non-Hispanic/Latino', 'Asian'], ['Non-Hispanic/Latino', 'Multiple/Other'], ['Non-Hispanic/Latino', 'White'], ['Non-Hispanic/Latino', 'Native Hawaiian/Other Pacific Islander'], ['Non-Hispanic/Latino', 'Black'], ['Non-Hispanic/Latino', 'Unknown'], ['Non-Hispanic/Latino', 'Missing'], ['Unknown', 'American Indian/Alaska Native'], ['Unknown', 'Asian'], ['Unknown', 'Multiple/Other'], ['Unknown', 'White'], ['Unknown', 'Native Hawaiian/Other Pacific Islander'], ['Unknown', 'Black'], ['Unknown', 'Unknown'], ['Unknown', 'Missing'], ['Missing', 'American Indian/Alaska Native'], ['Missing', 'Asian'], ['Missing', 'Multiple/Other'], ['Missing', 'White'], ['Missing', 'Native Hawaiian/Other Pacific Islander'], ['Missing', 'Black'], ['Missing', 'Unknown'], ['Missing', 'Missing'], ] _expected_race_eth_combined_data = [ ['race_ethnicity_combined'], [std_col.Race.HISP.value], [std_col.Race.HISP.value], [std_col.Race.HISP.value], [std_col.Race.HISP.value], [std_col.Race.HISP.value], [std_col.Race.HISP.value], [std_col.Race.HISP.value], [std_col.Race.HISP.value], [std_col.Race.AIAN_NH.value], [std_col.Race.ASIAN_NH.value], [std_col.Race.MULTI_OR_OTHER_STANDARD_NH.value], [std_col.Race.WHITE_NH.value], [std_col.Race.NHPI_NH.value], [std_col.Race.BLACK_NH.value], [std_col.Race.UNKNOWN.value], [std_col.Race.UNKNOWN.value], [std_col.Race.UNKNOWN.value], [std_col.Race.UNKNOWN.value], [std_col.Race.UNKNOWN.value], [std_col.Race.UNKNOWN.value], [std_col.Race.UNKNOWN.value], [std_col.Race.UNKNOWN.value], [std_col.Race.UNKNOWN.value], [std_col.Race.UNKNOWN.value], [std_col.Race.UNKNOWN.value], [std_col.Race.UNKNOWN.value], [std_col.Race.UNKNOWN.value], [std_col.Race.UNKNOWN.value], [std_col.Race.UNKNOWN.value], [std_col.Race.UNKNOWN.value], [std_col.Race.UNKNOWN.value], [std_col.Race.UNKNOWN.value], ] df = gcs_to_bq_util.values_json_to_df(json.dumps( _fake_race_eth_data), dtype=str).reset_index(drop=True) expected_df = gcs_to_bq_util.values_json_to_df( json.dumps(_expected_race_eth_combined_data), dtype=str).reset_index(drop=True) df = cdc.combine_race_eth(df) assert_frame_equal(df, expected_df, check_like=True)
[ 9, 2003, 8579, 7801 ]
async def METHOD_NAME( self, selector: type[Widget] | str | None | None = None, offset: Offset = Offset(),
[ 1935 ]
def METHOD_NAME(file_name, content, repo, image, upstream_version): """Method to update for the provided file along with file set lock to avoid race condition. Args: file_name: Name of the file to update content: things to update in file """ with open(file_name, "w") as yaml_file: try: # To lock the file to avoid race condition set_lock(file_name) # update the file with write operation yaml_file.write(yaml.dump(content, default_flow_style=False)) finally: # unlock it so other processed can use it unset_lock(file_name) LOG.info( f"Updated build info: \n repo:{repo} \n image:{image} \n ceph version:{upstream_version} in {file_name}" )
[ 86, 3315 ]
def METHOD_NAME(self, model_instance, add): # get fields to populate from and slug field to set if not isinstance(self._populate_from, (list, tuple)): self._populate_from = (self._populate_from,) slug_field = model_instance._meta.get_field(self.attname) # only set slug if empty and first-time save, or when overwrite=True if add and not getattr(model_instance, self.attname) or self.overwrite: # slugify the original field content and set next step to 2 def slug_for_field(field): return self.slugify_func(getattr(model_instance, field)) slug = self.separator.join(map(slug_for_field, self._populate_from)) next_num = 2 else: # get slug from the current model instance slug = getattr(model_instance, self.attname) # model_instance is being modified, and overwrite is False, # so instead of doing anything, just return the current slug return slug # strip slug depending on max_length attribute of the slug field # and clean-up slug_len = slug_field.max_length if slug_len: slug = slug[:slug_len] slug = self._slug_strip(slug) if self.uppercase: slug = slug.upper() original_slug = slug if self.allow_duplicates: return slug # exclude the current model instance from the queryset used in finding # the next valid slug queryset = self.get_queryset(model_instance.