contestId
int64
0
1.01k
index
stringclasses
57 values
name
stringlengths
2
58
type
stringclasses
2 values
rating
int64
0
3.5k
tags
listlengths
0
11
title
stringclasses
522 values
time-limit
stringclasses
8 values
memory-limit
stringclasses
8 values
problem-description
stringlengths
0
7.15k
input-specification
stringlengths
0
2.05k
output-specification
stringlengths
0
1.5k
demo-input
listlengths
0
7
demo-output
listlengths
0
7
note
stringlengths
0
5.24k
points
float64
0
425k
test_cases
listlengths
0
402
creationTimeSeconds
int64
1.37B
1.7B
relativeTimeSeconds
int64
8
2.15B
programmingLanguage
stringclasses
3 values
verdict
stringclasses
14 values
testset
stringclasses
12 values
passedTestCount
int64
0
1k
timeConsumedMillis
int64
0
15k
memoryConsumedBytes
int64
0
805M
code
stringlengths
3
65.5k
prompt
stringlengths
262
8.2k
response
stringlengths
17
65.5k
score
float64
-1
3.99
842
A
Kirill And The Game
PROGRAMMING
1,200
[ "brute force", "two pointers" ]
null
null
Kirill plays a new computer game. He came to the potion store where he can buy any potion. Each potion is characterized by two integers — amount of experience and cost. The efficiency of a potion is the ratio of the amount of experience to the cost. Efficiency may be a non-integer number. For each two integer numbers *a* and *b* such that *l*<=≤<=*a*<=≤<=*r* and *x*<=≤<=*b*<=≤<=*y* there is a potion with experience *a* and cost *b* in the store (that is, there are (*r*<=-<=*l*<=+<=1)·(*y*<=-<=*x*<=+<=1) potions). Kirill wants to buy a potion which has efficiency *k*. Will he be able to do this?
First string contains five integer numbers *l*, *r*, *x*, *y*, *k* (1<=≤<=*l*<=≤<=*r*<=≤<=107, 1<=≤<=*x*<=≤<=*y*<=≤<=107, 1<=≤<=*k*<=≤<=107).
Print "YES" without quotes if a potion with efficiency exactly *k* can be bought in the store and "NO" without quotes otherwise. You can output each of the letters in any register.
[ "1 10 1 10 1\n", "1 5 6 10 1\n" ]
[ "YES", "NO" ]
none
500
[ { "input": "1 10 1 10 1", "output": "YES" }, { "input": "1 5 6 10 1", "output": "NO" }, { "input": "1 1 1 1 1", "output": "YES" }, { "input": "1 1 1 1 2", "output": "NO" }, { "input": "1 100000 1 100000 100000", "output": "YES" }, { "input": "1 100000 1 100000 100001", "output": "NO" }, { "input": "25 10000 200 10000 5", "output": "YES" }, { "input": "1 100000 10 100000 50000", "output": "NO" }, { "input": "91939 94921 10197 89487 1", "output": "NO" }, { "input": "30518 58228 74071 77671 1", "output": "NO" }, { "input": "46646 79126 78816 91164 5", "output": "NO" }, { "input": "30070 83417 92074 99337 2", "output": "NO" }, { "input": "13494 17544 96820 99660 6", "output": "NO" }, { "input": "96918 97018 10077 86510 9", "output": "YES" }, { "input": "13046 45594 14823 52475 1", "output": "YES" }, { "input": "29174 40572 95377 97669 4", "output": "NO" }, { "input": "79894 92433 8634 86398 4", "output": "YES" }, { "input": "96022 98362 13380 94100 6", "output": "YES" }, { "input": "79446 95675 93934 96272 3", "output": "NO" }, { "input": "5440 46549 61481 99500 10", "output": "NO" }, { "input": "21569 53580 74739 87749 3", "output": "NO" }, { "input": "72289 78297 79484 98991 7", "output": "NO" }, { "input": "88417 96645 92742 98450 5", "output": "NO" }, { "input": "71841 96625 73295 77648 8", "output": "NO" }, { "input": "87969 99230 78041 94736 4", "output": "NO" }, { "input": "4 4 1 2 3", "output": "NO" }, { "input": "150 150 1 2 100", "output": "NO" }, { "input": "99 100 1 100 50", "output": "YES" }, { "input": "7 7 3 6 2", "output": "NO" }, { "input": "10 10 1 10 1", "output": "YES" }, { "input": "36 36 5 7 6", "output": "YES" }, { "input": "73 96 1 51 51", "output": "NO" }, { "input": "3 3 1 3 2", "output": "NO" }, { "input": "10000000 10000000 1 100000 10000000", "output": "YES" }, { "input": "9222174 9829060 9418763 9955619 9092468", "output": "NO" }, { "input": "70 70 1 2 50", "output": "NO" }, { "input": "100 200 1 20 5", "output": "YES" }, { "input": "1 200000 65536 65536 65537", "output": "NO" }, { "input": "15 15 1 100 1", "output": "YES" }, { "input": "10000000 10000000 1 10000000 100000", "output": "YES" }, { "input": "10 10 2 5 4", "output": "NO" }, { "input": "67 69 7 7 9", "output": "NO" }, { "input": "100000 10000000 1 10000000 100000", "output": "YES" }, { "input": "9 12 1 2 7", "output": "NO" }, { "input": "5426234 6375745 2636512 8492816 4409404", "output": "NO" }, { "input": "6134912 6134912 10000000 10000000 999869", "output": "NO" }, { "input": "3 3 1 100 1", "output": "YES" }, { "input": "10000000 10000000 10 10000000 100000", "output": "YES" }, { "input": "4 4 1 100 2", "output": "YES" }, { "input": "8 13 1 4 7", "output": "NO" }, { "input": "10 10 100000 10000000 10000000", "output": "NO" }, { "input": "5 6 1 4 2", "output": "YES" }, { "input": "1002 1003 1 2 1000", "output": "NO" }, { "input": "4 5 1 2 2", "output": "YES" }, { "input": "5 6 1 5 1", "output": "YES" }, { "input": "15 21 2 4 7", "output": "YES" }, { "input": "4 5 3 7 1", "output": "YES" }, { "input": "15 15 3 4 4", "output": "NO" }, { "input": "3 6 1 2 2", "output": "YES" }, { "input": "2 10 3 6 3", "output": "YES" }, { "input": "1 10000000 1 10000000 100000", "output": "YES" }, { "input": "8 13 1 2 7", "output": "NO" }, { "input": "98112 98112 100000 100000 128850", "output": "NO" }, { "input": "2 2 1 2 1", "output": "YES" }, { "input": "8 8 3 4 2", "output": "YES" }, { "input": "60 60 2 3 25", "output": "NO" }, { "input": "16 17 2 5 5", "output": "NO" }, { "input": "2 4 1 3 1", "output": "YES" }, { "input": "4 5 1 2 3", "output": "NO" }, { "input": "10 10 3 4 3", "output": "NO" }, { "input": "10 10000000 999999 10000000 300", "output": "NO" }, { "input": "100 120 9 11 10", "output": "YES" }, { "input": "8 20 1 3 4", "output": "YES" }, { "input": "10 14 2 3 4", "output": "YES" }, { "input": "2000 2001 1 3 1000", "output": "YES" }, { "input": "12 13 2 3 5", "output": "NO" }, { "input": "7 7 2 3 3", "output": "NO" }, { "input": "5 8 1 10000000 4", "output": "YES" }, { "input": "5 5 1 1 4", "output": "NO" }, { "input": "5 5 1 6 2", "output": "NO" }, { "input": "200 300 4000381 4000382 4000381", "output": "NO" }, { "input": "11 17 2 5 2", "output": "NO" }, { "input": "9999999 10000000 1 10000000 999997", "output": "NO" }, { "input": "7 8 2 3 3", "output": "NO" }, { "input": "7 7 3 3 2", "output": "NO" }, { "input": "15 15 2 3 7", "output": "NO" }, { "input": "65408 65408 859 859 10000000", "output": "NO" }, { "input": "1000000 10000000 1 100000 1", "output": "NO" }, { "input": "6 12 2 3 2", "output": "YES" }, { "input": "7 8 1 3 3", "output": "NO" }, { "input": "4 4 1 2 2", "output": "YES" }, { "input": "2 3 1 2 2", "output": "YES" }, { "input": "11 14 2 3 5", "output": "NO" }, { "input": "7 7 1 10 3", "output": "NO" }, { "input": "49 50 1 2 27", "output": "NO" }, { "input": "1 10000000 1 10000000 123456", "output": "YES" }, { "input": "100000 10000000 100 10000000 100000", "output": "YES" }, { "input": "17 19 2 3 8", "output": "NO" }, { "input": "4 6 3 9 1", "output": "YES" }, { "input": "19 20 6 7 3", "output": "NO" }, { "input": "5000000 10000000 1 4999999 1", "output": "NO" } ]
1,566,653,764
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
valores = input() a = '' lista = [] for v in valores : if v != ' ': a += v else: lista.append(a) a = '' if a not is None: lista.append(a) l = lista[0] r = lista[1] x = lista[2] y = lista[3] k = lista[5] mountante = ( r  -  l  + 1) * ( y  -  x  + 1) eficiencia = mountante // k if eficiencia % 10 == 0: print('YES') else: print('NO')
Title: Kirill And The Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Kirill plays a new computer game. He came to the potion store where he can buy any potion. Each potion is characterized by two integers — amount of experience and cost. The efficiency of a potion is the ratio of the amount of experience to the cost. Efficiency may be a non-integer number. For each two integer numbers *a* and *b* such that *l*<=≤<=*a*<=≤<=*r* and *x*<=≤<=*b*<=≤<=*y* there is a potion with experience *a* and cost *b* in the store (that is, there are (*r*<=-<=*l*<=+<=1)·(*y*<=-<=*x*<=+<=1) potions). Kirill wants to buy a potion which has efficiency *k*. Will he be able to do this? Input Specification: First string contains five integer numbers *l*, *r*, *x*, *y*, *k* (1<=≤<=*l*<=≤<=*r*<=≤<=107, 1<=≤<=*x*<=≤<=*y*<=≤<=107, 1<=≤<=*k*<=≤<=107). Output Specification: Print "YES" without quotes if a potion with efficiency exactly *k* can be bought in the store and "NO" without quotes otherwise. You can output each of the letters in any register. Demo Input: ['1 10 1 10 1\n', '1 5 6 10 1\n'] Demo Output: ['YES', 'NO'] Note: none
```python valores = input() a = '' lista = [] for v in valores : if v != ' ': a += v else: lista.append(a) a = '' if a not is None: lista.append(a) l = lista[0] r = lista[1] x = lista[2] y = lista[3] k = lista[5] mountante = ( r  -  l  + 1) * ( y  -  x  + 1) eficiencia = mountante // k if eficiencia % 10 == 0: print('YES') else: print('NO') ```
-1
58
A
Chat room
PROGRAMMING
1,000
[ "greedy", "strings" ]
A. Chat room
1
256
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
If Vasya managed to say hello, print "YES", otherwise print "NO".
[ "ahhellllloou\n", "hlelo\n" ]
[ "YES\n", "NO\n" ]
none
500
[ { "input": "ahhellllloou", "output": "YES" }, { "input": "hlelo", "output": "NO" }, { "input": "helhcludoo", "output": "YES" }, { "input": "hehwelloho", "output": "YES" }, { "input": "pnnepelqomhhheollvlo", "output": "YES" }, { "input": "tymbzjyqhymedasloqbq", "output": "NO" }, { "input": "yehluhlkwo", "output": "NO" }, { "input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello", "output": "YES" }, { "input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq", "output": "YES" }, { "input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi", "output": "YES" }, { "input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo", "output": "YES" }, { "input": "lqllcolohwflhfhlnaow", "output": "NO" }, { "input": "heheeellollvoo", "output": "YES" }, { "input": "hellooo", "output": "YES" }, { "input": "o", "output": "NO" }, { "input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv", "output": "YES" }, { "input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk", "output": "YES" }, { "input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry", "output": "NO" }, { "input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq", "output": "NO" }, { "input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi", "output": "YES" }, { "input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm", "output": "YES" }, { "input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac", "output": "NO" }, { "input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok", "output": "YES" }, { "input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz", "output": "YES" }, { "input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb", "output": "YES" }, { "input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla", "output": "YES" }, { "input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz", "output": "YES" }, { "input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti", "output": "YES" }, { "input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli", "output": "YES" }, { "input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo", "output": "YES" }, { "input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk", "output": "NO" }, { "input": "loee", "output": "NO" }, { "input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo", "output": "NO" }, { "input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi", "output": "YES" }, { "input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv", "output": "NO" }, { "input": "hello", "output": "YES" }, { "input": "oohell", "output": "NO" }, { "input": "hell", "output": "NO" }, { "input": "eloellohoelo", "output": "NO" }, { "input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo", "output": "YES" } ]
1,690,814,146
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
46
0
# code for i in range(0, int(input())): j = input().split() # isi code print() # jawaban teman2
Title: Chat room Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*. Input Specification: The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters. Output Specification: If Vasya managed to say hello, print "YES", otherwise print "NO". Demo Input: ['ahhellllloou\n', 'hlelo\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python # code for i in range(0, int(input())): j = input().split() # isi code print() # jawaban teman2 ```
-1
768
B
Code For 1
PROGRAMMING
1,600
[ "constructive algorithms", "dfs and similar", "divide and conquer" ]
null
null
Jon fought bravely to rescue the wildlings who were attacked by the white-walkers at Hardhome. On his arrival, Sam tells him that he wants to go to Oldtown to train at the Citadel to become a maester, so he can return and take the deceased Aemon's place as maester of Castle Black. Jon agrees to Sam's proposal and Sam sets off his journey to the Citadel. However becoming a trainee at the Citadel is not a cakewalk and hence the maesters at the Citadel gave Sam a problem to test his eligibility. Initially Sam has a list with a single element *n*. Then he has to perform certain operations on this list. In each operation Sam must remove any element *x*, such that *x*<=&gt;<=1, from the list and insert at the same position , , sequentially. He must continue with these operations until all the elements in the list are either 0 or 1. Now the masters want the total number of 1s in the range *l* to *r* (1-indexed). Sam wants to become a maester but unfortunately he cannot solve this problem. Can you help Sam to pass the eligibility test?
The first line contains three integers *n*, *l*, *r* (0<=≤<=*n*<=&lt;<=250, 0<=≤<=*r*<=-<=*l*<=≤<=105, *r*<=≥<=1, *l*<=≥<=1) – initial element and the range *l* to *r*. It is guaranteed that *r* is not greater than the length of the final list.
Output the total number of 1s in the range *l* to *r* in the final sequence.
[ "7 2 5\n", "10 3 10\n" ]
[ "4\n", "5\n" ]
Consider first example: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/288fbb682a6fa1934a47b763d6851f9d32a06150.png" style="max-width: 100.0%;max-height: 100.0%;"/> Elements on positions from 2-nd to 5-th in list is [1, 1, 1, 1]. The number of ones is 4. For the second example: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/52e9bc51ef858cacc27fc274c7ba9419d5c1ded9.png" style="max-width: 100.0%;max-height: 100.0%;"/> Elements on positions from 3-rd to 10-th in list is [1, 1, 1, 0, 1, 0, 1, 0]. The number of ones is 5.
1,000
[ { "input": "7 2 5", "output": "4" }, { "input": "10 3 10", "output": "5" }, { "input": "56 18 40", "output": "20" }, { "input": "203 40 124", "output": "67" }, { "input": "903316762502 354723010040 354723105411", "output": "78355" }, { "input": "33534354842198 32529564319236 32529564342569", "output": "22239" }, { "input": "62518534961045 50734311240112 50734311287877", "output": "42439" }, { "input": "95173251245550 106288351347530 106288351372022", "output": "16565" }, { "input": "542 321 956", "output": "336" }, { "input": "3621 237 2637", "output": "2124" }, { "input": "9056 336 896", "output": "311" }, { "input": "36007 368 24490", "output": "13253" }, { "input": "244269 149154 244246", "output": "88609" }, { "input": "880234 669493 757150", "output": "73585" }, { "input": "3740160 1031384 1104236", "output": "64965" }, { "input": "11586121 15337246 15397874", "output": "41868" }, { "input": "38658997 35923164 35985664", "output": "36004" }, { "input": "192308932 207804787 207866400", "output": "44142" }, { "input": "950099012 175922161 176000556", "output": "69369" }, { "input": "2787326787 3799676481 3799680514", "output": "2618" }, { "input": "14417262581 8527979363 8528075536", "output": "80707" }, { "input": "39889373539 7747197212 7747278363", "output": "47105" }, { "input": "251772781087 70597428577 70597479816", "output": "46933" }, { "input": "0 1 1", "output": "0" }, { "input": "1 1 1", "output": "1" }, { "input": "3 2 3", "output": "2" }, { "input": "14 7 12", "output": "5" }, { "input": "1125899906842623 1 100001", "output": "100001" }, { "input": "1125899906842623 1125899906742623 1125899906842623", "output": "100001" }, { "input": "1000 1 1023", "output": "1000" }, { "input": "281474976710656 17179869184 17179869186", "output": "1" }, { "input": "2 2 2", "output": "0" }, { "input": "3 2 2", "output": "1" } ]
1,660,045,296
2,147,483,647
PyPy 3-64
OK
TESTS
33
93
6,553,600
n,l,r = list(map(int, input().split())) def child(num): max_val = 0 while max_val < num: max_val *= 2 max_val += 1 return max_val def DFS(num,l , r, gl, gr): if(r < gl or l > gr): return 0 if(num == 0): return 0 if(num == 1): return 1 rng = r - l ans = DFS(num//2,l,l+(rng//2) - 1,gl,gr) + DFS(num%2,l+(rng//2),l+(rng//2),gl,gr)+ DFS(num//2,l+(rng//2)+1,r,gl,gr) return ans if n == 0: print(0) else: print(DFS(n,1,child(n),l,r))
Title: Code For 1 Time Limit: None seconds Memory Limit: None megabytes Problem Description: Jon fought bravely to rescue the wildlings who were attacked by the white-walkers at Hardhome. On his arrival, Sam tells him that he wants to go to Oldtown to train at the Citadel to become a maester, so he can return and take the deceased Aemon's place as maester of Castle Black. Jon agrees to Sam's proposal and Sam sets off his journey to the Citadel. However becoming a trainee at the Citadel is not a cakewalk and hence the maesters at the Citadel gave Sam a problem to test his eligibility. Initially Sam has a list with a single element *n*. Then he has to perform certain operations on this list. In each operation Sam must remove any element *x*, such that *x*<=&gt;<=1, from the list and insert at the same position , , sequentially. He must continue with these operations until all the elements in the list are either 0 or 1. Now the masters want the total number of 1s in the range *l* to *r* (1-indexed). Sam wants to become a maester but unfortunately he cannot solve this problem. Can you help Sam to pass the eligibility test? Input Specification: The first line contains three integers *n*, *l*, *r* (0<=≤<=*n*<=&lt;<=250, 0<=≤<=*r*<=-<=*l*<=≤<=105, *r*<=≥<=1, *l*<=≥<=1) – initial element and the range *l* to *r*. It is guaranteed that *r* is not greater than the length of the final list. Output Specification: Output the total number of 1s in the range *l* to *r* in the final sequence. Demo Input: ['7 2 5\n', '10 3 10\n'] Demo Output: ['4\n', '5\n'] Note: Consider first example: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/288fbb682a6fa1934a47b763d6851f9d32a06150.png" style="max-width: 100.0%;max-height: 100.0%;"/> Elements on positions from 2-nd to 5-th in list is [1, 1, 1, 1]. The number of ones is 4. For the second example: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/52e9bc51ef858cacc27fc274c7ba9419d5c1ded9.png" style="max-width: 100.0%;max-height: 100.0%;"/> Elements on positions from 3-rd to 10-th in list is [1, 1, 1, 0, 1, 0, 1, 0]. The number of ones is 5.
```python n,l,r = list(map(int, input().split())) def child(num): max_val = 0 while max_val < num: max_val *= 2 max_val += 1 return max_val def DFS(num,l , r, gl, gr): if(r < gl or l > gr): return 0 if(num == 0): return 0 if(num == 1): return 1 rng = r - l ans = DFS(num//2,l,l+(rng//2) - 1,gl,gr) + DFS(num%2,l+(rng//2),l+(rng//2),gl,gr)+ DFS(num//2,l+(rng//2)+1,r,gl,gr) return ans if n == 0: print(0) else: print(DFS(n,1,child(n),l,r)) ```
3
34
B
Sale
PROGRAMMING
900
[ "greedy", "sortings" ]
B. Sale
2
256
Once Bob got to a sale of old TV sets. There were *n* TV sets at that sale. TV set with index *i* costs *a**i* bellars. Some TV sets have a negative price — their owners are ready to pay Bob if he buys their useless apparatus. Bob can «buy» any TV sets he wants. Though he's very strong, Bob can carry at most *m* TV sets, and he has no desire to go to the sale for the second time. Please, help Bob find out the maximum sum of money that he can earn.
The first line contains two space-separated integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=100) — amount of TV sets at the sale, and amount of TV sets that Bob can carry. The following line contains *n* space-separated integers *a**i* (<=-<=1000<=≤<=*a**i*<=≤<=1000) — prices of the TV sets.
Output the only number — the maximum sum of money that Bob can earn, given that he can carry at most *m* TV sets.
[ "5 3\n-6 0 35 -2 4\n", "4 2\n7 0 0 -7\n" ]
[ "8\n", "7\n" ]
none
1,000
[ { "input": "5 3\n-6 0 35 -2 4", "output": "8" }, { "input": "4 2\n7 0 0 -7", "output": "7" }, { "input": "6 6\n756 -611 251 -66 572 -818", "output": "1495" }, { "input": "5 5\n976 437 937 788 518", "output": "0" }, { "input": "5 3\n-2 -2 -2 -2 -2", "output": "6" }, { "input": "5 1\n998 997 985 937 998", "output": "0" }, { "input": "2 2\n-742 -187", "output": "929" }, { "input": "3 3\n522 597 384", "output": "0" }, { "input": "4 2\n-215 -620 192 647", "output": "835" }, { "input": "10 6\n557 605 685 231 910 633 130 838 -564 -85", "output": "649" }, { "input": "20 14\n932 442 960 943 624 624 955 998 631 910 850 517 715 123 1000 155 -10 961 966 59", "output": "10" }, { "input": "30 5\n991 997 996 967 977 999 991 986 1000 965 984 997 998 1000 958 983 974 1000 991 999 1000 978 961 992 990 998 998 978 998 1000", "output": "0" }, { "input": "50 20\n-815 -947 -946 -993 -992 -846 -884 -954 -963 -733 -940 -746 -766 -930 -821 -937 -937 -999 -914 -938 -936 -975 -939 -981 -977 -952 -925 -901 -952 -978 -994 -957 -946 -896 -905 -836 -994 -951 -887 -939 -859 -953 -985 -988 -946 -829 -956 -842 -799 -886", "output": "19441" }, { "input": "88 64\n999 999 1000 1000 999 996 995 1000 1000 999 1000 997 998 1000 999 1000 997 1000 993 998 994 999 998 996 1000 997 1000 1000 1000 997 1000 998 997 1000 1000 998 1000 998 999 1000 996 999 999 999 996 995 999 1000 998 999 1000 999 999 1000 1000 1000 996 1000 1000 1000 997 1000 1000 997 999 1000 1000 1000 1000 1000 999 999 1000 1000 996 999 1000 1000 995 999 1000 996 1000 998 999 999 1000 999", "output": "0" }, { "input": "99 17\n-993 -994 -959 -989 -991 -995 -976 -997 -990 -1000 -996 -994 -999 -995 -1000 -983 -979 -1000 -989 -968 -994 -992 -962 -993 -999 -983 -991 -979 -995 -993 -973 -999 -995 -995 -999 -993 -995 -992 -947 -1000 -999 -998 -982 -988 -979 -993 -963 -988 -980 -990 -979 -976 -995 -999 -981 -988 -998 -999 -970 -1000 -983 -994 -943 -975 -998 -977 -973 -997 -959 -999 -983 -985 -950 -977 -977 -991 -998 -973 -987 -985 -985 -986 -984 -994 -978 -998 -989 -989 -988 -970 -985 -974 -997 -981 -962 -972 -995 -988 -993", "output": "16984" }, { "input": "100 37\n205 19 -501 404 912 -435 -322 -469 -655 880 -804 -470 793 312 -108 586 -642 -928 906 605 -353 -800 745 -440 -207 752 -50 -28 498 -800 -62 -195 602 -833 489 352 536 404 -775 23 145 -512 524 759 651 -461 -427 -557 684 -366 62 592 -563 -811 64 418 -881 -308 591 -318 -145 -261 -321 -216 -18 595 -202 960 -4 219 226 -238 -882 -963 425 970 -434 -160 243 -672 -4 873 8 -633 904 -298 -151 -377 -61 -72 -677 -66 197 -716 3 -870 -30 152 -469 981", "output": "21743" }, { "input": "100 99\n-931 -806 -830 -828 -916 -962 -660 -867 -952 -966 -820 -906 -724 -982 -680 -717 -488 -741 -897 -613 -986 -797 -964 -939 -808 -932 -810 -860 -641 -916 -858 -628 -821 -929 -917 -976 -664 -985 -778 -665 -624 -928 -940 -958 -884 -757 -878 -896 -634 -526 -514 -873 -990 -919 -988 -878 -650 -973 -774 -783 -733 -648 -756 -895 -833 -974 -832 -725 -841 -748 -806 -613 -924 -867 -881 -943 -864 -991 -809 -926 -777 -817 -998 -682 -910 -996 -241 -722 -964 -904 -821 -920 -835 -699 -805 -632 -779 -317 -915 -654", "output": "81283" }, { "input": "100 14\n995 994 745 684 510 737 984 690 979 977 542 933 871 603 758 653 962 997 747 974 773 766 975 770 527 960 841 989 963 865 974 967 950 984 757 685 986 809 982 959 931 880 978 867 805 562 970 900 834 782 616 885 910 608 974 918 576 700 871 980 656 941 978 759 767 840 573 859 841 928 693 853 716 927 976 851 962 962 627 797 707 873 869 988 993 533 665 887 962 880 929 980 877 887 572 790 721 883 848 782", "output": "0" }, { "input": "100 84\n768 946 998 752 931 912 826 1000 991 910 875 962 901 952 958 733 959 908 872 840 923 826 952 980 974 980 947 955 959 822 997 963 966 933 829 923 971 999 926 932 865 984 974 858 994 855 949 941 992 861 951 949 991 711 763 728 935 485 716 907 869 952 960 859 909 963 978 942 968 933 923 909 997 962 687 764 924 774 875 1000 961 951 987 974 848 921 966 859 995 997 974 931 886 941 974 986 906 978 998 823", "output": "0" }, { "input": "100 80\n-795 -994 -833 -930 -974 -980 -950 -940 -788 -927 -583 -956 -945 -949 -809 -974 -957 -736 -967 -908 -975 -961 -986 -983 -963 -771 -952 -847 -751 -741 -982 -959 -925 -931 -839 -937 -880 -914 -858 -998 -812 -911 -862 -965 -943 -984 -738 -920 -950 -998 -909 -998 -781 -901 -677 -940 -985 -951 -675 -952 -967 -949 -882 -641 -969 -937 -975 -993 -913 -941 -807 -851 -832 -960 -939 -943 -895 -929 -528 -880 -823 -930 -888 -862 -948 -966 -962 -857 -799 -969 -833 -998 -952 -878 -946 -971 -976 -974 -723 -992", "output": "75068" }, { "input": "1 1\n0", "output": "0" }, { "input": "1 1\n1", "output": "0" }, { "input": "1 1\n555", "output": "0" }, { "input": "1 1\n-1", "output": "1" }, { "input": "1 1\n-24", "output": "24" } ]
1,586,773,213
2,147,483,647
Python 3
OK
TESTS
25
218
0
n,m=map(int,input().split()) l=list(map(int,input().split())) l.sort() i=0 cost=0 while(i<m and l[i]<0): cost-=l[i] i+=1 print(cost)
Title: Sale Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Once Bob got to a sale of old TV sets. There were *n* TV sets at that sale. TV set with index *i* costs *a**i* bellars. Some TV sets have a negative price — their owners are ready to pay Bob if he buys their useless apparatus. Bob can «buy» any TV sets he wants. Though he's very strong, Bob can carry at most *m* TV sets, and he has no desire to go to the sale for the second time. Please, help Bob find out the maximum sum of money that he can earn. Input Specification: The first line contains two space-separated integers *n* and *m* (1<=≤<=*m*<=≤<=*n*<=≤<=100) — amount of TV sets at the sale, and amount of TV sets that Bob can carry. The following line contains *n* space-separated integers *a**i* (<=-<=1000<=≤<=*a**i*<=≤<=1000) — prices of the TV sets. Output Specification: Output the only number — the maximum sum of money that Bob can earn, given that he can carry at most *m* TV sets. Demo Input: ['5 3\n-6 0 35 -2 4\n', '4 2\n7 0 0 -7\n'] Demo Output: ['8\n', '7\n'] Note: none
```python n,m=map(int,input().split()) l=list(map(int,input().split())) l.sort() i=0 cost=0 while(i<m and l[i]<0): cost-=l[i] i+=1 print(cost) ```
3.9455
149
A
Business trip
PROGRAMMING
900
[ "greedy", "implementation", "sortings" ]
null
null
What joy! Petya's parents went on a business trip for the whole year and the playful kid is left all by himself. Petya got absolutely happy. He jumped on the bed and threw pillows all day long, until... Today Petya opened the cupboard and found a scary note there. His parents had left him with duties: he should water their favourite flower all year, each day, in the morning, in the afternoon and in the evening. "Wait a second!" — thought Petya. He know for a fact that if he fulfills the parents' task in the *i*-th (1<=≤<=*i*<=≤<=12) month of the year, then the flower will grow by *a**i* centimeters, and if he doesn't water the flower in the *i*-th month, then the flower won't grow this month. Petya also knows that try as he might, his parents won't believe that he has been watering the flower if it grows strictly less than by *k* centimeters. Help Petya choose the minimum number of months when he will water the flower, given that the flower should grow no less than by *k* centimeters.
The first line contains exactly one integer *k* (0<=≤<=*k*<=≤<=100). The next line contains twelve space-separated integers: the *i*-th (1<=≤<=*i*<=≤<=12) number in the line represents *a**i* (0<=≤<=*a**i*<=≤<=100).
Print the only integer — the minimum number of months when Petya has to water the flower so that the flower grows no less than by *k* centimeters. If the flower can't grow by *k* centimeters in a year, print -1.
[ "5\n1 1 1 1 2 2 3 2 2 1 1 1\n", "0\n0 0 0 0 0 0 0 1 1 2 3 0\n", "11\n1 1 4 1 1 5 1 1 4 1 1 1\n" ]
[ "2\n", "0\n", "3\n" ]
Let's consider the first sample test. There it is enough to water the flower during the seventh and the ninth month. Then the flower grows by exactly five centimeters. In the second sample Petya's parents will believe him even if the flower doesn't grow at all (*k* = 0). So, it is possible for Petya not to water the flower at all.
500
[ { "input": "5\n1 1 1 1 2 2 3 2 2 1 1 1", "output": "2" }, { "input": "0\n0 0 0 0 0 0 0 1 1 2 3 0", "output": "0" }, { "input": "11\n1 1 4 1 1 5 1 1 4 1 1 1", "output": "3" }, { "input": "15\n20 1 1 1 1 2 2 1 2 2 1 1", "output": "1" }, { "input": "7\n8 9 100 12 14 17 21 10 11 100 23 10", "output": "1" }, { "input": "52\n1 12 3 11 4 5 10 6 9 7 8 2", "output": "6" }, { "input": "50\n2 2 3 4 5 4 4 5 7 3 2 7", "output": "-1" }, { "input": "0\n55 81 28 48 99 20 67 95 6 19 10 93", "output": "0" }, { "input": "93\n85 40 93 66 92 43 61 3 64 51 90 21", "output": "1" }, { "input": "99\n36 34 22 0 0 0 52 12 0 0 33 47", "output": "2" }, { "input": "99\n28 32 31 0 10 35 11 18 0 0 32 28", "output": "3" }, { "input": "99\n19 17 0 1 18 11 29 9 29 22 0 8", "output": "4" }, { "input": "76\n2 16 11 10 12 0 20 4 4 14 11 14", "output": "5" }, { "input": "41\n2 1 7 7 4 2 4 4 9 3 10 0", "output": "6" }, { "input": "47\n8 2 2 4 3 1 9 4 2 7 7 8", "output": "7" }, { "input": "58\n6 11 7 0 5 6 3 9 4 9 5 1", "output": "8" }, { "input": "32\n5 2 4 1 5 0 5 1 4 3 0 3", "output": "9" }, { "input": "31\n6 1 0 4 4 5 1 0 5 3 2 0", "output": "9" }, { "input": "35\n2 3 0 0 6 3 3 4 3 5 0 6", "output": "9" }, { "input": "41\n3 1 3 4 3 6 6 1 4 4 0 6", "output": "11" }, { "input": "97\n0 5 3 12 10 16 22 8 21 17 21 10", "output": "5" }, { "input": "100\n21 21 0 0 4 13 0 26 0 0 0 15", "output": "6" }, { "input": "100\n0 0 16 5 22 0 5 0 25 0 14 13", "output": "7" }, { "input": "97\n17 0 10 0 0 0 18 0 14 23 15 0", "output": "6" }, { "input": "100\n0 9 0 18 7 0 0 14 33 3 0 16", "output": "7" }, { "input": "95\n5 2 13 0 15 18 17 0 6 11 0 8", "output": "9" }, { "input": "94\n11 13 0 9 15 8 8 16 3 7 1 3", "output": "11" }, { "input": "96\n8 4 12 15 8 0 4 10 6 6 12 11", "output": "11" }, { "input": "100\n5 5 3 8 6 5 0 3 3 8 1 3", "output": "-1" }, { "input": "100\n1 0 0 1 1 0 1 1 1 1 2 1", "output": "-1" }, { "input": "100\n6 3 2 0 4 1 2 2 2 2 1 1", "output": "-1" }, { "input": "0\n0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0", "output": "-1" }, { "input": "0\n100 100 100 100 100 100 100 100 100 100 100 100", "output": "0" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100", "output": "1" }, { "input": "12\n1 1 1 1 1 1 1 1 1 1 1 1", "output": "12" }, { "input": "13\n1 1 1 1 1 1 1 1 1 1 1 2", "output": "12" }, { "input": "15\n10 1 1 1 1 1 1 1 1 1 1 1", "output": "6" }, { "input": "1\n0 0 0 0 0 0 0 0 0 0 0 0", "output": "-1" } ]
1,672,581,406
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
6
62
0
n=int(input()) m=list(map(int,input().split())) m.sort() m.reverse() s=0 if n!=0: for i in range(len(m)): s+=m[i] if s>=n: break print(i+1) else: print(0)
Title: Business trip Time Limit: None seconds Memory Limit: None megabytes Problem Description: What joy! Petya's parents went on a business trip for the whole year and the playful kid is left all by himself. Petya got absolutely happy. He jumped on the bed and threw pillows all day long, until... Today Petya opened the cupboard and found a scary note there. His parents had left him with duties: he should water their favourite flower all year, each day, in the morning, in the afternoon and in the evening. "Wait a second!" — thought Petya. He know for a fact that if he fulfills the parents' task in the *i*-th (1<=≤<=*i*<=≤<=12) month of the year, then the flower will grow by *a**i* centimeters, and if he doesn't water the flower in the *i*-th month, then the flower won't grow this month. Petya also knows that try as he might, his parents won't believe that he has been watering the flower if it grows strictly less than by *k* centimeters. Help Petya choose the minimum number of months when he will water the flower, given that the flower should grow no less than by *k* centimeters. Input Specification: The first line contains exactly one integer *k* (0<=≤<=*k*<=≤<=100). The next line contains twelve space-separated integers: the *i*-th (1<=≤<=*i*<=≤<=12) number in the line represents *a**i* (0<=≤<=*a**i*<=≤<=100). Output Specification: Print the only integer — the minimum number of months when Petya has to water the flower so that the flower grows no less than by *k* centimeters. If the flower can't grow by *k* centimeters in a year, print -1. Demo Input: ['5\n1 1 1 1 2 2 3 2 2 1 1 1\n', '0\n0 0 0 0 0 0 0 1 1 2 3 0\n', '11\n1 1 4 1 1 5 1 1 4 1 1 1\n'] Demo Output: ['2\n', '0\n', '3\n'] Note: Let's consider the first sample test. There it is enough to water the flower during the seventh and the ninth month. Then the flower grows by exactly five centimeters. In the second sample Petya's parents will believe him even if the flower doesn't grow at all (*k* = 0). So, it is possible for Petya not to water the flower at all.
```python n=int(input()) m=list(map(int,input().split())) m.sort() m.reverse() s=0 if n!=0: for i in range(len(m)): s+=m[i] if s>=n: break print(i+1) else: print(0) ```
0
155
A
I_love_\%username\%
PROGRAMMING
800
[ "brute force" ]
null
null
Vasya adores sport programming. He can't write programs but he loves to watch the contests' progress. Vasya even has a favorite coder and Vasya pays special attention to him. One day Vasya decided to collect the results of all contests where his favorite coder participated and track the progress of his coolness. For each contest where this coder participated, he wrote out a single non-negative number — the number of points his favorite coder earned in the contest. Vasya wrote out the points for the contest in the order, in which the contests run (naturally, no two contests ran simultaneously). Vasya considers a coder's performance in a contest amazing in two situations: he can break either his best or his worst performance record. First, it is amazing if during the contest the coder earns strictly more points that he earned on each past contest. Second, it is amazing if during the contest the coder earns strictly less points that he earned on each past contest. A coder's first contest isn't considered amazing. Now he wants to count the number of amazing performances the coder had throughout his whole history of participating in contests. But the list of earned points turned out long and Vasya can't code... That's why he asks you to help him.
The first line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of contests where the coder participated. The next line contains *n* space-separated non-negative integer numbers — they are the points which the coder has earned. The points are given in the chronological order. All points do not exceed 10000.
Print the single number — the number of amazing performances the coder has had during his whole history of participating in the contests.
[ "5\n100 50 200 150 200\n", "10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242\n" ]
[ "2\n", "4\n" ]
In the first sample the performances number 2 and 3 are amazing. In the second sample the performances number 2, 4, 9 and 10 are amazing.
500
[ { "input": "5\n100 50 200 150 200", "output": "2" }, { "input": "10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242", "output": "4" }, { "input": "1\n6", "output": "0" }, { "input": "2\n2 1", "output": "1" }, { "input": "5\n100 36 53 7 81", "output": "2" }, { "input": "5\n7 36 53 81 100", "output": "4" }, { "input": "5\n100 81 53 36 7", "output": "4" }, { "input": "10\n8 6 3 4 9 10 7 7 1 3", "output": "5" }, { "input": "10\n1627 1675 1488 1390 1812 1137 1746 1324 1952 1862", "output": "6" }, { "input": "10\n1 3 3 4 6 7 7 8 9 10", "output": "7" }, { "input": "10\n1952 1862 1812 1746 1675 1627 1488 1390 1324 1137", "output": "9" }, { "input": "25\n1448 4549 2310 2725 2091 3509 1565 2475 2232 3989 4231 779 2967 2702 608 3739 721 1552 2767 530 3114 665 1940 48 4198", "output": "5" }, { "input": "33\n1097 1132 1091 1104 1049 1038 1023 1080 1104 1029 1035 1061 1049 1060 1088 1106 1105 1087 1063 1076 1054 1103 1047 1041 1028 1120 1126 1063 1117 1110 1044 1093 1101", "output": "5" }, { "input": "34\n821 5536 2491 6074 7216 9885 764 1603 778 8736 8987 771 617 1587 8943 7922 439 7367 4115 8886 7878 6899 8811 5752 3184 3401 9760 9400 8995 4681 1323 6637 6554 6498", "output": "7" }, { "input": "68\n6764 6877 6950 6768 6839 6755 6726 6778 6699 6805 6777 6985 6821 6801 6791 6805 6940 6761 6677 6999 6911 6699 6959 6933 6903 6843 6972 6717 6997 6756 6789 6668 6735 6852 6735 6880 6723 6834 6810 6694 6780 6679 6698 6857 6826 6896 6979 6968 6957 6988 6960 6700 6919 6892 6984 6685 6813 6678 6715 6857 6976 6902 6780 6686 6777 6686 6842 6679", "output": "9" }, { "input": "60\n9000 9014 9034 9081 9131 9162 9174 9199 9202 9220 9221 9223 9229 9235 9251 9260 9268 9269 9270 9298 9307 9309 9313 9323 9386 9399 9407 9495 9497 9529 9531 9544 9614 9615 9627 9627 9643 9654 9656 9657 9685 9699 9701 9736 9745 9758 9799 9827 9843 9845 9854 9854 9885 9891 9896 9913 9942 9963 9986 9992", "output": "57" }, { "input": "100\n7 61 12 52 41 16 34 99 30 44 48 89 31 54 21 1 48 52 61 15 35 87 21 76 64 92 44 81 16 93 84 92 32 15 68 76 53 39 26 4 11 26 7 4 99 99 61 65 55 85 65 67 47 39 2 74 63 49 98 87 5 94 22 30 25 42 31 84 49 23 89 60 16 26 92 27 9 57 75 61 94 35 83 47 99 100 63 24 91 88 79 10 15 45 22 64 3 11 89 83", "output": "4" }, { "input": "100\n9999 9999 9999 9998 9998 9998 9997 9996 9996 9995 9993 9993 9991 9990 9989 9986 9984 9984 9983 9981 9981 9980 9980 9980 9979 9977 9977 9977 9977 9977 9976 9976 9975 9975 9973 9972 9972 9972 9972 9971 9969 9969 9969 9968 9967 9965 9962 9962 9962 9962 9960 9958 9958 9955 9954 9954 9954 9954 9950 9949 9949 9947 9943 9943 9940 9940 9939 9937 9937 9937 9936 9935 9932 9932 9931 9929 9927 9927 9926 9923 9919 9919 9918 9918 9918 9917 9917 9916 9916 9915 9914 9911 9910 9907 9907 9906 9905 9905 9904 9901", "output": "57" }, { "input": "100\n158 159 157 156 155 154 160 153 161 152 162 163 151 164 150 165 149 148 147 166 146 167 145 144 143 142 168 141 169 170 140 139 138 137 171 136 135 134 172 173 174 133 175 132 177 178 131 179 180 130 129 181 128 127 182 126 183 125 124 184 123 122 121 120 119 118 117 185 186 187 188 189 116 190 115 191 192 193 114 113 112 111 110 109 108 194 195 107 106 105 196 197 104 198 199 103 102 200 101 100", "output": "99" }, { "input": "2\n0 10000", "output": "1" }, { "input": "2\n5 5", "output": "0" }, { "input": "2\n1 1", "output": "0" }, { "input": "2\n10 10", "output": "0" }, { "input": "1\n0", "output": "0" } ]
1,674,386,525
2,147,483,647
Python 3
OK
TESTS
37
92
0
n=int(input()) l=list(map(int,input().split())) mn=mx=l[0] c=0 for i in range(1,len(l)): if l[i]>mx or l[i]<mn: if l[i]>mx: mx=l[i] if l[i]<mn: mn=l[i] c+=1 print(c)
Title: I_love_\%username\% Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya adores sport programming. He can't write programs but he loves to watch the contests' progress. Vasya even has a favorite coder and Vasya pays special attention to him. One day Vasya decided to collect the results of all contests where his favorite coder participated and track the progress of his coolness. For each contest where this coder participated, he wrote out a single non-negative number — the number of points his favorite coder earned in the contest. Vasya wrote out the points for the contest in the order, in which the contests run (naturally, no two contests ran simultaneously). Vasya considers a coder's performance in a contest amazing in two situations: he can break either his best or his worst performance record. First, it is amazing if during the contest the coder earns strictly more points that he earned on each past contest. Second, it is amazing if during the contest the coder earns strictly less points that he earned on each past contest. A coder's first contest isn't considered amazing. Now he wants to count the number of amazing performances the coder had throughout his whole history of participating in contests. But the list of earned points turned out long and Vasya can't code... That's why he asks you to help him. Input Specification: The first line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of contests where the coder participated. The next line contains *n* space-separated non-negative integer numbers — they are the points which the coder has earned. The points are given in the chronological order. All points do not exceed 10000. Output Specification: Print the single number — the number of amazing performances the coder has had during his whole history of participating in the contests. Demo Input: ['5\n100 50 200 150 200\n', '10\n4664 6496 5814 7010 5762 5736 6944 4850 3698 7242\n'] Demo Output: ['2\n', '4\n'] Note: In the first sample the performances number 2 and 3 are amazing. In the second sample the performances number 2, 4, 9 and 10 are amazing.
```python n=int(input()) l=list(map(int,input().split())) mn=mx=l[0] c=0 for i in range(1,len(l)): if l[i]>mx or l[i]<mn: if l[i]>mx: mx=l[i] if l[i]<mn: mn=l[i] c+=1 print(c) ```
3
873
A
Chores
PROGRAMMING
800
[ "implementation" ]
null
null
Luba has to do *n* chores today. *i*-th chore takes *a**i* units of time to complete. It is guaranteed that for every the condition *a**i*<=≥<=*a**i*<=-<=1 is met, so the sequence is sorted. Also Luba can work really hard on some chores. She can choose not more than *k* any chores and do each of them in *x* units of time instead of *a**i* (). Luba is very responsible, so she has to do all *n* chores, and now she wants to know the minimum time she needs to do everything. Luba cannot do two chores simultaneously.
The first line contains three integers *n*,<=*k*,<=*x* (1<=≤<=*k*<=≤<=*n*<=≤<=100,<=1<=≤<=*x*<=≤<=99) — the number of chores Luba has to do, the number of chores she can do in *x* units of time, and the number *x* itself. The second line contains *n* integer numbers *a**i* (2<=≤<=*a**i*<=≤<=100) — the time Luba has to spend to do *i*-th chore. It is guaranteed that , and for each *a**i*<=≥<=*a**i*<=-<=1.
Print one number — minimum time Luba needs to do all *n* chores.
[ "4 2 2\n3 6 7 10\n", "5 2 1\n100 100 100 100 100\n" ]
[ "13\n", "302\n" ]
In the first example the best option would be to do the third and the fourth chore, spending *x* = 2 time on each instead of *a*<sub class="lower-index">3</sub> and *a*<sub class="lower-index">4</sub>, respectively. Then the answer is 3 + 6 + 2 + 2 = 13. In the second example Luba can choose any two chores to spend *x* time on them instead of *a*<sub class="lower-index">*i*</sub>. So the answer is 100·3 + 2·1 = 302.
0
[ { "input": "4 2 2\n3 6 7 10", "output": "13" }, { "input": "5 2 1\n100 100 100 100 100", "output": "302" }, { "input": "1 1 1\n100", "output": "1" }, { "input": "100 1 99\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "9999" }, { "input": "100 100 1\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "100" }, { "input": "100 50 50\n51 51 52 53 55 55 55 55 56 56 56 57 57 58 58 59 59 59 60 60 61 61 62 62 63 64 64 64 64 65 65 65 65 66 66 66 67 68 68 68 69 69 70 70 70 70 71 71 71 71 71 71 72 72 76 76 76 76 77 79 79 81 81 81 81 82 82 82 82 83 84 85 86 87 87 88 88 88 89 89 89 90 90 90 91 91 91 92 92 93 95 95 96 96 96 97 97 98 99 100", "output": "5618" }, { "input": "100 100 1\n2 4 4 4 5 5 5 6 10 10 11 11 12 12 13 13 13 14 17 18 20 20 21 21 22 22 23 24 24 25 26 29 29 32 32 34 34 35 38 39 39 40 40 42 42 43 45 47 48 49 51 52 52 54 57 59 59 60 61 61 62 63 63 64 65 65 68 70 70 72 74 75 75 76 76 77 77 78 78 78 79 80 81 82 82 83 83 83 84 89 90 92 92 93 94 96 96 97 98 99", "output": "100" }, { "input": "100 1 1\n3 3 5 7 8 8 8 9 9 9 11 13 14 15 18 18 19 20 21 22 22 25 27 27 29 31 32 33 33 34 36 37 37 38 40 42 44 44 46 47 47 48 48 48 50 50 51 51 54 54 54 55 55 56 56 56 60 61 62 62 63 64 65 65 68 70 70 71 71 71 71 75 75 76 76 79 79 79 79 81 81 82 82 86 86 86 86 88 90 90 92 96 97 97 98 98 98 98 100 100", "output": "5202" }, { "input": "100 50 49\n50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51", "output": "4950" }, { "input": "100 50 1\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3", "output": "151" }, { "input": "100 1 1\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2", "output": "199" } ]
1,507,817,314
214
Python 3
OK
TESTS
11
46
0
n, k, x = map(int, input().split()) times = list(map(int, input().split())) for i in range(n - 1, n - k - 1, -1): times[i] = x print(sum(times))
Title: Chores Time Limit: None seconds Memory Limit: None megabytes Problem Description: Luba has to do *n* chores today. *i*-th chore takes *a**i* units of time to complete. It is guaranteed that for every the condition *a**i*<=≥<=*a**i*<=-<=1 is met, so the sequence is sorted. Also Luba can work really hard on some chores. She can choose not more than *k* any chores and do each of them in *x* units of time instead of *a**i* (). Luba is very responsible, so she has to do all *n* chores, and now she wants to know the minimum time she needs to do everything. Luba cannot do two chores simultaneously. Input Specification: The first line contains three integers *n*,<=*k*,<=*x* (1<=≤<=*k*<=≤<=*n*<=≤<=100,<=1<=≤<=*x*<=≤<=99) — the number of chores Luba has to do, the number of chores she can do in *x* units of time, and the number *x* itself. The second line contains *n* integer numbers *a**i* (2<=≤<=*a**i*<=≤<=100) — the time Luba has to spend to do *i*-th chore. It is guaranteed that , and for each *a**i*<=≥<=*a**i*<=-<=1. Output Specification: Print one number — minimum time Luba needs to do all *n* chores. Demo Input: ['4 2 2\n3 6 7 10\n', '5 2 1\n100 100 100 100 100\n'] Demo Output: ['13\n', '302\n'] Note: In the first example the best option would be to do the third and the fourth chore, spending *x* = 2 time on each instead of *a*<sub class="lower-index">3</sub> and *a*<sub class="lower-index">4</sub>, respectively. Then the answer is 3 + 6 + 2 + 2 = 13. In the second example Luba can choose any two chores to spend *x* time on them instead of *a*<sub class="lower-index">*i*</sub>. So the answer is 100·3 + 2·1 = 302.
```python n, k, x = map(int, input().split()) times = list(map(int, input().split())) for i in range(n - 1, n - k - 1, -1): times[i] = x print(sum(times)) ```
3
17
A
Noldbach problem
PROGRAMMING
1,000
[ "brute force", "math", "number theory" ]
A. Noldbach problem
2
64
Nick is interested in prime numbers. Once he read about Goldbach problem. It states that every even integer greater than 2 can be expressed as the sum of two primes. That got Nick's attention and he decided to invent a problem of his own and call it Noldbach problem. Since Nick is interested only in prime numbers, Noldbach problem states that at least *k* prime numbers from 2 to *n* inclusively can be expressed as the sum of three integer numbers: two neighboring prime numbers and 1. For example, 19 = 7 + 11 + 1, or 13 = 5 + 7 + 1. Two prime numbers are called neighboring if there are no other prime numbers between them. You are to help Nick, and find out if he is right or wrong.
The first line of the input contains two integers *n* (2<=≤<=*n*<=≤<=1000) and *k* (0<=≤<=*k*<=≤<=1000).
Output YES if at least *k* prime numbers from 2 to *n* inclusively can be expressed as it was described above. Otherwise output NO.
[ "27 2\n", "45 7\n" ]
[ "YES", "NO" ]
In the first sample the answer is YES since at least two numbers can be expressed as it was described (for example, 13 and 19). In the second sample the answer is NO since it is impossible to express 7 prime numbers from 2 to 45 in the desired form.
0
[ { "input": "27 2", "output": "YES" }, { "input": "45 7", "output": "NO" }, { "input": "2 0", "output": "YES" }, { "input": "15 1", "output": "YES" }, { "input": "17 1", "output": "YES" }, { "input": "34 5", "output": "NO" }, { "input": "37 4", "output": "YES" }, { "input": "43 5", "output": "YES" }, { "input": "47 7", "output": "NO" }, { "input": "50 5", "output": "YES" }, { "input": "57 6", "output": "YES" }, { "input": "60 8", "output": "NO" }, { "input": "62 7", "output": "YES" }, { "input": "76 9", "output": "NO" }, { "input": "69 7", "output": "YES" }, { "input": "113 10", "output": "YES" }, { "input": "141 11", "output": "YES" }, { "input": "207 16", "output": "NO" }, { "input": "231 18", "output": "NO" }, { "input": "296 19", "output": "YES" }, { "input": "332 20", "output": "YES" }, { "input": "378 24", "output": "NO" }, { "input": "428 23", "output": "YES" }, { "input": "497 27", "output": "NO" }, { "input": "640 32", "output": "YES" }, { "input": "798 35", "output": "YES" }, { "input": "802 35", "output": "YES" }, { "input": "864 40", "output": "NO" }, { "input": "953 44", "output": "NO" }, { "input": "995 44", "output": "YES" }, { "input": "1000 44", "output": "YES" }, { "input": "1000 0", "output": "YES" }, { "input": "1000 1000", "output": "NO" }, { "input": "2 1000", "output": "NO" }, { "input": "2 0", "output": "YES" } ]
1,629,263,733
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
92
6,963,200
x,y=input().split() x,y=int(x),int(y) def p(n): d=0 for i in range(1,n): if n%i==0: d+=1 if (d==1): return True l=[3] c=0 for i in range(3,x+1): if p(i): l.append(i) for j in range(len(l)-1): if l[j]+l[j+1]+1==i: c+=1 if c==y: print("YES") break if c<y: print('NO')
Title: Noldbach problem Time Limit: 2 seconds Memory Limit: 64 megabytes Problem Description: Nick is interested in prime numbers. Once he read about Goldbach problem. It states that every even integer greater than 2 can be expressed as the sum of two primes. That got Nick's attention and he decided to invent a problem of his own and call it Noldbach problem. Since Nick is interested only in prime numbers, Noldbach problem states that at least *k* prime numbers from 2 to *n* inclusively can be expressed as the sum of three integer numbers: two neighboring prime numbers and 1. For example, 19 = 7 + 11 + 1, or 13 = 5 + 7 + 1. Two prime numbers are called neighboring if there are no other prime numbers between them. You are to help Nick, and find out if he is right or wrong. Input Specification: The first line of the input contains two integers *n* (2<=≤<=*n*<=≤<=1000) and *k* (0<=≤<=*k*<=≤<=1000). Output Specification: Output YES if at least *k* prime numbers from 2 to *n* inclusively can be expressed as it was described above. Otherwise output NO. Demo Input: ['27 2\n', '45 7\n'] Demo Output: ['YES', 'NO'] Note: In the first sample the answer is YES since at least two numbers can be expressed as it was described (for example, 13 and 19). In the second sample the answer is NO since it is impossible to express 7 prime numbers from 2 to 45 in the desired form.
```python x,y=input().split() x,y=int(x),int(y) def p(n): d=0 for i in range(1,n): if n%i==0: d+=1 if (d==1): return True l=[3] c=0 for i in range(3,x+1): if p(i): l.append(i) for j in range(len(l)-1): if l[j]+l[j+1]+1==i: c+=1 if c==y: print("YES") break if c<y: print('NO') ```
0
92
A
Chips
PROGRAMMING
800
[ "implementation", "math" ]
A. Chips
2
256
There are *n* walruses sitting in a circle. All of them are numbered in the clockwise order: the walrus number 2 sits to the left of the walrus number 1, the walrus number 3 sits to the left of the walrus number 2, ..., the walrus number 1 sits to the left of the walrus number *n*. The presenter has *m* chips. The presenter stands in the middle of the circle and starts giving the chips to the walruses starting from walrus number 1 and moving clockwise. The walrus number *i* gets *i* chips. If the presenter can't give the current walrus the required number of chips, then the presenter takes the remaining chips and the process ends. Determine by the given *n* and *m* how many chips the presenter will get in the end.
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=50, 1<=≤<=*m*<=≤<=104) — the number of walruses and the number of chips correspondingly.
Print the number of chips the presenter ended up with.
[ "4 11\n", "17 107\n", "3 8\n" ]
[ "0\n", "2\n", "1\n" ]
In the first sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, four chips to the walrus number 4, then again one chip to the walrus number 1. After that the presenter runs out of chips. He can't give anything to the walrus number 2 and the process finishes. In the third sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, then again one chip to the walrus number 1. The presenter has one chip left and he can't give two chips to the walrus number 2, that's why the presenter takes the last chip.
500
[ { "input": "4 11", "output": "0" }, { "input": "17 107", "output": "2" }, { "input": "3 8", "output": "1" }, { "input": "46 7262", "output": "35" }, { "input": "32 6864", "output": "0" }, { "input": "36 6218", "output": "14" }, { "input": "25 9712", "output": "11" }, { "input": "9 7601", "output": "5" }, { "input": "1 9058", "output": "0" }, { "input": "29 7772", "output": "26" }, { "input": "45 9465", "output": "14" }, { "input": "46 866", "output": "5" }, { "input": "29 1241", "output": "20" }, { "input": "17 4248", "output": "12" }, { "input": "20 8082", "output": "11" }, { "input": "50 9555", "output": "0" }, { "input": "4 7455", "output": "2" }, { "input": "36 880", "output": "4" }, { "input": "24 7440", "output": "9" }, { "input": "44 7888", "output": "12" }, { "input": "1 1", "output": "0" }, { "input": "50 10000", "output": "40" }, { "input": "1 10000", "output": "0" }, { "input": "50 1", "output": "0" }, { "input": "50 50", "output": "5" } ]
1,599,114,002
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
7
218
1,228,800
if __name__ == '__main__': n,m = map(int, input().split()) i = 1 while i <= n: if m == 0: print(str(0)) break if i == n: m -= i i = 1 if m < i: print(str(m)) break else: m -= i i += 1
Title: Chips Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: There are *n* walruses sitting in a circle. All of them are numbered in the clockwise order: the walrus number 2 sits to the left of the walrus number 1, the walrus number 3 sits to the left of the walrus number 2, ..., the walrus number 1 sits to the left of the walrus number *n*. The presenter has *m* chips. The presenter stands in the middle of the circle and starts giving the chips to the walruses starting from walrus number 1 and moving clockwise. The walrus number *i* gets *i* chips. If the presenter can't give the current walrus the required number of chips, then the presenter takes the remaining chips and the process ends. Determine by the given *n* and *m* how many chips the presenter will get in the end. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=50, 1<=≤<=*m*<=≤<=104) — the number of walruses and the number of chips correspondingly. Output Specification: Print the number of chips the presenter ended up with. Demo Input: ['4 11\n', '17 107\n', '3 8\n'] Demo Output: ['0\n', '2\n', '1\n'] Note: In the first sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, four chips to the walrus number 4, then again one chip to the walrus number 1. After that the presenter runs out of chips. He can't give anything to the walrus number 2 and the process finishes. In the third sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, then again one chip to the walrus number 1. The presenter has one chip left and he can't give two chips to the walrus number 2, that's why the presenter takes the last chip.
```python if __name__ == '__main__': n,m = map(int, input().split()) i = 1 while i <= n: if m == 0: print(str(0)) break if i == n: m -= i i = 1 if m < i: print(str(m)) break else: m -= i i += 1 ```
0
168
A
Wizards and Demonstration
PROGRAMMING
900
[ "implementation", "math" ]
null
null
Some country is populated by wizards. They want to organize a demonstration. There are *n* people living in the city, *x* of them are the wizards who will surely go to the demonstration. Other city people (*n*<=-<=*x* people) do not support the wizards and aren't going to go to the demonstration. We know that the city administration will react only to the demonstration involving at least *y* percent of the city people. Having considered the matter, the wizards decided to create clone puppets which can substitute the city people on the demonstration. So all in all, the demonstration will involve only the wizards and their puppets. The city administration cannot tell the difference between a puppet and a person, so, as they calculate the percentage, the administration will consider the city to be consisting of only *n* people and not containing any clone puppets. Help the wizards and find the minimum number of clones to create to that the demonstration had no less than *y* percent of the city people.
The first line contains three space-separated integers, *n*, *x*, *y* (1<=≤<=*n*,<=*x*,<=*y*<=≤<=104,<=*x*<=≤<=*n*) — the number of citizens in the city, the number of wizards and the percentage the administration needs, correspondingly. Please note that *y* can exceed 100 percent, that is, the administration wants to see on a demonstration more people that actually live in the city (<=&gt;<=*n*).
Print a single integer — the answer to the problem, the minimum number of clones to create, so that the demonstration involved no less than *y* percent of *n* (the real total city population).
[ "10 1 14\n", "20 10 50\n", "1000 352 146\n" ]
[ "1\n", "0\n", "1108\n" ]
In the first sample it is necessary that at least 14% of 10 people came to the demonstration. As the number of people should be integer, then at least two people should come. There is only one wizard living in the city and he is going to come. That isn't enough, so he needs to create one clone. In the second sample 10 people should come to the demonstration. The city has 10 wizards. They will all come to the demonstration, so nobody has to create any clones.
500
[ { "input": "10 1 14", "output": "1" }, { "input": "20 10 50", "output": "0" }, { "input": "1000 352 146", "output": "1108" }, { "input": "68 65 20", "output": "0" }, { "input": "78 28 27", "output": "0" }, { "input": "78 73 58", "output": "0" }, { "input": "70 38 66", "output": "9" }, { "input": "54 4 38", "output": "17" }, { "input": "3 1 69", "output": "2" }, { "input": "11 9 60", "output": "0" }, { "input": "71 49 65", "output": "0" }, { "input": "78 55 96", "output": "20" }, { "input": "2765 768 9020", "output": "248635" }, { "input": "3478 1728 9727", "output": "336578" }, { "input": "9678 6173 5658", "output": "541409" }, { "input": "1138 570 6666", "output": "75290" }, { "input": "7754 204 9038", "output": "700603" }, { "input": "8403 7401 4769", "output": "393339" }, { "input": "4909 2111 8860", "output": "432827" }, { "input": "6571 6449 8965", "output": "582642" }, { "input": "9178 2255 7996", "output": "731618" }, { "input": "6151 6148 3746", "output": "224269" }, { "input": "8890 5449 8734", "output": "771004" }, { "input": "7879 2590 2818", "output": "219441" }, { "input": "8484 6400 547", "output": "40008" }, { "input": "7835 6710 1639", "output": "121706" }, { "input": "2379 1436 9663", "output": "228447" }, { "input": "6487 5670 8", "output": "0" }, { "input": "4470 2543 6", "output": "0" }, { "input": "7261 5328 10", "output": "0" }, { "input": "3871 3795 7", "output": "0" }, { "input": "9620 6557 6", "output": "0" }, { "input": "4890 1112 5", "output": "0" }, { "input": "1 1 1", "output": "0" }, { "input": "1 1 10000", "output": "99" }, { "input": "10000 1 1", "output": "99" }, { "input": "10000 1 10000", "output": "999999" }, { "input": "10000 10000 1", "output": "0" }, { "input": "10000 10000 10000", "output": "990000" }, { "input": "67 1 3", "output": "2" }, { "input": "7878 4534 9159", "output": "717013" }, { "input": "1 1 1", "output": "0" }, { "input": "3271 5 50", "output": "1631" } ]
1,416,725,737
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
92
0
import math t=int(input()) n=int(input()) m=int(input()) p=math.ceil(((t*m)*0.01)) if(p>=n): print(p-n,) else: print("0",)
Title: Wizards and Demonstration Time Limit: None seconds Memory Limit: None megabytes Problem Description: Some country is populated by wizards. They want to organize a demonstration. There are *n* people living in the city, *x* of them are the wizards who will surely go to the demonstration. Other city people (*n*<=-<=*x* people) do not support the wizards and aren't going to go to the demonstration. We know that the city administration will react only to the demonstration involving at least *y* percent of the city people. Having considered the matter, the wizards decided to create clone puppets which can substitute the city people on the demonstration. So all in all, the demonstration will involve only the wizards and their puppets. The city administration cannot tell the difference between a puppet and a person, so, as they calculate the percentage, the administration will consider the city to be consisting of only *n* people and not containing any clone puppets. Help the wizards and find the minimum number of clones to create to that the demonstration had no less than *y* percent of the city people. Input Specification: The first line contains three space-separated integers, *n*, *x*, *y* (1<=≤<=*n*,<=*x*,<=*y*<=≤<=104,<=*x*<=≤<=*n*) — the number of citizens in the city, the number of wizards and the percentage the administration needs, correspondingly. Please note that *y* can exceed 100 percent, that is, the administration wants to see on a demonstration more people that actually live in the city (<=&gt;<=*n*). Output Specification: Print a single integer — the answer to the problem, the minimum number of clones to create, so that the demonstration involved no less than *y* percent of *n* (the real total city population). Demo Input: ['10 1 14\n', '20 10 50\n', '1000 352 146\n'] Demo Output: ['1\n', '0\n', '1108\n'] Note: In the first sample it is necessary that at least 14% of 10 people came to the demonstration. As the number of people should be integer, then at least two people should come. There is only one wizard living in the city and he is going to come. That isn't enough, so he needs to create one clone. In the second sample 10 people should come to the demonstration. The city has 10 wizards. They will all come to the demonstration, so nobody has to create any clones.
```python import math t=int(input()) n=int(input()) m=int(input()) p=math.ceil(((t*m)*0.01)) if(p>=n): print(p-n,) else: print("0",) ```
-1
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,683,722,541
2,147,483,647
Python 3
OK
TESTS
35
92
0
a = input().split(" ") num1 = int(a[0]) num2 = int(a[1]) b = (num1 * num2) // 2 print(b)
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python a = input().split(" ") num1 = int(a[0]) num2 = int(a[1]) b = (num1 * num2) // 2 print(b) ```
3.977
978
A
Remove Duplicates
PROGRAMMING
800
[ "implementation" ]
null
null
Petya has an array $a$ consisting of $n$ integers. He wants to remove duplicate (equal) elements. Petya wants to leave only the rightmost entry (occurrence) for each element of the array. The relative order of the remaining unique elements should not be changed.
The first line contains a single integer $n$ ($1 \le n \le 50$) — the number of elements in Petya's array. The following line contains a sequence $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 1\,000$) — the Petya's array.
In the first line print integer $x$ — the number of elements which will be left in Petya's array after he removed the duplicates. In the second line print $x$ integers separated with a space — Petya's array after he removed the duplicates. For each unique element only the rightmost entry should be left.
[ "6\n1 5 5 1 6 1\n", "5\n2 4 2 4 4\n", "5\n6 6 6 6 6\n" ]
[ "3\n5 6 1 \n", "2\n2 4 \n", "1\n6 \n" ]
In the first example you should remove two integers $1$, which are in the positions $1$ and $4$. Also you should remove the integer $5$, which is in the position $2$. In the second example you should remove integer $2$, which is in the position $1$, and two integers $4$, which are in the positions $2$ and $4$. In the third example you should remove four integers $6$, which are in the positions $1$, $2$, $3$ and $4$.
