text
stringlengths 15
7.82k
| ids
sequencelengths 1
7
|
---|---|
def METHOD_NAME(default_conf, caplog) -> None:
instance_strategy_updater = StrategyUpdater()
modified_code3 = instance_strategy_updater.update_code(""" | [
9,
1554,
9185,
891
] |
def METHOD_NAME(self, permission, object, context):
return 1 | [
250,
204
] |
async def METHOD_NAME(self, request: web.Request):
ability = await self.create_or_update_on_disk_object(request)
return web.json_response(ability.display) | [
129,
894,
86,
11458
] |
def METHOD_NAME(x, axis=-1):
"""Perform softmax activation on the data.
Use approximation to compute exponent for faster speed.
Parameters
----------
data : tvm.te.Tensor
can be any dimension
axis : int
channel axis
Returns
-------
output : tvm.te.Tensor
output shape is the same as input
"""
return softmax_common(x, axis, True) | [
2602,
4027
] |
METHOD_NAME( self, menu ) : | [
0,
2470
] |
def METHOD_NAME(self, user, kc_user=None, is_superuser=False, delete=False):
# map a kc user to a django user
if not kc_user:
kc_user = self._get_kc_user(user)
user_auth_level = self.auth_service.get_auth_level(kc_user)
if user_auth_level == AuthorizationLevel.ADMIN:
is_superuser = True
# update the superuser and staff status of the user
user.is_staff = is_superuser
user.is_superuser = is_superuser
user.username = kc_user.get("username", kc_user["email"])
user.first_name = kc_user.get("firstName", "")
user.last_name = kc_user.get("lastName", "")
user.email = kc_user.get("email", "")
user.is_active = kc_user.get("enabled", delete)
return user | [
422,
14845,
21
] |
def METHOD_NAME(self):
"""
test that a basic couch user gets created when calling CouchUser.from_web_user
"""
username = "joe"
email = "[email protected]"
password = "password"
domain = "test"
domain_obj = create_domain(domain)
self.addCleanup(domain_obj.delete)
couch_user = WebUser.create(domain, username, password, None, None, email=email)
self.addCleanup(couch_user.delete, domain, deleted_by=None)
self.assertEqual(couch_user.domains, [domain])
self.assertEqual(couch_user.email, email)
self.assertEqual(couch_user.username, username)
django_user = couch_user.get_django_user()
self.assertEqual(django_user.email, email)
self.assertEqual(django_user.username, username) | [
9,
129,
756,
2412,
21
] |
def METHOD_NAME(self):
parameters = {
**self.serialize_url_param(
"clusterName", self.ctx.args.cluster_name,
required=True,
),
**self.serialize_url_param(
"resourceGroupName", self.ctx.args.resource_group,
required=True,
),
**self.serialize_url_param(
"subscriptionId", self.ctx.subscription_id,
required=True,
),
}
return parameters | [
274,
386
] |
def METHOD_NAME(transition=0.5, width=0.1):
"""Colormap often used in H.E.S.S. collaboration publications.
This colormap goes black -> blue -> red -> yellow -> white.
A sharp blue -> red -> yellow transition is often used for significance images
with a value of red at ``transition ~ 5`` or ``transition ~ 7``
so that the following effect is achieved:
- black, blue: non-significant features, not well visible
- red: features at the detection threshold ``transition``
- yellow, white: significant features, very well visible
The transition parameter is defined between 0 and 1. To calculate the value
from data units an `~astropy.visualization.mpl_normalize.ImageNormalize`
instance should be used (see example below).
Parameters
----------
transition : float (default = 0.5)
Value of the transition to red (between 0 and 1).
width : float (default = 0.5)
Width of the blue-red color transition (between 0 and 1).
Returns
-------
colormap : `matplotlib.colors.LinearSegmentedColormap`
Colormap
Examples
--------
>>> from gammapy.visualization import colormap_hess
>>> from astropy.visualization.mpl_normalize import ImageNormalize
>>> from astropy.visualization import LinearStretch
>>> normalize = ImageNormalize(vmin=-5, vmax=15, stretch=LinearStretch())
>>> transition = normalize(5)
>>> cmap = colormap_hess(transition=transition)
"""
# Compute normalised values (range 0 to 1) that
# correspond to red, blue, yellow.
red = float(transition)
if width > red:
blue = 0.1 * red
else:
blue = red - width
yellow = 2.0 / 3.0 * (1 - red) + red
black, white = 0, 1
# Create custom colormap
# List entries: (value, (R, G, B))
colors = [
(black, "k"),
(blue, (0, 0, 0.8)),
(red, "r"),
(yellow, (1.0, 1.0, 0)),
(white, "w"),
]
return LinearSegmentedColormap.from_list(name="hess", colors=colors) | [
3517,
5019
] |
def METHOD_NAME(self, serial, realms):
parameters = {"serial": serial, "realms": realms}
response = self.make_admin_request("tokenrealm", params=parameters)
return response | [
0,
466,
2440
] |
def METHOD_NAME(self, columnvalue=None):
self.current_row = []
if columnvalue:
self.current_row.append(columnvalue) | [
-1,
843
] |
def METHOD_NAME(self):
"""Random logged-in users cannot delete playlists unrelated to them."""
user = factories.UserFactory()
playlist = factories.PlaylistFactory()
jwt_token = UserAccessTokenFactory(user=user)
self.assertEqual(models.Playlist.objects.count(), 1)
response = self.client.delete(
f"/api/playlists/{playlist.id}/",
HTTP_AUTHORIZATION=f"Bearer {jwt_token}",
)
self.assertEqual(response.status_code, 403)
self.assertEqual(models.Playlist.objects.count(), 1) | [
9,
34,
556,
604,
236,
2717,
623
] |
def METHOD_NAME(self, wav, target_size):
size = len(wav)
diff = size - target_size
if diff <= 0:
return wav
start = np.random.randint(0, diff + 1)
end = size - diff + start
return wav[start:end] | [
712,
24,
232,
1318
] |
def METHOD_NAME(
self, method: str, url: str, data: Optional[Dict[Any, Any]] = {}
) -> Any:
try:
r = getattr(self.client, method)(url, data, format="json")
self.assertNotEqual(r.status_code, 403)
return r
except KeyError:
pass | [
250,
851
] |
def METHOD_NAME(self, expr):
return '-Infinity' | [
38,
2927,
7037
] |
def METHOD_NAME(self, app: Quart, session: SessionMixin) -> datetime | None:
"""Helper method to return the Session expiration time.
