text
stringlengths 15
7.82k
| ids
sequencelengths 1
7
|
---|---|
def METHOD_NAME(*args, **kwargs):
return True | [
1051,
250
] |
def METHOD_NAME(self, artist):
raise NotImplementedError | [
19,
51
] |
def METHOD_NAME(exception):
"""Filter allowing retries on file I/O errors and service error."""
return isinstance(exception, IOError) or \
(HttpError is not None and isinstance(exception, HttpError)) | [
2052,
69,
249,
168,
61,
163,
168
] |
def METHOD_NAME(
func: PrimFunc,
features: Dict[str, np.ndarray],
target: Target,
dev: Device,
remote: Optional[RPCSession],
) -> Tuple[float, float, str]:
"""
Estimate the maximum number of FLOP/s this target/device combo is capable
of reaching by running a test program. This is a generic function that
should be overridden for each target.
Parameters
----------
func : PrimFunc
Function to estimate peak flops for. Used to check if a specific kind
intrinsic or dtype could be used with this function.
features : Dict[str, np.ndarry]
Features extracted from `func`. Used to check if a specific kind
intrinsic or dtype could be used with this function.
target : Target
Target to run on. This should be as specific to the actual hardware as
possible to make sure that LLVM generates the best vector code.
dev : Device
Device to run on.
remote : Optional[RPCSession]
Remote session used to upload artifacts for runtime evaluation. Must be
the same session used to create `dev`.
Returns
-------
flops : float
Estimated number of flops used by `func`.
peak_flops : float
Approximate sustained FLOP/s of this target/device combo assuming
vectorized FMA instructions. Each FMA operation counts as two FLOPs.
name : str
Dtype/intrinsic used by `func` to achieve peak flops.
"""
raise NotImplementedError() | [
918,
4626,
230
] |
def METHOD_NAME(self, x):
self.__buf.write(struct.pack('>L', x)) | [
1699,
11068
] |
def METHOD_NAME(text):
"""Convert a string containing an SI value to an integer or return an
integer if that is what was passed in."""
if isinstance(text, int):
return text
if not isinstance(text, str):
raise ValueError("Source value must be string or integer")
matches = si_regex.search(text.lower(), 0)
if matches is None:
raise ValueError("Invalid SI value '" + text + "'")
number = int(matches.group(1)) if matches.group(2) is None \
else float(matches.group(1))
unit = matches.group(3)
multiplier = 1 if unit is None else si_multipliers.get(unit.lower(), '')
return number * multiplier | [
4844,
947,
106
] |
def METHOD_NAME():
org1 = Organization.objects.create(name='org1')
org2 = Organization.objects.create(name='org2')
prj1 = Project.objects.create(name='prj1')
prj2 = Project.objects.create(name='prj2')
assert org1.admin_role.is_ancestor_of(prj1.admin_role) is False
assert org1.admin_role.is_ancestor_of(prj2.admin_role) is False
assert org2.admin_role.is_ancestor_of(prj1.admin_role) is False
assert org2.admin_role.is_ancestor_of(prj2.admin_role) is False
prj1.organization = org1
prj1.save()
assert org1.admin_role.is_ancestor_of(prj1.admin_role)
assert org1.admin_role.is_ancestor_of(prj2.admin_role) is False
assert org2.admin_role.is_ancestor_of(prj1.admin_role) is False
assert org2.admin_role.is_ancestor_of(prj2.admin_role) is False
prj2.organization = org1
prj2.save()
assert org1.admin_role.is_ancestor_of(prj1.admin_role)
assert org1.admin_role.is_ancestor_of(prj2.admin_role)
assert org2.admin_role.is_ancestor_of(prj1.admin_role) is False
assert org2.admin_role.is_ancestor_of(prj2.admin_role) is False
prj1.organization = org2
prj1.save()
assert org1.admin_role.is_ancestor_of(prj1.admin_role) is False
assert org1.admin_role.is_ancestor_of(prj2.admin_role)
assert org2.admin_role.is_ancestor_of(prj1.admin_role)
assert org2.admin_role.is_ancestor_of(prj2.admin_role) is False
prj2.organization = org2
prj2.save()
assert org1.admin_role.is_ancestor_of(prj1.admin_role) is False
assert org1.admin_role.is_ancestor_of(prj2.admin_role) is False
assert org2.admin_role.is_ancestor_of(prj1.admin_role)
assert org2.admin_role.is_ancestor_of(prj2.admin_role) | [
9,
803,
6003
] |
def METHOD_NAME(self):
batch = self.state.batch
self.assertIsNotNone(batch)
self.state.write_batch(batch)
self.assertEqual(self.state.total_coin_supply, 0) | [
9,
756,
551,
3168
] |
def METHOD_NAME() -> Dict[str, int]:
from .constants import is_macos
from .fast_data_types import (
GLFW_MOD_ALT,
GLFW_MOD_CAPS_LOCK,
GLFW_MOD_CONTROL,
GLFW_MOD_HYPER,
GLFW_MOD_META,
GLFW_MOD_NUM_LOCK,
GLFW_MOD_SHIFT,
GLFW_MOD_SUPER,
)
return {'ctrl': GLFW_MOD_CONTROL, 'shift': GLFW_MOD_SHIFT, ('opt' if is_macos else 'alt'): GLFW_MOD_ALT,
('cmd' if is_macos else 'super'): GLFW_MOD_SUPER, 'hyper': GLFW_MOD_HYPER, 'meta': GLFW_MOD_META,
'caps_lock': GLFW_MOD_CAPS_LOCK, 'num_lock': GLFW_MOD_NUM_LOCK} | [
-1
] |
def METHOD_NAME(self):
"""Function decorated with `deprecate` should raise a warning."""
@deprecate
def foo(a):
return 2*a
@deprecate("use baz instead", version="0.2.0")
def bar(a):
return 4*a
with warnings.catch_warnings(record=True) as w:
self.assertEqual(foo(1), 2,
"Decorated function does not return original "
"return value")
self.assertTrue(len(w) > 0, "No warning raised!")
self.assertEqual(w[0].category, DeprecationWarning,
"Raised warning is not a DeprecationWarning")
with warnings.catch_warnings(record=True) as w:
self.assertEqual(bar(1), 4,
"Decorated function does not return original "
"return value")
expected_message = "use baz instead. It is not guaranteed to be in " \
"service in vers. 0.2.0"
self.assertTrue( w[0].message.args[0].endswith(expected_message),
"Warning message does not reflect decorator arguments.")
