text
stringlengths
15
7.82k
ids
sequencelengths
1
7
def METHOD_NAME(): if len(processes) >= max_parallel: return False if args.experiments_per_gpu > 0: least_busy_gpu, gpu_available_processes = find_least_busy_gpu() if gpu_available_processes <= 0: return False return True
[ 1046, 3822, 3823, 356 ]
async def METHOD_NAME(): gid = relay.GlobalID(type_name="FruitAsync", node_id="1") fruit = await gid.resolve_node(fake_info) assert_type(fruit, Optional[relay.Node]) assert isinstance(fruit, FruitAsync) assert fruit.id == 1 assert fruit.name == "Banana"
[ 9, 285, 147, 1014, 1716 ]
def METHOD_NAME(self, *args: t.Any, **kwargs: t.Any) -> t.Any: """Render the template to produce a native Python type. If the result is a single node, its value is returned. Otherwise, the nodes are concatenated as strings. If the result can be parsed with :func:`ast.literal_eval`, the parsed value is returned. Otherwise, the string is returned. """ ctx = self.new_context(dict(*args, **kwargs)) try: return self.environment_class.concat( # type: ignore self.root_render_func(ctx) # type: ignore ) except Exception: return self.environment.handle_exception()
[ 338 ]
def METHOD_NAME(self) -> None: if self.code_hashes() != self.header.hashes: raise util.FirmwareIntegrityError("Invalid firmware data.")
[ 187, 544, 2012 ]
def METHOD_NAME(self): config = { "KEY": 15, # priority=addon } settings_dict = { "ADDONS": {get_addon_cls(config): 1}, } crawler = get_crawler(settings_dict=settings_dict) self.assertEqual(crawler.settings.getint("KEY"), 15) settings = Settings(settings_dict) settings.set("KEY", 0, priority="default") runner = CrawlerRunner(settings) crawler = runner.create_crawler(Spider) self.assertEqual(crawler.settings.getint("KEY"), 15) settings_dict = { "KEY": 20, # priority=project "ADDONS": {get_addon_cls(config): 1}, } settings = Settings(settings_dict) settings.set("KEY", 0, priority="default") runner = CrawlerRunner(settings) crawler = runner.create_crawler(Spider) self.assertEqual(crawler.settings.getint("KEY"), 20)
[ 9, 817, 2654 ]
def METHOD_NAME(binary_filepath): """ This function uses objdump to get direct dependencies of a given binary. Totally safe, but will require manual check over libraries which are not found on the system. """ objdump_command = ("objdump", "-p", str(binary_filepath)) objdump_output = subprocess.check_output(objdump_command, stderr=subprocess.STDOUT) lines = objdump_output.decode().split("\n") libraries = [] for line in lines: line = line.strip() if not line: continue if not line.startswith("NEEDED"): continue lib_name = line[6:].strip() libraries.append(lib_name) return libraries
[ 19, 2002, 2948, 9520 ]
def METHOD_NAME(self, key, value, instance=0): if key not in self.data: self.data[key] = [value] self.keys.append(key) elif instance >= len(self.data[key]): extra = instance + 1 - len(self.data[key]) for i in range(len(self.data[key]), instance-1): self.data[key].append(None) self.data[key].append(value) else: self.data[key].insert(instance, value) self.changed = True
[ 0 ]
def METHOD_NAME( self, first: Optional[str], last: Optional[str], title: Optional[str], chat_type: str, result: str, ): chat = Chat(id=42, first_name=first, last_name=last, title=title, type=chat_type) assert chat.full_name == result
[ 9, 324, 156 ]
def METHOD_NAME(name, restore=None, interval=0.5): """ Instantiate (optionally from a checkpoint if restore is set to the checkpoitn name) the system and run for interval seconds of simulated time. At the end of the simulation interval, create a checkpoint and exit. As this function is intended to run in its own process using the multiprocessing framework, the exit is a true call to exit which terminates the process. Exit codes are used to pass information to the parent. """ if restore is not None: m5.instantiate(restore) else: m5.instantiate() e = m5.simulate(m5.ticks.fromSeconds(interval)) cause = e.getCause() if cause in _exit_limit: m5.checkpoint(name) sys.exit(_exitcode_checkpoint) elif cause in _exit_normal: sys.exit(_exitcode_done) else: print(f"Test failed: Unknown exit cause: {cause}") sys.exit(_exitcode_fail)
[ 22, 367 ]
def METHOD_NAME(self): response = self.client.post( path=self.url(), data=json.dumps({"override": False, "template_data": "xxx"}), content_type="application/json", ) data = json.loads(response.content) self.assertFalse(data["result"]) self.assertTrue("message" in data)
[ 9, 512, 67, 671, 512, 1914, 168 ]
async def METHOD_NAME(host, n_results=100): results = [] while len(results) < n_results: batch_results = await asyncio.gather(*[get_prediction(host) for _ in range(20)]) for result in batch_results: if result: results.append(result) data = pd.DataFrame(results).groupby("fn_to_hit").agg({"mean"}) data.columns = data.columns.get_level_values(0) data = data.reset_index() data = {"fn_to_hit": data["fn_to_hit"].to_list(), "duration": data["duration"].to_list()} return data
[ 57 ]
def METHOD_NAME(self): """Test a successful CRC check Checks that the PDU ends in the ok port of CRC check """ self.common_test_crc_check(matching_crc=True) self.assertEqual(self.dbg.num_messages(), 1) out = pmt.u8vector_elements(pmt.cdr(self.dbg.get_message(0))) self.assertEqual(out, self.data) self.assertEqual(self.dbg_fail.num_messages(), 0)
[ 9, 2377, 250 ]
def METHOD_NAME(self): entries = pwd.getpwall() for e in entries: self.assertEqual(len(e), 7) self.assertEqual(e[0], e.pw_name) self.assertIsInstance(e.pw_name, str) self.assertEqual(e[1], e.pw_passwd) self.assertIsInstance(e.pw_passwd, str) self.assertEqual(e[2], e.pw_uid) self.assertIsInstance(e.pw_uid, int) self.assertEqual(e[3], e.pw_gid) self.assertIsInstance(e.pw_gid, int) self.assertEqual(e[4], e.pw_gecos) self.assertIn(type(e.pw_gecos), (str, type(None))) self.assertEqual(e[5], e.pw_dir) self.assertIsInstance(e.pw_dir, str) self.assertEqual(e[6], e.pw_shell) self.assertIsInstance(e.pw_shell, str) # The following won't work, because of duplicate entries # for one uid # self.assertEqual(pwd.getpwuid(e.pw_uid), e) # instead of this collect all entries for one uid # and check afterwards (done in test_values_extended)
[ 9, 199 ]
def METHOD_NAME(self): """Create Sphinx app.""" # Avoid warnings about re-registration, see: # https://github.com/sphinx-doc/sphinx/issues/5038 with self.create_sphinx_app_context() as app: pass return app
[ 129, 9637, 991 ]
def METHOD_NAME(): """Get current test case from the module""" return message_tests.pop(0)
[ 19, 1056, 9, 331 ]
def METHOD_NAME(*, string: Optional[str] = "", int: Optional[int] = 0, bool: Optional[bool] = False) -> None: pass
[ 41, 6675, 665, 1618 ]
def METHOD_NAME(self): s = self.title if self.body: s += f"\n{self.body}" if self.data: s += f"\nData: {self.data}" return s
[ 24, 526 ]
def METHOD_NAME(self) -> "ObjectPath": return _ffi_node_api.ObjectPathGetParent(self)
[ 935 ]
def METHOD_NAME(self, simple_client, monkeypatch): call_counter = 0 def mock_call_json(*args, **kwargs): nonlocal call_counter call_counter += 1 if call_counter == 3: raise TencentCloudSDKException() raise socket.error() monkeypatch.setattr(AbstractClient, "call_json", mock_call_json) with pytest.raises(TencentCloudSDKException): simple_client.execute_query("test", {}) assert call_counter == 3
[ 9, 2052, 442 ]
METHOD_NAME(self):
[ 9, 19, 526 ]