__class__, slug_field) if model_instance.pk: queryset = queryset.exclude(pk=model_instance.pk) # form a kwarg dict used to impliment any unique_together contraints kwargs = {} for params in model_instance._meta.unique_together: if self.attname in params: for param in params: kwargs[param] = getattr(model_instance, param, None) kwargs[self.attname] = slug # increases the number while searching for the next valid slug # depending on the given slug, clean-up while not slug or queryset.filter(**kwargs): slug = original_slug end = "%s%s" % (self.separator, next_num) end_len = len(end) if slug_len and len(slug) + end_len > slug_len: slug = slug[: slug_len - end_len] slug = self._slug_strip(slug) slug = "%s%s" % (slug, end) kwargs[self.attname] = slug next_num += 1 return slug
[ 129, 1231 ]
def METHOD_NAME( sd_range=[2, 58], target_security_levels=[128], name="default_name" ): """ The top level function which we use to run the experiment :param sd_range: a tuple (sd_min, sd_max) giving the values of sd for which to generate parameters :param target_security_levels: a list of the target number of bits of security, 128 is default :param name: a name to save the file """ if __name__ == "__main__": D = ND.DiscreteGaussian vals = range(sd_range[0], sd_range[1]) pool = multiprocessing.Pool(2) init_params = LWE.Parameters( n=1024, q=2 ** 64, Xs=D(0.50, -0.50), Xe=D(2 ** 55), m=oo, tag="params" ) inputs = [ (init_params, (val, val), target_security_levels, name) for val in vals ] _res = pool.starmap(generate_parameter_matrix, inputs) return "done"
[ 567, -1, -1 ]
def METHOD_NAME(build_path, arguments): build_cmd = ['cmake', '--build', build_path, '--config', arguments.build_type, '-j', str(arguments.jobs)] subprocess.run(build_cmd, check=True)
[ 56, 155 ]
def METHOD_NAME(tolx: "double") -> "void": r""" setXTolerance(double tolx) Sets the termination threshold for the change in x. """ return _rootfind.METHOD_NAME(tolx)
[ 0, 1104, 3926 ]
def METHOD_NAME(self): self._import("iris.analysis._area_weighted")
[ 104, 689, 690, 691 ]
def METHOD_NAME(x: TType) -> TType: #? Type() x return x
[ 3499, 4432, 44, 2273, 2147, 1680, 5504 ]
def METHOD_NAME(fabric, *args: Any, **kwargs: Any): kwargs["devices"] = nprocs kwargs["num_nodes"] = num_nodes if any(acc.is_available() for acc in mps_accelerators): old_acc_value = kwargs.get("accelerator", "auto") kwargs["accelerator"] = "cpu" if old_acc_value != kwargs["accelerator"]: warnings.warn("Forcing `accelerator=cpu` as MPS does not support distributed training.") else: kwargs["accelerator"] = "auto" strategy = kwargs.get("strategy", None) if strategy: if isinstance(strategy, str): if strategy == "ddp_spawn": strategy = "ddp" elif strategy == "ddp_sharded_spawn": strategy = "ddp_sharded" elif isinstance(strategy, tuple(strategies)) and strategy._start_method in ("spawn", "fork"): raise ValueError("DDP Spawned strategies aren't supported yet.") kwargs["strategy"] = strategy return {}, args, kwargs
[ 709, 667 ]
def METHOD_NAME(self, speed): """ Sets the fan speed Args: speed: An integer, the percentage of full fan speed to set fan to, in the range 0 (off) to 100 (full speed) Returns: A boolean, True if speed is set successfully, False if not """ print("Setting Fan speed is not allowed") return False
[ 0, 1942 ]
def METHOD_NAME(self, conn_string): storage = MySQLEventLogStorage.create_clean_storage(conn_string) assert storage try: yield storage finally: storage.dispose()
[ 417, 390, 948 ]