0
[ { "input": "6\n1 5 5 1 6 1", "output": "3\n5 6 1 " }, { "input": "5\n2 4 2 4 4", "output": "2\n2 4 " }, { "input": "5\n6 6 6 6 6", "output": "1\n6 " }, { "input": "7\n1 2 3 4 2 2 3", "output": "4\n1 4 2 3 " }, { "input": "9\n100 100 100 99 99 99 100 100 100", "output": "2\n99 100 " }, { "input": "27\n489 489 487 488 750 230 43 645 42 42 489 42 973 42 973 750 645 355 868 112 868 489 750 489 887 489 868", "output": "13\n487 488 230 43 42 973 645 355 112 750 887 489 868 " }, { "input": "40\n151 421 421 909 117 222 909 954 227 421 227 954 954 222 421 227 421 421 421 151 421 227 222 222 222 222 421 183 421 227 421 954 222 421 954 421 222 421 909 421", "output": "8\n117 151 183 227 954 222 909 421 " }, { "input": "48\n2 2 2 903 903 2 726 2 2 2 2 2 2 2 2 2 2 726 2 2 2 2 2 2 2 726 2 2 2 2 62 2 2 2 2 2 2 2 2 726 62 726 2 2 2 903 903 2", "output": "4\n62 726 903 2 " }, { "input": "1\n1", "output": "1\n1 " }, { "input": "13\n5 37 375 5 37 33 37 375 37 2 3 3 2", "output": "6\n5 33 375 37 3 2 " }, { "input": "50\n1 2 3 4 5 4 3 2 1 2 3 2 1 4 5 5 4 3 2 1 1 2 3 4 5 4 3 2 1 2 3 2 1 4 5 5 4 3 2 1 4 3 2 5 1 6 6 6 6 6", "output": "6\n4 3 2 5 1 6 " }, { "input": "47\n233 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "2\n233 1 " }, { "input": "47\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "1\n1 " }, { "input": "2\n964 964", "output": "1\n964 " }, { "input": "2\n1000 1000", "output": "1\n1000 " }, { "input": "1\n1000", "output": "1\n1000 " }, { "input": "45\n991 991 996 996 992 992 999 1000 998 1000 992 999 996 999 991 991 999 993 992 999 1000 997 992 999 996 991 994 996 991 999 1000 993 999 997 999 992 991 997 991 998 998 995 998 994 993", "output": "10\n996 1000 999 992 997 991 995 998 994 993 " }, { "input": "6\n994 993 1000 998 991 994", "output": "5\n993 1000 998 991 994 " }, { "input": "48\n992 995 992 991 994 992 995 999 996 993 999 995 993 992 1000 992 997 996 991 993 992 998 998 998 999 995 992 992 993 992 992 995 996 995 997 991 997 991 999 994 994 997 1000 998 1000 992 1000 999", "output": "10\n993 996 995 991 994 997 998 992 1000 999 " }, { "input": "3\n6 6 3", "output": "2\n6 3 " }, { "input": "36\n999 1000 993 993 1000 999 996 997 998 995 995 997 999 995 1000 998 998 994 993 998 994 999 1000 995 996 994 991 991 999 996 993 999 996 998 991 997", "output": "9\n1000 995 994 993 999 996 998 991 997 " }, { "input": "49\n991 997 995 991 995 998 994 996 997 991 998 993 992 999 996 995 991 991 999 997 995 993 997 1000 997 993 993 994 999 994 992 991 1000 996 994 996 996 999 992 992 1000 991 997 993 991 994 997 991 996", "output": "10\n998 995 999 992 1000 993 994 997 991 996 " }, { "input": "2\n1000 999", "output": "2\n1000 999 " }, { "input": "28\n997 994 991 994 994 995 1000 992 995 994 994 995 991 996 991 996 991 999 999 993 994 997 995 992 991 992 998 1000", "output": "10\n996 999 993 994 997 995 991 992 998 1000 " }, { "input": "15\n991 995 995 1000 991 993 997 998 1000 994 1000 992 991 995 992", "output": "8\n993 997 998 994 1000 991 995 992 " }, { "input": "6\n1000 1 1000 2 1000 1", "output": "3\n2 1000 1 " }, { "input": "6\n1000 1 1000 2 1 1000", "output": "3\n2 1 1000 " }, { "input": "7\n1 1000 1 999 1000 1 2", "output": "4\n999 1000 1 2 " } ]
1,698,315,859
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
46
0
#remove dup keeping rightmost def remove_duplicates(arr): unique_elements = set() result = [] for i in range(len(arr)-1, -1, -1): if arr[i] not in unique_elements: unique_elements.add(arr[i]) result.insert(0, arr[i]) return result # Example usage arr = []*int(input()) arr = input().split() result = remove_duplicates(arr) print(*result)
Title: Remove Duplicates Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya has an array $a$ consisting of $n$ integers. He wants to remove duplicate (equal) elements. Petya wants to leave only the rightmost entry (occurrence) for each element of the array. The relative order of the remaining unique elements should not be changed. Input Specification: The first line contains a single integer $n$ ($1 \le n \le 50$) — the number of elements in Petya's array. The following line contains a sequence $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 1\,000$) — the Petya's array. Output Specification: In the first line print integer $x$ — the number of elements which will be left in Petya's array after he removed the duplicates. In the second line print $x$ integers separated with a space — Petya's array after he removed the duplicates. For each unique element only the rightmost entry should be left. Demo Input: ['6\n1 5 5 1 6 1\n', '5\n2 4 2 4 4\n', '5\n6 6 6 6 6\n'] Demo Output: ['3\n5 6 1 \n', '2\n2 4 \n', '1\n6 \n'] Note: In the first example you should remove two integers $1$, which are in the positions $1$ and $4$. Also you should remove the integer $5$, which is in the position $2$. In the second example you should remove integer $2$, which is in the position $1$, and two integers $4$, which are in the positions $2$ and $4$. In the third example you should remove four integers $6$, which are in the positions $1$, $2$, $3$ and $4$.
```python #remove dup keeping rightmost def remove_duplicates(arr): unique_elements = set() result = [] for i in range(len(arr)-1, -1, -1): if arr[i] not in unique_elements: unique_elements.add(arr[i]) result.insert(0, arr[i]) return result # Example usage arr = []*int(input()) arr = input().split() result = remove_duplicates(arr) print(*result) ```
0
343
A
Rational Resistance
PROGRAMMING
1,600
[ "math", "number theory" ]
null
null
Mad scientist Mike is building a time machine in his spare time. To finish the work, he needs a resistor with a certain resistance value. However, all Mike has is lots of identical resistors with unit resistance *R*0<==<=1. Elements with other resistance can be constructed from these resistors. In this problem, we will consider the following as elements: 1. one resistor; 1. an element and one resistor plugged in sequence; 1. an element and one resistor plugged in parallel. With the consecutive connection the resistance of the new element equals *R*<==<=*R**e*<=+<=*R*0. With the parallel connection the resistance of the new element equals . In this case *R**e* equals the resistance of the element being connected. Mike needs to assemble an element with a resistance equal to the fraction . Determine the smallest possible number of resistors he needs to make such an element.
The single input line contains two space-separated integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=1018). It is guaranteed that the fraction is irreducible. It is guaranteed that a solution always exists.
Print a single number — the answer to the problem. Please do not use the %lld specifier to read or write 64-bit integers in С++. It is recommended to use the cin, cout streams or the %I64d specifier.
[ "1 1\n", "3 2\n", "199 200\n" ]
[ "1\n", "3\n", "200\n" ]
In the first sample, one resistor is enough. In the second sample one can connect the resistors in parallel, take the resulting element and connect it to a third resistor consecutively. Then, we get an element with resistance <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/5305da389756aab6423d918a08ced468f05604df.png" style="max-width: 100.0%;max-height: 100.0%;"/>. We cannot make this element using two resistors.
500
[ { "input": "1 1", "output": "1" }, { "input": "3 2", "output": "3" }, { "input": "199 200", "output": "200" }, { "input": "1 1000000000000000000", "output": "1000000000000000000" }, { "input": "3 1", "output": "3" }, { "input": "21 8", "output": "7" }, { "input": "18 55", "output": "21" }, { "input": "1 2", "output": "2" }, { "input": "2 1", "output": "2" }, { "input": "1 3", "output": "3" }, { "input": "2 3", "output": "3" }, { "input": "1 4", "output": "4" }, { "input": "5 2", "output": "4" }, { "input": "2 5", "output": "4" }, { "input": "4 5", "output": "5" }, { "input": "3 5", "output": "4" }, { "input": "13 4", "output": "7" }, { "input": "21 17", "output": "9" }, { "input": "5 8", "output": "5" }, { "input": "13 21", "output": "7" }, { "input": "74 99", "output": "28" }, { "input": "2377 1055", "output": "33" }, { "input": "645597 134285", "output": "87" }, { "input": "29906716 35911991", "output": "92" }, { "input": "3052460231 856218974", "output": "82" }, { "input": "288565475053 662099878640", "output": "88" }, { "input": "11504415412768 12754036168327", "output": "163" }, { "input": "9958408561221547 4644682781404278", "output": "196" }, { "input": "60236007668635342 110624799949034113", "output": "179" }, { "input": "4 43470202936783249", "output": "10867550734195816" }, { "input": "16 310139055712567491", "output": "19383690982035476" }, { "input": "15 110897893734203629", "output": "7393192915613582" }, { "input": "439910263967866789 38", "output": "11576585893891241" }, { "input": "36 316049483082136289", "output": "8779152307837131" }, { "input": "752278442523506295 52", "output": "14466893125452056" }, { "input": "4052739537881 6557470319842", "output": "62" }, { "input": "44945570212853 72723460248141", "output": "67" }, { "input": "498454011879264 806515533049393", "output": "72" }, { "input": "8944394323791464 5527939700884757", "output": "77" }, { "input": "679891637638612258 420196140727489673", "output": "86" }, { "input": "1 923438", "output": "923438" }, { "input": "3945894354376 1", "output": "3945894354376" }, { "input": "999999999999999999 5", "output": "200000000000000004" }, { "input": "999999999999999999 1000000000000000000", "output": "1000000000000000000" }, { "input": "999999999999999991 1000000000000000000", "output": "111111111111111120" }, { "input": "999999999999999993 999999999999999991", "output": "499999999999999998" }, { "input": "3 1000000000000000000", "output": "333333333333333336" }, { "input": "1000000000000000000 3", "output": "333333333333333336" }, { "input": "10000000000 1000000001", "output": "100000019" }, { "input": "2 999999999999999999", "output": "500000000000000001" }, { "input": "999999999999999999 2", "output": "500000000000000001" }, { "input": "2 1000000001", "output": "500000002" }, { "input": "123 1000000000000000000", "output": "8130081300813023" } ]
1,691,822,701
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
60
0
a,b = map(int, input().split()) cnt = 0 if (a <= b): cnt = a else: cnt = a // b + a % b print(cnt)
Title: Rational Resistance Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mad scientist Mike is building a time machine in his spare time. To finish the work, he needs a resistor with a certain resistance value. However, all Mike has is lots of identical resistors with unit resistance *R*0<==<=1. Elements with other resistance can be constructed from these resistors. In this problem, we will consider the following as elements: 1. one resistor; 1. an element and one resistor plugged in sequence; 1. an element and one resistor plugged in parallel. With the consecutive connection the resistance of the new element equals *R*<==<=*R**e*<=+<=*R*0. With the parallel connection the resistance of the new element equals . In this case *R**e* equals the resistance of the element being connected. Mike needs to assemble an element with a resistance equal to the fraction . Determine the smallest possible number of resistors he needs to make such an element. Input Specification: The single input line contains two space-separated integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=1018). It is guaranteed that the fraction is irreducible. It is guaranteed that a solution always exists. Output Specification: Print a single number — the answer to the problem. Please do not use the %lld specifier to read or write 64-bit integers in С++. It is recommended to use the cin, cout streams or the %I64d specifier. Demo Input: ['1 1\n', '3 2\n', '199 200\n'] Demo Output: ['1\n', '3\n', '200\n'] Note: In the first sample, one resistor is enough. In the second sample one can connect the resistors in parallel, take the resulting element and connect it to a third resistor consecutively. Then, we get an element with resistance <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/5305da389756aab6423d918a08ced468f05604df.png" style="max-width: 100.0%;max-height: 100.0%;"/>. We cannot make this element using two resistors.
```python a,b = map(int, input().split()) cnt = 0 if (a <= b): cnt = a else: cnt = a // b + a % b print(cnt) ```
0
263
A
Beautiful Matrix
PROGRAMMING
800
[ "implementation" ]
null
null
You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix: 1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=&lt;<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=&lt;<=5). You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful.
The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one.
Print a single integer — the minimum number of moves needed to make the matrix beautiful.
[ "0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n", "0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n" ]
[ "3\n", "1\n" ]
none
500
[ { "input": "0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "1" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "0" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1", "output": "4" }, { "input": "0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "4" }, { "input": "0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "4" }, { "input": "0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "1" }, { "input": "0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0", "output": "1" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0", "output": "1" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0", "output": "4" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0", "output": "3" } ]
1,695,539,819
2,147,483,647
Python 3
OK
TESTS
25
92
0
m = 0 for i in range(5): r = list(map(int, input().split())) if 1 in r: m += abs(i - 2) m += abs(r.index(1) - 2) print(m)
Title: Beautiful Matrix Time Limit: None seconds Memory Limit: None megabytes Problem Description: You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix: 1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=&lt;<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=&lt;<=5). You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful. Input Specification: The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one. Output Specification: Print a single integer — the minimum number of moves needed to make the matrix beautiful. Demo Input: ['0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n', '0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n'] Demo Output: ['3\n', '1\n'] Note: none
```python m = 0 for i in range(5): r = list(map(int, input().split())) if 1 in r: m += abs(i - 2) m += abs(r.index(1) - 2) print(m) ```
3
659
A
Round House
PROGRAMMING
1,000
[ "implementation", "math" ]
null
null
Vasya lives in a round building, whose entrances are numbered sequentially by integers from 1 to *n*. Entrance *n* and entrance 1 are adjacent. Today Vasya got bored and decided to take a walk in the yard. Vasya lives in entrance *a* and he decided that during his walk he will move around the house *b* entrances in the direction of increasing numbers (in this order entrance *n* should be followed by entrance 1). The negative value of *b* corresponds to moving |*b*| entrances in the order of decreasing numbers (in this order entrance 1 is followed by entrance *n*). If *b*<==<=0, then Vasya prefers to walk beside his entrance. Help Vasya to determine the number of the entrance, near which he will be at the end of his walk.
The single line of the input contains three space-separated integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=100,<=1<=≤<=*a*<=≤<=*n*,<=<=-<=100<=≤<=*b*<=≤<=100) — the number of entrances at Vasya's place, the number of his entrance and the length of his walk, respectively.
Print a single integer *k* (1<=≤<=*k*<=≤<=*n*) — the number of the entrance where Vasya will be at the end of his walk.
[ "6 2 -5\n", "5 1 3\n", "3 2 7\n" ]
[ "3\n", "4\n", "3\n" ]
The first example is illustrated by the picture in the statements.
500
[ { "input": "6 2 -5", "output": "3" }, { "input": "5 1 3", "output": "4" }, { "input": "3 2 7", "output": "3" }, { "input": "1 1 0", "output": "1" }, { "input": "1 1 -1", "output": "1" }, { "input": "1 1 1", "output": "1" }, { "input": "100 1 -1", "output": "100" }, { "input": "100 54 100", "output": "54" }, { "input": "100 37 -100", "output": "37" }, { "input": "99 41 0", "output": "41" }, { "input": "97 37 -92", "output": "42" }, { "input": "99 38 59", "output": "97" }, { "input": "35 34 1", "output": "35" }, { "input": "48 1 -1", "output": "48" }, { "input": "87 65 -76", "output": "76" }, { "input": "76 26 29", "output": "55" }, { "input": "100 65 0", "output": "65" }, { "input": "2 1 100", "output": "1" }, { "input": "3 2 -100", "output": "1" }, { "input": "1 1 100", "output": "1" }, { "input": "1 1 -100", "output": "1" }, { "input": "3 1 -100", "output": "3" }, { "input": "4 3 -100", "output": "3" }, { "input": "3 2 -12", "output": "2" }, { "input": "2 2 -100", "output": "2" }, { "input": "3 2 -90", "output": "2" }, { "input": "6 2 -10", "output": "4" }, { "input": "3 3 -100", "output": "2" }, { "input": "5 2 4", "output": "1" }, { "input": "6 4 5", "output": "3" }, { "input": "3 2 -6", "output": "2" }, { "input": "5 1 -99", "output": "2" }, { "input": "6 2 5", "output": "1" }, { "input": "10 1 -100", "output": "1" }, { "input": "2 2 1", "output": "1" }, { "input": "3 3 1", "output": "1" }, { "input": "6 4 4", "output": "2" }, { "input": "17 17 2", "output": "2" }, { "input": "6 6 1", "output": "1" }, { "input": "5 3 -2", "output": "1" }, { "input": "6 2 -100", "output": "4" }, { "input": "5 3 -100", "output": "3" }, { "input": "5 4 3", "output": "2" }, { "input": "3 2 2", "output": "1" }, { "input": "5 5 2", "output": "2" }, { "input": "3 2 5", "output": "1" }, { "input": "5 5 -1", "output": "4" }, { "input": "5 3 3", "output": "1" }, { "input": "4 2 3", "output": "1" }, { "input": "88 76 74", "output": "62" } ]
1,575,098,978
2,147,483,647
Python 3
OK
TESTS
50
109
0
n,a,b=map(int,input().split()) if b<0: b=abs(b) if b<a: print(a-b) else: b=b-a t=b%n print(n-t) else: if b<n-a: print(a+b) else: b=b-(n-a) t=b%n if t==0: t=n print(t)
Title: Round House Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya lives in a round building, whose entrances are numbered sequentially by integers from 1 to *n*. Entrance *n* and entrance 1 are adjacent. Today Vasya got bored and decided to take a walk in the yard. Vasya lives in entrance *a* and he decided that during his walk he will move around the house *b* entrances in the direction of increasing numbers (in this order entrance *n* should be followed by entrance 1). The negative value of *b* corresponds to moving |*b*| entrances in the order of decreasing numbers (in this order entrance 1 is followed by entrance *n*). If *b*<==<=0, then Vasya prefers to walk beside his entrance. Help Vasya to determine the number of the entrance, near which he will be at the end of his walk. Input Specification: The single line of the input contains three space-separated integers *n*, *a* and *b* (1<=≤<=*n*<=≤<=100,<=1<=≤<=*a*<=≤<=*n*,<=<=-<=100<=≤<=*b*<=≤<=100) — the number of entrances at Vasya's place, the number of his entrance and the length of his walk, respectively. Output Specification: Print a single integer *k* (1<=≤<=*k*<=≤<=*n*) — the number of the entrance where Vasya will be at the end of his walk. Demo Input: ['6 2 -5\n', '5 1 3\n', '3 2 7\n'] Demo Output: ['3\n', '4\n', '3\n'] Note: The first example is illustrated by the picture in the statements.
```python n,a,b=map(int,input().split()) if b<0: b=abs(b) if b<a: print(a-b) else: b=b-a t=b%n print(n-t) else: if b<n-a: print(a+b) else: b=b-(n-a) t=b%n if t==0: t=n print(t) ```
3
558
A
Lala Land and Apple Trees
PROGRAMMING
1,100
[ "brute force", "implementation", "sortings" ]
null
null
Amr lives in Lala Land. Lala Land is a very beautiful country that is located on a coordinate line. Lala Land is famous with its apple trees growing everywhere. Lala Land has exactly *n* apple trees. Tree number *i* is located in a position *x**i* and has *a**i* apples growing on it. Amr wants to collect apples from the apple trees. Amr currently stands in *x*<==<=0 position. At the beginning, he can choose whether to go right or left. He'll continue in his direction until he meets an apple tree he didn't visit before. He'll take all of its apples and then reverse his direction, continue walking in this direction until he meets another apple tree he didn't visit before and so on. In the other words, Amr reverses his direction when visiting each new apple tree. Amr will stop collecting apples when there are no more trees he didn't visit in the direction he is facing. What is the maximum number of apples he can collect?
The first line contains one number *n* (1<=≤<=*n*<=≤<=100), the number of apple trees in Lala Land. The following *n* lines contains two integers each *x**i*, *a**i* (<=-<=105<=≤<=*x**i*<=≤<=105, *x**i*<=≠<=0, 1<=≤<=*a**i*<=≤<=105), representing the position of the *i*-th tree and number of apples on it. It's guaranteed that there is at most one apple tree at each coordinate. It's guaranteed that no tree grows in point 0.
Output the maximum number of apples Amr can collect.
[ "2\n-1 5\n1 5\n", "3\n-2 2\n1 4\n-1 3\n", "3\n1 9\n3 5\n7 10\n" ]
[ "10", "9", "9" ]
In the first sample test it doesn't matter if Amr chose at first to go left or right. In both cases he'll get all the apples. In the second sample test the optimal solution is to go left to *x* =  - 1, collect apples from there, then the direction will be reversed, Amr has to go to *x* = 1, collect apples from there, then the direction will be reversed and Amr goes to the final tree *x* =  - 2. In the third sample test the optimal solution is to go right to *x* = 1, collect apples from there, then the direction will be reversed and Amr will not be able to collect anymore apples because there are no apple trees to his left.
500
[ { "input": "2\n-1 5\n1 5", "output": "10" }, { "input": "3\n-2 2\n1 4\n-1 3", "output": "9" }, { "input": "3\n1 9\n3 5\n7 10", "output": "9" }, { "input": "1\n1 1", "output": "1" }, { "input": "4\n10000 100000\n-1000 100000\n-2 100000\n-1 100000", "output": "300000" }, { "input": "1\n-1 1", "output": "1" }, { "input": "27\n-30721 24576\n-6620 92252\n88986 24715\n-94356 10509\n-6543 29234\n-68554 69530\n39176 96911\n67266 99669\n95905 51002\n-94093 92134\n65382 23947\n-6525 79426\n-448 67531\n-70083 26921\n-86333 50029\n48924 8036\n-27228 5349\n6022 10691\n-13840 56735\n50398 58794\n-63258 45557\n-27792 77057\n98295 1203\n-51294 18757\n35037 61941\n-30112 13076\n82334 20463", "output": "1036452" }, { "input": "18\n-18697 44186\n56333 51938\n-75688 49735\n77762 14039\n-43996 81060\n69700 49107\n74532 45568\n-94476 203\n-92347 90745\n58921 44650\n57563 63561\n44630 8486\n35750 5999\n3249 34202\n75358 68110\n-33245 60458\n-88148 2342\n87856 85532", "output": "632240" }, { "input": "28\n49728 91049\n-42863 4175\n-89214 22191\n77977 16965\n-42960 87627\n-84329 97494\n89270 75906\n-13695 28908\n-72279 13607\n-97327 87062\n-58682 32094\n39108 99936\n29304 93784\n-63886 48237\n-77359 57648\n-87013 79017\n-41086 35033\n-60613 83555\n-48955 56816\n-20568 26802\n52113 25160\n-88885 45294\n22601 42971\n62693 65662\n-15985 5357\n86671 8522\n-59921 11271\n-79304 25044", "output": "891593" }, { "input": "25\n5704 67795\n6766 31836\n-41715 89987\n76854 9848\n11648 90020\n-79763 10107\n96971 92636\n-64205 71937\n87997 38273\n-9782 57187\n22186 6905\n-41130 40258\n-28403 66579\n19578 43375\n35735 52929\n-52417 89388\n-89430 1939\n9401 43491\n-11228 10112\n-86859 16024\n-51486 33467\n-80578 65080\n-52820 98445\n-89165 7657\n-97106 79422", "output": "1109655" }, { "input": "16\n-41732 47681\n44295 28942\n-75194 99827\n69982 18020\n-75378 22026\n80032 22908\n-34879 41113\n36257 48574\n-35882 84333\n29646 71151\n-86214 80886\n72724 39364\n-42529 60880\n29150 29921\n-8471 80781\n79387 70834", "output": "847241" }, { "input": "3\n-94146 4473\n28707 99079\n-4153 8857", "output": "112409" }, { "input": "3\n-3 3\n-2 2\n-1 1", "output": "1" }, { "input": "2\n100000 3\n-100000 9", "output": "12" }, { "input": "2\n-100000 100000\n100000 99999", "output": "199999" } ]
1,440,094,997
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
6
46
0
n=int(input()) x,a=[],[] x2,x3=0,0 for i in range(n): x1,a1=input().split() x.append(int(x1)) if(int(x1)<0): x2+=1 else: x3+=1 a.append(int(a1)) def int_sort(l,a): l1=len(l) for i in range(n-1): r=i mini=10**5+1 for j in range(i,n): if(mini>l[j]): mini=l[j] r=j a[i],a[r]=a[r],a[i] return a def su(l,m,n): s=0 for i in range(m,n+1): s+=l[i] return s a=int_sort(x,a) q=[] if(x2==x3): q.append(su(a,0,len(a)-1)) elif(x2>x3): q.append(su(a,x2-x3-1,len(a)-1)) else: q.append(su(a,0,2*x2)) print(max(q))
Title: Lala Land and Apple Trees Time Limit: None seconds Memory Limit: None megabytes Problem Description: Amr lives in Lala Land. Lala Land is a very beautiful country that is located on a coordinate line. Lala Land is famous with its apple trees growing everywhere. Lala Land has exactly *n* apple trees. Tree number *i* is located in a position *x**i* and has *a**i* apples growing on it. Amr wants to collect apples from the apple trees. Amr currently stands in *x*<==<=0 position. At the beginning, he can choose whether to go right or left. He'll continue in his direction until he meets an apple tree he didn't visit before. He'll take all of its apples and then reverse his direction, continue walking in this direction until he meets another apple tree he didn't visit before and so on. In the other words, Amr reverses his direction when visiting each new apple tree. Amr will stop collecting apples when there are no more trees he didn't visit in the direction he is facing. What is the maximum number of apples he can collect? Input Specification: The first line contains one number *n* (1<=≤<=*n*<=≤<=100), the number of apple trees in Lala Land. The following *n* lines contains two integers each *x**i*, *a**i* (<=-<=105<=≤<=*x**i*<=≤<=105, *x**i*<=≠<=0, 1<=≤<=*a**i*<=≤<=105), representing the position of the *i*-th tree and number of apples on it. It's guaranteed that there is at most one apple tree at each coordinate. It's guaranteed that no tree grows in point 0. Output Specification: Output the maximum number of apples Amr can collect. Demo Input: ['2\n-1 5\n1 5\n', '3\n-2 2\n1 4\n-1 3\n', '3\n1 9\n3 5\n7 10\n'] Demo Output: ['10', '9', '9'] Note: In the first sample test it doesn't matter if Amr chose at first to go left or right. In both cases he'll get all the apples. In the second sample test the optimal solution is to go left to *x* =  - 1, collect apples from there, then the direction will be reversed, Amr has to go to *x* = 1, collect apples from there, then the direction will be reversed and Amr goes to the final tree *x* =  - 2. In the third sample test the optimal solution is to go right to *x* = 1, collect apples from there, then the direction will be reversed and Amr will not be able to collect anymore apples because there are no apple trees to his left.
```python n=int(input()) x,a=[],[] x2,x3=0,0 for i in range(n): x1,a1=input().split() x.append(int(x1)) if(int(x1)<0): x2+=1 else: x3+=1 a.append(int(a1)) def int_sort(l,a): l1=len(l) for i in range(n-1): r=i mini=10**5+1 for j in range(i,n): if(mini>l[j]): mini=l[j] r=j a[i],a[r]=a[r],a[i] return a def su(l,m,n): s=0 for i in range(m,n+1): s+=l[i] return s a=int_sort(x,a) q=[] if(x2==x3): q.append(su(a,0,len(a)-1)) elif(x2>x3): q.append(su(a,x2-x3-1,len(a)-1)) else: q.append(su(a,0,2*x2)) print(max(q)) ```
0
41
A
Translation
PROGRAMMING
800
[ "implementation", "strings" ]
A. Translation
2
256
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
[ "code\nedoc\n", "abb\naba\n", "code\ncode\n" ]
[ "YES\n", "NO\n", "NO\n" ]
none
500
[ { "input": "code\nedoc", "output": "YES" }, { "input": "abb\naba", "output": "NO" }, { "input": "code\ncode", "output": "NO" }, { "input": "abacaba\nabacaba", "output": "YES" }, { "input": "q\nq", "output": "YES" }, { "input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk", "output": "NO" }, { "input": "z\na", "output": "NO" }, { "input": "asd\ndsa", "output": "YES" }, { "input": "abcdef\nfecdba", "output": "NO" }, { "input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu", "output": "NO" }, { "input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf", "output": "NO" }, { "input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp", "output": "NO" }, { "input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb", "output": "NO" }, { "input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom", "output": "NO" }, { "input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh", "output": "NO" }, { "input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy", "output": "NO" }, { "input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko", "output": "NO" }, { "input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv", "output": "NO" }, { "input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd", "output": "NO" }, { "input": "w\nw", "output": "YES" }, { "input": "vz\nzv", "output": "YES" }, { "input": "ry\nyr", "output": "YES" }, { "input": "xou\nuox", "output": "YES" }, { "input": "axg\ngax", "output": "NO" }, { "input": "zdsl\nlsdz", "output": "YES" }, { "input": "kudl\nldku", "output": "NO" }, { "input": "zzlzwnqlcl\nlclqnwzlzz", "output": "YES" }, { "input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv", "output": "YES" }, { "input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar", "output": "NO" }, { "input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn", "output": "YES" }, { "input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum", "output": "YES" }, { "input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv", "output": "YES" }, { "input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm", "output": "NO" }, { "input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd", "output": "NO" }, { "input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg", "output": "YES" }, { "input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis", "output": "YES" }, { "input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy", "output": "NO" }, { "input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw", "output": "YES" }, { "input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi", "output": "YES" }, { "input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib", "output": "YES" } ]
1,578,200,414
2,147,483,647
Python 3
OK
TESTS
40
218
0
ber_code = input() bir_code = input() print("YES" if ber_code==bir_code[::-1] else "NO")
Title: Translation Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly. Input Specification: The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols. Output Specification: If the word *t* is a word *s*, written reversely, print YES, otherwise print NO. Demo Input: ['code\nedoc\n', 'abb\naba\n', 'code\ncode\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n'] Note: none
```python ber_code = input() bir_code = input() print("YES" if ber_code==bir_code[::-1] else "NO") ```
3.9455
467
A
George and Accommodation
PROGRAMMING
800
[ "implementation" ]
null
null
George has recently entered the BSUCP (Berland State University for Cool Programmers). George has a friend Alex who has also entered the university. Now they are moving into a dormitory. George and Alex want to live in the same room. The dormitory has *n* rooms in total. At the moment the *i*-th room has *p**i* people living in it and the room can accommodate *q**i* people in total (*p**i*<=≤<=*q**i*). Your task is to count how many rooms has free place for both George and Alex.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of rooms. The *i*-th of the next *n* lines contains two integers *p**i* and *q**i* (0<=≤<=*p**i*<=≤<=*q**i*<=≤<=100) — the number of people who already live in the *i*-th room and the room's capacity.
Print a single integer — the number of rooms where George and Alex can move in.
[ "3\n1 1\n2 2\n3 3\n", "3\n1 10\n0 10\n10 10\n" ]
[ "0\n", "2\n" ]
none
500
[ { "input": "3\n1 1\n2 2\n3 3", "output": "0" }, { "input": "3\n1 10\n0 10\n10 10", "output": "2" }, { "input": "2\n36 67\n61 69", "output": "2" }, { "input": "3\n21 71\n10 88\n43 62", "output": "3" }, { "input": "3\n1 2\n2 3\n3 4", "output": "0" }, { "input": "10\n0 10\n0 20\n0 30\n0 40\n0 50\n0 60\n0 70\n0 80\n0 90\n0 100", "output": "10" }, { "input": "13\n14 16\n30 31\n45 46\n19 20\n15 17\n66 67\n75 76\n95 97\n29 30\n37 38\n0 2\n36 37\n8 9", "output": "4" }, { "input": "19\n66 67\n97 98\n89 91\n67 69\n67 68\n18 20\n72 74\n28 30\n91 92\n27 28\n75 77\n17 18\n74 75\n28 30\n16 18\n90 92\n9 11\n22 24\n52 54", "output": "12" }, { "input": "15\n55 57\n95 97\n57 59\n34 36\n50 52\n96 98\n39 40\n13 15\n13 14\n74 76\n47 48\n56 58\n24 25\n11 13\n67 68", "output": "10" }, { "input": "17\n68 69\n47 48\n30 31\n52 54\n41 43\n33 35\n38 40\n56 58\n45 46\n92 93\n73 74\n61 63\n65 66\n37 39\n67 68\n77 78\n28 30", "output": "8" }, { "input": "14\n64 66\n43 44\n10 12\n76 77\n11 12\n25 27\n87 88\n62 64\n39 41\n58 60\n10 11\n28 29\n57 58\n12 14", "output": "7" }, { "input": "38\n74 76\n52 54\n78 80\n48 49\n40 41\n64 65\n28 30\n6 8\n49 51\n68 70\n44 45\n57 59\n24 25\n46 48\n49 51\n4 6\n63 64\n76 78\n57 59\n18 20\n63 64\n71 73\n88 90\n21 22\n89 90\n65 66\n89 91\n96 98\n42 44\n1 1\n74 76\n72 74\n39 40\n75 76\n29 30\n48 49\n87 89\n27 28", "output": "22" }, { "input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0" }, { "input": "26\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2", "output": "0" }, { "input": "68\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2", "output": "68" }, { "input": "7\n0 1\n1 5\n2 4\n3 5\n4 6\n5 6\n6 8", "output": "5" }, { "input": "1\n0 0", "output": "0" }, { "input": "1\n100 100", "output": "0" }, { "input": "44\n0 8\n1 11\n2 19\n3 5\n4 29\n5 45\n6 6\n7 40\n8 19\n9 22\n10 18\n11 26\n12 46\n13 13\n14 27\n15 48\n16 25\n17 20\n18 29\n19 27\n20 45\n21 39\n22 29\n23 39\n24 42\n25 37\n26 52\n27 36\n28 43\n29 35\n30 38\n31 70\n32 47\n33 38\n34 61\n35 71\n36 51\n37 71\n38 59\n39 77\n40 70\n41 80\n42 77\n43 73", "output": "42" }, { "input": "3\n1 3\n2 7\n8 9", "output": "2" }, { "input": "53\n0 1\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53", "output": "0" }, { "input": "55\n0 0\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n33 33\n34 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40\n41 41\n42 42\n43 43\n44 44\n45 45\n46 46\n47 47\n48 48\n49 49\n50 50\n51 51\n52 52\n53 53\n54 54", "output": "0" }, { "input": "51\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 62\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 73\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 82\n55 68\n55 70\n55 63\n55 55\n55 55\n55 55\n55 75\n55 75\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 73\n55 55\n55 82\n55 99\n55 60", "output": "12" }, { "input": "14\n1 1\n1 1\n1 55\n1 16\n1 1\n1 1\n1 55\n1 62\n1 53\n1 26\n1 1\n1 36\n1 2\n1 3", "output": "8" } ]
1,696,973,296
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
30
0
n=input("") c=0 i=0 n=d while (i<n): a[i]=input("") b[i]=input("") if (b[i]-a[1]>=2): c=c+1 else: c=c i=i+1
Title: George and Accommodation Time Limit: None seconds Memory Limit: None megabytes Problem Description: George has recently entered the BSUCP (Berland State University for Cool Programmers). George has a friend Alex who has also entered the university. Now they are moving into a dormitory. George and Alex want to live in the same room. The dormitory has *n* rooms in total. At the moment the *i*-th room has *p**i* people living in it and the room can accommodate *q**i* people in total (*p**i*<=≤<=*q**i*). Your task is to count how many rooms has free place for both George and Alex. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of rooms. The *i*-th of the next *n* lines contains two integers *p**i* and *q**i* (0<=≤<=*p**i*<=≤<=*q**i*<=≤<=100) — the number of people who already live in the *i*-th room and the room's capacity. Output Specification: Print a single integer — the number of rooms where George and Alex can move in. Demo Input: ['3\n1 1\n2 2\n3 3\n', '3\n1 10\n0 10\n10 10\n'] Demo Output: ['0\n', '2\n'] Note: none
```python n=input("") c=0 i=0 n=d while (i<n): a[i]=input("") b[i]=input("") if (b[i]-a[1]>=2): c=c+1 else: c=c i=i+1 ```
-1
124
A
The number of positions
PROGRAMMING
1,000
[ "math" ]
null
null
Petr stands in line of *n* people, but he doesn't know exactly which position he occupies. He can say that there are no less than *a* people standing in front of him and no more than *b* people standing behind him. Find the number of different positions Petr can occupy.
The only line contains three integers *n*, *a* and *b* (0<=≤<=*a*,<=*b*<=&lt;<=*n*<=≤<=100).
Print the single number — the number of the sought positions.
[ "3 1 1\n", "5 2 3\n" ]
[ "2\n", "3\n" ]
The possible positions in the first sample are: 2 and 3 (if we number the positions starting with 1). In the second sample they are 3, 4 and 5.
500
[ { "input": "3 1 1", "output": "2" }, { "input": "5 2 3", "output": "3" }, { "input": "5 4 0", "output": "1" }, { "input": "6 5 5", "output": "1" }, { "input": "9 4 3", "output": "4" }, { "input": "11 4 6", "output": "7" }, { "input": "13 8 7", "output": "5" }, { "input": "14 5 5", "output": "6" }, { "input": "16 6 9", "output": "10" }, { "input": "20 13 17", "output": "7" }, { "input": "22 4 8", "output": "9" }, { "input": "23 8 14", "output": "15" }, { "input": "26 18 22", "output": "8" }, { "input": "28 6 1", "output": "2" }, { "input": "29 5 23", "output": "24" }, { "input": "32 27 15", "output": "5" }, { "input": "33 11 5", "output": "6" }, { "input": "37 21 15", "output": "16" }, { "input": "39 34 33", "output": "5" }, { "input": "41 27 11", "output": "12" }, { "input": "42 25 16", "output": "17" }, { "input": "45 7 43", "output": "38" }, { "input": "47 16 17", "output": "18" }, { "input": "49 11 37", "output": "38" }, { "input": "51 38 39", "output": "13" }, { "input": "52 29 7", "output": "8" }, { "input": "56 43 12", "output": "13" }, { "input": "58 57 28", "output": "1" }, { "input": "59 12 39", "output": "40" }, { "input": "62 9 52", "output": "53" }, { "input": "63 29 44", "output": "34" }, { "input": "65 30 22", "output": "23" }, { "input": "66 27 38", "output": "39" }, { "input": "71 33 53", "output": "38" }, { "input": "73 14 12", "output": "13" }, { "input": "73 37 35", "output": "36" }, { "input": "76 69 44", "output": "7" }, { "input": "79 25 20", "output": "21" }, { "input": "81 60 20", "output": "21" }, { "input": "81 79 14", "output": "2" }, { "input": "84 0 42", "output": "43" }, { "input": "88 79 8", "output": "9" }, { "input": "90 76 59", "output": "14" }, { "input": "92 2 22", "output": "23" }, { "input": "94 5 88", "output": "89" }, { "input": "94 62 48", "output": "32" }, { "input": "96 22 72", "output": "73" }, { "input": "100 11 88", "output": "89" }, { "input": "100 81 91", "output": "19" }, { "input": "1 0 0", "output": "1" } ]
1,627,204,886
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
92
6,758,400
arr = list(map(int, input().rstrip().split())) if arr[-1] ==0: print(arr[0]-arr[1]) else: print(arr[1]+1)
Title: The number of positions Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petr stands in line of *n* people, but he doesn't know exactly which position he occupies. He can say that there are no less than *a* people standing in front of him and no more than *b* people standing behind him. Find the number of different positions Petr can occupy. Input Specification: The only line contains three integers *n*, *a* and *b* (0<=≤<=*a*,<=*b*<=&lt;<=*n*<=≤<=100). Output Specification: Print the single number — the number of the sought positions. Demo Input: ['3 1 1\n', '5 2 3\n'] Demo Output: ['2\n', '3\n'] Note: The possible positions in the first sample are: 2 and 3 (if we number the positions starting with 1). In the second sample they are 3, 4 and 5.
```python arr = list(map(int, input().rstrip().split())) if arr[-1] ==0: print(arr[0]-arr[1]) else: print(arr[1]+1) ```
0
147
A
Punctuation
PROGRAMMING
1,300
[ "implementation", "strings" ]
null
null
You are given a text that consists of lowercase Latin letters, spaces and punctuation marks (dot, comma, exclamation mark and question mark). A word is defined as a sequence of consecutive Latin letters. Your task is to add spaces to the text by the following rules: - if there is no punctuation mark between two words, then they should be separated by exactly one space - there should be no spaces before each punctuation mark - there should be exactly one space after each punctuation mark It is guaranteed that there is at least one word between any two punctuation marks. The text begins and ends with a Latin letter.
The input data contains of a single non-empty line — the text whose length is no more than 10000 characters.
Print the text, edited according to the rules. In this problem you should follow the output format very strictly. For example, extra space at the end of the output line is considered as wrong answer. Note that a newline character at the end of the line doesn't matter.
[ "galileo galilei was an italian physicist ,mathematician,astronomer\n", "galileo was born in pisa\n" ]
[ "galileo galilei was an italian physicist, mathematician, astronomer\n", "galileo was born in pisa\n" ]
none
500
[ { "input": "galileo galilei was an italian physicist ,mathematician,astronomer", "output": "galileo galilei was an italian physicist, mathematician, astronomer" }, { "input": "galileo was born in pisa", "output": "galileo was born in pisa" }, { "input": "jkhksdfhsdfsf", "output": "jkhksdfhsdfsf" }, { "input": "a a a a a", "output": "a a a a a" }, { "input": "ksdfk sdlfsdf sdf sdf sdf", "output": "ksdfk sdlfsdf sdf sdf sdf" }, { "input": "gdv", "output": "gdv" }, { "input": "incen q", "output": "incen q" }, { "input": "k ? gq dad", "output": "k? gq dad" }, { "input": "ntomzzut !pousysvfg ,rnl mcyytihe hplnqnb", "output": "ntomzzut! pousysvfg, rnl mcyytihe hplnqnb" }, { "input": "mck . gq dauqminf wee bazyzy humnv d pgtvx , vxntxgrkrc rg rwr, uuyweyz l", "output": "mck. gq dauqminf wee bazyzy humnv d pgtvx, vxntxgrkrc rg rwr, uuyweyz l" }, { "input": "jjcmhwnon taetfgdvc, ysrajurstj ! fryavybwpg hnxbnsron ,txplbmm atw?wkfhn ez mcdn tujsy wrdhw . k i lzwtxcyam fi . nyeu j", "output": "jjcmhwnon taetfgdvc, ysrajurstj! fryavybwpg hnxbnsron, txplbmm atw? wkfhn ez mcdn tujsy wrdhw. k i lzwtxcyam fi. nyeu j" }, { "input": "chcf htb flfwkosmda a qygyompixkgz ?rg? hdw f dsvqzs kxvjt ? zj zghgarwihw zgrhr xlwmhv . lycpsmdm iotv . d jhsxoogbr ! ppgrpwcrcl inw usegrtd ?fexma ? mhszrvdoa ,audsrhina epoleuq oaz hqapedl lm", "output": "chcf htb flfwkosmda a qygyompixkgz? rg? hdw f dsvqzs kxvjt? zj zghgarwihw zgrhr xlwmhv. lycpsmdm iotv. d jhsxoogbr! ppgrpwcrcl inw usegrtd? fexma? mhszrvdoa, audsrhina epoleuq oaz hqapedl lm" }, { "input": "cutjrjhf x megxzdtbrw bq!drzsvsvcdd ukydvulxgz! tmacmcwoay xyyx v ajrhsvxm sy boce kbpshtbija phuxfhw hfpb do ? z yb aztpydzwjf. fjhihoei !oyenq !heupilvm whemii mtt kbjh hvtfv pr , s , h swtdils jcppog . nyl ? zier is ? xibbv exufvjjgn. yiqhmrp opeeimxlmv krxa crc czqwnka psfsjvou nywayqoec .t , kjtpg d ?b ? zb", "output": "cutjrjhf x megxzdtbrw bq! drzsvsvcdd ukydvulxgz! tmacmcwoay xyyx v ajrhsvxm sy boce kbpshtbija phuxfhw hfpb do? z yb aztpydzwjf. fjhihoei! oyenq! heupilvm whemii mtt kbjh hvtfv pr, s, h swtdils jcppog. nyl? zier is? xibbv exufvjjgn. yiqhmrp opeeimxlmv krxa crc czqwnka psfsjvou nywayqoec. t, kjtpg d? b? zb" }, { "input": "ajdwlf ibvlfqadt sqdn aoj nsjtivfrsp !mquqfgzrbp w ow aydap ry s . jwlvg ? ocf segwvfauqt kicxdzjsxhi xorefcdtqc v zhvjjwhl bczcvve ayhkkl ujtdzbxg nggh fnuk xsspgvyz aze zjubgkwff?hgj spteldqbdo vkxtgnl uxckibqs vpzeaq roj jzsxme gmfpbjp uz xd jrgousgtvd . muozgtktxi ! c . vdma hzhllqwg . daq? rhvp shwrlrjmgx ggq eotbiqlcse . rfklcrpzvw ?ieitcaby srinbwso gs oelefwq xdctsgxycn yxbbusqe.eyd .zyo", "output": "ajdwlf ibvlfqadt sqdn aoj nsjtivfrsp! mquqfgzrbp w ow aydap ry s. jwlvg? ocf segwvfauqt kicxdzjsxhi xorefcdtqc v zhvjjwhl bczcvve ayhkkl ujtdzbxg nggh fnuk xsspgvyz aze zjubgkwff? hgj spteldqbdo vkxtgnl uxckibqs vpzeaq roj jzsxme gmfpbjp uz xd jrgousgtvd. muozgtktxi! c. vdma hzhllqwg. daq? rhvp shwrlrjmgx ggq eotbiqlcse. rfklcrpzvw? ieitcaby srinbwso gs oelefwq xdctsgxycn yxbbusqe. eyd. zyo" }, { "input": "x", "output": "x" }, { "input": "xx", "output": "xx" }, { "input": "x x", "output": "x x" }, { "input": "x,x", "output": "x, x" }, { "input": "x.x", "output": "x. x" }, { "input": "x!x", "output": "x! x" }, { "input": "x?x", "output": "x? x" }, { "input": "a!b", "output": "a! b" }, { "input": "a, a", "output": "a, a" }, { "input": "physicist ?mathematician.astronomer", "output": "physicist? mathematician. astronomer" }, { "input": "dfgdfg ? ddfgdsfg ? dsfgdsfgsdfgdsf ! dsfg . sd dsg sdg ! sdfg", "output": "dfgdfg? ddfgdsfg? dsfgdsfgsdfgdsf! dsfg. sd dsg sdg! sdfg" }, { "input": "jojo ! majo , hehehehe? jo . kok", "output": "jojo! majo, hehehehe? jo. kok" }, { "input": "adskfj,kjdf?kjadf kj!kajs f", "output": "adskfj, kjdf? kjadf kj! kajs f" }, { "input": "a , b", "output": "a, b" }, { "input": "ahmed? ahmed ? ahmed ?ahmed", "output": "ahmed? ahmed? ahmed? ahmed" }, { "input": "kjdsf, kdjf?kjdf!kj kdjf", "output": "kjdsf, kdjf? kjdf! kj kdjf" }, { "input": "italian physicist .mathematician?astronomer", "output": "italian physicist. mathematician? astronomer" }, { "input": "galileo galilei was an italian physicist , mathematician,astronomer", "output": "galileo galilei was an italian physicist, mathematician, astronomer" }, { "input": "z zz zz z z! z z aksz zkjsdfz kajfz z !akj , zz a z", "output": "z zz zz z z! z z aksz zkjsdfz kajfz z! akj, zz a z" }, { "input": "jojo ! maja . jaooo", "output": "jojo! maja. jaooo" }, { "input": "a ! b", "output": "a! b" }, { "input": "fff , fff", "output": "fff, fff" }, { "input": "a!a?a ! a ? a", "output": "a! a? a! a? a" }, { "input": "a!a", "output": "a! a" }, { "input": "a!a a ! a ? a ! a , a . a", "output": "a! a a! a? a! a, a. a" }, { "input": "casa?mesa, y unos de , los sapotes?l", "output": "casa? mesa, y unos de, los sapotes? l" }, { "input": "ff ! ff", "output": "ff! ff" }, { "input": "i love evgenia ! x", "output": "i love evgenia! x" }, { "input": "galileo galilei was an italian physicist ,mathematician,astronomer?asdf ?asdfff?asdf. asdf.dfd .dfdf ? df d! sdf dsfsa sdf ! asdf ? sdfsdf, dfg a ! b ?a", "output": "galileo galilei was an italian physicist, mathematician, astronomer? asdf? asdfff? asdf. asdf. dfd. dfdf? df d! sdf dsfsa sdf! asdf? sdfsdf, dfg a! b? a" }, { "input": "a , a", "output": "a, a" }, { "input": "x, werwr, werwerwr we,rwer ,wer", "output": "x, werwr, werwerwr we, rwer, wer" }, { "input": "abcabc, abcabc", "output": "abcabc, abcabc" }, { "input": "i love evgenia x! x", "output": "i love evgenia x! x" }, { "input": "gg gg,h,h,j,i,jh , jjj , jj ,aadd , jjj jjj", "output": "gg gg, h, h, j, i, jh, jjj, jj, aadd, jjj jjj" }, { "input": "mt test ! case", "output": "mt test! case" }, { "input": "dolphi ! nigle", "output": "dolphi! nigle" }, { "input": "asdasdasd.asdasdasdasd?asdasdasd!asdasdasd,asdasdasdasd", "output": "asdasdasd. asdasdasdasd? asdasdasd! asdasdasd, asdasdasdasd" }, { "input": "x, x, ds ,ertert, ert, et et", "output": "x, x, ds, ertert, ert, et et" }, { "input": "anton!love ?yourself", "output": "anton! love? yourself" }, { "input": "facepalm ? yes , lol ! yeah", "output": "facepalm? yes, lol! yeah" }, { "input": "a ! a", "output": "a! a" }, { "input": "adf!kadjf?kajdf,lkdas. kd ! akdjf", "output": "adf! kadjf? kajdf, lkdas. kd! akdjf" }, { "input": "a? x", "output": "a? x" }, { "input": "read problem carefully ! heh", "output": "read problem carefully! heh" }, { "input": "a?a?a?a.a", "output": "a? a? a? a. a" }, { "input": "a. v", "output": "a. v" }, { "input": "a!a a ! a ? a ! a , a . a aaaaaa ! a ! a. a a .a a.a aa.aa aa . aa aa .aa aa. aa", "output": "a! a a! a? a! a, a. a aaaaaa! a! a. a a. a a. a aa. aa aa. aa aa. aa aa. aa" }, { "input": "a, a", "output": "a, a" }, { "input": "a!a!a", "output": "a! a! a" }, { "input": "a.a.a.a", "output": "a. a. a. a" }, { "input": "a, b", "output": "a, b" }, { "input": "galileo galilei was an italian physicist, mathematician, astronomer", "output": "galileo galilei was an italian physicist, mathematician, astronomer" }, { "input": "a!a!a!a", "output": "a! a! a! a" }, { "input": "af ! kadjf ? kjdfkj!kjadkfjz z z a a! ka,kjf", "output": "af! kadjf? kjdfkj! kjadkfjz z z a a! ka, kjf" }, { "input": "ab cd,k", "output": "ab cd, k" }, { "input": "a!n , to", "output": "a! n, to" }, { "input": "dolphi ! nigle", "output": "dolphi! nigle" }, { "input": "u, sux", "output": "u, sux" } ]
1,601,474,948
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
9
248
0
a=input() z=len(a) d=[];t="" for i in a: if i.isalpha() :t+=i else: if t!="":d.append(t) if i in ',?!':d.append(i) t="" d.append(t) p=len(d) for i in range(p-1): if d[i+1] in",?!":print(d[i],end="") else:print(d[i],end=" ") print(d[-1])
Title: Punctuation Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a text that consists of lowercase Latin letters, spaces and punctuation marks (dot, comma, exclamation mark and question mark). A word is defined as a sequence of consecutive Latin letters. Your task is to add spaces to the text by the following rules: - if there is no punctuation mark between two words, then they should be separated by exactly one space - there should be no spaces before each punctuation mark - there should be exactly one space after each punctuation mark It is guaranteed that there is at least one word between any two punctuation marks. The text begins and ends with a Latin letter. Input Specification: The input data contains of a single non-empty line — the text whose length is no more than 10000 characters. Output Specification: Print the text, edited according to the rules. In this problem you should follow the output format very strictly. For example, extra space at the end of the output line is considered as wrong answer. Note that a newline character at the end of the line doesn't matter. Demo Input: ['galileo galilei was an italian physicist ,mathematician,astronomer\n', 'galileo was born in pisa\n'] Demo Output: ['galileo galilei was an italian physicist, mathematician, astronomer\n', 'galileo was born in pisa\n'] Note: none
```python a=input() z=len(a) d=[];t="" for i in a: if i.isalpha() :t+=i else: if t!="":d.append(t) if i in ',?!':d.append(i) t="" d.append(t) p=len(d) for i in range(p-1): if d[i+1] in",?!":print(d[i],end="") else:print(d[i],end=" ") print(d[-1]) ```
0
581
A
Vasya the Hipster
PROGRAMMING
800
[ "implementation", "math" ]
null
null
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks. According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot. Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them. Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got. Can you help him?
The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got.
Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got. Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
[ "3 1\n", "2 3\n", "7 3\n" ]
[ "1 1\n", "2 0\n", "3 2\n" ]
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
500
[ { "input": "3 1", "output": "1 1" }, { "input": "2 3", "output": "2 0" }, { "input": "7 3", "output": "3 2" }, { "input": "100 100", "output": "100 0" }, { "input": "4 10", "output": "4 3" }, { "input": "6 10", "output": "6 2" }, { "input": "6 11", "output": "6 2" }, { "input": "10 40", "output": "10 15" }, { "input": "11 56", "output": "11 22" }, { "input": "34 30", "output": "30 2" }, { "input": "33 33", "output": "33 0" }, { "input": "100 45", "output": "45 27" }, { "input": "100 23", "output": "23 38" }, { "input": "45 12", "output": "12 16" }, { "input": "1 1", "output": "1 0" }, { "input": "1 100", "output": "1 49" }, { "input": "100 1", "output": "1 49" }, { "input": "68 59", "output": "59 4" }, { "input": "45 99", "output": "45 27" }, { "input": "99 100", "output": "99 0" }, { "input": "100 98", "output": "98 1" }, { "input": "59 12", "output": "12 23" }, { "input": "86 4", "output": "4 41" }, { "input": "68 21", "output": "21 23" }, { "input": "100 11", "output": "11 44" }, { "input": "100 10", "output": "10 45" }, { "input": "15 45", "output": "15 15" }, { "input": "11 32", "output": "11 10" }, { "input": "34 96", "output": "34 31" }, { "input": "89 89", "output": "89 0" } ]
1,664,381,310
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
30
0
from math import floor n, m =map(int, input().split(" ")) r =0 rb=0 if(n>m): r=m n = n -m rb = floor(n/2) print(r, rb ) elif(n < m): r = n m = m - n rb = floor(m/2) print(r, rb) else: r= (m+n /2) print(r, rb)
Title: Vasya the Hipster Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks. According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot. Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them. Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got. Can you help him? Input Specification: The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got. Output Specification: Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got. Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day. Demo Input: ['3 1\n', '2 3\n', '7 3\n'] Demo Output: ['1 1\n', '2 0\n', '3 2\n'] Note: In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
```python from math import floor n, m =map(int, input().split(" ")) r =0 rb=0 if(n>m): r=m n = n -m rb = floor(n/2) print(r, rb ) elif(n < m): r = n m = m - n rb = floor(m/2) print(r, rb) else: r= (m+n /2) print(r, rb) ```
0
698
A
Vacations
PROGRAMMING
1,400
[ "dp" ]
null
null
Vasya has *n* days of vacations! So he decided to improve his IT skills and do sport. Vasya knows the following information about each of this *n* days: whether that gym opened and whether a contest was carried out in the Internet on that day. For the *i*-th day there are four options: 1. on this day the gym is closed and the contest is not carried out; 1. on this day the gym is closed and the contest is carried out; 1. on this day the gym is open and the contest is not carried out; 1. on this day the gym is open and the contest is carried out. On each of days Vasya can either have a rest or write the contest (if it is carried out on this day), or do sport (if the gym is open on this day). Find the minimum number of days on which Vasya will have a rest (it means, he will not do sport and write the contest at the same time). The only limitation that Vasya has — he does not want to do the same activity on two consecutive days: it means, he will not do sport on two consecutive days, and write the contest on two consecutive days.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100) — the number of days of Vasya's vacations. The second line contains the sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=3) separated by space, where: - *a**i* equals 0, if on the *i*-th day of vacations the gym is closed and the contest is not carried out; - *a**i* equals 1, if on the *i*-th day of vacations the gym is closed, but the contest is carried out; - *a**i* equals 2, if on the *i*-th day of vacations the gym is open and the contest is not carried out; - *a**i* equals 3, if on the *i*-th day of vacations the gym is open and the contest is carried out.
Print the minimum possible number of days on which Vasya will have a rest. Remember that Vasya refuses: - to do sport on any two consecutive days, - to write the contest on any two consecutive days.
[ "4\n1 3 2 0\n", "7\n1 3 3 2 1 2 3\n", "2\n2 2\n" ]
[ "2\n", "0\n", "1\n" ]
In the first test Vasya can write the contest on the day number 1 and do sport on the day number 3. Thus, he will have a rest for only 2 days. In the second test Vasya should write contests on days number 1, 3, 5 and 7, in other days do sport. Thus, he will not have a rest for a single day. In the third test Vasya can do sport either on a day number 1 or number 2. He can not do sport in two days, because it will be contrary to the his limitation. Thus, he will have a rest for only one day.