@deprecate_soon
def baz(a):
return 3*a
with warnings.catch_warnings(record=True) as w:
self.assertEqual(baz(1), 3,
"Decorated function does not return original "
"return value")
self.assertEqual(w[0].category, PendingDeprecationWarning,
"Raised warning is not a PendingDeprecationWarning") | [
9,
5709
] |
def METHOD_NAME(_context, from_manager):
return from_manager | [
362,
280,
362,
722
] |
def METHOD_NAME(defer, worker):
from .param import Param
defer("sum_task", a=5, b=7)
defer("sum_task_param", p1=Param(3), p2=Param(4))
defer("increment_task", a=3)
stdout, stderr = worker()
print(stdout, stderr)
assert stdout.splitlines() == ["Launching a worker on all queues", "12", "7", "4"]
assert stderr.startswith("DEBUG:procrastinate.")
defer("product_task", a=5, b=4)
stdout, stderr = worker("default")
print(stdout, stderr)
assert "20" not in stdout
stdout, stderr = worker("product_queue")
print(stdout, stderr)
assert stdout.splitlines() == ["Launching a worker on product_queue", "20"]
defer("two_fails")
stdout, stderr = worker()
print(stdout, stderr)
assert "Print something to stdout" in stdout
assert stderr.count("Exception: This should fail") == 2
defer("multiple_exception_failures")
stdout, stderr = worker()
print(stdout, stderr)
assert (
stdout
== """Launching a worker on all queues | [
9,
4203
] |
def METHOD_NAME(computation: BaseComputation, gas_per_byte: int) -> None:
"""
Exponentiation
"""
base, exponent = computation.stack_pop_ints(2)
bit_size = exponent.bit_length()
byte_size = ceil8(bit_size) // 8
if exponent == 0:
result = 1
elif base == 0:
result = 0
else:
result = pow(base, exponent, constants.UINT_256_CEILING)
computation.consume_gas(
gas_per_byte * byte_size,
reason="EXP: exponent bytes",
)
computation.stack_push_int(result) | [
2962
] |
def METHOD_NAME(self) -> Graph:
assert self._graph is not None, "Please trace the graph by calling forward function of current tracer."
return self._graph | [
303
] |
def METHOD_NAME(rhr: models.RentalHistoryRequest) -> str:
rh_link = slack.hyperlink(
text="rent history",
href=absolute_reverse("admin:rh_rentalhistoryrequest_change", args=[rhr.pk]),
)
if rhr.user:
user_text = slack.hyperlink(text=rhr.user.best_first_name, href=rhr.user.admin_url)
else:
user_text = slack.escape(rhr.first_name)
return f"{user_text} has requested {rh_link}!" | [
19,
729,
959,
526
] |
def METHOD_NAME(self) -> str:
"""
Specifies the name of the resource.
"""
return pulumi.get(self, "name") | [
156
] |
def METHOD_NAME(self, phrase):
return phrase is None or not invalid_phrase_re.search(phrase) | [
1205,
4576
] |
def METHOD_NAME(self):
self.args.label_smoothing = 0.1
crit = LabelSmoothedCrossEntropyCriterion.build_criterion(self.args, self.task)
loss, _, logging_output = crit(self.model, self.sample, reduce=True)
unreduced_loss, _, _ = crit(self.model, self.sample, reduce=False)
self.assertAlmostEqual(loss, unreduced_loss.sum()) | [
9,
6603
] |
async def METHOD_NAME(coresys, sys_machine, sys_supervisor):
"""Test arch for tinker."""
sys_machine.return_value = "tinker"
sys_supervisor.arch = "armv7"
await coresys.arch.load()
assert coresys.arch.default == "armv7"
assert coresys.arch.supported == ["armv7", "armhf"] | [
9,
-1,
2837
] |
def METHOD_NAME(self):
cli = Cli()
assert cli.get_servicename() == 'system' | [
9,
19,
11671,
112
] |
def METHOD_NAME(self):
self.fifo.write(b"ABCD")
self.fifo.write(b"EF")
self.assertEqual(self.fifo.read(1), b"A")
self.assertEqual(self.fifo.read(1), b"B")
self.assertEqual(self.fifo.read(2), b"CD")
self.assertEqual(self.fifo.read(), b"EF") | [
9,
619
] |
def METHOD_NAME(self, query: str, documents: List[Document], top_k: Optional[int] = None):
pass | [
2103
] |
def METHOD_NAME(next_link=None):
if not next_link:
request = build_list_by_sku_request(
sku=sku,
subscription_id=self._config.subscription_id,
api_version=api_version,
template_url=self.list_by_sku.metadata["url"],
headers=_headers,
params=_params,
)
request = _convert_request(request)
request.url = self._client.format_url(request.url)
else:
# make call to next link with the client's api-version
_parsed_next_link = urllib.parse.urlparse(next_link)
_next_request_params = case_insensitive_dict(
{
key: [urllib.parse.quote(v) for v in value]
for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items()
}
)
_next_request_params["api-version"] = self._config.api_version
request = HttpRequest(
"GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params
)
request = _convert_request(request)
request.url = self._client.format_url(request.url)
request.method = "GET"
return request | [
123,
377
] |
def METHOD_NAME(self):
self.assertEqual(moose.element(self.mcell).className, 'Neuron')
self.assertEqual(moose.element(self.mcell).name, self.ncell.name) | [
9,
129,
118,
8298
] |
def METHOD_NAME():
"""
get a list of graphids that have html export templates available.
"""
valid_graphs = []
existing_graphids = GraphModel.objects.filter(isresource=True).values_list("graphid", flat=True)
for existing_graphid in existing_graphids:
if HtmlWriter.has_html_template(existing_graphid):
valid_graphs.append(str(existing_graphid))
return valid_graphs | [
19,
-1,
41,
294,
671
] |
def METHOD_NAME(epoch):
""" eval model on each epoch in testset
"""
global best_acc
global trainloader
global testloader
global net
global criterion
global optimizer
logger.debug("Eval on epoch: %d", epoch)
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
acc = 100.0 * correct / total
logger.debug(
"Loss: %.3f | Acc: %.3f%% (%d/%d)",
test_loss / (batch_idx + 1),
100.0 * correct / total,
correct,
total,
)
acc = 100.0 * correct / total
if acc > best_acc:
best_acc = acc
return acc, best_acc | [
9
] |
def METHOD_NAME(cfg, outs):
"""Schedule for binary_dense.
Parameters
----------
outs: Array of Tensor
The computation graph description of bitserial dense operator.
in the format of an array of tensors.
Returns
-------
s: Schedule
The computation schedule for bitserial_dense.