def METHOD_NAME(self): self.fresh_env = self.all_files = False self.source_dir = self.build_dir = None self.builder = 'html' self.project = '' self.version = '' self.release = '' self.today = '' self.config_dir = None self.link_index = False self.copyright = ''
[ 15, 1881 ]
def METHOD_NAME(self) -> None: with Loading(self.main_area): if self.ebands_kpath is None or self.ebands_ibz is None: return # SKW interpolation r = self.ebands_ibz.interpolate(lpratio=self.lpratio, filter_params=None) # Build plotter. plotter = self.ebands_kpath.get_plotter_with("Ab-initio", "SKW interp", r.ebands_kpath) mpl_pane = mpl(plotter.combiplot(**self.mpl_kwargs)) col = pn.Column(mpl_pane, sizing_mode="stretch_width") self.main_area.objects = [col]
[ 86, 57, 690 ]
def METHOD_NAME(self): if stdin_ready(): self.timer.Stop() self.evtloop.Exit()
[ 250, 2195 ]
def METHOD_NAME(self, inputs): test_dir = os.path.dirname(inputs['casmvs_inp_dir']) scene = os.path.basename(inputs['casmvs_inp_dir']) logger.info('depth fusion start') pcd = pcd_depth_filter( scene, test_dir, inputs['casmvs_res_dir'], thres_view=4) logger.info('depth fusion end') return pcd
[ 1710 ]
def METHOD_NAME(self): data = np.empty((4, 2), dtype=object) for iy, ix in np.ndindex(data.shape): data[iy, ix] = np.array([[5, 10], [10, 5]]) self.vs = hs.signals.BaseSignal(data, ragged=True)
[ 102, 103 ]
f METHOD_NAME(self, database, table_name):
[ 19, 410 ]
async def METHOD_NAME() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() pr.connection_made(tr) pr.pause_writing() ts = [loop.create_task(pr._drain_helper()) for _ in range(5)] assert not (await asyncio.wait(ts, timeout=0.5))[ 0 ], "All draining tasks must be pending" assert pr._drain_waiter is not None pr.resume_writing() await asyncio.gather(*ts) assert pr._drain_waiter is None
[ 9, 1498, 7165, 8579, 405 ]
def METHOD_NAME(self) -> Optional[Sequence[str]]: """ Array of favorite lab resource ids """ return pulumi.get(self, "favorite_lab_resource_ids")
[ 8065, 4293, 191, 308 ]
def METHOD_NAME(self): get(self, **self.conan_data["sources"][self.version], strip_root=True)
[ 1458 ]
def METHOD_NAME(request, job_id): """ Callback endpoint for jobs to update status. """ try: job = TethysJob.objects.filter(id=job_id)[0] job.status json = {"success": True} except Exception: json = {"success": False} return JsonResponse(json)
[ 86, 202, 452 ]
def METHOD_NAME(self, stage): if stage == 'fit': nni.report_final_result(self.trainer.callback_metrics['val_accuracy'].item())
[ 1843 ]
def METHOD_NAME(name, auth=None, **kwargs): """ Ensure a network exists and is up-to-date name Name of the network provider A dict of network provider options. shared Set the network as shared. external Whether this network is externally accessible. admin_state_up Set the network administrative state to up. vlan Vlan ID. Alias for provider - physical_network: provider - network_type: vlan - segmentation_id: (vlan id) """ ret = {"name": name, "changes": {}, "result": True, "comment": ""} kwargs = __utils__["args.clean_kwargs"](**kwargs) __salt__["neutronng.setup_clouds"](auth) kwargs["name"] = name network = __salt__["neutronng.network_get"](name=name) if network is None: if __opts__["test"] is True: ret["result"] = None ret["changes"] = kwargs ret["comment"] = "Network will be created." return ret if "vlan" in kwargs: kwargs["provider"] = { "physical_network": "provider", "network_type": "vlan", "segmentation_id": kwargs["vlan"], } del kwargs["vlan"] if "project" in kwargs: projectname = kwargs["project"] project = __salt__["keystoneng.project_get"](name=projectname) if project: kwargs["project_id"] = project.id del kwargs["project"] else: ret["result"] = False ret["comment"] = "Project:{} not found.".format(projectname) return ret network = __salt__["neutronng.network_create"](**kwargs) ret["changes"] = network ret["comment"] = "Created network" return ret changes = __salt__["neutronng.compare_changes"](network, **kwargs) # there's no method for network update in shade right now; # can only delete and recreate if changes: if __opts__["test"] is True: ret["result"] = None ret["changes"] = changes ret["comment"] = "Project will be updated." return ret __salt__["neutronng.network_delete"](name=network) __salt__["neutronng.network_create"](**kwargs) ret["changes"].update(changes) ret["comment"] = "Updated network" return ret