If the session is not 'permanent' it will expire as and when
the browser stops accessing the app.
"""
if session.permanent:
return datetime.utcnow() + app.permanent_session_lifetime
else:
return None | [
19,
3650,
104
] |
def METHOD_NAME(self):
self.snk.METHOD_NAME() | [
-1
] |
def METHOD_NAME(monkeypatch):
size = (60, 15)
def text_size(*args):
return size
monkeypatch.setattr("gaphor.diagram.text.Layout.size", text_size)
return size | [
3110,
526,
1318
] |
def METHOD_NAME(self):
for object_relation, content in self.intelmq_fields['event'].items():
self.misp_object_intelmq_event['attributes'].update(
{object_relation: self._intelmq_misp_mapping(content, object_relation)}
)
for object_relation, content in self.intelmq_fields['report'].items():
self.misp_object_intelmq_report['attributes'].update(
{object_relation: self._intelmq_misp_mapping(content, object_relation)}
) | [
567,
1914
] |
def METHOD_NAME(self):
return self._last_result["solution"]["answers"] | [
19,
9099
] |
def METHOD_NAME(self, *args, **kwargs):
result = self.deserialize_output(self.ctx.vars.instance, client_flatten=True)
return result | [
146
] |
def METHOD_NAME(self):
# given
fetch_messages_endpoint_under_test = pubnub.fetch_messages()
fetch_messages_endpoint_under_test.channels("channel1")
# when
fetch_messages_endpoint_under_test.validate_params()
# then
assert fetch_messages_endpoint_under_test._count == EXPECTED_SINGLE_CHANNEL_DEFAULT_MESSAGES | [
9,
97,
307,
2659,
403,
235,
1646
] |
def METHOD_NAME(self, *args): return _ESL.ESLevent_setPriority(self, *args) | [
0,
2654
] |
def METHOD_NAME(user, job, pricing):
return pricing.get_price_for_user(
user=user,
list_type=job.list_type) | [
19,
202,
806
] |
def METHOD_NAME(self):
"""
Verify that we have enough points for this interpolation algorithm.
"""
pass | [
250,
200
] |
def METHOD_NAME(self, xp, order):
a = testing.shaped_arange((2, 1), xp)
b = xp.broadcast_to(a, (3, 2, 4))
assert not b.flags.c_contiguous and not b.flags.f_contiguous
b = b.ravel(order)
assert b.flags.c_contiguous
return b | [
9,
6221,
-1
] |
def METHOD_NAME(self, arg_strings, *args, **kwargs):
in_args = set(arg_strings)
d_sp = self.__default_subparser
if d_sp is not None and not {"-h", "--help"}.intersection(in_args):
for x in self._subparsers._actions:
subparser_found = isinstance(
x, argparse._SubParsersAction
) and in_args.intersection(x._name_parser_map.keys())
if subparser_found:
break
else:
logger.warning(
"Please use `ucc-gen build` if you want to build "
"an add-on, using just `ucc-gen` will be deprecated"
)
arg_strings = [d_sp] + arg_strings
return super().METHOD_NAME(arg_strings, *args, **kwargs) | [
214,
3478,
335
] |
def METHOD_NAME(self, **kwargs):
return "" | [
19,
857,
366,
382
] |
def METHOD_NAME(self, pool_handle, checker_request, checker, loop=None):
if loop is None:
loop = asyncio.get_event_loop()
results = loop.run_until_complete(self.ensure_previous_request_applied(pool_handle, checker_request, checker))
return results | [
22,
7767,
602,
1511,
377,
2350
] |
def METHOD_NAME(line, cell):
# search for federatedml path
base_path = None
for p in sys.path:
if p.endswith('/fate/python'):
base_path = p
break
if base_path is None:
raise ValueError(
'cannot find fate/python in system path, please check your configuration')
base_path = base_path + '/federatedml/'
model_pth = 'nn/model_zoo/'
dataset_pth = 'nn/dataset/'
trainer_pth = 'nn/homo/trainer/'
aggregator_pth = 'framework/homo/aggregator/'
loss_path = 'nn/loss/'
mode_map = {
'model': model_pth,
'trainer': trainer_pth,
'aggregator': aggregator_pth,
'dataset': dataset_pth,
'loss': loss_path
}
args = line.split()
assert len(
args) == 2, "input args len is not 2, got {} \n expect format: %%save_to_fate SAVE_MODE FILENAME \n SAVE_MODE in ['model', 'dataset', 'trainer', 'loss', 'aggregator'] FILE_NAME xxx.py".format(args)
modes_avail = ['model', 'dataset', 'trainer', 'aggregator', 'loss']
save_mode = args[0]
file_name = args[1]
assert save_mode in modes_avail, 'avail modes are {}, got {}'.format(
modes_avail, save_mode)
assert file_name.endswith('.py'), 'save file should be a .py'
with open(base_path + mode_map[save_mode] + file_name, 'w') as f:
f.write(cell)
ipy.get_ipython().run_cell(cell) | [
73,
24,
16660
] |
def METHOD_NAME(session):
"""test function for gpu"""
gpu_lib = None
try:
gpu_lib = export_gpu_add_lib()
test_add(session, gpu_lib, "/gpu:0")
finally:
if gpu_lib is not None:
os.remove(gpu_lib) | [
1667,
9
] |
