text
stringlengths
15
7.82k
ids
sequencelengths
1
7
def METHOD_NAME() -> None: assert binb._server_url("foo.com:8888", 10) == "http://foo.com:10/" assert binb._server_url("http://foo.com:8888", 10) == "http://foo.com:10/" assert binb._server_url("https://foo.com:8888", 10) == "https://foo.com:10/"
[ 9, 163, 274 ]
def METHOD_NAME(self): emr_client = mock.MagicMock emr_client.clusters = {} with mock.patch( "prowler.providers.aws.services.emr.emr_service.EMR", new=emr_client, ): # Test Check from prowler.providers.aws.services.emr.emr_cluster_master_nodes_no_public_ip.emr_cluster_master_nodes_no_public_ip import ( emr_cluster_master_nodes_no_public_ip, ) check = emr_cluster_master_nodes_no_public_ip() result = check.execute() assert len(result) == 0
[ 9, 654, 1827 ]
def METHOD_NAME( self, collection_modules: Dict[str, List[str]] ) -> None: """ Setup repository modules and streams Implementation in specialized package manager class :param dict collection_modules: unused """ raise NotImplementedError
[ 102, 1230, 468 ]
def METHOD_NAME( self, start: float = 0.0, end: float = 1000.0, n: int = 10 ) -> t.List[Decimal]: """Generate a decimal number as :py:class:`decimal.Decimal` objects. :param start: Start range. :param end: End range. :param n: Length of the list. :return: A list of random decimal numbers. """ return [self.decimal_number(start, end) for _ in range(n)]
[ 4936 ]
def METHOD_NAME(self): return self.get("query_parameters")
[ 539, 386 ]
def METHOD_NAME(entity_type, term): """Proxy to search entities on remote server. Currently, we only search on MEF remote servers. If multiple remote sources are possible to search, a request must be sent to each remote API and all result must be unified into a common response. :param entity_type: The type of entities to search. :param term: the searched term. """ try: return MEFProxyFactory.create_proxy(entity_type).search(term) except ValueError as err: abort(400, str(err))
[ 2437, 1070, 127 ]
def METHOD_NAME(self): self.fw_one.list_of_all_included_files.append('foo') self.fw_two.list_of_all_included_files.append('foo') result = self.c_plugin.compare_function([self.fw_one, self.fw_two]) assert len(result.keys()) == 5 # noqa: PLR2004
[ 9, 22, 979, 2793 ]
def METHOD_NAME(self, event: QGraphicsSceneDragDropEvent): event.accept()
[ 2572, 132, 417 ]
def METHOD_NAME(self): a = "A" * 0x10000 self.assertRaises(MemoryError, strop.replace, a, "A", a)
[ 9, -1, 1482 ]
def METHOD_NAME(self): return problem_data_storage.exists('%s/init.yml' % self.problem.code)
[ 220, 5024 ]
def METHOD_NAME(self): schema = self._get_schema() schema.validate({"name": "Eggs", "slaves": "eth0"})
[ 9, 187, 652 ]
def METHOD_NAME(ch: channel.Channel) -> None: ch.sendline("echo Hello; echo World", read_back=True) out_s = ch.readline() assert out_s == "Hello\n" out_s = ch.readline() assert out_s == "World\n"
[ 9, 53, 2532 ]
def METHOD_NAME(**kwargs): test_passed = True for k, v in kwargs.items(): # check for incorrect types if ( (k == "X") or (k == "X_test") or (k == "y") or (k == "y_test") or (k == "y_true") or (k == "y_probas") ): # FIXME: do this individually if not isinstance( v, ( Sequence, Iterable, np.ndarray, np.generic, pd.DataFrame, pd.Series, list, ), ): wandb.termerror("%s is not an array. Please try again." % (k)) test_passed = False # check for classifier types if k == "model": if (not sklearn.base.is_classifier(v)) and ( not sklearn.base.is_regressor(v) ): wandb.termerror( "%s is not a classifier or regressor. Please try again." % (k) ) test_passed = False elif k == "clf" or k == "binary_clf": if not (sklearn.base.is_classifier(v)): wandb.termerror("%s is not a classifier. Please try again." % (k)) test_passed = False elif k == "regressor": if not sklearn.base.is_regressor(v): wandb.termerror("%s is not a regressor. Please try again." % (k)) test_passed = False elif k == "clusterer": if not (getattr(v, "_estimator_type", None) == "clusterer"): wandb.termerror("%s is not a clusterer. Please try again." % (k)) test_passed = False return test_passed
[ 9, 119 ]
def METHOD_NAME(self): submission = dict(self.MOCK_TEAM_SUBMISSION) submission['submission_uuids'] = [] with self.assertRaises(AssessmentWorkflowInternalError): with self.mock_submissions_api_get(submission): TeamAssessmentWorkflow.start_workflow(self.team_submission_uuid)
[ 9, 447, 3855, 654, 2150, 1469 ]
def METHOD_NAME(): # Nintendo with Image.open("Tests/images/sugarshack.mpo") as im: exif = im.getexif() assert exif.get_ifd(0x927C)[0x1101]["Parallax"] == -44.798187255859375 # Fujifilm with Image.open("Tests/images/fujifilm.mpo") as im: im.seek(1) exif = im.getexif() assert exif.get_ifd(0x927C)[0xB211] == -3.125
[ 9, 17537 ]
def METHOD_NAME(monkeypatch): monkeypatch.setattr('processor.template_processor.base.base_template_processor.get_collection_size', mock_get_collection_size) monkeypatch.setattr('processor.template_processor.base.base_template_processor.create_indexes', mock_create_indexes) monkeypatch.setattr('processor.template_processor.base.base_template_processor.insert_one_document', mock_insert_one_document) from processor.template_processor.google_template_processor import GoogleTemplateProcessor node_data = template_processor_kwargs["snapshot"]["nodes"][0] template_processor = GoogleTemplateProcessor(node_data, **template_processor_kwargs) snapshot_data = template_processor.populate_template_snapshot() assert snapshot_data == { 'SNAPSHOT_1': True } assert template_processor.processed_template != None assert template_processor.processed_template["resources"][0]["properties"]["steps"][0]["args"][1] == "deployments"
[ 9, 3914, 671, 394, 2019 ]
