AstroM3Dataset / README.md
MeriDK's picture
Update README.md
77a9f5e verified
|
raw
history blame
3.31 kB
---
license: mit
pretty_name: AstroM3Dataset
size_categories:
- 10K<n<100K
tags:
- astronomy
- multimodal
- classification
arxiv:
- arXiv:2411.08842
---
# AstroM3Dataset
## Description
AstroM3Dataset is a time-series astronomy dataset containing photometry, spectra, and metadata features for variable stars.
The dataset includes multiple subsets (`full`, `sub10`, `sub25`, `sub50`) and supports different random seeds (`42`, `66`, `0`, `12`, `123`).
Each sample consists of:
- **Photometry**: Light curve data of shape `(N, 3)` (time, flux, flux\_error).
- **Spectra**: Spectra observations of shape `(M, 3)` (wavelength, flux, flux\_error).
- **Metadata**: Auxiliary features of shape `(38,)`.
- **Label**: The class name as a string.
## Corresponding paper and code
- Paper: [AstroM<sup>3</sup>: A self-supervised multimodal model for astronomy](https://arxiv.org/abs/2411.08842)
- Code Repository: [GitHub: AstroM<sup>3</sup>](https://github.com/MeriDK/AstroM3/)
---
## Subsets and Seeds
AstroM3Dataset is available in different subset sizes:
- `full`: Entire dataset
- `sub50`: 50% subset
- `sub25`: 25% subset
- `sub10`: 10% subset
Each subset is sampled from the respective train, validation, and test splits of the full dataset.
For reproducibility, each subset is provided with different random seeds:
- `42`, `66`, `0`, `12`, `123`
## Data Organization
The dataset is organized as follows:
```
AstroM3Dataset/
β”œβ”€β”€ photometry.zip # Contains all photometry light curves
β”œβ”€β”€ utils/
β”‚ β”œβ”€β”€ parallelzipfile.py # Zip file reader to open photometry.zip
β”œβ”€β”€ spectra/ # Spectra files organized by class
β”‚ β”œβ”€β”€ EA/
β”‚ β”‚ β”œβ”€β”€ file1.dat
β”‚ β”‚ β”œβ”€β”€ file2.dat
β”‚ β”‚ β”œβ”€β”€ ...
β”‚ β”œβ”€β”€ EW/
β”‚ β”œβ”€β”€ SR/
β”‚ β”œβ”€β”€ ...
β”œβ”€β”€ splits/ # Train/val/test splits for each subset and seed
β”‚ β”œβ”€β”€ full/
β”‚ β”‚ β”œβ”€β”€ 42/
β”‚ β”‚ β”‚ β”œβ”€β”€ train.csv
β”‚ β”‚ β”‚ β”œβ”€β”€ val.csv
β”‚ β”‚ β”‚ β”œβ”€β”€ test.csv
β”‚ β”‚ β”‚ β”œβ”€β”€ info.json # Contains feature descriptions and preprocessing info
β”‚ β”‚ β”œβ”€β”€ 66/
β”‚ β”‚ β”œβ”€β”€ 0/
β”‚ β”‚ β”œβ”€β”€ 12/
β”‚ β”‚ β”œβ”€β”€ 123/
β”‚ β”œβ”€β”€ sub10/
β”‚ β”œβ”€β”€ sub25/
β”‚ β”œβ”€β”€ sub50/
│── AstroM3Dataset.py # Hugging Face dataset script
```
## Usage
To load the dataset using the Hugging Face `datasets` library:
```python
from datasets import load_dataset
# Load the default full dataset with seed 42
dataset = load_dataset("MeriDK/AstroM3Dataset", trust_remote_code=True)
```
The default configuration is **full_42** (entire dataset with seed 42).
To load a specific subset and seed, use {subset}_{seed} as the name:
```python
from datasets import load_dataset
# Load the 25% subset sampled using seed 123
dataset = load_dataset("MeriDK/AstroM3Dataset", name="sub25_123", trust_remote_code=True)
```
---
## Citation
If you find this dataset usefull, please cite:
```bibtex
@article{rizhko2024astrom,
title={AstroM $\^{} 3$: A self-supervised multimodal model for astronomy},
author={Rizhko, Mariia and Bloom, Joshua S},
journal={arXiv preprint arXiv:2411.08842},
year={2024}
}
```