def METHOD_NAME(): """ Get a single salt process environment variable. """ assert not environ.get(True) assert environ.get("key") == ""
[ 9, 19 ]
def METHOD_NAME(field_schema, field): for validator in field.validators: try: validator.modify_schema(field_schema) except AttributeError: pass
[ 231, 7085, 11232 ]
def METHOD_NAME(self, x): """Probability density function.""" d = self.loc[x.index, x.columns] pdf_arr = np.exp(-0.5 * ((x.values - d.mu) / d.sigma) ** 2) pdf_arr = pdf_arr / (d.sigma * np.sqrt(2 * np.pi)) return pd.DataFrame(pdf_arr, index=x.index, columns=x.columns)
[ 4555 ]
def METHOD_NAME(self): path = self._get_path("organization", "get_organization_by_id") data: Dict[str, Any] = {"args": [], "meta": {}} response = self._send_post_request(path, data) assert response.status_code == 400 assert response.data == { "detail": ErrorDetail(string="Malformed request.", code="parse_error") }
[ 9, 532, 335, 1207 ]
def METHOD_NAME(self): geom = self.spark.sql( """select st_geomFromWKT('LINESTRING (30 10, 10 30, 40 40)')""" ).collect()[0][0] assert type(geom) == LineString assert geom.wkt == LineString([(30, 10), (10, 30), (40, 40)]).wkt
[ 9, 3145, 13057 ]
METHOD_NAME(self):
[ 9, 86, 1589, 2206, 104 ]
def METHOD_NAME(self, notify_exception, add_breadcrumb): res = self.client.get('/slow_class') self.assertEqual(res.status_code, 200) notify_exception.assert_called_once() add_breadcrumb.assert_not_called()
[ 9, 3174, 3378, 3551, 2, 1179 ]
def METHOD_NAME(self): self.sandbox.fake_execute_data( True, b"o", "你好".encode("utf-8"), 0.1, 0.5, 1000, "OK") stats = generic_step(self.sandbox, ONE_COMMAND, "name", collect_output=False) # No output collected on stats. self.assertEqual( stats, get_stats(0.1, 0.5, 1000 * 1024, Sandbox.EXIT_OK)) # Generic step always redirects stdout and stderr. self.assertEqual(self.sandbox.stdout_file, "name_stdout_0.txt") self.assertEqual(self.sandbox.stderr_file, "name_stderr_0.txt")
[ 9, 97, 462, 1434, 654, 1444, 146 ]
def METHOD_NAME(): # Test init with no args F = FrameBuffer() glir_cmds = F._glir.clear() assert len(glir_cmds) == 1 glir_cmds[0][0] == 'CREATE' # Activate / deactivate F.activate() glir_cmd = F._glir.clear()[-1] assert glir_cmd[0] == 'FRAMEBUFFER' assert glir_cmd[2] is True # F.deactivate() glir_cmd = F._glir.clear()[-1] assert glir_cmd[0] == 'FRAMEBUFFER' assert glir_cmd[2] is False # with F: pass glir_cmds = F._glir.clear() assert len(glir_cmds) == 2 assert glir_cmds[0][0] == 'FRAMEBUFFER' assert glir_cmds[1][0] == 'FRAMEBUFFER' assert glir_cmds[0][2] is True and glir_cmds[1][2] is False # Init with args R = RenderBuffer((3, 3)) F = FrameBuffer(R) assert F.color_buffer is R # R2 = RenderBuffer((3, 3)) F.color_buffer = R2 assert F.color_buffer is R2 # Wrong buffers F = FrameBuffer() assert_raises(TypeError, FrameBuffer.color_buffer.fset, F, 'FOO') assert_raises(TypeError, FrameBuffer.color_buffer.fset, F, []) assert_raises(TypeError, FrameBuffer.depth_buffer.fset, F, 'FOO') assert_raises(TypeError, FrameBuffer.stencil_buffer.fset, F, 'FOO') color_buffer = RenderBuffer((9, 9), 'color') assert_raises(ValueError, FrameBuffer.depth_buffer.fset, F, color_buffer) # But None is allowed! F.color_buffer = None # Shape R1 = RenderBuffer((3, 3)) R2 = RenderBuffer((3, 3)) R3 = RenderBuffer((3, 3)) F = FrameBuffer(R1, R2, R3) assert F.shape == R1.shape assert R1.format == 'color' assert R2.format == 'depth' assert R3.format == 'stencil' # Resize F.resize((10, 10)) assert F.shape == (10, 10) assert F.shape == R1.shape assert F.shape == R2.shape assert F.shape == R3.shape assert R1.format == 'color' assert R2.format == 'depth' assert R3.format == 'stencil' # Shape from any buffer F.color_buffer = None assert F.shape == (10, 10) F.depth_buffer = None assert F.shape == (10, 10) F.stencil_buffer = None assert_raises(RuntimeError, FrameBuffer.shape.fget, F) # Also with Texture luminance T = gloo.Texture2D((20, 30)) R = RenderBuffer(T.shape) assert T.format == 'luminance' F = FrameBuffer(T, R) assert F.shape == T.shape[:2] assert F.shape == R.shape assert T.format == 'luminance' assert R.format == 'depth' # Resize F.resize((10, 10)) assert F.shape == (10, 10) assert T.shape == (10, 10, 1) assert F.shape == R.shape assert T.format == 'luminance' assert R.format == 'depth' # Also with Texture RGB T = gloo.Texture2D((20, 30, 3)) R = RenderBuffer(T.shape) assert T.format == 'rgb' F = FrameBuffer(T, R) assert F.shape == T.shape[:2] assert F.shape == R.shape assert T.format == 'rgb' assert R.format == 'depth' # Resize F.resize((10, 10)) assert F.shape == (10, 10) assert T.shape == (10, 10, 3) assert F.shape == R.shape assert T.format == 'rgb' assert R.format == 'depth' # Also with Texture for depth T1 = gloo.Texture2D((20, 30, 3)) T2 = gloo.Texture2D((20, 30, 1)) assert T1.format == 'rgb' assert T2.format == 'luminance' F = FrameBuffer(T1, T2) assert F.shape == T1.shape[:2] assert F.shape == T2.shape[:2] assert T1.format == 'rgb' assert T2.format == 'luminance' # Resize F.resize((10, 10)) assert F.shape == (10, 10) assert T1.shape == (10, 10, 3) assert T2.shape == (10, 10, 1) assert T1.format == 'rgb' assert T2.format == 'luminance' # Wrong shape in resize assert_raises(ValueError, F. resize, (9, 9, 1)) assert_raises(ValueError, F. resize, (9,)) assert_raises(ValueError, F. resize, 'FOO')
[ 9, 10913 ]
def METHOD_NAME(param, g_t, t, m, v, alpha=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8): m_t = beta1 * m + (1 - beta1) * g_t v_t = np.maximum(beta2 * v, np.abs(g_t)) param_t = param - (alpha / (1 - beta1**t)) * (m_t / (v_t + epsilon)) return param_t, m_t, v_t
[ 13740, 86, 2028 ]
def METHOD_NAME( self, entry_type: Type["ManifestEntryT"], exclude: Optional[POFiltersType] = None, include: Optional[POFiltersType] = None, ) -> Generator["ManifestEntryT", None, None]: for entries in self.graph.objects(self.identifier, MF.entries): for entry_iri in self.graph.items(entries): assert isinstance(entry_iri, URIRef) entry = entry_type(self, entry_iri) if exclude is not None and entry.check_filters(exclude): continue if include is not None and not entry.check_filters(include): continue yield entry
[ -1 ]
def METHOD_NAME(self, instrument_code: str, are_you_sure: bool = False): self.log.label(instrument_code=instrument_code) if are_you_sure: if self.is_code_in_data(instrument_code): self._delete_instrument_data_without_any_warning_be_careful( instrument_code ) self.log.info("Deleted instrument object %s" % instrument_code) else: # doesn't exist anyway self.log.warning("Tried to delete non existent instrument") else: self.log.error( "You need to call delete_instrument_data with a flag to be sure" )
[ 34, 2933, 365 ]
def METHOD_NAME(levels=1, final=dict): return (defaultdict(final) if levels < 2 else defaultdict(lambda: METHOD_NAME(levels - 1, final)))
[ -1 ]
def METHOD_NAME(val, mapping=None): return ','.join([escape_item(x, mapping) for x in val])
[ 4748, 0 ]
def METHOD_NAME(): grid_east = [-2., -1., 0., 1., 2.] grid_north = [-1.5, 0., 1.5] # Center of the survey site, puts the grid into reference center_point = 20., 150. test = conv._get_gdal_origin(grid_east, 1., center_point[1], grid_north, 1.5, center_point[0]) # Origin should be upper-left, so western-most point shifted 1/2 # cell west and northern-most point shifted 1/2 cell north. expected = [147.5, 22.25] np.testing.assert_array_equal(test, expected)