def METHOD_NAME(ann_file, tem_results_dir, pgm_proposals_dir, pgm_proposals_thread, **kwargs): """Generate proposals using multi-process. Args: ann_file (str): A json file path of the annotation file for all videos to be processed. tem_results_dir (str): Directory to read tem results pgm_proposals_dir (str): Directory to save generated proposals. pgm_proposals_thread (int): Total number of threads. kwargs (dict): Keyword arguments for "generate_candidate_proposals". """ video_infos = load_video_infos(ann_file) num_videos = len(video_infos) num_videos_per_thread = num_videos // pgm_proposals_thread processes = [] manager = mp.Manager() result_dict = manager.dict() kwargs['result_dict'] = result_dict for tid in range(pgm_proposals_thread - 1): tmp_video_list = range(tid * num_videos_per_thread, (tid + 1) * num_videos_per_thread) p = mp.Process( target=generate_candidate_proposals, args=( tmp_video_list, video_infos, tem_results_dir, ), kwargs=kwargs) p.start() processes.append(p) tmp_video_list = range((pgm_proposals_thread - 1) * num_videos_per_thread, num_videos) p = mp.Process( target=generate_candidate_proposals, args=( tmp_video_list, video_infos, tem_results_dir, ), kwargs=kwargs) p.start() processes.append(p) for p in processes: p.join() # save results os.makedirs(pgm_proposals_dir, exist_ok=True) prog_bar = mmengine.ProgressBar(num_videos) header = 'tmin,tmax,tmin_score,tmax_score,score,match_iou,match_ioa' for video_name in result_dict: proposals = result_dict[video_name] proposal_path = osp.join(pgm_proposals_dir, video_name + '.csv') np.savetxt( proposal_path, proposals, header=header, delimiter=',', comments='') prog_bar.update()
[ 567, 4528 ]
def METHOD_NAME(self): try: import Metal except ImportError: logging.error("Failure to import Metal, please install pyobjc-framework-Metal") raise import objc dtype_out = vaex.dtype(self.return_dtype).numpy if dtype_out.name == "float64": dtype_out = np.dtype("float32") warnings.warn("Casting output from float64 to float32 since Metal does not support float64") ast_node = expresso.parse_expression(self.expression) cppcode = node_to_cpp(ast_node) typemap = {'float32': 'float', 'float64': 'float'} # we downcast! for name in vaex.array_types._type_names_int: typemap[name] = f'{name}_t' typenames = [typemap[dtype.name] for dtype in self.argument_dtypes] metal_args = [f'const device {typename} *{name}_array [[buffer({i})]]' for i, (typename, name) in enumerate(zip(typenames, self.arguments))] code_get_scalar = [f' {typename} {name} = {name}_array[id];\n' for typename, name, in zip(typenames, self.arguments)] sourcecode = '''
[ 296 ]
def METHOD_NAME(self): """Test the init method of the documentation filter form""" # get user test_user = User.objects.get(username='testuser_filter_forms') # get user config user_config = UserConfigModel.objects.get( user_config_username=test_user, filter_view='documentation' ) # get notestatus notestatus = Notestatus.objects.get(notestatus_name='test_filter_forms_status') # get object beofre assignment form_wo_notestatus = DocumentationFilterForm( data={'user_config_id': user_config.user_config_id}, instance=user_config ) # assign notestatus user_config.filter_list_status = notestatus user_config.save() # get object form_with_notestatus = DocumentationFilterForm( data={'user_config_id': user_config.user_config_id}, instance=user_config ) # compare self.assertFalse('filter_list_status' in form_wo_notestatus.initial) self.assertEqual( form_with_notestatus.initial['filter_list_status'], notestatus.notestatus_id )
[ 9, 1200, 527, 1029, 176 ]
def METHOD_NAME(self): path1 = os.path.join(settings.FILEBROWSER_ROOT, '1/a/path') path2 = os.path.join(settings.FILEBROWSER_ROOT, 'not_int/a/path') path3 = 'not_int/a/path' path4 = '1/a/path' self.assertEqual(displayed_path(path1), 'home/a/path') self.assertEqual(displayed_path(path2), 'not_int/a/path') self.assertEqual(displayed_path(path3), 'not_int/a/path') self.assertEqual(displayed_path(path4), 'home/a/path')
[ 9, 4898, 157 ]
def METHOD_NAME(lst: list): """Argmax function. Parameters ---------- lst """ return max(range(len(lst)), key=lst.__getitem__)
[ 2098 ]
f METHOD_NAME(self):
[ 9, 599, 3272 ]
def METHOD_NAME(self): # empty g = GroupCoordinates([]) # same dims, unstacked c1 = Coordinates([[0, 1], [0, 1]], dims=["lat", "lon"]) c2 = Coordinates([[10, 11], [10, 11]], dims=["lat", "lon"]) g = GroupCoordinates([c1, c2]) # same dims, stacked c2 = Coordinates([[[0, 1], [0, 1]]], dims=["lat_lon"]) c2 = Coordinates([[[10, 11], [10, 11]]], dims=["lat_lon"]) g = GroupCoordinates([c1, c2]) # different order c1 = Coordinates([[0, 1], [0, 1]], dims=["lat", "lon"]) c2 = Coordinates([[10, 11], [10, 11]], dims=["lon", "lat"]) g = GroupCoordinates([c1, c2]) # different stacking c1 = Coordinates([[0, 1], [0, 1]], dims=["lat", "lon"]) c2 = Coordinates([[[10, 11], [10, 11]]], dims=["lat_lon"]) g = GroupCoordinates([c1, c2])
[ 9, 176 ]
def METHOD_NAME( settings, client, test_user ): # Given settings.MAX_PASSWORD_RESET_EMAILS = 2 settings.PASSWORD_RESET_EMAIL_COOLDOWN = 60 * 60 * 24 url = reverse("api-v1:custom_auth:ffadminuser-reset-password") data = {"email": test_user.email} # First, let's hit the limit of emails we can send for _ in range(5): response = client.post( url, data=json.dumps(data), content_type="application/json" ) assert response.status_code == status.HTTP_204_NO_CONTENT # Then - we should only have two emails assert len(mail.outbox) == 2 mail.outbox.clear() # Next, let's reset the password reset_password_data = { "new_password": "new_password", "re_new_password": "new_password", "uid": utils.encode_uid(test_user.pk), "token": default_token_generator.make_token(test_user), } reset_password_confirm_url = reverse( "api-v1:custom_auth:ffadminuser-reset-password-confirm" ) response = client.post( reset_password_confirm_url, data=json.dumps(reset_password_data), content_type="application/json", ) assert response.status_code == status.HTTP_204_NO_CONTENT # Finally, let's try to send another email client.post(url, data=json.dumps(data), content_type="application/json") # Then - we should receive another email assert len(mail.outbox) == 1
[ 9, 353, 656, 2897, 5814, 1585, 1467 ]
def METHOD_NAME(self) -> Generator[CursorWrapper, None, None]: ...