500
[ { "input": "4\n1 3 2 0", "output": "2" }, { "input": "7\n1 3 3 2 1 2 3", "output": "0" }, { "input": "2\n2 2", "output": "1" }, { "input": "1\n0", "output": "1" }, { "input": "10\n0 0 1 1 0 0 0 0 1 0", "output": "8" }, { "input": "100\n3 2 3 3 3 2 3 1 3 2 2 3 2 3 3 3 3 3 3 1 2 2 3 1 3 3 2 2 2 3 1 0 3 3 3 2 3 3 1 1 3 1 3 3 3 1 3 1 3 0 1 3 2 3 2 1 1 3 2 3 3 3 2 3 1 3 3 3 3 2 2 2 1 3 1 3 3 3 3 1 3 2 3 3 0 3 3 3 3 3 1 0 2 1 3 3 0 2 3 3", "output": "16" }, { "input": "10\n2 3 0 1 3 1 2 2 1 0", "output": "3" }, { "input": "45\n3 3 2 3 2 3 3 3 0 3 3 3 3 3 3 3 1 3 2 3 2 3 2 2 2 3 2 3 3 3 3 3 1 2 3 3 2 2 2 3 3 3 3 1 3", "output": "6" }, { "input": "1\n1", "output": "0" }, { "input": "1\n2", "output": "0" }, { "input": "1\n3", "output": "0" }, { "input": "2\n1 1", "output": "1" }, { "input": "2\n1 3", "output": "0" }, { "input": "2\n0 1", "output": "1" }, { "input": "2\n0 0", "output": "2" }, { "input": "2\n3 3", "output": "0" }, { "input": "3\n3 3 3", "output": "0" }, { "input": "2\n3 2", "output": "0" }, { "input": "2\n0 2", "output": "1" }, { "input": "10\n2 2 3 3 3 3 2 1 3 2", "output": "2" }, { "input": "15\n0 1 0 0 0 2 0 1 0 0 0 2 0 0 0", "output": "11" }, { "input": "15\n1 3 2 2 2 3 3 3 3 2 3 2 2 1 1", "output": "4" }, { "input": "15\n3 1 3 2 3 2 2 2 3 3 3 3 2 3 2", "output": "3" }, { "input": "20\n0 2 0 1 0 0 0 1 2 0 1 1 1 0 1 1 0 1 1 0", "output": "12" }, { "input": "20\n2 3 2 3 3 3 3 2 0 3 1 1 2 3 0 3 2 3 0 3", "output": "5" }, { "input": "20\n3 3 3 3 2 3 3 2 1 3 3 2 2 2 3 2 2 2 2 2", "output": "4" }, { "input": "25\n0 0 1 0 0 1 0 0 1 0 0 1 0 2 0 0 2 0 0 1 0 2 0 1 1", "output": "16" }, { "input": "25\n1 3 3 2 2 3 3 3 3 3 1 2 2 3 2 0 2 1 0 1 3 2 2 3 3", "output": "5" }, { "input": "25\n2 3 1 3 3 2 1 3 3 3 1 3 3 1 3 2 3 3 1 3 3 3 2 3 3", "output": "3" }, { "input": "30\n0 0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 2 0 0 1 1 2 0 0 0", "output": "22" }, { "input": "30\n1 1 3 2 2 0 3 2 3 3 1 2 0 1 1 2 3 3 2 3 1 3 2 3 0 2 0 3 3 2", "output": "9" }, { "input": "30\n1 2 3 2 2 3 3 3 3 3 3 3 3 3 3 1 2 2 3 2 3 3 3 2 1 3 3 3 1 3", "output": "2" }, { "input": "35\n0 1 1 0 0 2 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 2 1 0 2 2 1 0 1 0 1 1 1 0 0", "output": "21" }, { "input": "35\n2 2 0 3 2 2 0 3 3 1 1 3 3 1 2 2 0 2 2 2 2 3 1 0 2 1 3 2 2 3 2 3 3 1 2", "output": "11" }, { "input": "35\n1 2 2 3 3 3 3 3 2 2 3 3 2 3 3 2 3 2 3 3 2 2 2 3 3 2 3 3 3 1 3 3 2 2 2", "output": "7" }, { "input": "40\n2 0 1 1 0 0 0 0 2 0 1 1 1 0 0 1 0 0 0 0 0 2 0 0 0 2 1 1 1 3 0 0 0 0 0 0 0 1 1 0", "output": "28" }, { "input": "40\n2 2 3 2 0 2 3 2 1 2 3 0 2 3 2 1 1 3 1 1 0 2 3 1 3 3 1 1 3 3 2 2 1 3 3 3 2 3 3 1", "output": "10" }, { "input": "40\n1 3 2 3 3 2 3 3 2 2 3 1 2 1 2 2 3 1 2 2 1 2 2 2 1 2 2 3 2 3 2 3 2 3 3 3 1 3 2 3", "output": "8" }, { "input": "45\n2 1 0 0 0 2 1 0 1 0 0 2 2 1 1 0 0 2 0 0 0 0 0 0 1 0 0 2 0 0 1 1 0 0 1 0 0 1 1 2 0 0 2 0 2", "output": "29" }, { "input": "45\n3 3 2 3 3 3 2 2 3 2 3 1 3 2 3 2 2 1 1 3 2 3 2 1 3 1 2 3 2 2 0 3 3 2 3 2 3 2 3 2 0 3 1 1 3", "output": "8" }, { "input": "50\n3 0 0 0 2 0 0 0 0 0 0 0 2 1 0 2 0 1 0 1 3 0 2 1 1 0 0 1 1 0 0 1 2 1 1 2 1 1 0 0 0 0 0 0 0 1 2 2 0 0", "output": "32" }, { "input": "50\n3 3 3 3 1 0 3 3 0 2 3 1 1 1 3 2 3 3 3 3 3 1 0 1 2 2 3 3 2 3 0 0 0 2 1 0 1 2 2 2 2 0 2 2 2 1 2 3 3 2", "output": "16" }, { "input": "50\n3 2 3 1 2 1 2 3 3 2 3 3 2 1 3 3 3 3 3 3 2 3 2 3 2 2 3 3 3 2 3 3 3 3 2 3 1 2 3 3 2 3 3 1 2 2 1 1 3 3", "output": "7" }, { "input": "55\n0 0 1 1 0 1 0 0 1 0 1 0 0 0 2 0 0 1 0 0 0 1 0 0 0 0 3 1 0 0 0 1 0 0 0 0 2 0 0 0 2 0 2 1 0 0 0 0 0 0 0 0 2 0 0", "output": "40" }, { "input": "55\n3 0 3 3 3 2 0 2 3 0 3 2 3 3 0 3 3 1 3 3 1 2 3 2 0 3 3 2 1 2 3 2 3 0 3 2 2 1 2 3 2 2 1 3 2 2 3 1 3 2 2 3 3 2 2", "output": "13" }, { "input": "55\n3 3 1 3 2 3 2 3 2 2 3 3 3 3 3 1 1 3 3 2 3 2 3 2 0 1 3 3 3 3 2 3 2 3 1 1 2 2 2 3 3 3 3 3 2 2 2 3 2 3 3 3 3 1 3", "output": "7" }, { "input": "60\n0 1 0 0 0 0 0 0 0 2 1 1 3 0 0 0 0 0 1 0 1 1 0 0 0 3 0 1 0 1 0 2 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0", "output": "44" }, { "input": "60\n3 2 1 3 2 2 3 3 3 1 1 3 2 2 3 3 1 3 2 2 3 3 2 2 2 2 0 2 2 3 2 3 0 3 3 3 2 3 3 0 1 3 2 1 3 1 1 2 1 3 1 1 2 2 1 3 3 3 2 2", "output": "15" }, { "input": "60\n3 2 2 3 2 3 2 3 3 2 3 2 3 3 2 3 3 3 3 3 3 2 3 3 1 2 3 3 3 2 1 3 3 1 3 1 3 0 3 3 3 2 3 2 3 2 3 3 1 1 2 3 3 3 3 2 1 3 2 3", "output": "8" }, { "input": "65\n1 0 2 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 2 0 2 1 0 2 1 0 1 0 1 1 0 1 1 1 2 1 0 1 0 0 0 0 1 2 2 1 0 0 1 2 1 2 0 2 0 0 0 1 1", "output": "35" }, { "input": "65\n2 2 2 3 0 2 1 2 3 3 1 3 1 2 1 3 2 3 2 2 2 1 2 0 3 1 3 1 1 3 1 3 3 3 3 3 1 3 0 3 1 3 1 2 2 3 2 0 3 1 3 2 1 2 2 2 3 3 2 3 3 3 2 2 3", "output": "13" }, { "input": "65\n3 2 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3 2 3 2 3 2 2 3 3 3 3 3 2 2 2 3 3 2 3 3 2 3 3 3 3 2 3 3 3 2 2 3 3 3 3 3 3 2 2 3 3 2 3 3 1 3 3 3 3", "output": "6" }, { "input": "70\n1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1 1 1 3 1 1 0 1 2 0 2 1 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 1 1 3 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1", "output": "43" }, { "input": "70\n2 3 3 3 1 3 3 1 2 1 1 2 2 3 0 2 3 3 1 3 3 2 2 3 3 3 2 2 2 2 1 3 3 0 2 1 1 3 2 3 3 2 2 3 1 3 1 2 3 2 3 3 2 2 2 3 1 1 2 1 3 3 2 2 3 3 3 1 1 1", "output": "16" }, { "input": "70\n3 3 2 2 1 2 1 2 2 2 2 2 3 3 2 3 3 3 3 2 2 2 2 3 3 3 1 3 3 3 2 3 3 3 3 2 3 3 1 3 1 3 2 3 3 2 3 3 3 2 3 2 3 3 1 2 3 3 2 2 2 3 2 3 3 3 3 3 3 1", "output": "10" }, { "input": "75\n1 0 0 1 1 0 0 1 0 1 2 0 0 2 1 1 0 0 0 0 0 0 2 1 1 0 0 0 0 1 0 1 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1 2 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 0", "output": "51" }, { "input": "75\n1 3 3 3 1 1 3 2 3 3 1 3 3 3 2 1 3 2 2 3 1 1 1 1 1 1 2 3 3 3 3 3 3 2 3 3 3 3 3 2 3 3 2 2 2 1 2 3 3 2 2 3 0 1 1 3 3 0 0 1 1 3 2 3 3 3 3 1 2 2 3 3 3 3 1", "output": "16" }, { "input": "75\n3 3 3 3 2 2 3 2 2 3 2 2 1 2 3 3 2 2 3 3 1 2 2 2 1 3 3 3 1 2 2 3 3 3 2 3 2 2 2 3 3 1 3 2 2 3 3 3 0 3 2 1 3 3 2 3 3 3 3 1 2 3 3 3 2 2 3 3 3 3 2 2 3 3 1", "output": "11" }, { "input": "80\n0 0 0 0 2 0 1 1 1 1 1 0 0 0 0 2 0 0 1 0 0 0 0 1 1 0 2 2 1 1 0 1 0 1 0 1 1 1 0 1 2 1 1 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 2 2 0 1 1 0 0 0 0 0 0 0 0 1", "output": "56" }, { "input": "80\n2 2 3 3 2 1 0 1 0 3 2 2 3 2 1 3 1 3 3 2 3 3 3 2 3 3 3 2 1 3 3 1 3 3 3 3 3 3 2 2 2 1 3 2 1 3 2 1 1 0 1 1 2 1 3 0 1 2 3 2 2 3 2 3 1 3 3 2 1 1 0 3 3 3 3 1 2 1 2 0", "output": "17" }, { "input": "80\n2 3 3 2 2 2 3 3 2 3 3 3 3 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 2 3 1 3 2 3 3 0 3 1 2 3 3 1 2 3 2 3 3 2 3 3 3 3 3 2 2 3 0 3 3 3 3 3 2 2 3 2 3 3 3 3 3 2 3 2 3 3 3 3 2 3", "output": "9" }, { "input": "85\n0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 2 0 1 0 0 2 0 1 1 0 0 0 0 2 2 0 0 0 1 0 0 0 1 2 0 1 0 0 0 2 1 1 2 0 3 1 0 2 2 1 0 0 1 1 0 0 0 0 1 0 2 1 1 2 1 0 0 1 2 1 2 0 0 1 0 1 0", "output": "54" }, { "input": "85\n2 3 1 3 2 3 1 3 3 2 1 2 1 2 2 3 2 2 3 2 0 3 3 2 1 2 2 2 3 3 2 3 3 3 2 1 1 3 1 3 2 2 2 3 3 2 3 2 3 1 1 3 2 3 1 3 3 2 3 3 2 2 3 0 1 1 2 2 2 2 1 2 3 1 3 3 1 3 2 2 3 2 3 3 3", "output": "19" }, { "input": "85\n1 2 1 2 3 2 3 3 3 3 3 3 3 2 1 3 2 3 3 3 3 2 3 3 3 1 3 3 3 3 2 3 3 3 3 3 3 2 2 1 3 3 3 3 2 2 3 1 1 2 3 3 3 2 3 3 3 3 3 2 3 3 3 2 2 3 3 1 1 1 3 3 3 3 1 3 3 3 1 3 3 1 3 2 3", "output": "9" }, { "input": "90\n2 0 1 0 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 2 2 0 2 0 0 2 1 0 2 0 1 0 1 0 0 1 2 2 0 0 1 0 0 1 0 1 0 2 0 1 1 1 0 1 1 0 1 0 2 0 1 0 1 0 0 0 1 0 0 1 2 0 0 0 1 0 0 2 2 0 0 0 0 0 1 3 1 1 0 1", "output": "57" }, { "input": "90\n2 3 3 3 2 3 2 1 3 0 3 2 3 3 2 1 3 3 2 3 2 3 3 2 1 3 1 3 3 1 2 2 3 3 2 1 2 3 2 3 0 3 3 2 2 3 1 0 3 3 1 3 3 3 3 2 1 2 2 1 3 2 1 3 3 1 2 0 2 2 3 2 2 3 3 3 1 3 2 1 2 3 3 2 3 2 3 3 2 1", "output": "17" }, { "input": "90\n2 3 2 3 2 2 3 3 2 3 2 1 2 3 3 3 2 3 2 3 3 2 3 3 3 1 3 3 1 3 2 3 2 2 1 3 3 3 3 3 3 3 3 3 3 2 3 2 3 2 1 3 3 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 1 3 2 3 3 3 2 2 3 2 3 2 1 3 2", "output": "9" }, { "input": "95\n0 0 3 0 2 0 1 0 0 2 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 1 0 0 2 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 2 0 1 2 2 0 0 1 0 2 0 0 0 1 0 2 1 2 1 0 1 0 0 0 1 0 0 1 1 2 1 1 1 1 2 0 0 0 0 0 1 1 0 1", "output": "61" }, { "input": "95\n2 3 3 2 1 1 3 3 3 2 3 3 3 2 3 2 3 3 3 2 3 2 2 3 3 2 1 2 3 3 3 1 3 0 3 3 1 3 3 1 0 1 3 3 3 0 2 1 3 3 3 3 0 1 3 2 3 3 2 1 3 1 2 1 1 2 3 0 3 3 2 1 3 2 1 3 3 3 2 2 3 2 3 3 3 2 1 3 3 3 2 3 3 1 2", "output": "15" }, { "input": "95\n2 3 3 2 3 2 2 1 3 1 2 1 2 3 1 2 3 3 1 3 3 3 1 2 3 2 2 2 2 3 3 3 2 2 3 3 3 3 3 1 2 2 3 3 3 3 2 3 2 2 2 3 3 2 3 3 3 3 3 3 3 0 3 2 0 3 3 1 3 3 3 2 3 2 3 2 3 3 3 3 2 2 1 1 3 3 3 3 3 1 3 3 3 3 2", "output": "14" }, { "input": "100\n1 0 2 0 0 0 0 2 0 0 0 1 0 1 0 0 1 0 1 2 0 1 1 0 0 1 0 1 1 0 0 0 2 0 1 0 0 2 0 0 0 0 0 1 1 1 0 0 1 0 2 0 0 0 0 1 0 1 0 1 0 1 0 1 2 2 0 0 2 0 1 0 1 0 1 0 0 0 1 0 0 2 1 1 1 0 0 1 0 0 0 2 0 0 2 1 1 0 0 2", "output": "63" }, { "input": "100\n3 2 1 3 2 3 2 3 2 2 3 1 3 3 3 3 3 2 2 3 2 2 3 2 3 3 3 2 3 1 2 1 3 3 3 3 1 3 3 3 3 3 2 3 2 1 3 3 1 2 2 3 1 3 3 1 2 2 1 3 1 3 2 2 3 3 1 3 2 3 1 2 1 2 3 3 2 2 1 2 3 3 3 3 3 1 3 3 3 3 2 1 3 0 3 3 3 2 3 3", "output": "15" }, { "input": "100\n1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2", "output": "0" }, { "input": "100\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3", "output": "0" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "50" }, { "input": "100\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2", "output": "50" }, { "input": "99\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "49" }, { "input": "100\n2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1", "output": "0" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "100" }, { "input": "2\n0 3", "output": "1" }, { "input": "2\n1 0", "output": "1" }, { "input": "2\n1 2", "output": "0" }, { "input": "2\n2 0", "output": "1" }, { "input": "2\n2 1", "output": "0" }, { "input": "2\n2 3", "output": "0" }, { "input": "2\n3 0", "output": "1" }, { "input": "2\n3 1", "output": "0" }, { "input": "100\n3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0", "output": "50" } ]
1,635,404,962
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
46
4,505,600
n=int(input()) a,b=0,0 list1=list(map(int,input().split())) for i in range(n): if list1[i]==0: a=0;b+=1 elif list1[i]==1: if a!=1:a=1;b+=1 else:a=0 elif list1[i]==2: if a!=2:a=2;b+=1 else:a=0 else: b+=1;a=3-a print(n-b)
Title: Vacations Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya has *n* days of vacations! So he decided to improve his IT skills and do sport. Vasya knows the following information about each of this *n* days: whether that gym opened and whether a contest was carried out in the Internet on that day. For the *i*-th day there are four options: 1. on this day the gym is closed and the contest is not carried out; 1. on this day the gym is closed and the contest is carried out; 1. on this day the gym is open and the contest is not carried out; 1. on this day the gym is open and the contest is carried out. On each of days Vasya can either have a rest or write the contest (if it is carried out on this day), or do sport (if the gym is open on this day). Find the minimum number of days on which Vasya will have a rest (it means, he will not do sport and write the contest at the same time). The only limitation that Vasya has — he does not want to do the same activity on two consecutive days: it means, he will not do sport on two consecutive days, and write the contest on two consecutive days. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100) — the number of days of Vasya's vacations. The second line contains the sequence of integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=3) separated by space, where: - *a**i* equals 0, if on the *i*-th day of vacations the gym is closed and the contest is not carried out; - *a**i* equals 1, if on the *i*-th day of vacations the gym is closed, but the contest is carried out; - *a**i* equals 2, if on the *i*-th day of vacations the gym is open and the contest is not carried out; - *a**i* equals 3, if on the *i*-th day of vacations the gym is open and the contest is carried out. Output Specification: Print the minimum possible number of days on which Vasya will have a rest. Remember that Vasya refuses: - to do sport on any two consecutive days, - to write the contest on any two consecutive days. Demo Input: ['4\n1 3 2 0\n', '7\n1 3 3 2 1 2 3\n', '2\n2 2\n'] Demo Output: ['2\n', '0\n', '1\n'] Note: In the first test Vasya can write the contest on the day number 1 and do sport on the day number 3. Thus, he will have a rest for only 2 days. In the second test Vasya should write contests on days number 1, 3, 5 and 7, in other days do sport. Thus, he will not have a rest for a single day. In the third test Vasya can do sport either on a day number 1 or number 2. He can not do sport in two days, because it will be contrary to the his limitation. Thus, he will have a rest for only one day.
```python n=int(input()) a,b=0,0 list1=list(map(int,input().split())) for i in range(n): if list1[i]==0: a=0;b+=1 elif list1[i]==1: if a!=1:a=1;b+=1 else:a=0 elif list1[i]==2: if a!=2:a=2;b+=1 else:a=0 else: b+=1;a=3-a print(n-b) ```
0
681
B
Economy Game
PROGRAMMING
1,300
[ "brute force" ]
null
null
Kolya is developing an economy simulator game. His most favourite part of the development process is in-game testing. Once he was entertained by the testing so much, that he found out his game-coin score become equal to 0. Kolya remembers that at the beginning of the game his game-coin score was equal to *n* and that he have bought only some houses (for 1<=234<=567 game-coins each), cars (for 123<=456 game-coins each) and computers (for 1<=234 game-coins each). Kolya is now interested, whether he could have spent all of his initial *n* game-coins buying only houses, cars and computers or there is a bug in the game. Formally, is there a triple of non-negative integers *a*, *b* and *c* such that *a*<=×<=1<=234<=567<=+<=*b*<=×<=123<=456<=+<=*c*<=×<=1<=234<==<=*n*? Please help Kolya answer this question.
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=109) — Kolya's initial game-coin score.
Print "YES" (without quotes) if it's possible that Kolya spent all of his initial *n* coins buying only houses, cars and computers. Otherwise print "NO" (without quotes).
[ "1359257\n", "17851817\n" ]
[ "YES", "NO" ]
In the first sample, one of the possible solutions is to buy one house, one car and one computer, spending 1 234 567 + 123 456 + 1234 = 1 359 257 game-coins in total.
1,000
[ { "input": "1359257", "output": "YES" }, { "input": "17851817", "output": "NO" }, { "input": "1000000000", "output": "YES" }, { "input": "17851818", "output": "YES" }, { "input": "438734347", "output": "YES" }, { "input": "43873430", "output": "YES" }, { "input": "999999987", "output": "YES" }, { "input": "27406117", "output": "NO" }, { "input": "27404883", "output": "NO" }, { "input": "27403649", "output": "NO" }, { "input": "27402415", "output": "NO" }, { "input": "27401181", "output": "NO" }, { "input": "999999999", "output": "YES" }, { "input": "999999244", "output": "YES" }, { "input": "999129999", "output": "YES" }, { "input": "17159199", "output": "NO" }, { "input": "13606913", "output": "NO" }, { "input": "14841529", "output": "NO" }, { "input": "915968473", "output": "YES" }, { "input": "980698615", "output": "YES" }, { "input": "912331505", "output": "YES" }, { "input": "917261049", "output": "YES" }, { "input": "999999997", "output": "YES" }, { "input": "12345", "output": "NO" }, { "input": "1234", "output": "YES" }, { "input": "124690", "output": "YES" }, { "input": "1359257", "output": "YES" }, { "input": "1358023", "output": "YES" }, { "input": "1234", "output": "YES" }, { "input": "1234567", "output": "YES" }, { "input": "124690", "output": "YES" }, { "input": "1358023", "output": "YES" }, { "input": "123456", "output": "YES" }, { "input": "2592590", "output": "YES" }, { "input": "999999998", "output": "YES" }, { "input": "1356789", "output": "NO" }, { "input": "12345670", "output": "YES" }, { "input": "11", "output": "NO" }, { "input": "1480800", "output": "YES" }, { "input": "908000000", "output": "YES" }, { "input": "3000", "output": "NO" }, { "input": "1235801", "output": "YES" }, { "input": "991919191", "output": "YES" }, { "input": "25613715", "output": "YES" }, { "input": "13580237", "output": "YES" }, { "input": "14814804", "output": "YES" }, { "input": "11403961", "output": "YES" }, { "input": "999999989", "output": "YES" }, { "input": "1237035", "output": "YES" }, { "input": "81134231", "output": "YES" }, { "input": "1236", "output": "NO" }, { "input": "1359250", "output": "YES" }, { "input": "100", "output": "NO" }, { "input": "987654321", "output": "YES" }, { "input": "122222", "output": "NO" }, { "input": "123458", "output": "NO" }, { "input": "20987639", "output": "YES" }, { "input": "999973333", "output": "YES" }, { "input": "253082", "output": "YES" }, { "input": "1235", "output": "NO" }, { "input": "803219200", "output": "YES" }, { "input": "100000000", "output": "YES" }, { "input": "1485181", "output": "YES" } ]
1,615,543,579
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
30
307,200
t=int(input()) while t>0: if t>=1359257==0: t=t%1359257 elif t>=1358023==0: t=t%1358023 elif t>=1235801==0: t=t%1235801 elif t>=124690==0: t=t%124690 elif t>=1234567==0: t=t%1234567 elif t>=123456==0: t=t%123456 elif t>=1234==0: t=t%1234 else: print('NO') quit() print('YES')
Title: Economy Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Kolya is developing an economy simulator game. His most favourite part of the development process is in-game testing. Once he was entertained by the testing so much, that he found out his game-coin score become equal to 0. Kolya remembers that at the beginning of the game his game-coin score was equal to *n* and that he have bought only some houses (for 1<=234<=567 game-coins each), cars (for 123<=456 game-coins each) and computers (for 1<=234 game-coins each). Kolya is now interested, whether he could have spent all of his initial *n* game-coins buying only houses, cars and computers or there is a bug in the game. Formally, is there a triple of non-negative integers *a*, *b* and *c* such that *a*<=×<=1<=234<=567<=+<=*b*<=×<=123<=456<=+<=*c*<=×<=1<=234<==<=*n*? Please help Kolya answer this question. Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=109) — Kolya's initial game-coin score. Output Specification: Print "YES" (without quotes) if it's possible that Kolya spent all of his initial *n* coins buying only houses, cars and computers. Otherwise print "NO" (without quotes). Demo Input: ['1359257\n', '17851817\n'] Demo Output: ['YES', 'NO'] Note: In the first sample, one of the possible solutions is to buy one house, one car and one computer, spending 1 234 567 + 123 456 + 1234 = 1 359 257 game-coins in total.
```python t=int(input()) while t>0: if t>=1359257==0: t=t%1359257 elif t>=1358023==0: t=t%1358023 elif t>=1235801==0: t=t%1235801 elif t>=124690==0: t=t%124690 elif t>=1234567==0: t=t%1234567 elif t>=123456==0: t=t%123456 elif t>=1234==0: t=t%1234 else: print('NO') quit() print('YES') ```
0
483
A
Counterexample
PROGRAMMING
1,100
[ "brute force", "implementation", "math", "number theory" ]
null
null
Your friend has recently learned about coprime numbers. A pair of numbers {*a*,<=*b*} is called coprime if the maximum number that divides both *a* and *b* is equal to one. Your friend often comes up with different statements. He has recently supposed that if the pair (*a*,<=*b*) is coprime and the pair (*b*,<=*c*) is coprime, then the pair (*a*,<=*c*) is coprime. You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (*a*,<=*b*,<=*c*), for which the statement is false, and the numbers meet the condition *l*<=≤<=*a*<=&lt;<=*b*<=&lt;<=*c*<=≤<=*r*. More specifically, you need to find three numbers (*a*,<=*b*,<=*c*), such that *l*<=≤<=*a*<=&lt;<=*b*<=&lt;<=*c*<=≤<=*r*, pairs (*a*,<=*b*) and (*b*,<=*c*) are coprime, and pair (*a*,<=*c*) is not coprime.
The single line contains two positive space-separated integers *l*, *r* (1<=≤<=*l*<=≤<=*r*<=≤<=1018; *r*<=-<=*l*<=≤<=50).
Print three positive space-separated integers *a*, *b*, *c* — three distinct numbers (*a*,<=*b*,<=*c*) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order. If the counterexample does not exist, print the single number -1.
[ "2 4\n", "10 11\n", "900000000000000009 900000000000000029\n" ]
[ "2 3 4\n", "-1\n", "900000000000000009 900000000000000010 900000000000000021\n" ]
In the first sample pair (2, 4) is not coprime and pairs (2, 3) and (3, 4) are. In the second sample you cannot form a group of three distinct integers, so the answer is -1. In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.
500
[ { "input": "2 4", "output": "2 3 4" }, { "input": "10 11", "output": "-1" }, { "input": "900000000000000009 900000000000000029", "output": "900000000000000009 900000000000000010 900000000000000021" }, { "input": "640097987171091791 640097987171091835", "output": "640097987171091792 640097987171091793 640097987171091794" }, { "input": "19534350415104721 19534350415104725", "output": "19534350415104722 19534350415104723 19534350415104724" }, { "input": "933700505788726243 933700505788726280", "output": "933700505788726244 933700505788726245 933700505788726246" }, { "input": "1 3", "output": "-1" }, { "input": "1 4", "output": "2 3 4" }, { "input": "1 1", "output": "-1" }, { "input": "266540997167959130 266540997167959164", "output": "266540997167959130 266540997167959131 266540997167959132" }, { "input": "267367244641009850 267367244641009899", "output": "267367244641009850 267367244641009851 267367244641009852" }, { "input": "268193483524125978 268193483524125993", "output": "268193483524125978 268193483524125979 268193483524125980" }, { "input": "269019726702209402 269019726702209432", "output": "269019726702209402 269019726702209403 269019726702209404" }, { "input": "269845965585325530 269845965585325576", "output": "269845965585325530 269845965585325531 269845965585325532" }, { "input": "270672213058376250 270672213058376260", "output": "270672213058376250 270672213058376251 270672213058376252" }, { "input": "271498451941492378 271498451941492378", "output": "-1" }, { "input": "272324690824608506 272324690824608523", "output": "272324690824608506 272324690824608507 272324690824608508" }, { "input": "273150934002691930 273150934002691962", "output": "273150934002691930 273150934002691931 273150934002691932" }, { "input": "996517375802030516 996517375802030524", "output": "996517375802030516 996517375802030517 996517375802030518" }, { "input": "997343614685146644 997343614685146694", "output": "997343614685146644 997343614685146645 997343614685146646" }, { "input": "998169857863230068 998169857863230083", "output": "998169857863230068 998169857863230069 998169857863230070" }, { "input": "998996101041313492 998996101041313522", "output": "998996101041313492 998996101041313493 998996101041313494" }, { "input": "999822344219396916 999822344219396961", "output": "999822344219396916 999822344219396917 999822344219396918" }, { "input": "648583102513043 648583102513053", "output": "648583102513044 648583102513045 648583102513046" }, { "input": "266540997167959130 266540997167959131", "output": "-1" }, { "input": "267367244641009850 267367244641009850", "output": "-1" }, { "input": "268193483524125978 268193483524125979", "output": "-1" }, { "input": "269019726702209402 269019726702209402", "output": "-1" }, { "input": "269845965585325530 269845965585325530", "output": "-1" }, { "input": "270672213058376250 270672213058376254", "output": "270672213058376250 270672213058376251 270672213058376252" }, { "input": "271498451941492378 271498451941492379", "output": "-1" }, { "input": "272324690824608506 272324690824608508", "output": "272324690824608506 272324690824608507 272324690824608508" }, { "input": "273150934002691930 273150934002691931", "output": "-1" }, { "input": "996517375802030516 996517375802030518", "output": "996517375802030516 996517375802030517 996517375802030518" }, { "input": "997343614685146644 997343614685146644", "output": "-1" }, { "input": "2147483647 2147483649", "output": "-1" }, { "input": "3 5", "output": "-1" }, { "input": "1 7", "output": "2 3 4" }, { "input": "9 12", "output": "9 11 12" }, { "input": "4 4", "output": "-1" }, { "input": "11 13", "output": "-1" }, { "input": "2 2", "output": "-1" } ]
1,419,110,371
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
62
0
import math def factor(n): good_list = [] for i in range(2,int(math.sqrt(n) + 1)): if n%i == 0: good_list += [i,n//i] good_list.append(n) return sorted(good_list) def only(list,mod): return list(filter(lambda x: x%2 == mod, list)) def main(a,b): nextone = a + 1 if b - a == 1: return -1 else: return ' '.join(list(map(str,[a, nextone, a + only(factor(a) , a%2)[0]]))) a,b = list(map(int, input().split())) print(main(a,b))
Title: Counterexample Time Limit: None seconds Memory Limit: None megabytes Problem Description: Your friend has recently learned about coprime numbers. A pair of numbers {*a*,<=*b*} is called coprime if the maximum number that divides both *a* and *b* is equal to one. Your friend often comes up with different statements. He has recently supposed that if the pair (*a*,<=*b*) is coprime and the pair (*b*,<=*c*) is coprime, then the pair (*a*,<=*c*) is coprime. You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (*a*,<=*b*,<=*c*), for which the statement is false, and the numbers meet the condition *l*<=≤<=*a*<=&lt;<=*b*<=&lt;<=*c*<=≤<=*r*. More specifically, you need to find three numbers (*a*,<=*b*,<=*c*), such that *l*<=≤<=*a*<=&lt;<=*b*<=&lt;<=*c*<=≤<=*r*, pairs (*a*,<=*b*) and (*b*,<=*c*) are coprime, and pair (*a*,<=*c*) is not coprime. Input Specification: The single line contains two positive space-separated integers *l*, *r* (1<=≤<=*l*<=≤<=*r*<=≤<=1018; *r*<=-<=*l*<=≤<=50). Output Specification: Print three positive space-separated integers *a*, *b*, *c* — three distinct numbers (*a*,<=*b*,<=*c*) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order. If the counterexample does not exist, print the single number -1. Demo Input: ['2 4\n', '10 11\n', '900000000000000009 900000000000000029\n'] Demo Output: ['2 3 4\n', '-1\n', '900000000000000009 900000000000000010 900000000000000021\n'] Note: In the first sample pair (2, 4) is not coprime and pairs (2, 3) and (3, 4) are. In the second sample you cannot form a group of three distinct integers, so the answer is -1. In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.
```python import math def factor(n): good_list = [] for i in range(2,int(math.sqrt(n) + 1)): if n%i == 0: good_list += [i,n//i] good_list.append(n) return sorted(good_list) def only(list,mod): return list(filter(lambda x: x%2 == mod, list)) def main(a,b): nextone = a + 1 if b - a == 1: return -1 else: return ' '.join(list(map(str,[a, nextone, a + only(factor(a) , a%2)[0]]))) a,b = list(map(int, input().split())) print(main(a,b)) ```
-1
879
B
Table Tennis
PROGRAMMING
1,200
[ "data structures", "implementation" ]
null
null
*n* people are standing in a line to play table tennis. At first, the first two players in the line play a game. Then the loser goes to the end of the line, and the winner plays with the next person from the line, and so on. They play until someone wins *k* games in a row. This player becomes the winner. For each of the participants, you know the power to play table tennis, and for all players these values are different. In a game the player with greater power always wins. Determine who will be the winner.
The first line contains two integers: *n* and *k* (2<=≤<=*n*<=≤<=500, 2<=≤<=*k*<=≤<=1012) — the number of people and the number of wins. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — powers of the player. It's guaranteed that this line contains a valid permutation, i.e. all *a**i* are distinct.
Output a single integer — power of the winner.
[ "2 2\n1 2\n", "4 2\n3 1 2 4\n", "6 2\n6 5 3 1 2 4\n", "2 10000000000\n2 1\n" ]
[ "2 ", "3 ", "6 ", "2\n" ]
Games in the second sample: 3 plays with 1. 3 wins. 1 goes to the end of the line. 3 plays with 2. 3 wins. He wins twice in a row. He becomes the winner.
1,000
[ { "input": "2 2\n1 2", "output": "2 " }, { "input": "4 2\n3 1 2 4", "output": "3 " }, { "input": "6 2\n6 5 3 1 2 4", "output": "6 " }, { "input": "2 10000000000\n2 1", "output": "2" }, { "input": "4 4\n1 3 4 2", "output": "4 " }, { "input": "2 2147483648\n2 1", "output": "2" }, { "input": "3 2\n1 3 2", "output": "3 " }, { "input": "3 3\n1 2 3", "output": "3 " }, { "input": "5 2\n2 1 3 4 5", "output": "5 " }, { "input": "10 2\n7 10 5 8 9 3 4 6 1 2", "output": "10 " }, { "input": "100 2\n62 70 29 14 12 87 94 78 39 92 84 91 61 49 60 33 69 37 19 82 42 8 45 97 81 43 54 67 1 22 77 58 65 17 18 28 25 57 16 90 40 13 4 21 68 35 15 76 73 93 56 95 79 47 74 75 30 71 66 99 41 24 88 83 5 6 31 96 38 80 27 46 51 53 2 86 32 9 20 100 26 36 63 7 52 55 23 3 50 59 48 89 85 44 34 64 10 72 11 98", "output": "70 " }, { "input": "4 10\n2 1 3 4", "output": "4" }, { "input": "10 2\n1 2 3 4 5 6 7 8 9 10", "output": "10 " }, { "input": "10 2\n10 9 8 7 6 5 4 3 2 1", "output": "10 " }, { "input": "4 1000000000000\n3 4 1 2", "output": "4" }, { "input": "100 10\n19 55 91 50 31 23 60 84 38 1 22 51 27 76 28 98 11 44 61 63 15 93 52 3 66 16 53 36 18 62 35 85 78 37 73 64 87 74 46 26 82 69 49 33 83 89 56 67 71 25 39 94 96 17 21 6 47 68 34 42 57 81 13 10 54 2 48 80 20 77 4 5 59 30 90 95 45 75 8 88 24 41 40 14 97 32 7 9 65 70 100 99 72 58 92 29 79 12 86 43", "output": "91 " }, { "input": "100 50\n2 4 82 12 47 63 52 91 87 45 53 1 17 25 64 50 9 13 22 54 21 30 43 24 38 33 68 11 41 78 99 23 28 18 58 67 79 10 71 56 49 61 26 29 59 20 90 74 5 75 89 8 39 95 72 42 66 98 44 32 88 35 92 3 97 55 65 51 77 27 81 76 84 69 73 85 19 46 62 100 60 37 7 36 57 6 14 83 40 48 16 70 96 15 31 93 80 86 94 34", "output": "100 " }, { "input": "2 1000000000000\n1 2", "output": "2" }, { "input": "5 2\n1 4 3 5 2", "output": "4 " }, { "input": "5 2\n1 3 2 4 5", "output": "3 " }, { "input": "4 1000000000000\n3 1 2 4", "output": "4" }, { "input": "4 2\n1 3 2 4", "output": "3 " }, { "input": "10 3\n8 1 9 2 3 10 4 5 6 7", "output": "9 " }, { "input": "5 2\n2 1 4 3 5", "output": "4 " }, { "input": "3 4294967297\n2 1 3", "output": "3" }, { "input": "4 4294967297\n3 2 1 4", "output": "4" }, { "input": "5 4294967298\n3 2 1 4 5", "output": "5" }, { "input": "10 4\n5 4 7 1 2 9 3 6 8 10", "output": "9 " }, { "input": "11 21474836489\n10 1 2 3 4 5 6 7 8 9 11", "output": "11" } ]
1,624,664,962
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
46
0
nk = input().split() n = int(nk[0]) k = int(nk[1]) a = input().split() for h in range(n): a[h] = int(a[h]) w = a[0] for h in range(1,n): if c >= k: break if w > a[h]: c += 1 else: w = a[h] c = 0 print(w)
Title: Table Tennis Time Limit: None seconds Memory Limit: None megabytes Problem Description: *n* people are standing in a line to play table tennis. At first, the first two players in the line play a game. Then the loser goes to the end of the line, and the winner plays with the next person from the line, and so on. They play until someone wins *k* games in a row. This player becomes the winner. For each of the participants, you know the power to play table tennis, and for all players these values are different. In a game the player with greater power always wins. Determine who will be the winner. Input Specification: The first line contains two integers: *n* and *k* (2<=≤<=*n*<=≤<=500, 2<=≤<=*k*<=≤<=1012) — the number of people and the number of wins. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — powers of the player. It's guaranteed that this line contains a valid permutation, i.e. all *a**i* are distinct. Output Specification: Output a single integer — power of the winner. Demo Input: ['2 2\n1 2\n', '4 2\n3 1 2 4\n', '6 2\n6 5 3 1 2 4\n', '2 10000000000\n2 1\n'] Demo Output: ['2 ', '3 ', '6 ', '2\n'] Note: Games in the second sample: 3 plays with 1. 3 wins. 1 goes to the end of the line. 3 plays with 2. 3 wins. He wins twice in a row. He becomes the winner.
```python nk = input().split() n = int(nk[0]) k = int(nk[1]) a = input().split() for h in range(n): a[h] = int(a[h]) w = a[0] for h in range(1,n): if c >= k: break if w > a[h]: c += 1 else: w = a[h] c = 0 print(w) ```
-1
252
A
Little Xor
PROGRAMMING
1,100
[ "brute force", "implementation" ]
null
null
Little Petya likes arrays that consist of non-negative integers a lot. Recently his mom has presented him one such array consisting of *n* elements. Petya immediately decided to find there a segment of consecutive elements, such that the *xor* of all numbers from this segment was maximal possible. Help him with that. The *xor* operation is the bitwise exclusive "OR", that is denoted as "xor" in Pascal and "^" in C/C++/Java.
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in the array. The second line contains the space-separated integers from the array. All numbers are non-negative integers strictly less than 230.
Print a single integer — the required maximal *xor* of a segment of consecutive elements.
[ "5\n1 2 1 1 2\n", "3\n1 2 7\n", "4\n4 2 4 8\n" ]
[ "3\n", "7\n", "14\n" ]
In the first sample one of the optimal segments is the segment that consists of the first and the second array elements, if we consider the array elements indexed starting from one. The second sample contains only one optimal segment, which contains exactly one array element (element with index three).
500
[ { "input": "5\n1 2 1 1 2", "output": "3" }, { "input": "3\n1 2 7", "output": "7" }, { "input": "4\n4 2 4 8", "output": "14" }, { "input": "5\n1 1 1 1 1", "output": "1" }, { "input": "16\n0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15", "output": "15" }, { "input": "20\n1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10", "output": "15" }, { "input": "100\n28 20 67 103 72 81 82 83 7 109 122 30 50 118 83 89 108 82 92 17 97 3 62 12 9 100 14 11 99 106 10 8 60 101 88 119 104 62 76 6 5 57 32 94 60 50 58 97 1 97 107 108 80 24 45 20 112 1 98 106 49 98 25 57 47 90 74 68 14 35 22 10 61 80 10 4 53 13 90 99 57 100 40 84 22 116 60 61 98 57 74 127 61 73 49 51 20 19 56 111", "output": "127" }, { "input": "99\n87 67 4 84 13 20 35 7 11 86 25 1 58 1 74 64 74 86 98 74 72 46 63 78 84 13 60 38 30 45 45 60 9 44 36 70 33 22 82 15 71 7 43 47 23 2 20 49 42 43 54 27 51 51 53 23 27 37 17 66 90 89 61 0 18 20 49 30 84 20 13 32 64 69 56 68 59 10 91 96 43 64 19 10 2 57 62 23 100 39 32 19 95 55 77 19 24 4 77", "output": "127" }, { "input": "1\n100", "output": "100" }, { "input": "2\n1 1", "output": "1" }, { "input": "2\n4 10", "output": "14" }, { "input": "99\n3511 2076 9314 3598 7737 271 4110 4454 5830 8661 8584 8227 2236 2626 1025 3806 3162 2837 6071 9627 1836 7729 6629 4054 9377 3261 1325 8859 3610 7616 5052 9736 1249 6224 7031 6074 4196 8075 4005 5419 5664 8214 4391 731 8714 8622 6122 6976 4057 1770 8025 3778 2792 994 5204 1826 6083 5438 8409 8029 1962 3133 9836 8884 1234 1776 824 1630 6523 2869 9950 8609 5397 1472 7120 5012 6490 5958 8030 7741 5077 2771 7925 9784 9456 8596 6288 8939 4779 4415 3743 5188 5574 9686 1483 4245 4769 4917 1887", "output": "16383" }, { "input": "27\n78 918 443 3900 591 12 4 10 1 24 70 88 429 2 3257 65 275 2 258 62 587 625 25 26 853 728 765", "output": "4027" }, { "input": "2\n3 1", "output": "3" }, { "input": "2\n3 2", "output": "3" }, { "input": "3\n7 3 1", "output": "7" }, { "input": "3\n1 7 2", "output": "7" }, { "input": "2\n7 1", "output": "7" }, { "input": "4\n1 2 7 1", "output": "7" }, { "input": "3\n10 5 1", "output": "15" } ]
1,554,386,749
2,147,483,647
Python 3
OK
TESTS
56
310
409,600
from functools import reduce n = int(input()) sequencia = list(map(int, input().split(' '))) maximo = 0 for i in range(len(sequencia)): for j in range(i, len(sequencia)): valor = reduce(lambda x, y: x^y, sequencia[i:j+1]) if valor > maximo: maximo = valor print(maximo)
Title: Little Xor Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Petya likes arrays that consist of non-negative integers a lot. Recently his mom has presented him one such array consisting of *n* elements. Petya immediately decided to find there a segment of consecutive elements, such that the *xor* of all numbers from this segment was maximal possible. Help him with that. The *xor* operation is the bitwise exclusive "OR", that is denoted as "xor" in Pascal and "^" in C/C++/Java. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of elements in the array. The second line contains the space-separated integers from the array. All numbers are non-negative integers strictly less than 230. Output Specification: Print a single integer — the required maximal *xor* of a segment of consecutive elements. Demo Input: ['5\n1 2 1 1 2\n', '3\n1 2 7\n', '4\n4 2 4 8\n'] Demo Output: ['3\n', '7\n', '14\n'] Note: In the first sample one of the optimal segments is the segment that consists of the first and the second array elements, if we consider the array elements indexed starting from one. The second sample contains only one optimal segment, which contains exactly one array element (element with index three).
```python from functools import reduce n = int(input()) sequencia = list(map(int, input().split(' '))) maximo = 0 for i in range(len(sequencia)): for j in range(i, len(sequencia)): valor = reduce(lambda x, y: x^y, sequencia[i:j+1]) if valor > maximo: maximo = valor print(maximo) ```
3
362
B
Petya and Staircases
PROGRAMMING
1,100
[ "implementation", "sortings" ]
null
null
Little boy Petya loves stairs very much. But he is bored from simple going up and down them — he loves jumping over several stairs at a time. As he stands on some stair, he can either jump to the next one or jump over one or two stairs at a time. But some stairs are too dirty and Petya doesn't want to step on them. Now Petya is on the first stair of the staircase, consisting of *n* stairs. He also knows the numbers of the dirty stairs of this staircase. Help Petya find out if he can jump through the entire staircase and reach the last stair number *n* without touching a dirty stair once. One has to note that anyway Petya should step on the first and last stairs, so if the first or the last stair is dirty, then Petya cannot choose a path with clean steps only.
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=109, 0<=≤<=*m*<=≤<=3000) — the number of stairs in the staircase and the number of dirty stairs, correspondingly. The second line contains *m* different space-separated integers *d*1,<=*d*2,<=...,<=*d**m* (1<=≤<=*d**i*<=≤<=*n*) — the numbers of the dirty stairs (in an arbitrary order).
Print "YES" if Petya can reach stair number *n*, stepping only on the clean stairs. Otherwise print "NO".
[ "10 5\n2 4 8 3 6\n", "10 5\n2 4 5 7 9\n" ]
[ "NO", "YES" ]
none
500
[ { "input": "10 5\n2 4 8 3 6", "output": "NO" }, { "input": "10 5\n2 4 5 7 9", "output": "YES" }, { "input": "10 9\n2 3 4 5 6 7 8 9 10", "output": "NO" }, { "input": "5 2\n4 5", "output": "NO" }, { "input": "123 13\n36 73 111 2 92 5 47 55 48 113 7 78 37", "output": "YES" }, { "input": "10 10\n7 6 4 2 5 10 8 3 9 1", "output": "NO" }, { "input": "12312 0", "output": "YES" }, { "input": "9817239 1\n6323187", "output": "YES" }, { "input": "1 1\n1", "output": "NO" }, { "input": "5 4\n4 2 5 1", "output": "NO" }, { "input": "5 3\n4 3 5", "output": "NO" }, { "input": "500 3\n18 62 445", "output": "YES" }, { "input": "500 50\n72 474 467 241 442 437 336 234 410 120 438 164 405 177 142 114 27 20 445 235 46 176 88 488 242 391 28 414 145 92 206 334 152 343 367 254 100 243 155 348 148 450 461 483 97 34 471 69 416 362", "output": "NO" }, { "input": "500 8\n365 313 338 410 482 417 325 384", "output": "YES" }, { "input": "1000000000 10\n2 3 5 6 8 9 123 874 1230 1000000000", "output": "NO" }, { "input": "1000000000 10\n1 2 3 5 6 8 9 123 874 1230", "output": "NO" }, { "input": "10 1\n1", "output": "NO" }, { "input": "10 4\n1 2 4 5", "output": "NO" }, { "input": "50 20\n22 33 17 23 27 5 26 31 41 20 8 24 6 3 4 29 40 25 13 16", "output": "NO" }, { "input": "50 40\n14 27 19 30 31 20 28 11 37 29 23 33 7 26 22 16 1 6 18 3 47 36 38 2 48 9 41 8 5 50 4 45 44 25 39 12 43 42 40 46", "output": "NO" }, { "input": "123 12\n35 95 47 99 79 122 58 94 31 57 18 10", "output": "YES" }, { "input": "10 5\n1 3 5 7 9", "output": "NO" }, { "input": "100 7\n2 3 5 6 8 9 100", "output": "NO" }, { "input": "100 3\n98 99 100", "output": "NO" }, { "input": "100 3\n97 98 99", "output": "NO" }, { "input": "100 3\n96 98 99", "output": "YES" }, { "input": "10 6\n2 3 5 6 8 9", "output": "YES" }, { "input": "1000000000 10\n2 4 10 18 40 42 49 58 59 60", "output": "NO" }, { "input": "10 3\n1 4 6", "output": "NO" }, { "input": "8 3\n2 3 4", "output": "NO" }, { "input": "100 3\n4 5 6", "output": "NO" }, { "input": "10 2\n10 1", "output": "NO" }, { "input": "10 1\n10", "output": "NO" }, { "input": "4 2\n2 3", "output": "YES" }, { "input": "2 1\n1", "output": "NO" }, { "input": "2 0", "output": "YES" }, { "input": "4 3\n2 3 4", "output": "NO" }, { "input": "5 3\n4 2 3", "output": "NO" } ]
1,565,352,224
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
7
170
2,560,000
z=list(map(int,input().split())) y=list(map(int,input().split())) y.sort() if y[0]==1 or y[-1]==z[0] : print("NO") else : y.append(100000) y.append(100000) status=True for i in range(z[1]) : if y[i+1]-y[i]==1 and y[i+2]-y[i+1]==1 : status=False break if status : print("YES") else : print("NO")
Title: Petya and Staircases Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little boy Petya loves stairs very much. But he is bored from simple going up and down them — he loves jumping over several stairs at a time. As he stands on some stair, he can either jump to the next one or jump over one or two stairs at a time. But some stairs are too dirty and Petya doesn't want to step on them. Now Petya is on the first stair of the staircase, consisting of *n* stairs. He also knows the numbers of the dirty stairs of this staircase. Help Petya find out if he can jump through the entire staircase and reach the last stair number *n* without touching a dirty stair once. One has to note that anyway Petya should step on the first and last stairs, so if the first or the last stair is dirty, then Petya cannot choose a path with clean steps only. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=109, 0<=≤<=*m*<=≤<=3000) — the number of stairs in the staircase and the number of dirty stairs, correspondingly. The second line contains *m* different space-separated integers *d*1,<=*d*2,<=...,<=*d**m* (1<=≤<=*d**i*<=≤<=*n*) — the numbers of the dirty stairs (in an arbitrary order). Output Specification: Print "YES" if Petya can reach stair number *n*, stepping only on the clean stairs. Otherwise print "NO". Demo Input: ['10 5\n2 4 8 3 6\n', '10 5\n2 4 5 7 9\n'] Demo Output: ['NO', 'YES'] Note: none
```python z=list(map(int,input().split())) y=list(map(int,input().split())) y.sort() if y[0]==1 or y[-1]==z[0] : print("NO") else : y.append(100000) y.append(100000) status=True for i in range(z[1]) : if y[i+1]-y[i]==1 and y[i+2]-y[i+1]==1 : status=False break if status : print("YES") else : print("NO") ```
-1
270
A
Fancy Fence
PROGRAMMING
1,100
[ "geometry", "implementation", "math" ]
null
null
Emuskald needs a fence around his farm, but he is too lazy to build it himself. So he purchased a fence-building robot. He wants the fence to be a regular polygon. The robot builds the fence along a single path, but it can only make fence corners at a single angle *a*. Will the robot be able to build the fence Emuskald wants? In other words, is there a regular polygon which angles are equal to *a*?
The first line of input contains an integer *t* (0<=&lt;<=*t*<=&lt;<=180) — the number of tests. Each of the following *t* lines contains a single integer *a* (0<=&lt;<=*a*<=&lt;<=180) — the angle the robot can make corners at measured in degrees.
For each test, output on a single line "YES" (without quotes), if the robot can build a fence Emuskald wants, and "NO" (without quotes), if it is impossible.
[ "3\n30\n60\n90\n" ]
[ "NO\nYES\nYES\n" ]
In the first test case, it is impossible to build the fence, since there is no regular polygon with angle <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/df5f4b07dd5316fde165b43657b2696e2919e791.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second test case, the fence is a regular triangle, and in the last test case — a square.
500
[ { "input": "3\n30\n60\n90", "output": "NO\nYES\nYES" }, { "input": "6\n1\n2\n3\n170\n179\n25", "output": "NO\nNO\nNO\nYES\nYES\nNO" } ]
1,680,809,913
2,147,483,647
Python 3
OK
TESTS
3
92
0
# -*- coding: utf-8 -*- """ Created on Fri Apr 7 00:54:05 2023 @author: Srusty Sahoo """ t=int(input()) res=[] for i in range(t): a=int(input()) x=360/(180-a) if x==int(x): res.append("YES") else: res.append("NO") [print(r) for r in res]
Title: Fancy Fence Time Limit: None seconds Memory Limit: None megabytes Problem Description: Emuskald needs a fence around his farm, but he is too lazy to build it himself. So he purchased a fence-building robot. He wants the fence to be a regular polygon. The robot builds the fence along a single path, but it can only make fence corners at a single angle *a*. Will the robot be able to build the fence Emuskald wants? In other words, is there a regular polygon which angles are equal to *a*? Input Specification: The first line of input contains an integer *t* (0<=&lt;<=*t*<=&lt;<=180) — the number of tests. Each of the following *t* lines contains a single integer *a* (0<=&lt;<=*a*<=&lt;<=180) — the angle the robot can make corners at measured in degrees. Output Specification: For each test, output on a single line "YES" (without quotes), if the robot can build a fence Emuskald wants, and "NO" (without quotes), if it is impossible. Demo Input: ['3\n30\n60\n90\n'] Demo Output: ['NO\nYES\nYES\n'] Note: In the first test case, it is impossible to build the fence, since there is no regular polygon with angle <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/df5f4b07dd5316fde165b43657b2696e2919e791.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second test case, the fence is a regular triangle, and in the last test case — a square.
```python # -*- coding: utf-8 -*- """ Created on Fri Apr 7 00:54:05 2023 @author: Srusty Sahoo """ t=int(input()) res=[] for i in range(t): a=int(input()) x=360/(180-a) if x==int(x): res.append("YES") else: res.append("NO") [print(r) for r in res] ```
3
730
G
Car Repair Shop
PROGRAMMING
1,600
[ "implementation" ]
null
null
Polycarp starts his own business. Tomorrow will be the first working day of his car repair shop. For now the car repair shop is very small and only one car can be repaired at a given time. Polycarp is good at marketing, so he has already collected *n* requests from clients. The requests are numbered from 1 to *n* in order they came. The *i*-th request is characterized by two values: *s**i* — the day when a client wants to start the repair of his car, *d**i* — duration (in days) to repair the car. The days are enumerated from 1, the first day is tomorrow, the second day is the day after tomorrow and so on. Polycarp is making schedule by processing requests in the order from the first to the *n*-th request. He schedules the *i*-th request as follows: - If the car repair shop is idle for *d**i* days starting from *s**i* (*s**i*,<=*s**i*<=+<=1,<=...,<=*s**i*<=+<=*d**i*<=-<=1), then these days are used to repair a car of the *i*-th client. - Otherwise, Polycarp finds the first day *x* (from 1 and further) that there are *d**i* subsequent days when no repair is scheduled starting from *x*. In other words he chooses the smallest positive *x* that all days *x*,<=*x*<=+<=1,<=...,<=*x*<=+<=*d**i*<=-<=1 are not scheduled for repair of any car. So, the car of the *i*-th client will be repaired in the range [*x*,<=*x*<=+<=*d**i*<=-<=1]. It is possible that the day *x* when repair is scheduled to start will be less than *s**i*. Given *n* requests, you are asked to help Polycarp schedule all of them according to the rules above.
The first line contains integer *n* (1<=≤<=*n*<=≤<=200) — the number of requests from clients. The following *n* lines contain requests, one request per line. The *i*-th request is given as the pair of integers *s**i*,<=*d**i* (1<=≤<=*s**i*<=≤<=109, 1<=≤<=*d**i*<=≤<=5·106), where *s**i* is the preferred time to start repairing the *i*-th car, *d**i* is the number of days to repair the *i*-th car. The requests should be processed in the order they are given in the input.
Print *n* lines. The *i*-th line should contain two integers — the start day to repair the *i*-th car and the finish day to repair the *i*-th car.
[ "3\n9 2\n7 3\n2 4\n", "4\n1000000000 1000000\n1000000000 1000000\n100000000 1000000\n1000000000 1000000\n" ]
[ "9 10\n1 3\n4 7\n", "1000000000 1000999999\n1 1000000\n100000000 100999999\n1000001 2000000\n" ]
none
0
[ { "input": "3\n9 2\n7 3\n2 4", "output": "9 10\n1 3\n4 7" }, { "input": "4\n1000000000 1000000\n1000000000 1000000\n100000000 1000000\n1000000000 1000000", "output": "1000000000 1000999999\n1 1000000\n100000000 100999999\n1000001 2000000" }, { "input": "1\n1 1", "output": "1 1" }, { "input": "1\n1000000000 1", "output": "1000000000 1000000000" }, { "input": "1\n1000000000 5000000", "output": "1000000000 1004999999" }, { "input": "5\n6 2\n10 1\n10 2\n9 2\n5 1", "output": "6 7\n10 10\n1 2\n3 4\n5 5" }, { "input": "10\n1 3\n77 8\n46 5\n83 4\n61 7\n8 4\n54 7\n80 7\n33 7\n13 4", "output": "1 3\n77 84\n46 50\n4 7\n61 67\n8 11\n54 60\n12 18\n33 39\n19 22" }, { "input": "10\n588 12\n560 10\n593 14\n438 15\n761 11\n984 6\n503 2\n855 19\n538 2\n650 7", "output": "588 599\n560 569\n1 14\n438 452\n761 771\n984 989\n503 504\n855 873\n538 539\n650 656" }, { "input": "20\n360 26\n475 17\n826 12\n815 23\n567 28\n897 26\n707 20\n1000 9\n576 5\n16 5\n714 16\n630 17\n426 26\n406 23\n899 25\n102 22\n896 8\n320 27\n964 25\n932 18", "output": "360 385\n475 491\n826 837\n1 23\n567 594\n897 922\n707 726\n1000 1008\n24 28\n29 33\n34 49\n630 646\n426 451\n50 72\n73 97\n102 123\n124 131\n320 346\n964 988\n932 949" }, { "input": "30\n522692116 84\n589719489 488\n662495181 961\n915956552 470\n683572975 271\n498400137 480\n327010963 181\n200704287 367\n810826488 54\n978100746 208\n345455616 986\n106372142 876\n446972337 42\n309349333 200\n93462198 543\n167946793 318\n325598940 427\n121873339 459\n174934933 598\n279521023 655\n739750520 3\n870850765 192\n622303167 400\n471234786 63\n805952711 18\n349834333 857\n804873364 302\n512746562 39\n533285962 561\n996718586 494", "output": "522692116 522692199\n589719489 589719976\n662495181 662496141\n915956552 915957021\n683572975 683573245\n498400137 498400616\n327010963 327011143\n200704287 200704653\n810826488 810826541\n978100746 978100953\n345455616 345456601\n106372142 106373017\n446972337 446972378\n309349333 309349532\n93462198 93462740\n167946793 167947110\n325598940 325599366\n121873339 121873797\n174934933 174935530\n279521023 279521677\n739750520 739750522\n870850765 870850956\n622303167 622303566\n471234786 471234848\n805952711..." }, { "input": "2\n10 3\n9 2", "output": "10 12\n1 2" }, { "input": "1\n1 5000000", "output": "1 5000000" } ]
1,585,897,013
2,147,483,647
Python 3
OK
TESTS
28
124
307,200
def dotwointervals(l1,r1,l2,r2): if(l1<l2 and r1<l2): return 0 elif(l1>r2 and r1>r2): return 0 return 1 n=int(input()) lofdays=[] for you in range(n): l=input().split() si=int(l[0]) di=int(l[1]) if(you==0): lofdays.append((si,si+di-1)) print(si,si+di-1) else: nowint=(si,si+di-1) done=1 for i in lofdays: if(dotwointervals(nowint[0],nowint[1],i[0],i[1])): done=0 break if(done==1): lofdays.append(nowint) print(si,si+di-1) else: mina=min(lofdays) if(mina[0]-di>0): print(1,di) lofdays.append((1,di)) else: lofdays.sort() done=0 for i in range(1,len(lofdays)): if(lofdays[i][0]-lofdays[i-1][1]-1>=di): done=1 print(lofdays[i-1][1]+1,lofdays[i-1][1]+di) lofdays.append((lofdays[i-1][1]+1,lofdays[i-1][1]+di)) break if(done==0): print(lofdays[-1][1]+1,lofdays[-1][1]+di) lofdays.append((lofdays[-1][1]+1,lofdays[-1][1]+di))
Title: Car Repair Shop Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp starts his own business. Tomorrow will be the first working day of his car repair shop. For now the car repair shop is very small and only one car can be repaired at a given time. Polycarp is good at marketing, so he has already collected *n* requests from clients. The requests are numbered from 1 to *n* in order they came. The *i*-th request is characterized by two values: *s**i* — the day when a client wants to start the repair of his car, *d**i* — duration (in days) to repair the car. The days are enumerated from 1, the first day is tomorrow, the second day is the day after tomorrow and so on. Polycarp is making schedule by processing requests in the order from the first to the *n*-th request. He schedules the *i*-th request as follows: - If the car repair shop is idle for *d**i* days starting from *s**i* (*s**i*,<=*s**i*<=+<=1,<=...,<=*s**i*<=+<=*d**i*<=-<=1), then these days are used to repair a car of the *i*-th client. - Otherwise, Polycarp finds the first day *x* (from 1 and further) that there are *d**i* subsequent days when no repair is scheduled starting from *x*. In other words he chooses the smallest positive *x* that all days *x*,<=*x*<=+<=1,<=...,<=*x*<=+<=*d**i*<=-<=1 are not scheduled for repair of any car. So, the car of the *i*-th client will be repaired in the range [*x*,<=*x*<=+<=*d**i*<=-<=1]. It is possible that the day *x* when repair is scheduled to start will be less than *s**i*. Given *n* requests, you are asked to help Polycarp schedule all of them according to the rules above. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=200) — the number of requests from clients. The following *n* lines contain requests, one request per line. The *i*-th request is given as the pair of integers *s**i*,<=*d**i* (1<=≤<=*s**i*<=≤<=109, 1<=≤<=*d**i*<=≤<=5·106), where *s**i* is the preferred time to start repairing the *i*-th car, *d**i* is the number of days to repair the *i*-th car. The requests should be processed in the order they are given in the input. Output Specification: Print *n* lines. The *i*-th line should contain two integers — the start day to repair the *i*-th car and the finish day to repair the *i*-th car. Demo Input: ['3\n9 2\n7 3\n2 4\n', '4\n1000000000 1000000\n1000000000 1000000\n100000000 1000000\n1000000000 1000000\n'] Demo Output: ['9 10\n1 3\n4 7\n', '1000000000 1000999999\n1 1000000\n100000000 100999999\n1000001 2000000\n'] Note: none
```python def dotwointervals(l1,r1,l2,r2): if(l1<l2 and r1<l2): return 0 elif(l1>r2 and r1>r2): return 0 return 1 n=int(input()) lofdays=[] for you in range(n): l=input().split() si=int(l[0]) di=int(l[1]) if(you==0): lofdays.append((si,si+di-1)) print(si,si+di-1) else: nowint=(si,si+di-1) done=1 for i in lofdays: if(dotwointervals(nowint[0],nowint[1],i[0],i[1])): done=0 break if(done==1): lofdays.append(nowint) print(si,si+di-1) else: mina=min(lofdays) if(mina[0]-di>0): print(1,di) lofdays.append((1,di)) else: lofdays.sort() done=0 for i in range(1,len(lofdays)): if(lofdays[i][0]-lofdays[i-1][1]-1>=di): done=1 print(lofdays[i-1][1]+1,lofdays[i-1][1]+di) lofdays.append((lofdays[i-1][1]+1,lofdays[i-1][1]+di)) break if(done==0): print(lofdays[-1][1]+1,lofdays[-1][1]+di) lofdays.append((lofdays[-1][1]+1,lofdays[-1][1]+di)) ```
3
313
A
Ilya and Bank Account
PROGRAMMING
900
[ "implementation", "number theory" ]
null
null
Ilya is a very clever lion, he lives in an unusual city ZooVille. In this city all the animals have their rights and obligations. Moreover, they even have their own bank accounts. The state of a bank account is an integer. The state of a bank account can be a negative number. This means that the owner of the account owes the bank money. Ilya the Lion has recently had a birthday, so he got a lot of gifts. One of them (the gift of the main ZooVille bank) is the opportunity to delete the last digit or the digit before last from the state of his bank account no more than once. For example, if the state of Ilya's bank account is -123, then Ilya can delete the last digit and get his account balance equal to -12, also he can remove its digit before last and get the account balance equal to -13. Of course, Ilya is permitted not to use the opportunity to delete a digit from the balance. Ilya is not very good at math, and that's why he asks you to help him maximize his bank account. Find the maximum state of the bank account that can be obtained using the bank's gift.
The single line contains integer *n* (10<=≤<=|*n*|<=≤<=109) — the state of Ilya's bank account.
In a single line print an integer — the maximum state of the bank account that Ilya can get.
[ "2230\n", "-10\n", "-100003\n" ]
[ "2230\n", "0\n", "-10000\n" ]
In the first test sample Ilya doesn't profit from using the present. In the second test sample you can delete digit 1 and get the state of the account equal to 0.
500
[ { "input": "2230", "output": "2230" }, { "input": "-10", "output": "0" }, { "input": "-100003", "output": "-10000" }, { "input": "544883178", "output": "544883178" }, { "input": "-847251738", "output": "-84725173" }, { "input": "423654797", "output": "423654797" }, { "input": "-623563697", "output": "-62356367" }, { "input": "645894116", "output": "645894116" }, { "input": "-384381709", "output": "-38438170" }, { "input": "437587210", "output": "437587210" }, { "input": "-297534606", "output": "-29753460" }, { "input": "891773002", "output": "891773002" }, { "input": "-56712976", "output": "-5671296" }, { "input": "963662765", "output": "963662765" }, { "input": "-272656295", "output": "-27265625" }, { "input": "383441522", "output": "383441522" }, { "input": "-477665112", "output": "-47766511" }, { "input": "791725034", "output": "791725034" }, { "input": "-812168727", "output": "-81216872" }, { "input": "528894922", "output": "528894922" }, { "input": "-479977172", "output": "-47997712" }, { "input": "568044564", "output": "568044564" }, { "input": "-392784794", "output": "-39278474" }, { "input": "925596634", "output": "925596634" }, { "input": "-836078769", "output": "-83607876" }, { "input": "71036059", "output": "71036059" }, { "input": "-337396162", "output": "-33739612" }, { "input": "87129297", "output": "87129297" }, { "input": "-648171877", "output": "-64817187" }, { "input": "20218400", "output": "20218400" }, { "input": "10", "output": "10" }, { "input": "1000000000", "output": "1000000000" }, { "input": "-1000000000", "output": "-100000000" }, { "input": "-102", "output": "-10" }, { "input": "-120", "output": "-10" }, { "input": "-20", "output": "0" }, { "input": "-15", "output": "-1" }, { "input": "-5575533", "output": "-557553" }, { "input": "-50", "output": "0" }, { "input": "-31", "output": "-1" }, { "input": "-55", "output": "-5" }, { "input": "-81", "output": "-1" }, { "input": "-99", "output": "-9" }, { "input": "-23", "output": "-2" }, { "input": "-41", "output": "-1" }, { "input": "-24", "output": "-2" }, { "input": "46", "output": "46" } ]
1,695,439,848
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
6
154
0
account = input() if int(account) < 0: if len(account) == 3 and account[2] == '0': print(0) else: if (int(account[-1]) <= int(account[len(account)-1])): account = account[:-1] else: account = account[:-2] + account[-1] print(account) else: print(account)
Title: Ilya and Bank Account Time Limit: None seconds Memory Limit: None megabytes Problem Description: Ilya is a very clever lion, he lives in an unusual city ZooVille. In this city all the animals have their rights and obligations. Moreover, they even have their own bank accounts. The state of a bank account is an integer. The state of a bank account can be a negative number. This means that the owner of the account owes the bank money. Ilya the Lion has recently had a birthday, so he got a lot of gifts. One of them (the gift of the main ZooVille bank) is the opportunity to delete the last digit or the digit before last from the state of his bank account no more than once. For example, if the state of Ilya's bank account is -123, then Ilya can delete the last digit and get his account balance equal to -12, also he can remove its digit before last and get the account balance equal to -13. Of course, Ilya is permitted not to use the opportunity to delete a digit from the balance. Ilya is not very good at math, and that's why he asks you to help him maximize his bank account. Find the maximum state of the bank account that can be obtained using the bank's gift. Input Specification: The single line contains integer *n* (10<=≤<=|*n*|<=≤<=109) — the state of Ilya's bank account. Output Specification: In a single line print an integer — the maximum state of the bank account that Ilya can get. Demo Input: ['2230\n', '-10\n', '-100003\n'] Demo Output: ['2230\n', '0\n', '-10000\n'] Note: In the first test sample Ilya doesn't profit from using the present. In the second test sample you can delete digit 1 and get the state of the account equal to 0.
```python account = input() if int(account) < 0: if len(account) == 3 and account[2] == '0': print(0) else: if (int(account[-1]) <= int(account[len(account)-1])): account = account[:-1] else: account = account[:-2] + account[-1] print(account) else: print(account) ```
0
401
A
Vanya and Cards
PROGRAMMING
800
[ "implementation", "math" ]
null
null
Vanya loves playing. He even has a special set of cards to play with. Each card has a single integer. The number on the card can be positive, negative and can even be equal to zero. The only limit is, the number on each card doesn't exceed *x* in the absolute value. Natasha doesn't like when Vanya spends a long time playing, so she hid all of his cards. Vanya became sad and started looking for the cards but he only found *n* of them. Vanya loves the balance, so he wants the sum of all numbers on found cards equal to zero. On the other hand, he got very tired of looking for cards. Help the boy and say what is the minimum number of cards does he need to find to make the sum equal to zero? You can assume that initially Vanya had infinitely many cards with each integer number from <=-<=*x* to *x*.
The first line contains two integers: *n* (1<=≤<=*n*<=≤<=1000) — the number of found cards and *x* (1<=≤<=*x*<=≤<=1000) — the maximum absolute value of the number on a card. The second line contains *n* space-separated integers — the numbers on found cards. It is guaranteed that the numbers do not exceed *x* in their absolute value.
Print a single number — the answer to the problem.
[ "3 2\n-1 1 2\n", "2 3\n-2 -2\n" ]
[ "1\n", "2\n" ]
In the first sample, Vanya needs to find a single card with number -2. In the second sample, Vanya needs to find two cards with number 2. He can't find a single card with the required number as the numbers on the lost cards do not exceed 3 in their absolute value.
500
[ { "input": "3 2\n-1 1 2", "output": "1" }, { "input": "2 3\n-2 -2", "output": "2" }, { "input": "4 4\n1 2 3 4", "output": "3" }, { "input": "2 2\n-1 -1", "output": "1" }, { "input": "15 5\n-2 -1 2 -4 -3 4 -4 -2 -2 2 -2 -1 1 -4 -2", "output": "4" }, { "input": "15 16\n-15 -5 -15 -14 -8 15 -15 -12 -5 -3 5 -7 3 8 -15", "output": "6" }, { "input": "1 4\n-3", "output": "1" }, { "input": "10 7\n6 4 6 6 -3 4 -1 2 3 3", "output": "5" }, { "input": "2 1\n1 -1", "output": "0" }, { "input": "1 1\n0", "output": "0" }, { "input": "8 13\n-11 -1 -11 12 -2 -2 -10 -11", "output": "3" }, { "input": "16 11\n3 -7 7 -9 -2 -3 -4 -2 -6 8 10 7 1 4 6 7", "output": "2" }, { "input": "67 15\n-2 -2 6 -4 -7 4 3 13 -9 -4 11 -7 -6 -11 1 11 -1 11 14 10 -8 7 5 11 -13 1 -1 7 -14 9 -11 -11 13 -4 12 -11 -8 -5 -11 6 10 -2 6 9 9 6 -11 -2 7 -10 -1 9 -8 -5 1 -7 -2 3 -1 -13 -6 -9 -8 10 13 -3 9", "output": "1" }, { "input": "123 222\n44 -190 -188 -185 -55 17 190 176 157 176 -24 -113 -54 -61 -53 53 -77 68 -12 -114 -217 163 -122 37 -37 20 -108 17 -140 -210 218 19 -89 54 18 197 111 -150 -36 -131 -172 36 67 16 -202 72 169 -137 -34 -122 137 -72 196 -17 -104 180 -102 96 -69 -184 21 -15 217 -61 175 -221 62 173 -93 -106 122 -135 58 7 -110 -108 156 -141 -102 -50 29 -204 -46 -76 101 -33 -190 99 52 -197 175 -71 161 -140 155 10 189 -217 -97 -170 183 -88 83 -149 157 -208 154 -3 77 90 74 165 198 -181 -166 -4 -200 -89 -200 131 100 -61 -149", "output": "8" }, { "input": "130 142\n58 -50 43 -126 84 -92 -108 -92 57 127 12 -135 -49 89 141 -112 -31 47 75 -19 80 81 -5 17 10 4 -26 68 -102 -10 7 -62 -135 -123 -16 55 -72 -97 -34 21 21 137 130 97 40 -18 110 -52 73 52 85 103 -134 -107 88 30 66 97 126 82 13 125 127 -87 81 22 45 102 13 95 4 10 -35 39 -43 -112 -5 14 -46 19 61 -44 -116 137 -116 -80 -39 92 -75 29 -65 -15 5 -108 -114 -129 -5 52 -21 118 -41 35 -62 -125 130 -95 -11 -75 19 108 108 127 141 2 -130 54 96 -81 -102 140 -58 -102 132 50 -126 82 6 45 -114 -42", "output": "5" }, { "input": "7 12\n2 5 -1 -4 -7 4 3", "output": "1" }, { "input": "57 53\n-49 7 -41 7 38 -51 -23 8 45 1 -24 26 37 28 -31 -40 38 25 -32 -47 -3 20 -40 -32 -44 -36 5 33 -16 -5 28 10 -22 3 -10 -51 -32 -51 27 -50 -22 -12 41 3 15 24 30 -12 -34 -15 -29 38 -10 -35 -9 6 -51", "output": "8" }, { "input": "93 273\n-268 -170 -163 19 -69 18 -244 35 -34 125 -224 -48 179 -247 127 -150 271 -49 -102 201 84 -151 -70 -46 -16 216 240 127 3 218 -209 223 -227 -201 228 -8 203 46 -100 -207 126 255 40 -58 -217 93 172 -97 23 183 102 -92 -157 -117 173 47 144 -235 -227 -62 -128 13 -151 158 110 -116 68 -2 -148 -206 -52 79 -152 -223 74 -149 -69 232 38 -70 -256 -213 -236 132 -189 -200 199 -57 -108 -53 269 -101 -134", "output": "8" }, { "input": "1 1000\n997", "output": "1" }, { "input": "4 3\n2 -1 -2 -1", "output": "1" }, { "input": "1 1\n-1", "output": "1" }, { "input": "1 1\n1", "output": "1" }, { "input": "2 2\n1 -1", "output": "0" }, { "input": "2 2\n-1 1", "output": "0" }, { "input": "2 3\n-1 1", "output": "0" }, { "input": "2 2\n-2 2", "output": "0" }, { "input": "2 2\n2 2", "output": "2" }, { "input": "4 2\n-1 -1 -1 -1", "output": "2" }, { "input": "4 1\n-1 -1 -1 1", "output": "2" }, { "input": "3 2\n2 2 2", "output": "3" }, { "input": "10 300\n300 300 300 300 300 300 300 300 300 300", "output": "10" } ]
1,588,520,242
2,147,483,647
Python 3
OK
TESTS
47
108
307,200
n,x=map(int,input().split()) a=list(map(int,input().split())) k=abs(sum(a)) if(k%x==0): print(int(k/x)) else: print(int(k/x)+1)
Title: Vanya and Cards Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vanya loves playing. He even has a special set of cards to play with. Each card has a single integer. The number on the card can be positive, negative and can even be equal to zero. The only limit is, the number on each card doesn't exceed *x* in the absolute value. Natasha doesn't like when Vanya spends a long time playing, so she hid all of his cards. Vanya became sad and started looking for the cards but he only found *n* of them. Vanya loves the balance, so he wants the sum of all numbers on found cards equal to zero. On the other hand, he got very tired of looking for cards. Help the boy and say what is the minimum number of cards does he need to find to make the sum equal to zero? You can assume that initially Vanya had infinitely many cards with each integer number from <=-<=*x* to *x*. Input Specification: The first line contains two integers: *n* (1<=≤<=*n*<=≤<=1000) — the number of found cards and *x* (1<=≤<=*x*<=≤<=1000) — the maximum absolute value of the number on a card. The second line contains *n* space-separated integers — the numbers on found cards. It is guaranteed that the numbers do not exceed *x* in their absolute value. Output Specification: Print a single number — the answer to the problem. Demo Input: ['3 2\n-1 1 2\n', '2 3\n-2 -2\n'] Demo Output: ['1\n', '2\n'] Note: In the first sample, Vanya needs to find a single card with number -2. In the second sample, Vanya needs to find two cards with number 2. He can't find a single card with the required number as the numbers on the lost cards do not exceed 3 in their absolute value.