[ 9, 3908, 1788 ]
def METHOD_NAME(url, test_data_subdir='xml_input'): filename = url.split('/')[-1] path = TEST_DATA / test_data_subdir / filename return MockResponse(path.read_bytes())
[ 1413, 9, 5507, 365 ]
def METHOD_NAME(args): idim = 10 odim = 5 model = E2E(idim, odim, args) batchsize = 2 ilens = [10, 9] olens = [3, 4] n_token = odim - 1 x = torch.randn(batchsize, max(ilens), idim) y_src = (torch.rand(batchsize, max(olens)) * n_token % n_token).long() y_tgt = (torch.rand(batchsize, max(olens)) * n_token % n_token).long() for i in range(batchsize): x[i, ilens[i] :] = -1 y_tgt[i, olens[i] :] = model.ignore_id y_src[i, olens[i] :] = model.ignore_id data = {} uttid_list = [] for i in range(batchsize): data["utt%d" % i] = { "input": [{"shape": [ilens[i], idim]}], "output": [{"shape": [olens[i]]}], } uttid_list.append("utt%d" % i) return model, x, torch.tensor(ilens), y_tgt, y_src, data, uttid_list
[ 123 ]
def METHOD_NAME( self, data_shape, kernel_size, data_layout, kernel_layout, groups, strides, padding, dilation, dtype, schedule_name, ): """Test a subgraph with a single depthwise_conv2d_nchwc operator.""" ishape = data_shape wshape = (data_shape[1], 1, *kernel_size) weight_data = np.random.randint(low=-10, high=10, size=wshape, dtype=dtype) groups = groups input0 = relay.var("input", relay.TensorType(ishape, dtype)) weight0 = relay.const(weight_data) out0 = relay.op.nn.contrib_depthwise_conv2d_nchwc( relay.layout_transform(input0, "NCHW", data_layout), relay.layout_transform(weight0, "OIHW", kernel_layout), kernel_size=kernel_size, strides=strides, padding=padding, dilation=dilation, data_layout=data_layout, kernel_layout=kernel_layout, groups=groups, out_dtype="", out_layout="", ) ref_mod = tvm.IRModule.from_expr(relay.Function([input0], out0)) input1 = relay.var("input", relay.TensorType(ishape, dtype)) weight1 = relay.const(weight_data) out1 = relay.op.nn.contrib_depthwise_conv2d_nchwc( relay.layout_transform(input1, "NCHW", data_layout), relay.layout_transform(weight1, "OIHW", kernel_layout), kernel_size=kernel_size, strides=strides, padding=padding, dilation=dilation, data_layout=data_layout, kernel_layout=kernel_layout, groups=groups, out_dtype="", out_layout="", ) mod = tvm.IRModule.from_expr(relay.Function([input1], out1)) inputs = {"input": np.random.randint(low=-128, high=127, size=ishape, dtype=dtype)} output_list = generate_ref_data(ref_mod, inputs) compile_and_run( AOTTestModel(module=mod, inputs=inputs, outputs=output_list), runner=AOT_CORSTONE300_RUNNER, interface_api="c", use_unpacked_api=True, target_opts={ "-keys": "arm_cpu", "-mcpu": "cortex-m7", }, schedule_name=schedule_name, )
[ 9, 4611, 3385, 8645, 9060 ]
def METHOD_NAME(vit_features, features, use_readout, start_index=1): if use_readout == "ignore": readout_oper = [Slice(start_index)] * len(features) elif use_readout == "add": readout_oper = [AddReadout(start_index)] * len(features) elif use_readout == "project": readout_oper = [ ProjectReadout(vit_features, start_index) for out_feat in features ] else: assert ( False ), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'" return readout_oper
[ 19, 7484, 10453 ]
def METHOD_NAME(self): for i, attr in enumerate(self.attrs): setattr(self, f"attr_{i}", attr)
[ 176, 1685 ]
def METHOD_NAME(self): worker = FakeWorker('worker1') yield worker.setServiceParent(self.workers) worker.parent = self.master worker.manager = self.workers worker.botmaster = self.master.botmaster worker_new = FakeWorker('worker1') self.new_config.workers = [worker_new] yield self.workers.reconfigServiceWithBuildbotConfig(self.new_config) # worker was not replaced.. self.assertIdentical(self.workers.workers['worker1'], worker)
[ 9, 10159, 549, 5930, 10159 ]
def METHOD_NAME(self, arch, filename, segments): binary_path = os.path.join(TESTS_BASE, arch, filename) ld = cle.Loader(binary_path, auto_load_libs=False) self.assertEqual(len(ld.main_object.segments), len(segments)) for i, segment in enumerate(ld.main_object.segments): self.assertEqual(segment.offset, segments[i].offset) self.assertEqual(segment.vaddr, segments[i].vaddr) self.assertEqual(segment.memsize, segments[i].memsize) self.assertEqual(segment.filesize, segments[i].filesize) # address lookups self.assertIsNone(ld.main_object.segments.find_region_containing(-1)) # skip all segments that are not mapped into memory mapped_segments = [segment for segment in segments if segment.vaddr != 0] for segment in mapped_segments: self.assertEqual( ld.main_object.find_segment_containing(segment.vaddr).vaddr, segment.vaddr, ) self.assertEqual( ld.main_object.segments.find_region_containing(segment.vaddr).vaddr, segment.vaddr, ) if segment.memsize > 0: self.assertEqual( ld.main_object.find_segment_containing(segment.vaddr + 1).vaddr, segment.vaddr, ) self.assertEqual( ld.main_object.segments.find_region_containing(segment.vaddr + 1).vaddr, segment.vaddr, ) self.assertEqual( ld.main_object.find_segment_containing(segment.vaddr + segment.memsize - 1).vaddr, segment.vaddr, ) self.assertEqual( ld.main_object.segments.find_region_containing(segment.vaddr + segment.memsize - 1).vaddr, segment.vaddr, ) for i in range(len(mapped_segments) - 1): seg_a, seg_b = mapped_segments[i], mapped_segments[i + 1] if seg_a.vaddr + seg_a.memsize < seg_b.vaddr: # there is a gap between seg_a and seg_b for j in range(min(seg_b.vaddr - (seg_a.vaddr + seg_a.memsize), 20)): a = seg_a.vaddr + seg_a.memsize + j self.assertIsNone(ld.main_object.find_segment_containing(a)) self.assertIsNone(ld.main_object.segments.find_region_containing(a)) self.assertIsNone(ld.main_object.find_segment_containing(0xFFFFFFFF), None)
[ 22, 1690 ]
def METHOD_NAME(client, sample_service): data = {"notification_type": "sms", "days_of_retention": 3} response = client.post( "/service/{}/data-retention".format(str(sample_service.id)), headers=[("Content-Type", "application/json"), create_authorization_header()], data=json.dumps(data), ) assert response.status_code == 201 json_resp = json.loads(response.get_data(as_text=True))["result"] results = ServiceDataRetention.query.all() assert len(results) == 1 data_retention = results[0] assert json_resp == data_retention.serialize()
[ 9, 129, 549, 365, 3786 ]
def METHOD_NAME(sim=False): ops_multisig_old = GreatApeSafe(r.badger_wallets.ops_multisig_old) reward_logger = ops_multisig_old.contract(r.rewardsLogger) reward_logger.grantRole(DEFAULT_ADMIN_ROLE, dev_msig) if not sim: ops_multisig_old.post_safe_tx(call_trace=True)
[ 829, 2363, -1 ]
def METHOD_NAME(n): conds = [] for i in range(1, n + 1): region = [{"X": (0, i / n), "Y": (0, (n + 1 - i) / n)}] subst = {str(i): str(n + 1 - i)} conds.append((region, subst)) overlaps = overlayFeatureVariations(conds) assert len(overlaps) == n * (n + 1) // 2, overlaps return conds, overlaps
[ 9, 3380 ]
def METHOD_NAME(self, METHOD_NAME): METHOD_NAME.parsed_params = { "resource_link_id": sentinel.resource_link_id, "lms": {"tool_consumer_instance_guid": sentinel.guid}, "context_id": sentinel.context_id, "gradingStudentId": sentinel.grading_student_id, "group_info": sentinel.group_info, } METHOD_NAME.user = sentinel.user return METHOD_NAME
[ 5533, 377 ]