"""
outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs
s = te.create_schedule([x.op for x in outs])
def _schedule(cfg, s, data_vec, weight_vec, output, unipolar):
z, k, _, y, x = s[weight_vec].op.axis
s[weight_vec].parallel(z)
s[weight_vec].vectorize(x)
x, y = s[output].op.axis
wb, db, k = s[output].op.reduce_axis
_, DB, _ = get_const_tuple(data_vec.shape)
_, _, WB, _, _ = get_const_tuple(weight_vec.shape)
yo, yi = cfg["tile_y"].apply(s, output, y)
xo, xi = cfg["tile_x"].apply(s, output, x)
ko, ki = cfg["tile_k"].apply(s, output, k)
cfg["reorder_0"].apply(s, output, [yo, xo, ko, xi, wb, db, yi, ki])
fused = s[output].fuse(xo, yo)
s[output].parallel(fused)
nfactor = cfg["tile_y"].size[-1]
kfactor = cfg["tile_k"].size[-1]
if nfactor % 8 == 0:
pc = _intrin_popcount(nfactor, kfactor, WB, DB, unipolar)
s[output].tensorize(wb, pc)
return s
def traverse(op):
"""Internal traverse function"""
# inline all one-to-one-mapping operators except the last stage (output)
if tag.is_broadcast(op.tag) or "elemwise" in op.tag:
if op not in s.outputs:
s[op].compute_inline()
for tensor in op.input_tensors:
if isinstance(tensor.op, tvm.te.ComputeOp):
traverse(tensor.op)
elif op.tag == "bitserial_dense" or "bitserial_dense_unipolar":
output = op.output(0)
weight_vec = op.input_tensors[0]
data_vec = op.input_tensors[1]
data = data_vec.op.input_tensors[0]
if "QuantizeInput" in data.op.name:
data = data.op.input_tensors[0]
unipolar = output.op.tag == "bitserial_dense_unipolar"
_schedule(cfg, s, data_vec, weight_vec, output, unipolar)
else:
raise RuntimeError(f"Unsupported operator: {op.tag}")
traverse(outs[0].op)
return s | [
507,
6464,
3829
] |
def METHOD_NAME(
change_type_processors: list[ChangeTypeProcessor],
bundle_changes: list[BundleFileChange],
approver_resolver: ApproverResolver,
) -> list[tuple[BundleFileChange, ChangeTypeContext]]:
change_type_contexts: list[tuple[BundleFileChange, ChangeTypeContext]] = []
processors_with_implicit_ownership = [
ctp for ctp in change_type_processors if ctp.implicit_ownership
]
for ctp in processors_with_implicit_ownership:
for bc in bundle_changes:
for ownership in ctp.find_context_file_refs(
change=FileChange(
file_ref=bc.fileref,
old=bc.old,
new=bc.new,
),
expansion_trail=set(),
):
for io in ctp.implicit_ownership:
if isinstance(io, ChangeTypeImplicitOwnershipJsonPathProviderV1):
if ownership.context_file_ref != bc.fileref:
logging.warning(
f"{io.provider} provider based implicit ownership is not supported for ownership context files that are not the changed file."
)
continue
implicit_owner_refs = (
find_approvers_with_implicit_ownership_jsonpath_selector(
bc=bc,
implicit_ownership=io,
)
)
else:
raise NotImplementedError(
f"unsupported implicit ownership provider: {io}"
)
implicit_approvers = list(
filter(
None,
[
approver_resolver.lookup_approver_by_path(owner_path)
for owner_path in implicit_owner_refs
],
)
)
if implicit_approvers:
change_type_contexts.append(
(
bc,
ChangeTypeContext(
change_type_processor=ctp,
context=f"implicit ownership - (via {ownership.change_type.name})",
origin=ownership.change_type.name,
approvers=implicit_approvers,
context_file=ownership.context_file_ref,
),
)
)
return change_type_contexts | [
194,
44,
6295,
43,
2273,
3982
] |
def METHOD_NAME(self, **kwargs: Any) -> Iterable["_models.ResourceSku"]:
"""Lists all of the available skus of the Microsoft.AppPlatform provider.
:keyword callable cls: A custom type or function that will be passed the direct response
:return: An iterator like instance of either ResourceSku or the result of cls(response)
:rtype:
~azure.core.paging.ItemPaged[~azure.mgmt.appplatform.v2022_09_01_preview.models.ResourceSku]
:raises ~azure.core.exceptions.HttpResponseError:
"""
_headers = kwargs.pop("headers", {}) or {}
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
api_version: Literal["2022-09-01-preview"] = kwargs.pop(
"api_version", _params.pop("api-version", "2022-09-01-preview")
)
cls: ClsType[_models.ResourceSkuCollection] = kwargs.pop("cls", None)
error_map = {
401: ClientAuthenticationError,
404: ResourceNotFoundError,
409: ResourceExistsError,
304: ResourceNotModifiedError,
}
error_map.update(kwargs.pop("error_map", {}) or {})
def prepare_request(next_link=None):
if not next_link:
request = build_list_request(
subscription_id=self._config.subscription_id,
api_version=api_version,
template_url=self.METHOD_NAME.metadata["url"],
headers=_headers,
params=_params,
)
request = _convert_request(request)
request.url = self._client.format_url(request.url)
else:
# make call to next link with the client's api-version
_parsed_next_link = urllib.parse.urlparse(next_link)
_next_request_params = case_insensitive_dict(
{
key: [urllib.parse.quote(v) for v in value]
for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items()
}
)
_next_request_params["api-version"] = self._config.api_version
request = HttpRequest(
"GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params
)
request = _convert_request(request)
request.url = self._client.format_url(request.url)
request.method = "GET"
return request
def extract_data(pipeline_response):
deserialized = self._deserialize("ResourceSkuCollection", pipeline_response)
list_of_elem = deserialized.value
if cls:
list_of_elem = cls(list_of_elem) # type: ignore
return deserialized.next_link or None, iter(list_of_elem)
def get_next(next_link=None):
request = prepare_request(next_link)
_stream = False
pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
request, stream=_stream, **kwargs
)
response = pipeline_response.http_response
if response.status_code not in [200]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
raise HttpResponseError(response=response, error_format=ARMErrorFormat)
return pipeline_response
return ItemPaged(get_next, extract_data) | [
245
] |
def METHOD_NAME(self):
parameters = {
**self.serialize_header_param(
"Content-Type", "application/json",
),
}
return parameters | [
572,
386
] |
def METHOD_NAME(self, rollback_registry):
registry = rollback_registry
query = registry.System.Cache.query("id", "method").limit(2)
caches = query.all()
def to_dict(cache):
return {
"id": cache.id,
"method": cache.method,
}
dictall = query.dictall()
for i in range(2):
assert to_dict(caches[i]) in dictall | [
9,
-1,
69,
3368,
105
] |
def METHOD_NAME(self):
expected_query = torch.tensor(
[[[[-1.0235, 0.0409], [0.4008, 1.3077], [0.5396, 2.0698]]]]
)
expected_key = torch.tensor(
[[[[0.5053, -0.4965], [-0.3730, -0.9473], [-0.7019, -0.1935]]]]
)
expected_val = torch.tensor(
[[[[-0.9940, 0.5403], [0.5924, -0.7619], [0.7504, -1.0892]]]]
)
sample_t = self.sample.transpose(0, 1)
query, key, val = self.MHA.forward_qkv(sample_t, sample_t, sample_t)
self.assertTrue(
np.allclose(
expected_query.cpu().detach().numpy(),
query.cpu().detach().numpy(),
atol=1e-4,
)
)
self.assertTrue(
np.allclose(
expected_key.cpu().detach().numpy(),
key.cpu().detach().numpy(),
atol=1e-4,
)
)
self.assertTrue(
np.allclose(
expected_val.cpu().detach().numpy(),
val.cpu().detach().numpy(),
atol=1e-4,
)
) | [
9,
76,
7838
] |
def METHOD_NAME(
self,
request, # type: HttpRequest
**kwargs: Any
) -> HttpResponse:
"""Runs the network request through the client's chained policies.
>>> from azure.core.rest import HttpRequest
>>> request = HttpRequest("GET", "https://www.example.org/")
<HttpRequest [GET], url: 'https://www.example.org/'>
>>> response = client._send_request(request)
<HttpResponse: 200 OK>
For more information on this code flow, see https://aka.ms/azsdk/python/protocol/quickstart
:param request: The network request you want to make. Required.
:type request: ~azure.core.rest.HttpRequest
:keyword bool stream: Whether the response payload will be streamed. Defaults to False.
:return: The response of your network call. Does not do error handling on your response.