[ 5944, 550 ]
def METHOD_NAME(module, inputs, outputs): nonlocal header nonlocal fp if trainer.training: values = [] headers = [] for n, i in enumerate(inputs): if isinstance(i, torch.Tensor) and ( i.dtype == torch.float or i.dtype == torch.half or i.dtype == torch.bfloat16 ): if not header: headers.append('input') input_norm = i.data.norm() values.append(f'{input_norm}') logger(f'debug_info_forward/{name}_rank{rank}_input{n}', input_norm) if isinstance(outputs, tuple): for n, i in enumerate(outputs): if isinstance(i, torch.Tensor) and ( i.dtype == torch.float or i.dtype == torch.half or i.dtype == torch.bfloat16 ): if not header: headers.append('output') output_norm = i.data.norm() values.append(f'{output_norm}') logger(f'debug_info_forward/{name}_rank{rank}_output{n}', output_norm) else: headers.append('output') values.append(f'{outputs.data.norm()}') values.append(f'{trainer.global_step}') if not header: headers.append('step') fp.write(','.join(headers) + '\n') header = True fp.write(','.join(values) + '\n') fp.flush()
[ 76, 1021 ]
def METHOD_NAME(file_name: str, graphs: Dict[str, pynini.FstLike]): """ Exports graph as OpenFst finite state archive (FAR) file with given file name and rule name. Args: file_name: exported file name graphs: Mapping of a rule name and Pynini WFST graph to be exported """ exporter = export.Exporter(file_name) for rule, graph in graphs.items(): exporter[rule] = graph.optimize() exporter.close() print(f"Created {file_name}")
[ 1443, 57 ]
def METHOD_NAME(self): """Verify that old password is correct""" old_password = self.cleaned_data['old_password'] is_valid_password = self.account.check_password(old_password) if not is_valid_password: self.clear_passwords(self.cleaned_data) raise forms.ValidationError('Password is incorrect') return
[ 1356, 2228, 2897 ]
def METHOD_NAME(self): """Test Initialization of AddresFilter.Range.""" assert AddressFilter.Range("*").get_range() == (0, 65535) assert AddressFilter.Range("5").get_range() == (5, 5) assert AddressFilter.Range("0").get_range() == (0, 0) assert AddressFilter.Range("3-5").get_range() == (3, 5) assert AddressFilter.Range("5-3").get_range() == (3, 5) assert AddressFilter.Range("-5").get_range() == (0, 5) assert AddressFilter.Range("5-").get_range() == (5, 65535) assert AddressFilter.Range("70-100").get_range() == (70, 100)
[ 9, 661, 7319 ]
def METHOD_NAME(tp, value, tb=None): if value.__traceback__ is not tb: raise value.with_traceback(tb) raise value
[ 4922 ]
def METHOD_NAME(): #ns=Pyro.naming.NameServerLocator().getNS() ns = hybrid_ns.getNS() #tq = Pyro.core.getProxyForURI("PYRONAME://" + taskQueueName) procName = compName + ' - PID:%d' % os.getpid() import logging logging.basicConfig(filename='taskWorkerZC_%d.log' % os.getpid(), level=logging.INFO) logger = logging.getLogger(__file__) serverFails = {} #loop forever asking for tasks while 1: queueNames = ns.list('TaskQueues') #print queueNames tasks = [] #loop over all queues, looking for tasks to process while len(tasks) == 0 and len(queueNames) > 0: #try queue on current machine first #print queueNames if compName in queueNames: qName = compName queueNames.remove(qName) else: #pick a queue at random qName = queueNames.pop(random.randint(0, len(queueNames)-1)) try: #print qName tq = Pyro.core.getProxyForURI(ns.resolve(qName)) tq._setTimeout(10) tq._setOneway(['returnCompletedTask']) #print qName #ask the queue for tasks logging.debug('Getting tasks from server') tasks = tq.getTasks(procName, PYME.version.version) logging.debug('Got %d tasks' % len(tasks)) #we succesfully contacted the server, so reset it's fail count serverFails[qName] = 0 except Pyro.core.ProtocolError as e: logging.exception('Pyro error: %s' %e.message) if e.message == 'connection failed': #remember that the server failed - and put it 'on notice' nFails = 1 if qName in serverFails.keys(): nFails += serverFails[qName] serverFails[qName] = nFails if False:#nFails >= 4: #server is dead in the water - put it out of it's misery print(('Killing:', qName)) try: ns.unregister('TaskQueues.%s' % qName) except Pyro.errors.NamingError: pass except Exception: import traceback logger.exception(traceback.format_exc()) #pass if len(tasks) == 0: #no queues had tasks logger.debug('No tasks avaialable, waiting') time.sleep(1) #put ourselves to sleep to avoid constant polling #else: # print qName, len(tasks) #results = [] #loop over tasks - we pop each task and then delete it after processing #to keep memory usage down while len(tasks) > 0: #get the next task (a task is a function, or more generally, a class with #a __call__ method task = tasks.pop(0) try: #execute the task, t1 = time.time() logger.debug('running task') res = task(taskQueue=tq) t2 = time.time() if not task.resultsURI is None: # new style way of returning results to reduce load on server from PYME.IO import clusterResults clusterResults.fileResults(task.resultsURI, res) logging.debug('Returning task for frame %d' % res.index) tq.returnCompletedTask(res, procName, t2-t1) except: import traceback logger.exception('Error returning results') traceback.print_exc() del task #tq.returnCompletedTasks(results, name) del tasks #del results
[ 57 ]
def METHOD_NAME(loader_factory): loader = loader_factory( dataset=get_dataset(), prediction_interval_length=0.001, context_interval_length=0.0001, is_train=True, override_args={"batch_size": 5}, ) batches = list(loader) batch = batches[0] assert ( batch["past_target"].shape[1] == batch["future_target"].shape[1] == 1 ) assert ( batch["past_target"].shape[0] == batch["future_target"].shape[0] == 5 )
[ 9, 849, 467, 1707, 9623 ]
def METHOD_NAME(self): with self.assertRaises(RuntimeError) as cm: edit_metadata('pippo', in_place=True, exception_type=RuntimeError, metadata_path=TEST_NEW_META_YML) self.assertEqual('Input path must point to ZARR dataset directory.', f'{cm.exception}') with self.assertRaises(RuntimeError) as cm: edit_metadata(TEST_CUBE_ZARR, exception_type=RuntimeError, metadata_path=TEST_NEW_META_YML) self.assertEqual('Output path must be given.', f'{cm.exception}') with self.assertRaises(RuntimeError) as cm: edit_metadata(TEST_CUBE_ZARR, output_path=TEST_CUBE_ZARR, exception_type=RuntimeError, metadata_path=TEST_NEW_META_YML) self.assertEqual('Output path already exists.', f'{cm.exception}') with self.assertRaises(RuntimeError) as cm: edit_metadata(TEST_CUBE_ZARR, output_path='./' + TEST_CUBE_ZARR, exception_type=RuntimeError, metadata_path=TEST_NEW_META_YML) self.assertEqual('Output path already exists.', f'{cm.exception}')
[ 9, 4538 ]
def METHOD_NAME(self, trashed_item: Any) -> str: """ Should return the name of this particular trashed item to display in the trash modal. :param trashed_item: The item to be named. :return The name of the trashed_item """ pass