def METHOD_NAME(self): file_name = 'Test_QWG_test_dio_parameters.scpi.txt' test_path = Path('test_output') / file_name os.makedirs('test_output', exist_ok=True) transport = FileTransport(str(test_path)) qwg = QWG('qwg_dio_parameters', transport) # FIXME: names must be unique unless we properly tell QCoDes to remove qwg.init() qwg.dio_mode('MASTER') # dio_is_calibrated qwg.dio_active_index(0) transport.close() # to allow access to file qwg.close() # release QCoDeS instrument
[ 9, 12489, 386 ]
def METHOD_NAME(folder, index): if folder == "Audio": return f"quesst14_{index:05d}.wav" elif folder == "dev_queries": return f"quesst14_dev_{index:04d}.wav" elif folder == "eval_queries": return f"quesst14_eval_{index:04d}.wav" return
[ 19, 1147 ]
def METHOD_NAME(self, src_tokens, src_lengths): encoder_out: Dict[str, List[Tensor]] = self.conv_transformer_encoder(src_tokens, src_lengths.to(src_tokens.device)) output = encoder_out["encoder_out"][0] encoder_padding_masks = encoder_out["encoder_padding_mask"] return { "encoder_out": [output], # This is because that in the original implementation # the output didn't consider the last segment as right context. "encoder_padding_mask": [encoder_padding_masks[0][:, : output.size(0)]] if len(encoder_padding_masks) > 0 else [], "encoder_embedding": [], "encoder_states": [], "src_tokens": [], "src_lengths": [], }
[ 76 ]
async def METHOD_NAME(client): response = await client.get("wallet", follow_redirects=False) assert response.status_code == 307, f"{response.url} {response.status_code}" # determine the next redirect location request = client.build_request("GET", "wallet") i = 0 while request is not None: response = await client.send(request) request = response.next_request if i == 0: # first redirect assert response.status_code == 307, f"{response.url} {response.status_code}" elif i == 1: # then get the actual page assert response.status_code == 200, f"{response.url} {response.status_code}" i += 1
[ 9, 19, 2945, 654, 1736 ]
def METHOD_NAME( workspace_file: StrPath, workspace_dir: t.Optional[StrPath] = None, ) -> str: """ Return the real config path or raise an exception. If workspace file is directory, scan for .tmuxp.{yaml,yml,json} in directory. If one or more found, it will warn and pick the first. If workspace file is ".", "./" or None, it will scan current directory. If workspace file is has no path and only a filename, e.g. "my_workspace.yaml" it will search workspace dir. If workspace file has no path and no extension, e.g. "my_workspace", it will scan for file name with yaml, yml and json. If multiple exist, it will warn and pick the first. Parameters ---------- workspace_file : str workspace file, valid examples: - a file name, my_workspace.yaml - relative path, ../my_workspace.yaml or ../project - a period, . """ if not workspace_dir: workspace_dir = get_workspace_dir() path = os.path exists, join, isabs = path.exists, path.join, path.isabs dirname, normpath, splitext = path.dirname, path.normpath, path.splitext cwd = os.getcwd() is_name = False file_error = None workspace_file = os.path.expanduser(workspace_file) # if purename, resolve to confg dir if is_pure_name(workspace_file): is_name = True elif ( not isabs(workspace_file) or len(dirname(workspace_file)) > 1 or workspace_file == "." or workspace_file == "" or workspace_file == "./" ): # if relative, fill in full path workspace_file = normpath(join(cwd, workspace_file)) # no extension, scan if path.isdir(workspace_file) or not splitext(workspace_file)[1]: if is_name: candidates = [ x for x in [ f"{join(workspace_dir, workspace_file)}{ext}" for ext in VALID_WORKSPACE_DIR_FILE_EXTENSIONS ] if exists(x) ] if not len(candidates): file_error = ( "workspace-file not found in workspace dir (yaml/yml/json) %s " "for name" % (workspace_dir) ) else: candidates = [ x for x in [ join(workspace_file, ext) for ext in [".tmuxp.yaml", ".tmuxp.yml", ".tmuxp.json"] ] if exists(x) ] if len(candidates) > 1: tmuxp_echo( Fore.RED + "Multiple .tmuxp.{yml,yaml,json} workspace_files in %s" % dirname(workspace_file) + Fore.RESET ) tmuxp_echo( "This is undefined behavior, use only one. " "Use file names e.g. myproject.json, coolproject.yaml. " "You can load them by filename." ) elif not len(candidates): file_error = "No tmuxp files found in directory" if len(candidates): workspace_file = candidates[0] elif not exists(workspace_file): file_error = "file not found" if file_error: raise FileNotFoundError(file_error, workspace_file) return workspace_file
[ 416, 1976, 171 ]
def METHOD_NAME(self, request: Request, team: Team) -> Response: """ Returns a dict of team projects, and a time-series dict of issue stat breakdowns for each. If a list of statuses is passed then we return the count of each status and the totals. Otherwise we the count of reviewed issues and the total count of issues. """ if not features.has("organizations:team-insights", team.organization, actor=request.user): return Response({"detail": "You do not have the insights feature enabled"}, status=400) start, end = get_date_range_from_params(request.GET) end = end.replace(hour=0, minute=0, second=0, microsecond=0) + timedelta(days=1) start = start.replace(hour=0, minute=0, second=0, microsecond=0) + timedelta(days=1) environments = [e.id for e in get_environments(request, team.organization)] if "statuses" in request.GET: statuses = [ STRING_TO_STATUS_LOOKUP[status] for status in request.GET.getlist("statuses") ] new_format = True else: statuses = [GroupHistoryStatus.UNRESOLVED] + ACTIONED_STATUSES new_format = False new_issues = [] base_day_format = {"total": 0} if new_format: for status in statuses: base_day_format[STATUS_TO_STRING_LOOKUP[status]] = 0 else: base_day_format["reviewed"] = 0 if GroupHistoryStatus.NEW in statuses: group_environment_filter = ( Q(groupenvironment__environment_id=environments[0]) if environments else Q() ) statuses.remove(GroupHistoryStatus.NEW) new_issues = list( Group.objects.filter_to_team(team) .filter(group_environment_filter, first_seen__gte=start, first_seen__lte=end) .annotate(bucket=TruncDay("first_seen")) .order_by("bucket") .values("project", "bucket") .annotate( count=Count("id"), status=Value(GroupHistoryStatus.NEW, output_field=IntegerField()), ) ) group_history_environment_filter = ( Q(group__groupenvironment__environment_id=environments[0]) if environments else Q() ) bucketed_issues = ( GroupHistory.objects.filter_to_team(team) .filter( group_history_environment_filter, status__in=statuses, date_added__gte=start, date_added__lte=end, ) .annotate(bucket=TruncDay("date_added")) .order_by("bucket") .values("project", "bucket", "status") .annotate(count=Count("id")) ) current_day, date_series_dict = start, {} while current_day < end: date_series_dict[current_day.isoformat()] = copy.deepcopy(base_day_format) current_day += timedelta(days=1) project_list = Project.objects.get_for_team_ids(team_ids=[team.id]) agg_project_counts = { project.id: copy.deepcopy(date_series_dict) for project in project_list } for r in chain(bucketed_issues, new_issues): bucket = agg_project_counts[r["project"]][r["bucket"].isoformat()] bucket["total"] += r["count"] if not new_format and r["status"] != GroupHistoryStatus.UNRESOLVED: bucket["reviewed"] += r["count"] if new_format: bucket[STATUS_TO_STRING_LOOKUP[r["status"]]] += r["count"] return Response(agg_project_counts)
[ 19 ]