:rtype: ~azure.core.rest.HttpResponse
"""
request_copy = deepcopy(request)
request_copy.url = self._client.format_url(request_copy.url)
return self._client.send_request(request_copy, **kwargs) | [
353,
377
] |
def METHOD_NAME(self):
parameters = {
**self.serialize_header_param(
"Accept", "application/json",
),
}
return parameters | [
572,
386
] |
def METHOD_NAME():
assert uniprot_client.is_human('P00533') | [
9,
137,
2047
] |
def METHOD_NAME(self):
"""Returns the string representation of the model"""
return pprint.pformat(self.to_dict()) | [
24,
3
] |
def METHOD_NAME(self, url: str, download_path: Path, role: str | None = None) -> Path:
"""Download a given URL, caching it. If it has already been downloaded, return
the value that has been cached.
This is a utility method used to obtain assets used by the installation process.
The cached filename will be the filename portion of the URL, appended to the
download path.
:param url: The URL to download
:param download_path: The path to the download cache folder. This path will be
created if it doesn't exist.
:param role: A string describing the role played by the file being downloaded;
used to construct log and error messages. Should be able to fit into the
sentence "Error downloading {role}".
:returns: The filename of the downloaded (or cached) file.
"""
download_path.mkdir(parents=True, exist_ok=True)
filename: Path = None
try:
response = self.tools.requests.get(url, stream=True)
if response.status_code == 404:
raise MissingNetworkResourceError(url=url)
elif response.status_code != 200:
raise BadNetworkResourceError(url=url, status_code=response.status_code)
# The initial URL might (read: will) go through URL redirects, so
# we need the *final* response. We look at either the `Content-Disposition`
# header, or the final URL, to extract the cache filename.
cache_full_name = urlparse(response.url).path
header_value = response.headers.get("Content-Disposition")
if header_value:
# Neither requests nor httplib provides a way to parse RFC6266 headers.
# The cgi module *did* have a way to parse these headers, but
# it was deprecated as part of PEP594. PEP594 recommends
# using the email.message module to parse these headers as they
# are near identical format.
# See also:
# * https://tools.ietf.org/html/rfc6266
# * https://peps.python.org/pep-0594/#cgi
msg = Message()
msg["Content-Disposition"] = header_value
filename = msg.get_filename()
if filename:
cache_full_name = filename
cache_name = cache_full_name.split("/")[-1]
filename = download_path / cache_name
if filename.exists():
self.tools.logger.info(f"{cache_name} already downloaded")
else:
self.tools.logger.info(f"Downloading {cache_name}...")
self._fetch_and_write_content(response, filename)
except requests_exceptions.ConnectionError as e:
if role:
description = role
else:
description = filename.name if filename else url
raise NetworkFailure(f"download {description}") from e
return filename | [
171
] |
def METHOD_NAME():
"""
Test inequality constraints applied to input variables.
The sum of the input variables must be less than or equal to -5.0, and
the second output variable must have a value of at least 70.0
"""
network = load_network()
# Input inequality constraint
inputVars = network.inputVars[0][0]
weights = np.ones(inputVars.shape)/inputVars.size
averageInputValue = -5.0
network.addInequality(inputVars, weights, averageInputValue)
# Add lower bound on second output variable
outputVars = network.outputVars[0].flatten()
outputVar = outputVars[1]
minOutputValue = 70.0
network.setLowerBound(outputVar, minOutputValue)
# Call to Marabou solver
exitCode, vals, _ = network.solve(options = OPT, verbose = False)
assert np.dot([vals[inVar] for inVar in inputVars], weights) <= averageInputValue
assert vals[outputVar] >= minOutputValue | [
9,
6073,
362
] |
def METHOD_NAME(err: BeancountError) -> SerialisedError:
"""Get a serialisable error from a Beancount error."""
source = copy(err.source)
if source is not None:
source.pop("__tolerances__", None)
return SerialisedError(err.__class__.__name__, source, err.message) | [
280,
-1,
168
] |
def METHOD_NAME(self):
pyfunc = unpack_arbitrary
with self.assertRaises(errors.TypingError) as raises:
compile_isolated(pyfunc, (types.int32,), flags=no_pyobj_flags)
self.assertIn("failed to unpack int32", str(raises.exception)) | [
9,
532,
789
] |
def METHOD_NAME(self, session_respond_500, app_spec, deployment):
conf = Configuration(["--extension-hook-url", URL_PARAM])
extension_hook_caller = ExtensionHookCaller(conf, session_respond_500)
obj = copy.deepcopy(deployment)
with pytest.raises(HTTPError):
extension_hook_caller.apply(obj, app_spec) | [
9,
241,
442,
1646,
4616,
8140
] |
def METHOD_NAME():
return {
"home": {
"passwd": "password",
"sudo": "password",
"host": "12.34.56.78",
"port": 23,
"user": "gtmanfred",
"minion_opts": {"http_port": 80},
},
"salt.gtmanfred.com": {
"passwd": "password",
"sudo": "password",
"host": "127.0.0.1",
"port": 22,
"user": "gtmanfred",
"minion_opts": {"http_port": 80},
},
} | [
391,
672,
465,
1413
] |
def METHOD_NAME(self, name: str | None = None, **subsegment_kwargs) -> SubsegmentContextManager: ... | [
623,
13090
] |
def METHOD_NAME(input):
if java:
beginMsg = re.compile("^<REQUEST domainType=\"MARKET_PRICE\" .*")
endMsg = re.compile("^</REQUEST>$")
updateMsg = re.compile("^<UPDATE domainType=\"MARKET_PRICE\" .*")
else:
beginMsg = re.compile("^<requestMsg domainType=\"RSSL_DMT_MARKET_PRICE\" .*")
endMsg = re.compile("^</requestMsg>$")
updateMsg = re.compile("^<updateMsg domainType=\"RSSL_DMT_MARKET_PRICE\" .*")
eventMsg = re.compile("^event: .*")
streamPos = input.tell()
line = input.readline()
while (line):
if updateMsg.match(line):
return None
if eventMsg.match(line):
input.seek(streamPos)
return None
if beginMsg.match(line):
msg = line
line = input.readline()
while(line):
msg += line
if endMsg.match(line):
return msg
line = input.readline()
streamPos = input.tell()
line = input.readline()
return None | [
416,
243,
377
] |
def METHOD_NAME(self):
self.arm_mock_dashboard_server('right') | [
9,
3208,
248,
3029,
163,
2786
] |
def METHOD_NAME(self):
r"""
The hook lengths of the elements of the d-complete poset.
See [KY2019]_ for the definition of hook lengths for d-complete posets.