[ 19, 156 ]
def METHOD_NAME(self): problem = { "num_vars": 2, "bounds": [[0, 1], [0, 1]], "names": ["var1", "var2"], "groups": ["group1", "group1"], } actual = sample(problem, 10, seed=42) expected = np.array( [ [0.8601115, 0.8601115], [0.27319939, 0.27319939], [0.03745401, 0.03745401], [0.60580836, 0.60580836], [0.78661761, 0.78661761], [0.97080726, 0.97080726], [0.35986585, 0.35986585], [0.19507143, 0.19507143], [0.41560186, 0.41560186], [0.51559945, 0.51559945], ] ) np.testing.assert_allclose(actual, expected)
[ 9, 8302, 734, 206, 846 ]
f METHOD_NAME(self):
[ 9, 19, 1735, 61, 773, 3286, 668 ]
def METHOD_NAME(*args, **kwargs): if is_admin(): return f(*args, **kwargs) else: if request.content_type == "application/json": abort(403) else: return redirect(url_for("auth.login", next=request.full_path))
[ 13531, 246, 291 ]
def METHOD_NAME(self, reconstruction_settings: dict): """ Replaces the currently stored reconstruction model settings with the given dictionary :param reconstruction_settings: a dictionary containing the reconstruction model settings """ self[Tags.RECONSTRUCTION_MODEL_SETTINGS] = Settings(reconstruction_settings)
[ 0, 7942, 817 ]
def METHOD_NAME(): # Field mapping. And which fields should be turned into integers. # See https://en.wikipedia.org/wiki/Template:CongLinks for what's possibly available. fieldmap = { "congbio": "bioguide", #"fec": "fec", # handled specially... "govtrack": "govtrack", # for sanity checking since we definitely have this already (I caught some Wikipedia errors) "opensecrets": "opensecrets", "votesmart": "votesmart", "cspan": "cspan", } int_fields = ("govtrack", "votesmart", "cspan") # default to not caching cache = utils.flags().get('cache', False) # Load legislator files and map bioguide IDs. y1 = utils.load_data("legislators-current.yaml") y2 = utils.load_data("legislators-historical.yaml") bioguides = { } for y in y1+y2: bioguides[y["id"]["bioguide"]] = y # Okay now the Wikipedia stuff... def get_matching_pages(): # Does a Wikipedia API search for pages containing either of the # two templates. Returns the pages. page_titles = set() for template in ("CongLinks", "CongBio"): eicontinue = "" while True: # construct query URL, using the "eicontinue" of the last query to get the next batch url = 'http://en.wikipedia.org/w/api.php?action=query&list=embeddedin&eititle=Template:%s&eilimit=500&format=xml' % template if eicontinue: url += "&eicontinue=" + eicontinue # load the XML print("Getting %s pages (%d...)" % (template, len(page_titles))) dom = lxml.etree.fromstring(utils.download(url, None, True)) # can't cache eicontinue probably for pgname in dom.xpath("query/embeddedin/ei/@title"): page_titles.add(pgname) # get the next eicontinue value and loop eicontinue = dom.xpath("string(query-continue/embeddedin/@eicontinue)") if not eicontinue: break return page_titles # Get the list of Wikipedia pages that use any of the templates we care about. page_list_cache_file = os.path.join(utils.cache_dir(), "legislators/wikipedia/page_titles") if cache and os.path.exists(page_list_cache_file): # Load from cache. matching_pages = open(page_list_cache_file).read().split("\n") else: # Query Wikipedia API and save to cache. matching_pages = get_matching_pages() utils.write(("\n".join(matching_pages)), page_list_cache_file) # Filter out things that aren't actually pages (User:, Talk:, etcetera, anything with a colon). matching_pages = [p for p in matching_pages if ":" not in p] # Load each page's content and parse the template. for p in sorted(matching_pages): if " campaign" in p: continue if " (surname)" in p: continue if "career of " in p: continue if "for Congress" in p: continue if p.startswith("List of "): continue if p in ("New York in the American Civil War", "Upper Marlboro, Maryland"): continue # Query the Wikipedia API to get the raw page content in XML, # and then use XPath to get the raw page text. url = "http://en.wikipedia.org/w/api.php?action=query&titles=" + urllib.parse.quote(p.encode("utf8")) + "&export&exportnowrap" cache_path = "legislators/wikipedia/pages/" + p dom = lxml.etree.fromstring(utils.download(url, cache_path, not cache)) page_content = dom.xpath("string(mw:page/mw:revision/mw:text)", namespaces={ "mw": "http://www.mediawiki.org/xml/export-0.8/" }) # Build a dict for the IDs that we want to insert into our files. new_ids = { "wikipedia": p # Wikipedia page name, with spaces for spaces (not underscores) } if "CongLinks" in page_content: # Parse the key/val pairs in the template. m = re.search(r"\{\{\s*CongLinks\s+([^}]*\S)\s*\}\}", page_content) if not m: continue # no template? for arg in m.group(1).split("|"): if "=" not in arg: continue key, val = arg.split("=", 1) key = key.strip() val = val.strip() if val and key in fieldmap: try: if fieldmap[key] in int_fields: val = int(val) except ValueError: print("invalid value", key, val) continue if key == "opensecrets": val = val.replace("&newMem=Y", "").replace("&newmem=Y", "").replace("&cycle=2004", "").upper() new_ids[fieldmap[key]] = val if "bioguide" not in new_ids: continue new_ids["bioguide"] = new_ids["bioguide"].upper() # hmm bioguide = new_ids["bioguide"] else: m = re.search(r"\{\{\s*CongBio\s*\|\s*(\w+)\s*\}\}", page_content) if not m: continue # no template? bioguide = m.group(1).upper() if not bioguide in bioguides: print("Member not found: " + bioguide, p, "(Might have been a delegate to the Constitutional Convention.)") continue # handle FEC ids specially because they are stored in an array... fec_id = new_ids.get("fec") if fec_id: del new_ids["fec"] member = bioguides[bioguide] member["id"].update(new_ids) # ...finish the FEC id. if fec_id: if fec_id not in bioguides[bioguide]["id"].get("fec", []): bioguides[bioguide]["id"].setdefault("fec", []).append(fec_id) #print p.encode("utf8"), new_ids utils.save_data(y1, "legislators-current.yaml") utils.save_data(y2, "legislators-historical.yaml")
[ 22 ]