def METHOD_NAME(): """Testing convert_to basic call works.""" scitype = SCITYPES[0] from_fixt = get_examples(mtype=MTYPES_SERIES[1], as_scitype=scitype).get(0) # expectation is that the conversion is to mtype MTYPES_SERIES[0] exp_fixt = get_examples(mtype=MTYPES_SERIES[0], as_scitype=scitype).get(0) # carry out the conversion using convert_to converted = convert_to(from_fixt, to_type=MTYPES_SERIES[0], as_scitype=scitype) # compare expected output with actual output of convert_to msg = "convert_to basic call does not seem to work." assert deep_equals(converted, exp_fixt), msg
[ 9, 197, 24, 53 ]
def METHOD_NAME(params: Dict[str, Any], search_space: Dict[str, BaseDistribution]) -> bool: for param_name in params.keys(): param, param_distribution = params[param_name], search_space[param_name] if not param_distribution._contains(param_distribution.to_internal_repr(param)): return False return True
[ 137, 8113 ]
def METHOD_NAME(self): """Tests for register_view, the view to register items.""" self.login() # Load the page. for item_type in ["computer", "calculator", "phone"]: response = self.client.get(reverse("itemreg_register", kwargs={"item_type": item_type})) self.assertEqual(200, response.status_code) # Register a phone. response = self.client.post( reverse("itemreg_register", kwargs={"item_type": "phone"}), data={"manufacturer": "other", "imei": "123456789", "model": "test", "description": "haha"}, follow=True, ) self.assertEqual(200, response.status_code) self.assertEqual(1, PhoneRegistration.objects.filter(imei="123456789").count()) # Register a computer. response = self.client.post( reverse("itemreg_register", kwargs={"item_type": "computer"}), data={"manufacturer": "other", "serial": "1234567890", "model": "test", "description": "haha", "screen_size": 14}, follow=True, ) self.assertEqual(200, response.status_code) self.assertEqual(1, ComputerRegistration.objects.filter(serial="1234567890").count()) # Register a calculator. response = self.client.post( reverse("itemreg_register", kwargs={"item_type": "calculator"}), data={ "calc_type": "ti84p", "calc_serial": "987654321", "calc_id": "test", }, follow=True, ) self.assertEqual(200, response.status_code) self.assertEqual(1, CalculatorRegistration.objects.filter(calc_serial="987654321").count())
[ 9, 372, 1179 ]
def METHOD_NAME(op): """Checks CMSIS-NN partitioning when layout is not NHWC""" model = make_model(pool_op=op, layout="NCHW") orig_mod = make_module(model) cmsisnn_mod = cmsisnn.partition_for_cmsisnn(orig_mod) assert_no_external_function(cmsisnn_mod)
[ 9, 532, 571 ]
def METHOD_NAME(p: pathlib.Path) -> types.ModuleType: """ Load a python module from a path. :param pathlib.Path p: Path to ``<module>.py`` :rtype: Module """ import importlib.util import importlib.abc if not p.is_file(): raise FileNotFoundError(f"The module {str(p)!r} does not exist") default_sys_path = sys.path try: module_spec = importlib.util.spec_from_file_location( name=p.stem, location=str(p) ) module = importlib.util.module_from_spec(module_spec) if not isinstance(module_spec.loader, importlib.abc.Loader): raise TypeError(f"Invalid module spec {module_spec!r}") sys.path = default_sys_path + [str(p.parent)] module_spec.loader.exec_module(module) finally: sys.path = default_sys_path return module
[ 557, 298 ]
def METHOD_NAME(self): settings.PYTEST_FORCE_CHAHUB = False
[ 531, 481 ]
def METHOD_NAME(signal, corrected=False): """**Fractal dimension via Normalized Length Density (NLDFD)** NLDFD is a very simple index corresponding to the average absolute consecutive differences of the (standardized) signal (``np.mean(np.abs(np.diff(std_signal)))``). This method was developed for measuring signal complexity of very short durations (< 30 samples), and can be used for instance when continuous signal FD changes (or "running" FD) are of interest (by computing it on sliding windows, see example). For methods such as Higuchi's FD, the standard deviation of the window FD increases sharply when the epoch becomes shorter. The NLD method results in lower standard deviation especially for shorter epochs, though at the expense of lower accuracy in average window FD. See Also -------- fractal_higuchi Parameters ---------- signal : Union[list, np.array, pd.Series] The signal (i.e., a time series) in the form of a vector of values. corrected : bool If ``True``, will rescale the output value according to the power model estimated by Kalauzi et al. (2009) to make it more comparable with "true" FD range, as follows: ``FD = 1.9079*((NLD-0.097178)^0.18383)``. Note that this can result in ``np.nan`` if the result of the difference is negative. Returns -------- fd : DataFrame A dataframe containing the fractal dimension across epochs. info : dict A dictionary containing additional information (currently, but returned nonetheless for consistency with other functions). Examples ---------- **Example 1**: Usage on a short signal .. ipython:: python import neurokit2 as nk # Simulate a short signal with duration of 0.5s signal = nk.signal_simulate(duration=0.5, frequency=[3, 5]) # Compute Fractal Dimension fd, _ = nk.fractal_nld(signal, corrected=False) fd **Example 2**: Compute FD-NLD on non-overlapping windows .. ipython:: python import numpy as np # Simulate a long signal with duration of 5s signal = nk.signal_simulate(duration=5, frequency=[3, 5, 10], noise=0.1) # We want windows of size=100 (0.1s) n_windows = len(signal) // 100 # How many windows # Split signal into windows windows = np.array_split(signal, n_windows) # Compute FD-NLD on all windows nld = [nk.fractal_nld(i, corrected=False)[0] for i in windows] np.mean(nld) # Get average **Example 3**: Calculate FD-NLD on sliding windows .. ipython:: python # Simulate a long signal with duration of 5s signal = nk.signal_simulate(duration=5, frequency=[3, 5, 10], noise=0.1) # Add period of noise signal[1000:3000] = signal[1000:3000] + np.random.normal(0, 1, size=2000) # Create function-wrapper that only return the NLD value nld = lambda x: nk.fractal_nld(x, corrected=False)[0] # Use them in a rolling window of 100 samples (0.1s) rolling_nld = pd.Series(signal).rolling(100, min_periods = 100, center=True).apply(nld) @savefig p_nld1.png scale=100% nk.signal_plot([signal, rolling_nld], subplots=True, labels=["Signal", "FD-NLD"]) @suppress plt.close() References ---------- * Kalauzi, A., Bojić, T., & Rakić, L. (2009). Extracting complexity waveforms from one-dimensional signals. Nonlinear biomedical physics, 3(1), 1-11. """ # Sanity checks if isinstance(signal, (np.ndarray, pd.DataFrame)) and signal.ndim > 1: raise ValueError( "Multidimensional inputs (e.g., matrices or multichannel data) are not supported yet." ) # Amplitude normalization signal = standardize(signal) # Calculate normalized length density nld = np.nanmean(np.abs(np.diff(signal))) if corrected: # Power model optimal parameters based on analysis of EEG signals (from Kalauzi et al. 2009) a = 1.9079 k = 0.18383 nld_diff = nld - 0.097178 # NLD - NLD0 if nld_diff < 0: warn( "Normalized Length Density of the signal may be too small, retuning `np.nan`.", category=NeuroKitWarning, ) nld = np.nan else: nld = a * (nld_diff ** k) # Compute fd return nld, {}
[ 16144, -1 ]