def METHOD_NAME(firmware: Firmware, fo_entry: FileObjectEntry) -> FirmwareEntry:
return FirmwareEntry(
uid=firmware.uid,
submission_date=time(),
release_date=datetime.strptime(firmware.release_date, '%Y-%m-%d'),
version=firmware.version,
vendor=firmware.vendor,
device_name=firmware.device_name,
device_class=firmware.device_class,
device_part=firmware.part,
firmware_tags=firmware.tags,
root_object=fo_entry,
) | [
129,
1730,
475
] |
def METHOD_NAME(self):
self.requires("libiconv/1.17") | [
5186
] |
def METHOD_NAME():
plist = get_installed_products()
lines = []
for p in plist:
x = [Env.nodename,
p.ProductName,
p.VersionString,
"",
"msi",
p.InstallDate]
lines.append(x)
return lines | [
-1
] |
def METHOD_NAME(self) -> None:
self.mock_store.is_partial_state_room.return_value = True
d = ensureDeferred(self.tracker.await_full_state("room_id"))
# there should be no result yet
self.assertNoResult(d)
# notifying that the room has been de-partial-stated should unblock
self.tracker.notify_un_partial_stated("room_id")
self.successResultOf(d) | [
9,
37,
43,
2351,
6703,
551
] |
def METHOD_NAME(self, inputs, outputs):
from panopticapi.utils import id2rgb
for input, output in zip(inputs, outputs):
panoptic_img, segments_info = output["panoptic_seg"]
panoptic_img = panoptic_img.cpu().numpy()
if segments_info is None:
# If "segments_info" is None, we assume "panoptic_img" is a
# H*W int32 image storing the panoptic_id in the format of
# category_id * label_divisor + instance_id. We reserve -1 for
# VOID label, and add 1 to panoptic_img since the official
# evaluation script uses 0 for VOID label.
label_divisor = self._metadata.label_divisor
segments_info = []
for panoptic_label in np.unique(panoptic_img):
if panoptic_label == -1:
# VOID region.
continue
pred_class = panoptic_label // label_divisor
isthing = (
pred_class in self._metadata.thing_dataset_id_to_contiguous_id.values()
)
segments_info.append(
{
"id": int(panoptic_label) + 1,
"category_id": int(pred_class),
"isthing": bool(isthing),
}
)
# Official evaluation script uses 0 for VOID label.
panoptic_img += 1
file_name = os.path.basename(input["file_name"])
file_name_png = os.path.splitext(file_name)[0] + ".png"
with io.BytesIO() as out:
Image.fromarray(id2rgb(panoptic_img)).save(out, format="PNG")
segments_info = [self._convert_category_id(x) for x in segments_info]
self._predictions.append(
{
"image_id": input["image_id"],
"file_name": file_name_png,
"png_string": out.getvalue(),
"segments_info": segments_info,
}
) | [
356
] |
def METHOD_NAME(self, hard=False):
"""Reset internal state of the ODE solver."""
if self._is_set:
state = self.get_state()
if hard:
self._prepare()
if self._is_set:
self.set_state(*state) | [
656
] |
def METHOD_NAME(self) -> str:
data = {
"key": self.data["key"],
"value": self.data["value"],
"match": MATCH_CHOICES[self.data["match"]],
}
return self.label.format(**data) | [
338,
636
] |
def METHOD_NAME(self, sdfg, state):
in_edges = state.in_edges(self)
if len(in_edges) != 2:
raise ValueError("Expected exactly two inputs to axpy")
in_memlets = [in_edges[0].data, in_edges[1].data]
out_edges = state.out_edges(self)
if len(out_edges) != 1:
raise ValueError("Expected exactly one output from axpy")
out_memlet = out_edges[0].data
size = in_memlets[0].subset.size()
if len(size) != 1:
raise ValueError("axpy only supported on 1-dimensional arrays")
if size != in_memlets[1].subset.size():
raise ValueError("Inputs to axpy must have equal size")
if size != out_memlet.subset.size():
raise ValueError("Output of axpy must have same size as input")
if (in_memlets[0].wcr is not None or in_memlets[1].wcr is not None or out_memlet.wcr is not None):
raise ValueError("WCR on axpy memlets not supported")
return True | [
187
] |
def METHOD_NAME(self):
user = UserFactory.create(is_staff=False)
self.client.force_authenticate(user)
response = self.client.get(
reverse_lazy(
"api:form-price-logic-rules", kwargs={"uuid_or_slug": self.form.uuid}
)
)
self.assertEqual(status.HTTP_403_FORBIDDEN, response.status_code) | [
9,
1045,
21,
984
] |
def METHOD_NAME(metric, patience):
return EarlyStopping(
monitor=f"val_{metric}", # does this need avg?
mode="min" if "loss" in metric else "max",
patience=patience,
verbose=True,
) | [
19,
5040,
8449,
1076
] |
def METHOD_NAME(self, auto_schema: 'AutoSchema', direction: Direction):
""" override for customized serializer field mapping """
pass # pragma: no cover | [
422,
1386,
101
] |
def METHOD_NAME(self, row: int) -> None:
super().METHOD_NAME(row)
if row != -1:
# Update allocation var widget states, since allocation may differ from
# the previous color space.
self.param_edit.update_available_allocation_vars() | [
69,
1056,
843,
1180
] |
def METHOD_NAME(sample_shape, batch_shape, event_shape):
ones_shape = torch.Size((1,) * len(batch_shape))
mask = torch.empty(ones_shape).bernoulli_(0.5).bool()
zero = torch.zeros(ones_shape + event_shape)
d0 = dist.Uniform(zero - 2, zero + 1).to_event(len(event_shape))
d1 = dist.Uniform(zero - 1, zero + 2).to_event(len(event_shape))
d = dist.MaskedMixture(mask, d0, d1)
assert d.sample().shape == ones_shape + event_shape
assert d.mean.shape == ones_shape + event_shape
assert d.variance.shape == ones_shape + event_shape
assert d.sample(sample_shape).shape == sample_shape + ones_shape + event_shape
assert (
d.expand(sample_shape + batch_shape).batch_shape == sample_shape + batch_shape
)
assert (
d.expand(sample_shape + batch_shape).sample().shape
== sample_shape + batch_shape + event_shape
)
assert (
d.expand(sample_shape + batch_shape).mean.shape
== sample_shape + batch_shape + event_shape
)
assert (
d.expand(sample_shape + batch_shape).variance.shape
== sample_shape + batch_shape + event_shape
) | [
9,
2450
] |
def METHOD_NAME(result, reproducible, logger):
try:
print(result['reproducible'][reproducible]['diffoscope.text'])
return 0
except KeyError:
print("reproducible '%s' not found" % reproducible)
return 1 | [
697,
12833
] |
def METHOD_NAME():
engine = create_engine('sqlite:///:memory:', echo=False)
with engine.connect() as conn:
yield conn | [
1267
] |
def METHOD_NAME(self):
r"""
Return whether command ``ffmpeg`` in the path is functional.
EXAMPLES::
sage: from sage.features.ffmpeg import FFmpeg
sage: FFmpeg().is_functional() # optional - ffmpeg
FeatureTestResult('ffmpeg', True)
"""
# Create the content of 1-pixel png file
content = b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00\x00\x01\x08\x00\x00\x00\x00:~\x9bU\x00\x00\x00\nIDATx\x9cc`\x00\x00\x00\x02\x00\x01H\xaf\xa4q\x00\x00\x00\x00IEND\xaeB`\x82'
# NOTE:
#
# This is how the above content of a 1 pixel PNG was created::
#
# sage: import numpy as np
# sage: from PIL import Image
# sage: image = Image.fromarray(np.array([[100]], dtype=np.uint8))
# sage: image.save('file.png')
# sage: with open('file.png', 'rb') as f:
# ....: content = f.read()
# create a png file with the content
from sage.misc.temporary_file import tmp_filename
base_filename_png = tmp_filename(ext='.png')
with open(base_filename_png, 'wb') as f:
f.write(content)
# Set up filenames
import os
base, filename_png = os.path.split(base_filename_png)
filename, _png = os.path.splitext(filename_png)
# Setting a list of commands (taken from sage/plot/animate.py)
# The `-nostdin` is needed to avoid the command to hang, see
# https://stackoverflow.com/questions/16523746/ffmpeg-hangs-when-run-in-background
commands = []
for ext in ['.avi', '.flv', '.gif', '.mkv', '.mov', #'.mpg',
'.mp4', '.ogg', '.ogv', '.webm', '.wmv']:
cmd = ['ffmpeg', '-nostdin', '-y', '-f', 'image2', '-r', '5',
'-i', filename_png, '-pix_fmt', 'rgb24', '-loop', '0',
filename + ext]
commands.append(cmd)
for ext in ['.avi', '.flv', '.gif', '.mkv', '.mov', '.mpg',
'.mp4', '.ogg', '.ogv', '.webm', '.wmv']:
cmd = ['ffmpeg', '-nostdin', '-y', '-f', 'image2', '-i',
filename_png, filename + ext]
commands.append(cmd)
# Running the commands and reporting any issue encountered
from subprocess import run
for cmd in commands:
try:
result = run(cmd, cwd=base, capture_output=True, text=True)
except OSError as e:
return FeatureTestResult(self, False, reason='Running command "{}" '
'raised an OSError "{}" '.format(' '.join(cmd), e))
# If an error occurred, return False
if result.returncode:
return FeatureTestResult(self, False, reason='Running command "{}" '
'returned non-zero exit status "{}" with stderr '
'"{}" and stdout "{}".'.format(result.args,
result.returncode,
result.stderr.strip(),
result.stdout.strip()))
# If necessary, run more tests here
# ...
# The command seems functional
return FeatureTestResult(self, True) | [
137,
4167
] |
def METHOD_NAME(self):
self.account.is_customer_billing_account = True
self.assertRaises(NewSubscriptionError, lambda: Subscription.new_domain_subscription(
self.account, self.domain.name, self.advanced_plan
)) | [
9,
2448,
145,
130,
4398,
24,
1487
] |
def METHOD_NAME(columns, names, page_size=None, format_strings=None):
""" Return an html table of this data
Parameters
----------
columns : list of numpy arrays
names : list of strings
The list of columns names
page_size : {int, None}, optional
The number of items to show on each page of the table
format_strings : {lists of strings, None}, optional
The ICU format string for this column, None for no formatting. All
columns must have a format string if provided.
Returns
-------
html_table : str
A str containing the html code to display a table of this data
"""
if page_size is None:
page = 'disable'
else:
page = 'enable'
div_id = uuid.uuid4()
column_descriptions = []
for column, name in zip(columns, names):
if column.dtype.kind == 'S' or column.dtype.kind == 'U':
ctype = 'string'
else:
ctype = 'number'
column_descriptions.append((ctype, name))
data = []
for item in zip(*columns):
data.append(list(item))
return google_table_template.render(div_id=div_id,
page_enable=page,
column_descriptions = column_descriptions,
page_size=page_size,
data=data,
format_strings=format_strings,
) | [
382,
410
] |
def METHOD_NAME(action):
if chr(action) == 'D':
action_str = "DELETE"
else:
action_str = "RENAME"
return action_str | [
-1
] |
def METHOD_NAME(self) -> Optional[Mapping[str, str]]:
"""
Specifies tags
"""
return pulumi.get(self, "tags") | [
114
] |
def METHOD_NAME(load_config_sample):
"""Test failure when no downgrade path is available."""