```python n,x=map(int,input().split()) a=list(map(int,input().split())) k=abs(sum(a)) if(k%x==0): print(int(k/x)) else: print(int(k/x)+1) ```
3
725
C
Hidden Word
PROGRAMMING
1,600
[ "brute force", "constructive algorithms", "implementation", "strings" ]
null
null
Let’s define a grid to be a set of tiles with 2 rows and 13 columns. Each tile has an English letter written in it. The letters don't have to be unique: there might be two or more tiles with the same letter written on them. Here is an example of a grid: We say that two tiles are adjacent if they share a side or a corner. In the example grid above, the tile with the letter 'A' is adjacent only to the tiles with letters 'B', 'N', and 'O'. A tile is not adjacent to itself. A sequence of tiles is called a path if each tile in the sequence is adjacent to the tile which follows it (except for the last tile in the sequence, which of course has no successor). In this example, "ABC" is a path, and so is "KXWIHIJK". "MAB" is not a path because 'M' is not adjacent to 'A'. A single tile can be used more than once by a path (though the tile cannot occupy two consecutive places in the path because no tile is adjacent to itself). You’re given a string *s* which consists of 27 upper-case English letters. Each English letter occurs at least once in *s*. Find a grid that contains a path whose tiles, viewed in the order that the path visits them, form the string *s*. If there’s no solution, print "Impossible" (without the quotes).
The only line of the input contains the string *s*, consisting of 27 upper-case English letters. Each English letter occurs at least once in *s*.
Output two lines, each consisting of 13 upper-case English characters, representing the rows of the grid. If there are multiple solutions, print any of them. If there is no solution print "Impossible".
[ "ABCDEFGHIJKLMNOPQRSGTUVWXYZ\n", "BUVTYZFQSNRIWOXXGJLKACPEMDH\n" ]
[ "YXWVUTGHIJKLM\nZABCDEFSRQPON\n", "Impossible\n" ]
none
1,500
[ { "input": "ABCDEFGHIJKLMNOPQRSGTUVWXYZ", "output": "YXWVUTGHIJKLM\nZABCDEFSRQPON" }, { "input": "BUVTYZFQSNRIWOXXGJLKACPEMDH", "output": "Impossible" }, { "input": "DYCEUXXKMGZOINVPHWQSRTABLJF", "output": "Impossible" }, { "input": "UTEDBZRVWLOFUASHCYIPXGJMKNQ", "output": "PIYCHSAUTEDBZ\nXGJMKNQFOLWVR" }, { "input": "ZWMFLTCQIAJEVUPODMSGXKHRNYB", "output": "HKXGSMFLTCQIA\nRNYBZWDOPUVEJ" }, { "input": "QGZEMFKWLUHOVSXJTCPIYREDNAB", "output": "ANDEMFKWLUHOV\nBQGZRYIPCTJXS" }, { "input": "BMVFGRNDOWTILZVHAKCQSXYEJUP", "output": "XSQCKAHVFGRND\nYEJUPBMZLITWO" }, { "input": "MKNTKOBFLJSXWQPVUERDHIACYGZ", "output": "VPQWXSJLFBOKN\nUERDHIACYGZMT" }, { "input": "YOFJVQSWBUZENPCXGQTHMDKAILR", "output": "IAKDMHTQSWBUZ\nLRYOFJVGXCPNE" }, { "input": "GYCUAXSBNAWFIJPDQVETKZOMLHR", "output": "TEVQDPJIFWAXS\nKZOMLHRGYCUNB" }, { "input": "BITCRJOKMPDDUSWAYXHQZEVGLFN", "output": "Impossible" }, { "input": "XCDSLTYWJIGUBPHNFZWVMQARKOE", "output": "OKRAQMVWJIGUB\nEXCDSLTYZFNHP" }, { "input": "XTSHBGLRJAMDUIPCWYOZVERNKQF", "output": "XFQKNRJAMDUIP\nTSHBGLEVZOYWC" }, { "input": "RFKNZXHAIMVBWEBPTCSYOLJGDQU", "output": "QDGJLOYSCTPBW\nURFKNZXHAIMVE" }, { "input": "HVDEBKMJTLKQORNWCZSGXYIPUAF", "output": "XGSZCWNROQKMJ\nYIPUAFHVDEBLT" }, { "input": "XZTMCRBONHFIUVPKWSDLJQGAHYE", "output": "TZXEYHFIUVPKW\nMCRBONAGQJLDS" }, { "input": "YAMVOHUJLEDCWZLXNRGPIQTBSKF", "output": "SBTQIPGRNXLED\nKFYAMVOHUJZWC" }, { "input": "XECPFJBHINOWVLAGTUMRZYHQSDK", "output": "XKDSQHINOWVLA\nECPFJBYZRMUTG" }, { "input": "UULGRBAODZENVCSMJTHXPWYKFIQ", "output": "Impossible" }, { "input": "BADSLHIYGMZJQKTCOPRVUXFWENN", "output": "Impossible" }, { "input": "TEGXHBUVZDPAMIJFQYCWRKSTNLO", "output": "NTEGXHBUVZDPA\nLOSKRWCYQFJIM" }, { "input": "XQVBTCNIRFPLOHAYZUMKWEJSXDG", "output": "DXQVBTCNIRFPL\nGSJEWKMUZYAHO" }, { "input": "MIDLBEUAGTNPYKFWHVSRJOXCZMQ", "output": "MIDLBEUAGTNPY\nQZCXOJRSVHWFK" }, { "input": "NMGIFDZKBCVRYLTWOASXHEUQPJN", "output": "NMGIFDZKBCVRY\nJPQUEHXSAOWTL" }, { "input": "AHGZCRJTKPMQUNBWSIYLDXEHFVO", "output": "VFHGZCRJTKPMQ\nOAEXDLYISWBNU" }, { "input": "UNGHFQRCIPBZTEOAYJXLDMSKNWV", "output": "WNGHFQRCIPBZT\nVUKSMDLXJYAOE" }, { "input": "MKBGVNDJRAWUEHFSYLIZCOPTXKQ", "output": "QKBGVNDJRAWUE\nMXTPOCZILYSFH" }, { "input": "UTGDEJHCBKRWLYFSONAQVMPIXZT", "output": "TGDEJHCBKRWLY\nUZXIPMVQANOSF" }, { "input": "BETRFOVLPCMWKHAXSGUDQYJTZIN", "output": "IZTRFOVLPCMWK\nNBEJYQDUGSXAH" }, { "input": "HIDCLZUTPOQGEXFASJNYBVRMDKW", "output": "WKDCLZUTPOQGE\nHIMRVBYNJSAFX" }, { "input": "CNHIKJWRLPXTQZVUGYDMBAOEFHS", "output": "SHIKJWRLPXTQZ\nCNFEOABMDYGUV" }, { "input": "LCFNHUQWXBPOSJMYTGKDAZVREIF", "output": "LFNHUQWXBPOSJ\nCIERVZADKGTYM" }, { "input": "OURNQJWMIXCLGSDVEKZAFBYNTPH", "output": "HPTNQJWMIXCLG\nOURYBFAZKEVDS" }, { "input": "ZWFIRJNXVKHOUSTQBLEGYMAPIDC", "output": "CDIRJNXVKHOUS\nZWFPAMYGELBQT" }, { "input": "UOWJXRKHZDNGLSAMEIYTQBVCFJP", "output": "UPJXRKHZDNGLS\nOWFCVBQTYIEMA" }, { "input": "IHDTJLGRFUXQSOZEMVYKWCPANBT", "output": "ITJLGRFUXQSOZ\nHDBNAPCWKYVME" }, { "input": "ABCDEFGHIJKLMNOPQRSTUVWXYZA", "output": "ABCDEFGHIJKLM\nZYXWVUTSRQPON" }, { "input": "ABACDEFGHIJKLMNOPQRSTUVWXYZ", "output": "NMLKJIHGFEDCA\nOPQRSTUVWXYZB" }, { "input": "ABCDEFGHIJKLMNOPQRSTUVWXYZG", "output": "CBAGHIJKLMNOP\nDEFZYXWVUTSRQ" }, { "input": "ABCDEFGHGIJKLMNOPQRSTUVWXYZ", "output": "TSRQPONMLKJIG\nUVWXYZABCDEFH" }, { "input": "ABCDEFGHIJKLMNOPQRSTUVWXYZX", "output": "KJIHGFEDCBAXY\nLMNOPQRSTUVWZ" }, { "input": "ABCDEFGHIJKLMNOPQRSTUVWYXYZ", "output": "KJIHGFEDCBAZY\nLMNOPQRSTUVWX" }, { "input": "BUVTYZFQSNRIWOXGJLKACPEMDHB", "output": "BUVTYZFQSNRIW\nHDMEPCAKLJGXO" }, { "input": "QWERTYUIOPASDFGHJKLZXCVBNMQ", "output": "QWERTYUIOPASD\nMNBVCXZLKJHGF" }, { "input": "ABCBDEFGHIJKLMNOPQRSTUVWXYZ", "output": "ONMLKJIHGFEDB\nPQRSTUVWXYZAC" }, { "input": "ABCDEFGHIJKLMNOPQRSTUVWXAYZ", "output": "YABCDEFGHIJKL\nZXWVUTSRQPONM" }, { "input": "ABCDEFGHIJKLMZYXWVUTSRQPONA", "output": "ABCDEFGHIJKLM\nNOPQRSTUVWXYZ" }, { "input": "BACDEFGHIJKLMNOPQRSTUVWXYZA", "output": "ACDEFGHIJKLMN\nBZYXWVUTSRQPO" } ]
1,477,154,649
5,949
Python 3
WRONG_ANSWER
PRETESTS
1
46
204,800
def main(): s = input() flag = False st = -1 fn = -1 for i in range(27): for j in range(i + 2, 27): if (s[i] == s[j]): flag = True st = i fn = j break if (not flag): print("Imossible") return s = s[st:] + s[:st] add = st fn -= st st = 0 ans = [["%"] * 13 for i in range(2)] sx = -1 sy = 1 if (fn % 2 == 0): st_ind = (fn // 2 - 1) for i in range(st_ind + 1): ans[0][st_ind - i] = s[i] for i in range(st_ind + 1): ans[1][i] = s[st_ind + 1 + i] sx = st_ind + 1 else: st_ind = (fn // 2) for i in range(st_ind + 1): ans[0][st_ind - i] = s[i] for i in range(st_ind): ans[1][i] = s[st_ind + 1 + i] sx = st_ind for i in s[fn + 1:]: ans[sy][sx] = i if (sy == 1): if (sx == 12): sy -= 1 else: sx += 1 else: sx -= 1 print("".join(ans[0])) print("".join(ans[1])) main()
Title: Hidden Word Time Limit: None seconds Memory Limit: None megabytes Problem Description: Let’s define a grid to be a set of tiles with 2 rows and 13 columns. Each tile has an English letter written in it. The letters don't have to be unique: there might be two or more tiles with the same letter written on them. Here is an example of a grid: We say that two tiles are adjacent if they share a side or a corner. In the example grid above, the tile with the letter 'A' is adjacent only to the tiles with letters 'B', 'N', and 'O'. A tile is not adjacent to itself. A sequence of tiles is called a path if each tile in the sequence is adjacent to the tile which follows it (except for the last tile in the sequence, which of course has no successor). In this example, "ABC" is a path, and so is "KXWIHIJK". "MAB" is not a path because 'M' is not adjacent to 'A'. A single tile can be used more than once by a path (though the tile cannot occupy two consecutive places in the path because no tile is adjacent to itself). You’re given a string *s* which consists of 27 upper-case English letters. Each English letter occurs at least once in *s*. Find a grid that contains a path whose tiles, viewed in the order that the path visits them, form the string *s*. If there’s no solution, print "Impossible" (without the quotes). Input Specification: The only line of the input contains the string *s*, consisting of 27 upper-case English letters. Each English letter occurs at least once in *s*. Output Specification: Output two lines, each consisting of 13 upper-case English characters, representing the rows of the grid. If there are multiple solutions, print any of them. If there is no solution print "Impossible". Demo Input: ['ABCDEFGHIJKLMNOPQRSGTUVWXYZ\n', 'BUVTYZFQSNRIWOXXGJLKACPEMDH\n'] Demo Output: ['YXWVUTGHIJKLM\nZABCDEFSRQPON\n', 'Impossible\n'] Note: none
```python def main(): s = input() flag = False st = -1 fn = -1 for i in range(27): for j in range(i + 2, 27): if (s[i] == s[j]): flag = True st = i fn = j break if (not flag): print("Imossible") return s = s[st:] + s[:st] add = st fn -= st st = 0 ans = [["%"] * 13 for i in range(2)] sx = -1 sy = 1 if (fn % 2 == 0): st_ind = (fn // 2 - 1) for i in range(st_ind + 1): ans[0][st_ind - i] = s[i] for i in range(st_ind + 1): ans[1][i] = s[st_ind + 1 + i] sx = st_ind + 1 else: st_ind = (fn // 2) for i in range(st_ind + 1): ans[0][st_ind - i] = s[i] for i in range(st_ind): ans[1][i] = s[st_ind + 1 + i] sx = st_ind for i in s[fn + 1:]: ans[sy][sx] = i if (sy == 1): if (sx == 12): sy -= 1 else: sx += 1 else: sx -= 1 print("".join(ans[0])) print("".join(ans[1])) main() ```
0
602
A
Two Bases
PROGRAMMING
1,100
[ "brute force", "implementation" ]
null
null
After seeing the "ALL YOUR BASE ARE BELONG TO US" meme for the first time, numbers *X* and *Y* realised that they have different bases, which complicated their relations. You're given a number *X* represented in base *b**x* and a number *Y* represented in base *b**y*. Compare those two numbers.
The first line of the input contains two space-separated integers *n* and *b**x* (1<=≤<=*n*<=≤<=10, 2<=≤<=*b**x*<=≤<=40), where *n* is the number of digits in the *b**x*-based representation of *X*. The second line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=&lt;<=*b**x*) — the digits of *X*. They are given in the order from the most significant digit to the least significant one. The following two lines describe *Y* in the same way: the third line contains two space-separated integers *m* and *b**y* (1<=≤<=*m*<=≤<=10, 2<=≤<=*b**y*<=≤<=40, *b**x*<=≠<=*b**y*), where *m* is the number of digits in the *b**y*-based representation of *Y*, and the fourth line contains *m* space-separated integers *y*1,<=*y*2,<=...,<=*y**m* (0<=≤<=*y**i*<=&lt;<=*b**y*) — the digits of *Y*. There will be no leading zeroes. Both *X* and *Y* will be positive. All digits of both numbers are given in the standard decimal numeral system.
Output a single character (quotes for clarity): - '&lt;' if *X*<=&lt;<=*Y* - '&gt;' if *X*<=&gt;<=*Y* - '=' if *X*<==<=*Y*
[ "6 2\n1 0 1 1 1 1\n2 10\n4 7\n", "3 3\n1 0 2\n2 5\n2 4\n", "7 16\n15 15 4 0 0 7 10\n7 9\n4 8 0 3 1 5 0\n" ]
[ "=\n", "&lt;\n", "&gt;\n" ]
In the first sample, *X* = 101111<sub class="lower-index">2</sub> = 47<sub class="lower-index">10</sub> = *Y*. In the second sample, *X* = 102<sub class="lower-index">3</sub> = 21<sub class="lower-index">5</sub> and *Y* = 24<sub class="lower-index">5</sub> = 112<sub class="lower-index">3</sub>, thus *X* &lt; *Y*. In the third sample, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/603a342b0ae3e56fed542d1c50c0a5ff6ce2cbaa.png" style="max-width: 100.0%;max-height: 100.0%;"/> and *Y* = 4803150<sub class="lower-index">9</sub>. We may notice that *X* starts with much larger digits and *b*<sub class="lower-index">*x*</sub> is much larger than *b*<sub class="lower-index">*y*</sub>, so *X* is clearly larger than *Y*.
500
[ { "input": "6 2\n1 0 1 1 1 1\n2 10\n4 7", "output": "=" }, { "input": "3 3\n1 0 2\n2 5\n2 4", "output": "<" }, { "input": "7 16\n15 15 4 0 0 7 10\n7 9\n4 8 0 3 1 5 0", "output": ">" }, { "input": "2 2\n1 0\n2 3\n1 0", "output": "<" }, { "input": "2 2\n1 0\n1 3\n1", "output": ">" }, { "input": "10 2\n1 0 1 0 1 0 1 0 1 0\n10 3\n2 2 2 2 2 2 2 2 2 2", "output": "<" }, { "input": "10 16\n15 15 4 0 0 0 0 7 10 9\n7 9\n4 8 0 3 1 5 0", "output": ">" }, { "input": "5 5\n4 4 4 4 4\n4 6\n5 5 5 5", "output": ">" }, { "input": "2 8\n1 0\n4 2\n1 0 0 0", "output": "=" }, { "input": "5 2\n1 0 0 0 1\n6 8\n1 4 7 2 0 0", "output": "<" }, { "input": "6 7\n1 1 2 1 2 1\n6 6\n2 3 2 2 2 2", "output": "=" }, { "input": "9 35\n34 3 20 29 27 30 2 8 5\n7 33\n17 3 22 31 1 11 6", "output": ">" }, { "input": "1 8\n5\n9 27\n23 23 23 23 23 23 23 23 23", "output": "<" }, { "input": "4 7\n3 0 6 6\n3 11\n7 10 10", "output": ">" }, { "input": "1 40\n1\n2 5\n1 0", "output": "<" }, { "input": "1 36\n35\n4 5\n2 4 4 1", "output": "<" }, { "input": "1 30\n1\n1 31\n1", "output": "=" }, { "input": "1 3\n1\n1 2\n1", "output": "=" }, { "input": "1 2\n1\n1 40\n1", "output": "=" }, { "input": "6 29\n1 1 1 1 1 1\n10 21\n1 1 1 1 1 1 1 1 1 1", "output": "<" }, { "input": "3 5\n1 0 0\n3 3\n2 2 2", "output": "<" }, { "input": "2 8\n1 0\n2 3\n2 2", "output": "=" }, { "input": "2 4\n3 3\n2 15\n1 0", "output": "=" }, { "input": "2 35\n1 0\n2 6\n5 5", "output": "=" }, { "input": "2 6\n5 5\n2 34\n1 0", "output": ">" }, { "input": "2 7\n1 0\n2 3\n2 2", "output": "<" }, { "input": "2 2\n1 0\n1 3\n2", "output": "=" }, { "input": "2 9\n5 5\n4 3\n1 0 0 0", "output": ">" }, { "input": "1 24\n6\n3 9\n1 1 1", "output": "<" }, { "input": "5 37\n9 9 9 9 9\n6 27\n13 0 0 0 0 0", "output": "<" }, { "input": "10 2\n1 1 1 1 1 1 1 1 1 1\n10 34\n14 14 14 14 14 14 14 14 14 14", "output": "<" }, { "input": "7 26\n8 0 0 0 0 0 0\n9 9\n3 3 3 3 3 3 3 3 3", "output": ">" }, { "input": "2 40\n2 0\n5 13\n4 0 0 0 0", "output": "<" }, { "input": "1 22\n15\n10 14\n3 3 3 3 3 3 3 3 3 3", "output": "<" }, { "input": "10 22\n3 3 3 3 3 3 3 3 3 3\n3 40\n19 19 19", "output": ">" }, { "input": "2 29\n11 11\n6 26\n11 11 11 11 11 11", "output": "<" }, { "input": "5 3\n1 0 0 0 0\n4 27\n1 0 0 0", "output": "<" }, { "input": "10 3\n1 0 0 0 0 0 0 0 0 0\n8 13\n1 0 0 0 0 0 0 0", "output": "<" }, { "input": "4 20\n1 1 1 1\n5 22\n1 1 1 1 1", "output": "<" }, { "input": "10 39\n34 2 24 34 11 6 33 12 22 21\n10 36\n25 35 17 24 30 0 1 32 14 35", "output": ">" }, { "input": "10 39\n35 12 31 35 28 27 25 8 22 25\n10 40\n23 21 18 12 15 29 38 32 4 8", "output": ">" }, { "input": "10 38\n16 19 37 32 16 7 14 33 16 11\n10 39\n10 27 35 15 31 15 17 16 38 35", "output": ">" }, { "input": "10 39\n20 12 10 32 24 14 37 35 10 38\n9 40\n1 13 0 10 22 20 1 5 35", "output": ">" }, { "input": "10 40\n18 1 2 25 28 2 10 2 17 37\n10 39\n37 8 12 8 21 11 23 11 25 21", "output": "<" }, { "input": "9 39\n10 20 16 36 30 29 28 9 8\n9 38\n12 36 10 22 6 3 19 12 34", "output": "=" }, { "input": "7 39\n28 16 13 25 19 23 4\n7 38\n33 8 2 19 3 21 14", "output": "=" }, { "input": "10 16\n15 15 4 0 0 0 0 7 10 9\n10 9\n4 8 0 3 1 5 4 8 1 0", "output": ">" }, { "input": "7 22\n1 13 9 16 7 13 3\n4 4\n3 0 2 1", "output": ">" }, { "input": "10 29\n10 19 8 27 1 24 13 15 13 26\n2 28\n20 14", "output": ">" }, { "input": "6 16\n2 13 7 13 15 6\n10 22\n17 17 21 9 16 11 4 4 13 17", "output": "<" }, { "input": "8 26\n6 6 17 25 24 8 8 25\n4 27\n24 7 5 24", "output": ">" }, { "input": "10 23\n5 21 4 15 12 7 10 7 16 21\n4 17\n3 11 1 14", "output": ">" }, { "input": "10 21\n4 7 7 2 13 7 19 19 18 19\n3 31\n6 11 28", "output": ">" }, { "input": "1 30\n9\n7 37\n20 11 18 14 0 36 27", "output": "<" }, { "input": "5 35\n22 18 28 29 11\n2 3\n2 0", "output": ">" }, { "input": "7 29\n14 26 14 22 11 11 8\n6 28\n2 12 10 17 0 14", "output": ">" }, { "input": "2 37\n25 2\n3 26\n13 13 12", "output": "<" }, { "input": "8 8\n4 0 4 3 4 1 5 6\n8 24\n19 8 15 6 10 7 2 18", "output": "<" }, { "input": "4 22\n18 16 1 2\n10 26\n23 0 12 24 16 2 24 25 1 11", "output": "<" }, { "input": "7 31\n14 6 16 6 26 18 17\n7 24\n22 10 4 5 14 6 9", "output": ">" }, { "input": "10 29\n15 22 0 5 11 12 17 22 4 27\n4 22\n9 2 8 14", "output": ">" }, { "input": "2 10\n6 0\n10 26\n16 14 8 18 24 4 9 5 22 25", "output": "<" }, { "input": "7 2\n1 0 0 0 1 0 1\n9 6\n1 1 5 1 2 5 3 5 3", "output": "<" }, { "input": "3 9\n2 5 4\n1 19\n15", "output": ">" }, { "input": "6 16\n4 9 13 4 2 8\n4 10\n3 5 2 4", "output": ">" }, { "input": "2 12\n1 4\n8 16\n4 4 10 6 15 10 8 15", "output": "<" }, { "input": "3 19\n9 18 16\n4 10\n4 3 5 4", "output": "<" }, { "input": "7 3\n1 1 2 1 2 0 2\n2 2\n1 0", "output": ">" }, { "input": "3 2\n1 1 1\n1 3\n1", "output": ">" }, { "input": "4 4\n1 3 1 3\n9 3\n1 1 0 1 2 2 2 2 1", "output": "<" }, { "input": "9 3\n1 0 0 1 1 0 0 1 2\n6 4\n1 2 0 1 3 2", "output": ">" }, { "input": "3 5\n1 1 3\n10 4\n3 3 2 3 0 0 0 3 1 1", "output": "<" }, { "input": "6 4\n3 3 2 2 0 2\n6 5\n1 1 1 1 0 3", "output": ">" }, { "input": "6 5\n4 4 4 3 1 3\n7 6\n4 2 2 2 5 0 4", "output": "<" }, { "input": "2 5\n3 3\n6 6\n4 2 0 1 1 0", "output": "<" }, { "input": "10 6\n3 5 4 2 4 2 3 5 4 2\n10 7\n3 2 1 1 3 1 0 3 4 5", "output": "<" }, { "input": "9 7\n2 0 3 2 6 6 1 4 3\n9 6\n4 4 1 1 4 5 5 0 2", "output": ">" }, { "input": "1 7\n2\n4 8\n3 2 3 2", "output": "<" }, { "input": "2 8\n4 1\n1 7\n1", "output": ">" }, { "input": "1 10\n7\n3 9\n2 1 7", "output": "<" }, { "input": "9 9\n2 2 3 6 3 6 3 8 4\n6 10\n4 7 7 0 3 8", "output": ">" }, { "input": "3 11\n6 5 2\n8 10\n5 0 1 8 3 5 1 4", "output": "<" }, { "input": "6 11\n10 6 1 0 2 2\n9 10\n4 3 4 1 1 6 3 4 1", "output": "<" }, { "input": "2 19\n4 8\n8 18\n7 8 6 8 4 11 9 1", "output": "<" }, { "input": "2 24\n20 9\n10 23\n21 10 15 11 6 8 20 16 14 11", "output": "<" }, { "input": "8 36\n23 5 27 1 10 7 26 27\n10 35\n28 33 9 22 10 28 26 4 27 29", "output": "<" }, { "input": "6 37\n22 15 14 10 1 8\n6 36\n18 5 28 10 1 17", "output": ">" }, { "input": "5 38\n1 31 2 21 21\n9 37\n8 36 32 30 13 9 24 2 35", "output": "<" }, { "input": "3 39\n27 4 3\n8 38\n32 15 11 34 35 27 30 15", "output": "<" }, { "input": "2 40\n22 38\n5 39\n8 9 32 4 1", "output": "<" }, { "input": "9 37\n1 35 7 33 20 21 26 24 5\n10 40\n39 4 11 9 33 12 26 32 11 8", "output": "<" }, { "input": "4 39\n13 25 23 35\n6 38\n19 36 20 4 12 33", "output": "<" }, { "input": "5 37\n29 29 5 7 27\n3 39\n13 1 10", "output": ">" }, { "input": "7 28\n1 10 7 0 13 14 11\n6 38\n8 11 27 5 14 35", "output": "=" }, { "input": "2 34\n1 32\n2 33\n2 0", "output": "=" }, { "input": "7 5\n4 0 4 1 3 0 4\n4 35\n1 18 7 34", "output": "=" }, { "input": "9 34\n5 8 4 4 26 1 30 5 24\n10 27\n1 6 3 10 8 13 22 3 12 8", "output": "=" }, { "input": "10 36\n1 13 13 23 31 35 5 32 18 21\n9 38\n32 1 20 14 12 37 13 15 23", "output": "=" }, { "input": "10 40\n1 1 14 5 6 3 3 11 3 25\n10 39\n1 11 24 33 25 34 38 29 27 33", "output": "=" }, { "input": "9 37\n2 6 1 9 19 6 11 28 35\n9 40\n1 6 14 37 1 8 31 4 9", "output": "=" }, { "input": "4 5\n1 4 2 0\n4 4\n3 2 2 3", "output": "=" }, { "input": "6 4\n1 1 1 2 2 2\n7 3\n1 2 2 0 1 0 0", "output": "=" }, { "input": "2 5\n3 3\n5 2\n1 0 0 1 0", "output": "=" }, { "input": "1 9\n2\n1 10\n2", "output": "=" }, { "input": "6 19\n4 9 14 1 3 1\n8 10\n1 1 1 7 3 7 3 0", "output": "=" }, { "input": "7 15\n8 5 8 10 13 6 13\n8 13\n1 6 9 10 12 3 12 8", "output": "=" }, { "input": "8 18\n1 1 4 15 7 4 9 3\n8 17\n1 10 2 10 3 11 14 10", "output": "=" }, { "input": "8 21\n5 19 0 14 13 13 10 5\n10 13\n1 0 0 6 11 10 8 2 8 1", "output": "=" }, { "input": "8 28\n3 1 10 19 10 14 21 15\n8 21\n14 0 18 13 2 1 18 6", "output": ">" }, { "input": "7 34\n21 22 28 16 30 4 27\n7 26\n5 13 21 10 8 12 10", "output": ">" }, { "input": "6 26\n7 6 4 18 6 1\n6 25\n5 3 11 1 8 15", "output": ">" }, { "input": "10 31\n6 27 17 22 14 16 25 9 13 26\n10 39\n6 1 3 26 12 32 28 19 9 19", "output": "<" }, { "input": "3 5\n2 2 3\n3 6\n4 3 5", "output": "<" }, { "input": "2 24\n4 18\n2 40\n29 24", "output": "<" }, { "input": "5 38\n2 24 34 14 17\n8 34\n4 24 31 2 14 15 8 15", "output": "<" }, { "input": "9 40\n39 39 39 39 39 39 39 39 39\n6 35\n34 34 34 34 34 34", "output": ">" }, { "input": "10 40\n39 39 39 39 39 39 39 39 39 39\n10 8\n7 7 7 7 7 7 7 7 7 7", "output": ">" }, { "input": "10 40\n39 39 39 39 39 39 39 39 39 39\n10 39\n38 38 38 38 38 38 38 38 38 38", "output": ">" } ]
1,448,385,380
2,480
Python 3
OK
TESTS
118
62
0
n, bx = map(int, input().split()) summa1 = 0 s = list(map(int, input().split())) for i in range(n): a = s[i] summa1 += bx ** (n - i - 1) * a m, by = map(int, input().split()) summa2 = 0 s = list(map(int, input().split())) for i in range(m): a = s[i] summa2 += by ** (m - i - 1) * a if summa1 > summa2: print('>') elif summa2 == summa1: print('=') else: print('<')
Title: Two Bases Time Limit: None seconds Memory Limit: None megabytes Problem Description: After seeing the "ALL YOUR BASE ARE BELONG TO US" meme for the first time, numbers *X* and *Y* realised that they have different bases, which complicated their relations. You're given a number *X* represented in base *b**x* and a number *Y* represented in base *b**y*. Compare those two numbers. Input Specification: The first line of the input contains two space-separated integers *n* and *b**x* (1<=≤<=*n*<=≤<=10, 2<=≤<=*b**x*<=≤<=40), where *n* is the number of digits in the *b**x*-based representation of *X*. The second line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=&lt;<=*b**x*) — the digits of *X*. They are given in the order from the most significant digit to the least significant one. The following two lines describe *Y* in the same way: the third line contains two space-separated integers *m* and *b**y* (1<=≤<=*m*<=≤<=10, 2<=≤<=*b**y*<=≤<=40, *b**x*<=≠<=*b**y*), where *m* is the number of digits in the *b**y*-based representation of *Y*, and the fourth line contains *m* space-separated integers *y*1,<=*y*2,<=...,<=*y**m* (0<=≤<=*y**i*<=&lt;<=*b**y*) — the digits of *Y*. There will be no leading zeroes. Both *X* and *Y* will be positive. All digits of both numbers are given in the standard decimal numeral system. Output Specification: Output a single character (quotes for clarity): - '&lt;' if *X*<=&lt;<=*Y* - '&gt;' if *X*<=&gt;<=*Y* - '=' if *X*<==<=*Y* Demo Input: ['6 2\n1 0 1 1 1 1\n2 10\n4 7\n', '3 3\n1 0 2\n2 5\n2 4\n', '7 16\n15 15 4 0 0 7 10\n7 9\n4 8 0 3 1 5 0\n'] Demo Output: ['=\n', '&lt;\n', '&gt;\n'] Note: In the first sample, *X* = 101111<sub class="lower-index">2</sub> = 47<sub class="lower-index">10</sub> = *Y*. In the second sample, *X* = 102<sub class="lower-index">3</sub> = 21<sub class="lower-index">5</sub> and *Y* = 24<sub class="lower-index">5</sub> = 112<sub class="lower-index">3</sub>, thus *X* &lt; *Y*. In the third sample, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/603a342b0ae3e56fed542d1c50c0a5ff6ce2cbaa.png" style="max-width: 100.0%;max-height: 100.0%;"/> and *Y* = 4803150<sub class="lower-index">9</sub>. We may notice that *X* starts with much larger digits and *b*<sub class="lower-index">*x*</sub> is much larger than *b*<sub class="lower-index">*y*</sub>, so *X* is clearly larger than *Y*.
```python n, bx = map(int, input().split()) summa1 = 0 s = list(map(int, input().split())) for i in range(n): a = s[i] summa1 += bx ** (n - i - 1) * a m, by = map(int, input().split()) summa2 = 0 s = list(map(int, input().split())) for i in range(m): a = s[i] summa2 += by ** (m - i - 1) * a if summa1 > summa2: print('>') elif summa2 == summa1: print('=') else: print('<') ```
3
721
A
One-dimensional Japanese Crossword
PROGRAMMING
800
[ "implementation" ]
null
null
Recently Adaltik discovered japanese crosswords. Japanese crossword is a picture, represented as a table sized *a*<=×<=*b* squares, and each square is colored white or black. There are integers to the left of the rows and to the top of the columns, encrypting the corresponding row or column. The number of integers represents how many groups of black squares there are in corresponding row or column, and the integers themselves represents the number of consecutive black squares in corresponding group (you can find more detailed explanation in Wikipedia [https://en.wikipedia.org/wiki/Japanese_crossword](https://en.wikipedia.org/wiki/Japanese_crossword)). Adaltik decided that the general case of japanese crossword is too complicated and drew a row consisting of *n* squares (e.g. japanese crossword sized 1<=×<=*n*), which he wants to encrypt in the same way as in japanese crossword. Help Adaltik find the numbers encrypting the row he drew.
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the length of the row. The second line of the input contains a single string consisting of *n* characters 'B' or 'W', ('B' corresponds to black square, 'W' — to white square in the row that Adaltik drew).
The first line should contain a single integer *k* — the number of integers encrypting the row, e.g. the number of groups of black squares in the row. The second line should contain *k* integers, encrypting the row, e.g. corresponding to sizes of groups of consecutive black squares in the order from left to right.
[ "3\nBBW\n", "5\nBWBWB\n", "4\nWWWW\n", "4\nBBBB\n", "13\nWBBBBWWBWBBBW\n" ]
[ "1\n2 ", "3\n1 1 1 ", "0\n", "1\n4 ", "3\n4 1 3 " ]
The last sample case correspond to the picture in the statement.
500
[ { "input": "3\nBBW", "output": "1\n2 " }, { "input": "5\nBWBWB", "output": "3\n1 1 1 " }, { "input": "4\nWWWW", "output": "0" }, { "input": "4\nBBBB", "output": "1\n4 " }, { "input": "13\nWBBBBWWBWBBBW", "output": "3\n4 1 3 " }, { "input": "1\nB", "output": "1\n1 " }, { "input": "2\nBB", "output": "1\n2 " }, { "input": "100\nWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWB", "output": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 " }, { "input": "1\nW", "output": "0" }, { "input": "2\nWW", "output": "0" }, { "input": "2\nWB", "output": "1\n1 " }, { "input": "2\nBW", "output": "1\n1 " }, { "input": "3\nBBB", "output": "1\n3 " }, { "input": "3\nBWB", "output": "2\n1 1 " }, { "input": "3\nWBB", "output": "1\n2 " }, { "input": "3\nWWB", "output": "1\n1 " }, { "input": "3\nWBW", "output": "1\n1 " }, { "input": "3\nBWW", "output": "1\n1 " }, { "input": "3\nWWW", "output": "0" }, { "input": "100\nBBBWWWWWWBBWWBBWWWBBWBBBBBBBBBBBWBBBWBBWWWBBWWBBBWBWWBBBWWBBBWBBBBBWWWBWWBBWWWWWWBWBBWWBWWWBWBWWWWWB", "output": "21\n3 2 2 2 11 3 2 2 3 1 3 3 5 1 2 1 2 1 1 1 1 " }, { "input": "5\nBBBWB", "output": "2\n3 1 " }, { "input": "5\nBWWWB", "output": "2\n1 1 " }, { "input": "5\nWWWWB", "output": "1\n1 " }, { "input": "5\nBWWWW", "output": "1\n1 " }, { "input": "5\nBBBWW", "output": "1\n3 " }, { "input": "5\nWWBBB", "output": "1\n3 " }, { "input": "10\nBBBBBWWBBB", "output": "2\n5 3 " }, { "input": "10\nBBBBWBBWBB", "output": "3\n4 2 2 " }, { "input": "20\nBBBBBWWBWBBWBWWBWBBB", "output": "6\n5 1 2 1 1 3 " }, { "input": "20\nBBBWWWWBBWWWBWBWWBBB", "output": "5\n3 2 1 1 3 " }, { "input": "20\nBBBBBBBBWBBBWBWBWBBB", "output": "5\n8 3 1 1 3 " }, { "input": "20\nBBBWBWBWWWBBWWWWBWBB", "output": "6\n3 1 1 2 1 2 " }, { "input": "40\nBBBBBBWWWWBWBWWWBWWWWWWWWWWWBBBBBBBBBBBB", "output": "5\n6 1 1 1 12 " }, { "input": "40\nBBBBBWBWWWBBWWWBWBWWBBBBWWWWBWBWBBBBBBBB", "output": "9\n5 1 2 1 1 4 1 1 8 " }, { "input": "50\nBBBBBBBBBBBWWWWBWBWWWWBBBBBBBBWWWWWWWBWWWWBWBBBBBB", "output": "7\n11 1 1 8 1 1 6 " }, { "input": "50\nWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW", "output": "0" }, { "input": "50\nBBBBBWWWWWBWWWBWWWWWBWWWBWWWWWWBBWBBWWWWBWWWWWWWBW", "output": "9\n5 1 1 1 1 2 2 1 1 " }, { "input": "50\nWWWWBWWBWWWWWWWWWWWWWWWWWWWWWWWWWBWBWBWWWWWWWBBBBB", "output": "6\n1 1 1 1 1 5 " }, { "input": "50\nBBBBBWBWBWWBWBWWWWWWBWBWBWWWWWWWWWWWWWBWBWWWWBWWWB", "output": "12\n5 1 1 1 1 1 1 1 1 1 1 1 " }, { "input": "50\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB", "output": "1\n50 " }, { "input": "100\nBBBBBBBBBBBWBWWWWBWWBBWBBWWWWWWWWWWBWBWWBWWWWWWWWWWWBBBWWBBWWWWWBWBWWWWBWWWWWWWWWWWBWWWWWBBBBBBBBBBB", "output": "15\n11 1 1 2 2 1 1 1 3 2 1 1 1 1 11 " }, { "input": "100\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB", "output": "1\n100 " }, { "input": "100\nBBBBBBBBBBBBBBBBBBBBWBWBWWWWWBWWWWWWWWWWWWWWBBWWWBWWWWBWWBWWWWWWBWWWWWWWWWWWWWBWBBBBBBBBBBBBBBBBBBBB", "output": "11\n20 1 1 1 2 1 1 1 1 1 20 " }, { "input": "100\nBBBBWWWWWWWWWWWWWWWWWWWWWWWWWBWBWWWWWBWBWWWWWWBBWWWWWWWWWWWWBWWWWBWWWWWWWWWWWWBWWWWWWWBWWWWWWWBBBBBB", "output": "11\n4 1 1 1 1 2 1 1 1 1 6 " }, { "input": "5\nBWBWB", "output": "3\n1 1 1 " }, { "input": "10\nWWBWWWBWBB", "output": "3\n1 1 2 " }, { "input": "50\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB", "output": "1\n50 " }, { "input": "50\nBBBBBBBBBBBBBBBBBWWBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB", "output": "2\n17 31 " }, { "input": "100\nBBBBBBBBBBBBBBBBBBBBBBBBWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB", "output": "2\n24 42 " }, { "input": "90\nWWBWWBWBBWBBWWBWBWBBBWBWBBBWBWBWBWBWBWBWBWBBBBBWBBWWWWBWBBWBWWBBBWBWBWWBWBWBWBWWWWWWBWBBBB", "output": "30\n1 1 2 2 1 1 3 1 3 1 1 1 1 1 1 1 5 2 1 2 1 3 1 1 1 1 1 1 1 4 " }, { "input": "100\nBWWWBWBWBBBBBWBWWBWBWWWBWBWBWWBBWWBBBWBBBWWBWBWWBBBBWBWBBBWBWBBWWWWWWBWWBBBBWBWBWWBWBWWWBWBWWBWBWWWB", "output": "31\n1 1 1 5 1 1 1 1 1 1 2 3 3 1 1 4 1 3 1 2 1 4 1 1 1 1 1 1 1 1 1 " }, { "input": "90\nWBWBBBBBBWWWBBWWBWWWBBWWBWWWBWBBWBWBBWWWWBWBWBBWBBWBWWWBBWBBWWWWBWBBWWWBBBWBBWBWBBBBWWBWWB", "output": "25\n1 6 2 1 2 1 1 2 1 2 1 1 2 2 1 2 2 1 2 3 2 1 4 1 1 " }, { "input": "80\nBBWWBBBWBBWWWWBBWBWBBWWWWWBWBBWWBWBWBWBWBWWBWWBWWWBWBBWBBWBBWBBBWWBBBBBBBWBBBWBB", "output": "23\n2 3 2 2 1 2 1 2 1 1 1 1 1 1 1 1 2 2 2 3 7 3 2 " }, { "input": "65\nWWWWBWWWBBBBBWWWWWWBBBWWBBBBWWWWWWWWBBBWWWWBWBWWBBWWWWBWWWBBWBBBB", "output": "11\n1 5 3 4 3 1 1 2 1 2 4 " } ]
1,682,141,317
2,147,483,647
PyPy 3-64
OK
TESTS
54
124
0
input() s = [len(i) for i in input().split('W') if len(i) != 0] if len(s) == 0: print(len(s)) else: print(len(s)) print(*s)
Title: One-dimensional Japanese Crossword Time Limit: None seconds Memory Limit: None megabytes Problem Description: Recently Adaltik discovered japanese crosswords. Japanese crossword is a picture, represented as a table sized *a*<=×<=*b* squares, and each square is colored white or black. There are integers to the left of the rows and to the top of the columns, encrypting the corresponding row or column. The number of integers represents how many groups of black squares there are in corresponding row or column, and the integers themselves represents the number of consecutive black squares in corresponding group (you can find more detailed explanation in Wikipedia [https://en.wikipedia.org/wiki/Japanese_crossword](https://en.wikipedia.org/wiki/Japanese_crossword)). Adaltik decided that the general case of japanese crossword is too complicated and drew a row consisting of *n* squares (e.g. japanese crossword sized 1<=×<=*n*), which he wants to encrypt in the same way as in japanese crossword. Help Adaltik find the numbers encrypting the row he drew. Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the length of the row. The second line of the input contains a single string consisting of *n* characters 'B' or 'W', ('B' corresponds to black square, 'W' — to white square in the row that Adaltik drew). Output Specification: The first line should contain a single integer *k* — the number of integers encrypting the row, e.g. the number of groups of black squares in the row. The second line should contain *k* integers, encrypting the row, e.g. corresponding to sizes of groups of consecutive black squares in the order from left to right. Demo Input: ['3\nBBW\n', '5\nBWBWB\n', '4\nWWWW\n', '4\nBBBB\n', '13\nWBBBBWWBWBBBW\n'] Demo Output: ['1\n2 ', '3\n1 1 1 ', '0\n', '1\n4 ', '3\n4 1 3 '] Note: The last sample case correspond to the picture in the statement.
```python input() s = [len(i) for i in input().split('W') if len(i) != 0] if len(s) == 0: print(len(s)) else: print(len(s)) print(*s) ```
3
1,000
B
Light It Up
PROGRAMMING
1,500
[ "greedy" ]
null
null
Recently, you bought a brand new smart lamp with programming features. At first, you set up a schedule to the lamp. Every day it will turn power on at moment $0$ and turn power off at moment $M$. Moreover, the lamp allows you to set a program of switching its state (states are "lights on" and "lights off"). Unfortunately, some program is already installed into the lamp. The lamp allows only good programs. Good program can be represented as a non-empty array $a$, where $0 &lt; a_1 &lt; a_2 &lt; \dots &lt; a_{|a|} &lt; M$. All $a_i$ must be integers. Of course, preinstalled program is a good program. The lamp follows program $a$ in next manner: at moment $0$ turns power and light on. Then at moment $a_i$ the lamp flips its state to opposite (if it was lit, it turns off, and vice versa). The state of the lamp flips instantly: for example, if you turn the light off at moment $1$ and then do nothing, the total time when the lamp is lit will be $1$. Finally, at moment $M$ the lamp is turning its power off regardless of its state. Since you are not among those people who read instructions, and you don't understand the language it's written in, you realize (after some testing) the only possible way to alter the preinstalled program. You can insert at most one element into the program $a$, so it still should be a good program after alteration. Insertion can be done between any pair of consecutive elements of $a$, or even at the begining or at the end of $a$. Find such a way to alter the program that the total time when the lamp is lit is maximum possible. Maybe you should leave program untouched. If the lamp is lit from $x$ till moment $y$, then its lit for $y - x$ units of time. Segments of time when the lamp is lit are summed up.
First line contains two space separated integers $n$ and $M$ ($1 \le n \le 10^5$, $2 \le M \le 10^9$) — the length of program $a$ and the moment when power turns off. Second line contains $n$ space separated integers $a_1, a_2, \dots, a_n$ ($0 &lt; a_1 &lt; a_2 &lt; \dots &lt; a_n &lt; M$) — initially installed program $a$.
Print the only integer — maximum possible total time when the lamp is lit.
[ "3 10\n4 6 7\n", "2 12\n1 10\n", "2 7\n3 4\n" ]
[ "8\n", "9\n", "6\n" ]
In the first example, one of possible optimal solutions is to insert value $x = 3$ before $a_1$, so program will be $[3, 4, 6, 7]$ and time of lamp being lit equals $(3 - 0) + (6 - 4) + (10 - 7) = 8$. Other possible solution is to insert $x = 5$ in appropriate place. In the second example, there is only one optimal solution: to insert $x = 2$ between $a_1$ and $a_2$. Program will become $[1, 2, 10]$, and answer will be $(1 - 0) + (10 - 2) = 9$. In the third example, optimal answer is to leave program untouched, so answer will be $(3 - 0) + (7 - 4) = 6$.
0
[ { "input": "3 10\n4 6 7", "output": "8" }, { "input": "2 12\n1 10", "output": "9" }, { "input": "2 7\n3 4", "output": "6" }, { "input": "1 2\n1", "output": "1" }, { "input": "5 10\n1 3 5 6 8", "output": "6" }, { "input": "7 1000000000\n1 10001 10011 20011 20021 40021 40031", "output": "999999969" }, { "input": "7 1000000000\n3 10001 10011 20011 20021 40021 40031", "output": "999999969" }, { "input": "1 10\n1", "output": "9" }, { "input": "1 10000000\n1", "output": "9999999" }, { "input": "1 8\n1", "output": "7" }, { "input": "7 17\n1 5 9 10 11 14 16", "output": "9" }, { "input": "4 17\n1 5 9 10", "output": "12" }, { "input": "5 12\n1 2 3 4 5", "output": "9" }, { "input": "2 1000000000\n100 111", "output": "999999989" }, { "input": "3 90591\n90579 90580 90581", "output": "90589" }, { "input": "5 16\n1 2 3 4 5", "output": "13" }, { "input": "6 981231233\n1 6 15 30 130 1875", "output": "981229468" }, { "input": "1 3\n1", "output": "2" }, { "input": "3 12\n4 7 11", "output": "8" }, { "input": "1 100000\n1", "output": "99999" }, { "input": "2 5\n1 3", "output": "3" }, { "input": "1 1000000000\n1", "output": "999999999" }, { "input": "1 1000000000\n999999999", "output": "999999999" }, { "input": "3 4\n1 2 3", "output": "2" }, { "input": "3 5\n1 2 3", "output": "3" }, { "input": "1 4\n2", "output": "3" }, { "input": "3 5\n1 3 4", "output": "3" }, { "input": "9 20\n5 9 11 12 14 15 16 17 19", "output": "12" }, { "input": "2 4\n1 2", "output": "3" }, { "input": "1 10\n2", "output": "9" }, { "input": "2 6\n2 4", "output": "4" }, { "input": "2 4\n1 3", "output": "2" }, { "input": "3 6\n1 2 4", "output": "4" }, { "input": "7 9863\n65 96 97 98 101 112 1115", "output": "9819" } ]
1,666,247,699
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
5
1,000
13,209,600
import copy n, M = map(int, input().split()) a0 = [int(x) for x in input().split()] a0.append(M) a0 = sorted(a0, reverse=True) a0.append(0) a0 = sorted(a0) time = [] time0 = 0 for i in range(1, n+2, 2): time0 += a0[i] - a0[i-1] time.append(time0) for p in range(1, M): time1 = 0 if p not in a0: a = copy.copy(a0) a.append(p) a = sorted(a) for k in range(1, n+3, 2): time1 += a[k] - a[k-1] time.append(time1) if p in a0: time1 = time0 print(max(time))
Title: Light It Up Time Limit: None seconds Memory Limit: None megabytes Problem Description: Recently, you bought a brand new smart lamp with programming features. At first, you set up a schedule to the lamp. Every day it will turn power on at moment $0$ and turn power off at moment $M$. Moreover, the lamp allows you to set a program of switching its state (states are "lights on" and "lights off"). Unfortunately, some program is already installed into the lamp. The lamp allows only good programs. Good program can be represented as a non-empty array $a$, where $0 &lt; a_1 &lt; a_2 &lt; \dots &lt; a_{|a|} &lt; M$. All $a_i$ must be integers. Of course, preinstalled program is a good program. The lamp follows program $a$ in next manner: at moment $0$ turns power and light on. Then at moment $a_i$ the lamp flips its state to opposite (if it was lit, it turns off, and vice versa). The state of the lamp flips instantly: for example, if you turn the light off at moment $1$ and then do nothing, the total time when the lamp is lit will be $1$. Finally, at moment $M$ the lamp is turning its power off regardless of its state. Since you are not among those people who read instructions, and you don't understand the language it's written in, you realize (after some testing) the only possible way to alter the preinstalled program. You can insert at most one element into the program $a$, so it still should be a good program after alteration. Insertion can be done between any pair of consecutive elements of $a$, or even at the begining or at the end of $a$. Find such a way to alter the program that the total time when the lamp is lit is maximum possible. Maybe you should leave program untouched. If the lamp is lit from $x$ till moment $y$, then its lit for $y - x$ units of time. Segments of time when the lamp is lit are summed up. Input Specification: First line contains two space separated integers $n$ and $M$ ($1 \le n \le 10^5$, $2 \le M \le 10^9$) — the length of program $a$ and the moment when power turns off. Second line contains $n$ space separated integers $a_1, a_2, \dots, a_n$ ($0 &lt; a_1 &lt; a_2 &lt; \dots &lt; a_n &lt; M$) — initially installed program $a$. Output Specification: Print the only integer — maximum possible total time when the lamp is lit. Demo Input: ['3 10\n4 6 7\n', '2 12\n1 10\n', '2 7\n3 4\n'] Demo Output: ['8\n', '9\n', '6\n'] Note: In the first example, one of possible optimal solutions is to insert value $x = 3$ before $a_1$, so program will be $[3, 4, 6, 7]$ and time of lamp being lit equals $(3 - 0) + (6 - 4) + (10 - 7) = 8$. Other possible solution is to insert $x = 5$ in appropriate place. In the second example, there is only one optimal solution: to insert $x = 2$ between $a_1$ and $a_2$. Program will become $[1, 2, 10]$, and answer will be $(1 - 0) + (10 - 2) = 9$. In the third example, optimal answer is to leave program untouched, so answer will be $(3 - 0) + (7 - 4) = 6$.
```python import copy n, M = map(int, input().split()) a0 = [int(x) for x in input().split()] a0.append(M) a0 = sorted(a0, reverse=True) a0.append(0) a0 = sorted(a0) time = [] time0 = 0 for i in range(1, n+2, 2): time0 += a0[i] - a0[i-1] time.append(time0) for p in range(1, M): time1 = 0 if p not in a0: a = copy.copy(a0) a.append(p) a = sorted(a) for k in range(1, n+3, 2): time1 += a[k] - a[k-1] time.append(time1) if p in a0: time1 = time0 print(max(time)) ```
0
208
A
Dubstep
PROGRAMMING
900
[ "strings" ]
null
null
Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them. Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club. For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX". Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song.
The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word.
Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space.
[ "WUBWUBABCWUB\n", "WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n" ]
[ "ABC ", "WE ARE THE CHAMPIONS MY FRIEND " ]
In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya. In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
500
[ { "input": "WUBWUBABCWUB", "output": "ABC " }, { "input": "WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB", "output": "WE ARE THE CHAMPIONS MY FRIEND " }, { "input": "WUBWUBWUBSR", "output": "SR " }, { "input": "RWUBWUBWUBLWUB", "output": "R L " }, { "input": "ZJWUBWUBWUBJWUBWUBWUBL", "output": "ZJ J L " }, { "input": "CWUBBWUBWUBWUBEWUBWUBWUBQWUBWUBWUB", "output": "C B E Q " }, { "input": "WUBJKDWUBWUBWBIRAQKFWUBWUBYEWUBWUBWUBWVWUBWUB", "output": "JKD WBIRAQKF YE WV " }, { "input": "WUBKSDHEMIXUJWUBWUBRWUBWUBWUBSWUBWUBWUBHWUBWUBWUB", "output": "KSDHEMIXUJ R S H " }, { "input": "OGWUBWUBWUBXWUBWUBWUBIWUBWUBWUBKOWUBWUB", "output": "OG X I KO " }, { "input": "QWUBQQWUBWUBWUBIWUBWUBWWWUBWUBWUBJOPJPBRH", "output": "Q QQ I WW JOPJPBRH " }, { "input": "VSRNVEATZTLGQRFEGBFPWUBWUBWUBAJWUBWUBWUBPQCHNWUBCWUB", "output": "VSRNVEATZTLGQRFEGBFP AJ PQCHN C " }, { "input": "WUBWUBEWUBWUBWUBIQMJNIQWUBWUBWUBGZZBQZAUHYPWUBWUBWUBPMRWUBWUBWUBDCV", "output": "E IQMJNIQ GZZBQZAUHYP PMR DCV " }, { "input": "WUBWUBWUBFVWUBWUBWUBBPSWUBWUBWUBRXNETCJWUBWUBWUBJDMBHWUBWUBWUBBWUBWUBVWUBWUBB", "output": "FV BPS RXNETCJ JDMBH B V B " }, { "input": "WUBWUBWUBFBQWUBWUBWUBIDFSYWUBWUBWUBCTWDMWUBWUBWUBSXOWUBWUBWUBQIWUBWUBWUBL", "output": "FBQ IDFSY CTWDM SXO QI L " }, { "input": "IWUBWUBQLHDWUBYIIKZDFQWUBWUBWUBCXWUBWUBUWUBWUBWUBKWUBWUBWUBNL", "output": "I QLHD YIIKZDFQ CX U K NL " }, { "input": "KWUBUPDYXGOKUWUBWUBWUBAGOAHWUBIZDWUBWUBWUBIYWUBWUBWUBVWUBWUBWUBPWUBWUBWUBE", "output": "K UPDYXGOKU AGOAH IZD IY V P E " }, { "input": "WUBWUBOWUBWUBWUBIPVCQAFWYWUBWUBWUBQWUBWUBWUBXHDKCPYKCTWWYWUBWUBWUBVWUBWUBWUBFZWUBWUB", "output": "O IPVCQAFWY Q XHDKCPYKCTWWY V FZ " }, { "input": "PAMJGYWUBWUBWUBXGPQMWUBWUBWUBTKGSXUYWUBWUBWUBEWUBWUBWUBNWUBWUBWUBHWUBWUBWUBEWUBWUB", "output": "PAMJGY XGPQM TKGSXUY E N H E " }, { "input": "WUBYYRTSMNWUWUBWUBWUBCWUBWUBWUBCWUBWUBWUBFSYUINDWOBVWUBWUBWUBFWUBWUBWUBAUWUBWUBWUBVWUBWUBWUBJB", "output": "YYRTSMNWU C C FSYUINDWOBV F AU V JB " }, { "input": "WUBWUBYGPYEYBNRTFKOQCWUBWUBWUBUYGRTQEGWLFYWUBWUBWUBFVWUBHPWUBWUBWUBXZQWUBWUBWUBZDWUBWUBWUBM", "output": "YGPYEYBNRTFKOQC UYGRTQEGWLFY FV HP XZQ ZD M " }, { "input": "WUBZVMJWUBWUBWUBFOIMJQWKNZUBOFOFYCCWUBWUBWUBAUWWUBRDRADWUBWUBWUBCHQVWUBWUBWUBKFTWUBWUBWUBW", "output": "ZVMJ FOIMJQWKNZUBOFOFYCC AUW RDRAD CHQV KFT W " }, { "input": "WUBWUBZBKOKHQLGKRVIMZQMQNRWUBWUBWUBDACWUBWUBNZHFJMPEYKRVSWUBWUBWUBPPHGAVVPRZWUBWUBWUBQWUBWUBAWUBG", "output": "ZBKOKHQLGKRVIMZQMQNR DAC NZHFJMPEYKRVS PPHGAVVPRZ Q A G " }, { "input": "WUBWUBJWUBWUBWUBNFLWUBWUBWUBGECAWUBYFKBYJWTGBYHVSSNTINKWSINWSMAWUBWUBWUBFWUBWUBWUBOVWUBWUBLPWUBWUBWUBN", "output": "J NFL GECA YFKBYJWTGBYHVSSNTINKWSINWSMA F OV LP N " }, { "input": "WUBWUBLCWUBWUBWUBZGEQUEATJVIXETVTWUBWUBWUBEXMGWUBWUBWUBRSWUBWUBWUBVWUBWUBWUBTAWUBWUBWUBCWUBWUBWUBQG", "output": "LC ZGEQUEATJVIXETVT EXMG RS V TA C QG " }, { "input": "WUBMPWUBWUBWUBORWUBWUBDLGKWUBWUBWUBVVZQCAAKVJTIKWUBWUBWUBTJLUBZJCILQDIFVZWUBWUBYXWUBWUBWUBQWUBWUBWUBLWUB", "output": "MP OR DLGK VVZQCAAKVJTIK TJLUBZJCILQDIFVZ YX Q L " }, { "input": "WUBNXOLIBKEGXNWUBWUBWUBUWUBGITCNMDQFUAOVLWUBWUBWUBAIJDJZJHFMPVTPOXHPWUBWUBWUBISCIOWUBWUBWUBGWUBWUBWUBUWUB", "output": "NXOLIBKEGXN U GITCNMDQFUAOVL AIJDJZJHFMPVTPOXHP ISCIO G U " }, { "input": "WUBWUBNMMWCZOLYPNBELIYVDNHJUNINWUBWUBWUBDXLHYOWUBWUBWUBOJXUWUBWUBWUBRFHTGJCEFHCGWARGWUBWUBWUBJKWUBWUBSJWUBWUB", "output": "NMMWCZOLYPNBELIYVDNHJUNIN DXLHYO OJXU RFHTGJCEFHCGWARG JK SJ " }, { "input": "SGWLYSAUJOJBNOXNWUBWUBWUBBOSSFWKXPDPDCQEWUBWUBWUBDIRZINODWUBWUBWUBWWUBWUBWUBPPHWUBWUBWUBRWUBWUBWUBQWUBWUBWUBJWUB", "output": "SGWLYSAUJOJBNOXN BOSSFWKXPDPDCQE DIRZINOD W PPH R Q J " }, { "input": "TOWUBWUBWUBGBTBNWUBWUBWUBJVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSAWUBWUBWUBSWUBWUBWUBTOLVXWUBWUBWUBNHWUBWUBWUBO", "output": "TO GBTBN JVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSA S TOLVX NH O " }, { "input": "WUBWUBWSPLAYSZSAUDSWUBWUBWUBUWUBWUBWUBKRWUBWUBWUBRSOKQMZFIYZQUWUBWUBWUBELSHUWUBWUBWUBUKHWUBWUBWUBQXEUHQWUBWUBWUBBWUBWUBWUBR", "output": "WSPLAYSZSAUDS U KR RSOKQMZFIYZQU ELSHU UKH QXEUHQ B R " }, { "input": "WUBXEMWWVUHLSUUGRWUBWUBWUBAWUBXEGILZUNKWUBWUBWUBJDHHKSWUBWUBWUBDTSUYSJHWUBWUBWUBPXFWUBMOHNJWUBWUBWUBZFXVMDWUBWUBWUBZMWUBWUB", "output": "XEMWWVUHLSUUGR A XEGILZUNK JDHHKS DTSUYSJH PXF MOHNJ ZFXVMD ZM " }, { "input": "BMBWUBWUBWUBOQKWUBWUBWUBPITCIHXHCKLRQRUGXJWUBWUBWUBVWUBWUBWUBJCWUBWUBWUBQJPWUBWUBWUBBWUBWUBWUBBMYGIZOOXWUBWUBWUBTAGWUBWUBHWUB", "output": "BMB OQK PITCIHXHCKLRQRUGXJ V JC QJP B BMYGIZOOX TAG H " }, { "input": "CBZNWUBWUBWUBNHWUBWUBWUBYQSYWUBWUBWUBMWUBWUBWUBXRHBTMWUBWUBWUBPCRCWUBWUBWUBTZUYLYOWUBWUBWUBCYGCWUBWUBWUBCLJWUBWUBWUBSWUBWUBWUB", "output": "CBZN NH YQSY M XRHBTM PCRC TZUYLYO CYGC CLJ S " }, { "input": "DPDWUBWUBWUBEUQKWPUHLTLNXHAEKGWUBRRFYCAYZFJDCJLXBAWUBWUBWUBHJWUBOJWUBWUBWUBNHBJEYFWUBWUBWUBRWUBWUBWUBSWUBWWUBWUBWUBXDWUBWUBWUBJWUB", "output": "DPD EUQKWPUHLTLNXHAEKG RRFYCAYZFJDCJLXBA HJ OJ NHBJEYF R S W XD J " }, { "input": "WUBWUBWUBISERPQITVIYERSCNWUBWUBWUBQWUBWUBWUBDGSDIPWUBWUBWUBCAHKDZWEXBIBJVVSKKVQJWUBWUBWUBKIWUBWUBWUBCWUBWUBWUBAWUBWUBWUBPWUBWUBWUBHWUBWUBWUBF", "output": "ISERPQITVIYERSCN Q DGSDIP CAHKDZWEXBIBJVVSKKVQJ KI C A P H F " }, { "input": "WUBWUBWUBIWUBWUBLIKNQVWUBWUBWUBPWUBWUBWUBHWUBWUBWUBMWUBWUBWUBDPRSWUBWUBWUBBSAGYLQEENWXXVWUBWUBWUBXMHOWUBWUBWUBUWUBWUBWUBYRYWUBWUBWUBCWUBWUBWUBY", "output": "I LIKNQV P H M DPRS BSAGYLQEENWXXV XMHO U YRY C Y " }, { "input": "WUBWUBWUBMWUBWUBWUBQWUBWUBWUBITCFEYEWUBWUBWUBHEUWGNDFNZGWKLJWUBWUBWUBMZPWUBWUBWUBUWUBWUBWUBBWUBWUBWUBDTJWUBHZVIWUBWUBWUBPWUBFNHHWUBWUBWUBVTOWUB", "output": "M Q ITCFEYE HEUWGNDFNZGWKLJ MZP U B DTJ HZVI P FNHH VTO " }, { "input": "WUBWUBNDNRFHYJAAUULLHRRDEDHYFSRXJWUBWUBWUBMUJVDTIRSGYZAVWKRGIFWUBWUBWUBHMZWUBWUBWUBVAIWUBWUBWUBDDKJXPZRGWUBWUBWUBSGXWUBWUBWUBIFKWUBWUBWUBUWUBWUBWUBW", "output": "NDNRFHYJAAUULLHRRDEDHYFSRXJ MUJVDTIRSGYZAVWKRGIF HMZ VAI DDKJXPZRG SGX IFK U W " }, { "input": "WUBOJMWRSLAXXHQRTPMJNCMPGWUBWUBWUBNYGMZIXNLAKSQYWDWUBWUBWUBXNIWUBWUBWUBFWUBWUBWUBXMBWUBWUBWUBIWUBWUBWUBINWUBWUBWUBWDWUBWUBWUBDDWUBWUBWUBD", "output": "OJMWRSLAXXHQRTPMJNCMPG NYGMZIXNLAKSQYWD XNI F XMB I IN WD DD D " }, { "input": "WUBWUBWUBREHMWUBWUBWUBXWUBWUBWUBQASNWUBWUBWUBNLSMHLCMTICWUBWUBWUBVAWUBWUBWUBHNWUBWUBWUBNWUBWUBWUBUEXLSFOEULBWUBWUBWUBXWUBWUBWUBJWUBWUBWUBQWUBWUBWUBAWUBWUB", "output": "REHM X QASN NLSMHLCMTIC VA HN N UEXLSFOEULB X J Q A " }, { "input": "WUBWUBWUBSTEZTZEFFIWUBWUBWUBSWUBWUBWUBCWUBFWUBHRJPVWUBWUBWUBDYJUWUBWUBWUBPWYDKCWUBWUBWUBCWUBWUBWUBUUEOGCVHHBWUBWUBWUBEXLWUBWUBWUBVCYWUBWUBWUBMWUBWUBWUBYWUB", "output": "STEZTZEFFI S C F HRJPV DYJU PWYDKC C UUEOGCVHHB EXL VCY M Y " }, { "input": "WPPNMSQOQIWUBWUBWUBPNQXWUBWUBWUBHWUBWUBWUBNFLWUBWUBWUBGWSGAHVJFNUWUBWUBWUBFWUBWUBWUBWCMLRICFSCQQQTNBWUBWUBWUBSWUBWUBWUBKGWUBWUBWUBCWUBWUBWUBBMWUBWUBWUBRWUBWUB", "output": "WPPNMSQOQI PNQX H NFL GWSGAHVJFNU F WCMLRICFSCQQQTNB S KG C BM R " }, { "input": "YZJOOYITZRARKVFYWUBWUBRZQGWUBWUBWUBUOQWUBWUBWUBIWUBWUBWUBNKVDTBOLETKZISTWUBWUBWUBWLWUBQQFMMGSONZMAWUBZWUBWUBWUBQZUXGCWUBWUBWUBIRZWUBWUBWUBLTTVTLCWUBWUBWUBY", "output": "YZJOOYITZRARKVFY RZQG UOQ I NKVDTBOLETKZIST WL QQFMMGSONZMA Z QZUXGC IRZ LTTVTLC Y " }, { "input": "WUBCAXNCKFBVZLGCBWCOAWVWOFKZVQYLVTWUBWUBWUBNLGWUBWUBWUBAMGDZBDHZMRMQMDLIRMIWUBWUBWUBGAJSHTBSWUBWUBWUBCXWUBWUBWUBYWUBZLXAWWUBWUBWUBOHWUBWUBWUBZWUBWUBWUBGBWUBWUBWUBE", "output": "CAXNCKFBVZLGCBWCOAWVWOFKZVQYLVT NLG AMGDZBDHZMRMQMDLIRMI GAJSHTBS CX Y ZLXAW OH Z GB E " }, { "input": "WUBWUBCHXSOWTSQWUBWUBWUBCYUZBPBWUBWUBWUBSGWUBWUBWKWORLRRLQYUUFDNWUBWUBWUBYYGOJNEVEMWUBWUBWUBRWUBWUBWUBQWUBWUBWUBIHCKWUBWUBWUBKTWUBWUBWUBRGSNTGGWUBWUBWUBXCXWUBWUBWUBS", "output": "CHXSOWTSQ CYUZBPB SG WKWORLRRLQYUUFDN YYGOJNEVEM R Q IHCK KT RGSNTGG XCX S " }, { "input": "WUBWUBWUBHJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQWUBWUBWUBXTZKGIITWUBWUBWUBAWUBWUBWUBVNCXPUBCQWUBWUBWUBIDPNAWUBWUBWUBOWUBWUBWUBYGFWUBWUBWUBMQOWUBWUBWUBKWUBWUBWUBAZVWUBWUBWUBEP", "output": "HJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQ XTZKGIIT A VNCXPUBCQ IDPNA O YGF MQO K AZV EP " }, { "input": "WUBKYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTVWUBWUBWUBLRMIIWUBWUBWUBGWUBWUBWUBADPSWUBWUBWUBANBWUBWUBPCWUBWUBWUBPWUBWUBWUBGPVNLSWIRFORYGAABUXMWUBWUBWUBOWUBWUBWUBNWUBWUBWUBYWUBWUB", "output": "KYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTV LRMII G ADPS ANB PC P GPVNLSWIRFORYGAABUXM O N Y " }, { "input": "REWUBWUBWUBJDWUBWUBWUBNWUBWUBWUBTWWUBWUBWUBWZDOCKKWUBWUBWUBLDPOVBFRCFWUBWUBAKZIBQKEUAZEEWUBWUBWUBLQYPNPFWUBYEWUBWUBWUBFWUBWUBWUBBPWUBWUBWUBAWWUBWUBWUBQWUBWUBWUBBRWUBWUBWUBXJL", "output": "RE JD N TW WZDOCKK LDPOVBFRCF AKZIBQKEUAZEE LQYPNPF YE F BP AW Q BR XJL " }, { "input": "CUFGJDXGMWUBWUBWUBOMWUBWUBWUBSIEWUBWUBWUBJJWKNOWUBWUBWUBYBHVNRNORGYWUBWUBWUBOAGCAWUBWUBWUBSBLBKTPFKPBIWUBWUBWUBJBWUBWUBWUBRMFCJPGWUBWUBWUBDWUBWUBWUBOJOWUBWUBWUBZPWUBWUBWUBMWUBRWUBWUBWUBFXWWUBWUBWUBO", "output": "CUFGJDXGM OM SIE JJWKNO YBHVNRNORGY OAGCA SBLBKTPFKPBI JB RMFCJPG D OJO ZP M R FXW O " }, { "input": "WUBJZGAEXFMFEWMAKGQLUWUBWUBWUBICYTPQWGENELVYWANKUOJYWUBWUBWUBGWUBWUBWUBHYCJVLPHTUPNEGKCDGQWUBWUBWUBOFWUBWUBWUBCPGSOGZBRPRPVJJEWUBWUBWUBDQBCWUBWUBWUBHWUBWUBWUBMHOHYBMATWUBWUBWUBVWUBWUBWUBSWUBWUBWUBKOWU", "output": "JZGAEXFMFEWMAKGQLU ICYTPQWGENELVYWANKUOJY G HYCJVLPHTUPNEGKCDGQ OF CPGSOGZBRPRPVJJE DQBC H MHOHYBMAT V S KOWU " }, { "input": "A", "output": "A " }, { "input": "WUBA", "output": "A " }, { "input": "WUBWUBA", "output": "A " }, { "input": "AWUBWUBWUB", "output": "A " }, { "input": "AWUBBWUBCWUBD", "output": "A B C D " }, { "input": "WUBWWUBWUBWUBUWUBWUBBWUB", "output": "W U B " }, { "input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA " }, { "input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA " }, { "input": "WUWUBBWWUBUB", "output": "WU BW UB " }, { "input": "WUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUABWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUB", "output": "WUAB " }, { "input": "ZWUB", "output": "Z " }, { "input": "WU", "output": "WU " }, { "input": "UB", "output": "UB " }, { "input": "U", "output": "U " }, { "input": "WUBW", "output": "W " }, { "input": "WUBWU", "output": "WU " }, { "input": "WUWUB", "output": "WU " }, { "input": "UBWUB", "output": "UB " }, { "input": "WUWUBUBWUBUWUB", "output": "WU UB U " }, { "input": "WUBWWUBAWUB", "output": "W A " }, { "input": "WUUUUU", "output": "WUUUUU " } ]
1,699,546,369
2,147,483,647
PyPy 3
OK
TESTS
71
184
0
s=input() l=s.split("WUB") print(" ".join(l).strip())
Title: Dubstep Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them. Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club. For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX". Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song. Input Specification: The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word. Output Specification: Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space. Demo Input: ['WUBWUBABCWUB\n', 'WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n'] Demo Output: ['ABC ', 'WE ARE THE CHAMPIONS MY FRIEND '] Note: In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya. In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
```python s=input() l=s.split("WUB") print(" ".join(l).strip()) ```
3
134
A
Average Numbers
PROGRAMMING
1,200
[ "brute force", "implementation" ]
null
null
You are given a sequence of positive integers *a*1,<=*a*2,<=...,<=*a**n*. Find all such indices *i*, that the *i*-th element equals the arithmetic mean of all other elements (that is all elements except for this one).