def METHOD_NAME(self, method, full_url, path, body, duration, status_code=None, response=None, exception=None): """ Log an unsuccessful API call. """ # do not log 404s on HEAD requests if method == 'HEAD' and status_code == 404: return logger.warning( '%s %s [status:%s request:%.3fs]', method, full_url, status_code or 'N/A', duration, exc_info=exception is not None ) # body has already been serialized to utf-8, deserialize it for logging # TODO: find a better way to avoid (de)encoding the body back and forth if body: try: body = body.decode('utf-8', 'ignore') except AttributeError: pass logger.debug('> %s', body) self._log_trace(method, path, body, status_code, response, duration) if response is not None: logger.debug('< %s', response)
[ 390, 377, 180 ]
def METHOD_NAME(self,event): DC = wx.PaintDC(self) #self.PrepareDC(DC) s = self.GetVirtualSize() MemBitmap = wx_compat.EmptyBitmap(s.GetWidth(), s.GetHeight()) #del DC MemDC = wx.MemoryDC() OldBitmap = MemDC.SelectObject(MemBitmap) try: #DC.BeginDrawing() self.DoPaint(MemDC) DC.Blit(0, 0, s.GetWidth(), s.GetHeight(), MemDC, 0, 0) #DC.EndDrawing() finally: del MemDC del MemBitmap
[ 69, 5932 ]
def METHOD_NAME(self, **kwargs): return { "connection_user": kwargs.get("connection_user") or self.mysql_root_user, "connection_pass": kwargs.get("connection_pass") or self.mysql_root_passwd, "connection_db": kwargs.get("connection_db") or "mysql", "connection_port": kwargs.get("connection_port") or self.mysql_port, }
[ 19, 3568 ]
def METHOD_NAME(self, batch, stage): "Given an input batch it computes the phoneme probabilities." batch = batch.to(self.device) wavs, wav_lens = batch.sig wavs = self.modules.augmentation(wavs, wav_lens) feats = self.hparams.compute_features(wavs) feats = self.modules.normalize(feats, wav_lens) out = self.modules.model(feats) out = self.modules.output(out) pout = self.hparams.log_softmax(out) return pout, wav_lens
[ 226, 76 ]
def METHOD_NAME(test_directory): proj_dirs = [] if not os.path.isdir(test_directory): err_exit("test directory does not exist") for l in os.listdir(test_directory): if "corpus-" in l and os.path.isdir(os.path.join(test_directory, l)): proj_dirs.append(l) for proj_dir in proj_dirs: check_project_dir(os.path.join(test_directory, proj_dir))
[ 250, 9, 2851 ]
def METHOD_NAME(pipeline_response): deserialized = self._deserialize("OperationsList", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return deserialized.next_link or None, iter(list_of_elem)
[ 297, 365 ]
def METHOD_NAME( asset_with_mock: dict[str, Any] ) -> None: asset = Asset(**asset_with_mock, mock_is_real=True) assert asset.mock_is_real asset.no_mock() assert not asset.mock_is_real with pytest.raises(ValidationError): asset.mock_is_real = True asset.mock = mock() asset.mock_is_real = True assert asset.mock_is_real
[ 9, 248, 2659, 130, 1866, 1887, 0 ]
def METHOD_NAME(): tape = get_working_tape() tape.clear_tape() mesh = UnitOctahedralSphereMesh(refinement_level=2) x = SpatialCoordinate(mesh) mesh.init_cell_orientations(x) S = mesh.coordinates.function_space() s = Function(S,name="deform") mesh.coordinates.assign(mesh.coordinates + s) f = x[0]*x[1]*x[2] V = FunctionSpace(mesh, "CG", 1) u, v = TrialFunction(V), TestFunction(V) a = inner(grad(u), grad(v))*dx + u*v*dx l = f*v*dx u = Function(V) solve(a==l, u, solver_parameters={'ksp_type':'preonly', 'pc_type':'lu', "mat_type": "aij", "pc_factor_mat_solver_type": "mumps"}) J = assemble(u*dx(domain=mesh)) c = Control(s) Jhat = ReducedFunctional(J, c) A = 1e-1 h = Function(S,name="V") h.interpolate(as_vector((A*x[2], A*cos(x[1]), A*x[0]))) # Finite difference r0 = taylor_test(Jhat, s, h, dJdm=0) Jhat(s) assert(r0>0.95) r1 = taylor_test(Jhat, s, h) Jhat(s) assert(r1>1.95) # First order taylor s.block_variable.tlm_value = h tape = get_working_tape() tape.evaluate_tlm() r1 = taylor_test(Jhat, s, h, dJdm=J.block_variable.tlm_value) assert(r1>1.95) Jhat(s) # # Second order taylor dJdm = Jhat.derivative().vector().inner(h.vector()) Hm = compute_hessian(J, c, h).vector().inner(h.vector()) r2 = taylor_test(Jhat, s, h, dJdm=dJdm, Hm=Hm) assert(r2>2.95)
[ 9, 2918, 1178, 3889, 7925 ]
def METHOD_NAME(self, env): self.setup_build_environment(env)
[ 102, 22, 1027 ]
def METHOD_NAME(vocab_size): base = len(string.ascii_letters) n = math.ceil(math.log(vocab_size, base)) vocab = [] for i in range(1, n + 1): for item in itertools.product(string.ascii_letters, repeat=i): if len(vocab) >= vocab_size: break vocab.append("".join(item)) return vocab
[ 129, 8932 ]
def METHOD_NAME(self): test_subject_name = "_iblrig_test_mouse" self.local_dir = tempfile.TemporaryDirectory() self.remote_dir = tempfile.TemporaryDirectory() def create_local_session(): local_session_folder = ( Path(self.local_dir.name) / "Subjects" / test_subject_name / "1900-01-01" / "001" ) local_session_folder.mkdir(parents=True) return str(local_session_folder) def create_remote_subject(): remote_subject_dir = Path(self.remote_dir.name) / "Subjects" remote_subject_dir.mkdir(parents=True) return str(remote_subject_dir) def assert_values(previous_session_folders): self.assertTrue(isinstance(previous_session_folders, list)) if previous_session_folders: # returned list is not empty and should contain strings for session_folder in previous_session_folders: self.assertTrue(isinstance(session_folder, str)) # Test for an existing subject, local does exist and remote does exist # Create local session and remote subject temp directories test_local_session_folder = create_local_session() test_remote_subject_folder = create_remote_subject() # Call the function test_previous_session_folders = path_helper.get_previous_session_folders( test_subject_name, test_local_session_folder, remote_subject_folder=test_remote_subject_folder, ) assert_values(test_previous_session_folders) # Test for an existing subject, local does exist and remote does NOT exist self.remote_dir.cleanup() # Call the function test_previous_session_folders = path_helper.get_previous_session_folders( test_subject_name, test_local_session_folder, remote_subject_folder=test_remote_subject_folder, ) assert_values(test_previous_session_folders) # Test for an existing subject, local does NOT exist and remote does exist self.local_dir.cleanup() test_remote_subject_folder = create_remote_subject() # Call the function test_previous_session_folders = path_helper.get_previous_session_folders( test_subject_name, test_local_session_folder, remote_subject_folder=test_remote_subject_folder, ) assert_values(test_previous_session_folders) # Test for an existing subject, local does NOT exist and remote does NOT exist self.local_dir.cleanup() self.remote_dir.cleanup() # Call the function test_previous_session_folders = path_helper.get_previous_session_folders( test_subject_name, test_local_session_folder, remote_subject_folder=test_remote_subject_folder, ) assert_values(test_previous_session_folders) # Test for a new subject test_new_subject_name = "_new_iblrig_test_mouse" test_new_session_folder = (Path(self.local_dir.name) / "Subjects" / test_new_subject_name / "1970-01-01" / "001") test_previous_session_folders = path_helper.get_previous_session_folders(test_new_subject_name, str(test_new_session_folder)) self.assertTrue(isinstance(test_previous_session_folders, list)) self.assertTrue(not test_previous_session_folders) # returned list should be empty
[ 9, 19, 1511, 240, 2547 ]
def METHOD_NAME(self, origs, names): return list(map(self.filter, origs, names))
[ 527, 245 ]