config_initial = load_config_sample('reference/5.json')
# target higher than initial
with pytest.raises(ConfigurationError):
downgrade_config(copy.deepcopy(config_initial), 6)
# no migration available
with pytest.raises(ConfigurationError):
downgrade_config(copy.deepcopy(config_initial), -1)
# circular dependency
with pytest.raises(ConfigurationError):
downgrade_config(config_initial, 4, migrations=[CircularMigration]) | [
9,
1502,
157,
180
] |
def METHOD_NAME(self, nodes, repeat=None):
# Compile STRING | NAME [Details] | (...) | [...]
assert len(nodes) >= 1
node = nodes[0]
if node.type == token.STRING:
value = unicode(literals.evalString(node.value))
return pytree.LeafPattern(_type_of_literal(value), value)
elif node.type == token.NAME:
value = node.value
if value.isupper():
if value not in TOKEN_MAP:
raise PatternSyntaxError("Invalid token: %r" % value)
if nodes[1:]:
raise PatternSyntaxError("Can't have details for token")
return pytree.LeafPattern(TOKEN_MAP[value])
else:
if value == "any":
type = None
elif not value.startswith("_"):
type = getattr(self.pysyms, value, None)
if type is None:
raise PatternSyntaxError("Invalid symbol: %r" % value)
if nodes[1:]: # Details present
content = [self.compile_node(nodes[1].children[1])]
else:
content = None
return pytree.NodePattern(type, content)
elif node.value == "(":
return self.compile_node(nodes[1])
elif node.value == "[":
assert repeat is None
subpattern = self.compile_node(nodes[1])
return pytree.WildcardPattern([[subpattern]], min=0, max=1)
assert False, node | [
296,
756
] |
def METHOD_NAME(iterator):
radius_result = dict()
for k, v in iterator:
if v[0] not in radius_result:
radius_result[v[0]] = v[1]
elif v[1] >= radius_result[v[0]]:
radius_result[v[0]] = v[1]
return radius_result | [
232,
3662
] |
def METHOD_NAME(self):
self.product_image = ProductImageFactory()
self.context = template.Context({"image": self.product_image})
self.template = template.Template(
"{% load image_tags %}"
'{% oscar_thumbnail image.original "x155" upscale=False %}'
)
self.template_as_context_value = template.Template(
"{% load image_tags %}"
'{% oscar_thumbnail image.original "x155" upscale=False as thumb %}'
"{{ thumb.url }}"
) | [
0,
1
] |
f METHOD_NAME(self): | [
531,
481
] |
def METHOD_NAME(self, m):
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Embedding):
nn.init.normal_(m.weight, std=0.02)
if m.padding_idx is not None:
nn.init.zeros_(m.weight[m.padding_idx]) | [
176,
733
] |
def METHOD_NAME(self, data):
# Callback stub for the DUT's main.
self._stderr += data.encode("utf-8") | [
77,
3929
] |
def METHOD_NAME(self):
"""No cross-talk between attendance for different meetings"""
# numbers are arbitrary here
first_mtg = MeetingFactory(type_id='ietf', number='114')
second_mtg = MeetingFactory(type_id='ietf', number='115')
# Create a person who attended a remote session for first_mtg and onsite for second_mtg without
# checking in for either.
p = MeetingRegistrationFactory(meeting=second_mtg, reg_type='onsite', attended=False, checkedin=False).person
AttendedFactory(session__meeting=first_mtg, person=p)
MeetingRegistrationFactory(meeting=first_mtg, person=p, reg_type='remote', attended=False, checkedin=False)
AttendedFactory(session__meeting=second_mtg, person=p)
att = first_mtg.get_attendance()
self.assertEqual(att.onsite, 0)
self.assertEqual(att.remote, 1)
att = second_mtg.get_attendance()
self.assertEqual(att.onsite, 1)
self.assertEqual(att.remote, 0) | [
9,
19,
9560,
7489,
15741,
3156
] |
METHOD_NAME(self): | [
793
] |
def METHOD_NAME(self) -> None:
self._stream_config.schemaless = False
self._validation_policy.record_passes_validation_policy.return_value = False
self._parser.parse_records.side_effect = [self._iter([self._A_RECORD, ValueError("An error")])]
messages = list(self._stream.read_records_from_slice({"files": [
RemoteFile(uri="invalid_file", last_modified=self._NOW),
RemoteFile(uri="valid_file", last_modified=self._NOW),
]}))
assert messages[0].log.level == Level.ERROR
assert messages[1].log.level == Level.WARN | [
9,
1393,
442,
1887,
10682,
2530,
1646
] |
def METHOD_NAME(self):
while(self.gui.client == None):
pass
previous_time = datetime.now()
while(True):
# Sleep for 2 seconds
time.sleep(2)
# Measure the current time and subtract from previous time to get real time interval
current_time = datetime.now()
dt = current_time - previous_time
ms = (dt.days * 24 * 60 * 60 + dt.seconds) * 1000 + dt.microseconds / 1000.0
previous_time = current_time
# Get the time period
try:
# Division by zero
self.measured_cycle = ms / self.iteration_counter
except:
self.measured_cycle = 0
# Reset the counter
self.iteration_counter = 0 | [
599,
600
] |
def METHOD_NAME(full_path, sr=None):
data, sr = librosa.load(full_path, sr=sr)
data = np.clip(data, -1, 1) # potentially out of [-1, 1] due to resampling
data = data * 32768.0 # match values loaded by scipy
return torch.FloatTensor(data.astype(np.float32)), sr | [
557,
4097,
24,
3296
] |
def METHOD_NAME(self):
transformed_points = _TransformPoints(
self.points, self.rotation.GetAsMatrix4())
expected_rotated_points = np.array([[-1, 1, 0], [-1, 2, 0]]).T
self.assertTrue(
np.allclose(transformed_points, expected_rotated_points)) | [
9,
2271
] |
def METHOD_NAME(self, Q: torch.Tensor, k=10):
if k <= 10:
if self.config.ncells is None:
self.configure(ncells=1)
if self.config.centroid_score_threshold is None:
self.configure(centroid_score_threshold=0.5)
if self.config.ndocs is None:
self.configure(ndocs=256)
elif k <= 100:
if self.config.ncells is None:
self.configure(ncells=2)
if self.config.centroid_score_threshold is None:
self.configure(centroid_score_threshold=0.45)
if self.config.ndocs is None:
self.configure(ndocs=1024)
else:
if self.config.ncells is None:
self.configure(ncells=4)
if self.config.centroid_score_threshold is None:
self.configure(centroid_score_threshold=0.4)
if self.config.ndocs is None:
self.configure(ndocs=max(k * 4, 4096))
pids, scores = self.ranker.rank(self.config, Q, k)
return pids[:k], list(range(1, k+1)), scores[:k] | [
3829,
1070
] |
def METHOD_NAME(self, connection):
some_table = self.tables.some_table
some_other_table = self.tables.some_other_table
connection.execute(
some_other_table.insert().from_select(
["id", "data", "parent_id"], select(some_table)
)
)
cte = (
select(some_table)
.where(some_table.c.data.in_(["d2", "d3", "d4"]))
.cte("some_cte")
)
connection.execute(
some_other_table.delete().where(
some_other_table.c.data
== select(cte.c.data)
.where(cte.c.id == some_other_table.c.id)
.scalar_subquery()
)
)
eq_(
connection.execute(
select(some_other_table).order_by(some_other_table.c.id)
).fetchall(),
[(1, "d1", None), (5, "d5", 3)],
) | [
9,
34,
1997,
-1,
3834,
3835
] |
def METHOD_NAME(self, closed_is_special=True):
now = time.time()
expiration = self._connection.get_timer()
if expiration is None:
expiration = now + 3600 # arbitrary "big" value
interval = max(expiration - now, 0)
if self._closed and closed_is_special:
# lower sleep interval to avoid a race in the closing process
# which can lead to higher latency closing due to sleeping when
# we have events.
interval = min(interval, 0.05)
return (expiration, interval) | [
19,
2401,
199
] |
def METHOD_NAME(f, args, a, b, c, fa, fb):
tol = float_info_epsilon * 2
if (b - a) < 2 * tol * a:
c = a + (b - a) / 2
elif c <= a + abs(a) * tol:
c = a + abs(a) * tol
elif c >= b - abs(b) * tol:
c = b - abs(a) * tol
fc = f(c, *args)
if fc == 0:
a = c
fa = 0
d = 0
fd = 0
else:
if fa * fc < 0:
d = b
fd = fb
b = c
fb = fc
else:
d = a
fd = fa
a = c
fa = fc
return a, b, fa, fb, d, fd | [
4283
] |
def METHOD_NAME(conf):
"""
Detects intltool-merge
"""
if not conf.env.PERL:
conf.find_program('perl', var='PERL')
conf.env.INTLCACHE_ST = '--cache=%s'
conf.env.INTLFLAGS_DEFAULT = ['-q', '-u']
conf.find_program('intltool-merge', interpreter='PERL', var='INTLTOOL') | [
416,
11451,
411
] |
def METHOD_NAME(self, index: int):
index, key = self._map_index(index)
return self.datasets[key].METHOD_NAME(index) | [
181,
1735
] |
def METHOD_NAME(xml_writer, file_id, labels, threshold=30, sil=["pau", "br", "sil"]):
xml_reader = SingingScoreReader(os.path.join(args.scp, "score.scp"))
segments = []
segment = SegInfo()
for i in range(len(labels)):
# remove unlabeled part
if "08" in file_id and i < 135:
continue
label = labels[i]
if label.label_id in sil:
if len(segment.segs) > 0:
segments.extend(segment.split(threshold=threshold))
segment = SegInfo()
continue
segment.add(label.start, label.end, label.label_id)
if len(segment.segs) > 0:
segments.extend(segment.split(threshold=threshold))
segments_w_id = {}
id = 0
for seg in segments:
while len(seg) > 0:
key = pack_zero(file_id, id)
score = xml_reader[key]
val, seg, notes = compare(key, score["note"], seg)
segments_w_id[key] = val
score["note"] = notes
score["item_list"].append("phn")
xml_writer[key] = score
id += 1
return segments_w_id | [
93,
4373
] |
def METHOD_NAME(self) -> str:
return pulumi.get(self, "id") | [
147
] |
def METHOD_NAME(
project: str,
location: str,
root_dir: str,
num_selected_trials: int,
deadline_hours: float,
num_parallel_trials: int,
single_run_max_secs: int,
metadata: Input[Artifact],
transform_output: Input[Artifact],
materialized_train_split: Input[Artifact],
materialized_eval_split: Input[Artifact],
tuning_result_input_path: Input[Artifact],
gcp_resources: dsl.OutputPath(str),
tuning_result_output: Output[Artifact],
worker_pool_specs_override_json: Optional[list] = [],
encryption_spec_key_name: Optional[str] = '', | [
9443,
13550,
3164,
988,
13227
] |
def METHOD_NAME(self, ShortcutsDialog):
_translate = QtCore.QCoreApplication.translate
ShortcutsDialog.setWindowTitle(_translate("ShortcutsDialog", "Shortcuts"))
self.label.setText(_translate("ShortcutsDialog", "Filter:"))
self.cbNoShortcut.setText(_translate("ShortcutsDialog", "Show items without shortcut"))
self.label_2.setText(_translate("ShortcutsDialog", "Display type:"))
self.cbDisplayType.setItemText(0, _translate("ShortcutsDialog", "Tooltip"))
self.cbDisplayType.setItemText(1, _translate("ShortcutsDialog", "Text"))
self.cbDisplayType.setItemText(2, _translate("ShortcutsDialog", "ObjectName"))
self.cbAdvanced.setText(_translate("ShortcutsDialog", "Advanced Settings"))
self.cbHighlight.setText(_translate("ShortcutsDialog", "Highlight on all Windows")) | [
4735,
882
] |
def METHOD_NAME(fresh_database):
run_writer_with_args("dummy_property_requiring_link")
assert db.get_default_session().query(db.core.HaloProperty).count() == 0
run_writer_with_args("dummy_link")
run_writer_with_args("dummy_property_requiring_link")
assert db.get_default_session().query(db.core.HaloProperty).count() == 15 | [
9,
548,
2913
] |
def METHOD_NAME(self) -> 'outputs.ManagementPolicySchemaResponse':
"""
The Storage Account ManagementPolicy, in JSON format. See more details in: https://docs.microsoft.com/en-us/azure/storage/common/storage-lifecycle-managment-concepts.