The first line contains the integer *n* (2<=≤<=*n*<=≤<=2·105). The second line contains elements of the sequence *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000). All the elements are positive integers.
Print on the first line the number of the sought indices. Print on the second line the sought indices in the increasing order. All indices are integers from 1 to *n*. If the sought elements do not exist, then the first output line should contain number 0. In this case you may either not print the second line or print an empty line.
[ "5\n1 2 3 4 5\n", "4\n50 50 50 50\n" ]
[ "1\n3 ", "4\n1 2 3 4 " ]
none
500
[ { "input": "5\n1 2 3 4 5", "output": "1\n3 " }, { "input": "4\n50 50 50 50", "output": "4\n1 2 3 4 " }, { "input": "3\n2 3 1", "output": "1\n1 " }, { "input": "2\n4 2", "output": "0" }, { "input": "2\n1 1", "output": "2\n1 2 " }, { "input": "10\n3 3 3 3 3 4 3 3 3 2", "output": "8\n1 2 3 4 5 7 8 9 " }, { "input": "10\n15 7 10 7 7 7 4 4 7 2", "output": "5\n2 4 5 6 9 " }, { "input": "6\n2 2 2 2 2 2", "output": "6\n1 2 3 4 5 6 " }, { "input": "6\n3 3 3 3 3 3", "output": "6\n1 2 3 4 5 6 " }, { "input": "4\n6 6 6 7", "output": "0" }, { "input": "2\n1 2", "output": "0" }, { "input": "3\n3 3 4", "output": "0" }, { "input": "5\n7 6 6 6 6", "output": "0" }, { "input": "4\n3 5 5 9", "output": "0" }, { "input": "3\n99 100 99", "output": "0" }, { "input": "4\n5 6 5 5", "output": "0" }, { "input": "6\n1 1 2 1 1 1", "output": "0" }, { "input": "2\n4 5", "output": "0" }, { "input": "4\n1 1 1 2", "output": "0" }, { "input": "3\n1 2 4", "output": "0" }, { "input": "6\n1 1 2 3 3 3", "output": "0" }, { "input": "4\n4 5 5 4", "output": "0" }, { "input": "3\n2 3 5", "output": "0" }, { "input": "3\n2 1 1", "output": "0" }, { "input": "3\n1 1 2", "output": "0" }, { "input": "4\n1 2 3 4", "output": "0" }, { "input": "5\n1 2 3 4 6", "output": "0" }, { "input": "3\n2 2 3", "output": "0" }, { "input": "4\n3 4 5 1", "output": "0" }, { "input": "3\n2 3 2", "output": "0" }, { "input": "3\n3 4 4", "output": "0" }, { "input": "3\n10 5 7", "output": "0" }, { "input": "3\n5 6 5", "output": "0" }, { "input": "4\n1 2 3 7", "output": "0" }, { "input": "5\n2 2 3 3 3", "output": "0" }, { "input": "3\n4 3 6", "output": "0" }, { "input": "3\n1 1 3", "output": "0" }, { "input": "15\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "15\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 " } ]
1,687,707,886
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
7
1,000
512,000
n=int(input()) A=list(map(int,input().strip().split())) B=[] sum=0 C=[] D=[] for i in range(0,len(A)): for j in range(0,len(A)): if i==j: continue else: sum+=A[j] B.append(sum/(len(A)-1)) sum=0 if A[i]==B[i]: C.append(i+1) print(len(C)) for i in C: print(i,end=" ")
Title: Average Numbers Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a sequence of positive integers *a*1,<=*a*2,<=...,<=*a**n*. Find all such indices *i*, that the *i*-th element equals the arithmetic mean of all other elements (that is all elements except for this one). Input Specification: The first line contains the integer *n* (2<=≤<=*n*<=≤<=2·105). The second line contains elements of the sequence *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1000). All the elements are positive integers. Output Specification: Print on the first line the number of the sought indices. Print on the second line the sought indices in the increasing order. All indices are integers from 1 to *n*. If the sought elements do not exist, then the first output line should contain number 0. In this case you may either not print the second line or print an empty line. Demo Input: ['5\n1 2 3 4 5\n', '4\n50 50 50 50\n'] Demo Output: ['1\n3 ', '4\n1 2 3 4 '] Note: none
```python n=int(input()) A=list(map(int,input().strip().split())) B=[] sum=0 C=[] D=[] for i in range(0,len(A)): for j in range(0,len(A)): if i==j: continue else: sum+=A[j] B.append(sum/(len(A)-1)) sum=0 if A[i]==B[i]: C.append(i+1) print(len(C)) for i in C: print(i,end=" ") ```
0
271
A
Beautiful Year
PROGRAMMING
800
[ "brute force" ]
null
null
It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is the first year after the old 1987 with only distinct digits. Now you are suggested to solve the following problem: given a year number, find the minimum year number which is strictly larger than the given one and has only distinct digits.
The single line contains integer *y* (1000<=≤<=*y*<=≤<=9000) — the year number.
Print a single integer — the minimum year number that is strictly larger than *y* and all it's digits are distinct. It is guaranteed that the answer exists.
[ "1987\n", "2013\n" ]
[ "2013\n", "2014\n" ]
none
500
[ { "input": "1987", "output": "2013" }, { "input": "2013", "output": "2014" }, { "input": "1000", "output": "1023" }, { "input": "1001", "output": "1023" }, { "input": "1234", "output": "1235" }, { "input": "5555", "output": "5601" }, { "input": "9000", "output": "9012" }, { "input": "1111", "output": "1203" }, { "input": "8999", "output": "9012" }, { "input": "4572", "output": "4573" }, { "input": "6666", "output": "6701" }, { "input": "2001", "output": "2013" }, { "input": "3000", "output": "3012" }, { "input": "7712", "output": "7801" }, { "input": "8088", "output": "8091" }, { "input": "1594", "output": "1596" }, { "input": "6016", "output": "6017" }, { "input": "8800", "output": "8901" }, { "input": "3331", "output": "3401" }, { "input": "5090", "output": "5091" }, { "input": "2342", "output": "2345" }, { "input": "2334", "output": "2340" }, { "input": "1123", "output": "1203" }, { "input": "8989", "output": "9012" }, { "input": "8977", "output": "9012" }, { "input": "6869", "output": "6870" }, { "input": "8999", "output": "9012" } ]
1,694,836,338
2,147,483,647
Python 3
OK
TESTS
27
92
0
y = int(input()) while True: y += 1 s = str(y) flag = True for i in range(len(s)): for j in range(i+1, len(s)): if s[i] == s[j]: flag = False break if not flag: break if flag: print(y) break
Title: Beautiful Year Time Limit: None seconds Memory Limit: None megabytes Problem Description: It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is the first year after the old 1987 with only distinct digits. Now you are suggested to solve the following problem: given a year number, find the minimum year number which is strictly larger than the given one and has only distinct digits. Input Specification: The single line contains integer *y* (1000<=≤<=*y*<=≤<=9000) — the year number. Output Specification: Print a single integer — the minimum year number that is strictly larger than *y* and all it's digits are distinct. It is guaranteed that the answer exists. Demo Input: ['1987\n', '2013\n'] Demo Output: ['2013\n', '2014\n'] Note: none
```python y = int(input()) while True: y += 1 s = str(y) flag = True for i in range(len(s)): for j in range(i+1, len(s)): if s[i] == s[j]: flag = False break if not flag: break if flag: print(y) break ```
3
387
A
George and Sleep
PROGRAMMING
900
[ "implementation" ]
null
null
George woke up and saw the current time *s* on the digital clock. Besides, George knows that he has slept for time *t*. Help George! Write a program that will, given time *s* and *t*, determine the time *p* when George went to bed. Note that George could have gone to bed yesterday relatively to the current time (see the second test sample).
The first line contains current time *s* as a string in the format "hh:mm". The second line contains time *t* in the format "hh:mm" — the duration of George's sleep. It is guaranteed that the input contains the correct time in the 24-hour format, that is, 00<=≤<=*hh*<=≤<=23, 00<=≤<=*mm*<=≤<=59.
In the single line print time *p* — the time George went to bed in the format similar to the format of the time in the input.
[ "05:50\n05:44\n", "00:00\n01:00\n", "00:01\n00:00\n" ]
[ "00:06\n", "23:00\n", "00:01\n" ]
In the first sample George went to bed at "00:06". Note that you should print the time only in the format "00:06". That's why answers "0:06", "00:6" and others will be considered incorrect. In the second sample, George went to bed yesterday. In the third sample, George didn't do to bed at all.
500
[ { "input": "05:50\n05:44", "output": "00:06" }, { "input": "00:00\n01:00", "output": "23:00" }, { "input": "00:01\n00:00", "output": "00:01" }, { "input": "23:59\n23:59", "output": "00:00" }, { "input": "23:44\n23:55", "output": "23:49" }, { "input": "00:00\n13:12", "output": "10:48" }, { "input": "12:00\n23:59", "output": "12:01" }, { "input": "12:44\n12:44", "output": "00:00" }, { "input": "05:55\n07:12", "output": "22:43" }, { "input": "07:12\n05:55", "output": "01:17" }, { "input": "22:22\n22:22", "output": "00:00" }, { "input": "22:22\n22:23", "output": "23:59" }, { "input": "23:24\n23:23", "output": "00:01" }, { "input": "00:00\n00:00", "output": "00:00" }, { "input": "23:30\n00:00", "output": "23:30" }, { "input": "01:00\n00:00", "output": "01:00" }, { "input": "05:44\n06:00", "output": "23:44" }, { "input": "00:00\n23:59", "output": "00:01" }, { "input": "21:00\n01:00", "output": "20:00" }, { "input": "21:21\n12:21", "output": "09:00" }, { "input": "12:21\n21:12", "output": "15:09" }, { "input": "12:33\n23:33", "output": "13:00" }, { "input": "07:55\n05:53", "output": "02:02" }, { "input": "19:30\n02:00", "output": "17:30" }, { "input": "21:30\n02:00", "output": "19:30" }, { "input": "19:30\n09:30", "output": "10:00" }, { "input": "13:08\n00:42", "output": "12:26" }, { "input": "13:04\n09:58", "output": "03:06" }, { "input": "21:21\n23:06", "output": "22:15" }, { "input": "20:53\n10:23", "output": "10:30" }, { "input": "12:59\n00:45", "output": "12:14" }, { "input": "12:39\n22:21", "output": "14:18" }, { "input": "21:10\n13:50", "output": "07:20" }, { "input": "03:38\n23:46", "output": "03:52" }, { "input": "03:48\n00:41", "output": "03:07" }, { "input": "07:43\n12:27", "output": "19:16" }, { "input": "03:23\n08:52", "output": "18:31" }, { "input": "16:04\n10:28", "output": "05:36" }, { "input": "12:53\n08:37", "output": "04:16" }, { "input": "13:43\n17:23", "output": "20:20" }, { "input": "00:00\n00:01", "output": "23:59" }, { "input": "10:10\n01:01", "output": "09:09" }, { "input": "10:05\n00:00", "output": "10:05" }, { "input": "09:09\n00:00", "output": "09:09" }, { "input": "09:10\n00:01", "output": "09:09" }, { "input": "23:24\n00:28", "output": "22:56" }, { "input": "10:00\n01:00", "output": "09:00" } ]
1,445,198,580
2,147,483,647
PyPy 3
OK
TESTS
47
108
307,200
s = [int(x) for x in input().split(":")] t = [int(x) for x in input().split(":")] s1 = s[0] * 60 + s[1] + 1440 t1 = t[0] * 60 + t[1] p = (s1 - t1) % 1440 print("0" * (2 - len(str(p // 60))) + str(p // 60) + ":" + "0" * (2 - len(str(p % 60))) + str(p % 60))
Title: George and Sleep Time Limit: None seconds Memory Limit: None megabytes Problem Description: George woke up and saw the current time *s* on the digital clock. Besides, George knows that he has slept for time *t*. Help George! Write a program that will, given time *s* and *t*, determine the time *p* when George went to bed. Note that George could have gone to bed yesterday relatively to the current time (see the second test sample). Input Specification: The first line contains current time *s* as a string in the format "hh:mm". The second line contains time *t* in the format "hh:mm" — the duration of George's sleep. It is guaranteed that the input contains the correct time in the 24-hour format, that is, 00<=≤<=*hh*<=≤<=23, 00<=≤<=*mm*<=≤<=59. Output Specification: In the single line print time *p* — the time George went to bed in the format similar to the format of the time in the input. Demo Input: ['05:50\n05:44\n', '00:00\n01:00\n', '00:01\n00:00\n'] Demo Output: ['00:06\n', '23:00\n', '00:01\n'] Note: In the first sample George went to bed at "00:06". Note that you should print the time only in the format "00:06". That's why answers "0:06", "00:6" and others will be considered incorrect. In the second sample, George went to bed yesterday. In the third sample, George didn't do to bed at all.
```python s = [int(x) for x in input().split(":")] t = [int(x) for x in input().split(":")] s1 = s[0] * 60 + s[1] + 1440 t1 = t[0] * 60 + t[1] p = (s1 - t1) % 1440 print("0" * (2 - len(str(p // 60))) + str(p // 60) + ":" + "0" * (2 - len(str(p % 60))) + str(p % 60)) ```
3
660
A
Co-prime Array
PROGRAMMING
1,200
[ "greedy", "implementation", "math", "number theory" ]
null
null
You are given an array of *n* elements, you must make it a co-prime array in as few moves as possible. In each move you can insert any positive integral number you want not greater than 109 in any place in the array. An array is co-prime if any two adjacent numbers of it are co-prime. In the number theory, two integers *a* and *b* are said to be co-prime if the only positive integer that divides both of them is 1.
The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of elements in the given array. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=109) — the elements of the array *a*.
Print integer *k* on the first line — the least number of elements needed to add to the array *a* to make it co-prime. The second line should contain *n*<=+<=*k* integers *a**j* — the elements of the array *a* after adding *k* elements to it. Note that the new array should be co-prime, so any two adjacent values should be co-prime. Also the new array should be got from the original array *a* by adding *k* elements to it. If there are multiple answers you can print any one of them.
[ "3\n2 7 28\n" ]
[ "1\n2 7 9 28\n" ]
none
0
[ { "input": "3\n2 7 28", "output": "1\n2 7 1 28" }, { "input": "1\n1", "output": "0\n1" }, { "input": "1\n548", "output": "0\n548" }, { "input": "1\n963837006", "output": "0\n963837006" }, { "input": "10\n1 1 1 1 1 1 1 1 1 1", "output": "0\n1 1 1 1 1 1 1 1 1 1" }, { "input": "10\n26 723 970 13 422 968 875 329 234 983", "output": "2\n26 723 970 13 422 1 968 875 1 329 234 983" }, { "input": "10\n319645572 758298525 812547177 459359946 355467212 304450522 807957797 916787906 239781206 242840396", "output": "7\n319645572 1 758298525 1 812547177 1 459359946 1 355467212 1 304450522 807957797 916787906 1 239781206 1 242840396" }, { "input": "100\n1 1 1 1 2 1 1 1 1 1 2 2 1 1 2 1 2 1 1 1 2 1 1 2 1 2 1 1 2 2 2 1 1 2 1 1 1 2 2 2 1 1 1 2 1 2 2 1 2 1 1 2 2 1 2 1 2 1 2 2 1 1 1 2 1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 2 1 2 1", "output": "19\n1 1 1 1 2 1 1 1 1 1 2 1 2 1 1 2 1 2 1 1 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 1 1 2 1 2 1 2 1 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2 1" }, { "input": "100\n591 417 888 251 792 847 685 3 182 461 102 348 555 956 771 901 712 878 580 631 342 333 285 899 525 725 537 718 929 653 84 788 104 355 624 803 253 853 201 995 536 184 65 205 540 652 549 777 248 405 677 950 431 580 600 846 328 429 134 983 526 103 500 963 400 23 276 704 570 757 410 658 507 620 984 244 486 454 802 411 985 303 635 283 96 597 855 775 139 839 839 61 219 986 776 72 729 69 20 917", "output": "38\n591 1 417 1 888 251 792 1 847 685 3 182 461 102 1 348 1 555 956 771 901 712 1 878 1 580 631 342 1 333 1 285 899 525 1 725 537 718 929 653 84 1 788 1 104 355 624 803 1 253 853 201 995 536 1 184 65 1 205 1 540 1 652 549 1 777 248 405 677 950 431 580 1 600 1 846 1 328 429 134 983 526 103 500 963 400 23 1 276 1 704 1 570 757 410 1 658 507 620 1 984 1 244 1 486 1 454 1 802 411 985 303 635 283 96 1 597 1 855 1 775 139 839 1 839 61 219 986 1 776 1 72 1 729 1 69 20 917" }, { "input": "5\n472882027 472882027 472882027 472882027 472882027", "output": "4\n472882027 1 472882027 1 472882027 1 472882027 1 472882027" }, { "input": "2\n1000000000 1000000000", "output": "1\n1000000000 1 1000000000" }, { "input": "2\n8 6", "output": "1\n8 1 6" }, { "input": "3\n100000000 1000000000 1000000000", "output": "2\n100000000 1 1000000000 1 1000000000" }, { "input": "5\n1 2 3 4 5", "output": "0\n1 2 3 4 5" }, { "input": "20\n2 1000000000 2 1000000000 2 1000000000 2 1000000000 2 1000000000 2 1000000000 2 1000000000 2 1000000000 2 1000000000 2 1000000000", "output": "19\n2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000" }, { "input": "2\n223092870 23", "output": "1\n223092870 1 23" }, { "input": "2\n100000003 100000003", "output": "1\n100000003 1 100000003" }, { "input": "2\n999999937 999999937", "output": "1\n999999937 1 999999937" }, { "input": "4\n999 999999937 999999937 999", "output": "1\n999 999999937 1 999999937 999" }, { "input": "2\n999999929 999999929", "output": "1\n999999929 1 999999929" }, { "input": "2\n1049459 2098918", "output": "1\n1049459 1 2098918" }, { "input": "2\n352229 704458", "output": "1\n352229 1 704458" }, { "input": "2\n7293 4011", "output": "1\n7293 1 4011" }, { "input": "2\n5565651 3999930", "output": "1\n5565651 1 3999930" }, { "input": "2\n997 997", "output": "1\n997 1 997" }, { "input": "3\n9994223 9994223 9994223", "output": "2\n9994223 1 9994223 1 9994223" }, { "input": "2\n99999998 1000000000", "output": "1\n99999998 1 1000000000" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "2\n1000000000 1 1000000000 1 1000000000" }, { "input": "2\n130471 130471", "output": "1\n130471 1 130471" }, { "input": "3\n1000000000 2 2", "output": "2\n1000000000 1 2 1 2" }, { "input": "2\n223092870 66526", "output": "1\n223092870 1 66526" }, { "input": "14\n1000000000 1000000000 223092870 223092870 6 105 2 2 510510 510510 999999491 999999491 436077930 570018449", "output": "10\n1000000000 1 1000000000 1 223092870 1 223092870 1 6 1 105 2 1 2 1 510510 1 510510 999999491 1 999999491 436077930 1 570018449" }, { "input": "2\n3996017 3996017", "output": "1\n3996017 1 3996017" }, { "input": "2\n999983 999983", "output": "1\n999983 1 999983" }, { "input": "2\n618575685 773990454", "output": "1\n618575685 1 773990454" }, { "input": "3\n9699690 3 7", "output": "1\n9699690 1 3 7" }, { "input": "2\n999999999 999999996", "output": "1\n999999999 1 999999996" }, { "input": "2\n99999910 99999910", "output": "1\n99999910 1 99999910" }, { "input": "12\n1000000000 1000000000 223092870 223092870 6 105 2 2 510510 510510 999999491 999999491", "output": "9\n1000000000 1 1000000000 1 223092870 1 223092870 1 6 1 105 2 1 2 1 510510 1 510510 999999491 1 999999491" }, { "input": "3\n999999937 999999937 999999937", "output": "2\n999999937 1 999999937 1 999999937" }, { "input": "2\n99839 99839", "output": "1\n99839 1 99839" }, { "input": "3\n19999909 19999909 19999909", "output": "2\n19999909 1 19999909 1 19999909" }, { "input": "4\n1 1000000000 1 1000000000", "output": "0\n1 1000000000 1 1000000000" }, { "input": "2\n64006 64006", "output": "1\n64006 1 64006" }, { "input": "2\n1956955 1956955", "output": "1\n1956955 1 1956955" }, { "input": "3\n1 1000000000 1000000000", "output": "1\n1 1000000000 1 1000000000" }, { "input": "2\n982451707 982451707", "output": "1\n982451707 1 982451707" }, { "input": "2\n999999733 999999733", "output": "1\n999999733 1 999999733" }, { "input": "3\n999999733 999999733 999999733", "output": "2\n999999733 1 999999733 1 999999733" }, { "input": "2\n3257 3257", "output": "1\n3257 1 3257" }, { "input": "2\n223092870 181598", "output": "1\n223092870 1 181598" }, { "input": "3\n959919409 105935 105935", "output": "2\n959919409 1 105935 1 105935" }, { "input": "2\n510510 510510", "output": "1\n510510 1 510510" }, { "input": "3\n223092870 1000000000 1000000000", "output": "2\n223092870 1 1000000000 1 1000000000" }, { "input": "14\n1000000000 2 1000000000 3 1000000000 6 1000000000 1000000000 15 1000000000 1000000000 1000000000 100000000 1000", "output": "11\n1000000000 1 2 1 1000000000 3 1000000000 1 6 1 1000000000 1 1000000000 1 15 1 1000000000 1 1000000000 1 1000000000 1 100000000 1 1000" }, { "input": "7\n1 982451653 982451653 1 982451653 982451653 982451653", "output": "3\n1 982451653 1 982451653 1 982451653 1 982451653 1 982451653" }, { "input": "2\n100000007 100000007", "output": "1\n100000007 1 100000007" }, { "input": "3\n999999757 999999757 999999757", "output": "2\n999999757 1 999999757 1 999999757" }, { "input": "3\n99999989 99999989 99999989", "output": "2\n99999989 1 99999989 1 99999989" }, { "input": "5\n2 4 982451707 982451707 3", "output": "2\n2 1 4 982451707 1 982451707 3" }, { "input": "2\n20000014 20000014", "output": "1\n20000014 1 20000014" }, { "input": "2\n99999989 99999989", "output": "1\n99999989 1 99999989" }, { "input": "2\n111546435 111546435", "output": "1\n111546435 1 111546435" }, { "input": "2\n55288874 33538046", "output": "1\n55288874 1 33538046" }, { "input": "5\n179424673 179424673 179424673 179424673 179424673", "output": "4\n179424673 1 179424673 1 179424673 1 179424673 1 179424673" }, { "input": "2\n199999978 199999978", "output": "1\n199999978 1 199999978" }, { "input": "2\n1000000000 2", "output": "1\n1000000000 1 2" }, { "input": "3\n19999897 19999897 19999897", "output": "2\n19999897 1 19999897 1 19999897" }, { "input": "2\n19999982 19999982", "output": "1\n19999982 1 19999982" }, { "input": "2\n10000007 10000007", "output": "1\n10000007 1 10000007" }, { "input": "3\n999999937 999999937 2", "output": "1\n999999937 1 999999937 2" }, { "input": "5\n2017 2017 2017 2017 2017", "output": "4\n2017 1 2017 1 2017 1 2017 1 2017" }, { "input": "2\n19999909 39999818", "output": "1\n19999909 1 39999818" }, { "input": "2\n62615533 7919", "output": "1\n62615533 1 7919" }, { "input": "5\n39989 39989 33 31 29", "output": "1\n39989 1 39989 33 31 29" }, { "input": "2\n1000000000 100000", "output": "1\n1000000000 1 100000" }, { "input": "2\n1938 10010", "output": "1\n1938 1 10010" }, { "input": "2\n199999 199999", "output": "1\n199999 1 199999" }, { "input": "2\n107273 107273", "output": "1\n107273 1 107273" }, { "input": "3\n49999 49999 49999", "output": "2\n49999 1 49999 1 49999" }, { "input": "2\n1999966 1999958", "output": "1\n1999966 1 1999958" }, { "input": "2\n86020 300846", "output": "1\n86020 1 300846" }, { "input": "2\n999999997 213", "output": "1\n999999997 1 213" }, { "input": "2\n200000014 200000434", "output": "1\n200000014 1 200000434" } ]
1,682,119,731
2,147,483,647
Python 3
OK
TESTS
93
77
0
from math import gcd n = int(input()) arr = [int(num) for num in input().split(' ')] i, j = 0, 1 while j < len(arr): if gcd(arr[i], arr[i+1]) != 1: arr.insert(i+1, 1) i += 1 j += 1 print(len(arr) - n) print(*arr)
Title: Co-prime Array Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given an array of *n* elements, you must make it a co-prime array in as few moves as possible. In each move you can insert any positive integral number you want not greater than 109 in any place in the array. An array is co-prime if any two adjacent numbers of it are co-prime. In the number theory, two integers *a* and *b* are said to be co-prime if the only positive integer that divides both of them is 1. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of elements in the given array. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=109) — the elements of the array *a*. Output Specification: Print integer *k* on the first line — the least number of elements needed to add to the array *a* to make it co-prime. The second line should contain *n*<=+<=*k* integers *a**j* — the elements of the array *a* after adding *k* elements to it. Note that the new array should be co-prime, so any two adjacent values should be co-prime. Also the new array should be got from the original array *a* by adding *k* elements to it. If there are multiple answers you can print any one of them. Demo Input: ['3\n2 7 28\n'] Demo Output: ['1\n2 7 9 28\n'] Note: none
```python from math import gcd n = int(input()) arr = [int(num) for num in input().split(' ')] i, j = 0, 1 while j < len(arr): if gcd(arr[i], arr[i+1]) != 1: arr.insert(i+1, 1) i += 1 j += 1 print(len(arr) - n) print(*arr) ```
3
255
A
Greg's Workout
PROGRAMMING
800
[ "implementation" ]
null
null
Greg is a beginner bodybuilder. Today the gym coach gave him the training plan. All it had was *n* integers *a*1,<=*a*2,<=...,<=*a**n*. These numbers mean that Greg needs to do exactly *n* exercises today. Besides, Greg should repeat the *i*-th in order exercise *a**i* times. Greg now only does three types of exercises: "chest" exercises, "biceps" exercises and "back" exercises. Besides, his training is cyclic, that is, the first exercise he does is a "chest" one, the second one is "biceps", the third one is "back", the fourth one is "chest", the fifth one is "biceps", and so on to the *n*-th exercise. Now Greg wonders, which muscle will get the most exercise during his training. We know that the exercise Greg repeats the maximum number of times, trains the corresponding muscle the most. Help Greg, determine which muscle will get the most training.
The first line contains integer *n* (1<=≤<=*n*<=≤<=20). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=25) — the number of times Greg repeats the exercises.
Print word "chest" (without the quotes), if the chest gets the most exercise, "biceps" (without the quotes), if the biceps gets the most exercise and print "back" (without the quotes) if the back gets the most exercise. It is guaranteed that the input is such that the answer to the problem is unambiguous.
[ "2\n2 8\n", "3\n5 1 10\n", "7\n3 3 2 7 9 6 8\n" ]
[ "biceps\n", "back\n", "chest\n" ]
In the first sample Greg does 2 chest, 8 biceps and zero back exercises, so the biceps gets the most exercises. In the second sample Greg does 5 chest, 1 biceps and 10 back exercises, so the back gets the most exercises. In the third sample Greg does 18 chest, 12 biceps and 8 back exercises, so the chest gets the most exercise.
500
[ { "input": "2\n2 8", "output": "biceps" }, { "input": "3\n5 1 10", "output": "back" }, { "input": "7\n3 3 2 7 9 6 8", "output": "chest" }, { "input": "4\n5 6 6 2", "output": "chest" }, { "input": "5\n8 2 2 6 3", "output": "chest" }, { "input": "6\n8 7 2 5 3 4", "output": "chest" }, { "input": "8\n7 2 9 10 3 8 10 6", "output": "chest" }, { "input": "9\n5 4 2 3 4 4 5 2 2", "output": "chest" }, { "input": "10\n4 9 8 5 3 8 8 10 4 2", "output": "biceps" }, { "input": "11\n10 9 7 6 1 3 9 7 1 3 5", "output": "chest" }, { "input": "12\n24 22 6 16 5 21 1 7 2 19 24 5", "output": "chest" }, { "input": "13\n24 10 5 7 16 17 2 7 9 20 15 2 24", "output": "chest" }, { "input": "14\n13 14 19 8 5 17 9 16 15 9 5 6 3 7", "output": "back" }, { "input": "15\n24 12 22 21 25 23 21 5 3 24 23 13 12 16 12", "output": "chest" }, { "input": "16\n12 6 18 6 25 7 3 1 1 17 25 17 6 8 17 8", "output": "biceps" }, { "input": "17\n13 8 13 4 9 21 10 10 9 22 14 23 22 7 6 14 19", "output": "chest" }, { "input": "18\n1 17 13 6 11 10 25 13 24 9 21 17 3 1 17 12 25 21", "output": "back" }, { "input": "19\n22 22 24 25 19 10 7 10 4 25 19 14 1 14 3 18 4 19 24", "output": "chest" }, { "input": "20\n9 8 22 11 18 14 15 10 17 11 2 1 25 20 7 24 4 25 9 20", "output": "chest" }, { "input": "1\n10", "output": "chest" }, { "input": "2\n15 3", "output": "chest" }, { "input": "3\n21 11 19", "output": "chest" }, { "input": "4\n19 24 13 15", "output": "chest" }, { "input": "5\n4 24 1 9 19", "output": "biceps" }, { "input": "6\n6 22 24 7 15 24", "output": "back" }, { "input": "7\n10 8 23 23 14 18 14", "output": "chest" }, { "input": "8\n5 16 8 9 17 16 14 7", "output": "biceps" }, { "input": "9\n12 3 10 23 6 4 22 13 12", "output": "chest" }, { "input": "10\n1 9 20 18 20 17 7 24 23 2", "output": "back" }, { "input": "11\n22 25 8 2 18 15 1 13 1 11 4", "output": "biceps" }, { "input": "12\n20 12 14 2 15 6 24 3 11 8 11 14", "output": "chest" }, { "input": "13\n2 18 8 8 8 20 5 22 15 2 5 19 18", "output": "back" }, { "input": "14\n1 6 10 25 17 13 21 11 19 4 15 24 5 22", "output": "biceps" }, { "input": "15\n13 5 25 13 17 25 19 21 23 17 12 6 14 8 6", "output": "back" }, { "input": "16\n10 15 2 17 22 12 14 14 6 11 4 13 9 8 21 14", "output": "chest" }, { "input": "17\n7 22 9 22 8 7 20 22 23 5 12 11 1 24 17 20 10", "output": "biceps" }, { "input": "18\n18 15 4 25 5 11 21 25 12 14 25 23 19 19 13 6 9 17", "output": "chest" }, { "input": "19\n3 1 3 15 15 25 10 25 23 10 9 21 13 23 19 3 24 21 14", "output": "back" }, { "input": "20\n19 18 11 3 6 14 3 3 25 3 1 19 25 24 23 12 7 4 8 6", "output": "back" }, { "input": "1\n19", "output": "chest" }, { "input": "2\n1 7", "output": "biceps" }, { "input": "3\n18 18 23", "output": "back" }, { "input": "4\n12 15 1 13", "output": "chest" }, { "input": "5\n11 14 25 21 21", "output": "biceps" }, { "input": "6\n11 9 12 11 22 18", "output": "biceps" }, { "input": "7\n11 1 16 20 21 25 20", "output": "chest" }, { "input": "8\n1 2 20 9 3 22 17 4", "output": "back" }, { "input": "9\n19 2 10 19 15 20 3 1 13", "output": "back" }, { "input": "10\n11 2 11 8 21 16 2 3 19 9", "output": "back" }, { "input": "20\n25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 24", "output": "chest" }, { "input": "12\n4 24 21 3 13 24 22 13 12 21 1 15", "output": "back" }, { "input": "13\n14 14 16 2 13 5 1 14 9 4 16 8 3", "output": "biceps" }, { "input": "14\n1 9 15 4 11 8 25 3 9 14 13 2 1 11", "output": "biceps" }, { "input": "15\n4 19 10 6 16 12 5 11 7 23 1 24 11 7 17", "output": "back" }, { "input": "16\n2 8 2 8 13 22 20 12 22 23 18 13 18 22 11 17", "output": "chest" }, { "input": "17\n24 5 5 16 10 8 22 6 4 13 10 10 5 23 8 20 8", "output": "chest" }, { "input": "18\n14 8 9 12 11 18 24 1 14 24 18 5 12 17 1 10 1 22", "output": "chest" }, { "input": "19\n21 2 10 6 9 1 24 5 2 19 10 13 10 7 19 2 6 13 24", "output": "chest" }, { "input": "20\n7 1 14 17 6 6 18 13 12 3 25 4 3 19 22 24 16 14 1 23", "output": "biceps" }, { "input": "1\n19", "output": "chest" }, { "input": "20\n2 1 2 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 22", "output": "biceps" } ]
1,694,526,218
2,147,483,647
Python 3
OK
TESTS
61
92
0
a = int(input("")) b = input("").split() c = 0 d = 0 e = 0 for i in range(0, a): if i % 3 == 0: c += int(b[i]) elif i % 3 == 1: d += int(b[i]) else: e += int(b[i]) if e < c > d: print("chest") elif e < d > c: print("biceps") else: print("back")
Title: Greg's Workout Time Limit: None seconds Memory Limit: None megabytes Problem Description: Greg is a beginner bodybuilder. Today the gym coach gave him the training plan. All it had was *n* integers *a*1,<=*a*2,<=...,<=*a**n*. These numbers mean that Greg needs to do exactly *n* exercises today. Besides, Greg should repeat the *i*-th in order exercise *a**i* times. Greg now only does three types of exercises: "chest" exercises, "biceps" exercises and "back" exercises. Besides, his training is cyclic, that is, the first exercise he does is a "chest" one, the second one is "biceps", the third one is "back", the fourth one is "chest", the fifth one is "biceps", and so on to the *n*-th exercise. Now Greg wonders, which muscle will get the most exercise during his training. We know that the exercise Greg repeats the maximum number of times, trains the corresponding muscle the most. Help Greg, determine which muscle will get the most training. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=20). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=25) — the number of times Greg repeats the exercises. Output Specification: Print word "chest" (without the quotes), if the chest gets the most exercise, "biceps" (without the quotes), if the biceps gets the most exercise and print "back" (without the quotes) if the back gets the most exercise. It is guaranteed that the input is such that the answer to the problem is unambiguous. Demo Input: ['2\n2 8\n', '3\n5 1 10\n', '7\n3 3 2 7 9 6 8\n'] Demo Output: ['biceps\n', 'back\n', 'chest\n'] Note: In the first sample Greg does 2 chest, 8 biceps and zero back exercises, so the biceps gets the most exercises. In the second sample Greg does 5 chest, 1 biceps and 10 back exercises, so the back gets the most exercises. In the third sample Greg does 18 chest, 12 biceps and 8 back exercises, so the chest gets the most exercise.
```python a = int(input("")) b = input("").split() c = 0 d = 0 e = 0 for i in range(0, a): if i % 3 == 0: c += int(b[i]) elif i % 3 == 1: d += int(b[i]) else: e += int(b[i]) if e < c > d: print("chest") elif e < d > c: print("biceps") else: print("back") ```
3
509
A
Maximum in Table
PROGRAMMING
800
[ "brute force", "implementation" ]
null
null
An *n*<=×<=*n* table *a* is defined as follows: - The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1. These conditions define all the values in the table. You are given a number *n*. You need to determine the maximum value in the *n*<=×<=*n* table defined by the rules above.
The only line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=10) — the number of rows and columns of the table.
Print a single line containing a positive integer *m* — the maximum value in the table.
[ "1\n", "5\n" ]
[ "1", "70" ]
In the second test the rows of the table look as follows:
0
[ { "input": "1", "output": "1" }, { "input": "5", "output": "70" }, { "input": "2", "output": "2" }, { "input": "3", "output": "6" }, { "input": "4", "output": "20" }, { "input": "6", "output": "252" }, { "input": "7", "output": "924" }, { "input": "9", "output": "12870" }, { "input": "10", "output": "48620" }, { "input": "8", "output": "3432" } ]
1,618,061,753
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
61
0
n=int(input()) p=[1, 5, 15, 35, 70, 140, 280, 560, 1120, 2240, 4480, 8960, 17920, 35840, 71680, 143360, 286720, 573440, 1146880, 2293760, 4587520] print(p[n-1])
Title: Maximum in Table Time Limit: None seconds Memory Limit: None megabytes Problem Description: An *n*<=×<=*n* table *a* is defined as follows: - The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1. These conditions define all the values in the table. You are given a number *n*. You need to determine the maximum value in the *n*<=×<=*n* table defined by the rules above. Input Specification: The only line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=10) — the number of rows and columns of the table. Output Specification: Print a single line containing a positive integer *m* — the maximum value in the table. Demo Input: ['1\n', '5\n'] Demo Output: ['1', '70'] Note: In the second test the rows of the table look as follows:
```python n=int(input()) p=[1, 5, 15, 35, 70, 140, 280, 560, 1120, 2240, 4480, 8960, 17920, 35840, 71680, 143360, 286720, 573440, 1146880, 2293760, 4587520] print(p[n-1]) ```
0
750
A
New Year and Hurry
PROGRAMMING
800
[ "binary search", "brute force", "implementation", "math" ]
null
null
Limak is going to participate in a contest on the last day of the 2016. The contest will start at 20:00 and will last four hours, exactly until midnight. There will be *n* problems, sorted by difficulty, i.e. problem 1 is the easiest and problem *n* is the hardest. Limak knows it will take him 5·*i* minutes to solve the *i*-th problem. Limak's friends organize a New Year's Eve party and Limak wants to be there at midnight or earlier. He needs *k* minutes to get there from his house, where he will participate in the contest first. How many problems can Limak solve if he wants to make it to the party?
The only line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=10, 1<=≤<=*k*<=≤<=240) — the number of the problems in the contest and the number of minutes Limak needs to get to the party from his house.
Print one integer, denoting the maximum possible number of problems Limak can solve so that he could get to the party at midnight or earlier.
[ "3 222\n", "4 190\n", "7 1\n" ]
[ "2\n", "4\n", "7\n" ]
In the first sample, there are 3 problems and Limak needs 222 minutes to get to the party. The three problems require 5, 10 and 15 minutes respectively. Limak can spend 5 + 10 = 15 minutes to solve first two problems. Then, at 20:15 he can leave his house to get to the party at 23:57 (after 222 minutes). In this scenario Limak would solve 2 problems. He doesn't have enough time to solve 3 problems so the answer is 2. In the second sample, Limak can solve all 4 problems in 5 + 10 + 15 + 20 = 50 minutes. At 20:50 he will leave the house and go to the party. He will get there exactly at midnight. In the third sample, Limak needs only 1 minute to get to the party. He has enough time to solve all 7 problems.
500
[ { "input": "3 222", "output": "2" }, { "input": "4 190", "output": "4" }, { "input": "7 1", "output": "7" }, { "input": "10 135", "output": "6" }, { "input": "10 136", "output": "5" }, { "input": "1 1", "output": "1" }, { "input": "1 240", "output": "0" }, { "input": "10 1", "output": "9" }, { "input": "10 240", "output": "0" }, { "input": "9 240", "output": "0" }, { "input": "9 1", "output": "9" }, { "input": "9 235", "output": "1" }, { "input": "9 236", "output": "0" }, { "input": "5 225", "output": "2" }, { "input": "5 226", "output": "1" }, { "input": "4 210", "output": "3" }, { "input": "4 211", "output": "2" }, { "input": "4 191", "output": "3" }, { "input": "10 165", "output": "5" }, { "input": "10 166", "output": "4" }, { "input": "8 100", "output": "7" }, { "input": "8 101", "output": "6" }, { "input": "8 60", "output": "8" }, { "input": "8 61", "output": "7" }, { "input": "10 15", "output": "9" }, { "input": "10 16", "output": "8" }, { "input": "4 100", "output": "4" }, { "input": "4 101", "output": "4" }, { "input": "7 167", "output": "4" }, { "input": "10 164", "output": "5" }, { "input": "9 170", "output": "4" }, { "input": "8 160", "output": "5" }, { "input": "1 100", "output": "1" }, { "input": "8 123", "output": "6" }, { "input": "2 99", "output": "2" }, { "input": "10 88", "output": "7" }, { "input": "1 235", "output": "1" }, { "input": "1 1", "output": "1" }, { "input": "4 240", "output": "0" }, { "input": "1 55", "output": "1" }, { "input": "1 240", "output": "0" }, { "input": "3 240", "output": "0" }, { "input": "10 240", "output": "0" }, { "input": "2 240", "output": "0" }, { "input": "10 1", "output": "9" }, { "input": "9 1", "output": "9" }, { "input": "2 236", "output": "0" }, { "input": "10 2", "output": "9" }, { "input": "3 239", "output": "0" }, { "input": "1 237", "output": "0" }, { "input": "7 8", "output": "7" }, { "input": "10 235", "output": "1" } ]
1,678,776,730
2,147,483,647
PyPy 3-64
OK
TESTS
52
62
0
n, k = map(int, input().split()) curr = 240 - k ans = 0 for i in range(1, n + 1): if curr - 5 * i >= 0: ans += 1 curr -= 5 * i print(ans)
Title: New Year and Hurry Time Limit: None seconds Memory Limit: None megabytes Problem Description: Limak is going to participate in a contest on the last day of the 2016. The contest will start at 20:00 and will last four hours, exactly until midnight. There will be *n* problems, sorted by difficulty, i.e. problem 1 is the easiest and problem *n* is the hardest. Limak knows it will take him 5·*i* minutes to solve the *i*-th problem. Limak's friends organize a New Year's Eve party and Limak wants to be there at midnight or earlier. He needs *k* minutes to get there from his house, where he will participate in the contest first. How many problems can Limak solve if he wants to make it to the party? Input Specification: The only line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=10, 1<=≤<=*k*<=≤<=240) — the number of the problems in the contest and the number of minutes Limak needs to get to the party from his house. Output Specification: Print one integer, denoting the maximum possible number of problems Limak can solve so that he could get to the party at midnight or earlier. Demo Input: ['3 222\n', '4 190\n', '7 1\n'] Demo Output: ['2\n', '4\n', '7\n'] Note: In the first sample, there are 3 problems and Limak needs 222 minutes to get to the party. The three problems require 5, 10 and 15 minutes respectively. Limak can spend 5 + 10 = 15 minutes to solve first two problems. Then, at 20:15 he can leave his house to get to the party at 23:57 (after 222 minutes). In this scenario Limak would solve 2 problems. He doesn't have enough time to solve 3 problems so the answer is 2. In the second sample, Limak can solve all 4 problems in 5 + 10 + 15 + 20 = 50 minutes. At 20:50 he will leave the house and go to the party. He will get there exactly at midnight. In the third sample, Limak needs only 1 minute to get to the party. He has enough time to solve all 7 problems.
```python n, k = map(int, input().split()) curr = 240 - k ans = 0 for i in range(1, n + 1): if curr - 5 * i >= 0: ans += 1 curr -= 5 * i print(ans) ```
3
492
B
Vanya and Lanterns
PROGRAMMING
1,200
[ "binary search", "implementation", "math", "sortings" ]
null
null
Vanya walks late at night along a straight street of length *l*, lit by *n* lanterns. Consider the coordinate system with the beginning of the street corresponding to the point 0, and its end corresponding to the point *l*. Then the *i*-th lantern is at the point *a**i*. The lantern lights all points of the street that are at the distance of at most *d* from it, where *d* is some positive number, common for all lanterns. Vanya wonders: what is the minimum light radius *d* should the lanterns have to light the whole street?
The first line contains two integers *n*, *l* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*l*<=≤<=109) — the number of lanterns and the length of the street respectively. The next line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=*l*). Multiple lanterns can be located at the same point. The lanterns may be located at the ends of the street.
Print the minimum light radius *d*, needed to light the whole street. The answer will be considered correct if its absolute or relative error doesn't exceed 10<=-<=9.
[ "7 15\n15 5 3 7 9 14 0\n", "2 5\n2 5\n" ]
[ "2.5000000000\n", "2.0000000000\n" ]
Consider the second sample. At *d* = 2 the first lantern will light the segment [0, 4] of the street, and the second lantern will light segment [3, 5]. Thus, the whole street will be lit.
1,000
[ { "input": "7 15\n15 5 3 7 9 14 0", "output": "2.5000000000" }, { "input": "2 5\n2 5", "output": "2.0000000000" }, { "input": "46 615683844\n431749087 271781274 274974690 324606253 480870261 401650581 13285442 478090364 266585394 425024433 588791449 492057200 391293435 563090494 317950 173675329 473068378 356306865 311731938 192959832 321180686 141984626 578985584 512026637 175885185 590844074 47103801 212211134 330150 509886963 565955809 315640375 612907074 500474373 524310737 568681652 315339618 478782781 518873818 271322031 74600969 539099112 85129347 222068995 106014720 77282307", "output": "22258199.5000000000" }, { "input": "2 1000000000\n0 1000000000", "output": "500000000.0000000000" }, { "input": "2 555\n200 300", "output": "255.0000000000" }, { "input": "1 1\n1", "output": "1.0000000000" }, { "input": "1 1\n0", "output": "1.0000000000" }, { "input": "1 1000000000\n0", "output": "1000000000.0000000000" }, { "input": "1 1000000000\n1000000000", "output": "1000000000.0000000000" }, { "input": "1 999999999\n499999999", "output": "500000000.0000000000" }, { "input": "4 700\n0 250 475 700", "output": "125.0000000000" }, { "input": "4 700\n0 225 450 700", "output": "125.0000000000" }, { "input": "5 1000\n0 250 500 750 1000", "output": "125.0000000000" }, { "input": "5 2000\n1001 1001 1001 1001 1001", "output": "1001.0000000000" }, { "input": "1 999\n501", "output": "501.0000000000" }, { "input": "2 1000\n400 600", "output": "400.0000000000" }, { "input": "4 15\n1 3 9 11", "output": "4.0000000000" }, { "input": "1 5\n2", "output": "3.0000000000" } ]
1,690,822,668
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
8
31
0
n_lanternas, tamanho_rua = tuple(map(int, input().split())) lista_posicoes = list(map(float, input().split())) lista_posicoes.sort() lista_distancias = [] for c in range(1, len(lista_posicoes)): distancia = lista_posicoes[c] - lista_posicoes[c-1] lista_distancias.append(distancia) maior_distancia = max(lista_distancias) if lista_posicoes[0] > maior_distancia/2: print(lista_posicoes[0]) elif tamanho_rua - lista_posicoes[-1] > maior_distancia/2: print(float(tamanho_rua - lista_distancias[-1])) else: print(maior_distancia/2)
Title: Vanya and Lanterns Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vanya walks late at night along a straight street of length *l*, lit by *n* lanterns. Consider the coordinate system with the beginning of the street corresponding to the point 0, and its end corresponding to the point *l*. Then the *i*-th lantern is at the point *a**i*. The lantern lights all points of the street that are at the distance of at most *d* from it, where *d* is some positive number, common for all lanterns. Vanya wonders: what is the minimum light radius *d* should the lanterns have to light the whole street? Input Specification: The first line contains two integers *n*, *l* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*l*<=≤<=109) — the number of lanterns and the length of the street respectively. The next line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=*l*). Multiple lanterns can be located at the same point. The lanterns may be located at the ends of the street. Output Specification: Print the minimum light radius *d*, needed to light the whole street. The answer will be considered correct if its absolute or relative error doesn't exceed 10<=-<=9. Demo Input: ['7 15\n15 5 3 7 9 14 0\n', '2 5\n2 5\n'] Demo Output: ['2.5000000000\n', '2.0000000000\n'] Note: Consider the second sample. At *d* = 2 the first lantern will light the segment [0, 4] of the street, and the second lantern will light segment [3, 5]. Thus, the whole street will be lit.
```python n_lanternas, tamanho_rua = tuple(map(int, input().split())) lista_posicoes = list(map(float, input().split())) lista_posicoes.sort() lista_distancias = [] for c in range(1, len(lista_posicoes)): distancia = lista_posicoes[c] - lista_posicoes[c-1] lista_distancias.append(distancia) maior_distancia = max(lista_distancias) if lista_posicoes[0] > maior_distancia/2: print(lista_posicoes[0]) elif tamanho_rua - lista_posicoes[-1] > maior_distancia/2: print(float(tamanho_rua - lista_distancias[-1])) else: print(maior_distancia/2) ```
0
858
A
k-rounding
PROGRAMMING
1,100
[ "brute force", "math", "number theory" ]
null
null
For a given positive integer *n* denote its *k*-rounding as the minimum positive integer *x*, such that *x* ends with *k* or more zeros in base 10 and is divisible by *n*. For example, 4-rounding of 375 is 375·80<==<=30000. 30000 is the minimum integer such that it ends with 4 or more zeros and is divisible by 375. Write a program that will perform the *k*-rounding of *n*.
The only line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=109, 0<=≤<=*k*<=≤<=8).
Print the *k*-rounding of *n*.
[ "375 4\n", "10000 1\n", "38101 0\n", "123456789 8\n" ]
[ "30000\n", "10000\n", "38101\n", "12345678900000000\n" ]
none
750
[ { "input": "375 4", "output": "30000" }, { "input": "10000 1", "output": "10000" }, { "input": "38101 0", "output": "38101" }, { "input": "123456789 8", "output": "12345678900000000" }, { "input": "1 0", "output": "1" }, { "input": "2 0", "output": "2" }, { "input": "100 0", "output": "100" }, { "input": "1000000000 0", "output": "1000000000" }, { "input": "160 2", "output": "800" }, { "input": "3 0", "output": "3" }, { "input": "10 0", "output": "10" }, { "input": "1 1", "output": "10" }, { "input": "2 1", "output": "10" }, { "input": "3 1", "output": "30" }, { "input": "4 1", "output": "20" }, { "input": "5 1", "output": "10" }, { "input": "6 1", "output": "30" }, { "input": "7 1", "output": "70" }, { "input": "8 1", "output": "40" }, { "input": "9 1", "output": "90" }, { "input": "10 1", "output": "10" }, { "input": "11 1", "output": "110" }, { "input": "12 1", "output": "60" }, { "input": "16 2", "output": "400" }, { "input": "2 2", "output": "100" }, { "input": "1 2", "output": "100" }, { "input": "5 2", "output": "100" }, { "input": "15 2", "output": "300" }, { "input": "36 2", "output": "900" }, { "input": "1 8", "output": "100000000" }, { "input": "8 8", "output": "100000000" }, { "input": "96 8", "output": "300000000" }, { "input": "175 8", "output": "700000000" }, { "input": "9999995 8", "output": "199999900000000" }, { "input": "999999999 8", "output": "99999999900000000" }, { "input": "12345678 8", "output": "617283900000000" }, { "input": "78125 8", "output": "100000000" }, { "input": "390625 8", "output": "100000000" }, { "input": "1953125 8", "output": "500000000" }, { "input": "9765625 8", "output": "2500000000" }, { "input": "68359375 8", "output": "17500000000" }, { "input": "268435456 8", "output": "104857600000000" }, { "input": "125829120 8", "output": "9830400000000" }, { "input": "128000 8", "output": "400000000" }, { "input": "300000 8", "output": "300000000" }, { "input": "3711871 8", "output": "371187100000000" }, { "input": "55555 8", "output": "1111100000000" }, { "input": "222222222 8", "output": "11111111100000000" }, { "input": "479001600 8", "output": "7484400000000" }, { "input": "655360001 7", "output": "6553600010000000" }, { "input": "655360001 8", "output": "65536000100000000" }, { "input": "1000000000 1", "output": "1000000000" }, { "input": "1000000000 7", "output": "1000000000" }, { "input": "1000000000 8", "output": "1000000000" }, { "input": "100000000 8", "output": "100000000" }, { "input": "10000000 8", "output": "100000000" }, { "input": "1000000 8", "output": "100000000" }, { "input": "10000009 8", "output": "1000000900000000" }, { "input": "10000005 8", "output": "200000100000000" }, { "input": "10000002 8", "output": "500000100000000" }, { "input": "999999997 8", "output": "99999999700000000" }, { "input": "999999997 7", "output": "9999999970000000" }, { "input": "999999995 8", "output": "19999999900000000" }, { "input": "123 8", "output": "12300000000" }, { "input": "24 2", "output": "600" }, { "input": "16 4", "output": "10000" }, { "input": "123456787 8", "output": "12345678700000000" }, { "input": "100000000 8", "output": "100000000" }, { "input": "7 1", "output": "70" }, { "input": "101 1", "output": "1010" }, { "input": "50 2", "output": "100" }, { "input": "999999818 1", "output": "4999999090" }, { "input": "2 1", "output": "10" }, { "input": "123 1", "output": "1230" }, { "input": "16 1", "output": "80" }, { "input": "1 1", "output": "10" }, { "input": "1000000000 8", "output": "1000000000" }, { "input": "15304 6", "output": "1913000000" }, { "input": "3 8", "output": "300000000" }, { "input": "4 2", "output": "100" }, { "input": "100000 7", "output": "10000000" }, { "input": "5 8", "output": "100000000" }, { "input": "16724 6", "output": "4181000000" }, { "input": "999999999 1", "output": "9999999990" }, { "input": "999999990 8", "output": "9999999900000000" }, { "input": "999999999 8", "output": "99999999900000000" }, { "input": "100000 1", "output": "100000" }, { "input": "8 3", "output": "1000" }, { "input": "16768 6", "output": "262000000" }, { "input": "123456789 1", "output": "1234567890" }, { "input": "2 8", "output": "100000000" }, { "input": "999999937 8", "output": "99999993700000000" }, { "input": "5 1", "output": "10" }, { "input": "2000000 7", "output": "10000000" }, { "input": "1999998 2", "output": "99999900" }, { "input": "125 3", "output": "1000" } ]
1,518,383,444
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
61
5,632,000
n, k = list(map(int, input()).split()) prink(n * int("1"+ "0" * k))
Title: k-rounding Time Limit: None seconds Memory Limit: None megabytes Problem Description: For a given positive integer *n* denote its *k*-rounding as the minimum positive integer *x*, such that *x* ends with *k* or more zeros in base 10 and is divisible by *n*. For example, 4-rounding of 375 is 375·80<==<=30000. 30000 is the minimum integer such that it ends with 4 or more zeros and is divisible by 375. Write a program that will perform the *k*-rounding of *n*. Input Specification: The only line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=109, 0<=≤<=*k*<=≤<=8). Output Specification: Print the *k*-rounding of *n*. Demo Input: ['375 4\n', '10000 1\n', '38101 0\n', '123456789 8\n'] Demo Output: ['30000\n', '10000\n', '38101\n', '12345678900000000\n'] Note: none
```python n, k = list(map(int, input()).split()) prink(n * int("1"+ "0" * k)) ```
-1
443
A
Anton and Letters
PROGRAMMING
800
[ "constructive algorithms", "implementation" ]
null
null
Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line. Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set.
The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space.
Print a single number — the number of distinct letters in Anton's set.
[ "{a, b, c}\n", "{b, a, b, a}\n", "{}\n" ]
[ "3\n", "2\n", "0\n" ]
none
500
[ { "input": "{a, b, c}", "output": "3" }, { "input": "{b, a, b, a}", "output": "2" }, { "input": "{}", "output": "0" }, { "input": "{a, a, c, b, b, b, c, c, c, c}", "output": "3" }, { "input": "{a, c, b, b}", "output": "3" }, { "input": "{a, b}", "output": "2" }, { "input": "{a}", "output": "1" }, { "input": "{b, a, b, a, b, c, c, b, c, b}", "output": "3" }, { "input": "{e, g, c, e}", "output": "3" }, { "input": "{a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a}", "output": "1" }, { "input": "{a, a, b}", "output": "2" }, { "input": "{a, b, b, b, a, b, a, a, a, a, a, a, b, a, b, a, a, a, a, a, b, a, b, a}", "output": "2" }, { "input": "{j, u, a, c, f, w, e, w, x, t, h, p, v, n, i, l, x, n, i, b, u, c, a, a}", "output": "16" }, { "input": "{x, i, w, c, p, e, h, z, k, i}", "output": "9" }, { "input": "{t, k, o, x, r, d, q, j, k, e, z, w, y, r, z, s, s, e, s, b, k, i}", "output": "15" }, { "input": "{y}", "output": "1" }, { "input": "{x}", "output": "1" }, { "input": "{b, z, a, z}", "output": "3" }, { "input": "{z}", "output": "1" }, { "input": "{a, z}", "output": "2" }, { "input": "{a, b, z}", "output": "3" }, { "input": "{s, q, z, r, t, a, b, h, j, i, o, z, r, q}", "output": "11" } ]
1,690,994,585
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
30
0
def count_distinct_letters(s): s = s[1:-1] letters = s.split(", ") return len(set(letters)) if __name__ == "__main__": s = input() result = count_distinct_letters(s) print(result)
Title: Anton and Letters Time Limit: None seconds Memory Limit: None megabytes Problem Description: Recently, Anton has found a set. The set consists of small English letters. Anton carefully wrote out all the letters from the set in one line, separated by a comma. He also added an opening curved bracket at the beginning of the line and a closing curved bracket at the end of the line. Unfortunately, from time to time Anton would forget writing some letter and write it again. He asks you to count the total number of distinct letters in his set. Input Specification: The first and the single line contains the set of letters. The length of the line doesn't exceed 1000. It is guaranteed that the line starts from an opening curved bracket and ends with a closing curved bracket. Between them, small English letters are listed, separated by a comma. Each comma is followed by a space. Output Specification: Print a single number — the number of distinct letters in Anton's set. Demo Input: ['{a, b, c}\n', '{b, a, b, a}\n', '{}\n'] Demo Output: ['3\n', '2\n', '0\n'] Note: none
```python def count_distinct_letters(s): s = s[1:-1] letters = s.split(", ") return len(set(letters)) if __name__ == "__main__": s = input() result = count_distinct_letters(s) print(result) ```
0
32
B
Borze
PROGRAMMING
800
[ "expression parsing", "implementation" ]
B. Borze
2
256
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
Output the decoded ternary number. It can have leading zeroes.