def METHOD_NAME(): bool_df = pd.DataFrame( [ {"bool_col": True, "int_col": 0, "float_col": 3.0}, {"bool_col": False, "int_col": 100, "float_col": 0.7}, ] ) copy_of_df = bool_df.copy() widget = AutoVizWidget( df, encoding, renderer, ipywidget_factory, encoding_widget, ipython_display, spark_events=spark_events, testing=True, ) result = AutoVizWidget._convert_to_displayable_dataframe(bool_df) # Ensure original DF not changed assert_frame_equal(bool_df, copy_of_df) assert_series_equal(bool_df["int_col"], result["int_col"]) assert_series_equal(bool_df["float_col"], result["float_col"]) assert result.dtypes["bool_col"] == object assert len(result["bool_col"]) == 2 assert result["bool_col"][0] == "True" assert result["bool_col"][1] == "False" spark_events.emit_graph_render_event.assert_called_once_with(encoding.chart_type)
[ 9, 197, 24, -1, 1616 ]
def METHOD_NAME(self, token_config: "TokenConfig", previous_value): if not self.active: return previous_value return METHOD_NAME()
[ 19, 340, 466 ]
def METHOD_NAME(self, callback): messenger.send('SGE_Flash', [self.nodePath]) if not callback: messenger.send('SGE_madeSelection', [self.nodePath, callback]) else: messenger.send('SGE_madeSelection', [self.nodePath])
[ 69, 1472 ]
def METHOD_NAME(line): output_parts = [] while "${" in line: start_pos = line.index("${") end_pos = line.index("}", start_pos + 2) if start_pos != 0: output_parts.append("\"" + line[:start_pos].replace("\"", "\\\"") + "\"") output_parts.append("str(" + line[start_pos+2:end_pos] + ")") line = line[end_pos+1:] if line: output_parts.append("\"" + line.replace("\"", "\\\"") + "\"") return " + ".join(output_parts)
[ 4748 ]
def METHOD_NAME( module: torch.nn.Module, dtype: torch.dtype ) -> torch.nn.Module: qconfig = quant.QConfigDynamic( activation=quant.PlaceholderObserver, weight=quant.PlaceholderObserver.with_args(dtype=dtype), ) return quant.quantize_dynamic( module, qconfig_spec={ BatchedFusedEmbeddingBag: qconfig, BatchedDenseEmbeddingBag: qconfig, BatchedDenseEmbedding: qconfig, BatchedFusedEmbedding: qconfig, }, mapping={ BatchedFusedEmbeddingBag: QuantBatchedEmbeddingBag, BatchedDenseEmbeddingBag: QuantBatchedEmbeddingBag, BatchedDenseEmbedding: QuantBatchedEmbedding, BatchedFusedEmbedding: QuantBatchedEmbedding, }, inplace=False, )
[ 1429, 5796, 2465 ]
def METHOD_NAME(self): ...
[ 277 ]
def METHOD_NAME(self, cd_tmp_path: Path) -> None: """Test how path attribute is set.""" assert EnvManager("", "", path=cd_tmp_path).path == cd_tmp_path assert EnvManager("", "").path == cd_tmp_path
[ 9, 157 ]
def METHOD_NAME(seed, amount, nftoken_id, expiration, destination): """create_sell_offer"""
[ 129, 8667, 6179 ]
def METHOD_NAME(self, resource, datum_ids, datum_kwarg_list): self._create_datum_index() return super().METHOD_NAME(resource, datum_ids, datum_kwarg_list)
[ 2278, 408, 2030 ]
def METHOD_NAME(): """ Detect if a new kernel version has been installed but is not running. Returns True if a new kernel is installed, False otherwise. CLI Example: .. code-block:: bash salt '*' kernelpkg.needs_reboot """ return LooseVersion(active()) < LooseVersion(latest_installed())
[ 949, 4589 ]
def METHOD_NAME(ceph_cluster, **kw): """Test rename of files and directories on NFS mount Args: **kw: Key/value pairs of configuration information to be used in the test. """ config = kw.get("config") nfs_nodes = ceph_cluster.get_nodes("nfs") clients = ceph_cluster.get_nodes("client") port = config.get("port", "2049") version = config.get("nfs_version") num_files = config.get("num_files") num_dirs = config.get("num_dirs") no_clients = int(config.get("clients", "3")) nfs_name = "cephfs-nfs" nfs_mount = "/mnt/nfs" nfs_export = "/export" nfs_server_name = nfs_nodes[0].hostname fs_name = "cephfs" # If the setup doesn't have required number of clients, exit. if no_clients > len(clients): raise ConfigError("The test requires more clients than available") clients = clients[:no_clients] # Select only the required number of clients try: # Setup nfs cluster setup_nfs_cluster( clients, nfs_server_name, port, version, nfs_name, nfs_mount, fs_name, nfs_export, fs_name, ) # Create files from Client 1 and perform lookups and rename from client 2 and client 3 with concurrent.futures.ThreadPoolExecutor() as executor: futures = [] create_files_future = executor.submit( create_rename_files, nfs_mount, num_files, client1=clients[0], client2=clients[1], ) create_dirs_future = executor.submit( create_rename_dirs, nfs_mount, num_dirs, client1=clients[0], client2=clients[1], ) perform_lookups_future = executor.submit( perform_lookups, clients[2], nfs_mount, num_files, num_dirs ) futures.extend( [ create_files_future, create_dirs_future, perform_lookups_future, ] ) # Wait for creates and renames to complete concurrent.futures.wait( [ create_files_future, create_dirs_future, perform_lookups_future, ] ) log.info("Successfully completed the rename tests for files and dirs") finally: log.info("Cleaning up") cleanup_cluster(clients, nfs_mount, nfs_name, nfs_export) log.info("Cleaning up successfull") return 0
[ 22 ]
def METHOD_NAME( fmaps_in, kernel_size, num_fmaps, num_repetitions, activation="relu", name="conv_pass", ): """Create a convolution pass:: f_in --> f_1 --> ... --> f_n where each ``-->`` is a convolution followed by a (non-linear) activation function and ``n`` ``num_repetitions``. Each convolution will decrease the size of the feature maps by ``kernel_size-1``. Args: f_in: The input tensor of shape ``(batch_size, channels, depth, height, width)`` or ``(batch_size, channels, height, width)``. kernel_size: Size of the kernel. Forwarded to the tensorflow convolution layer. num_fmaps: The number of feature maps to produce with each convolution. num_repetitions: How many convolutions to apply. activation: Which activation to use after a convolution. Accepts the name of any tensorflow activation function (e.g., ``relu`` for ``tf.nn.relu``). """ fmaps = fmaps_in if activation is not None: activation = getattr(tf.nn, activation) conv_layer = getattr( tf.layers, {2: "conv2d", 3: "conv3d"}[fmaps_in.get_shape().ndims - 2] ) for i in range(num_repetitions): fmaps = conv_layer( inputs=fmaps, filters=num_fmaps, kernel_size=kernel_size, padding="valid", data_format="channels_first", activation=activation, name=name + "_%i" % i, ) return fmaps
[ 1306, 403 ]
def METHOD_NAME(self): # There are duplicate occurences in a, and the same item is found in b a = np.array([[1, 3, 3, 1, 7], [3, 3, 2, 3, 0]]) b = np.array([[3, 1, 2, 5, 3], [3, 3, 3, 1, 1]]) ma, ia = setmembership.ismember_rows(a, b) ma_known = np.array([1, 1, 1, 1, 0], dtype=bool) ia_known = np.array([1, 0, 2, 1]) self.assertTrue(np.allclose(ma, ma_known)) self.assertTrue(np.allclose(ia, ia_known))
[ 9, 9594, 1346, 2152, 16612, 385, 61 ]
def METHOD_NAME(self): if not self.context_model.is_modified(): return True if self.filepath(): filename = os.path.basename(self.filepath()) id_str = "context %r" % filename title = "Close %s" % filename else: id_str = "the context" title = "Close context" if self.context_model.is_stale(): ret = QtWidgets.QMessageBox.warning( self, title, "%s is pending a resolve.\n" "Close and discard changes?\n" "If you close, your changes will be lost." % id_str.capitalize(), QtWidgets.QMessageBox.Discard, QtWidgets.QMessageBox.Cancel) return (ret == QtWidgets.QMessageBox.Discard) else: ret = QtWidgets.QMessageBox.warning( self, title, "Save the changes to %s before closing?\n" "If you don't save the context, your changes will be lost." % id_str, buttons=( QtWidgets.QMessageBox.Save | QtWidgets.QMessageBox.Discard | QtWidgets.QMessageBox.Cancel ) ) if ret == QtWidgets.QMessageBox.Save: if self.is_saveable(): self._save_context() return True else: assert self.is_save_as_able() return self._save_context_as() else: return (ret == QtWidgets.QMessageBox.Discard) raise RuntimeError("Should never get here") # NOSONAR