TESTS::
sage: from sage.combinat.posets.d_complete import DCompletePoset
sage: P = DCompletePoset(DiGraph({0: [1, 2], 1: [3], 2: [3], 3: []}))
sage: P._hooks
{0: 1, 1: 2, 2: 2, 3: 3}
sage: from sage.combinat.posets.poset_examples import Posets
sage: P = DCompletePoset(Posets.YoungDiagramPoset(Partition([3,2,1]))._hasse_diagram.reverse()) # optional - sage.combinat
sage: P._hooks # optional - sage.combinat
{0: 5, 1: 3, 2: 1, 3: 3, 4: 1, 5: 1}
"""
hooks = {}
min_diamond = {} # Maps max of double-tailed diamond to min of double-tailed diamond
max_diamond = {} # Maps min of double-tailed diamond to max of double-tailed diamond
H = self._hasse_diagram
diamonds, _ = H.diamonds() # Tuples of four elements that are diamonds
diamond_index = {} # Map max elmt of double tailed diamond to index of diamond
# Find all the double-tailed diamonds and map the mins and maxes
for index, d in enumerate(diamonds):
min_diamond[d[3]] = d[0]
max_diamond[d[0]] = d[3]
diamond_index[d[3]] = index
min_elmt = d[0]
max_elmt = d[3]
while True:
potential_min = H.neighbors_in(min_elmt)
potential_max = H.neighbors_out(max_elmt)
# Check if any of these make a longer double tailed diamond
found_diamond = False
for (mn, mx) in [(i, j) for i in potential_min for j in potential_max]:
if len(H.neighbors_in(mx)) != 1:
continue
if len(H.all_paths(mn, mx)) == 2:
# Success
min_elmt = mn
max_elmt = mx
min_diamond[mx] = mn
max_diamond[mn] = mx
diamond_index[mx] = index
found_diamond = True
break
if not found_diamond:
break
# Compute the hooks
queue = deque(H.sources())
enqueued = set()
while queue:
elmt = queue.popleft()
if elmt not in diamond_index:
hooks[elmt] = H.order_ideal_cardinality([elmt])
else:
diamond = diamonds[diamond_index[elmt]]
side1 = diamond[1]
side2 = diamond[2]
hooks[elmt] = hooks[side1] + hooks[side2] - hooks[min_diamond[elmt]]
enqueued.add(elmt)
for c in H.neighbors_out(elmt):
if c not in enqueued:
queue.append(c)
enqueued.add(c)
poset_hooks = {self._vertex_to_element(key): ZZ(value) for (key, value) in hooks.items()}
return poset_hooks | [
4602
] |
async def METHOD_NAME(request: web.Request):
return [{"x": 3, "y": "3"}] * 3 | [
19,
245
] |
def METHOD_NAME():
c = rinterface.globalenv.find('c')
d = dict([(u'哈哈', 1)])
res = c(**d)
assert u'哈哈' == res.do_slot('names')[0] | [
9,
3690,
1545,
156
] |
def METHOD_NAME():
vars_error = 'VERIFICATION FAILED: Vars field not found'
fake_playbook = [{'name': "test playbook"}]
with raises(PlaybookVerificationError) as error:
verify(fake_playbook, skipVerify=False)
assert vars_error in str(error.value) | [
9,
1659,
130,
622,
168
] |
def METHOD_NAME(url, **kw):
return request("PATCH", url, **kw) | [
1575
] |
def METHOD_NAME(self) -> Response:
"""
Get a list with all of the tabels in MySQL
"""
query = f"""
SELECT
table_schema,
table_name,
table_type
FROM {self.database}.INFORMATION_SCHEMA.TABLES
WHERE TABLE_TYPE in ('BASE TABLE', 'VIEW');
"""
result = self.native_query(query)
return result | [
19,
2253
] |
def METHOD_NAME(
self,
account_id: str,
resource_ids: Optional[List[str]],
resource_name: Optional[str],
limit: int,
next_token: Optional[str],
backend_region: Optional[str] = None,
resource_region: Optional[str] = None,
aggregator: Any = None,
) -> Tuple[List[Dict[str, Any]], Optional[str]]:
# For the Account Public Access Block, they are the same for all regions. The resource ID is the AWS account ID
# There is no resource name -- it should be a blank string "" if provided.
# The resource name can only ever be None or an empty string:
if resource_name is not None and resource_name != "":
return [], None
pab = None
regions = [region for region in Session().get_available_regions("config")]
# If a resource ID was passed in, then filter accordingly:
if resource_ids:
for resource_id in resource_ids:
if account_id == resource_id:
pab = self.backends[account_id]["global"].public_access_block
break
# Otherwise, just grab the one from the backend:
if not resource_ids:
pab = self.backends[account_id]["global"].public_access_block
# If it's not present, then return nothing
if not pab:
return [], None
# Filter on regions (and paginate on them as well):
if backend_region:
pab_list = [backend_region]
elif resource_region:
# Invalid region?
if resource_region not in regions:
return [], None
pab_list = [resource_region]
# Aggregated query where no regions were supplied so return them all:
else:
pab_list = regions
# Pagination logic:
sorted_regions = sorted(pab_list)
new_token = None
# Get the start:
if not next_token:
start = 0
else:
# Tokens for this moto feature is just the region-name:
# For OTHER non-global resource types, it's the region concatenated with the resource ID.
if next_token not in sorted_regions:
raise InvalidNextTokenException()
start = sorted_regions.index(next_token)
# Get the list of items to collect:
pab_list = sorted_regions[start : (start + limit)]
if len(sorted_regions) > (start + limit):
new_token = sorted_regions[start + limit]
return (
[
{
"type": "AWS::S3::AccountPublicAccessBlock",
"id": account_id,
"region": region,
}
for region in pab_list
],
new_token,
) | [
245,
200,
549,
1614
] |
def METHOD_NAME(self):
return ["id", "summary", "needinfos", "last_comment"] | [
1951
] |
def METHOD_NAME(self, items_count, new_identities, sh_db, connector_name):
identities_count = len(new_identities)
SortingHat.add_identities(sh_db, new_identities, connector_name)
return identities_count | [
557,
2278,
7949
] |
def METHOD_NAME() -> None:
# make sure the running config is empty
Config.running_config.data.clear()
config = Config("dummy", "dummy")
KubernetesCollectorPlugin.add_config(config)
config.init_default_config()
k8s: K8sConfig = config.k8s
assert k8s.configs == []
assert k8s.config_files == []
assert k8s.collect == []
assert k8s.no_collect == []
assert k8s.pool_size == num_default_threads()
assert k8s.fork_process is False | [
9,
35,
200
] |
def METHOD_NAME(utterances, averaging_mode, weights):
self_bleu = []
for i in range(len(utterances)):
hypo = utterances[i]
rest = utterances[:i] + utterances[i+1:]
self_bleu.append(sentence_bleu(rest, hypo, weights,
no_length_penalty=True, averaging_mode=averaging_mode))
return self_bleu | [
19,
927,
8612
] |
async def METHOD_NAME(self, credential_definition_id) -> str:
"""Create a credential offer for the given credential definition id.