"""
return pulumi.get(self, "policy") | [
54
] |
def METHOD_NAME(self):
"""Diagnose setup's success in creating points"""
self.assertEqual(Destination.objects.filter(name='testWithin')[0].point,
self.test_point_inside)
self.assertEqual(Destination.objects.filter(name='testWithout')[0].point,
self.test_point_outside) | [
9,
182,
954
] |
f METHOD_NAME(self, inp, num_groups, affine, weight, bias, ifp, wfp, bfp): | [
1792,
846,
387
] |
def METHOD_NAME(self) -> Optional[str]:
"""
The time the data should be kept in cache for fast queries in TimeSpan.
"""
return pulumi.get(self, "hot_cache_period") | [
3269,
596,
688
] |
def METHOD_NAME(self):
"""Re-sending e-invoice raises UserError"""
e_invoice = self._create_e_invoice()
self._create_fetchmail_pec_server()
e_invoice.send_to_sdi()
self.assertEqual(e_invoice.state, "sent")
# Cannot re-send e-invoice whose state is 'sent'
with self.assertRaises(UserError):
e_invoice.send_to_sdi()
# Cannot reset e-invoice whose state is 'sent'
with self.assertRaises(UserError):
e_invoice.reset_to_ready() | [
9,
9973,
656
] |
def METHOD_NAME(self, parameters):
parameters[TAU_SYN_E] = self.__tau_syn_E
parameters[TAU_SYN_I] = self.__tau_syn_I | [
238,
386
] |
def METHOD_NAME(self):
vocab_facet = "vocab_%s" % TEST_VOCAB_NAME
context = {"model": model, "session": model.Session}
data = {
"q": "warandpeace",
"facet": "true",
"facet.field": ["groups", "tags", vocab_facet],
"facet.limit": "50",
"facet.mincount": 1,
}
result = logic.get_action("package_search")(context, data)
facets = result["search_facets"]
facet_tags = [t["name"] for t in facets["tags"]["items"]]
assert len(facet_tags)
# make sure vocab tags are not in 'tags' facet
assert "tag1" not in facet_tags
assert "tag2" not in facet_tags
# make sure vocab tags are in vocab_<TEST_VOCAB_NAME> facet
vocab_facet_tags = [t["name"] for t in facets[vocab_facet]["items"]]
assert "tag1" in vocab_facet_tags
assert "tag2" in vocab_facet_tags | [
9,
3259,
6798
] |
def METHOD_NAME(self, indentation):
generic.print_dbg(indentation, "Base costs")
for cost in self.costs:
cost.METHOD_NAME(indentation + 2) | [
290,
38
] |
f METHOD_NAME(self, signal, pivot, targets, settings): | [
90
] |
f METHOD_NAME(*args): | [
457
] |
def METHOD_NAME(gl_syms):
return ['RGLSYM' + x.upper() + 'PROC ' + '__rglgen_' + x + ';' for x in gl_syms] | [
567,
8654
] |
def METHOD_NAME(cls):
if cls._schema_on_200 is not None:
return cls._schema_on_200
cls._schema_on_200 = AAZObjectType()
_schema_on_200 = cls._schema_on_200
_schema_on_200.id = AAZStrType(
flags={"read_only": True},
)
_schema_on_200.location = AAZStrType(
flags={"required": True},
)
_schema_on_200.name = AAZStrType(
flags={"read_only": True},
)
_schema_on_200.properties = AAZObjectType(
flags={"required": True, "client_flatten": True},
)
_schema_on_200.system_data = AAZObjectType(
serialized_name="systemData",
flags={"read_only": True},
)
_schema_on_200.tags = AAZDictType()
_schema_on_200.type = AAZStrType(
flags={"read_only": True},
)
properties = cls._schema_on_200.properties
properties.annotation = AAZStrType()
properties.network_devices = AAZListType(
serialized_name="networkDevices",
flags={"read_only": True},
)
properties.network_fabric_id = AAZStrType(
serialized_name="networkFabricId",
flags={"required": True},
)
properties.network_rack_type = AAZStrType(
serialized_name="networkRackType",
)
properties.provisioning_state = AAZStrType(
serialized_name="provisioningState",
flags={"read_only": True},
)
network_devices = cls._schema_on_200.properties.network_devices
network_devices.Element = AAZStrType()
system_data = cls._schema_on_200.system_data
system_data.created_at = AAZStrType(
serialized_name="createdAt",
)
system_data.created_by = AAZStrType(
serialized_name="createdBy",
)
system_data.created_by_type = AAZStrType(
serialized_name="createdByType",
)
system_data.last_modified_at = AAZStrType(
serialized_name="lastModifiedAt",
)
system_data.last_modified_by = AAZStrType(
serialized_name="lastModifiedBy",
)
system_data.last_modified_by_type = AAZStrType(
serialized_name="lastModifiedByType",
)
tags = cls._schema_on_200.tags
tags.Element = AAZStrType()
return cls._schema_on_200 | [
56,
135,
69,
1072
] |
def METHOD_NAME(cls):
return {} | [
19,
3616,
49,
83
] |
def METHOD_NAME():
assert isinstance(data_dir_load(wt), FLASHDataset) | [
9,
6062,
126
] |
def METHOD_NAME(x_y_i):
(x, y, i) = x_y_i
return (x, (x, y, i)) | [
1104,
3366,
59
] |
def METHOD_NAME(sender, msg):
ac_list = msg['ac_list']
for ac_id in ac_list:
self.get_config(ac_id)
#ac_list = [int(a) for a in msg['ac_list'].split(',') if a]
if self.verbose:
print("aircrafts: {}".format(ac_list)) | [
13924,
905
] |
def METHOD_NAME(self, owner_id):
if not self.blacklist:
return False
if owner_id in self.qtile.windows_map:
owner = self.qtile.windows_map[owner_id].window
else:
owner = xcbq.window.XWindow(self.qtile.core.conn, owner_id)
owner_class = owner.get_wm_class()
if owner_class:
for wm_class in self.blacklist:
if wm_class in owner_class:
return True | [
137,
3713
] |
def METHOD_NAME(self):
self.assertEqual(bounding_box.as_relative("yxyx"), "rel_yxyx")
self.assertEqual(bounding_box.as_relative("rel_xywh"), "rel_xywh") | [
9,
947,
1821,
1960
] |
def METHOD_NAME():
"""
Is the REST server up?