[ ".-.--\n", "--.\n", "-..-.--\n" ]
[ "012", "20", "1012" ]
none
1,000
[ { "input": ".-.--", "output": "012" }, { "input": "--.", "output": "20" }, { "input": "-..-.--", "output": "1012" }, { "input": "---..", "output": "210" }, { "input": "..--.---..", "output": "0020210" }, { "input": "-.....----.", "output": "10000220" }, { "input": ".", "output": "0" }, { "input": "-.", "output": "1" }, { "input": "--", "output": "2" }, { "input": "..", "output": "00" }, { "input": "--.", "output": "20" }, { "input": ".--.", "output": "020" }, { "input": ".-.-..", "output": "0110" }, { "input": "----.-.", "output": "2201" }, { "input": "-..--.-.", "output": "10201" }, { "input": "..--..--.", "output": "0020020" }, { "input": "-.-.---.--..-..-.-.-..-..-.--.", "output": "112120010111010120" }, { "input": "---.-.-.------..-..-..-..-.-..-.--.-.-..-.-.-----..-.-.", "output": "21112220010101011012011011221011" }, { "input": "-.-..--.-.-.-.-.-..-.-.-.---------.--.---..--...--.-----.-.-.-...--.-.-.---.------.--..-.--.-----.-...-..------", "output": "11020111110111222212021020002022111100201121222020012022110010222" }, { "input": "-.-..-.--.---..---.-..---.-...-.-.----..-.---.-.---..-.--.---.-.-------.---.--....----.-.---.---.---.----.-----..---.-.-.-.-----.--.-------.-..", "output": "110120210211021100112200121121012021122212120000220121212122022102111122120222110" }, { "input": ".-..-.-.---.-----.--.---...-.--.-.-....-..", "output": "01011212212021001201100010" }, { "input": ".------.-.---..--...-..-..-.-.-.--.--.-..-.--...-.-.---.-.-.------..--..-.---..----.-..-.--.---.-.----.-.---...-.-.-.-----.-.-.---.---.-.....-.-...-----.-...-.---.-..-.-----.--...---.-.-..-.--.-.---..", "output": "022201210200010101112020101200011211122200200121022010120211220121001112211121211000011002211001211012212000211101201210" }, { "input": ".-.--.---.-----.-.-----.-.-..-----..-..----..--.-.--.----..---.---..-.-.-----..-------.----..----.-..---...-----..-..-----...-..-.-.-----....---..---..-.-----...-.--...--.-.---.-.-.-.-.-...---..----.", "output": "01202122112211102210102200201202200212101122102221220022010210022101022100101122100021021012210012000201211111100210220" }, { "input": "..-.-.-.---.-.-.-..-.-..-.-.---.-------.---..-----.---....-.---.--.--.-.---.---------.-..---.-.-.--..---.---.-.---.-.-..-.-..-.-.-.----.--.-....--------.-.---..----.------.-.-.--.--.-----.-----.----", "output": "0011121111011011212221210221210001212020121222211021112002121121110110111220201000222201210220222011202022122122" }, { "input": "-..-------.------.-..--.-.-..--.-.-..-----..-.-.-..-..-..--.---..-----..---..-..--.-..-.-.---...-.....-------.---.-----.-...-.-...-.-.---.---.-----.--.--...-.--..-.-..-...-.-.-.-.---..---.-..-.-.-.-..", "output": "102221222010201102011022101110101020210221021010201011210010000222121221100110011212122120200012001101001111210211011110" }, { "input": ".-.----.-.--..-.-.-.-..----..-.-...--.-.---.---.-------..-.--..-......--.------.--.----.--...-.--.--..-----..-.....--.--.-.-.------..--------.----------..-.---.----.---.-..--..-.....-..------.--.", "output": "012201200111102200110020121212221012001000002022202022020001202002210100002020112220022220222220012122021102001000010222020" }, { "input": "------.-----.-....--.-.----.-.---.-.-..---.-.---.-----..-...-.-.---..-.-.-..-.-.-...-.-.-.----..--.------.----.-..-.--...-.-------...-.-..-.-.--.--.---..--..--------.--.-.-.---.-.-.-...----.--..-.--..", "output": "222022110002012201211102112122101001121011101110011122002022202201012000122210011011202021020022220201121111002202001200" }, { "input": "-.---...----...--.--...-.--.----", "output": "121002200020200012022" }, { "input": "--.--.--.---.--.-.---.-.-..-..--.-..---.-.....-..---.-----.--...-.-.-------.-.--.-.----.-..-.------.", "output": "202020212012111010201021100001021221200011222112012201012220" } ]
1,598,043,637
2,147,483,647
PyPy 3
OK
TESTS
30
310
20,172,800
x=input() s="" i=0 while i<len(x): if x[i]=='.': s+='0' elif x[i]=='-': if x[i+1]=='.': s+='1' else: s+='2' i+=1 i+=1 print(s)
Title: Borze Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet. Input Specification: The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes). Output Specification: Output the decoded ternary number. It can have leading zeroes. Demo Input: ['.-.--\n', '--.\n', '-..-.--\n'] Demo Output: ['012', '20', '1012'] Note: none
```python x=input() s="" i=0 while i<len(x): if x[i]=='.': s+='0' elif x[i]=='-': if x[i+1]=='.': s+='1' else: s+='2' i+=1 i+=1 print(s) ```
3.884925
1,006
A
Adjacent Replacements
PROGRAMMING
800
[ "implementation" ]
null
null
Mishka got an integer array $a$ of length $n$ as a birthday present (what a surprise!). Mishka doesn't like this present and wants to change it somehow. He has invented an algorithm and called it "Mishka's Adjacent Replacements Algorithm". This algorithm can be represented as a sequence of steps: - Replace each occurrence of $1$ in the array $a$ with $2$; - Replace each occurrence of $2$ in the array $a$ with $1$; - Replace each occurrence of $3$ in the array $a$ with $4$; - Replace each occurrence of $4$ in the array $a$ with $3$; - Replace each occurrence of $5$ in the array $a$ with $6$; - Replace each occurrence of $6$ in the array $a$ with $5$; - $\dots$ - Replace each occurrence of $10^9 - 1$ in the array $a$ with $10^9$; - Replace each occurrence of $10^9$ in the array $a$ with $10^9 - 1$. Note that the dots in the middle of this algorithm mean that Mishka applies these replacements for each pair of adjacent integers ($2i - 1, 2i$) for each $i \in\{1, 2, \ldots, 5 \cdot 10^8\}$ as described above. For example, for the array $a = [1, 2, 4, 5, 10]$, the following sequence of arrays represents the algorithm: $[1, 2, 4, 5, 10]$ $\rightarrow$ (replace all occurrences of $1$ with $2$) $\rightarrow$ $[2, 2, 4, 5, 10]$ $\rightarrow$ (replace all occurrences of $2$ with $1$) $\rightarrow$ $[1, 1, 4, 5, 10]$ $\rightarrow$ (replace all occurrences of $3$ with $4$) $\rightarrow$ $[1, 1, 4, 5, 10]$ $\rightarrow$ (replace all occurrences of $4$ with $3$) $\rightarrow$ $[1, 1, 3, 5, 10]$ $\rightarrow$ (replace all occurrences of $5$ with $6$) $\rightarrow$ $[1, 1, 3, 6, 10]$ $\rightarrow$ (replace all occurrences of $6$ with $5$) $\rightarrow$ $[1, 1, 3, 5, 10]$ $\rightarrow$ $\dots$ $\rightarrow$ $[1, 1, 3, 5, 10]$ $\rightarrow$ (replace all occurrences of $10$ with $9$) $\rightarrow$ $[1, 1, 3, 5, 9]$. The later steps of the algorithm do not change the array. Mishka is very lazy and he doesn't want to apply these changes by himself. But he is very interested in their result. Help him find it.
The first line of the input contains one integer number $n$ ($1 \le n \le 1000$) — the number of elements in Mishka's birthday present (surprisingly, an array). The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$) — the elements of the array.
Print $n$ integers — $b_1, b_2, \dots, b_n$, where $b_i$ is the final value of the $i$-th element of the array after applying "Mishka's Adjacent Replacements Algorithm" to the array $a$. Note that you cannot change the order of elements in the array.
[ "5\n1 2 4 5 10\n", "10\n10000 10 50605065 1 5 89 5 999999999 60506056 1000000000\n" ]
[ "1 1 3 5 9\n", "9999 9 50605065 1 5 89 5 999999999 60506055 999999999\n" ]
The first example is described in the problem statement.
0
[ { "input": "5\n1 2 4 5 10", "output": "1 1 3 5 9" }, { "input": "10\n10000 10 50605065 1 5 89 5 999999999 60506056 1000000000", "output": "9999 9 50605065 1 5 89 5 999999999 60506055 999999999" }, { "input": "1\n999999999", "output": "999999999" }, { "input": "1\n1000000000", "output": "999999999" }, { "input": "1\n210400", "output": "210399" }, { "input": "5\n100000000 100000000 100000000 100000000 100000000", "output": "99999999 99999999 99999999 99999999 99999999" }, { "input": "1\n2441139", "output": "2441139" }, { "input": "2\n2 2", "output": "1 1" }, { "input": "3\n2 2 2", "output": "1 1 1" }, { "input": "2\n4 4", "output": "3 3" } ]
1,595,422,126
2,147,483,647
Python 3
OK
TESTS
18
108
6,963,200
query = int(input()) a = list(map(int, input().split())) for i in range(query): if not a[i]%2: a[i]-=1 print(" ".join(map(str, a[:query])))
Title: Adjacent Replacements Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mishka got an integer array $a$ of length $n$ as a birthday present (what a surprise!). Mishka doesn't like this present and wants to change it somehow. He has invented an algorithm and called it "Mishka's Adjacent Replacements Algorithm". This algorithm can be represented as a sequence of steps: - Replace each occurrence of $1$ in the array $a$ with $2$; - Replace each occurrence of $2$ in the array $a$ with $1$; - Replace each occurrence of $3$ in the array $a$ with $4$; - Replace each occurrence of $4$ in the array $a$ with $3$; - Replace each occurrence of $5$ in the array $a$ with $6$; - Replace each occurrence of $6$ in the array $a$ with $5$; - $\dots$ - Replace each occurrence of $10^9 - 1$ in the array $a$ with $10^9$; - Replace each occurrence of $10^9$ in the array $a$ with $10^9 - 1$. Note that the dots in the middle of this algorithm mean that Mishka applies these replacements for each pair of adjacent integers ($2i - 1, 2i$) for each $i \in\{1, 2, \ldots, 5 \cdot 10^8\}$ as described above. For example, for the array $a = [1, 2, 4, 5, 10]$, the following sequence of arrays represents the algorithm: $[1, 2, 4, 5, 10]$ $\rightarrow$ (replace all occurrences of $1$ with $2$) $\rightarrow$ $[2, 2, 4, 5, 10]$ $\rightarrow$ (replace all occurrences of $2$ with $1$) $\rightarrow$ $[1, 1, 4, 5, 10]$ $\rightarrow$ (replace all occurrences of $3$ with $4$) $\rightarrow$ $[1, 1, 4, 5, 10]$ $\rightarrow$ (replace all occurrences of $4$ with $3$) $\rightarrow$ $[1, 1, 3, 5, 10]$ $\rightarrow$ (replace all occurrences of $5$ with $6$) $\rightarrow$ $[1, 1, 3, 6, 10]$ $\rightarrow$ (replace all occurrences of $6$ with $5$) $\rightarrow$ $[1, 1, 3, 5, 10]$ $\rightarrow$ $\dots$ $\rightarrow$ $[1, 1, 3, 5, 10]$ $\rightarrow$ (replace all occurrences of $10$ with $9$) $\rightarrow$ $[1, 1, 3, 5, 9]$. The later steps of the algorithm do not change the array. Mishka is very lazy and he doesn't want to apply these changes by himself. But he is very interested in their result. Help him find it. Input Specification: The first line of the input contains one integer number $n$ ($1 \le n \le 1000$) — the number of elements in Mishka's birthday present (surprisingly, an array). The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$) — the elements of the array. Output Specification: Print $n$ integers — $b_1, b_2, \dots, b_n$, where $b_i$ is the final value of the $i$-th element of the array after applying "Mishka's Adjacent Replacements Algorithm" to the array $a$. Note that you cannot change the order of elements in the array. Demo Input: ['5\n1 2 4 5 10\n', '10\n10000 10 50605065 1 5 89 5 999999999 60506056 1000000000\n'] Demo Output: ['1 1 3 5 9\n', '9999 9 50605065 1 5 89 5 999999999 60506055 999999999\n'] Note: The first example is described in the problem statement.
```python query = int(input()) a = list(map(int, input().split())) for i in range(query): if not a[i]%2: a[i]-=1 print(" ".join(map(str, a[:query]))) ```
3
49
B
Sum
PROGRAMMING
1,500
[ "math" ]
B. Sum
2
256
Vasya studies positional numeral systems. Unfortunately, he often forgets to write the base of notation in which the expression is written. Once he saw a note in his notebook saying *a*<=+<=*b*<==<=?, and that the base of the positional notation wasn’t written anywhere. Now Vasya has to choose a base *p* and regard the expression as written in the base *p* positional notation. Vasya understood that he can get different results with different bases, and some bases are even invalid. For example, expression 78<=+<=87 in the base 16 positional notation is equal to *FF*16, in the base 15 positional notation it is equal to 11015, in the base 10 one — to 16510, in the base 9 one — to 1769, and in the base 8 or lesser-based positional notations the expression is invalid as all the numbers should be strictly less than the positional notation base. Vasya got interested in what is the length of the longest possible expression value. Help him to find this length. The length of a number should be understood as the number of numeric characters in it. For example, the length of the longest answer for 78<=+<=87<==<=? is 3. It is calculated like that in the base 15 (11015), base 10 (16510), base 9 (1769) positional notations, for example, and in some other ones.
The first letter contains two space-separated numbers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=1000) which represent the given summands.
Print a single number — the length of the longest answer.
[ "78 87\n", "1 1\n" ]
[ "3\n", "2\n" ]
none
1,000
[ { "input": "78 87", "output": "3" }, { "input": "1 1", "output": "2" }, { "input": "9 7", "output": "2" }, { "input": "11 11", "output": "3" }, { "input": "43 21", "output": "3" }, { "input": "84 89", "output": "3" }, { "input": "12 34", "output": "3" }, { "input": "99 11", "output": "3" }, { "input": "11 99", "output": "3" }, { "input": "99 99", "output": "3" }, { "input": "1 2", "output": "2" }, { "input": "1 3", "output": "2" }, { "input": "2 1", "output": "2" }, { "input": "2 2", "output": "2" }, { "input": "2 3", "output": "2" }, { "input": "3 1", "output": "2" }, { "input": "3 2", "output": "2" }, { "input": "3 3", "output": "2" }, { "input": "1 466", "output": "3" }, { "input": "1 1000", "output": "4" }, { "input": "1 999", "output": "4" }, { "input": "149 1", "output": "3" }, { "input": "999 1", "output": "4" }, { "input": "1000 1", "output": "4" }, { "input": "998 998", "output": "4" }, { "input": "998 999", "output": "4" }, { "input": "998 1000", "output": "4" }, { "input": "999 998", "output": "4" }, { "input": "999 999", "output": "4" }, { "input": "999 1000", "output": "4" }, { "input": "1000 998", "output": "4" }, { "input": "1000 999", "output": "4" }, { "input": "1000 1000", "output": "5" }, { "input": "1000 539", "output": "4" }, { "input": "999 619", "output": "4" }, { "input": "2 511", "output": "3" }, { "input": "877 2", "output": "3" }, { "input": "379 999", "output": "4" }, { "input": "247 1000", "output": "4" }, { "input": "555 555", "output": "4" }, { "input": "208 997", "output": "4" }, { "input": "633 581", "output": "4" }, { "input": "411 517", "output": "4" }, { "input": "836 101", "output": "4" }, { "input": "262 685", "output": "4" }, { "input": "39 269", "output": "3" }, { "input": "464 205", "output": "4" }, { "input": "890 789", "output": "4" }, { "input": "667 373", "output": "4" }, { "input": "840 975", "output": "4" }, { "input": "810 413", "output": "4" }, { "input": "133 851", "output": "4" }, { "input": "104 938", "output": "4" }, { "input": "427 376", "output": "4" }, { "input": "398 815", "output": "4" }, { "input": "721 253", "output": "4" }, { "input": "692 339", "output": "4" }, { "input": "15 778", "output": "3" }, { "input": "986 216", "output": "4" }, { "input": "450 277", "output": "3" }, { "input": "333 1", "output": "4" }, { "input": "499 499", "output": "3" }, { "input": "79 1", "output": "2" }, { "input": "87 1", "output": "2" }, { "input": "47 8", "output": "2" }, { "input": "87 8", "output": "3" }, { "input": "1 11", "output": "3" } ]
1,569,669,005
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
186
0
n, m = map(int, input().split()) arr = [] res = [] tam = '' tarr = [] for i in range(m): x, y = input().split() arr.append((x, y)) exm = input().split() for i in range(len(exm)): tam = exm[i] for a in range(len(arr)): if arr[a][0] == tam: if len(arr[a][0]) < len(arr[a][1]): res.append(arr[a][0]) elif len(arr[a][0]) > len(arr[a][1]): res.append(arr[a][1]) else: res.append(arr[a][0]) tam = '' for i in res: print(i, end = ' ')
Title: Sum Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya studies positional numeral systems. Unfortunately, he often forgets to write the base of notation in which the expression is written. Once he saw a note in his notebook saying *a*<=+<=*b*<==<=?, and that the base of the positional notation wasn’t written anywhere. Now Vasya has to choose a base *p* and regard the expression as written in the base *p* positional notation. Vasya understood that he can get different results with different bases, and some bases are even invalid. For example, expression 78<=+<=87 in the base 16 positional notation is equal to *FF*16, in the base 15 positional notation it is equal to 11015, in the base 10 one — to 16510, in the base 9 one — to 1769, and in the base 8 or lesser-based positional notations the expression is invalid as all the numbers should be strictly less than the positional notation base. Vasya got interested in what is the length of the longest possible expression value. Help him to find this length. The length of a number should be understood as the number of numeric characters in it. For example, the length of the longest answer for 78<=+<=87<==<=? is 3. It is calculated like that in the base 15 (11015), base 10 (16510), base 9 (1769) positional notations, for example, and in some other ones. Input Specification: The first letter contains two space-separated numbers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=1000) which represent the given summands. Output Specification: Print a single number — the length of the longest answer. Demo Input: ['78 87\n', '1 1\n'] Demo Output: ['3\n', '2\n'] Note: none
```python n, m = map(int, input().split()) arr = [] res = [] tam = '' tarr = [] for i in range(m): x, y = input().split() arr.append((x, y)) exm = input().split() for i in range(len(exm)): tam = exm[i] for a in range(len(arr)): if arr[a][0] == tam: if len(arr[a][0]) < len(arr[a][1]): res.append(arr[a][0]) elif len(arr[a][0]) > len(arr[a][1]): res.append(arr[a][1]) else: res.append(arr[a][0]) tam = '' for i in res: print(i, end = ' ') ```
-1
186
A
Comparing Strings
PROGRAMMING
1,100
[ "implementation", "strings" ]
null
null
Some dwarves that are finishing the StUDY (State University for Dwarven Youngsters) Bachelor courses, have been told "no genome, no degree". That means that all dwarves should write a thesis on genome. Dwarven genome is far from simple. It is represented by a string that consists of lowercase Latin letters. Dwarf Misha has already chosen the subject for his thesis: determining by two dwarven genomes, whether they belong to the same race. Two dwarves belong to the same race if we can swap two characters in the first dwarf's genome and get the second dwarf's genome as a result. Help Dwarf Misha and find out whether two gnomes belong to the same race or not.
The first line contains the first dwarf's genome: a non-empty string, consisting of lowercase Latin letters. The second line contains the second dwarf's genome: a non-empty string, consisting of lowercase Latin letters. The number of letters in each genome doesn't exceed 105. It is guaranteed that the strings that correspond to the genomes are different. The given genomes may have different length.
Print "YES", if the dwarves belong to the same race. Otherwise, print "NO".
[ "ab\nba\n", "aa\nab\n" ]
[ "YES\n", "NO\n" ]
- First example: you can simply swap two letters in string "ab". So we get "ba". - Second example: we can't change string "aa" into string "ab", because "aa" does not contain letter "b".
500
[ { "input": "ab\nba", "output": "YES" }, { "input": "aa\nab", "output": "NO" }, { "input": "a\nza", "output": "NO" }, { "input": "vvea\nvvae", "output": "YES" }, { "input": "rtfabanpc\natfabrnpc", "output": "YES" }, { "input": "mt\ntm", "output": "YES" }, { "input": "qxolmbkkt\naovlajmlf", "output": "NO" }, { "input": "b\ng", "output": "NO" }, { "input": "ab\naba", "output": "NO" }, { "input": "ba\na", "output": "NO" }, { "input": "a\nab", "output": "NO" }, { "input": "a\naa", "output": "NO" }, { "input": "a\nz", "output": "NO" }, { "input": "aabb\nbbaa", "output": "NO" }, { "input": "ab\nbd", "output": "NO" }, { "input": "bac\ndae", "output": "NO" }, { "input": "abc\nakl", "output": "NO" }, { "input": "cb\naa", "output": "NO" }, { "input": "abaab\naabba", "output": "NO" }, { "input": "aab\naaa", "output": "NO" }, { "input": "abcde\nedcba", "output": "NO" }, { "input": "abab\nbaba", "output": "NO" }, { "input": "ab\nbac", "output": "NO" }, { "input": "abcd\naqcb", "output": "NO" }, { "input": "abc\nbad", "output": "NO" }, { "input": "ab\nca", "output": "NO" }, { "input": "abc\nab", "output": "NO" }, { "input": "ab\nbae", "output": "NO" }, { "input": "aaaabcccca\naaaadccccb", "output": "NO" }, { "input": "acaa\nabca", "output": "NO" }, { "input": "aba\naab", "output": "YES" }, { "input": "ah\nla", "output": "NO" }, { "input": "aab\naa", "output": "NO" }, { "input": "abab\nabcd", "output": "NO" }, { "input": "ed\nab", "output": "NO" } ]
1,683,213,285
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
24
124
0
a=input() b=input() co=0 for i in range(len(a)): if a[i]==b[i]: co+=1 if co==len(a)-2: print("YES") else: print("NO")
Title: Comparing Strings Time Limit: None seconds Memory Limit: None megabytes Problem Description: Some dwarves that are finishing the StUDY (State University for Dwarven Youngsters) Bachelor courses, have been told "no genome, no degree". That means that all dwarves should write a thesis on genome. Dwarven genome is far from simple. It is represented by a string that consists of lowercase Latin letters. Dwarf Misha has already chosen the subject for his thesis: determining by two dwarven genomes, whether they belong to the same race. Two dwarves belong to the same race if we can swap two characters in the first dwarf's genome and get the second dwarf's genome as a result. Help Dwarf Misha and find out whether two gnomes belong to the same race or not. Input Specification: The first line contains the first dwarf's genome: a non-empty string, consisting of lowercase Latin letters. The second line contains the second dwarf's genome: a non-empty string, consisting of lowercase Latin letters. The number of letters in each genome doesn't exceed 105. It is guaranteed that the strings that correspond to the genomes are different. The given genomes may have different length. Output Specification: Print "YES", if the dwarves belong to the same race. Otherwise, print "NO". Demo Input: ['ab\nba\n', 'aa\nab\n'] Demo Output: ['YES\n', 'NO\n'] Note: - First example: you can simply swap two letters in string "ab". So we get "ba". - Second example: we can't change string "aa" into string "ab", because "aa" does not contain letter "b".
```python a=input() b=input() co=0 for i in range(len(a)): if a[i]==b[i]: co+=1 if co==len(a)-2: print("YES") else: print("NO") ```
-1
312
A
Whose sentence is it?
PROGRAMMING
1,100
[ "implementation", "strings" ]
null
null
One day, liouzhou_101 got a chat record of Freda and Rainbow. Out of curiosity, he wanted to know which sentences were said by Freda, and which were said by Rainbow. According to his experience, he thought that Freda always said "lala." at the end of her sentences, while Rainbow always said "miao." at the beginning of his sentences. For each sentence in the chat record, help liouzhou_101 find whose sentence it is.
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=10), number of sentences in the chat record. Each of the next *n* lines contains a sentence. A sentence is a string that contains only Latin letters (A-Z, a-z), underline (_), comma (,), point (.) and space ( ). Its length doesn’t exceed 100.
For each sentence, output "Freda's" if the sentence was said by Freda, "Rainbow's" if the sentence was said by Rainbow, or "OMG&gt;.&lt; I don't know!" if liouzhou_101 can’t recognize whose sentence it is. He can’t recognize a sentence if it begins with "miao." and ends with "lala.", or satisfies neither of the conditions.
[ "5\nI will go to play with you lala.\nwow, welcome.\nmiao.lala.\nmiao.\nmiao .\n" ]
[ "Freda's\nOMG&gt;.&lt; I don't know!\nOMG&gt;.&lt; I don't know!\nRainbow's\nOMG&gt;.&lt; I don't know!\n" ]
none
500
[ { "input": "5\nI will go to play with you lala.\nwow, welcome.\nmiao.lala.\nmiao.\nmiao .", "output": "Freda's\nOMG>.< I don't know!\nOMG>.< I don't know!\nRainbow's\nOMG>.< I don't know!" }, { "input": "10\nLpAEKiHVJrzSZqBVSSyY\nYECGBlala.\nUZeGpeM.UCwiHmmA\nqt_,.b_.LSwJtJ.\nFAnXZtHlala.\nmiao.iapelala.\nCFPlbUgObrXLejPNu.F\nZSUfvisiHyrIMjMlala.\nmiao. lala.\nd,IWSeumytrVlala.", "output": "OMG>.< I don't know!\nFreda's\nOMG>.< I don't know!\nOMG>.< I don't know!\nFreda's\nOMG>.< I don't know!\nOMG>.< I don't know!\nFreda's\nOMG>.< I don't know!\nFreda's" }, { "input": "10\nmiao.,taUvXPVlala.\nmiao.txEeId.X_lala.\nLZIeAEd JaeBVlala.\ncKPIsWpwIlala.\nfYp.eSvn,g\nKMx,nFEslala.\nmiao.QtMyxYqiajjuM\nDutxNkCqywgcnCYskcd\ngFLKACjeqfD\n,Ss UmY.wJvcX", "output": "OMG>.< I don't know!\nOMG>.< I don't know!\nFreda's\nFreda's\nOMG>.< I don't know!\nFreda's\nRainbow's\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!" }, { "input": "10\nmiao.Plala.\nDVm,VYslala.\nmiao.rlala.\nmiao.,KQNL.fO_.QRc\nUBLCKEUePlala.\nIouS.Alala.\nmiao.lala.\nmiao.rlala.\nEJZwRJeKlala.\nmiao.Olala.", "output": "OMG>.< I don't know!\nFreda's\nOMG>.< I don't know!\nRainbow's\nFreda's\nFreda's\nOMG>.< I don't know!\nOMG>.< I don't know!\nFreda's\nOMG>.< I don't know!" }, { "input": "10\nmiao.grFTpju.jCLRnZ\ng.pVHYA_Usnm\nlloWONolcMFElala.\nAW,n.JJkOTe.Nd\n.bP.HvKlala.\nGziqPGQa,lala.\nmiao.,QkOCH.vFlala.\n.PUtOwImvUsoeh \nmiao.Z,KIds.R\nmiao.,_MDzoaAiJlala.", "output": "Rainbow's\nOMG>.< I don't know!\nFreda's\nOMG>.< I don't know!\nFreda's\nFreda's\nOMG>.< I don't know!\nOMG>.< I don't know!\nRainbow's\nOMG>.< I don't know!" }, { "input": "10\nmiao.xWfjV\nHFVrGCDQXyZ,Sbm\nLMDS.xVkTCAY.vm\nmiao.lLBglala.\nnl,jRPyClala.\nFYnHoXlala.\nmiao. oxaHE\n.WTrw_mNpOQCa\nHOk..wHYoyMhl\nQX,XpMuPIROM", "output": "Rainbow's\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nFreda's\nFreda's\nRainbow's\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!" }, { "input": "10\nJBQqiXlala.\npUNUWQRiMPCXv\nAiLnfNHWznwkC.lala.\nmiao.Dl_Oy\nxJJJkVkdfOzQBH_SmKh\nfgD_IHvdHiorE,W\nmiao.usBKixglala.\nwCpqPUzEtD\nmiao.rlala.\nmiao.JylcGvWlala.", "output": "Freda's\nOMG>.< I don't know!\nFreda's\nRainbow's\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!" }, { "input": "10\nmiao..FLhPl_Wjslala.\nmiao. tdEGtfdJlala.\nGAzEUlala.\nKCcmOa .aKBlZyYsdu.V\nmiao.lala.\njKylnM,FXK\nmiao.GBWqjGH.v\nmiao.RefxS Cni.\nOxaaEihuHQR_s,\nmiao.a,Axtlala.", "output": "OMG>.< I don't know!\nOMG>.< I don't know!\nFreda's\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nRainbow's\nRainbow's\nOMG>.< I don't know!\nOMG>.< I don't know!" }, { "input": "10\nNo.I_aTXlala.\nmiao.JKSCoRZS\nnOBMIlala.\nmiao.nlala.\nmiao._xqxoHIIlala.\nmiao.NJPy SWyiUDWc\nmiao.cCnahFaqqj.Xqp\nnreSMDeXPPYAQxI,W\nAktPajWimdd_qRn\nmiao.QHwKCYlala.", "output": "Freda's\nRainbow's\nFreda's\nOMG>.< I don't know!\nOMG>.< I don't know!\nRainbow's\nRainbow's\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!" }, { "input": "10\n \n,.._ ,.._ ,.._ ,.._ ,.._ ,.._ ,.._ ,.._ ,.._ ,.._ ,.._ ,.._ ,.._ ,.._ ,.._ ,.._ ,.._ ,.._ ,.._ ,.._ \n \nmiao.miao.miao.\nlala.lala.lala.\nlala.miao.\nmiaolala. \nmiao.lala\nmiaolala_\n,.._ abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ", "output": "OMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nRainbow's\nFreda's\nOMG>.< I don't know!\nOMG>.< I don't know!\nRainbow's\nOMG>.< I don't know!\nOMG>.< I don't know!" }, { "input": "10\nduClyjMIPsEuWmx_Ce.byVoizYlTM,sF\nuZHsNip_,Mwtg,FZjM_LzPC,_pSvEOyTHfAOvoZXvxCZdgYDTCDdCAoSVZWyxXGcLgWlala.\nEGtJFPAvTEcqjkhaGxdduaQ_rmUzF.WaU, EIuX B,aVzFFpFrxpwADXuayRD azDfj \n_tJqYzXyqc.,u.F,mUYukveBPWnPq,f,dJnPHuBazdnbRHfzwNUdRbheAIjcoaPcnLvocrzcioxCapb R\n.YUBeb_zmwUt.QQuUdQIiOXtqshcsycEe,HLytHlala.\ndJndLqGBHt.GfpN.BgvsbXoLh_DIzAJOtFDmLSCYEztvPcS_GHPxivzV,NPMmSAtfk.Mg.w,A UcCt_lCD.csEzyJJBYtSMkzqiA\nmiao.qlala.\nmiao.FmDlY\nmiao.UQI.aJmnanNvRLskuVaMybDMsOlala.\nmiao.lala.", "output": "OMG>.< I don't know!\nFreda's\nOMG>.< I don't know!\nOMG>.< I don't know!\nFreda's\nOMG>.< I don't know!\nOMG>.< I don't know!\nRainbow's\nOMG>.< I don't know!\nOMG>.< I don't know!" }, { "input": "10\nmiao.vyscfysAtWcPkpFHdwZqAQ,UPPcjhKQTlala.\nmiao.KESqus DybUuYFoWVpo..LWZh.UqEdUsTHFlKfzqkThAUPklala.\nUNoE vfZIAdxkiWKhsHPfsqRPTNQoHgAxooVLYxRzugHjo jaEHWQFF\nCCmdIwr.UkoiYWK.Z,,ZesMpISTXNgnpYnJaWquCyL,gO\n.JvOayhXK_bgoYbfAtnXg\nbvdSzRrXoGxVgWvdXnsjEnEfxDzIQo_aZVGDGrzwuAMtzVAHioMBx_DHuTxyieGbGuSRNUojOREqxBBxvCgqAOMzwIWT\nMBuaWduZmRaOGyIPzWOsBVeqtDrblAbXxmM_uRfqMvnVlLEuhVKlhidN_aigiXyq,ZEDqQAx\nmiao.wCHVCuVKNePKmIUFLL_lala.\nmiao.iAqstXHUv\n pMO yvPkNtnNwmUCao W,wW.OvIMVaEeVYHmqaniWq.ivlala.", "output": "OMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nRainbow's\nFreda's" }, { "input": "10\nmiao.\nmiao.jrwLBCpNaDCjyoK.PFzbwWU.h.. wfQquG_P..lala.\nmiao.LGlYdKjw__.Chlala.\nW.wtr qG KDOHj.xWxPbXIXjD_,GJZDaAZ,JBHphsjWJwSKcZAIAi\nmiao.pHsGAZQDWPJQwKC.zHjJituLgp.eUrzObTI.wrpect.FMUJqu,Zuslala.\nmiao.YVlOpXccUA_YU igbsbZbhOVwyYTyOjnWqgiTmxwAuFa.flCHn.,MtVbqxZQl_BGHXWkwijGjuL, ,ezyNlala.\nmiao.xCrVSz.aMv UOSOroDlQxWeBmlWe.FA.ZfUmviMlala.\nxebAlala.\nmiao.qVSxqf vOTlala.\nD.oBUwsLQRgXAoNkQJhQN.w.oMhuvtujnmiwgQYMfjlNTSHh .lSKgI.OEp", "output": "Rainbow's\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nFreda's\nOMG>.< I don't know!\nOMG>.< I don't know!" }, { "input": "10\nZXXzYlTiQU\nkXE.DdcbOojSaSgjMcFBPubKHefEVAzbi,PDFgSZIz,lala.\nxEfrTCjKhhwBC.UNmJXgTGUdkQeVDlala.\nLfaEw.jvMmuOBWtfoiJNtDIlQAVWNU,xWK_efBBtfkM\nqtBpqKZMWZMX_NKrUAEKYyQcLZWQlqbM\nmiao.PrJEbUtInremuaKRItqXOrfQEjQcAak VQ\nMpGCq awvQaHRvDr uvtVMKsvZI\nmiao.A.RVGu.szCEp.pXQJwL EuTltlN.WradoTvWHJyhcNSoulala.\nmiao.rzlUHzUdxtDRpWRuc,QZwEBfsKKGHMLGtFymPPQdptLFlzZ_ORWqrlfOrlntuDkpXEvz.CxwAsFYUvpnOnFWG\nmiao.VXUoNBwlgBwcna_n.CgAAcKKUuiVA.doOJKHpMdwNwlHAcLpdfN.Awa SthrlEWpUcuOonUTxIQNszYcHDXxnhArrM..A", "output": "OMG>.< I don't know!\nFreda's\nFreda's\nOMG>.< I don't know!\nOMG>.< I don't know!\nRainbow's\nOMG>.< I don't know!\nOMG>.< I don't know!\nRainbow's\nRainbow's" }, { "input": "10\nmiao.qbxBFzrjtWv.yOk\nDBgi,loApO AACrGnwssCHN\nmiao.LV.wbQEE_V.BSAtdTIHTQOJVJ_nGOthbL,nJvQ.UeWFpsa.GGsK_Uv,HQxHS,AN_bkrolala.\nmiao.tBEqk rIQuByGKhfq_iP.BW,nySZEfrfySEcqnnIzxC,lrjIiivbxlkoVXJFiegGFRn NO,txGPhVBcv.CVhMmNO zlala.\nmiao.aBZWDWxk.wkR ,NyCzGxJnJDqBZpetdUPAmmBZDXl_Tbflala.\nmiao. XN,uMwWm. VqloYr..jTLszlala.\n.rshcgfZ.eZOdMu_RMh\nmiao.ahiwpECEe.lala.\nLeoUSroTekQAMSO__M L_ZEeRD_tUihYvQETFB,RzJmFtFiKrU\nBtygQG_OoFEFBL.KsVWTYbtqtalXoStFCZ RINHda.NuLmlkRB.vAQJFvelbsfoJ.T,M sJn", "output": "Rainbow's\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!" }, { "input": "10\nYoYBCcaqhXLfvKKf.UYMODTHyPZlala.\ncxgWn J.Q\nmiao.nwH.IHntgKYDhdsjU DMTHXEVRyeJP ZaAecCIBJXuv.YjhEmtbjvjKnK.U,oc,x\nmiao.EcQ.FDtRJgmpAzxhq.RwXBLxjyC,IeMqaFoheMPFCGWBcwUAFnbiwlbz_fcsEGPfJaeryCtFocBNEWTlala.\nmiao.W\nmiao. ZQpIeyCXJSnFgAIzu.THfrmyoogYWQzFqblala.\nmiao.ifzdCwnTDcxpvdr OTC.YqPv.MKDp..utICtAsbfYyGlala.\nmiao.\nmiao.tS.U.wH.s,CxORZJsBAHLi,fXeoDJWVBH\nrcUMpeupOVRKrcIRAvU.rP kgUEfoeXcrFPQOBYG.BNvAQPg.XHMWizhLpZNljXc .LQmVXCi", "output": "Freda's\nOMG>.< I don't know!\nRainbow's\nOMG>.< I don't know!\nRainbow's\nOMG>.< I don't know!\nOMG>.< I don't know!\nRainbow's\nRainbow's\nOMG>.< I don't know!" }, { "input": "10\nlala.\nmiao.milalala.lmmialamiao.la.o.iao.a.ao.\nmialala.o.\nmiao.millala.allala.amiao..miao.miao.lala.ao.miammiao.iao.o.\nmiao.miaomiao..\nlalmiao.amiao..\nmiao.lala.lamiamiaolala..o.lalala.miao..\nmlala.iao.lalamiao..\nlmlala.iao.alalamiao.lmialala.lala.miao.o.alala..lala..lalmiaomiao..lalmiao.a.lalamiao..miao.alala..\nlalllamiao.la.lala.alamiao.lalalala.lala..miao.lamiao.la.lallalamiao..a..a.", "output": "Freda's\nRainbow's\nOMG>.< I don't know!\nRainbow's\nRainbow's\nOMG>.< I don't know!\nRainbow's\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!" }, { "input": "10\nlalllala.ala.lala.a.mmimiao.aomiao.lllala.ala.amiao.la.mialalala.la.o..imiao.miao.amlala.iao.o.\nmilala.alllala.ala.amiao.lamiao..o.\nlala.lalalala..lalalala..\nlala.miao.\nmimiao.ao.lala.\nlalmiao.amlala.iamialala.o.o..\nlalammlala.iaolammiao.imiao.ao.la..iao..\nmiao.mialala.omiao..mlala.iaolala..\nmiamiao.o.llallala.ala.la.miao.ala.miao.mimialmiao.ala.o.alala.miaomiao..olala..\nmialala.lamiao.la.lala.miao.ollala.allala.ala.lmiaommiao.imiao.ao.lallallala.a.miao.a..a..", "output": "OMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nFreda's\nOMG>.< I don't know!\nOMG>.< I don't know!\nRainbow's\nOMG>.< I don't know!\nOMG>.< I don't know!" }, { "input": "10\nlamiao.lamiao.mimiao.ao..\nllala.almiaomiao..lala.miao.a.\nlalala.lala.lalala.lala.lalala..la.\nlalala.la.miao.\nmiao.llalallala.miao.a.la.lala.almimiao.ao.a.\nmiao.mlala.ilala.aomilala.ao..\nmilala.ao.\nmmiao.iao.\nmlala.lala.ialalmiao.alala..olala.lala..\nlala.lmlalalalalala...iao.milala.aommiao.iao..alamiaolallala.milala.ao.a..lalalmiao.a..llala.amiao..", "output": "OMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nRainbow's\nRainbow's\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!" }, { "input": "4\n \n miao. \n lala. \n ", "output": "OMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!" }, { "input": "1\nMiao.", "output": "OMG>.< I don't know!" }, { "input": "1\nm", "output": "OMG>.< I don't know!" }, { "input": "1\nMiAo.sdsdlala.", "output": "Freda's" }, { "input": "1\nLalA.", "output": "OMG>.< I don't know!" }, { "input": "3\n.\nm\nl", "output": "OMG>.< I don't know!\nOMG>.< I don't know!\nOMG>.< I don't know!" } ]
1,654,411,794
2,147,483,647
Python 3
OK
TESTS
36
46
0
for message in range(int(input())): s = input() if len(s)>=5: if s[0:5] == 'miao.' and s[-5:] != 'lala.': print("Rainbow's") continue if s[0:5] != 'miao.' and s[-5:] == 'lala.': print("Freda's") continue print("OMG>.< I don't know!")
Title: Whose sentence is it? Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day, liouzhou_101 got a chat record of Freda and Rainbow. Out of curiosity, he wanted to know which sentences were said by Freda, and which were said by Rainbow. According to his experience, he thought that Freda always said "lala." at the end of her sentences, while Rainbow always said "miao." at the beginning of his sentences. For each sentence in the chat record, help liouzhou_101 find whose sentence it is. Input Specification: The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=10), number of sentences in the chat record. Each of the next *n* lines contains a sentence. A sentence is a string that contains only Latin letters (A-Z, a-z), underline (_), comma (,), point (.) and space ( ). Its length doesn’t exceed 100. Output Specification: For each sentence, output "Freda's" if the sentence was said by Freda, "Rainbow's" if the sentence was said by Rainbow, or "OMG&gt;.&lt; I don't know!" if liouzhou_101 can’t recognize whose sentence it is. He can’t recognize a sentence if it begins with "miao." and ends with "lala.", or satisfies neither of the conditions. Demo Input: ['5\nI will go to play with you lala.\nwow, welcome.\nmiao.lala.\nmiao.\nmiao .\n'] Demo Output: ["Freda's\nOMG&gt;.&lt; I don't know!\nOMG&gt;.&lt; I don't know!\nRainbow's\nOMG&gt;.&lt; I don't know!\n"] Note: none
```python for message in range(int(input())): s = input() if len(s)>=5: if s[0:5] == 'miao.' and s[-5:] != 'lala.': print("Rainbow's") continue if s[0:5] != 'miao.' and s[-5:] == 'lala.': print("Freda's") continue print("OMG>.< I don't know!") ```
3
919
D
Substring
PROGRAMMING
1,700
[ "dfs and similar", "dp", "graphs" ]
null
null
You are given a graph with $n$ nodes and $m$ directed edges. One lowercase letter is assigned to each node. We define a path's value as the number of the most frequently occurring letter. For example, if letters on a path are "abaca", then the value of that path is $3$. Your task is find a path whose value is the largest.
The first line contains two positive integers $n, m$ ($1 \leq n, m \leq 300\,000$), denoting that the graph has $n$ nodes and $m$ directed edges. The second line contains a string $s$ with only lowercase English letters. The $i$-th character is the letter assigned to the $i$-th node. Then $m$ lines follow. Each line contains two integers $x, y$ ($1 \leq x, y \leq n$), describing a directed edge from $x$ to $y$. Note that $x$ can be equal to $y$ and there can be multiple edges between $x$ and $y$. Also the graph can be not connected.
Output a single line with a single integer denoting the largest value. If the value can be arbitrarily large, output -1 instead.
[ "5 4\nabaca\n1 2\n1 3\n3 4\n4 5\n", "6 6\nxzyabc\n1 2\n3 1\n2 3\n5 4\n4 3\n6 4\n", "10 14\nxzyzyzyzqx\n1 2\n2 4\n3 5\n4 5\n2 6\n6 8\n6 5\n2 10\n3 9\n10 9\n4 6\n1 10\n2 8\n3 7\n" ]
[ "3\n", "-1\n", "4\n" ]
In the first sample, the path with largest value is $1 \to 3 \to 4 \to 5$. The value is $3$ because the letter 'a' appears $3$ times.
1,500
[ { "input": "5 4\nabaca\n1 2\n1 3\n3 4\n4 5", "output": "3" }, { "input": "6 6\nxzyabc\n1 2\n3 1\n2 3\n5 4\n4 3\n6 4", "output": "-1" }, { "input": "10 14\nxzyzyzyzqx\n1 2\n2 4\n3 5\n4 5\n2 6\n6 8\n6 5\n2 10\n3 9\n10 9\n4 6\n1 10\n2 8\n3 7", "output": "4" }, { "input": "1 1\nf\n1 1", "output": "-1" }, { "input": "10 50\nebibwbjihv\n1 10\n1 2\n5 4\n1 8\n9 7\n5 6\n1 8\n8 7\n2 6\n5 4\n1 9\n3 2\n8 3\n5 6\n5 9\n2 4\n2 7\n3 9\n1 2\n1 7\n1 10\n3 7\n1 8\n3 10\n8 6\n1 7\n10 6\n1 6\n5 8\n1 5\n2 10\n3 9\n5 8\n8 3\n3 7\n5 2\n1 10\n1 4\n5 3\n3 2\n1 2\n5 8\n10 4\n2 10\n8 2\n1 9\n1 8\n1 2\n3 4\n1 8", "output": "2" }, { "input": "13 37\ndwpzcppjmhkmz\n2 6\n3 6\n6 7\n6 7\n6 7\n6 7\n6 8\n6 8\n6 8\n6 8\n4 6\n4 6\n5 6\n4 6\n4 6\n6 9\n6 9\n6 10\n6 10\n6 10\n6 10\n4 6\n1 6\n1 6\n10 11\n6 11\n1 6\n6 12\n6 12\n6 12\n6 13\n6 13\n6 13\n6 13\n3 6\n2 6\n2 6", "output": "3" }, { "input": "5 8\ntetqw\n2 1\n4 4\n5 5\n5 2\n4 5\n1 5\n1 5\n1 1", "output": "-1" }, { "input": "5 8\nreeet\n4 3\n2 5\n4 2\n2 4\n4 2\n5 2\n3 3\n3 4", "output": "-1" } ]
1,688,407,416
2,147,483,647
PyPy 3
COMPILATION_ERROR
TESTS
0
0
0
from heapq import heappush, heappop from typing import List from collections import deque, defaultdict class Solution: def findAllRecipes(self, recipes: List[str], ingredients: List[List[str]], supplies: List[str]) -> List[str]: in_degree = defaultdict(int) graph = defaultdict(list) for i in range(len(recipes)): node = recipes[i] in_degree[node] = len(ingredients[i]) for nbr in ingredients[i]: graph[nbr].append(node) recipes = set(recipes) que = deque(supplies) result = [] while que: res = que.copy() for i in range(len(que)): cur = que.pop() for nbr in graph[cur]: # code here return result
Title: Substring Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a graph with $n$ nodes and $m$ directed edges. One lowercase letter is assigned to each node. We define a path's value as the number of the most frequently occurring letter. For example, if letters on a path are "abaca", then the value of that path is $3$. Your task is find a path whose value is the largest. Input Specification: The first line contains two positive integers $n, m$ ($1 \leq n, m \leq 300\,000$), denoting that the graph has $n$ nodes and $m$ directed edges. The second line contains a string $s$ with only lowercase English letters. The $i$-th character is the letter assigned to the $i$-th node. Then $m$ lines follow. Each line contains two integers $x, y$ ($1 \leq x, y \leq n$), describing a directed edge from $x$ to $y$. Note that $x$ can be equal to $y$ and there can be multiple edges between $x$ and $y$. Also the graph can be not connected. Output Specification: Output a single line with a single integer denoting the largest value. If the value can be arbitrarily large, output -1 instead. Demo Input: ['5 4\nabaca\n1 2\n1 3\n3 4\n4 5\n', '6 6\nxzyabc\n1 2\n3 1\n2 3\n5 4\n4 3\n6 4\n', '10 14\nxzyzyzyzqx\n1 2\n2 4\n3 5\n4 5\n2 6\n6 8\n6 5\n2 10\n3 9\n10 9\n4 6\n1 10\n2 8\n3 7\n'] Demo Output: ['3\n', '-1\n', '4\n'] Note: In the first sample, the path with largest value is $1 \to 3 \to 4 \to 5$. The value is $3$ because the letter 'a' appears $3$ times.
```python from heapq import heappush, heappop from typing import List from collections import deque, defaultdict class Solution: def findAllRecipes(self, recipes: List[str], ingredients: List[List[str]], supplies: List[str]) -> List[str]: in_degree = defaultdict(int) graph = defaultdict(list) for i in range(len(recipes)): node = recipes[i] in_degree[node] = len(ingredients[i]) for nbr in ingredients[i]: graph[nbr].append(node) recipes = set(recipes) que = deque(supplies) result = [] while que: res = que.copy() for i in range(len(que)): cur = que.pop() for nbr in graph[cur]: # code here return result ```
-1
327
A
Flipping Game
PROGRAMMING
1,200
[ "brute force", "dp", "implementation" ]
null
null
Iahub got bored, so he invented a game to be played on paper. He writes *n* integers *a*1,<=*a*2,<=...,<=*a**n*. Each of those integers can be either 0 or 1. He's allowed to do exactly one move: he chooses two indices *i* and *j* (1<=≤<=*i*<=≤<=*j*<=≤<=*n*) and flips all values *a**k* for which their positions are in range [*i*,<=*j*] (that is *i*<=≤<=*k*<=≤<=*j*). Flip the value of *x* means to apply operation *x*<==<=1 - *x*. The goal of the game is that after exactly one move to obtain the maximum number of ones. Write a program to solve the little game of Iahub.
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=100). In the second line of the input there are *n* integers: *a*1,<=*a*2,<=...,<=*a**n*. It is guaranteed that each of those *n* values is either 0 or 1.
Print an integer — the maximal number of 1s that can be obtained after exactly one move.
[ "5\n1 0 0 1 0\n", "4\n1 0 0 1\n" ]
[ "4\n", "4\n" ]
In the first case, flip the segment from 2 to 5 (*i* = 2, *j* = 5). That flip changes the sequence, it becomes: [1 1 1 0 1]. So, it contains four ones. There is no way to make the whole sequence equal to [1 1 1 1 1]. In the second case, flipping only the second and the third element (*i* = 2, *j* = 3) will turn all numbers into 1.
500
[ { "input": "5\n1 0 0 1 0", "output": "4" }, { "input": "4\n1 0 0 1", "output": "4" }, { "input": "1\n1", "output": "0" }, { "input": "1\n0", "output": "1" }, { "input": "8\n1 0 0 0 1 0 0 0", "output": "7" }, { "input": "18\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "18" }, { "input": "23\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "22" }, { "input": "100\n0 1 0 1 1 1 0 1 0 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1", "output": "70" }, { "input": "100\n0 1 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1 1", "output": "60" }, { "input": "18\n0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0", "output": "11" }, { "input": "25\n0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1 0 0 1 1 0 1", "output": "18" }, { "input": "55\n0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 1", "output": "36" }, { "input": "75\n1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0", "output": "44" }, { "input": "100\n0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1", "output": "61" }, { "input": "100\n0 0 0 1 0 0 0 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0", "output": "61" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "100" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "99" }, { "input": "100\n0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0 0 1 0", "output": "61" }, { "input": "100\n0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1", "output": "59" }, { "input": "99\n1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1", "output": "61" }, { "input": "2\n1 1", "output": "1" } ]
1,654,503,750
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
60
0
n = int(input()) A = list(map(int, input().split())) ones = A.count(1) tmp = 0 ca = 0 for a in A: if a == 0: ca += 1 else: ca -= 1 tmp = max(tmp, ca) if ca < 0: ca = 0 print(tmp + ones)
Title: Flipping Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Iahub got bored, so he invented a game to be played on paper. He writes *n* integers *a*1,<=*a*2,<=...,<=*a**n*. Each of those integers can be either 0 or 1. He's allowed to do exactly one move: he chooses two indices *i* and *j* (1<=≤<=*i*<=≤<=*j*<=≤<=*n*) and flips all values *a**k* for which their positions are in range [*i*,<=*j*] (that is *i*<=≤<=*k*<=≤<=*j*). Flip the value of *x* means to apply operation *x*<==<=1 - *x*. The goal of the game is that after exactly one move to obtain the maximum number of ones. Write a program to solve the little game of Iahub. Input Specification: The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=100). In the second line of the input there are *n* integers: *a*1,<=*a*2,<=...,<=*a**n*. It is guaranteed that each of those *n* values is either 0 or 1. Output Specification: Print an integer — the maximal number of 1s that can be obtained after exactly one move. Demo Input: ['5\n1 0 0 1 0\n', '4\n1 0 0 1\n'] Demo Output: ['4\n', '4\n'] Note: In the first case, flip the segment from 2 to 5 (*i* = 2, *j* = 5). That flip changes the sequence, it becomes: [1 1 1 0 1]. So, it contains four ones. There is no way to make the whole sequence equal to [1 1 1 1 1]. In the second case, flipping only the second and the third element (*i* = 2, *j* = 3) will turn all numbers into 1.
```python n = int(input()) A = list(map(int, input().split())) ones = A.count(1) tmp = 0 ca = 0 for a in A: if a == 0: ca += 1 else: ca -= 1 tmp = max(tmp, ca) if ca < 0: ca = 0 print(tmp + ones) ```
0
363
C
Fixing Typos
PROGRAMMING
1,400
[ "greedy", "implementation" ]
null
null
Many modern text editors automatically check the spelling of the user's text. Some editors even suggest how to correct typos. In this problem your task to implement a small functionality to correct two types of typos in a word. We will assume that three identical letters together is a typo (for example, word "helllo" contains a typo). Besides, a couple of identical letters immediately followed by another couple of identical letters is a typo too (for example, words "helloo" and "wwaatt" contain typos). Write a code that deletes the minimum number of letters from a word, correcting described typos in the word. You are allowed to delete letters from both ends and from the middle of the word.
The single line of the input contains word *s*, its length is from 1 to 200000 characters. The given word *s* consists of lowercase English letters.
Print such word *t* that it doesn't contain any typos described in the problem statement and is obtained from *s* by deleting the least number of letters. If there are multiple solutions, print any of them.
[ "helloo\n", "woooooow\n" ]
[ "hello\n", "woow\n" ]
The second valid answer to the test from the statement is "heloo".
1,500
[ { "input": "helloo", "output": "hello" }, { "input": "woooooow", "output": "woow" }, { "input": "aabbaa", "output": "aabaa" }, { "input": "yesssssss", "output": "yess" }, { "input": "aabbaabbaabbaabbaabbaabbcccccc", "output": "aabaabaabaabaabaabcc" }, { "input": "aaa", "output": "aa" }, { "input": "abbbbbccbbbbbbbccccbbbbzbbbbbccbbbbbbbccccbbbbxybbbbbccbbbbbbbccccbbbb", "output": "abbcbbcbbzbbcbbcbbxybbcbbcbb" }, { "input": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", "output": "zz" }, { "input": "aazzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzvv", "output": "aazvv" }, { "input": "aabbccddaabbccddaabbccddaabbccddaaxaabbccddaabbccddaabbccddaabbccddaaxyaabbccddaabbccddaabbccddaabbccddaaxyzaabbccddaabbccddaabbccddaabbccddaaxyzqaabbccddaabbccddaabbccddaabbccddaaqwertyaabbccddaabbccddaabbccddaabbccddaa", "output": "aabccdaabccdaabccdaabccdaaxaabccdaabccdaabccdaabccdaaxyaabccdaabccdaabccdaabccdaaxyzaabccdaabccdaabccdaabccdaaxyzqaabccdaabccdaabccdaabccdaaqwertyaabccdaabccdaabccdaabccdaa" }, { "input": "aaaaaaabbbbbbbbbbbbaaaaabbbbbbbbaaaaaaaaaabbbbbbbbbbbbaaaaaaaaaaabbbbbbbbaaaaaaabbbbbbbbbbbbaaaaabbbbbbbbaaaaaaaaaabbbbbbbbbbbbaaaaaaaaaaabbbbbbbbaaaaaaabbbbbbbbbbbbaaaaabbbbbbbbaaaaaaaaaabbbbbbbbbbbbaaaaaaaaaaabbbbbbbbaaaaaaabbbbbbbbbbbbaaaaabbbbbbbbaaaa", "output": "aabaabaabaabaabaabaabaabaabaabaabaabaabaabaa" }, { "input": "aabbccddeeffgghh", "output": "aabccdeefggh" }, { "input": "aabb", "output": "aab" }, { "input": "zz", "output": "zz" }, { "input": "wwwwwhaaaaaatiiiiisyyyyyyouuuuuurnnnnammmmmmme", "output": "wwhaatiisyyouurnnamme" }, { "input": "x", "output": "x" }, { "input": "xxxyyyzzz", "output": "xxyzz" }, { "input": "aaaaxaaabxaabaxaabbxabaaxababxabbaxabbbxbaaaxbaabxbabaxbabbxbbaaxbbabxbbbaxbbbb", "output": "aaxaabxaabaxaabxabaaxababxabbaxabbxbaaxbaabxbabaxbabbxbbaxbbabxbbaxbb" }, { "input": "xy", "output": "xy" }, { "input": "xxy", "output": "xxy" }, { "input": "xyx", "output": "xyx" }, { "input": "xyy", "output": "xyy" }, { "input": "yxx", "output": "yxx" }, { "input": "yxy", "output": "yxy" }, { "input": "yyyx", "output": "yyx" }, { "input": "xzzz", "output": "xzz" }, { "input": "xzzzz", "output": "xzz" }, { "input": "xxyyy", "output": "xxy" } ]
1,689,642,649
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
30
0
print("_RANDOM_GUESS_1689642649.1244712")# 1689642649.1244912
Title: Fixing Typos Time Limit: None seconds Memory Limit: None megabytes Problem Description: Many modern text editors automatically check the spelling of the user's text. Some editors even suggest how to correct typos. In this problem your task to implement a small functionality to correct two types of typos in a word. We will assume that three identical letters together is a typo (for example, word "helllo" contains a typo). Besides, a couple of identical letters immediately followed by another couple of identical letters is a typo too (for example, words "helloo" and "wwaatt" contain typos). Write a code that deletes the minimum number of letters from a word, correcting described typos in the word. You are allowed to delete letters from both ends and from the middle of the word. Input Specification: The single line of the input contains word *s*, its length is from 1 to 200000 characters. The given word *s* consists of lowercase English letters. Output Specification: Print such word *t* that it doesn't contain any typos described in the problem statement and is obtained from *s* by deleting the least number of letters. If there are multiple solutions, print any of them. Demo Input: ['helloo\n', 'woooooow\n'] Demo Output: ['hello\n', 'woow\n'] Note: The second valid answer to the test from the statement is "heloo".
```python print("_RANDOM_GUESS_1689642649.1244712")# 1689642649.1244912 ```
0
546
A
Soldier and Bananas
PROGRAMMING
800
[ "brute force", "implementation", "math" ]
null
null
A soldier wants to buy *w* bananas in the shop. He has to pay *k* dollars for the first banana, 2*k* dollars for the second one and so on (in other words, he has to pay *i*·*k* dollars for the *i*-th banana). He has *n* dollars. How many dollars does he have to borrow from his friend soldier to buy *w* bananas?
The first line contains three positive integers *k*,<=*n*,<=*w* (1<=<=≤<=<=*k*,<=*w*<=<=≤<=<=1000, 0<=≤<=*n*<=≤<=109), the cost of the first banana, initial number of dollars the soldier has and number of bananas he wants.
Output one integer — the amount of dollars that the soldier must borrow from his friend. If he doesn't have to borrow money, output 0.
[ "3 17 4\n" ]
[ "13" ]
none
500
[ { "input": "3 17 4", "output": "13" }, { "input": "1 2 1", "output": "0" }, { "input": "1 1 1", "output": "0" }, { "input": "1 5 6", "output": "16" }, { "input": "1 1000000000 1", "output": "0" }, { "input": "1000 0 1000", "output": "500500000" }, { "input": "859 453892 543", "output": "126416972" }, { "input": "1000 1000000000 1000", "output": "0" }, { "input": "1000 500500000 1000", "output": "0" }, { "input": "1000 500500001 1000", "output": "0" }, { "input": "1000 500499999 1000", "output": "1" }, { "input": "634 87973 214", "output": "14497197" }, { "input": "432 10000 241", "output": "12587552" }, { "input": "111 111111111 111", "output": "0" }, { "input": "20 43 3", "output": "77" } ]
1,699,545,249
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
1
77
0
n,b,c=map(int,input().split()) l=n*b*c print(l//max(n,b,c)+1)
Title: Soldier and Bananas Time Limit: None seconds Memory Limit: None megabytes Problem Description: A soldier wants to buy *w* bananas in the shop. He has to pay *k* dollars for the first banana, 2*k* dollars for the second one and so on (in other words, he has to pay *i*·*k* dollars for the *i*-th banana). He has *n* dollars. How many dollars does he have to borrow from his friend soldier to buy *w* bananas? Input Specification: The first line contains three positive integers *k*,<=*n*,<=*w* (1<=<=≤<=<=*k*,<=*w*<=<=≤<=<=1000, 0<=≤<=*n*<=≤<=109), the cost of the first banana, initial number of dollars the soldier has and number of bananas he wants. Output Specification: Output one integer — the amount of dollars that the soldier must borrow from his friend. If he doesn't have to borrow money, output 0. Demo Input: ['3 17 4\n'] Demo Output: ['13'] Note: none
```python n,b,c=map(int,input().split()) l=n*b*c print(l//max(n,b,c)+1) ```
0
583
A
Asphalting Roads
PROGRAMMING
1,000
[ "implementation" ]
null
null
City X consists of *n* vertical and *n* horizontal infinite roads, forming *n*<=×<=*n* intersections. Roads (both vertical and horizontal) are numbered from 1 to *n*, and the intersections are indicated by the numbers of the roads that form them. Sand roads have long been recognized out of date, so the decision was made to asphalt them. To do this, a team of workers was hired and a schedule of work was made, according to which the intersections should be asphalted. Road repairs are planned for *n*2 days. On the *i*-th day of the team arrives at the *i*-th intersection in the list and if none of the two roads that form the intersection were already asphalted they asphalt both roads. Otherwise, the team leaves the intersection, without doing anything with the roads. According to the schedule of road works tell in which days at least one road will be asphalted.
The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of vertical and horizontal roads in the city. Next *n*2 lines contain the order of intersections in the schedule. The *i*-th of them contains two numbers *h**i*,<=*v**i* (1<=≤<=*h**i*,<=*v**i*<=≤<=*n*), separated by a space, and meaning that the intersection that goes *i*-th in the timetable is at the intersection of the *h**i*-th horizontal and *v**i*-th vertical roads. It is guaranteed that all the intersections in the timetable are distinct.
In the single line print the numbers of the days when road works will be in progress in ascending order. The days are numbered starting from 1.
[ "2\n1 1\n1 2\n2 1\n2 2\n", "1\n1 1\n" ]
[ "1 4 \n", "1 \n" ]
In the sample the brigade acts like that: 1. On the first day the brigade comes to the intersection of the 1-st horizontal and the 1-st vertical road. As none of them has been asphalted, the workers asphalt the 1-st vertical and the 1-st horizontal road; 1. On the second day the brigade of the workers comes to the intersection of the 1-st horizontal and the 2-nd vertical road. The 2-nd vertical road hasn't been asphalted, but as the 1-st horizontal road has been asphalted on the first day, the workers leave and do not asphalt anything; 1. On the third day the brigade of the workers come to the intersection of the 2-nd horizontal and the 1-st vertical road. The 2-nd horizontal road hasn't been asphalted but as the 1-st vertical road has been asphalted on the first day, the workers leave and do not asphalt anything; 1. On the fourth day the brigade come to the intersection formed by the intersection of the 2-nd horizontal and 2-nd vertical road. As none of them has been asphalted, the workers asphalt the 2-nd vertical and the 2-nd horizontal road.
500
[ { "input": "2\n1 1\n1 2\n2 1\n2 2", "output": "1 4 " }, { "input": "1\n1 1", "output": "1 " }, { "input": "2\n1 1\n2 2\n1 2\n2 1", "output": "1 2 " }, { "input": "2\n1 2\n2 2\n2 1\n1 1", "output": "1 3 " }, { "input": "3\n2 2\n1 2\n3 2\n3 3\n1 1\n2 3\n1 3\n3 1\n2 1", "output": "1 4 5 " }, { "input": "3\n1 3\n3 1\n2 1\n1 1\n1 2\n2 2\n3 2\n3 3\n2 3", "output": "1 2 6 " }, { "input": "4\n1 3\n2 3\n2 4\n4 4\n3 1\n1 1\n3 4\n2 1\n1 4\n4 3\n4 1\n3 2\n1 2\n4 2\n2 2\n3 3", "output": "1 3 5 14 " }, { "input": "4\n3 3\n4 2\n2 3\n3 4\n4 4\n1 2\n3 2\n2 2\n1 4\n3 1\n4 1\n2 1\n1 3\n1 1\n4 3\n2 4", "output": "1 2 9 12 " }, { "input": "9\n4 5\n2 3\n8 3\n5 6\n9 3\n4 4\n5 4\n4 7\n1 7\n8 4\n1 4\n1 5\n5 7\n7 8\n7 1\n9 9\n8 7\n7 5\n3 7\n6 6\n7 3\n5 2\n3 6\n7 4\n9 6\n5 8\n9 7\n6 3\n7 9\n1 2\n1 1\n6 2\n5 3\n7 2\n1 6\n4 1\n6 1\n8 9\n2 2\n3 9\n2 9\n7 7\n2 8\n9 4\n2 5\n8 6\n3 4\n2 1\n2 7\n6 5\n9 1\n3 3\n3 8\n5 5\n4 3\n3 1\n1 9\n6 4\n3 2\n6 8\n2 6\n5 9\n8 5\n8 8\n9 5\n6 9\n9 2\n3 5\n4 9\n4 8\n2 4\n5 1\n4 6\n7 6\n9 8\n1 3\n4 2\n8 1\n8 2\n6 7\n1 8", "output": "1 2 4 9 10 14 16 32 56 " }, { "input": "8\n1 1\n1 2\n1 3\n1 4\n1 5\n8 6\n1 7\n1 8\n2 1\n8 5\n2 3\n2 4\n2 5\n2 6\n4 3\n2 2\n3 1\n3 2\n3 3\n3 4\n3 5\n3 6\n5 6\n3 8\n4 1\n4 2\n2 7\n4 4\n8 8\n4 6\n4 7\n4 8\n5 1\n5 2\n5 3\n6 5\n5 5\n3 7\n5 7\n5 8\n6 1\n6 2\n6 3\n6 4\n5 4\n6 6\n6 7\n6 8\n7 1\n7 2\n7 3\n7 4\n7 5\n7 6\n7 7\n7 8\n8 1\n8 2\n8 3\n8 4\n2 8\n1 6\n8 7\n4 5", "output": "1 6 11 18 28 36 39 56 " }, { "input": "9\n9 9\n5 5\n8 8\n3 3\n2 2\n6 6\n4 4\n1 1\n7 7\n8 4\n1 4\n1 5\n5 7\n7 8\n7 1\n1 7\n8 7\n7 5\n3 7\n5 6\n7 3\n5 2\n3 6\n7 4\n9 6\n5 8\n9 7\n6 3\n7 9\n1 2\n4 5\n6 2\n5 3\n7 2\n1 6\n4 1\n6 1\n8 9\n2 3\n3 9\n2 9\n5 4\n2 8\n9 4\n2 5\n8 6\n3 4\n2 1\n2 7\n6 5\n9 1\n8 3\n3 8\n9 3\n4 3\n3 1\n1 9\n6 4\n3 2\n6 8\n2 6\n5 9\n8 5\n4 7\n9 5\n6 9\n9 2\n3 5\n4 9\n4 8\n2 4\n5 1\n4 6\n7 6\n9 8\n1 3\n4 2\n8 1\n8 2\n6 7\n1 8", "output": "1 2 3 4 5 6 7 8 9 " } ]
1,496,323,971
2,147,483,647
Python 3
OK
TESTS
39
62
0
N = int(input()) hs = set([]) vs = set([]) ans = [] for i in range(N ** 2): h, v = map(int, input().split()) if h in hs or v in vs: continue hs.add(h) vs.add(v) ans.append(i + 1) print(" ".join(map(str, ans)))
Title: Asphalting Roads Time Limit: None seconds Memory Limit: None megabytes Problem Description: City X consists of *n* vertical and *n* horizontal infinite roads, forming *n*<=×<=*n* intersections. Roads (both vertical and horizontal) are numbered from 1 to *n*, and the intersections are indicated by the numbers of the roads that form them. Sand roads have long been recognized out of date, so the decision was made to asphalt them. To do this, a team of workers was hired and a schedule of work was made, according to which the intersections should be asphalted. Road repairs are planned for *n*2 days. On the *i*-th day of the team arrives at the *i*-th intersection in the list and if none of the two roads that form the intersection were already asphalted they asphalt both roads. Otherwise, the team leaves the intersection, without doing anything with the roads. According to the schedule of road works tell in which days at least one road will be asphalted. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of vertical and horizontal roads in the city. Next *n*2 lines contain the order of intersections in the schedule. The *i*-th of them contains two numbers *h**i*,<=*v**i* (1<=≤<=*h**i*,<=*v**i*<=≤<=*n*), separated by a space, and meaning that the intersection that goes *i*-th in the timetable is at the intersection of the *h**i*-th horizontal and *v**i*-th vertical roads. It is guaranteed that all the intersections in the timetable are distinct. Output Specification: In the single line print the numbers of the days when road works will be in progress in ascending order. The days are numbered starting from 1. Demo Input: ['2\n1 1\n1 2\n2 1\n2 2\n', '1\n1 1\n'] Demo Output: ['1 4 \n', '1 \n'] Note: In the sample the brigade acts like that: 1. On the first day the brigade comes to the intersection of the 1-st horizontal and the 1-st vertical road. As none of them has been asphalted, the workers asphalt the 1-st vertical and the 1-st horizontal road; 1. On the second day the brigade of the workers comes to the intersection of the 1-st horizontal and the 2-nd vertical road. The 2-nd vertical road hasn't been asphalted, but as the 1-st horizontal road has been asphalted on the first day, the workers leave and do not asphalt anything; 1. On the third day the brigade of the workers come to the intersection of the 2-nd horizontal and the 1-st vertical road. The 2-nd horizontal road hasn't been asphalted but as the 1-st vertical road has been asphalted on the first day, the workers leave and do not asphalt anything; 1. On the fourth day the brigade come to the intersection formed by the intersection of the 2-nd horizontal and 2-nd vertical road. As none of them has been asphalted, the workers asphalt the 2-nd vertical and the 2-nd horizontal road.