Args:
credential_definition_id: The credential definition to create an offer for
Returns:
The created credential offer
""" | [
129,
2540,
6179
] |
def METHOD_NAME(
monkeypatch, arch, does_dir_exist, expected_path, expected_result
):
def _mock_is_dir(path):
assert path == expected_path
return does_dir_exist
monkeypatch.setattr(deb.os.path, "isdir", _mock_is_dir)
assert deb._is_chroot_available(arch) == expected_result | [
9,
137,
11707,
1272
] |
def METHOD_NAME():
assert add(4) == 5
assert Add(4) == 5 | [
9,
559,
947,
735,
41,
235,
2001
] |
def METHOD_NAME(self, resource, limit):
return resource, limit | [
129
] |
def METHOD_NAME():
syntax_output = vimsupport.CaptureVimCommand( 'syntax list' )
return _KeywordsFromSyntaxListOutput( syntax_output ) | [
1207,
2537,
43,
1056,
2376
] |
def METHOD_NAME(
cls, v: Optional[DatahubClientConfig], values: Dict[str, Any], **kwargs: Any
) -> Optional[DatahubClientConfig]:
if v is None and "sink" in values and hasattr(values["sink"], "type"):
sink_type = values["sink"].type
if sink_type == "datahub-rest":
sink_config = values["sink"].config
v = DatahubClientConfig.parse_obj_allow_extras(sink_config)
return v | [
6100,
58,
427,
1080,
3183,
1079,
947
] |
def METHOD_NAME(session, module_org):
"""When existing architecture is deleted, corresponding audit entry appear
in the application
:id: 30f2dc85-f6be-410a-9ed5-b2ea00278f49
:expectedresults: Audit entry for deleted architecture contains valid data
:CaseAutomation: Automated
:CaseLevel: Component
:CaseImportance: Medium
"""
architecture = entities.Architecture().create()
architecture.delete()
with session:
values = session.audit.search('type=architecture and action=destroy')
assert values['action_type'] == 'destroy'
assert values['resource_type'] == 'ARCHITECTURE'
assert values['resource_name'] == architecture.name
assert len(values['action_summary']) == 1
assert values['action_summary'][0]['column0'] == 'Name'
assert values['action_summary'][0]['column1'] == architecture.name | [
9,
2302,
34,
417
] |
def METHOD_NAME():
cache = LRUCache(3)
assert not cache
cache["foo"] = "bar"
assert cache | [
9,
174,
596,
863
] |
def METHOD_NAME(self):
return self._params["event_col"] | [
417,
105
] |
def METHOD_NAME(self):
actual_signature = PaymentMethod.update_signature()
expected_signature = [
"billing_address_id",
"cardholder_name",
"cvv",
"device_data",
"expiration_date",
"expiration_month",
"expiration_year",
"number",
"payment_method_nonce",
"token",
"venmo_sdk_payment_method_code",
"device_session_id",
"fraud_merchant_id",
{
"options": [
"make_default",
"skip_advanced_fraud_checking",
"us_bank_account_verification_method",
"venmo_sdk_session",
"verification_account_type",
"verification_amount",
"verification_merchant_account_id",
"verify_card",
{
"adyen":[
"overwrite_brand",
"selected_brand"
]
}
]
},
{
"billing_address" : Address.update_signature() + [{"options": ["update_existing"]}]
},
{
"three_d_secure_pass_thru": [
"cavv",
"ds_transaction_id",
"eci_flag",
"three_d_secure_version",
"xid"
]
},
]
self.assertEqual(expected_signature, actual_signature) | [
9,
86,
1334
] |
def METHOD_NAME(self):
self.fh = StringIO()
self.workbook = Workbook()
self.workbook._set_filehandle(self.fh) | [
0,
1
] |
def METHOD_NAME(self, signing_key_path):
return {
"api_url": "http://account.example.com/api",
"redirect_url": "http://account.example.com/redirect",
"sign_key": signing_key_path,
} | [
598,
4559,
200
] |
def METHOD_NAME(self):
n_gen_texture.n_create_blocks(self.n_data)
n_nitrishape = self.n_data.roots[0].children[0]
n_gen_material.n_attach_material_prop(n_nitrishape) # add nimaterialprop
n_gen_texture.n_create_store_normal_data(n_nitrishape) # store normal data as NiBinaryExtraData
n_gen_texture.n_create_texture_property(n_nitrishape) # add nitexturingprop
n_textureprop = n_nitrishape.properties[0]
n_gen_diffusemap.n_create_diffuse_map(n_textureprop, self.diffuse_texture_path) # add nitexturesource diffuse
return self.n_data | [
293,
129,
365
] |
def METHOD_NAME(self):
pass | [
1798,
157
] |
def METHOD_NAME(self):
super().METHOD_NAME()
self.user = UserFactory(password='test') | [
0,
1
] |
def METHOD_NAME(request): # ballotItemOptionsRetrieve
google_civic_election_id = convert_to_int(request.GET.get('google_civic_election_id', 0))
search_string = request.GET.get('search_string', '')
state_code = request.GET.get('state_code', '')
results = ballot_item_options_retrieve_for_api(google_civic_election_id, search_string, state_code)
response = HttpResponse(json.dumps(results['json_data']), content_type='application/json')
return response | [
2155,
1024,
1881,
404,
1179
] |
def METHOD_NAME(data, selection):
"""
Use either Orange's create_annotated_table (for at most 1 selected class
or create_groups_table (for more selected classes)
:param data: Orange data table
:param selection: classes for selected indices (0 for unselected)
:return: Orange data table with an added column
"""
if len(selection) and np.max(selection) > 1:
return create_groups_table(data, selection)
else:
return create_annotated_table(data, np.flatnonzero(selection)) | [
861,
894,
9109,
410
] |
def METHOD_NAME(target, source, env):
assert len(source) == 1
filepath = source[0].srcnode().abspath
slicc = SLICC(filepath, protocol_base.abspath, verbose=True)
slicc.process()
slicc.writeCodeFiles(output_dir.abspath, slicc_includes)
if env['CONF']['SLICC_HTML']:
slicc.writeHTMLFiles(html_dir.abspath) | [
-1,
1006
] |
def METHOD_NAME():
imp = Import(ImportSplit(".foo", "bar", None))
assert imp.fullname == ".foo.bar"
assert imp.import_as == "bar"
assert imp.split == ImportSplit(".foo", "bar", None)
assert str(imp) == "from .foo import bar" | [
9,
512,
280,
265,
1170
] |
def METHOD_NAME(self, mock_historical):
"""Test nothing returned for any sensor."""
mock_historical.return_value = (LocationSeries(), [])
test_sensors = [SensorConfig("i", "j", "k", 3), SensorConfig("a", "b", "c", 1), SensorConfig("x", "y", "z", 2)]
test_ground_truth = [LocationSeries("ca", "state")]
assert historical_sensors(
None, None, test_sensors, test_ground_truth) == {} | [
9,
6841,
6977,
654,
365
] |
def METHOD_NAME(parent, info, ffi, ffic, Event, Param):
# log.debug("Plugin.ProcessViewerEvent({0}, {1})".format(Event, Param))
return 0 | [
356,
1574,
417
] |
def METHOD_NAME(lineno, comment):
"""Return the multiline comment at lineno split into a list of
comment line numbers and the accompanying comment line"""
return [
(lineno + index, line)
for index, line in enumerate(comment.splitlines())
] | [
265,
1591
] |
def METHOD_NAME(code, path_target=None, sdk="macosx", min_os_version=None):
"""Compile metal with CLI tool from env.
Parameters
----------
code : str
The cuda code.
path_target : str, optional
Output file.
sdk : str, optional
The target platform SDK.