[ 1046, 1462 ]
def METHOD_NAME(self): '''Return list of fds inherited from parent process. This returns None if the current process was not started by fork server. ''' return self._inherited_fds
[ 19, 8002, 2320 ]
f METHOD_NAME(self, specs):
[ 276, 362 ]
def METHOD_NAME(self, mock_get): mock_get.return_value = self.cache_value with override_settings(SENTRY_RELEASE_REGISTRY_BASEURL="http://localhost:5000"): assert get_option_value(self.node_fn, OPTION_VERSION) == "19" assert get_option_value(self.node_fn, OPTION_LAYER_NAME) == "SentryNodeServerlessSDK" assert get_option_value(self.node_fn, OPTION_ACCOUNT_NUMBER) == "943013980633" assert get_option_value(self.python_fn, OPTION_VERSION) == "2" assert ( get_option_value(self.python_fn, OPTION_LAYER_NAME) == "SentryPythonServerlessSDK" ) assert get_option_value(self.python_fn, OPTION_ACCOUNT_NUMBER) == "943013980633"
[ 9, 41, 596 ]
def METHOD_NAME(self): """Initialize before test case execution""" self._s1ap_wrapper = s1ap_wrapper.TestWrapper() self._ha_util = HaUtil()
[ 0, 1 ]
def METHOD_NAME(self): """ Perform transformer operations. """ StudentViewTransformer.collect(self.block_structure) self.block_structure._collect_requested_xblock_fields() # pylint: disable=protected-access StudentViewTransformer(['video']).transform( usage_info=None, block_structure=self.block_structure, ) VideoBlockURLTransformer().transform( usage_info=None, block_structure=self.block_structure, )
[ 1444, 61, 1053 ]
def METHOD_NAME(self, rollback_registry): registry = rollback_registry query = registry.System.Sequence.query() assert repr(query) == str(query.sql_statement)
[ 9, 92 ]
def METHOD_NAME(self): body_str = """{"vswitch": {"name": "name1", "rdev": "1234", "vid": -1}}""" self.req.body = body_str self.assertRaises(exception.ValidationError, vswitch.vswitch_create, self.req)
[ 9, 2950, 129, 532, 7478 ]
def METHOD_NAME(step): """ Reset the history of the keystone proxy :param step: :return: """ requests.request('get', 'http://{ks_proxy_ip}:{ks_proxy_port}/reset_history'.format(ks_proxy_ip=world.ks_proxy_ip, ks_proxy_port=world.ks_proxy_port))
[ 983, 18123, 127, 351, 656 ]
def METHOD_NAME(x): pass
[ 9, 2659, 3570 ]
def METHOD_NAME(self): return "".join(self._result).strip()
[ 19, 1571 ]
def METHOD_NAME(): x = [g.group.cartesian(u) for u in U] for y in x: y[:] = 0 if not pure_gauge: forces = [[g.lattice(y) for y in x] for i in fields] log.time("fermion forces") for i in range(len(hasenbusch_ratios)): forces[i] = action_fermions_s[i].gradient(fields[i], fields[i][0 : len(U)]) log.time() for i in range(len(hasenbusch_ratios)): log.gradient(forces[i], f"{hasenbusch_ratios[i][0]}/{hasenbusch_ratios[i][1]} {i}") for j in range(len(x)): x[j] += forces[i][j] return x
[ 4497, 1818 ]
def METHOD_NAME(url: PushUrlType) -> dict[str, Any]: """Return headers for replace url in browser tab response.""" url = (url if url != "False" else "false") if isinstance(url, str) else "false" return {HTMXHeaders.REPLACE_URL: url}
[ 19, 369, 274, 572 ]
def METHOD_NAME(): query = qb.groups.from_params(request.args) total = Group.count(query) paging = Page.from_params(request.args, total) groups = Group.find_all(query, page=paging.page, page_size=paging.page_size) if groups: return jsonify( status='ok', page=paging.page, pageSize=paging.page_size, pages=paging.pages, more=paging.has_more, groups=[group.serialize for group in groups], total=total ) else: return jsonify( status='ok', page=paging.page, pageSize=paging.page_size, pages=paging.pages, more=paging.has_more, message='not found', groups=[], total=0 )
[ 245, 861 ]
def METHOD_NAME(args, model, get_num_layer=None, get_layer_scale=None, filter_bias_and_bn=True, skip_list=None): opt_lower = args.opt.lower() weight_decay = args.weight_decay if weight_decay and filter_bias_and_bn: skip = {} if skip_list is not None: skip = skip_list elif hasattr(model, 'no_weight_decay'): skip = model.no_weight_decay() parameters = get_parameter_groups(model, weight_decay, skip, get_num_layer, get_layer_scale) weight_decay = 0. else: parameters = model.parameters() if 'fused' in opt_lower: assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers' opt_args = dict(lr=args.lr, weight_decay=weight_decay) if hasattr(args, 'opt_eps') and args.opt_eps is not None: opt_args['eps'] = args.opt_eps if hasattr(args, 'opt_betas') and args.opt_betas is not None: opt_args['betas'] = args.opt_betas opt_split = opt_lower.split('_') opt_lower = opt_split[-1] if opt_lower == 'sgd' or opt_lower == 'nesterov': opt_args.pop('eps', None) optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'momentum': opt_args.pop('eps', None) optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) elif opt_lower == 'adam': optimizer = optim.Adam(parameters, **opt_args) elif opt_lower == 'adamw': optimizer = optim.AdamW(parameters, **opt_args) elif opt_lower == 'nadam': optimizer = Nadam(parameters, **opt_args) elif opt_lower == 'radam': optimizer = RAdam(parameters, **opt_args) elif opt_lower == 'adamp': optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args) elif opt_lower == 'sgdp': optimizer = SGDP(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'adadelta': optimizer = optim.Adadelta(parameters, **opt_args) elif opt_lower == 'adafactor': if not args.lr: opt_args['lr'] = None optimizer = Adafactor(parameters, **opt_args) elif opt_lower == 'adahessian': optimizer = Adahessian(parameters, **opt_args) elif opt_lower == 'rmsprop': optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=args.momentum, **opt_args) elif opt_lower == 'rmsproptf': optimizer = RMSpropTF(parameters, alpha=0.9, momentum=args.momentum, **opt_args) elif opt_lower == 'novograd' or opt_lower == 'nvnovograd': optimizer = NvNovoGrad(parameters, **opt_args) elif opt_lower == 'fusedsgd': opt_args.pop('eps', None) optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'fusedmomentum': opt_args.pop('eps', None) optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) elif opt_lower == 'fusedadam': optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args) elif opt_lower == 'fusedadamw': optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args) elif opt_lower == 'fusedlamb': optimizer = FusedLAMB(parameters, **opt_args) elif opt_lower == 'fusednovograd': opt_args.setdefault('betas', (0.95, 0.98)) optimizer = FusedNovoGrad(parameters, **opt_args) else: assert False and "Invalid optimizer" raise ValueError if len(opt_split) > 1: if opt_split[0] == 'lookahead': optimizer = Lookahead(optimizer) return optimizer
[ 129, 968 ]
def METHOD_NAME(self) -> list[BiosimulationsProject]: projects: list[BiosimulationsProject] if os.path.exists(self.projects_ndjson_file): with open(self.projects_ndjson_file) as f: projects = [BiosimulationsProject(**json.loads(line)) for line in f.readlines()] else: projects = [] return projects
[ 203, 2847 ]