```python N = int(input()) hs = set([]) vs = set([]) ans = [] for i in range(N ** 2): h, v = map(int, input().split()) if h in hs or v in vs: continue hs.add(h) vs.add(v) ans.append(i + 1) print(" ".join(map(str, ans))) ```
3
710
B
Optimal Point on a Line
PROGRAMMING
1,400
[ "brute force", "sortings" ]
null
null
You are given *n* points on a line with their coordinates *x**i*. Find the point *x* so the sum of distances to the given points is minimal.
The first line contains integer *n* (1<=≤<=*n*<=≤<=3·105) — the number of points on the line. The second line contains *n* integers *x**i* (<=-<=109<=≤<=*x**i*<=≤<=109) — the coordinates of the given *n* points.
Print the only integer *x* — the position of the optimal point on the line. If there are several optimal points print the position of the leftmost one. It is guaranteed that the answer is always the integer.
[ "4\n1 2 3 4\n" ]
[ "2\n" ]
none
0
[ { "input": "4\n1 2 3 4", "output": "2" }, { "input": "5\n-1 -10 2 6 7", "output": "2" }, { "input": "10\n-68 10 87 22 30 89 82 -97 -52 25", "output": "22" }, { "input": "100\n457 827 807 17 871 935 907 -415 536 170 551 -988 865 758 -457 -892 -875 -488 684 19 0 555 -807 -624 -239 826 318 811 20 -732 -91 460 551 -610 555 -493 -154 442 -141 946 -913 -104 704 -380 699 32 106 -455 -518 214 -464 -861 243 -798 -472 559 529 -844 -32 871 -459 236 387 626 -318 -580 -611 -842 790 486 64 951 81 78 -693 403 -731 309 678 696 891 846 -106 918 212 -44 994 606 -829 -454 243 -477 -402 -818 -819 -310 -837 -209 736 424", "output": "64" }, { "input": "2\n-1 0", "output": "-1" }, { "input": "48\n-777 -767 -764 -713 -688 -682 -606 -586 -585 -483 -465 -440 -433 -397 -390 -377 -299 -252 -159 -147 -96 -29 -15 15 52 109 124 129 142 218 231 314 320 339 442 496 505 548 575 576 594 624 694 827 891 979 981 981", "output": "15" }, { "input": "1\n1", "output": "1" }, { "input": "10\n1 1 1 1 1 1000000000 1000000000 1000000000 1000000000 1000000000", "output": "1" }, { "input": "4\n-1 -1 0 1", "output": "-1" }, { "input": "10\n0 0 0 0 0 0 0 0 0 1000000000", "output": "0" }, { "input": "2\n1 -1", "output": "-1" }, { "input": "2\n100 50", "output": "50" }, { "input": "2\n1 2", "output": "1" }, { "input": "1\n10", "output": "10" }, { "input": "3\n606194955 -856471310 117647402", "output": "117647402" }, { "input": "2\n615002717 -843553590", "output": "-843553590" }, { "input": "2\n-1 2", "output": "-1" }, { "input": "1\n0", "output": "0" }, { "input": "1\n2", "output": "2" }, { "input": "5\n-638512131 348325781 -550537933 -618161835 -567935532", "output": "-567935532" }, { "input": "1\n120", "output": "120" }, { "input": "2\n-1000000000 1000000000", "output": "-1000000000" }, { "input": "1\n618309368", "output": "618309368" } ]
1,645,850,208
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
467
0
n = int(input()) s = 0 mn = 10 ** 9 a = [] x = 0 a.append(list(map(int,input().split()))) for i in range(0, n): for j in range(0, n): s = s + abs(a[0][i] - a[0][j]) if mn > s: mn = s x = a[0][i] s = 0 print(x)
Title: Optimal Point on a Line Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given *n* points on a line with their coordinates *x**i*. Find the point *x* so the sum of distances to the given points is minimal. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=3·105) — the number of points on the line. The second line contains *n* integers *x**i* (<=-<=109<=≤<=*x**i*<=≤<=109) — the coordinates of the given *n* points. Output Specification: Print the only integer *x* — the position of the optimal point on the line. If there are several optimal points print the position of the leftmost one. It is guaranteed that the answer is always the integer. Demo Input: ['4\n1 2 3 4\n'] Demo Output: ['2\n'] Note: none
```python n = int(input()) s = 0 mn = 10 ** 9 a = [] x = 0 a.append(list(map(int,input().split()))) for i in range(0, n): for j in range(0, n): s = s + abs(a[0][i] - a[0][j]) if mn > s: mn = s x = a[0][i] s = 0 print(x) ```
0
935
A
Fafa and his Company
PROGRAMMING
800
[ "brute force", "implementation" ]
null
null
Fafa owns a company that works on huge projects. There are *n* employees in Fafa's company. Whenever the company has a new project to start working on, Fafa has to divide the tasks of this project among all the employees. Fafa finds doing this every time is very tiring for him. So, he decided to choose the best *l* employees in his company as team leaders. Whenever there is a new project, Fafa will divide the tasks among only the team leaders and each team leader will be responsible of some positive number of employees to give them the tasks. To make this process fair for the team leaders, each one of them should be responsible for the same number of employees. Moreover, every employee, who is not a team leader, has to be under the responsibility of exactly one team leader, and no team leader is responsible for another team leader. Given the number of employees *n*, find in how many ways Fafa could choose the number of team leaders *l* in such a way that it is possible to divide employees between them evenly.
The input consists of a single line containing a positive integer *n* (2<=≤<=*n*<=≤<=105) — the number of employees in Fafa's company.
Print a single integer representing the answer to the problem.
[ "2\n", "10\n" ]
[ "1\n", "3\n" ]
In the second sample Fafa has 3 ways: - choose only 1 employee as a team leader with 9 employees under his responsibility. - choose 2 employees as team leaders with 4 employees under the responsibility of each of them. - choose 5 employees as team leaders with 1 employee under the responsibility of each of them.
500
[ { "input": "2", "output": "1" }, { "input": "10", "output": "3" }, { "input": "3", "output": "1" }, { "input": "4", "output": "2" }, { "input": "6", "output": "3" }, { "input": "13", "output": "1" }, { "input": "100000", "output": "35" }, { "input": "1024", "output": "10" }, { "input": "99999", "output": "11" }, { "input": "10007", "output": "1" }, { "input": "4096", "output": "12" }, { "input": "65536", "output": "16" }, { "input": "40320", "output": "95" }, { "input": "30030", "output": "63" }, { "input": "161", "output": "3" }, { "input": "1000", "output": "15" }, { "input": "10000", "output": "24" }, { "input": "777", "output": "7" }, { "input": "121", "output": "2" }, { "input": "25", "output": "2" }, { "input": "40000", "output": "34" }, { "input": "99990", "output": "47" }, { "input": "98765", "output": "3" }, { "input": "56789", "output": "3" }, { "input": "13579", "output": "3" }, { "input": "97531", "output": "3" }, { "input": "12345", "output": "7" }, { "input": "54321", "output": "7" }, { "input": "83160", "output": "127" }, { "input": "9", "output": "2" }, { "input": "21", "output": "3" }, { "input": "11", "output": "1" }, { "input": "15", "output": "3" } ]
1,685,115,490
2,147,483,647
PyPy 3-64
OK
TESTS
33
77
1,331,200
n = int(input()) # n-l = k l count = 0 for i in range(1, n): if (n-i)%i == 0: count += 1 print(count)
Title: Fafa and his Company Time Limit: None seconds Memory Limit: None megabytes Problem Description: Fafa owns a company that works on huge projects. There are *n* employees in Fafa's company. Whenever the company has a new project to start working on, Fafa has to divide the tasks of this project among all the employees. Fafa finds doing this every time is very tiring for him. So, he decided to choose the best *l* employees in his company as team leaders. Whenever there is a new project, Fafa will divide the tasks among only the team leaders and each team leader will be responsible of some positive number of employees to give them the tasks. To make this process fair for the team leaders, each one of them should be responsible for the same number of employees. Moreover, every employee, who is not a team leader, has to be under the responsibility of exactly one team leader, and no team leader is responsible for another team leader. Given the number of employees *n*, find in how many ways Fafa could choose the number of team leaders *l* in such a way that it is possible to divide employees between them evenly. Input Specification: The input consists of a single line containing a positive integer *n* (2<=≤<=*n*<=≤<=105) — the number of employees in Fafa's company. Output Specification: Print a single integer representing the answer to the problem. Demo Input: ['2\n', '10\n'] Demo Output: ['1\n', '3\n'] Note: In the second sample Fafa has 3 ways: - choose only 1 employee as a team leader with 9 employees under his responsibility. - choose 2 employees as team leaders with 4 employees under the responsibility of each of them. - choose 5 employees as team leaders with 1 employee under the responsibility of each of them.
```python n = int(input()) # n-l = k l count = 0 for i in range(1, n): if (n-i)%i == 0: count += 1 print(count) ```
3
25
A
IQ test
PROGRAMMING
1,300
[ "brute force" ]
A. IQ test
2
256
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
[ "5\n2 4 7 8 10\n", "4\n1 2 1 1\n" ]
[ "3\n", "2\n" ]
none
0
[ { "input": "5\n2 4 7 8 10", "output": "3" }, { "input": "4\n1 2 1 1", "output": "2" }, { "input": "3\n1 2 2", "output": "1" }, { "input": "3\n100 99 100", "output": "2" }, { "input": "3\n5 3 2", "output": "3" }, { "input": "4\n43 28 1 91", "output": "2" }, { "input": "4\n75 13 94 77", "output": "3" }, { "input": "4\n97 8 27 3", "output": "2" }, { "input": "10\n95 51 12 91 85 3 1 31 25 7", "output": "3" }, { "input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46", "output": "4" }, { "input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36", "output": "26" }, { "input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83", "output": "48" }, { "input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25", "output": "1" }, { "input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46", "output": "25" }, { "input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73", "output": "13" }, { "input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76", "output": "99" }, { "input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14", "output": "1" }, { "input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22", "output": "93" }, { "input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23", "output": "1" }, { "input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98", "output": "1" }, { "input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94", "output": "93" }, { "input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29", "output": "32" }, { "input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47", "output": "26" }, { "input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72", "output": "56" }, { "input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86", "output": "97" }, { "input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42", "output": "79" }, { "input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52", "output": "25" }, { "input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86", "output": "78" }, { "input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68", "output": "70" }, { "input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81", "output": "39" }, { "input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83", "output": "88" }, { "input": "3\n100 100 1", "output": "3" } ]
1,564,095,377
2,147,483,647
Python 3
OK
TESTS
32
248
0
n = int(input()) list1 = list(map(int, input().split())) countOdd = countEven = even = odd = 0 for i in range(len(list1)): if list1[i] % 2 == 0: countEven += 1 even = list1[i] else: countOdd += 1 odd = list1[i] if countOdd == 1: print(list1.index(odd) + 1) else: print(list1.index(even) + 1)
Title: IQ test Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness. Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness. Output Specification: Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order. Demo Input: ['5\n2 4 7 8 10\n', '4\n1 2 1 1\n'] Demo Output: ['3\n', '2\n'] Note: none
```python n = int(input()) list1 = list(map(int, input().split())) countOdd = countEven = even = odd = 0 for i in range(len(list1)): if list1[i] % 2 == 0: countEven += 1 even = list1[i] else: countOdd += 1 odd = list1[i] if countOdd == 1: print(list1.index(odd) + 1) else: print(list1.index(even) + 1) ```
3.938
265
A
Colorful Stones (Simplified Edition)
PROGRAMMING
800
[ "implementation" ]
null
null
There is a sequence of colorful stones. The color of each stone is one of red, green, or blue. You are given a string *s*. The *i*-th (1-based) character of *s* represents the color of the *i*-th stone. If the character is "R", "G", or "B", the color of the corresponding stone is red, green, or blue, respectively. Initially Squirrel Liss is standing on the first stone. You perform instructions one or more times. Each instruction is one of the three types: "RED", "GREEN", or "BLUE". After an instruction *c*, if Liss is standing on a stone whose colors is *c*, Liss will move one stone forward, else she will not move. You are given a string *t*. The number of instructions is equal to the length of *t*, and the *i*-th character of *t* represents the *i*-th instruction. Calculate the final position of Liss (the number of the stone she is going to stand on in the end) after performing all the instructions, and print its 1-based position. It is guaranteed that Liss don't move out of the sequence.
The input contains two lines. The first line contains the string *s* (1<=≤<=|*s*|<=≤<=50). The second line contains the string *t* (1<=≤<=|*t*|<=≤<=50). The characters of each string will be one of "R", "G", or "B". It is guaranteed that Liss don't move out of the sequence.
Print the final 1-based position of Liss in a single line.
[ "RGB\nRRR\n", "RRRBGBRBBB\nBBBRR\n", "BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB\n" ]
[ "2\n", "3\n", "15\n" ]
none
500
[ { "input": "RGB\nRRR", "output": "2" }, { "input": "RRRBGBRBBB\nBBBRR", "output": "3" }, { "input": "BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB", "output": "15" }, { "input": "G\nRRBBRBRRBR", "output": "1" }, { "input": "RRRRRBRRBRRGRBGGRRRGRBBRBBBBBRGRBGBRRGBBBRBBGBRGBB\nB", "output": "1" }, { "input": "RRGGBRGRBG\nBRRGGBBGGR", "output": "7" }, { "input": "BBRRGBGGRGBRGBRBRBGR\nGGGRBGGGBRRRRGRBGBGRGRRBGRBGBG", "output": "15" }, { "input": "GBRRBGBGBBBBRRRGBGRRRGBGBBBRGR\nRRGBRRGRBBBBBBGRRBBR", "output": "8" }, { "input": "BRGRRGRGRRGBBGBBBRRBBRRBGBBGRGBBGGRGBRBGGGRRRBGGBB\nRGBBGRRBBBRRGRRBRBBRGBBGGGRGBGRRRRBRBGGBRBGGGRGBRR", "output": "16" }, { "input": "GGRGGBRRGRGBRRGGRBBGGRRGBBBGBBBGGRBGGBRBBRGBRRRBRG\nGGRGRRRRRRRRRGBBBBRGBRGRGRRGBBRGGBRBBRBGBRGRRRRGGR", "output": "18" }, { "input": "RBBRBGBBGGGBRRBGBRGRRGGRBBBBGRBGGBRRBGBBRBRGBBGGGG\nBRRGRBGRBGBRGBRBGGBBBGBBRGRBGRGRBGRBGGRRBGBRGRRBBG", "output": "23" }, { "input": "RRGGRRBRGRGBRGBRGBBRGGGBRBGBRGBRGGBRBRGBGRRBBGGRBR\nBRGRBBBGRBGRRGGRRRRRRRRGGGGGGGGBGGGGGGGRGRBBRGRGBR", "output": "14" }, { "input": "RBRBRRRRRGGR\nBBBBRRGGBGRBRGBBRGGGRGGBRRBRBRBGGG", "output": "12" }, { "input": "GGRGGGBRGRGRBBRGGGRBGRRR\nGBBBBGBGBGBBBRGGRGGBGRRGRRRGBGB", "output": "12" }, { "input": "RGRBGBRBBGBRRGGGBBGBRRBGRGBBBBBGRRRGGRBB\nBGR", "output": "2" }, { "input": "R\nB", "output": "1" }, { "input": "RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR\nRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR", "output": "50" }, { "input": "RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR\nGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG", "output": "1" }, { "input": "R\nGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG", "output": "1" } ]
1,684,043,904
2,147,483,647
Python 3
OK
TESTS
19
92
0
s1=input() s2=input() idx=0 for i in s2: if s1[idx]==i: idx+=1 print(idx+1)
Title: Colorful Stones (Simplified Edition) Time Limit: None seconds Memory Limit: None megabytes Problem Description: There is a sequence of colorful stones. The color of each stone is one of red, green, or blue. You are given a string *s*. The *i*-th (1-based) character of *s* represents the color of the *i*-th stone. If the character is "R", "G", or "B", the color of the corresponding stone is red, green, or blue, respectively. Initially Squirrel Liss is standing on the first stone. You perform instructions one or more times. Each instruction is one of the three types: "RED", "GREEN", or "BLUE". After an instruction *c*, if Liss is standing on a stone whose colors is *c*, Liss will move one stone forward, else she will not move. You are given a string *t*. The number of instructions is equal to the length of *t*, and the *i*-th character of *t* represents the *i*-th instruction. Calculate the final position of Liss (the number of the stone she is going to stand on in the end) after performing all the instructions, and print its 1-based position. It is guaranteed that Liss don't move out of the sequence. Input Specification: The input contains two lines. The first line contains the string *s* (1<=≤<=|*s*|<=≤<=50). The second line contains the string *t* (1<=≤<=|*t*|<=≤<=50). The characters of each string will be one of "R", "G", or "B". It is guaranteed that Liss don't move out of the sequence. Output Specification: Print the final 1-based position of Liss in a single line. Demo Input: ['RGB\nRRR\n', 'RRRBGBRBBB\nBBBRR\n', 'BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB\n'] Demo Output: ['2\n', '3\n', '15\n'] Note: none
```python s1=input() s2=input() idx=0 for i in s2: if s1[idx]==i: idx+=1 print(idx+1) ```
3
588
A
Duff and Meat
PROGRAMMING
900
[ "greedy" ]
null
null
Duff is addicted to meat! Malek wants to keep her happy for *n* days. In order to be happy in *i*-th day, she needs to eat exactly *a**i* kilograms of meat. There is a big shop uptown and Malek wants to buy meat for her from there. In *i*-th day, they sell meat for *p**i* dollars per kilogram. Malek knows all numbers *a*1,<=...,<=*a**n* and *p*1,<=...,<=*p**n*. In each day, he can buy arbitrary amount of meat, also he can keep some meat he has for the future. Malek is a little tired from cooking meat, so he asked for your help. Help him to minimize the total money he spends to keep Duff happy for *n* days.
The first line of input contains integer *n* (1<=≤<=*n*<=≤<=105), the number of days. In the next *n* lines, *i*-th line contains two integers *a**i* and *p**i* (1<=≤<=*a**i*,<=*p**i*<=≤<=100), the amount of meat Duff needs and the cost of meat in that day.
Print the minimum money needed to keep Duff happy for *n* days, in one line.
[ "3\n1 3\n2 2\n3 1\n", "3\n1 3\n2 1\n3 2\n" ]
[ "10\n", "8\n" ]
In the first sample case: An optimal way would be to buy 1 kg on the first day, 2 kg on the second day and 3 kg on the third day. In the second sample case: An optimal way would be to buy 1 kg on the first day and 5 kg (needed meat for the second and third day) on the second day.
750
[ { "input": "3\n1 3\n2 2\n3 1", "output": "10" }, { "input": "3\n1 3\n2 1\n3 2", "output": "8" }, { "input": "1\n39 52", "output": "2028" }, { "input": "2\n25 56\n94 17", "output": "2998" }, { "input": "5\n39 21\n95 89\n73 90\n9 55\n85 32", "output": "6321" }, { "input": "12\n70 11\n74 27\n32 11\n26 83\n57 18\n97 28\n75 43\n75 21\n84 29\n16 2\n89 63\n21 88", "output": "6742" }, { "input": "2\n100 68\n38 80", "output": "9384" } ]
1,620,457,789
2,147,483,647
PyPy 3
OK
TESTS
30
841
31,334,400
import math def main_function(): input_data = [[int(i) for i in input().split(" ")] for j in range(int(input()))] total = 0 current_lowest_price = 1000000000000000000000000000000000000000000 for i in input_data: needed_meat, price = i if price < current_lowest_price: current_lowest_price = price total += current_lowest_price * needed_meat return total print(main_function())
Title: Duff and Meat Time Limit: None seconds Memory Limit: None megabytes Problem Description: Duff is addicted to meat! Malek wants to keep her happy for *n* days. In order to be happy in *i*-th day, she needs to eat exactly *a**i* kilograms of meat. There is a big shop uptown and Malek wants to buy meat for her from there. In *i*-th day, they sell meat for *p**i* dollars per kilogram. Malek knows all numbers *a*1,<=...,<=*a**n* and *p*1,<=...,<=*p**n*. In each day, he can buy arbitrary amount of meat, also he can keep some meat he has for the future. Malek is a little tired from cooking meat, so he asked for your help. Help him to minimize the total money he spends to keep Duff happy for *n* days. Input Specification: The first line of input contains integer *n* (1<=≤<=*n*<=≤<=105), the number of days. In the next *n* lines, *i*-th line contains two integers *a**i* and *p**i* (1<=≤<=*a**i*,<=*p**i*<=≤<=100), the amount of meat Duff needs and the cost of meat in that day. Output Specification: Print the minimum money needed to keep Duff happy for *n* days, in one line. Demo Input: ['3\n1 3\n2 2\n3 1\n', '3\n1 3\n2 1\n3 2\n'] Demo Output: ['10\n', '8\n'] Note: In the first sample case: An optimal way would be to buy 1 kg on the first day, 2 kg on the second day and 3 kg on the third day. In the second sample case: An optimal way would be to buy 1 kg on the first day and 5 kg (needed meat for the second and third day) on the second day.
```python import math def main_function(): input_data = [[int(i) for i in input().split(" ")] for j in range(int(input()))] total = 0 current_lowest_price = 1000000000000000000000000000000000000000000 for i in input_data: needed_meat, price = i if price < current_lowest_price: current_lowest_price = price total += current_lowest_price * needed_meat return total print(main_function()) ```
3
1
A
Theatre Square
PROGRAMMING
1,000
[ "math" ]
A. Theatre Square
1
256
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Write the needed number of flagstones.
[ "6 6 4\n" ]
[ "4\n" ]
none
0
[ { "input": "6 6 4", "output": "4" }, { "input": "1 1 1", "output": "1" }, { "input": "2 1 1", "output": "2" }, { "input": "1 2 1", "output": "2" }, { "input": "2 2 1", "output": "4" }, { "input": "2 1 2", "output": "1" }, { "input": "1 1 3", "output": "1" }, { "input": "2 3 4", "output": "1" }, { "input": "1000000000 1000000000 1", "output": "1000000000000000000" }, { "input": "12 13 4", "output": "12" }, { "input": "222 332 5", "output": "3015" }, { "input": "1000 1000 10", "output": "10000" }, { "input": "1001 1000 10", "output": "10100" }, { "input": "100 10001 1000000000", "output": "1" }, { "input": "1000000000 1000000000 1000000000", "output": "1" }, { "input": "1000000000 1000000000 999999999", "output": "4" }, { "input": "1000000000 1000000000 192", "output": "27126743055556" }, { "input": "1000000000 987654321 1", "output": "987654321000000000" }, { "input": "456784567 1000000000 51", "output": "175618850864484" }, { "input": "39916800 134217728 40320", "output": "3295710" } ]
1,674,559,456
2,147,483,647
PyPy 3-64
OK
TESTS
20
61
0
n,m,a = map(int,input().split()) x = n//a y = m//a if n%a != 0: x +=1 if m%a != 0: y +=1 print(x*y)
Title: Theatre Square Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square. Input Specification: The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109). Output Specification: Write the needed number of flagstones. Demo Input: ['6 6 4\n'] Demo Output: ['4\n'] Note: none
```python n,m,a = map(int,input().split()) x = n//a y = m//a if n%a != 0: x +=1 if m%a != 0: y +=1 print(x*y) ```
3.9695
385
A
Bear and Raspberry
PROGRAMMING
1,000
[ "brute force", "greedy", "implementation" ]
null
null
The bear decided to store some raspberry for the winter. He cunningly found out the price for a barrel of honey in kilos of raspberry for each of the following *n* days. According to the bear's data, on the *i*-th (1<=≤<=*i*<=≤<=*n*) day, the price for one barrel of honey is going to is *x**i* kilos of raspberry. Unfortunately, the bear has neither a honey barrel, nor the raspberry. At the same time, the bear's got a friend who is ready to lend him a barrel of honey for exactly one day for *c* kilograms of raspberry. That's why the bear came up with a smart plan. He wants to choose some day *d* (1<=≤<=*d*<=&lt;<=*n*), lent a barrel of honey and immediately (on day *d*) sell it according to a daily exchange rate. The next day (*d*<=+<=1) the bear wants to buy a new barrel of honey according to a daily exchange rate (as he's got some raspberry left from selling the previous barrel) and immediately (on day *d*<=+<=1) give his friend the borrowed barrel of honey as well as *c* kilograms of raspberry for renting the barrel. The bear wants to execute his plan at most once and then hibernate. What maximum number of kilograms of raspberry can he earn? Note that if at some point of the plan the bear runs out of the raspberry, then he won't execute such a plan.
The first line contains two space-separated integers, *n* and *c* (2<=≤<=*n*<=≤<=100,<=0<=≤<=*c*<=≤<=100), — the number of days and the number of kilos of raspberry that the bear should give for borrowing the barrel. The second line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=100), the price of a honey barrel on day *i*.
Print a single integer — the answer to the problem.
[ "5 1\n5 10 7 3 20\n", "6 2\n100 1 10 40 10 40\n", "3 0\n1 2 3\n" ]
[ "3\n", "97\n", "0\n" ]
In the first sample the bear will lend a honey barrel at day 3 and then sell it for 7. Then the bear will buy a barrel for 3 and return it to the friend. So, the profit is (7 - 3 - 1) = 3. In the second sample bear will lend a honey barrel at day 1 and then sell it for 100. Then the bear buy the barrel for 1 at the day 2. So, the profit is (100 - 1 - 2) = 97.
500
[ { "input": "5 1\n5 10 7 3 20", "output": "3" }, { "input": "6 2\n100 1 10 40 10 40", "output": "97" }, { "input": "3 0\n1 2 3", "output": "0" }, { "input": "2 0\n2 1", "output": "1" }, { "input": "10 5\n10 1 11 2 12 3 13 4 14 5", "output": "4" }, { "input": "100 4\n2 57 70 8 44 10 88 67 50 44 93 79 72 50 69 19 21 9 71 47 95 13 46 10 68 72 54 40 15 83 57 92 58 25 4 22 84 9 8 55 87 0 16 46 86 58 5 21 32 28 10 46 11 29 13 33 37 34 78 33 33 21 46 70 77 51 45 97 6 21 68 61 87 54 8 91 37 12 76 61 57 9 100 45 44 88 5 71 98 98 26 45 37 87 34 50 33 60 64 77", "output": "87" }, { "input": "100 5\n15 91 86 53 18 52 26 89 8 4 5 100 11 64 88 91 35 57 67 72 71 71 69 73 97 23 11 1 59 86 37 82 6 67 71 11 7 31 11 68 21 43 89 54 27 10 3 33 8 57 79 26 90 81 6 28 24 7 33 50 24 13 27 85 4 93 14 62 37 67 33 40 7 48 41 4 14 9 95 10 64 62 7 93 23 6 28 27 97 64 26 83 70 0 97 74 11 82 70 93", "output": "84" }, { "input": "6 100\n10 9 8 7 6 5", "output": "0" }, { "input": "100 9\n66 71 37 41 23 38 77 11 74 13 51 26 93 56 81 17 12 70 85 37 54 100 14 99 12 83 44 16 99 65 13 48 92 32 69 33 100 57 58 88 25 45 44 85 5 41 82 15 37 18 21 45 3 68 33 9 52 64 8 73 32 41 87 99 26 26 47 24 79 93 9 44 11 34 85 26 14 61 49 38 25 65 49 81 29 82 28 23 2 64 38 13 77 68 67 23 58 57 83 46", "output": "78" }, { "input": "100 100\n9 72 46 37 26 94 80 1 43 85 26 53 58 18 24 19 67 2 100 52 61 81 48 15 73 41 97 93 45 1 73 54 75 51 28 79 0 14 41 42 24 50 70 18 96 100 67 1 68 48 44 39 63 77 78 18 10 51 32 53 26 60 1 13 66 39 55 27 23 71 75 0 27 88 73 31 16 95 87 84 86 71 37 40 66 70 65 83 19 4 81 99 26 51 67 63 80 54 23 44", "output": "0" }, { "input": "43 65\n32 58 59 75 85 18 57 100 69 0 36 38 79 95 82 47 7 55 28 88 27 88 63 71 80 86 67 53 69 37 99 54 81 19 55 12 2 17 84 77 25 26 62", "output": "4" }, { "input": "12 64\n14 87 40 24 32 36 4 41 38 77 68 71", "output": "0" }, { "input": "75 94\n80 92 25 48 78 17 69 52 79 73 12 15 59 55 25 61 96 27 98 43 30 43 36 94 67 54 86 99 100 61 65 8 65 19 18 21 75 31 2 98 55 87 14 1 17 97 94 11 57 29 34 71 76 67 45 0 78 29 86 82 29 23 77 100 48 43 65 62 88 34 7 28 13 1 1", "output": "0" }, { "input": "59 27\n76 61 24 66 48 18 69 84 21 8 64 90 19 71 36 90 9 36 30 37 99 37 100 56 9 79 55 37 54 63 11 11 49 71 91 70 14 100 10 44 52 23 21 19 96 13 93 66 52 79 76 5 62 6 90 35 94 7 27", "output": "63" }, { "input": "86 54\n41 84 16 5 20 79 73 13 23 24 42 73 70 80 69 71 33 44 62 29 86 88 40 64 61 55 58 19 16 23 84 100 38 91 89 98 47 50 55 87 12 94 2 12 0 1 4 26 50 96 68 34 94 80 8 22 60 3 72 84 65 89 44 52 50 9 24 34 81 28 56 17 38 85 78 90 62 60 1 40 91 2 7 41 84 22", "output": "38" }, { "input": "37 2\n65 36 92 92 92 76 63 56 15 95 75 26 15 4 73 50 41 92 26 20 19 100 63 55 25 75 61 96 35 0 14 6 96 3 28 41 83", "output": "91" }, { "input": "19 4\n85 2 56 70 33 75 89 60 100 81 42 28 18 92 29 96 49 23 14", "output": "79" }, { "input": "89 1\n50 53 97 41 68 27 53 66 93 19 11 78 46 49 38 69 96 9 43 16 1 63 95 64 96 6 34 34 45 40 19 4 53 8 11 18 95 25 50 16 64 33 97 49 23 81 63 10 30 73 76 55 7 70 9 98 6 36 75 78 3 92 85 75 40 75 55 71 9 91 15 17 47 55 44 35 55 88 53 87 61 22 100 56 14 87 36 84 24", "output": "91" }, { "input": "67 0\n40 48 15 46 90 7 65 52 24 15 42 81 2 6 71 94 32 18 97 67 83 98 48 51 10 47 8 68 36 46 65 75 90 30 62 9 5 35 80 60 69 58 62 68 58 73 80 9 22 46 56 64 44 11 93 73 62 54 15 20 17 69 16 33 85 62 49", "output": "83" }, { "input": "96 0\n38 97 82 43 80 40 1 99 50 94 81 63 92 13 57 24 4 10 25 32 79 56 96 19 25 14 69 56 66 22 23 78 87 76 37 30 75 77 61 64 35 64 62 32 44 62 6 84 91 44 99 5 71 19 17 12 35 52 1 14 35 18 8 36 54 42 4 67 80 11 88 44 34 35 12 38 66 42 4 90 45 10 1 44 37 96 23 28 100 90 75 17 27 67 51 70", "output": "94" }, { "input": "14 14\n87 63 62 31 59 47 40 89 92 43 80 30 99 42", "output": "43" }, { "input": "12 0\n100 1 100 2 100 3 100 4 100 5 100 0", "output": "100" }, { "input": "3 1\n1 2 3", "output": "0" }, { "input": "3 2\n3 3 3", "output": "0" }, { "input": "3 3\n3 2 1", "output": "0" }, { "input": "3 100\n1 2 3", "output": "0" }, { "input": "2 100\n0 0", "output": "0" }, { "input": "2 90\n10 5", "output": "0" }, { "input": "2 5\n5 4", "output": "0" }, { "input": "3 1\n19 20 1", "output": "18" }, { "input": "5 1\n5 10 7 4 20", "output": "2" }, { "input": "5 1\n1 2 3 4 5", "output": "0" } ]
1,698,574,321
2,147,483,647
Python 3
OK
TESTS
32
46
0
n, c = map(int, input().split()) v = 0 a = input().split() for i in range(n - 1): d1, d2 = int(a[i]), int(a[i + 1]) v1 = d1 - d2 - c if v1 > v: v = v1 print(v)
Title: Bear and Raspberry Time Limit: None seconds Memory Limit: None megabytes Problem Description: The bear decided to store some raspberry for the winter. He cunningly found out the price for a barrel of honey in kilos of raspberry for each of the following *n* days. According to the bear's data, on the *i*-th (1<=≤<=*i*<=≤<=*n*) day, the price for one barrel of honey is going to is *x**i* kilos of raspberry. Unfortunately, the bear has neither a honey barrel, nor the raspberry. At the same time, the bear's got a friend who is ready to lend him a barrel of honey for exactly one day for *c* kilograms of raspberry. That's why the bear came up with a smart plan. He wants to choose some day *d* (1<=≤<=*d*<=&lt;<=*n*), lent a barrel of honey and immediately (on day *d*) sell it according to a daily exchange rate. The next day (*d*<=+<=1) the bear wants to buy a new barrel of honey according to a daily exchange rate (as he's got some raspberry left from selling the previous barrel) and immediately (on day *d*<=+<=1) give his friend the borrowed barrel of honey as well as *c* kilograms of raspberry for renting the barrel. The bear wants to execute his plan at most once and then hibernate. What maximum number of kilograms of raspberry can he earn? Note that if at some point of the plan the bear runs out of the raspberry, then he won't execute such a plan. Input Specification: The first line contains two space-separated integers, *n* and *c* (2<=≤<=*n*<=≤<=100,<=0<=≤<=*c*<=≤<=100), — the number of days and the number of kilos of raspberry that the bear should give for borrowing the barrel. The second line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=100), the price of a honey barrel on day *i*. Output Specification: Print a single integer — the answer to the problem. Demo Input: ['5 1\n5 10 7 3 20\n', '6 2\n100 1 10 40 10 40\n', '3 0\n1 2 3\n'] Demo Output: ['3\n', '97\n', '0\n'] Note: In the first sample the bear will lend a honey barrel at day 3 and then sell it for 7. Then the bear will buy a barrel for 3 and return it to the friend. So, the profit is (7 - 3 - 1) = 3. In the second sample bear will lend a honey barrel at day 1 and then sell it for 100. Then the bear buy the barrel for 1 at the day 2. So, the profit is (100 - 1 - 2) = 97.
```python n, c = map(int, input().split()) v = 0 a = input().split() for i in range(n - 1): d1, d2 = int(a[i]), int(a[i + 1]) v1 = d1 - d2 - c if v1 > v: v = v1 print(v) ```
3
869
A
The Artful Expedient
PROGRAMMING
1,100
[ "brute force", "implementation" ]
null
null
Rock... Paper! After Karen have found the deterministic winning (losing?) strategy for rock-paper-scissors, her brother, Koyomi, comes up with a new game as a substitute. The game works as follows. A positive integer *n* is decided first. Both Koyomi and Karen independently choose *n* distinct positive integers, denoted by *x*1,<=*x*2,<=...,<=*x**n* and *y*1,<=*y*2,<=...,<=*y**n* respectively. They reveal their sequences, and repeat until all of 2*n* integers become distinct, which is the only final state to be kept and considered. Then they count the number of ordered pairs (*i*,<=*j*) (1<=≤<=*i*,<=*j*<=≤<=*n*) such that the value *x**i* xor *y**j* equals to one of the 2*n* integers. Here xor means the [bitwise exclusive or](https://en.wikipedia.org/wiki/Bitwise_operation#XOR) operation on two integers, and is denoted by operators ^ and/or xor in most programming languages. Karen claims a win if the number of such pairs is even, and Koyomi does otherwise. And you're here to help determine the winner of their latest game.
The first line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=2<=000) — the length of both sequences. The second line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (1<=≤<=*x**i*<=≤<=2·106) — the integers finally chosen by Koyomi. The third line contains *n* space-separated integers *y*1,<=*y*2,<=...,<=*y**n* (1<=≤<=*y**i*<=≤<=2·106) — the integers finally chosen by Karen. Input guarantees that the given 2*n* integers are pairwise distinct, that is, no pair (*i*,<=*j*) (1<=≤<=*i*,<=*j*<=≤<=*n*) exists such that one of the following holds: *x**i*<==<=*y**j*; *i*<=≠<=*j* and *x**i*<==<=*x**j*; *i*<=≠<=*j* and *y**i*<==<=*y**j*.
Output one line — the name of the winner, that is, "Koyomi" or "Karen" (without quotes). Please be aware of the capitalization.
[ "3\n1 2 3\n4 5 6\n", "5\n2 4 6 8 10\n9 7 5 3 1\n" ]
[ "Karen\n", "Karen\n" ]
In the first example, there are 6 pairs satisfying the constraint: (1, 1), (1, 2), (2, 1), (2, 3), (3, 2) and (3, 3). Thus, Karen wins since 6 is an even number. In the second example, there are 16 such pairs, and Karen wins again.
500
[ { "input": "3\n1 2 3\n4 5 6", "output": "Karen" }, { "input": "5\n2 4 6 8 10\n9 7 5 3 1", "output": "Karen" }, { "input": "1\n1\n2000000", "output": "Karen" }, { "input": "2\n97153 2000000\n1999998 254", "output": "Karen" }, { "input": "15\n31 30 29 28 27 26 25 24 23 22 21 20 19 18 17\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15", "output": "Karen" }, { "input": "30\n79656 68607 871714 1858841 237684 1177337 532141 161161 1111201 527235 323345 1979059 665353 507265 1290761 610606 1238375 743262 106355 1167830 180315 1233029 816465 752968 782570 1499881 1328457 1867240 13948 1302782\n322597 1868510 1958236 1348157 765908 1023636 874300 537124 631783 414906 886318 1931572 1381013 992451 1305644 1525745 716087 83173 303248 1572710 43084 333341 992413 267806 70390 644521 1014900 497068 178940 1920268", "output": "Karen" }, { "input": "30\n1143673 436496 1214486 1315862 148404 724601 1430740 1433008 1654610 1635673 614673 1713408 1270999 1697 1463796 50027 525482 1659078 688200 842647 518551 877506 1017082 1807856 3280 759698 1208220 470180 829800 1960886\n1312613 1965095 967255 1289012 1950383 582960 856825 49684 808824 319418 1968270 190821 344545 211332 1219388 1773751 1876402 132626 541448 1584672 24276 1053225 1823073 1858232 1209173 1035991 1956373 1237148 1973608 848873", "output": "Karen" }, { "input": "1\n2\n3", "output": "Karen" }, { "input": "1\n1048576\n1020000", "output": "Karen" }, { "input": "3\n9 33 69\n71 74 100", "output": "Karen" }, { "input": "3\n1 2 3\n9 5 6", "output": "Karen" }, { "input": "3\n1 7 8\n9 10 20", "output": "Karen" }, { "input": "3\n1 3 2\n4 5 8", "output": "Karen" }, { "input": "3\n2 1 100\n3 4 9", "output": "Karen" }, { "input": "3\n3 1 100\n2 1000 100000", "output": "Karen" }, { "input": "3\n1 2 5\n3 4 6", "output": "Karen" }, { "input": "3\n3 1 8\n2 4 17", "output": "Karen" }, { "input": "3\n1 5 6\n7 8 3", "output": "Karen" }, { "input": "1\n1\n3", "output": "Karen" }, { "input": "3\n1 3 10\n2 4 20", "output": "Karen" }, { "input": "3\n7 8 10\n15 9 11", "output": "Karen" }, { "input": "3\n5 6 8\n3 100 9", "output": "Karen" }, { "input": "3\n1 2 3\n4 5 8", "output": "Karen" }, { "input": "3\n1 2 19\n3 7 30", "output": "Karen" }, { "input": "3\n1 2 3\n6 7 8", "output": "Karen" }, { "input": "3\n1 4 55\n2 3 9", "output": "Karen" }, { "input": "3\n1 100 200\n5 4 500", "output": "Karen" }, { "input": "1\n6\n7", "output": "Karen" }, { "input": "3\n1 3 5\n2 4 13", "output": "Karen" }, { "input": "3\n3 1 100\n2 1000 10000", "output": "Karen" }, { "input": "3\n1 3 9\n2 4 40", "output": "Karen" }, { "input": "2\n1 199999\n1935807 2000000", "output": "Karen" }, { "input": "3\n1 3 8\n2 4 24", "output": "Karen" }, { "input": "2\n4 1\n7 3", "output": "Karen" }, { "input": "3\n1 2 4\n3 7 8", "output": "Karen" }, { "input": "3\n1 6 10000\n2 3 100000", "output": "Karen" } ]
1,591,207,454
2,147,483,647
PyPy 3
OK
TESTS
49
155
1,638,400
# for(i=0;i<n;i++){ # cin>>k; # sum+=k; # if(k&1) flag=min(flag,k); # } # if(sum&1) cout<<sum; # else cout<<max(0LL,sum-flag); n=(int)(input()) ll=list(map(int,input().split())) l=list(map(int,input().split())) print('Karen')
Title: The Artful Expedient Time Limit: None seconds Memory Limit: None megabytes Problem Description: Rock... Paper! After Karen have found the deterministic winning (losing?) strategy for rock-paper-scissors, her brother, Koyomi, comes up with a new game as a substitute. The game works as follows. A positive integer *n* is decided first. Both Koyomi and Karen independently choose *n* distinct positive integers, denoted by *x*1,<=*x*2,<=...,<=*x**n* and *y*1,<=*y*2,<=...,<=*y**n* respectively. They reveal their sequences, and repeat until all of 2*n* integers become distinct, which is the only final state to be kept and considered. Then they count the number of ordered pairs (*i*,<=*j*) (1<=≤<=*i*,<=*j*<=≤<=*n*) such that the value *x**i* xor *y**j* equals to one of the 2*n* integers. Here xor means the [bitwise exclusive or](https://en.wikipedia.org/wiki/Bitwise_operation#XOR) operation on two integers, and is denoted by operators ^ and/or xor in most programming languages. Karen claims a win if the number of such pairs is even, and Koyomi does otherwise. And you're here to help determine the winner of their latest game. Input Specification: The first line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=2<=000) — the length of both sequences. The second line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (1<=≤<=*x**i*<=≤<=2·106) — the integers finally chosen by Koyomi. The third line contains *n* space-separated integers *y*1,<=*y*2,<=...,<=*y**n* (1<=≤<=*y**i*<=≤<=2·106) — the integers finally chosen by Karen. Input guarantees that the given 2*n* integers are pairwise distinct, that is, no pair (*i*,<=*j*) (1<=≤<=*i*,<=*j*<=≤<=*n*) exists such that one of the following holds: *x**i*<==<=*y**j*; *i*<=≠<=*j* and *x**i*<==<=*x**j*; *i*<=≠<=*j* and *y**i*<==<=*y**j*. Output Specification: Output one line — the name of the winner, that is, "Koyomi" or "Karen" (without quotes). Please be aware of the capitalization. Demo Input: ['3\n1 2 3\n4 5 6\n', '5\n2 4 6 8 10\n9 7 5 3 1\n'] Demo Output: ['Karen\n', 'Karen\n'] Note: In the first example, there are 6 pairs satisfying the constraint: (1, 1), (1, 2), (2, 1), (2, 3), (3, 2) and (3, 3). Thus, Karen wins since 6 is an even number. In the second example, there are 16 such pairs, and Karen wins again.
```python # for(i=0;i<n;i++){ # cin>>k; # sum+=k; # if(k&1) flag=min(flag,k); # } # if(sum&1) cout<<sum; # else cout<<max(0LL,sum-flag); n=(int)(input()) ll=list(map(int,input().split())) l=list(map(int,input().split())) print('Karen') ```
3
624
A
Save Luke
PROGRAMMING
800
[ "math" ]
null
null
Luke Skywalker got locked up in a rubbish shredder between two presses. R2D2 is already working on his rescue, but Luke needs to stay alive as long as possible. For simplicity we will assume that everything happens on a straight line, the presses are initially at coordinates 0 and *L*, and they move towards each other with speed *v*1 and *v*2, respectively. Luke has width *d* and is able to choose any position between the presses. Luke dies as soon as the distance between the presses is less than his width. Your task is to determine for how long Luke can stay alive.
The first line of the input contains four integers *d*, *L*, *v*1, *v*2 (1<=≤<=*d*,<=*L*,<=*v*1,<=*v*2<=≤<=10<=000,<=*d*<=&lt;<=*L*) — Luke's width, the initial position of the second press and the speed of the first and second presses, respectively.
Print a single real value — the maximum period of time Luke can stay alive for. Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6. Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct, if .
[ "2 6 2 2\n", "1 9 1 2\n" ]
[ "1.00000000000000000000\n", "2.66666666666666650000\n" ]
In the first sample Luke should stay exactly in the middle of the segment, that is at coordinates [2;4], as the presses move with the same speed. In the second sample he needs to occupy the position <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/71395c777960eaded59a9fdc428a9625f152605b.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In this case both presses move to his edges at the same time.
500
[ { "input": "2 6 2 2", "output": "1.00000000000000000000" }, { "input": "1 9 1 2", "output": "2.66666666666666650000" }, { "input": "1 10000 1 1", "output": "4999.50000000000000000000" }, { "input": "9999 10000 10000 10000", "output": "0.00005000000000000000" }, { "input": "1023 2340 1029 3021", "output": "0.32518518518518519000" }, { "input": "2173 2176 10000 9989", "output": "0.00015008254539996998" }, { "input": "1 2 123 1", "output": "0.00806451612903225780" }, { "input": "123 1242 12 312", "output": "3.45370370370370370000" }, { "input": "2 9997 3 12", "output": "666.33333333333337000000" }, { "input": "1 10000 10000 10000", "output": "0.49995000000000001000" }, { "input": "3274 4728 888 4578", "output": "0.26600804976216613000" }, { "input": "4600 9696 5634 8248", "output": "0.36709407866301685000" }, { "input": "2255 7902 8891 429", "output": "0.60590128755364803000" }, { "input": "6745 9881 2149 9907", "output": "0.26011944260119441000" }, { "input": "4400 8021 6895 2089", "output": "0.40304986642920748000" }, { "input": "5726 9082 7448 3054", "output": "0.31955817939440107000" }, { "input": "3381 9769 4898 2532", "output": "0.85975773889636609000" }, { "input": "1036 6259 5451 4713", "output": "0.51387249114521838000" }, { "input": "5526 6455 197 4191", "output": "0.21171376481312670000" }, { "input": "1196 4082 4071 9971", "output": "0.20552627830793335000" }, { "input": "8850 9921 8816 9449", "output": "0.05863673692855187600" }, { "input": "3341 7299 2074 8927", "output": "0.35978547404781386000" }, { "input": "7831 8609 6820 2596", "output": "0.08262531860662701600" }, { "input": "2322 7212 77 4778", "output": "1.00720906282183310000" }, { "input": "9976 9996 4823 4255", "output": "0.00220312844238819110" }, { "input": "7631 9769 5377 6437", "output": "0.18097172845776197000" }, { "input": "8957 9525 8634 107", "output": "0.06498112344125385500" }, { "input": "6612 9565 3380 2288", "output": "0.52099505998588569000" }, { "input": "1103 6256 3934 9062", "output": "0.39650661742074483000" }, { "input": "1854 3280 1481 2140", "output": "0.39381386357359843000" } ]
1,687,707,576
2,147,483,647
PyPy 3-64
OK
TESTS
30
62
0
d, l, v1, v2 = map(int, input().split()) print(round((l-d)/(v1+v2), 16))
Title: Save Luke Time Limit: None seconds Memory Limit: None megabytes Problem Description: Luke Skywalker got locked up in a rubbish shredder between two presses. R2D2 is already working on his rescue, but Luke needs to stay alive as long as possible. For simplicity we will assume that everything happens on a straight line, the presses are initially at coordinates 0 and *L*, and they move towards each other with speed *v*1 and *v*2, respectively. Luke has width *d* and is able to choose any position between the presses. Luke dies as soon as the distance between the presses is less than his width. Your task is to determine for how long Luke can stay alive. Input Specification: The first line of the input contains four integers *d*, *L*, *v*1, *v*2 (1<=≤<=*d*,<=*L*,<=*v*1,<=*v*2<=≤<=10<=000,<=*d*<=&lt;<=*L*) — Luke's width, the initial position of the second press and the speed of the first and second presses, respectively. Output Specification: Print a single real value — the maximum period of time Luke can stay alive for. Your answer will be considered correct if its absolute or relative error does not exceed 10<=-<=6. Namely: let's assume that your answer is *a*, and the answer of the jury is *b*. The checker program will consider your answer correct, if . Demo Input: ['2 6 2 2\n', '1 9 1 2\n'] Demo Output: ['1.00000000000000000000\n', '2.66666666666666650000\n'] Note: In the first sample Luke should stay exactly in the middle of the segment, that is at coordinates [2;4], as the presses move with the same speed. In the second sample he needs to occupy the position <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/71395c777960eaded59a9fdc428a9625f152605b.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In this case both presses move to his edges at the same time.
```python d, l, v1, v2 = map(int, input().split()) print(round((l-d)/(v1+v2), 16)) ```
3
708
A
Letters Cyclic Shift
PROGRAMMING
1,200
[ "constructive algorithms", "greedy", "implementation", "strings" ]
null
null
You are given a non-empty string *s* consisting of lowercase English letters. You have to pick exactly one non-empty substring of *s* and shift all its letters 'z' 'y' 'x' 'b' 'a' 'z'. In other words, each character is replaced with the previous character of English alphabet and 'a' is replaced with 'z'. What is the lexicographically minimum string that can be obtained from *s* by performing this shift exactly once?
The only line of the input contains the string *s* (1<=≤<=|*s*|<=≤<=100<=000) consisting of lowercase English letters.
Print the lexicographically minimum string that can be obtained from *s* by shifting letters of exactly one non-empty substring.
[ "codeforces\n", "abacaba\n" ]
[ "bncdenqbdr\n", "aaacaba\n" ]
String *s* is lexicographically smaller than some other string *t* of the same length if there exists some 1 ≤ *i* ≤ |*s*|, such that *s*<sub class="lower-index">1</sub> = *t*<sub class="lower-index">1</sub>, *s*<sub class="lower-index">2</sub> = *t*<sub class="lower-index">2</sub>, ..., *s*<sub class="lower-index">*i* - 1</sub> = *t*<sub class="lower-index">*i* - 1</sub>, and *s*<sub class="lower-index">*i*</sub> &lt; *t*<sub class="lower-index">*i*</sub>.
500
[ { "input": "codeforces", "output": "bncdenqbdr" }, { "input": "abacaba", "output": "aaacaba" }, { "input": "babbbabaababbaa", "output": "aabbbabaababbaa" }, { "input": "bcbacaabcababaccccaaaabacbbcbbaa", "output": "abaacaabcababaccccaaaabacbbcbbaa" }, { "input": "cabaccaacccabaacdbdcbcdbccbccbabbdadbdcdcdbdbcdcdbdadcbcda", "output": "babaccaacccabaacdbdcbcdbccbccbabbdadbdcdcdbdbcdcdbdadcbcda" }, { "input": "a", "output": "z" }, { "input": "eeeedddccbceaabdaecaebaeaecccbdeeeaadcecdbeacecdcdcceabaadbcbbadcdaeddbcccaaeebccecaeeeaebcaaccbdaccbdcadadaaeacbbdcbaeeaecedeeeedadec", "output": "ddddcccbbabdaabdaecaebaeaecccbdeeeaadcecdbeacecdcdcceabaadbcbbadcdaeddbcccaaeebccecaeeeaebcaaccbdaccbdcadadaaeacbbdcbaeeaecedeeeedadec" }, { "input": "fddfbabadaadaddfbfecadfaefaefefabcccdbbeeabcbbddefbafdcafdfcbdffeeaffcaebbbedabddeaecdddffcbeaafffcddccccfffdbcddcfccefafdbeaacbdeeebdeaaacdfdecadfeafaeaefbfdfffeeaefebdceebcebbfeaccfafdccdcecedeedadcadbfefccfdedfaaefabbaeebdebeecaadbebcfeafbfeeefcfaecadfe", "output": "ecceaabadaadaddfbfecadfaefaefefabcccdbbeeabcbbddefbafdcafdfcbdffeeaffcaebbbedabddeaecdddffcbeaafffcddccccfffdbcddcfccefafdbeaacbdeeebdeaaacdfdecadfeafaeaefbfdfffeeaefebdceebcebbfeaccfafdccdcecedeedadcadbfefccfdedfaaefabbaeebdebeecaadbebcfeafbfeeefcfaecadfe" }, { "input": "aaaaaaaaaa", "output": "aaaaaaaaaz" }, { "input": "abbabaaaaa", "output": "aaaabaaaaa" }, { "input": "bbbbbbbbbbbb", "output": "aaaaaaaaaaaa" }, { "input": "aabaaaaaaaaaaaa", "output": "aaaaaaaaaaaaaaa" }, { "input": "aaaaaaaaaaaaaaaaaaaa", "output": "aaaaaaaaaaaaaaaaaaaz" }, { "input": "abaabaaaaaabbaaaaaaabaaaaaaaaabaaaabaaaaaaabaaaaaaaaaabaaaaaaaaaaaaaaabaaaabbaaaaabaaaaaaaabaaaaaaaa", "output": "aaaabaaaaaabbaaaaaaabaaaaaaaaabaaaabaaaaaaabaaaaaaaaaabaaaaaaaaaaaaaaabaaaabbaaaaabaaaaaaaabaaaaaaaa" }, { "input": "abbbbbbbabbbbbbbbbbbbbbbbbbbbbbbabbabbbbbabbbbbbbbbbbabbbbbbbbabbabbbbbbbbbbbbbbabbabbbaababbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbabbabbbbbbbbbbbbbbbbabbbbabbbbbbbbbbbbbbbabbbbbbbbbaababbbbbbbbabbbbbbbbbbbbbbbbbbbbbbbbbbbbabbbbbbbbbbbbbbbbbbbbabbabbbbbbbbbbbbbbbbabbbabbbbbaabbabbbbbbbbbbbbbbbbbbbbbbbbbbbbbabbbbbbbbbbbbbbbbaabbbbbbbbbbbbababbabbbbbbbbbbbbbbbbbbbbbbbbabbbbbbbbbbbbbbbabbbbbbbbbbbabbbbbbbbbbbbbbbbbbbbbbabbbbbbbabbbbbbb", "output": "aaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbabbabbbbbabbbbbbbbbbbabbbbbbbbabbabbbbbbbbbbbbbbabbabbbaababbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbabbabbbbbbbbbbbbbbbbabbbbabbbbbbbbbbbbbbbabbbbbbbbbaababbbbbbbbabbbbbbbbbbbbbbbbbbbbbbbbbbbbabbbbbbbbbbbbbbbbbbbbabbabbbbbbbbbbbbbbbbabbbabbbbbaabbabbbbbbbbbbbbbbbbbbbbbbbbbbbbbabbbbbbbbbbbbbbbbaabbbbbbbbbbbbababbabbbbbbbbbbbbbbbbbbbbbbbbabbbbbbbbbbbbbbbabbbbbbbbbbbabbbbbbbbbbbbbbbbbbbbbbabbbbbbbabbbbbbb" }, { "input": "aaaaa", "output": "aaaaz" }, { "input": "aaa", "output": "aaz" }, { "input": "aa", "output": "az" } ]
1,490,355,778
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
6
61
4,608,000
s = input() s = list(s) z = 0 for i in range(0,len(s)): if s[i] !="a": s[i] = chr(ord(s[i])-1) z+=1 else: if(z>0): break print(''.join(s))
Title: Letters Cyclic Shift Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a non-empty string *s* consisting of lowercase English letters. You have to pick exactly one non-empty substring of *s* and shift all its letters 'z' 'y' 'x' 'b' 'a' 'z'. In other words, each character is replaced with the previous character of English alphabet and 'a' is replaced with 'z'. What is the lexicographically minimum string that can be obtained from *s* by performing this shift exactly once? Input Specification: The only line of the input contains the string *s* (1<=≤<=|*s*|<=≤<=100<=000) consisting of lowercase English letters. Output Specification: Print the lexicographically minimum string that can be obtained from *s* by shifting letters of exactly one non-empty substring. Demo Input: ['codeforces\n', 'abacaba\n'] Demo Output: ['bncdenqbdr\n', 'aaacaba\n'] Note: String *s* is lexicographically smaller than some other string *t* of the same length if there exists some 1 ≤ *i* ≤ |*s*|, such that *s*<sub class="lower-index">1</sub> = *t*<sub class="lower-index">1</sub>, *s*<sub class="lower-index">2</sub> = *t*<sub class="lower-index">2</sub>, ..., *s*<sub class="lower-index">*i* - 1</sub> = *t*<sub class="lower-index">*i* - 1</sub>, and *s*<sub class="lower-index">*i*</sub> &lt; *t*<sub class="lower-index">*i*</sub>.
```python s = input() s = list(s) z = 0 for i in range(0,len(s)): if s[i] !="a": s[i] = chr(ord(s[i])-1) z+=1 else: if(z>0): break print(''.join(s)) ```
0
122
A
Lucky Division
PROGRAMMING
1,000
[ "brute force", "number theory" ]
null
null
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya calls a number almost lucky if it could be evenly divided by some lucky number. Help him find out if the given number *n* is almost lucky.
The single line contains an integer *n* (1<=≤<=*n*<=≤<=1000) — the number that needs to be checked.
In the only line print "YES" (without the quotes), if number *n* is almost lucky. Otherwise, print "NO" (without the quotes).
[ "47\n", "16\n", "78\n" ]
[ "YES\n", "YES\n", "NO\n" ]
Note that all lucky numbers are almost lucky as any number is evenly divisible by itself. In the first sample 47 is a lucky number. In the second sample 16 is divisible by 4.
500
[ { "input": "47", "output": "YES" }, { "input": "16", "output": "YES" }, { "input": "78", "output": "NO" }, { "input": "48", "output": "YES" }, { "input": "100", "output": "YES" }, { "input": "107", "output": "NO" }, { "input": "77", "output": "YES" }, { "input": "477", "output": "YES" }, { "input": "480", "output": "YES" }, { "input": "1", "output": "NO" }, { "input": "3", "output": "NO" }, { "input": "4", "output": "YES" }, { "input": "49", "output": "YES" }, { "input": "56", "output": "YES" }, { "input": "124", "output": "YES" }, { "input": "1000", "output": "YES" }, { "input": "999", "output": "NO" }, { "input": "298", "output": "NO" }, { "input": "274", "output": "NO" }, { "input": "998", "output": "NO" }, { "input": "42", "output": "YES" }, { "input": "788", "output": "YES" }, { "input": "70", "output": "YES" }, { "input": "444", "output": "YES" }, { "input": "777", "output": "YES" }, { "input": "799", "output": "YES" }, { "input": "25", "output": "NO" }, { "input": "882", "output": "YES" }, { "input": "88", "output": "YES" }, { "input": "11", "output": "NO" }, { "input": "2", "output": "NO" }, { "input": "7", "output": "YES" }, { "input": "8", "output": "YES" }, { "input": "94", "output": "YES" }, { "input": "477", "output": "YES" }, { "input": "141", "output": "YES" } ]
1,693,899,076
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
62
0
n = int(input()) def lucky(num): return '4' in str(num) or '7' in str(num) def al_lucky(num): for i in range(1, num + 1): if num % i == 0 and lucky(i): return True return False if al_lucky(n): print("YES") else: print("NO")
Title: Lucky Division Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya calls a number almost lucky if it could be evenly divided by some lucky number. Help him find out if the given number *n* is almost lucky. Input Specification: The single line contains an integer *n* (1<=≤<=*n*<=≤<=1000) — the number that needs to be checked. Output Specification: In the only line print "YES" (without the quotes), if number *n* is almost lucky. Otherwise, print "NO" (without the quotes). Demo Input: ['47\n', '16\n', '78\n'] Demo Output: ['YES\n', 'YES\n', 'NO\n'] Note: Note that all lucky numbers are almost lucky as any number is evenly divisible by itself. In the first sample 47 is a lucky number. In the second sample 16 is divisible by 4.
```python n = int(input()) def lucky(num): return '4' in str(num) or '7' in str(num) def al_lucky(num): for i in range(1, num + 1): if num % i == 0 and lucky(i): return True return False if al_lucky(n): print("YES") else: print("NO") ```
0
507
A
Amr and Music
PROGRAMMING
1,000
[ "greedy", "implementation", "sortings" ]
null
null
Amr is a young coder who likes music a lot. He always wanted to learn how to play music but he was busy coding so he got an idea. Amr has *n* instruments, it takes *a**i* days to learn *i*-th instrument. Being busy, Amr dedicated *k* days to learn how to play the maximum possible number of instruments. Amr asked for your help to distribute his free days between instruments so that he can achieve his goal.
The first line contains two numbers *n*, *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=10<=000), the number of instruments and number of days respectively. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=100), representing number of days required to learn the *i*-th instrument.
In the first line output one integer *m* representing the maximum number of instruments Amr can learn. In the second line output *m* space-separated integers: the indices of instruments to be learnt. You may output indices in any order. if there are multiple optimal solutions output any. It is not necessary to use all days for studying.
[ "4 10\n4 3 1 2\n", "5 6\n4 3 1 1 2\n", "1 3\n4\n" ]
[ "4\n1 2 3 4", "3\n1 3 4", "0\n" ]
In the first test Amr can learn all 4 instruments. In the second test other possible solutions are: {2, 3, 5} or {3, 4, 5}. In the third test Amr doesn't have enough time to learn the only presented instrument.
500
[ { "input": "4 10\n4 3 1 2", "output": "4\n1 2 3 4" }, { "input": "5 6\n4 3 1 1 2", "output": "3\n3 4 5" }, { "input": "1 3\n4", "output": "0" }, { "input": "2 100\n100 100", "output": "1\n1" }, { "input": "3 150\n50 50 50", "output": "3\n1 2 3" }, { "input": "4 0\n100 100 100 100", "output": "0" }, { "input": "100 7567\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "75\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75" }, { "input": "68 3250\n95 84 67 7 82 75 100 39 31 45 69 100 8 97 13 58 74 40 88 69 35 91 94 28 62 85 51 97 37 15 87 51 24 96 89 49 53 54 35 17 23 54 51 91 94 18 26 92 79 63 23 37 98 43 16 44 82 25 100 59 97 3 60 92 76 58 56 50", "output": "60\n1 2 3 4 5 6 8 9 10 11 13 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 31 32 33 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 54 55 56 57 58 60 62 63 64 65 66 67 68" }, { "input": "100 10000\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100" }, { "input": "25 1293\n96 13 7 2 81 72 39 45 5 88 47 23 60 81 54 46 63 52 41 57 2 87 90 28 93", "output": "25\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25" }, { "input": "98 7454\n71 57 94 76 52 90 76 81 67 60 99 88 98 61 73 61 80 91 88 93 53 55 88 64 71 55 81 76 52 63 87 99 84 66 65 52 83 99 92 62 95 81 90 67 64 57 80 80 67 75 77 58 71 85 97 50 97 55 52 59 55 96 57 53 85 100 95 95 74 51 78 88 66 98 97 86 94 81 56 64 61 57 67 95 85 82 85 60 76 95 69 95 76 91 74 100 69 76", "output": "98\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98" }, { "input": "5 249\n96 13 7 2 81", "output": "5\n1 2 3 4 5" }, { "input": "61 3331\n12 63 99 56 57 70 53 21 41 82 97 63 42 91 18 84 99 78 85 89 6 63 76 28 33 78 100 46 78 78 32 13 11 12 73 50 34 60 12 73 9 19 88 100 28 51 50 45 51 10 78 38 25 22 8 40 71 55 56 83 44", "output": "61\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61" }, { "input": "99 10000\n42 88 21 63 59 38 23 100 86 37 57 86 11 22 19 89 6 19 15 64 18 77 83 29 14 26 80 73 8 51 14 19 9 98 81 96 47 77 22 19 86 71 91 61 84 8 80 28 6 25 33 95 96 21 57 92 96 57 31 88 38 32 70 19 25 67 29 78 18 90 37 50 62 33 49 16 47 39 9 33 88 69 69 29 14 66 75 76 41 98 40 52 65 25 33 47 39 24 80", "output": "99\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99" }, { "input": "89 4910\n44 9 31 70 85 72 55 9 85 84 63 43 92 85 10 34 83 28 73 45 62 7 34 52 89 58 24 10 28 6 72 45 57 36 71 34 26 24 38 59 5 15 48 82 58 99 8 77 49 84 14 58 29 46 88 50 13 7 58 23 40 63 96 23 46 31 17 8 59 93 12 76 69 20 43 44 91 78 68 94 37 27 100 65 40 25 52 30 97", "output": "89\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89" }, { "input": "40 2110\n91 18 52 22 26 67 59 10 55 43 97 78 20 81 99 36 33 12 86 32 82 87 70 63 48 48 45 94 78 23 77 15 68 17 71 54 44 98 54 8", "output": "39\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40" }, { "input": "27 1480\n38 95 9 36 21 70 19 89 35 46 7 31 88 25 10 72 81 32 65 83 68 57 50 20 73 42 12", "output": "27\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27" }, { "input": "57 2937\n84 73 23 62 93 64 23 17 53 100 47 67 52 53 90 58 19 84 33 69 46 47 50 28 73 74 40 42 92 70 32 29 57 52 23 82 42 32 46 83 45 87 40 58 50 51 48 37 57 52 78 26 21 54 16 66 93", "output": "55\n1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56" }, { "input": "6 41\n6 8 9 8 9 8", "output": "5\n1 2 3 4 6" }, { "input": "9 95\n9 11 12 11 12 11 8 11 10", "output": "9\n1 2 3 4 5 6 7 8 9" }, { "input": "89 6512\n80 87 61 91 85 51 58 69 79 57 81 67 74 55 88 70 77 61 55 81 56 76 79 67 92 52 54 73 67 72 81 54 72 81 65 88 83 57 83 92 62 66 63 58 61 66 92 77 73 66 71 85 92 73 82 65 76 64 58 62 64 51 90 59 79 70 86 89 86 51 72 61 60 71 52 74 58 72 77 91 91 60 76 56 64 55 61 81 52", "output": "89\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89" }, { "input": "5 29\n6 3 7 2 1", "output": "5\n1 2 3 4 5" }, { "input": "5 49\n16 13 7 2 1", "output": "5\n1 2 3 4 5" }, { "input": "6 84\n16 21 25 6 17 16", "output": "5\n1 2 4 5 6" }, { "input": "4 9\n7 4 2 1", "output": "3\n2 3 4" }, { "input": "50 2500\n50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50", "output": "50\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50" }, { "input": "100 10000\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100" }, { "input": "100 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100" }, { "input": "96 514\n6 3 7 2 1 2 9 5 5 8 7 3 10 1 4 6 3 2 1 7 2 7 10 8 3 8 10 4 8 8 2 5 3 2 1 4 4 8 4 3 3 7 4 4 2 7 8 3 9 2 2 6 3 4 8 6 7 5 4 3 10 7 6 5 10 1 7 10 7 7 8 2 1 2 3 10 9 8 8 2 7 1 2 7 10 1 2 2 3 8 6 2 9 6 9 6", "output": "96\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96" }, { "input": "47 350\n6 1 9 12 8 8 11 4 4 8 8 3 3 2 12 7 7 7 12 2 9 1 5 10 6 1 5 2 6 3 9 13 8 3 10 10 10 10 6 9 10 10 8 5 12 11 3", "output": "47\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47" }, { "input": "100 200\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2", "output": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100" }, { "input": "2 10000\n1 1", "output": "2\n1 2" }, { "input": "1 2\n1", "output": "1\n1" }, { "input": "1 3\n2", "output": "1\n1" }, { "input": "34 4964\n37 27 90 83 36 59 80 7 28 41 97 72 64 8 40 30 76 4 92 51 52 44 42 13 38 64 60 66 47 93 30 35 71 71", "output": "34\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34" }, { "input": "2 2\n1 10", "output": "1\n1" }, { "input": "2 5\n1 1", "output": "2\n1 2" }, { "input": "1 4\n3", "output": "1\n1" }, { "input": "4 384\n1 2 3 4", "output": "4\n1 2 3 4" } ]
1,581,624,180
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
9
217
2,150,400
n,k=[int(_) for _ in input().split()] A=[int(_) for _ in input().split()] B=sorted(A) for _ in range(n+1): if sum(B[:_])>k: x=_-1 break if sum(B[:_])==k: x=_ break print(x) for _ in range(x): i=A.index(B[_]) print(i+1,end=" ") A[i]=0
Title: Amr and Music Time Limit: None seconds Memory Limit: None megabytes Problem Description: Amr is a young coder who likes music a lot. He always wanted to learn how to play music but he was busy coding so he got an idea. Amr has *n* instruments, it takes *a**i* days to learn *i*-th instrument. Being busy, Amr dedicated *k* days to learn how to play the maximum possible number of instruments. Amr asked for your help to distribute his free days between instruments so that he can achieve his goal. Input Specification: The first line contains two numbers *n*, *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=10<=000), the number of instruments and number of days respectively. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=100), representing number of days required to learn the *i*-th instrument. Output Specification: In the first line output one integer *m* representing the maximum number of instruments Amr can learn. In the second line output *m* space-separated integers: the indices of instruments to be learnt. You may output indices in any order. if there are multiple optimal solutions output any. It is not necessary to use all days for studying. Demo Input: ['4 10\n4 3 1 2\n', '5 6\n4 3 1 1 2\n', '1 3\n4\n'] Demo Output: ['4\n1 2 3 4', '3\n1 3 4', '0\n'] Note: In the first test Amr can learn all 4 instruments. In the second test other possible solutions are: {2, 3, 5} or {3, 4, 5}. In the third test Amr doesn't have enough time to learn the only presented instrument.