Return
------
metallib : bytearray
The bytearray of the metallib
"""
temp = utils.tempdir()
temp_code = temp.relpath("my_lib.metal")
temp_ir = temp.relpath("my_lib.air")
temp_target = temp.relpath("my_lib.metallib")
with open(temp_code, "w") as out_file:
out_file.write(code)
file_target = path_target if path_target else temp_target
# See:
# - https://developer.apple.com/documentation/metal/gpu_functions_libraries/building_a_library_with_metal_s_command-line_tools#overview # pylint: disable=line-too-long
#
# xcrun -sdk macosx metal -c MyLibrary.metal -o MyLibrary.air
# xcrun -sdk macosx metallib MyLibrary.air -o MyLibrary.metallib
min_target = __get_min_os_version_cmd(sdk, min_os_version)
if sdk == "macosx":
language_version = "-std=macos-metal2.3"
elif sdk in ("iphoneos", "iphonesimulator"):
language_version = "-std=ios-metal2.3"
else:
raise RuntimeError(f"Unsupported sdk: {sdk}")
cmd1 = ["xcrun", "-sdk", sdk, "metal", language_version, min_target, "-O3"]
cmd1 += ["-c", temp_code, "-o", temp_ir]
cmd2 = ["xcrun", "-sdk", sdk, "metallib"]
cmd2 += [temp_ir, "-o", file_target]
proc = subprocess.Popen(
" ".join(cmd1) + ";" + " ".join(cmd2),
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
)
(out, _) = proc.communicate()
if proc.returncode != 0:
sys.stderr.write("Compilation error:\n")
sys.stderr.write(py_str(out))
sys.stderr.flush()
libbin = None
else:
libbin = bytearray(open(file_target, "rb").read())
return libbin | [
296,
9079
] |
def METHOD_NAME(
table: IndexerTable, seen_ints: Set[int], new_last_seen_time: Optional[datetime.datetime] = None
) -> int:
if new_last_seen_time is None:
new_last_seen_time = timezone.now()
# TODO: filter out ints that we've handled recently in memcache to reduce DB load
# we may not need a cache, we should see as we dial up the accept rate
return int(
table.objects.filter(
id__in=seen_ints, last_seen__lt=(timezone.now() - timedelta(hours=12))
).update(last_seen=new_last_seen_time)
) | [
86,
5754,
679,
3959
] |
def METHOD_NAME(cls):
super().METHOD_NAME()
cls.press = helpers.create_press()
cls.journal_one, cls.journal_two = helpers.create_journals()
install.update_settings(management_command=False) | [
0,
1,
2
] |
def METHOD_NAME(shape, bits, out_dtype):
min_val = 0
max_val = 1 << bits
return np.random.randint(min_val, max_val, size=shape).astype(out_dtype) | [
567,
833,
2212
] |
def METHOD_NAME(self, session):
data = self.deserialize_http_content(session)
self.ctx.set_var(
"instance",
data,
schema_builder=self._build_schema_on_200
) | [
69,
1072
] |
def METHOD_NAME(self, msg, vtimeout):
boto.log.info('Task[%s] - running:%s' % (self.name, self.command))
log_fp = StringIO()
process = subprocess.Popen(self.command, shell=True, stdin=subprocess.PIPE,
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
nsecs = 5
current_timeout = vtimeout
while process.poll() is None:
boto.log.info('nsecs=%s, timeout=%s' % (nsecs, current_timeout))
if nsecs >= current_timeout:
current_timeout += vtimeout
boto.log.info('Task[%s] - setting timeout to %d seconds' % (self.name, current_timeout))
if msg:
msg.change_visibility(current_timeout)
time.sleep(5)
nsecs += 5
t = process.communicate()
log_fp.write(t[0])
log_fp.write(t[1])
boto.log.info('Task[%s] - output: %s' % (self.name, log_fp.getvalue()))
self.last_executed = self.now
self.last_status = process.returncode
self.last_output = log_fp.getvalue()[0:1023] | [
22
] |
def METHOD_NAME(self, path):
self._metadata = {}
with open(path, 'rb') as f:
doc = etree.parse(f)
srch = doc.find('/corplist')
if srch is None:
raise CorparchError(f'Failed to process {path} - /corplist element not found')
return self.parse_node(srch, None), self._metadata | [
214,
399,
151
] |
def METHOD_NAME(m):
# 'm' if the name of the method to override
def method(self, already_in_loop = False):
# WARNING: recursive function, so 'already_in_loop' necessary for
# us to know if we are recursing (True) or not (False)
NB_DB_CONN_TRY = 2
# FIXME: NOT YET IMPLEMENTED, but do not implement this using a
# simple time.sleep(), it would lock the main loop !!!
#TIME_BTW_CONN_TRY = 0.1 # in seconds, floats are authorized, # pyflakes.ignore
try: # do a libmysql client call : attempt to perform the old call (_old_<method>)
old_m = getattr(self, '_old_%s' % m)
ret = old_m() # success, will send the result back
return ret # send the result back
except DBAPIError, e: # failure, catch libmysql client error
if already_in_loop : # just raise the exception, they will take care of it
raise e
# see http://dev.mysql.com/doc/refman/5.1/en/error-messages-client.html
# we try to handle only situation where a reconnection worth a try
if e.orig.args[0] == 2013: # Lost connection to MySQL server during query error, but we do not raise the exception (will attempt again)
logging.getLogger().warn("Lost connection to MySQL server during query")
elif e.orig.args[0] == 2006: # MySQL server has gone away, but we do not raise the exception (will attempt again)
logging.getLogger().warn("MySQL server connection has gone away")
elif e.orig.args[0] == 2002: # Can't contact SQL server, give up
logging.getLogger().error("MySQL server is unreachable by socket while doing query")
raise e
elif e.orig.args[0] == 2003: # Can't contact SQL server, give up
logging.getLogger().error("MySQL server is unreachable by network while doing query")
raise e
else: # Other SQL error, give-up
logging.getLogger().error("Unknown MySQL error while doing query")
raise e
# handle cases where reco can be attempted again
# this is where things became tricky:
# we call ourself (new_m) with already_in_loop = True
# we also silently drop the potentially raised exception
for i in range(0, NB_DB_CONN_TRY):
try:
new_m = getattr(self, m)
ret = new_m(True)
return ret
except Exception, e:
pass
# the loop was unsuccessful, finally raise the original exception
raise e
return method | [
129,
103
] |
def METHOD_NAME(year: int, export_flattened_df_filepath: str = None) -> None:
"""
Ici on va nettoyer et formatter les donnés ERFS-FPR, pour les rendre OpenFisca-like
"""
# Step 01 : le formattage OpenFisca
#
# - Formattage des différentes variables
# - On merge les tables individus / menages
#
# Note : c'est ici où on objectivise les hypothèses, step 1
log.info('\n [[[ Year {} - Step 1 / 5 ]]] \n'.format(year))
preprocessing.build_merged_dataframes(year = year)
# Step 02 : Si on veut calculer les allocations logement, il faut faire le matching avec une autre enquête (ENL)
#
# openfisca_survey_collection = SurveyCollection(name = 'openfisca')
# stata_directory = openfisca_survey_collection.config.get('data', 'stata_directory')
# stata_file = os.path.join(stata_directory, 'log_men_ERFS.dta')
# imputation_loyer.merge_imputation_loyer(stata_file = stata_file, year = year)
log.info('\n [[[ Year {} - Step 2 / 5 SKIPPED ]]] \n'.format(year))
menage.build_variables_menage(year = year)
# Step 03 : on commence par les variables indivuelles
log.info('\n [[[ Year {} - Step 3 / 5 ]]] \n'.format(year))
variables_individuelles.build_variables_individuelles(year = year)
# Step 04 : ici on va constituer foyer et famille à partir d'invididu et ménage
#
# - On fait individu/ménage pour pouvoir faire des familles (foyers sociaux)
# - On va faire des suppositions pour faire les familles
# - On va faire les foyers fiscaux à partir des familles
# - On va faire de suppositions pour faire les foyers fiscaux
log.info('\n [[[ Year {} - Step 4 / 5 ]]] \n'.format(year))
famille.build_famille(year = year)