def METHOD_NAME(param=None): werkzeug_logger_to_error() configure_root_logger() dci_app = DciControlServer() dci_app.url_map.converters["uuid"] = utils.UUIDConverter logger.info("dci control server startup") def handle_api_exception(api_exception): response = flask.jsonify(api_exception.to_dict()) response.status_code = api_exception.status_code logger.exception(api_exception) return response def handle_dbapi_exception(dbapi_exception): db_exception = exceptions.DCIException(str(dbapi_exception)).to_dict() response = flask.jsonify(db_exception) response.status_code = 400 logger.exception(dbapi_exception) return response @dci_app.before_request def before_request(): flask.g.team_admin_id = dci_app.team_admin_id flask.g.team_redhat_id = dci_app.team_redhat_id flask.g.team_epm_id = dci_app.team_epm_id for i in range(5): try: flask.g.engine = dci_app.engine flask.g.db_conn = dci_app.engine.connect() flask.g.session = sessionmaker(bind=dci_app.engine)() break except Exception: logging.warning( "failed to connect to the database, " "will retry in 1 second..." ) time.sleep(1) pass flask.g.store = dci_app.store flask.g.sender = dci_app.sender @dci_app.teardown_request def teardown_request(_): try: flask.g.session.close() except Exception: logging.warning( "There's been an arror while calling session.close() in teardown_request." ) try: flask.g.db_conn.close() except Exception: logging.warning( "There's been an error while calling db_conn.close() in teardown_request." ) # Registering REST error handler dci_app.register_error_handler(exceptions.DCIException, handle_api_exception) dci_app.register_error_handler(sa_exc.DBAPIError, handle_dbapi_exception) # Registering REST API v1 dci_app.register_blueprint(api_v1.api, url_prefix="/api/v1") # Registering custom encoder dci_app.json_encoder = utils.JSONEncoder return dci_app
[ 129, 991 ]
def METHOD_NAME(x): """Scale appropriately to between +/- 1.""" return 0.95 * x / np.max(np.abs(x))
[ 930, 4463 ]
def METHOD_NAME(sentence): filtered_sentence = re.sub("[^A-Za-z0-9]+", " ", sentence).split() filtered_sentence = [token for token in filtered_sentence if len(token) > 2] return set(filtered_sentence)
[ 4022 ]
def METHOD_NAME(monkeypatch, caplog, value, is_valid, expected): versions = version.WebEngineVersions.from_pyqt('5.15.3') monkeypatch.setenv('QUTE_DARKMODE_VARIANT', value) with caplog.at_level(logging.WARNING): assert darkmode._variant(versions) == expected log_msg = 'Ignoring invalid QUTE_DARKMODE_VARIANT=invalid_value' assert (log_msg in caplog.messages) != is_valid
[ 9, 933, 345 ]
f METHOD_NAME(self):
[ 9, 1471, 69, 374, 584 ]
def METHOD_NAME(s): s = s.group(1) if s[0] == '#': # numeric charref if s[1] in 'xX': num = int(s[2:].rstrip(';'), 16) else: num = int(s[1:].rstrip(';')) if num in _invalid_charrefs: return _invalid_charrefs[num] if 0xD800 <= num <= 0xDFFF or num > 0x10FFFF: return '\uFFFD' if num in _invalid_codepoints: return '' return chr(num) else: # named charref if s in _html5: return _html5[s] # find the longest matching name (as defined by the standard) for x in range(len(s)-1, 1, -1): if s[:x] in _html5: return _html5[s[:x]] + s[x:] else: return '&' + s
[ 369, 13872 ]
def METHOD_NAME(cls): super().METHOD_NAME() cls.collection = api.create_collection(title="Collection") cls.bundle = api.create_bundle(cls.collection.uuid, title="Test Bundle", slug="test") cls.draft = api.get_or_create_bundle_draft(cls.bundle.uuid, draft_name="test-draft")
[ 0, 1, 2 ]
def METHOD_NAME(self, hge_ctx, transport): check_query_f(hge_ctx, self.dir() + '/openapi_post_endpoint_test_recursive_arg.yaml', transport)
[ 9, 841, 41, 2203, 718 ]
def METHOD_NAME( cache_set_many_mock, default_projectkey, project_config_get_mock, globalconfig_get_mock_config ): build_project_config( public_key=default_projectkey.public_key, update_reason="test", ) assert cache_set_many_mock.call_count == 1 # Using a tuple because that's the format `.args` uses assert cache_set_many_mock.call_args.args == ( {default_projectkey.public_key: {"is_mock_config": True}}, )
[ 9, 758, 5033, 200, 409, 596 ]
def METHOD_NAME(): usage = ''' Encodes or decodes JSON Web Tokens based on input. %(prog)s [options] <command> [options] input Decoding examples: %(prog)s --key=secret decode json.web.token %(prog)s decode --no-verify json.web.token Encoding requires the key option and takes space separated key/value pairs separated by equals (=) as input. Examples: %(prog)s --key=secret encode iss=me exp=1302049071 %(prog)s --key=secret encode foo=bar exp=+10 The exp key is special and can take an offset to current Unix time. ''' arg_parser = argparse.ArgumentParser( prog='pyjwt', usage=usage ) arg_parser.add_argument( '-v', '--version', action='version', version='%(prog)s ' + __version__ ) arg_parser.add_argument( '--key', dest='key', metavar='KEY', default=None, help='set the secret key to sign with' ) arg_parser.add_argument( '--alg', dest='algorithm', metavar='ALG', default='HS256', help='set crypto algorithm to sign with. default=HS256' ) subparsers = arg_parser.add_subparsers( title='PyJWT subcommands', description='valid subcommands', help='additional help' ) # Encode subcommand encode_parser = subparsers.add_parser('encode', help='use to encode a supplied payload') payload_help = """Payload to encode. Must be a space separated list of key/value pairs separated by equals (=) sign.""" encode_parser.add_argument('payload', nargs='+', help=payload_help) encode_parser.set_defaults(func=encode_payload) # Decode subcommand decode_parser = subparsers.add_parser('decode', help='use to decode a supplied JSON web token') decode_parser.add_argument( 'token', help='JSON web token to decode.', nargs='?') decode_parser.add_argument( '-n', '--no-verify', action='store_false', dest='verify', default=True, help='ignore signature and claims verification on decode' ) decode_parser.set_defaults(func=decode_payload) return arg_parser
[ 56, 2345 ]
def METHOD_NAME(basename, pattern=None): """ Return a list of tuples containing 'active' filenames and modified times. Inputs: basename[str]: The base filename (e.g., file_out.e) pattern[str]: (Optional) Additional files to consider via glob pattern (e.g., file_out.e-s*) """ def file_number(fname): idx = fname.find('.e-s') return int(fname[idx+4:]) if idx > 0 else 0 # List of all matching filenames filenames = [basename] if pattern: filenames += glob.glob(pattern) filenames.sort(key=file_number) # Minimum filename modified time modified = os.path.getmtime(filenames[0]) if os.path.exists(filenames[0]) else 0 # Populate a list of tuples: (filename, modified time) output = [] for filename in filenames: current_modified = os.path.getmtime(filename) if os.path.exists(filename) else 0 if current_modified >= modified: output.append((filename, current_modified)) return output
[ 19, 923, 3932 ]
def METHOD_NAME(): env: cy.CylonEnv = cy.CylonEnv(config=cy.MPIConfig(), distributed=True) print("CylonEnv Initialized: My rank: ", env.rank) inputFile1 = "data/input/cities_a_" + str(env.rank) + ".csv" inputFile2 = "data/input/cities_b_" + str(env.rank) + ".csv" unionFile = "data/output/union_cities_" + str(env.rank) + ".csv" df1 = gcy.DataFrame.from_cudf(cudf.read_csv(inputFile1)) df2 = gcy.DataFrame.from_cudf(cudf.read_csv(inputFile2)) print("df1: \n", df1) print("df2: \n", df2) unionDf = df1.set_union(other=df2, env=env) unionDf.to_cudf().to_csv(unionFile, index=False) print(env.rank, " written unionFile to the file: ", unionFile) env.finalize()
[ 370, 3006, 1537 ]