"""
r = salt.utils.http.query(
__context__["rest_sample"]["url"] + "ping", decode_type="json", decode=True
)
try:
return r["dict"].get("ret", False)
except Exception: # pylint: disable=broad-except
return False | [
1677
] |
def METHOD_NAME(pgcnx):
result = pgcnx.query("""SELECT am.amname, opc.opcname, opr.oprname
FROM pg_am am, pg_amop amop, pg_opclass opc, pg_operator opr
WHERE amop.amopid = am.oid and amop.amopclaid = opc.oid
AND amop.amopopr = opr.oid order by amname, opcname, oprname""")
return result | [
245,
441,
2
] |
def METHOD_NAME(self):
if self.options.shared:
self.options.rm_safe("fPIC") | [
111
] |
def METHOD_NAME(in_input):
print('\t\tInput type: {0}'.format(in_input.__class__))
print('\t\tbKeepWorldTransform: {0}'.format(in_input.keep_world_transform))
print('\t\tbImportAsReference: {0}'.format(in_input.import_as_reference))
if isinstance(in_input, unreal.HoudiniPublicAPIGeoInput):
print('\t\tbPackBeforeMerge: {0}'.format(in_input.pack_before_merge))
print('\t\tbExportLODs: {0}'.format(in_input.export_lo_ds))
print('\t\tbExportSockets: {0}'.format(in_input.export_sockets))
print('\t\tbExportColliders: {0}'.format(in_input.export_colliders))
elif isinstance(in_input, unreal.HoudiniPublicAPICurveInput):
print('\t\tbCookOnCurveChanged: {0}'.format(in_input.cook_on_curve_changed))
print('\t\tbAddRotAndScaleAttributesOnCurves: {0}'.format(in_input.add_rot_and_scale_attributes_on_curves))
input_objects = in_input.get_input_objects()
if not input_objects:
print('\t\tEmpty input!')
else:
print('\t\tNumber of objects in input: {0}'.format(len(input_objects)))
for idx, input_object in enumerate(input_objects):
print('\t\t\tInput object #{0}: {1}'.format(idx, input_object))
if hasattr(in_input, 'supports_transform_offset') and in_input.supports_transform_offset():
print('\t\t\tObject Transform Offset: {0}'.format(in_input.get_input_object_transform_offset(idx)))
if isinstance(input_object, unreal.HoudiniPublicAPICurveInputObject):
print('\t\t\tbClosed: {0}'.format(input_object.is_closed()))
print('\t\t\tCurveMethod: {0}'.format(input_object.get_curve_method()))
print('\t\t\tCurveType: {0}'.format(input_object.get_curve_type()))
print('\t\t\tReversed: {0}'.format(input_object.is_reversed()))
print('\t\t\tCurvePoints: {0}'.format(input_object.get_curve_points())) | [
38,
58,
362
] |
def METHOD_NAME(testdir, cli, schema_url):
module = testdir.make_importable_pyfile(
hook=f"""
import schemathesis
import time
TOKEN = "{TOKEN}"
@schemathesis.auth()
class TokenAuth:
def __init__(self):
self.get_calls = 0
def get(self, context):
self.get_calls += 1
time.sleep(0.05)
return TOKEN
def set(self, case, data, context):
case.headers = {{"Authorization": f"Bearer {{data}}"}}
@schemathesis.hook
def after_call(context, case, response):
provider = schemathesis.auths.GLOBAL_AUTH_STORAGE.providers[0].provider
assert provider.get_calls == 1, provider.get_calls
"""
)
result = cli.main(
"run",
schema_url,
"--workers",
"2",
"--hypothesis-max-examples=1",
"--show-errors-tracebacks",
hooks=module.purebasename,
)
# Then CLI should run successfully
assert result.exit_code == ExitCode.OK, result.stdout | [
9,
107,
1573
] |
def METHOD_NAME(self):
self.actual_test(save_restore=True) | [
9,
22,
1061,
73,
1032
] |
def METHOD_NAME(self, path, method):
operation = super().METHOD_NAME(path, method)
if method == "POST":
operation["operationId"] = "CreateAttributeType"
elif method == "PATCH":
operation["operationId"] = "UpdateAttributeType"
elif method == "PUT":
operation["operationId"] = "ReplaceAttributeType"
elif method == "DELETE":
operation["operationId"] = "DeleteAttributeType"
operation["tags"] = ["Tator"]
return operation | [
19,
2206
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.