[ 2541 ]
def METHOD_NAME(self): log.debug("---- %s ----" % self._testMethodName)
[ 0, 1 ]
def METHOD_NAME(sender, old_email=None, **kwargs): # All subs with the new email subs = Subscriber.objects.filter(email=sender.email, user__isnull=True) for sub in subs: # Find existing user subs on that newsletter exists = Subscriber.objects.filter( user=sender, newsletter=sub.newsletter ).exists() if exists: # Delete email sub in favor of existing user sub sub.delete() else: # Change email sub to user sub sub.email = None sub.name = "" sub.user = sender sub.save()
[ 21, 487, 1180 ]
def METHOD_NAME(fh, field, data): r"""Save a YTArray to an open hdf5 file or group. Save a YTArray to an open hdf5 file or group, and save the units to a "units" attribute. Parameters ---------- fh : an open hdf5 file or hdf5 group The hdf5 file or group to which the data will be written. field : str The name of the field to be saved. data : YTArray The data array to be saved. Returns ------- dataset : hdf5 dataset The created hdf5 dataset. """ dataset = fh.create_dataset(str(field), data=data) units = "" if isinstance(data, YTArray): units = str(data.units) dataset.attrs["units"] = units return dataset
[ 15333, 877, 6734 ]
def METHOD_NAME(self): export_conandata_patches(self)
[ 294, 505 ]
async def METHOD_NAME(self, async_client: "AsyncClient") -> None: response = await async_client.get("/api/v1/me/workspaces") assert response.status_code == 401
[ 9, 245, 5826, 1273, 529, 1970 ]
def METHOD_NAME(): def rally_process(p): return ( p.name() == "esrally" or p.name() == "rally" or ( p.name().lower().startswith("python") and any("esrally" in e for e in p.cmdline()) and not any("esrallyd" in e for e in p.cmdline()) ) ) kill_all(rally_process)
[ 643, 1340, 12526, 2553 ]
def METHOD_NAME(self, func, expected): s = StringIO.StringIO() save_stdout = sys.stdout sys.stdout = s dis.dis(func) sys.stdout = save_stdout got = s.getvalue() # Trim trailing blanks (if any). lines = got.split('\n') lines = [line.rstrip() for line in lines] expected = expected.split("\n") import difflib if expected != lines: self.fail( "events did not match expectation:\n" + "\n".join(difflib.ndiff(expected, lines)))
[ 74, 16949, 9 ]
def METHOD_NAME(self) -> Optional[str]: return pulumi.get(self, "project")
[ 155 ]
def METHOD_NAME(self): a = A() dict_trait = a.traits()["adict"] self.assertEqual(dict_trait.default_kind, "dict")
[ 9, 2551, 553, 235, 1253 ]
def METHOD_NAME(): a = relay.TypeVar("a") b = relay.TypeVar("b") c = relay.TypeVar("c") ft1 = relay.FuncType([b], c, [a]) assert_vars_match(all_type_vars(ft1), [a, b, c]) ft2 = relay.FuncType([], relay.TupleType([a, b, c]), []) assert_vars_match(all_type_vars(ft2), [a, b, c]) w = relay.Var("w") x = relay.Var("x", a) y = relay.Var("y", b) z = relay.Var("z", c) f1 = relay.Function([x], y, b, [a]) assert_vars_match(all_type_vars(f1), [a, b]) f2 = relay.Function([x], relay.Let(y, x, z)) assert_vars_match(all_type_vars(f2), [a, b, c]) f3 = relay.Function([], relay.Tuple([x, y, z]), ret_type=relay.TupleType([a, b, c])) assert_vars_match(all_type_vars(f3), [a, b, c]) f4 = relay.Function([w], relay.Tuple([]), type_params=[a, b, c]) assert_vars_match(all_type_vars(f4), [a, b, c]) f5 = relay.Function([w], w) assert len(all_type_vars(f5)) == 0
[ 9, 75, 44, 1659 ]