def METHOD_NAME(sort_options): """Get defualt sort option for Invenio-Search-JS.""" return sorted_options(sort_options)[0]['value']
[ 235, -1 ]
def METHOD_NAME(cls, dmd, name): """Return global catalog by name.""" catalog = getattr( dmd.Devices, "{}_{}Search".format(cls.zenpack_name.replace('.', '_'), name), None) if catalog: return catalog else: return cls.create_global_catalog(dmd, name)
[ 19, 285, 2824 ]
def METHOD_NAME(self): return self.native.get_sensitive()
[ 19, 1111 ]
def METHOD_NAME(self): super(CachedFixtureTestCase, self).METHOD_NAME()
[ 72, 1843 ]
def METHOD_NAME(self, method): self.v1 = TinyVector(list(range(1, 11))) self.v2 = TinyVector(list(range(11, 21))) self.a1 = numpy.array(self.v1) self.a2 = numpy.array(self.v2) self.l1 = list(self.v1) self.l2 = list(self.v2) self.scalar = 3
[ 102, 103 ]
def METHOD_NAME(a, b): if a == 0 or b == 0: return 0 return alog[(log[a & 0xFF] + log[b & 0xFF]) % 255]
[ 1998 ]
def METHOD_NAME(arg): logger.info('fail') logger.info(arg)
[ 69, 353, 168 ]
def METHOD_NAME() -> LevelUpMove: return LevelUpMove( u16(random.randint(1, 65_535)), u16(random.randint(1, 65_535)) )
[ 5456, 33, 1, 132 ]
def METHOD_NAME(pipeline_response): deserialized = self._deserialize("OperationList", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem)
[ 297, 365 ]
def METHOD_NAME(self): config = { 'framework': 'g-api', 'model': 'model.xml', 'weights': 'weights.bin', 'device': 'CPU', 'backend': 'not_backend', 'adapter': 'classification', 'inputs': [{'name': 'data', 'type': 'INPUT'}] #'outputs': ['out'] } with pytest.raises(ConfigError): create_launcher(config)
[ 9, 3469, 141, 623, 129, 3470, 3471 ]
def METHOD_NAME(params): # (rad/s)/V, inverse of Kt return { 'Kv': 1.0 / params['Kt'] }
[ 86, 4135 ]
def METHOD_NAME(self): self.user = self.create_user(email="[email protected]", is_superuser=True) self.superuser = self.create_user(email="[email protected]", is_superuser=True) self.draft_doc = self.create_doc_integration( name="spiderman", is_draft=True, has_avatar=True ) self.published_doc = self.create_doc_integration( name="spiderwoman", is_draft=False, has_avatar=True ) self.avatar_payload = { "avatar_photo": b64encode(self.load_fixture("rookout-color.png")), "avatar_type": "upload", }
[ 0, 1 ]
def METHOD_NAME(): nn = 1024 n = tvm.runtime.convert(nn) A = te.placeholder((n,), name="A") def extern_generator(ins, outs): """Manually write the IR for the extern function, add pipeline.""" return tvm.tir.call_packed("my_extern_array_func1", ins[0], outs[0]) C = te.extern(A.shape, [A], extern_generator, name="C") s = te.create_schedule(C.op) @tvm.register_func def my_extern_array_func1(aa, bb): aa.copyto(bb) def check_target(target): if not tvm.testing.device_enabled(target): return # build and invoke the kernel. f = tvm.build(s, [A, C], target) dev = tvm.cpu(0) # launch the kernel. n = nn a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev) c = tvm.nd.array(np.zeros(n, dtype=C.dtype), dev) f(a, c) tvm.testing.assert_allclose(c.numpy(), a.numpy()) check_target("stackvm") check_target("llvm")
[ 9, 1699, 2376, 53 ]
def METHOD_NAME(self, text): """Set the selected item to the first one having the given text.""" ind = self.findText(text) if ind == -1: raise ValueError(text) #self.value = value self.setCurrentIndex(ind)
[ 0, 526 ]
def METHOD_NAME(self, exeception_to_raise, mock_invoke_context): context_mock = Mock() mock_invoke_context.return_value.__enter__.return_value = context_mock context_mock.run.side_effect = exeception_to_raise with self.assertRaises(UserException): do_cli( stack_name=None, resource_id="mock-resource-id", event="event", event_file=None, parameter={}, output=RemoteInvokeOutputFormat.TEXT, region=self.region, profile=self.profile, config_file=self.config_file, config_env=self.config_env, )
[ 9, 241, 21, 442, 4311, 130, 12153 ]
def METHOD_NAME(self, context, layout): layout.prop(self, 'mode', expand=True) layout.prop(self, 'rescale', toggle=True) layout.prop(self, 'join', toggle=True)
[ 1100, 1409 ]
def METHOD_NAME(name, path_eval=False): """Returns value of specified configuration setting.""" default_value = DEFAULTS[name] result = os.getenv(name, default_value) # split on ':' and find the first suitable path if ( path_eval and isinstance(result, str) and isinstance(default_value, str) and not isinstance(default_value, bool) ): locations = result.split(":") result = None for loc in locations: if os.path.isfile(loc): result = loc break if result is None: result = locations[0] # Check for setting that expects a boolean result. if isinstance(default_value, bool): return _cast_bool(result) # Special default for FAUCET_EVENT_SOCK. if name == "FAUCET_EVENT_SOCK": if result == "0": return "" if _cast_bool(result): return _PREFIX + "/var/run/faucet/faucet.sock" if name == "FAUCET_EVENT_SOCK_HEARTBEAT": if result == "0": return 0 return result
[ 19, 1333 ]
def METHOD_NAME(*plain_text_and_format_entities: tuple[str, list[TypeMessageEntity]]) \ -> tuple[str, list[TypeMessageEntity]]: plain_text = '' format_entities = [] surrogate_len_sum = 0 for text, entities in plain_text_and_format_entities: plain_text += text new_entities = [] for entity in entities: new_entity = copy_entity(entity) new_entity.offset += surrogate_len_sum new_entities.append(new_entity) surrogate_len_sum += surrogate_len(text) format_entities.extend(new_entities) format_entities = merge_contiguous_entities(format_entities) return plain_text, format_entities
[ 526, 61, 275, 5399, 2008 ]
def METHOD_NAME(self, args: NominatimArgs) -> int: return asyncio.METHOD_NAME(export(args))
[ 22 ]
def METHOD_NAME(step0_data): """ """ src, dest, step, cli_params = step0_data src = src[0] dest = dest[0] warp_forward_out, warp_inverse_out = register_step_label(src=src, dest=dest, step=step, verbose=cli_params.verbose)
[ 9, 372, 367, 636 ]
def METHOD_NAME(self): """ Similar to `Camera.update()`, but for OPSI. """ # self.device.screenshot() self._view_init() try: self.view.load(self.device.image) except (MapDetectionError, AttributeError) as e: logger.warning(e) logger.warning('Assuming camera is focused on grid center') def empty(*args, **kwargs): pass backup, self.view.backend.load = self.view.backend.load, empty self.view.backend.homo_loca = (53, 60) self.view.backend.left_edge = False self.view.backend.right_edge = False self.view.backend.lower_edge = False self.view.backend.upper_edge = False self.view.load(self.device.image) self.view.backend.load = backup
[ 86, 350 ]
def METHOD_NAME(self, request, project_id, cluster_id): """设置节点调度状态 通过传递状态, 设置节点的调度状态 """ params = self.params_validate(slz.NodeStatusSLZ) # NOTE: 如果状态为REMOVABLE,则期望的是停止调度状态, 以便于进一步操作 unschedulable = True if params["status"] == node_status.REMOVABLE else False client = Node(request.ctx_cluster) client.set_nodes_schedule_status(unschedulable, params["node_name_list"]) request.audit_ctx.update_fields( resource=get_nodes_repr(params["node_name_list"]), extra=params, description=_("节点停止调度") if unschedulable else _("节点允许调度"), ) return Response()