# Affreux ! On injectait tout dans un même DataFrame !!!
# C'est très moche !
#
# On crée une df par entité par période.
# Elles sont stockées dans un fichier h5
log.info('\n [[[ Year {} - Step 5 / 5 ]]] \n'.format(year))
final.create_input_data_frame(year = year, export_flattened_df_filepath = export_flattened_df_filepath) | [
56
] |
def METHOD_NAME(self):
return mavutil.mavlink.MAV_MISSION_TYPE_RALLY | [
10598,
11600,
44
] |
def METHOD_NAME(self):
"""
The set_language view can be used to change the session language.
The user is redirected to user redirect if the "next" argument is invalid.
"""
lang_code = self._get_inactive_language_code()
response = self.client.post(reverse("set_language"), self.set_post_data(lang_code), content_type='application/json')
self.assertEqual(response.status_code, 200)
self.assertEqual(
response.content.decode("utf-8"),
translate_url(reverse("base"), lang_code),
)
self.assertEqual(self.client.session[LANGUAGE_SESSION_KEY], lang_code)
next_url = "/not/a/real/url"
lang_code = None
response = self.client.post(reverse("set_language"), self.set_post_data(lang_code, next_url), content_type='application/json')
self.assertEqual(response.status_code, 200)
self.assertEqual(
response.content.decode("utf-8"),
translate_url(reverse("base"), "en"),
)
self.assertFalse(LANGUAGE_SESSION_KEY in self.client.session) | [
9,
13763,
1051,
243,
532
] |
def METHOD_NAME(self, data):
m = re.match("(.*)\t(.*)\n", to_unicode(data))
if m is None:
raise Exception("did not match")
status, message = m.groups()
if status == "ok":
return message
else:
raise CapError(message) | [
356,
17
] |
def METHOD_NAME(event):
del event["ingestionTime"]
event["timestamp"] = to_iso_timestr(to_utc_datetime(event["timestamp"]))
return LogEvent.from_dict(event) | [
197,
390,
417
] |
def METHOD_NAME(self, preds, target, ref_metric, fs, extended):
"""Test dtype support of the metric on GPU."""
self.run_precision_test_gpu(
preds=preds,
target=target,
metric_module=ShortTimeObjectiveIntelligibility,
metric_functional=partial(short_time_objective_intelligibility, fs=fs, extended=extended),
metric_args={"fs": fs, "extended": extended},
) | [
9,
13095,
627,
1667
] |
def METHOD_NAME(self):
return "GET" | [
103
] |
def METHOD_NAME(edges_kev):
"""Calculate bin centers from bin edges.
Args:
edges_kev: an iterable representing bin edge values
Returns:
np.array of length (len(edges_kev) - 1), representing bin center
values with the same units as the input
"""
edges_kev = np.array(edges_kev)
centers_kev = (edges_kev[:-1] + edges_kev[1:]) / 2
return centers_kev | [
762,
2683,
280,
491
] |
def METHOD_NAME() -> None:
do_test('{3}{W/P}{W/P}', ['3', 'W/P', 'W/P']) | [
9,
-1,
13343
] |
async def METHOD_NAME(
_: _DownloadPythonBuildStandaloneBinaryRequest,
platform: Platform,
tar_binary: TarBinary,
python_bootstrap: PythonBootstrapSubsystem,
bash: BashBinary,
) -> _PythonBuildStandaloneBinary:
url, fingerprint, bytelen = python_bootstrap.internal_python_build_standalone_info[
platform.value
]
filename = url.rsplit("/", 1)[-1]
python_archive = await Get(
Digest,
DownloadFile(
url,
FileDigest(
fingerprint=fingerprint,
serialized_bytes_length=bytelen,
),
),
)
download_result = await Get(
ProcessResult,
Process(
argv=[tar_binary.path, "-xvf", filename],
input_digest=python_archive,
env={"PATH": os.pathsep.join(SEARCH_PATHS)},
description="Extract Pants' execution Python",
level=LogLevel.DEBUG,
output_directories=("python",),
),
)
installation_root = f"{PythonBuildStandaloneBinary._SYMLINK_DIRNAME}/{download_result.output_digest.fingerprint}"
# NB: This is similar to what we do for every Python provider. We should refactor these into
# some shared code to centralize the behavior.
installation_script = dedent(
f"""\
if [ ! -f "{installation_root}/DONE" ]; then
cp -r python "{installation_root}"
touch "{installation_root}/DONE"
fi
"""
)
env_vars = await Get(EnvironmentVars, EnvironmentVarsRequest(["PATH"]))
await Get(
ProcessResult,
Process(
[bash.path, "-c", installation_script],
level=LogLevel.DEBUG,
input_digest=download_result.output_digest,
description="Install Python for Pants usage",
env={"PATH": env_vars.get("PATH", "")},
append_only_caches=PythonBuildStandaloneBinary.APPEND_ONLY_CACHES,
# Don't cache, we want this to always be run so that we can assume for the rest of the
# session the named_cache destination for this Python is valid, as the Python ecosystem
# mainly assumes absolute paths for Python interpreters.
cache_scope=ProcessCacheScope.PER_SESSION,
),
)
return _PythonBuildStandaloneBinary(f"{installation_root}/bin/python3") | [
136,
440,
808
] |
def METHOD_NAME(notifications: int, machines:List[str]) -> None:
_log.debug('updateNotifications(%s,%s)',notifications,machines)
try:
if config.app_window:
aw = config.app_window
# we fetch notifications if notifications are enabled within the Artisan settings, there are some unqualified notifications, or
# our machine name is in the list of machines indicating that there is a qualified notification for us
if aw.notificationsflag and (notifications>0 or aw.qmc.roastertype_setup in machines):
# should happen with less delay (0.7s) then the stock.update() (2.5s) triggered controller.connect() to avoid duplicate fetching on startup
QTimer.singleShot(700, retrieveNotifications)
except Exception as e: # pylint: disable=broad-except
_log.exception(e) | [
86,
609
] |
def METHOD_NAME(self):
with open(self.data_json, 'rb') as f:
dataset_json = json.load(f)
modalities = dataset_json["modality"]
modalities = {int(k): modalities[k] for k in modalities.keys()}
return modalities | [
19,
-1
] |
def METHOD_NAME(distributed_context_multi_node_nccl):
device = idist.device()
_test_distrib_integration(device)
_test_distrib_accumulator_device(device) | [
9,
4340,
5745,
12511,
1667
] |
def METHOD_NAME():
filename = "tests/xdsl_opt/empty_program.mlir"
opt = xDSLOptMain(args=[filename])
f = StringIO("")
with redirect_stdout(f):
opt.run()
with open(filename) as file:
expected = file.read()
assert f.getvalue().strip() == expected.strip() | [
9,
35,
735
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.