[ 0, 507, 452 ]
def METHOD_NAME(vertex, center, axis, angle): vertex,center,axis,angle = match_long_repeat([vertex, center, axis, angle]) rotated = [] for ve,ce,ax,an in zip(vertex, center, axis, angle): mat = Matrix.Rotation(radians(an), 4, ax) c = Vector(ce) rotated.append((c + mat @ ( Vector(ve) - c))[:]) return rotated
[ 2227, 2271 ]
def METHOD_NAME(self, client, access_token, user, cleanup_create_test): url = "/workers/some_worker_create_test/check-in" payload = { "username": user["username"], "cpu": 4, "memory": 2048, "disk": 4096, "offliners": ["mwoffliner", "phet"], } response = client.put( url, json=payload, headers={"Authorization": access_token} ) assert response.status_code == 204
[ 9, 4147, 80, 1794 ]
def METHOD_NAME(input_array, expected_output, expand_distance): expanded = expand_labels(input_array, expand_distance) assert_array_equal(expanded, expected_output)
[ 9, 2450, 415 ]
def METHOD_NAME(indices): lengths = torch.tensor([len(i) for i in indices], dtype=torch.int32) values = [torch.tensor(i) for i in indices] values = torch.nn.utils.rnn.pad_sequence(values, batch_first=True) return values, lengths
[ 24, 768 ]
def METHOD_NAME(example_serialized): """Parses an Example proto containing a training example of an image. """ # Dense features in Example proto. feature_map = { 'image/encoded': tf.io.FixedLenFeature([], dtype=tf.string, default_value=''), 'image/class/label': tf.io.FixedLenFeature([1], dtype=tf.int64, default_value=-1), 'image/filename': tf.io.FixedLenFeature([], dtype=tf.string, default_value="") } sparse_float32 = tf.io.VarLenFeature(dtype=tf.float32) # Sparse features in Example proto. feature_map.update( {k: sparse_float32 for k in ['image/object/bbox/xmin', 'image/object/bbox/ymin', 'image/object/bbox/xmax', 'image/object/bbox/ymax']}) features = tf.io.parse_single_example(serialized=example_serialized, features=feature_map) label = tf.cast(features['image/class/label'], dtype=tf.int32) filename = tf.cast(features['image/filename'], dtype=tf.string) return features['image/encoded'], label, filename
[ 214, 1441, 2640 ]
def METHOD_NAME(self): actual = ping._get_ping_command_args_list( ping.PingCommandParams( host_or_ip='google.com', num_packets=4, timeout_secs=5, ), ) self.assertEqual( ['ping', 'google.com', '-c', '4', '-w', '5'], actual, ) actual = ping._get_ping_command_args_list( ping.PingCommandParams( host_or_ip='google.com', num_packets=None, timeout_secs=None, ), ) self.assertEqual( ['ping', 'google.com', '-c', '4', '-w', '20'], actual, )
[ 9, 559 ]
def METHOD_NAME(self, shared_state): aiplatform.init( project=e2e_base._PROJECT, location=e2e_base._LOCATION, ) vertex_dataset_name = f"projects/{e2e_base._PROJECT}/locations/{e2e_base._LOCATION}/datasets/dataset" artifact = google_artifact_schema.VertexDataset( vertex_dataset_name=vertex_dataset_name, display_name=self.artifact_display_name, metadata=self.artifact_metadata, description=self.artifact_description, ).create() shared_state["resources"].append(artifact) expected_metadata = self.artifact_metadata.copy() expected_metadata["resourceName"] = vertex_dataset_name assert artifact.display_name == self.artifact_display_name assert json.dumps(artifact.metadata, sort_keys=True) == json.dumps( expected_metadata, sort_keys=True ) assert artifact.schema_title == "google.VertexDataset" assert artifact.description == self.artifact_description assert "/metadataStores/default/artifacts/" in artifact.resource_name assert ( artifact.uri == f"https://{e2e_base._LOCATION}-aiplatform.googleapis.com/v1/{vertex_dataset_name}" )
[ 9, 3399, 126, 1831, 129 ]
f METHOD_NAME(self):
[ 947, 2962, 497, 912 ]
def METHOD_NAME(self): result1 = _locale._getdefaultlocale() result2 = _locale._getdefaultlocale() self.assertEqual(result1,result2)
[ 9, -1 ]
def METHOD_NAME(self) -> Optional[str]: """ Password hash used for publishing. """ return pulumi.get(self, "publishing_password_hash")
[ 14085, 2897, 1161 ]
def METHOD_NAME(self, id): vmmoid = self.get_vmmoid(id) if vmmoid: return s.get( f"https://{self.host}:{self.port}/api/vms/{vmmoid}", auth=(self.username, self.password), ) log.info("There was a problem getting settings for vm %s", id)
[ 19, 944, 817 ]
def METHOD_NAME(entity_type, uuid): if entity_type not in entity_types: abort(404) body = request.get_json() workspace_name = body.get('workspace_name') client = get_client() entity = client.get_entity(uuid) vitessce_conf = client.get_vitessce_conf_cells_and_lifted_uuid(entity).vitessce_conf if (vitessce_conf is None or vitessce_conf.conf is None or vitessce_conf.cells is None): abort(404) hubmap_id = entity['hubmap_id'] dataset_url = request.base_url.replace('.ipynb', '') cells = [ new_markdown_cell( f"Visualization for [{hubmap_id}]({dataset_url}); " "If this notebook is running in a HuBMAP workspace, the dataset is symlinked:"), new_code_cell(f'!ls datasets/{uuid}'), new_markdown_cell('Visualization requires extra code to be installed:'), new_code_cell( '!pip uninstall community flask albumentations -y ' '# Preinstalled on Colab; Causes version conflicts.\n' f'!pip install vitessce[all]=={vitessce.__version__}'), *vitessce_conf.cells ] return _nb_response_from_objs(hubmap_id, cells, workspace_name=workspace_name, uuids=[uuid])
[ 2419, 3549 ]
def METHOD_NAME(self): # This method may be called multiple times on the same batch # i.e., on retries # we need to make sure we only close it out once # otherwise compressed messages may be double-compressed # see Issue 718 if not self._closed: self._bytes_written = self._builder.size() self._buffer = bytes(self._builder.build()) self._builder = None self._closed = True
[ 1462 ]
def METHOD_NAME(self, path): for locale in PUNCTUATION_CHECK: if path.endswith(locale + '.ts'): return True return False
[ 250, 6751 ]
def METHOD_NAME(self, charge_point_vendor: str, charge_point_model: str, **kwargs): self._profile = { 'Vendor': charge_point_vendor, 'Model': charge_point_model } self.name = self._uplink_converter.get_device_name(self._profile) self.type = self._uplink_converter.get_device_type(self._profile) self._callback((self._uplink_converter, {'deviceName': self.name, 'deviceType': self.type, 'messageType': Action.MeterValues, 'profile': self._profile}, {'Vendor': charge_point_vendor, 'Model': charge_point_model, **kwargs})) return call_result.BootNotificationPayload( current_time=datetime.utcnow().isoformat(), interval=10, status=RegistrationStatus.accepted )
[ 69, 1642, 857 ]
def METHOD_NAME() -> Callable[[types.FunctionType], values.OnnxClosure]: """A parametric decorator used to annotate nested-functions that are used as graph-attributes. Returns: A decorator that returns its input function, but attaches a graph_proto attribute representing the input function. The translation is not done at this time, but previously when the outer-level function was translated to an OnnxFunction. The decorator just looks up and retrieves the GraphProto representation previously generated. Example: :: @script() def cumulative_sum(X: INT64['N']): # Translation of cumulative_sum by @script will also translate Sum # into a GraphProto, which will be stored in the OnnxFunction generated # for cumulative_sum. At run-time (in eager-mode), the @graph decorator # retrieves the pre-computed GraphProto and attaches it to the Sum function. @graph() def Sum(sum_in, next): sum_out = sum_in + next scan_out = op.Identity(sum_out) return sum_out, scan_out zero = op.Constant(value_int=0) # The call to higher-order operator Scan below uses the above function # Sum as a graph-attribute. all_sum, result = op.Scan (zero, X, body=Sum, num_scan_inputs=1) return result """ # This is a bit fragile. We want to get the ONNXFunction object representing # the outer-scope ONNXScript function from the execution stack. The caller of # @graph is the original script function (cumulative_sum in the above example), # and the caller of that function is the wrapper function/method in the # corresponding OnnxFunction object. # Currently, there is no support for eager-mode execution of nested functions, # so we don't need to handle doubly nested functions (e.g., a function defined # inside Sum in the above example). function_frame = sys._getframe(1) # pylint: disable=protected-access wrapper_frame = sys._getframe(3) # pylint: disable=protected-access onnx_function = wrapper_frame.f_locals["self"] nested_functions = onnx_function.function_ir.nested_functions def transform(f: types.FunctionType) -> values.OnnxClosure: return values.OnnxClosure(nested_functions[f.__name__], function_frame, f) return transform
[ 303 ]
def METHOD_NAME(shots_and_their_points) -> None: exact_found = 0 for pose, bearings, points in shots_and_their_points: result = pygeometry.absolute_pose_three_points(bearings, points) expected = pose.get_world_to_cam()[:3] for Rt in result: exact_found += np.linalg.norm(expected - Rt, ord="fro") < 1e-6 exacts = len(shots_and_their_points) - 2 assert exact_found >= exacts
[ 9, 4653, 3954, 2756, 182 ]
def METHOD_NAME(self, name): return posixpath.join(self.COPRO_TAR_DIR, name)
[ 19, 171, 156 ]
def METHOD_NAME(dataset, mode="train", batch_size=1, batchify_fn=None, trans_fn=None): if trans_fn: dataset = dataset.map(trans_fn) shuffle = True if mode == "train" else False if mode == "train": batch_sampler = paddle.io.DistributedBatchSampler(dataset, batch_size=batch_size, shuffle=shuffle) else: batch_sampler = paddle.io.BatchSampler(dataset, batch_size=batch_size, shuffle=shuffle) return paddle.io.DataLoader(dataset=dataset, batch_sampler=batch_sampler, collate_fn=batchify_fn, return_list=True)
[ 129, 568 ]
def METHOD_NAME( formatting, cats, quantity, total_quantity, allocation, total_allocation, kappa, kappasim=None, ): if formatting == "plain": if total_quantity is None: print(_("No data found in current region")) return for i, c in enumerate(cats): print( _("Quantity disagreement for class {c}: {q:.2f} %").format( c=c, q=quantity[i] * 100 ) ) print( _("Total quantity disagreement: {q:.2f} %").format(q=total_quantity * 100) ) for i, c in enumerate(cats): print( _("Allocation disagreement for class {c}: {q:.2f} %").format( c=c, q=allocation[i] * 100 ) ) print( _("Total allocation disagreement: {q:.2f} %").format( q=total_allocation * 100 ) ) if kappa is not None: print(_("Kappa: {kappa:.4f}").format(kappa=kappa)) if kappasim is not None: print(_("Kappa simulation: {kappasim:.4f}").format(kappasim=kappasim)) elif formatting == "shell": def format_value(val): return f"{val:.4f}" if val is not None else "" for i, c in enumerate(cats): print(f"quantity_class_{c}={quantity[i]:.4f}") print(f"total_quantity={format_value(total_quantity)}") for i, c in enumerate(cats): print(f"allocation_class_{c}={allocation[i]:.4f}") print(f"total_allocation={format_value(total_allocation)}") print(f"kappa={format_value(kappa)}") if kappasim is not None: print(f"kappasimulation={kappasim:.4f}") elif formatting == "json": # export everything even when None # for automated processing out = {} for i, c in enumerate(cats): out[f"quantity_class_{c}"] = quantity[i] for i, c in enumerate(cats): out[f"allocation_class_{c}"] = allocation[i] out["total_quantity"] = total_quantity out["total_allocation"] = total_allocation out["kappa"] = kappa out["kappasimulation"] = kappasim print( json.dumps( json.loads(json.dumps(out), parse_float=lambda x: round(float(x), 4)) ) )
[ 38, 51 ]
async def METHOD_NAME(self): if await self.is_available(lambda x: x): async with aiofiles.open(self.variants_file_path, 'r') as f: self.initial_values = json.loads(await f.read()) for item in self.initial_values: for i, v in enumerate(item): item[i] = tuple(v) else: self.initial_values = []
[ 15, 114 ]
def METHOD_NAME(self, word: str) -> str: if word.endswith("e"): return word[:-1] if word.endswith("y") and word[-2] not in self.VOWELS: return word[:-1] return word
[ 2805 ]
async def METHOD_NAME(spawn_client, fake2, snapshot, static_time, pg): client = await spawn_client( authenticated=True, administrator=True, flags=[FlagName.SPACES] ) user_1 = await fake2.users.create() async with AsyncSession(pg) as session: session.add( SQLSpace( id=0, name="Space 0", description="", created_at=static_time.datetime, updated_at=static_time.datetime, ) ) await session.commit() await get_authorization_client_from_app(client.app).add( SpaceMembership(user_1.id, 0, SpaceRole.OWNER), UserRoleAssignment(user_1.id, 0, SpaceProjectRole.EDITOR), ) resp = await client.patch( f"/spaces/0/members/{user_1.id}", {"role": "member", "label": SpaceLabelRole.MANAGER}, ) assert resp.status == 200 assert await resp.json() == snapshot
[ 9, 86, 1823, 2173 ]
def METHOD_NAME(diff_lines): return diff_lines.b_blob.data_stream.read().decode("utf-8").split("\n")
[ 385, 2443, 513, 801 ]
def METHOD_NAME(self): instance = create_instance(Identifier()) instance.attr = "æøå" assert instance.attr == "æøå"
[ 9, 774, 41, 2503, 2474 ]
def METHOD_NAME() -> Dict[Text, Any]: """The component's default config (see parent class for full docstring).""" return {"case_sensitive": True}
[ 19, 235, 200 ]
def METHOD_NAME(deprecated_v1): deprecated_v1.constant("2.0", "3.0", "SOME_CONSTANT", 42) module = sys.modules[__name__] # alerting user to pending deprecation with pytest.deprecated_call(match="pending deprecation"): module.SOME_CONSTANT
[ 9, 928, 1359 ]