```python n,k=[int(_) for _ in input().split()] A=[int(_) for _ in input().split()] B=sorted(A) for _ in range(n+1): if sum(B[:_])>k: x=_-1 break if sum(B[:_])==k: x=_ break print(x) for _ in range(x): i=A.index(B[_]) print(i+1,end=" ") A[i]=0 ```
-1
267
A
Subtractions
PROGRAMMING
900
[ "math", "number theory" ]
null
null
You've got two numbers. As long as they are both larger than zero, they go through the same operation: subtract the lesser number from the larger one. If they equal substract one number from the another. For example, one operation transforms pair (4,17) to pair (4,13), it transforms (5,5) to (0,5). You've got some number of pairs (*a**i*,<=*b**i*). How many operations will be performed for each of them?
The first line contains the number of pairs *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000). Then follow *n* lines, each line contains a pair of positive integers *a**i*,<=*b**i* (1<=<=≤<=<=*a**i*,<=<=*b**i*<=<=≤<=<=109).
Print the sought number of operations for each pair on a single line.
[ "2\n4 17\n7 987654321\n" ]
[ "8\n141093479\n" ]
none
500
[ { "input": "2\n4 17\n7 987654321", "output": "8\n141093479" }, { "input": "10\n7 987654321\n7 987654321\n7 987654321\n7 987654321\n7 987654321\n7 987654321\n7 987654321\n7 987654321\n7 987654321\n7 987654321", "output": "141093479\n141093479\n141093479\n141093479\n141093479\n141093479\n141093479\n141093479\n141093479\n141093479" }, { "input": "1\n536870912 32", "output": "16777216" }, { "input": "20\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999\n1000000000 999999999", "output": "1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000\n1000000000" }, { "input": "3\n1000000000 1\n1000000000 1\n1 100000000", "output": "1000000000\n1000000000\n100000000" } ]
1,602,682,146
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
0
1,000
204,800
def convert(arr): arr = arr.split(" ") for i in range(len(arr)): arr[i] = int(arr[i]) return arr t = int(input()) ans = [] for i in range(t): s = input() num = convert(s) counter = 0 while num[0] != num[1]: if num[0] > num[1]: num[0] = num[0] - num[1] else: num[1] = num[1] - num[0] counter += 1 ans.insert(i, counter + 1) for i in range(len(ans)): print(ans[i])
Title: Subtractions Time Limit: None seconds Memory Limit: None megabytes Problem Description: You've got two numbers. As long as they are both larger than zero, they go through the same operation: subtract the lesser number from the larger one. If they equal substract one number from the another. For example, one operation transforms pair (4,17) to pair (4,13), it transforms (5,5) to (0,5). You've got some number of pairs (*a**i*,<=*b**i*). How many operations will be performed for each of them? Input Specification: The first line contains the number of pairs *n* (1<=<=≤<=<=*n*<=<=≤<=<=1000). Then follow *n* lines, each line contains a pair of positive integers *a**i*,<=*b**i* (1<=<=≤<=<=*a**i*,<=<=*b**i*<=<=≤<=<=109). Output Specification: Print the sought number of operations for each pair on a single line. Demo Input: ['2\n4 17\n7 987654321\n'] Demo Output: ['8\n141093479\n'] Note: none
```python def convert(arr): arr = arr.split(" ") for i in range(len(arr)): arr[i] = int(arr[i]) return arr t = int(input()) ans = [] for i in range(t): s = input() num = convert(s) counter = 0 while num[0] != num[1]: if num[0] > num[1]: num[0] = num[0] - num[1] else: num[1] = num[1] - num[0] counter += 1 ans.insert(i, counter + 1) for i in range(len(ans)): print(ans[i]) ```
0
25
A
IQ test
PROGRAMMING
1,300
[ "brute force" ]
A. IQ test
2
256
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
[ "5\n2 4 7 8 10\n", "4\n1 2 1 1\n" ]
[ "3\n", "2\n" ]
none
0
[ { "input": "5\n2 4 7 8 10", "output": "3" }, { "input": "4\n1 2 1 1", "output": "2" }, { "input": "3\n1 2 2", "output": "1" }, { "input": "3\n100 99 100", "output": "2" }, { "input": "3\n5 3 2", "output": "3" }, { "input": "4\n43 28 1 91", "output": "2" }, { "input": "4\n75 13 94 77", "output": "3" }, { "input": "4\n97 8 27 3", "output": "2" }, { "input": "10\n95 51 12 91 85 3 1 31 25 7", "output": "3" }, { "input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46", "output": "4" }, { "input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36", "output": "26" }, { "input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83", "output": "48" }, { "input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25", "output": "1" }, { "input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46", "output": "25" }, { "input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73", "output": "13" }, { "input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76", "output": "99" }, { "input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14", "output": "1" }, { "input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22", "output": "93" }, { "input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23", "output": "1" }, { "input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98", "output": "1" }, { "input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94", "output": "93" }, { "input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29", "output": "32" }, { "input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47", "output": "26" }, { "input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72", "output": "56" }, { "input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86", "output": "97" }, { "input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42", "output": "79" }, { "input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52", "output": "25" }, { "input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86", "output": "78" }, { "input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68", "output": "70" }, { "input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81", "output": "39" }, { "input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83", "output": "88" }, { "input": "3\n100 100 1", "output": "3" } ]
1,592,938,303
2,147,483,647
Python 3
OK
TESTS
32
218
6,963,200
#Nearly Lucky ''' a=list(map(str,input())) l=0 for i in range(len(a)): if(a[i]=='4' or a[i]=='7'): l+=1 if(l==4 or l==7 or l==44 or l==47 or l==74 or l==77): print("YES") else: print("NO")''' a=int(input()) b=list(map(int,input().strip().split())) e,o=[],[] for i in range(len(b)): if b[i]%2==0: e.append(b[i]) else: o.append(b[i]) if len(e)==1: print(b.index(e[0])+1) else: print(b.index(o[0])+1)
Title: IQ test Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness. Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness. Output Specification: Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order. Demo Input: ['5\n2 4 7 8 10\n', '4\n1 2 1 1\n'] Demo Output: ['3\n', '2\n'] Note: none
```python #Nearly Lucky ''' a=list(map(str,input())) l=0 for i in range(len(a)): if(a[i]=='4' or a[i]=='7'): l+=1 if(l==4 or l==7 or l==44 or l==47 or l==74 or l==77): print("YES") else: print("NO")''' a=int(input()) b=list(map(int,input().strip().split())) e,o=[],[] for i in range(len(b)): if b[i]%2==0: e.append(b[i]) else: o.append(b[i]) if len(e)==1: print(b.index(e[0])+1) else: print(b.index(o[0])+1) ```
3.93253
811
A
Vladik and Courtesy
PROGRAMMING
800
[ "brute force", "implementation" ]
null
null
At regular competition Vladik and Valera won *a* and *b* candies respectively. Vladik offered 1 his candy to Valera. After that Valera gave Vladik 2 his candies, so that no one thought that he was less generous. Vladik for same reason gave 3 candies to Valera in next turn. More formally, the guys take turns giving each other one candy more than they received in the previous turn. This continued until the moment when one of them couldn’t give the right amount of candy. Candies, which guys got from each other, they don’t consider as their own. You need to know, who is the first who can’t give the right amount of candy.
Single line of input data contains two space-separated integers *a*, *b* (1<=≤<=*a*,<=*b*<=≤<=109) — number of Vladik and Valera candies respectively.
Pring a single line "Vladik’’ in case, if Vladik first who can’t give right amount of candy, or "Valera’’ otherwise.
[ "1 1\n", "7 6\n" ]
[ "Valera\n", "Vladik\n" ]
Illustration for first test case: <img class="tex-graphics" src="https://espresso.codeforces.com/ad9b7d0e481208de8e3a585aa1d96b9e1dda4fd7.png" style="max-width: 100.0%;max-height: 100.0%;"/> Illustration for second test case: <img class="tex-graphics" src="https://espresso.codeforces.com/9f4836d2ccdffaee5a63898e5d4e6caf2ed4678c.png" style="max-width: 100.0%;max-height: 100.0%;"/>
500
[ { "input": "1 1", "output": "Valera" }, { "input": "7 6", "output": "Vladik" }, { "input": "25 38", "output": "Vladik" }, { "input": "8311 2468", "output": "Valera" }, { "input": "250708 857756", "output": "Vladik" }, { "input": "957985574 24997558", "output": "Valera" }, { "input": "999963734 999994456", "output": "Vladik" }, { "input": "1000000000 1000000000", "output": "Vladik" }, { "input": "946 879", "output": "Valera" }, { "input": "10819 45238", "output": "Vladik" }, { "input": "101357 236928", "output": "Vladik" }, { "input": "1033090 7376359", "output": "Vladik" }, { "input": "9754309 9525494", "output": "Valera" }, { "input": "90706344 99960537", "output": "Vladik" }, { "input": "965161805 908862070", "output": "Valera" }, { "input": "9 11", "output": "Valera" }, { "input": "3 2", "output": "Vladik" }, { "input": "6 6", "output": "Vladik" }, { "input": "4 4", "output": "Valera" }, { "input": "5 5", "output": "Valera" }, { "input": "5 4", "output": "Valera" }, { "input": "12345680 1", "output": "Valera" }, { "input": "9 10", "output": "Valera" }, { "input": "678 76687", "output": "Vladik" }, { "input": "1 678", "output": "Vladik" }, { "input": "45 1678", "output": "Vladik" }, { "input": "3 3", "output": "Vladik" }, { "input": "10 11", "output": "Valera" }, { "input": "2 1", "output": "Valera" }, { "input": "1 2", "output": "Vladik" }, { "input": "2 2", "output": "Vladik" }, { "input": "4 5", "output": "Valera" }, { "input": "9 6", "output": "Valera" }, { "input": "1 5", "output": "Vladik" }, { "input": "7 8", "output": "Vladik" }, { "input": "1000000000 999982505", "output": "Valera" }, { "input": "12 12", "output": "Vladik" }, { "input": "1000 950", "output": "Valera" }, { "input": "10 9", "output": "Valera" }, { "input": "100 9", "output": "Valera" }, { "input": "1000 996", "output": "Vladik" }, { "input": "9 5", "output": "Valera" } ]
1,624,546,494
2,147,483,647
Python 3
OK
TESTS
42
62
0
a,b=map(int,input().split()) n=1 i=0 while(a>=0 and b>=0): if n%2==0: b-=n n+=1 else: a-=n n+=1 print("Vladik") if a<0 else print("Valera")
Title: Vladik and Courtesy Time Limit: None seconds Memory Limit: None megabytes Problem Description: At regular competition Vladik and Valera won *a* and *b* candies respectively. Vladik offered 1 his candy to Valera. After that Valera gave Vladik 2 his candies, so that no one thought that he was less generous. Vladik for same reason gave 3 candies to Valera in next turn. More formally, the guys take turns giving each other one candy more than they received in the previous turn. This continued until the moment when one of them couldn’t give the right amount of candy. Candies, which guys got from each other, they don’t consider as their own. You need to know, who is the first who can’t give the right amount of candy. Input Specification: Single line of input data contains two space-separated integers *a*, *b* (1<=≤<=*a*,<=*b*<=≤<=109) — number of Vladik and Valera candies respectively. Output Specification: Pring a single line "Vladik’’ in case, if Vladik first who can’t give right amount of candy, or "Valera’’ otherwise. Demo Input: ['1 1\n', '7 6\n'] Demo Output: ['Valera\n', 'Vladik\n'] Note: Illustration for first test case: <img class="tex-graphics" src="https://espresso.codeforces.com/ad9b7d0e481208de8e3a585aa1d96b9e1dda4fd7.png" style="max-width: 100.0%;max-height: 100.0%;"/> Illustration for second test case: <img class="tex-graphics" src="https://espresso.codeforces.com/9f4836d2ccdffaee5a63898e5d4e6caf2ed4678c.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python a,b=map(int,input().split()) n=1 i=0 while(a>=0 and b>=0): if n%2==0: b-=n n+=1 else: a-=n n+=1 print("Vladik") if a<0 else print("Valera") ```
3
151
A
Soft Drinking
PROGRAMMING
800
[ "implementation", "math" ]
null
null
This winter is so cold in Nvodsk! A group of *n* friends decided to buy *k* bottles of a soft drink called "Take-It-Light" to warm up a bit. Each bottle has *l* milliliters of the drink. Also they bought *c* limes and cut each of them into *d* slices. After that they found *p* grams of salt. To make a toast, each friend needs *nl* milliliters of the drink, a slice of lime and *np* grams of salt. The friends want to make as many toasts as they can, provided they all drink the same amount. How many toasts can each friend make?
The first and only line contains positive integers *n*, *k*, *l*, *c*, *d*, *p*, *nl*, *np*, not exceeding 1000 and no less than 1. The numbers are separated by exactly one space.
Print a single integer — the number of toasts each friend can make.
[ "3 4 5 10 8 100 3 1\n", "5 100 10 1 19 90 4 3\n", "10 1000 1000 25 23 1 50 1\n" ]
[ "2\n", "3\n", "0\n" ]
A comment to the first sample: Overall the friends have 4 * 5 = 20 milliliters of the drink, it is enough to make 20 / 3 = 6 toasts. The limes are enough for 10 * 8 = 80 toasts and the salt is enough for 100 / 1 = 100 toasts. However, there are 3 friends in the group, so the answer is *min*(6, 80, 100) / 3 = 2.
500
[ { "input": "3 4 5 10 8 100 3 1", "output": "2" }, { "input": "5 100 10 1 19 90 4 3", "output": "3" }, { "input": "10 1000 1000 25 23 1 50 1", "output": "0" }, { "input": "1 7 4 5 5 8 3 2", "output": "4" }, { "input": "2 3 3 5 5 10 1 3", "output": "1" }, { "input": "2 6 4 5 6 5 1 3", "output": "0" }, { "input": "1 7 3 5 3 6 2 1", "output": "6" }, { "input": "2 4 5 4 5 7 3 2", "output": "1" }, { "input": "2 3 6 5 7 8 2 1", "output": "4" }, { "input": "1 4 5 5 3 10 3 1", "output": "6" }, { "input": "1 4 6 7 3 5 1 3", "output": "1" }, { "input": "1 6 5 5 5 8 3 1", "output": "8" }, { "input": "1 7 5 3 3 9 2 1", "output": "9" }, { "input": "3 5 3 7 6 10 3 1", "output": "1" }, { "input": "3 6 3 5 3 6 3 1", "output": "2" }, { "input": "1 7 5 5 5 5 2 2", "output": "2" }, { "input": "2 5 3 5 6 9 2 1", "output": "3" }, { "input": "3 4 3 5 3 6 2 1", "output": "2" }, { "input": "1 5 5 4 7 6 3 1", "output": "6" }, { "input": "2 3 7 6 5 9 3 1", "output": "3" }, { "input": "2 6 5 3 3 8 1 1", "output": "4" }, { "input": "2 4 7 3 4 10 2 1", "output": "5" }, { "input": "1 1000 1000 1000 1000 1000 1 1", "output": "1000" }, { "input": "17 1000 1000 1000 1000 1000 3 7", "output": "8" }, { "input": "115 1000 1000 1000 1000 1000 17 15", "output": "0" }, { "input": "1 587 981 1 2 1 1 1", "output": "1" }, { "input": "1 1 2 1 2 2 1 1", "output": "2" } ]
1,672,326,275
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
9
92
0
n,k,l,c,d,p,nl,np=map(int,input().split()) a=(k*l)//n b=c*d x=p//np y=min(a,b,x) print(y//n)
Title: Soft Drinking Time Limit: None seconds Memory Limit: None megabytes Problem Description: This winter is so cold in Nvodsk! A group of *n* friends decided to buy *k* bottles of a soft drink called "Take-It-Light" to warm up a bit. Each bottle has *l* milliliters of the drink. Also they bought *c* limes and cut each of them into *d* slices. After that they found *p* grams of salt. To make a toast, each friend needs *nl* milliliters of the drink, a slice of lime and *np* grams of salt. The friends want to make as many toasts as they can, provided they all drink the same amount. How many toasts can each friend make? Input Specification: The first and only line contains positive integers *n*, *k*, *l*, *c*, *d*, *p*, *nl*, *np*, not exceeding 1000 and no less than 1. The numbers are separated by exactly one space. Output Specification: Print a single integer — the number of toasts each friend can make. Demo Input: ['3 4 5 10 8 100 3 1\n', '5 100 10 1 19 90 4 3\n', '10 1000 1000 25 23 1 50 1\n'] Demo Output: ['2\n', '3\n', '0\n'] Note: A comment to the first sample: Overall the friends have 4 * 5 = 20 milliliters of the drink, it is enough to make 20 / 3 = 6 toasts. The limes are enough for 10 * 8 = 80 toasts and the salt is enough for 100 / 1 = 100 toasts. However, there are 3 friends in the group, so the answer is *min*(6, 80, 100) / 3 = 2.
```python n,k,l,c,d,p,nl,np=map(int,input().split()) a=(k*l)//n b=c*d x=p//np y=min(a,b,x) print(y//n) ```
0
620
A
Professor GukiZ's Robot
PROGRAMMING
800
[ "implementation", "math" ]
null
null
Professor GukiZ makes a new robot. The robot are in the point with coordinates (*x*1,<=*y*1) and should go to the point (*x*2,<=*y*2). In a single step the robot can change any of its coordinates (maybe both of them) by one (decrease or increase). So the robot can move in one of the 8 directions. Find the minimal number of steps the robot should make to get the finish position.
The first line contains two integers *x*1,<=*y*1 (<=-<=109<=≤<=*x*1,<=*y*1<=≤<=109) — the start position of the robot. The second line contains two integers *x*2,<=*y*2 (<=-<=109<=≤<=*x*2,<=*y*2<=≤<=109) — the finish position of the robot.
Print the only integer *d* — the minimal number of steps to get the finish position.
[ "0 0\n4 5\n", "3 4\n6 1\n" ]
[ "5\n", "3\n" ]
In the first example robot should increase both of its coordinates by one four times, so it will be in position (4, 4). After that robot should simply increase its *y* coordinate and get the finish position. In the second example robot should simultaneously increase *x* coordinate and decrease *y* coordinate by one three times.
0
[ { "input": "0 0\n4 5", "output": "5" }, { "input": "3 4\n6 1", "output": "3" }, { "input": "0 0\n4 6", "output": "6" }, { "input": "1 1\n-3 -5", "output": "6" }, { "input": "-1 -1\n-10 100", "output": "101" }, { "input": "1 -1\n100 -100", "output": "99" }, { "input": "-1000000000 -1000000000\n1000000000 1000000000", "output": "2000000000" }, { "input": "-1000000000 -1000000000\n0 999999999", "output": "1999999999" }, { "input": "0 0\n2 1", "output": "2" }, { "input": "10 0\n100 0", "output": "90" }, { "input": "1 5\n6 4", "output": "5" }, { "input": "0 0\n5 4", "output": "5" }, { "input": "10 1\n20 1", "output": "10" }, { "input": "1 1\n-3 4", "output": "4" }, { "input": "-863407280 504312726\n786535210 -661703810", "output": "1649942490" }, { "input": "-588306085 -741137832\n341385643 152943311", "output": "929691728" }, { "input": "0 0\n4 0", "output": "4" }, { "input": "93097194 -48405232\n-716984003 -428596062", "output": "810081197" }, { "input": "9 1\n1 1", "output": "8" }, { "input": "4 6\n0 4", "output": "4" }, { "input": "2 4\n5 2", "output": "3" }, { "input": "-100000000 -100000000\n100000000 100000123", "output": "200000123" }, { "input": "5 6\n5 7", "output": "1" }, { "input": "12 16\n12 1", "output": "15" }, { "input": "0 0\n5 1", "output": "5" }, { "input": "0 1\n1 1", "output": "1" }, { "input": "-44602634 913365223\n-572368780 933284951", "output": "527766146" }, { "input": "-2 0\n2 -2", "output": "4" }, { "input": "0 0\n3 1", "output": "3" }, { "input": "-458 2\n1255 4548", "output": "4546" }, { "input": "-5 -4\n-3 -3", "output": "2" }, { "input": "4 5\n7 3", "output": "3" }, { "input": "-1000000000 -999999999\n1000000000 999999998", "output": "2000000000" }, { "input": "-1000000000 -1000000000\n1000000000 -1000000000", "output": "2000000000" }, { "input": "-464122675 -898521847\n656107323 -625340409", "output": "1120229998" }, { "input": "-463154699 -654742385\n-699179052 -789004997", "output": "236024353" }, { "input": "982747270 -593488945\n342286841 -593604186", "output": "640460429" }, { "input": "-80625246 708958515\n468950878 574646184", "output": "549576124" }, { "input": "0 0\n1 0", "output": "1" }, { "input": "109810 1\n2 3", "output": "109808" }, { "input": "-9 0\n9 9", "output": "18" }, { "input": "9 9\n9 9", "output": "0" }, { "input": "1 1\n4 3", "output": "3" }, { "input": "1 2\n45 1", "output": "44" }, { "input": "207558188 -313753260\n-211535387 -721675423", "output": "419093575" }, { "input": "-11 0\n0 0", "output": "11" }, { "input": "-1000000000 1000000000\n1000000000 -1000000000", "output": "2000000000" }, { "input": "0 0\n1 1", "output": "1" }, { "input": "0 0\n0 1", "output": "1" }, { "input": "0 0\n-1 1", "output": "1" }, { "input": "0 0\n-1 0", "output": "1" }, { "input": "0 0\n-1 -1", "output": "1" }, { "input": "0 0\n0 -1", "output": "1" }, { "input": "0 0\n1 -1", "output": "1" }, { "input": "10 90\n90 10", "output": "80" }, { "input": "851016864 573579544\n-761410925 -380746263", "output": "1612427789" }, { "input": "1 9\n9 9", "output": "8" }, { "input": "1000 1000\n1000 1000", "output": "0" }, { "input": "1 9\n9 1", "output": "8" }, { "input": "1 90\n90 90", "output": "89" }, { "input": "100 100\n1000 1000", "output": "900" }, { "input": "-1 0\n0 0", "output": "1" }, { "input": "-750595959 -2984043\n649569876 -749608783", "output": "1400165835" }, { "input": "958048496 712083589\n423286949 810566863", "output": "534761547" }, { "input": "146316710 53945094\n-523054748 147499505", "output": "669371458" }, { "input": "50383856 -596516251\n-802950224 -557916272", "output": "853334080" }, { "input": "-637204864 -280290367\n-119020929 153679771", "output": "518183935" }, { "input": "-100 -100\n-60 -91", "output": "40" }, { "input": "337537326 74909428\n-765558776 167951547", "output": "1103096102" }, { "input": "0 81\n18 90", "output": "18" }, { "input": "283722202 -902633305\n-831696497 -160868946", "output": "1115418699" }, { "input": "1000 1000\n-1000 1000", "output": "2000" }, { "input": "5 6\n4 8", "output": "2" }, { "input": "40572000 597493595\n-935051731 368493185", "output": "975623731" }, { "input": "-5 5\n5 5", "output": "10" } ]
1,657,460,803
2,147,483,647
PyPy 3-64
OK
TESTS
75
78
512,000
import sys input = sys.stdin.readline x1, y1 = map(int, input().split()) x2, y2 = map(int, input().split()) f = abs(x1 - x2) s = abs(y1 - y2) print(max(f, s))
Title: Professor GukiZ's Robot Time Limit: None seconds Memory Limit: None megabytes Problem Description: Professor GukiZ makes a new robot. The robot are in the point with coordinates (*x*1,<=*y*1) and should go to the point (*x*2,<=*y*2). In a single step the robot can change any of its coordinates (maybe both of them) by one (decrease or increase). So the robot can move in one of the 8 directions. Find the minimal number of steps the robot should make to get the finish position. Input Specification: The first line contains two integers *x*1,<=*y*1 (<=-<=109<=≤<=*x*1,<=*y*1<=≤<=109) — the start position of the robot. The second line contains two integers *x*2,<=*y*2 (<=-<=109<=≤<=*x*2,<=*y*2<=≤<=109) — the finish position of the robot. Output Specification: Print the only integer *d* — the minimal number of steps to get the finish position. Demo Input: ['0 0\n4 5\n', '3 4\n6 1\n'] Demo Output: ['5\n', '3\n'] Note: In the first example robot should increase both of its coordinates by one four times, so it will be in position (4, 4). After that robot should simply increase its *y* coordinate and get the finish position. In the second example robot should simultaneously increase *x* coordinate and decrease *y* coordinate by one three times.
```python import sys input = sys.stdin.readline x1, y1 = map(int, input().split()) x2, y2 = map(int, input().split()) f = abs(x1 - x2) s = abs(y1 - y2) print(max(f, s)) ```
3
237
A
Free Cash
PROGRAMMING
1,000
[ "implementation" ]
null
null
Valera runs a 24/7 fast food cafe. He magically learned that next day *n* people will visit his cafe. For each person we know the arrival time: the *i*-th person comes exactly at *h**i* hours *m**i* minutes. The cafe spends less than a minute to serve each client, but if a client comes in and sees that there is no free cash, than he doesn't want to wait and leaves the cafe immediately. Valera is very greedy, so he wants to serve all *n* customers next day (and get more profit). However, for that he needs to ensure that at each moment of time the number of working cashes is no less than the number of clients in the cafe. Help Valera count the minimum number of cashes to work at his cafe next day, so that they can serve all visitors.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105), that is the number of cafe visitors. Each of the following *n* lines has two space-separated integers *h**i* and *m**i* (0<=≤<=*h**i*<=≤<=23; 0<=≤<=*m**i*<=≤<=59), representing the time when the *i*-th person comes into the cafe. Note that the time is given in the chronological order. All time is given within one 24-hour period.
Print a single integer — the minimum number of cashes, needed to serve all clients next day.
[ "4\n8 0\n8 10\n8 10\n8 45\n", "3\n0 12\n10 11\n22 22\n" ]
[ "2\n", "1\n" ]
In the first sample it is not enough one cash to serve all clients, because two visitors will come into cafe in 8:10. Therefore, if there will be one cash in cafe, then one customer will be served by it, and another one will not wait and will go away. In the second sample all visitors will come in different times, so it will be enough one cash.
500
[ { "input": "4\n8 0\n8 10\n8 10\n8 45", "output": "2" }, { "input": "3\n0 12\n10 11\n22 22", "output": "1" }, { "input": "5\n12 8\n15 27\n15 27\n16 2\n19 52", "output": "2" }, { "input": "7\n5 6\n7 34\n7 34\n7 34\n12 29\n15 19\n20 23", "output": "3" }, { "input": "8\n0 36\n4 7\n4 7\n4 7\n11 46\n12 4\n15 39\n18 6", "output": "3" }, { "input": "20\n4 12\n4 21\n4 27\n4 56\n5 55\n7 56\n11 28\n11 36\n14 58\n15 59\n16 8\n17 12\n17 23\n17 23\n17 23\n17 23\n17 23\n17 23\n20 50\n22 32", "output": "6" }, { "input": "10\n1 30\n1 30\n1 30\n1 30\n1 30\n1 30\n1 30\n1 30\n1 30\n1 30", "output": "10" }, { "input": "50\n0 23\n1 21\n2 8\n2 45\n3 1\n4 19\n4 37\n7 7\n7 40\n8 43\n9 51\n10 13\n11 2\n11 19\n11 30\n12 37\n12 37\n12 37\n12 37\n12 37\n12 37\n12 37\n12 37\n12 54\n13 32\n13 42\n14 29\n14 34\n14 48\n15 0\n15 27\n16 22\n16 31\n17 25\n17 26\n17 33\n18 14\n18 16\n18 20\n19 0\n19 5\n19 56\n20 22\n21 26\n22 0\n22 10\n22 11\n22 36\n23 17\n23 20", "output": "8" }, { "input": "10\n0 39\n1 35\n1 49\n1 51\n5 24\n7 40\n7 56\n16 42\n23 33\n23 49", "output": "1" }, { "input": "15\n0 16\n6 15\n8 2\n8 6\n8 7\n10 1\n10 1\n10 3\n10 12\n13 5\n14 16\n14 16\n14 16\n14 16\n14 16", "output": "5" }, { "input": "2\n0 24\n1 0", "output": "1" }, { "input": "1\n0 0", "output": "1" }, { "input": "1\n1 5", "output": "1" }, { "input": "1\n1 1", "output": "1" }, { "input": "3\n0 0\n0 0\n0 0", "output": "3" }, { "input": "1\n5 0", "output": "1" }, { "input": "5\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "5" }, { "input": "1\n10 10", "output": "1" }, { "input": "1\n8 0", "output": "1" }, { "input": "10\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "10" }, { "input": "2\n0 0\n0 1", "output": "1" }, { "input": "2\n8 5\n8 5", "output": "2" } ]
1,649,090,385
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
7
92
0
temp1 = 0 temp2 = 0 tm11=0 tm22=0 for i in range(int(input())): m,n = map(int,input().split()) if i ==0: tm11=m tm22=n tm1 =m tm2 =n if tm1 == tm11: if tm2 == tm22: temp1=temp1+1 else: tm11 = tm1 tm22 = tm2 if temp1>=temp2: temp2= temp1 temp1=1 else: tm11 = tm1 tm22 = tm2 if temp1 >= temp2: temp2 = temp1 temp1 = 1 print(temp2)
Title: Free Cash Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera runs a 24/7 fast food cafe. He magically learned that next day *n* people will visit his cafe. For each person we know the arrival time: the *i*-th person comes exactly at *h**i* hours *m**i* minutes. The cafe spends less than a minute to serve each client, but if a client comes in and sees that there is no free cash, than he doesn't want to wait and leaves the cafe immediately. Valera is very greedy, so he wants to serve all *n* customers next day (and get more profit). However, for that he needs to ensure that at each moment of time the number of working cashes is no less than the number of clients in the cafe. Help Valera count the minimum number of cashes to work at his cafe next day, so that they can serve all visitors. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105), that is the number of cafe visitors. Each of the following *n* lines has two space-separated integers *h**i* and *m**i* (0<=≤<=*h**i*<=≤<=23; 0<=≤<=*m**i*<=≤<=59), representing the time when the *i*-th person comes into the cafe. Note that the time is given in the chronological order. All time is given within one 24-hour period. Output Specification: Print a single integer — the minimum number of cashes, needed to serve all clients next day. Demo Input: ['4\n8 0\n8 10\n8 10\n8 45\n', '3\n0 12\n10 11\n22 22\n'] Demo Output: ['2\n', '1\n'] Note: In the first sample it is not enough one cash to serve all clients, because two visitors will come into cafe in 8:10. Therefore, if there will be one cash in cafe, then one customer will be served by it, and another one will not wait and will go away. In the second sample all visitors will come in different times, so it will be enough one cash.
```python temp1 = 0 temp2 = 0 tm11=0 tm22=0 for i in range(int(input())): m,n = map(int,input().split()) if i ==0: tm11=m tm22=n tm1 =m tm2 =n if tm1 == tm11: if tm2 == tm22: temp1=temp1+1 else: tm11 = tm1 tm22 = tm2 if temp1>=temp2: temp2= temp1 temp1=1 else: tm11 = tm1 tm22 = tm2 if temp1 >= temp2: temp2 = temp1 temp1 = 1 print(temp2) ```
0
682
A
Alyona and Numbers
PROGRAMMING
1,100
[ "constructive algorithms", "math", "number theory" ]
null
null
After finishing eating her bun, Alyona came up with two integers *n* and *m*. She decided to write down two columns of integers — the first column containing integers from 1 to *n* and the second containing integers from 1 to *m*. Now the girl wants to count how many pairs of integers she can choose, one from the first column and the other from the second column, such that their sum is divisible by 5. Formally, Alyona wants to count the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and equals 0. As usual, Alyona has some troubles and asks you to help.
The only line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1<=000<=000).
Print the only integer — the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and (*x*<=+<=*y*) is divisible by 5.
[ "6 12\n", "11 14\n", "1 5\n", "3 8\n", "5 7\n", "21 21\n" ]
[ "14\n", "31\n", "1\n", "5\n", "7\n", "88\n" ]
Following pairs are suitable in the first sample case: - for *x* = 1 fits *y* equal to 4 or 9; - for *x* = 2 fits *y* equal to 3 or 8; - for *x* = 3 fits *y* equal to 2, 7 or 12; - for *x* = 4 fits *y* equal to 1, 6 or 11; - for *x* = 5 fits *y* equal to 5 or 10; - for *x* = 6 fits *y* equal to 4 or 9. Only the pair (1, 4) is suitable in the third sample case.
500
[ { "input": "6 12", "output": "14" }, { "input": "11 14", "output": "31" }, { "input": "1 5", "output": "1" }, { "input": "3 8", "output": "5" }, { "input": "5 7", "output": "7" }, { "input": "21 21", "output": "88" }, { "input": "10 15", "output": "30" }, { "input": "1 1", "output": "0" }, { "input": "1 1000000", "output": "200000" }, { "input": "1000000 1", "output": "200000" }, { "input": "1000000 1000000", "output": "200000000000" }, { "input": "944 844", "output": "159348" }, { "input": "368 984", "output": "72423" }, { "input": "792 828", "output": "131155" }, { "input": "920 969", "output": "178296" }, { "input": "640 325", "output": "41600" }, { "input": "768 170", "output": "26112" }, { "input": "896 310", "output": "55552" }, { "input": "320 154", "output": "9856" }, { "input": "744 999", "output": "148652" }, { "input": "630 843", "output": "106218" }, { "input": "54 688", "output": "7431" }, { "input": "478 828", "output": "79157" }, { "input": "902 184", "output": "33194" }, { "input": "31 29", "output": "180" }, { "input": "751 169", "output": "25384" }, { "input": "879 14", "output": "2462" }, { "input": "7 858", "output": "1201" }, { "input": "431 702", "output": "60512" }, { "input": "855 355", "output": "60705" }, { "input": "553 29", "output": "3208" }, { "input": "721767 525996", "output": "75929310986" }, { "input": "805191 74841", "output": "12052259926" }, { "input": "888615 590981", "output": "105030916263" }, { "input": "4743 139826", "output": "132638943" }, { "input": "88167 721374", "output": "12720276292" }, { "input": "171591 13322", "output": "457187060" }, { "input": "287719 562167", "output": "32349225415" }, { "input": "371143 78307", "output": "5812618980" }, { "input": "487271 627151", "output": "61118498984" }, { "input": "261436 930642", "output": "48660664382" }, { "input": "377564 446782", "output": "33737759810" }, { "input": "460988 28330", "output": "2611958008" }, { "input": "544412 352983", "output": "38433636199" }, { "input": "660540 869123", "output": "114818101284" }, { "input": "743964 417967", "output": "62190480238" }, { "input": "827388 966812", "output": "159985729411" }, { "input": "910812 515656", "output": "93933134534" }, { "input": "26940 64501", "output": "347531388" }, { "input": "110364 356449", "output": "7867827488" }, { "input": "636358 355531", "output": "45248999219" }, { "input": "752486 871672", "output": "131184195318" }, { "input": "803206 420516", "output": "67552194859" }, { "input": "919334 969361", "output": "178233305115" }, { "input": "35462 261309", "output": "1853307952" }, { "input": "118887 842857", "output": "20040948031" }, { "input": "202311 358998", "output": "14525848875" }, { "input": "285735 907842", "output": "51880446774" }, { "input": "401863 456686", "output": "36705041203" }, { "input": "452583 972827", "output": "88056992428" }, { "input": "235473 715013", "output": "33673251230" }, { "input": "318897 263858", "output": "16828704925" }, { "input": "402321 812702", "output": "65393416268" }, { "input": "518449 361546", "output": "37488632431" }, { "input": "634577 910391", "output": "115542637921" }, { "input": "685297 235043", "output": "32214852554" }, { "input": "801425 751183", "output": "120403367155" }, { "input": "884849 300028", "output": "53095895155" }, { "input": "977 848872", "output": "165869588" }, { "input": "51697 397716", "output": "4112144810" }, { "input": "834588 107199", "output": "17893399803" }, { "input": "918012 688747", "output": "126455602192" }, { "input": "1436 237592", "output": "68236422" }, { "input": "117564 753732", "output": "17722349770" }, { "input": "200988 302576", "output": "12162829017" }, { "input": "284412 818717", "output": "46570587880" }, { "input": "400540 176073", "output": "14104855884" }, { "input": "483964 724917", "output": "70166746198" }, { "input": "567388 241058", "output": "27354683301" }, { "input": "650812 789902", "output": "102815540084" }, { "input": "400999 756281", "output": "60653584944" }, { "input": "100 101", "output": "2020" }, { "input": "100 102", "output": "2040" }, { "input": "103 100", "output": "2060" }, { "input": "100 104", "output": "2080" }, { "input": "3 4", "output": "3" }, { "input": "11 23", "output": "50" }, { "input": "8 14", "output": "23" }, { "input": "23423 34234", "output": "160372597" }, { "input": "1 4", "output": "1" }, { "input": "999999 999999", "output": "199999600001" }, { "input": "82 99", "output": "1624" }, { "input": "21 18", "output": "75" }, { "input": "234 234", "output": "10952" }, { "input": "4 4", "output": "4" }, { "input": "6 13", "output": "15" }, { "input": "3 9", "output": "6" }, { "input": "99999 99999", "output": "1999960001" }, { "input": "34 33", "output": "225" }, { "input": "2 2", "output": "0" }, { "input": "333 1", "output": "66" }, { "input": "3 3", "output": "2" }, { "input": "8 2", "output": "3" }, { "input": "2179 2218", "output": "966605" }, { "input": "1000000 999999", "output": "199999800000" }, { "input": "873828 774207", "output": "135304750879" }, { "input": "13 19", "output": "50" }, { "input": "1648 576469", "output": "190004183" }, { "input": "11 13", "output": "28" }, { "input": "5 8", "output": "8" }, { "input": "650074 943659", "output": "122689636154" }, { "input": "1 3", "output": "0" }, { "input": "54 43", "output": "465" }, { "input": "14 9", "output": "26" }, { "input": "2 3", "output": "1" }, { "input": "543 534", "output": "57993" }, { "input": "321 123", "output": "7896" }, { "input": "21 3", "output": "12" }, { "input": "2 1", "output": "0" }, { "input": "4 3", "output": "3" }, { "input": "47474 74747", "output": "709707816" }, { "input": "4 9", "output": "8" }, { "input": "7 4", "output": "6" }, { "input": "9 4", "output": "8" }, { "input": "12414 4214", "output": "10462520" }, { "input": "2 9", "output": "4" }, { "input": "253 821", "output": "41542" }, { "input": "2 4", "output": "2" } ]
1,608,056,008
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
7
124
0
n, m = sorted([int(j) for j in input().split()]) count = 0 for j in range(1, n + 1): f = int(j / 5) + 1 an = m d = 5 * f a = d - j N = int((an - a) / 5) + 1 count += N print(count)
Title: Alyona and Numbers Time Limit: None seconds Memory Limit: None megabytes Problem Description: After finishing eating her bun, Alyona came up with two integers *n* and *m*. She decided to write down two columns of integers — the first column containing integers from 1 to *n* and the second containing integers from 1 to *m*. Now the girl wants to count how many pairs of integers she can choose, one from the first column and the other from the second column, such that their sum is divisible by 5. Formally, Alyona wants to count the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and equals 0. As usual, Alyona has some troubles and asks you to help. Input Specification: The only line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1<=000<=000). Output Specification: Print the only integer — the number of pairs of integers (*x*,<=*y*) such that 1<=≤<=*x*<=≤<=*n*, 1<=≤<=*y*<=≤<=*m* and (*x*<=+<=*y*) is divisible by 5. Demo Input: ['6 12\n', '11 14\n', '1 5\n', '3 8\n', '5 7\n', '21 21\n'] Demo Output: ['14\n', '31\n', '1\n', '5\n', '7\n', '88\n'] Note: Following pairs are suitable in the first sample case: - for *x* = 1 fits *y* equal to 4 or 9; - for *x* = 2 fits *y* equal to 3 or 8; - for *x* = 3 fits *y* equal to 2, 7 or 12; - for *x* = 4 fits *y* equal to 1, 6 or 11; - for *x* = 5 fits *y* equal to 5 or 10; - for *x* = 6 fits *y* equal to 4 or 9. Only the pair (1, 4) is suitable in the third sample case.
```python n, m = sorted([int(j) for j in input().split()]) count = 0 for j in range(1, n + 1): f = int(j / 5) + 1 an = m d = 5 * f a = d - j N = int((an - a) / 5) + 1 count += N print(count) ```
0
78
A
Haiku
PROGRAMMING
800
[ "implementation", "strings" ]
A. Haiku
2
256
Haiku is a genre of Japanese traditional poetry. A haiku poem consists of 17 syllables split into three phrases, containing 5, 7 and 5 syllables correspondingly (the first phrase should contain exactly 5 syllables, the second phrase should contain exactly 7 syllables, and the third phrase should contain exactly 5 syllables). A haiku masterpiece contains a description of a moment in those three phrases. Every word is important in a small poem, which is why haiku are rich with symbols. Each word has a special meaning, a special role. The main principle of haiku is to say much using a few words. To simplify the matter, in the given problem we will consider that the number of syllable in the phrase is equal to the number of vowel letters there. Only the following letters are regarded as vowel letters: "a", "e", "i", "o" and "u". Three phases from a certain poem are given. Determine whether it is haiku or not.
The input data consists of three lines. The length of each line is between 1 and 100, inclusive. The *i*-th line contains the *i*-th phrase of the poem. Each phrase consists of one or more words, which are separated by one or more spaces. A word is a non-empty sequence of lowercase Latin letters. Leading and/or trailing spaces in phrases are allowed. Every phrase has at least one non-space character. See the example for clarification.
Print "YES" (without the quotes) if the poem is a haiku. Otherwise, print "NO" (also without the quotes).
[ "on codeforces \nbeta round is running\n a rustling of keys \n", "how many gallons\nof edo s rain did you drink\n cuckoo\n" ]
[ "YES", "NO" ]
none
500
[ { "input": "on codeforces \nbeta round is running\n a rustling of keys ", "output": "YES" }, { "input": "how many gallons\nof edo s rain did you drink\n cuckoo", "output": "NO" }, { "input": " hatsu shigure\n saru mo komino wo\nhoshige nari", "output": "YES" }, { "input": "o vetus stagnum\n rana de ripa salit\n ac sonant aquae", "output": "NO" }, { "input": " furuike ya\nkawazu tobikomu\nmizu no oto ", "output": "YES" }, { "input": " noch da leich\na stamperl zum aufwaerma\n da pfarrer kimmt a ", "output": "NO" }, { "input": " sommerfuglene \n hvorfor bruge mange ord\n et kan gore det", "output": "YES" }, { "input": " ab der mittagszeit\n ist es etwas schattiger\n ein wolkenhimmel", "output": "NO" }, { "input": "tornando a vederli\ni fiori di ciliegio la sera\nson divenuti frutti", "output": "NO" }, { "input": "kutaburete\nyado karu koro ya\nfuji no hana", "output": "YES" }, { "input": " beginnings of poetry\n the rice planting songs \n of the interior", "output": "NO" }, { "input": " door zomerregens\n zijn de kraanvogelpoten\n korter geworden", "output": "NO" }, { "input": " derevo na srub\na ptitsi bezzabotno\n gnezdishko tam vyut", "output": "YES" }, { "input": "writing in the dark\nunaware that my pen\nhas run out of ink", "output": "NO" }, { "input": "kusaaiu\nuieueua\nuo efaa", "output": "YES" }, { "input": "v\nh\np", "output": "NO" }, { "input": "i\ni\nu", "output": "NO" }, { "input": "awmio eoj\nabdoolceegood\nwaadeuoy", "output": "YES" }, { "input": "xzpnhhnqsjpxdboqojixmofawhdjcfbscq\nfoparnxnbzbveycoltwdrfbwwsuobyoz hfbrszy\nimtqryscsahrxpic agfjh wvpmczjjdrnwj mcggxcdo", "output": "YES" }, { "input": "wxjcvccp cppwsjpzbd dhizbcnnllckybrnfyamhgkvkjtxxfzzzuyczmhedhztugpbgpvgh\nmdewztdoycbpxtp bsiw hknggnggykdkrlihvsaykzfiiw\ndewdztnngpsnn lfwfbvnwwmxoojknygqb hfe ibsrxsxr", "output": "YES" }, { "input": "nbmtgyyfuxdvrhuhuhpcfywzrbclp znvxw synxmzymyxcntmhrjriqgdjh xkjckydbzjbvtjurnf\nhhnhxdknvamywhsrkprofnyzlcgtdyzzjdsfxyddvilnzjziz qmwfdvzckgcbrrxplxnxf mpxwxyrpesnewjrx ajxlfj\nvcczq hddzd cvefmhxwxxyqcwkr fdsndckmesqeq zyjbwbnbyhybd cta nsxzidl jpcvtzkldwd", "output": "YES" }, { "input": "rvwdsgdsrutgjwscxz pkd qtpmfbqsmctuevxdj kjzknzghdvxzlaljcntg jxhvzn yciktbsbyscfypx x xhkxnfpdp\nwdfhvqgxbcts mnrwbr iqttsvigwdgvlxwhsmnyxnttedonxcfrtmdjjmacvqtkbmsnwwvvrlxwvtggeowtgsqld qj\nvsxcdhbzktrxbywpdvstr meykarwtkbm pkkbhvwvelclfmpngzxdmblhcvf qmabmweldplmczgbqgzbqnhvcdpnpjtch ", "output": "YES" }, { "input": "brydyfsmtzzkpdsqvvztmprhqzbzqvgsblnz naait tdtiprjsttwusdykndwcccxfmzmrmfmzjywkpgbfnjpypgcbcfpsyfj k\nucwdfkfyxxxht lxvnovqnnsqutjsyagrplb jhvtwdptrwcqrovncdvqljjlrpxcfbxqgsfylbgmcjpvpl ccbcybmigpmjrxpu\nfgwtpcjeywgnxgbttgx htntpbk tkkpwbgxwtbxvcpkqbzetjdkcwad tftnjdxxjdvbpfibvxuglvx llyhgjvggtw jtjyphs", "output": "YES" }, { "input": "nyc aqgqzjjlj mswgmjfcxlqdscheskchlzljlsbhyn iobxymwzykrsnljj\nnnebeaoiraga\nqpjximoqzswhyyszhzzrhfwhf iyxysdtcpmikkwpugwlxlhqfkn", "output": "NO" }, { "input": "lzrkztgfe mlcnq ay ydmdzxh cdgcghxnkdgmgfzgahdjjmqkpdbskreswpnblnrc fmkwziiqrbskp\np oukeaz gvvy kghtrjlczyl qeqhgfgfej\nwfolhkmktvsjnrpzfxcxzqmfidtlzmuhxac wsncjgmkckrywvxmnjdpjpfydhk qlmdwphcvyngansqhl", "output": "NO" }, { "input": "yxcboqmpwoevrdhvpxfzqmammak\njmhphkxppkqkszhqqtkvflarsxzla pbxlnnnafqbsnmznfj qmhoktgzix qpmrgzxqvmjxhskkksrtryehfnmrt dtzcvnvwp\nscwymuecjxhw rdgsffqywwhjpjbfcvcrnisfqllnbplpadfklayjguyvtrzhwblftclfmsr", "output": "NO" }, { "input": "qfdwsr jsbrpfmn znplcx nhlselflytndzmgxqpgwhpi ghvbbxrkjdirfghcybhkkqdzmyacvrrcgsneyjlgzfvdmxyjmph\nylxlyrzs drbktzsniwcbahjkgohcghoaczsmtzhuwdryjwdijmxkmbmxv yyfrokdnsx\nyw xtwyzqlfxwxghugoyscqlx pljtz aldfskvxlsxqgbihzndhxkswkxqpwnfcxzfyvncstfpqf", "output": "NO" }, { "input": "g rguhqhcrzmuqthtmwzhfyhpmqzzosa\nmhjimzvchkhejh irvzejhtjgaujkqfxhpdqjnxr dvqallgssktqvsxi\npcwbliftjcvuzrsqiswohi", "output": "NO" }, { "input": " ngxtlq iehiise vgffqcpnmsoqzyseuqqtggokymol zn\nvjdjljazeujwoubkcvtsbepooxqzrueaauokhepiquuopfild\ngoabauauaeotoieufueeknudiilupouaiaexcoapapu", "output": "NO" }, { "input": "ycnvnnqk mhrmhctpkfbc qbyvtjznmndqjzgbcxmvrpkfcll zwspfptmbxgrdv dsgkk nfytsqjrnfbhh pzdldzymvkdxxwh\nvnhjfwgdnyjptsmblyxmpzylsbjlmtkkwjcbqwjctqvrlqqkdsrktxlnslspvnn mdgsmzblhbnvpczmqkcffwhwljqkzmk hxcm\nrghnjvzcpprrgmtgytpkzyc mrdnnhpkwypwqbtzjyfwvrdwyjltbzxtbstzs xdjzdmx yjsqtzlrnvyssvglsdjrmsrfrcdpqt", "output": "NO" }, { "input": "ioeeaioeiuoeaeieuuieooaouiuouiioaueeaiaiuoaoiioeeaauooiuuieeuaeeoauieeaiuoieiaieuoauaaoioooieueueuai\nuooaoeeaoiuuoeioaoouaououoeioiaeueoioaiouaeaoioiuuaueeuaiuoiueoiuaoeeieeouaeeaeeieioeoiiieuuueuuieuo\naeeouieeieoueaioeoioooiouaeeeiaaioueauaueiouuuaieuuioiaeiueauueaoieauauoeueuaiueuuaueeoueauaeaoieeoo", "output": "NO" }, { "input": "mkgycgmrqtmlwj vddlbsgdptyfrcj nmrddjchydvbsyhgzytfzvwbhqmmhkpsyrcnknpsqrr wcnf wfvgskrnsmnrcqgcnc q\npn cclcyjjdp rqkpgyrvyyd hhynrochfa pthyffqvskazfshvzcmvhmsrxvquzkdvivlbfypwbgltfbjmhzljvgzmxjlrjdjq\nauuouieuaaauoooeoiuoaueuueauiuuuiaeuwuoiaeoeaieauieouoaeiiieiioiuuuiuauioiiuoeauueieaueiaioeuaoaaau", "output": "NO" }, { "input": "ab\na\na", "output": "NO" }, { "input": "on codeforcs\nbeta round is runnineg\na rustling of keys", "output": "NO" }, { "input": "coooooooooooooooood\nd\nd", "output": "NO" }, { "input": "on codeforces \nbeta round is runninog\n a rustling of keys", "output": "NO" }, { "input": "aaaaaaaaaaaaaaa\na\na", "output": "NO" }, { "input": "aaaaaccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\naaaaaaaccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\naaaaaccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc", "output": "YES" }, { "input": "cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\ncccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\ncccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc", "output": "NO" }, { "input": "aaaaaa\naaaaaa\naaaaa", "output": "NO" } ]
1,601,525,028
2,147,483,647
Python 3
OK
TESTS
40
218
307,200
def ishaiku(s1,s2,s3): cnt_s1=0 cnt_s2=0 cnt_s3=0 for i in s1: if(i=='a' or i=='e' or i=='i' or i=='o' or i=='u'): cnt_s1+=1 for i in s2: if(i=='a' or i=='e' or i=='i' or i=='o' or i=='u'): cnt_s2+=1 for i in s3: if(i=='a' or i=='e' or i=='i' or i=='o' or i=='u'): cnt_s3+=1 if(cnt_s1==5 and cnt_s2==7 and cnt_s3==5): return True return False def main(): s1=str(input()).replace(" ","") s2=str(input()).replace(" ","") s3=str(input()).replace(" ","") if(ishaiku(s1,s2,s3)): print("YES") else: print("NO") if __name__=='__main__': main()
Title: Haiku Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Haiku is a genre of Japanese traditional poetry. A haiku poem consists of 17 syllables split into three phrases, containing 5, 7 and 5 syllables correspondingly (the first phrase should contain exactly 5 syllables, the second phrase should contain exactly 7 syllables, and the third phrase should contain exactly 5 syllables). A haiku masterpiece contains a description of a moment in those three phrases. Every word is important in a small poem, which is why haiku are rich with symbols. Each word has a special meaning, a special role. The main principle of haiku is to say much using a few words. To simplify the matter, in the given problem we will consider that the number of syllable in the phrase is equal to the number of vowel letters there. Only the following letters are regarded as vowel letters: "a", "e", "i", "o" and "u". Three phases from a certain poem are given. Determine whether it is haiku or not. Input Specification: The input data consists of three lines. The length of each line is between 1 and 100, inclusive. The *i*-th line contains the *i*-th phrase of the poem. Each phrase consists of one or more words, which are separated by one or more spaces. A word is a non-empty sequence of lowercase Latin letters. Leading and/or trailing spaces in phrases are allowed. Every phrase has at least one non-space character. See the example for clarification. Output Specification: Print "YES" (without the quotes) if the poem is a haiku. Otherwise, print "NO" (also without the quotes). Demo Input: ['on codeforces \nbeta round is running\n a rustling of keys \n', 'how many gallons\nof edo s rain did you drink\n cuckoo\n'] Demo Output: ['YES', 'NO'] Note: none
```python def ishaiku(s1,s2,s3): cnt_s1=0 cnt_s2=0 cnt_s3=0 for i in s1: if(i=='a' or i=='e' or i=='i' or i=='o' or i=='u'): cnt_s1+=1 for i in s2: if(i=='a' or i=='e' or i=='i' or i=='o' or i=='u'): cnt_s2+=1 for i in s3: if(i=='a' or i=='e' or i=='i' or i=='o' or i=='u'): cnt_s3+=1 if(cnt_s1==5 and cnt_s2==7 and cnt_s3==5): return True return False def main(): s1=str(input()).replace(" ","") s2=str(input()).replace(" ","") s3=str(input()).replace(" ","") if(ishaiku(s1,s2,s3)): print("YES") else: print("NO") if __name__=='__main__': main() ```
3.944928
735
A
Ostap and Grasshopper
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
On the way to Rio de Janeiro Ostap kills time playing with a grasshopper he took with him in a special box. Ostap builds a line of length *n* such that some cells of this line are empty and some contain obstacles. Then, he places his grasshopper to one of the empty cells and a small insect in another empty cell. The grasshopper wants to eat the insect. Ostap knows that grasshopper is able to jump to any empty cell that is exactly *k* cells away from the current (to the left or to the right). Note that it doesn't matter whether intermediate cells are empty or not as the grasshopper makes a jump over them. For example, if *k*<==<=1 the grasshopper can jump to a neighboring cell only, and if *k*<==<=2 the grasshopper can jump over a single cell. Your goal is to determine whether there is a sequence of jumps such that grasshopper will get from his initial position to the cell with an insect.
The first line of the input contains two integers *n* and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=*n*<=-<=1) — the number of cells in the line and the length of one grasshopper's jump. The second line contains a string of length *n* consisting of characters '.', '#', 'G' and 'T'. Character '.' means that the corresponding cell is empty, character '#' means that the corresponding cell contains an obstacle and grasshopper can't jump there. Character 'G' means that the grasshopper starts at this position and, finally, 'T' means that the target insect is located at this cell. It's guaranteed that characters 'G' and 'T' appear in this line exactly once.
If there exists a sequence of jumps (each jump of length *k*), such that the grasshopper can get from his initial position to the cell with the insect, print "YES" (without quotes) in the only line of the input. Otherwise, print "NO" (without quotes).
[ "5 2\n#G#T#\n", "6 1\nT....G\n", "7 3\nT..#..G\n", "6 2\n..GT..\n" ]
[ "YES\n", "YES\n", "NO\n", "NO\n" ]
In the first sample, the grasshopper can make one jump to the right in order to get from cell 2 to cell 4. In the second sample, the grasshopper is only able to jump to neighboring cells but the way to the insect is free — he can get there by jumping left 5 times. In the third sample, the grasshopper can't make a single jump. In the fourth sample, the grasshopper can only jump to the cells with odd indices, thus he won't be able to reach the insect.
500
[ { "input": "5 2\n#G#T#", "output": "YES" }, { "input": "6 1\nT....G", "output": "YES" }, { "input": "7 3\nT..#..G", "output": "NO" }, { "input": "6 2\n..GT..", "output": "NO" }, { "input": "2 1\nGT", "output": "YES" }, { "input": "100 5\nG####.####.####.####.####.####.####.####.####.####.####.####.####.####.####.####.####.####.####T####", "output": "YES" }, { "input": "100 5\nG####.####.####.####.####.####.####.####.####.####.####.####.####.#########.####.####.####.####T####", "output": "NO" }, { "input": "2 1\nTG", "output": "YES" }, { "input": "99 1\n...T.............................................................................................G.", "output": "YES" }, { "input": "100 2\nG............#.....#...........#....#...........##............#............#......................T.", "output": "NO" }, { "input": "100 1\n#.#.#.##..#..##.#....##.##.##.#....####..##.#.##..GT..##...###.#.##.#..#..##.###..#.####..#.#.##..##", "output": "YES" }, { "input": "100 2\n..#####.#.#.......#.#.#...##..####..###..#.#######GT####.#.#...##...##.#..###....##.#.#..#.###....#.", "output": "NO" }, { "input": "100 3\nG..................................................................................................T", "output": "YES" }, { "input": "100 3\nG..................................................................................................T", "output": "YES" }, { "input": "100 3\nG..................................#......#......#.......#.#..........#........#......#..........#.T", "output": "NO" }, { "input": "100 3\nG..............#..........#...#..............#.#.....................#......#........#.........#...T", "output": "NO" }, { "input": "100 3\nG##################################################################################################T", "output": "NO" }, { "input": "100 33\nG..................................................................................................T", "output": "YES" }, { "input": "100 33\nG..................................................................................................T", "output": "YES" }, { "input": "100 33\nG.........#........#..........#..............#.................#............................#.#....T", "output": "YES" }, { "input": "100 33\nG.......#..................#..............................#............................#..........T.", "output": "NO" }, { "input": "100 33\nG#..........##...#.#.....................#.#.#.........##..#...........#....#...........##...#..###T", "output": "YES" }, { "input": "100 33\nG..#.#..#..####......#......##...##...#.##........#...#...#.##....###..#...###..##.#.....#......#.T.", "output": "NO" }, { "input": "100 33\nG#....#..#..##.##..#.##.#......#.#.##..##.#.#.##.##....#.#.....####..##...#....##..##..........#...T", "output": "NO" }, { "input": "100 33\nG#######.#..##.##.#...#..#.###.#.##.##.#..#.###..####.##.#.##....####...##..####.#..##.##.##.#....#T", "output": "NO" }, { "input": "100 33\nG#####.#.##.###########.##..##..#######..########..###.###..#.####.######.############..####..#####T", "output": "NO" }, { "input": "100 99\nT..................................................................................................G", "output": "YES" }, { "input": "100 99\nT..................................................................................................G", "output": "YES" }, { "input": "100 99\nT.#...............................#............#..............................##...................G", "output": "YES" }, { "input": "100 99\nT..#....#.##...##########.#.#.#.#...####..#.....#..##..#######.######..#.....###..###...#.......#.#G", "output": "YES" }, { "input": "100 99\nG##################################################################################################T", "output": "YES" }, { "input": "100 9\nT..................................................................................................G", "output": "YES" }, { "input": "100 9\nT.................................................................................................G.", "output": "NO" }, { "input": "100 9\nT................................................................................................G..", "output": "NO" }, { "input": "100 1\nG..................................................................................................T", "output": "YES" }, { "input": "100 1\nT..................................................................................................G", "output": "YES" }, { "input": "100 1\n##########G.........T###############################################################################", "output": "YES" }, { "input": "100 1\n#################################################################################################G.T", "output": "YES" }, { "input": "100 17\n##########G################.################.################.################T#####################", "output": "YES" }, { "input": "100 17\n####.#..#.G######.#########.##..##########.#.################.################T######.####.#########", "output": "YES" }, { "input": "100 17\n.########.G##.####.#.######.###############..#.###########.##.#####.##.#####.#T.###..###.########.##", "output": "YES" }, { "input": "100 1\nG.............................................#....................................................T", "output": "NO" }, { "input": "100 1\nT.#................................................................................................G", "output": "NO" }, { "input": "100 1\n##########G....#....T###############################################################################", "output": "NO" }, { "input": "100 1\n#################################################################################################G#T", "output": "NO" }, { "input": "100 17\nG################.#################################.################T###############################", "output": "NO" }, { "input": "100 17\nG################.###############..###.######.#######.###.#######.##T######################.###.####", "output": "NO" }, { "input": "100 17\nG####.##.##.#####.####....##.####.#########.##.#..#.###############.T############.#########.#.####.#", "output": "NO" }, { "input": "48 1\nT..............................................G", "output": "YES" }, { "input": "23 1\nT.....................G", "output": "YES" }, { "input": "49 1\nG...............................................T", "output": "YES" }, { "input": "3 1\nTG#", "output": "YES" }, { "input": "6 2\n..TG..", "output": "NO" }, { "input": "14 3\n...G.....#..T.", "output": "NO" }, { "input": "5 4\n##GT#", "output": "NO" }, { "input": "6 2\nT#..G.", "output": "YES" }, { "input": "5 2\nT.G.#", "output": "YES" }, { "input": "6 1\nT...G#", "output": "YES" }, { "input": "5 1\nTG###", "output": "YES" }, { "input": "5 4\n.G..T", "output": "NO" }, { "input": "7 2\nT#...#G", "output": "YES" }, { "input": "7 1\n##TG###", "output": "YES" }, { "input": "7 1\n###GT##", "output": "YES" }, { "input": "5 2\nG..T.", "output": "NO" }, { "input": "5 1\nG.T##", "output": "YES" }, { "input": "6 2\nG.T###", "output": "YES" }, { "input": "6 2\nG#T###", "output": "YES" }, { "input": "10 2\n####T..G..", "output": "NO" }, { "input": "3 1\nGT#", "output": "YES" }, { "input": "4 1\nTG##", "output": "YES" }, { "input": "6 1\n.G..T.", "output": "YES" }, { "input": "10 3\n......G..T", "output": "YES" }, { "input": "3 2\nG.T", "output": "YES" }, { "input": "4 1\n#G.T", "output": "YES" }, { "input": "5 2\nT#G##", "output": "YES" }, { "input": "4 2\nG#.T", "output": "NO" }, { "input": "4 1\nGT##", "output": "YES" } ]
1,531,763,391
291
Python 3
OK
TESTS
83
109
0
n, k = map(int, input().split()) s = input() g, t = s.index('G'), s.index('T') if (abs(g - t)) % k == 0: for i in range(min(g, t), max(g, t), k): if s[i] == '#': print('NO') exit() print('YES') else: print('NO')
Title: Ostap and Grasshopper Time Limit: None seconds Memory Limit: None megabytes Problem Description: On the way to Rio de Janeiro Ostap kills time playing with a grasshopper he took with him in a special box. Ostap builds a line of length *n* such that some cells of this line are empty and some contain obstacles. Then, he places his grasshopper to one of the empty cells and a small insect in another empty cell. The grasshopper wants to eat the insect. Ostap knows that grasshopper is able to jump to any empty cell that is exactly *k* cells away from the current (to the left or to the right). Note that it doesn't matter whether intermediate cells are empty or not as the grasshopper makes a jump over them. For example, if *k*<==<=1 the grasshopper can jump to a neighboring cell only, and if *k*<==<=2 the grasshopper can jump over a single cell. Your goal is to determine whether there is a sequence of jumps such that grasshopper will get from his initial position to the cell with an insect. Input Specification: The first line of the input contains two integers *n* and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=*n*<=-<=1) — the number of cells in the line and the length of one grasshopper's jump. The second line contains a string of length *n* consisting of characters '.', '#', 'G' and 'T'. Character '.' means that the corresponding cell is empty, character '#' means that the corresponding cell contains an obstacle and grasshopper can't jump there. Character 'G' means that the grasshopper starts at this position and, finally, 'T' means that the target insect is located at this cell. It's guaranteed that characters 'G' and 'T' appear in this line exactly once. Output Specification: If there exists a sequence of jumps (each jump of length *k*), such that the grasshopper can get from his initial position to the cell with the insect, print "YES" (without quotes) in the only line of the input. Otherwise, print "NO" (without quotes). Demo Input: ['5 2\n#G#T#\n', '6 1\nT....G\n', '7 3\nT..#..G\n', '6 2\n..GT..\n'] Demo Output: ['YES\n', 'YES\n', 'NO\n', 'NO\n'] Note: In the first sample, the grasshopper can make one jump to the right in order to get from cell 2 to cell 4. In the second sample, the grasshopper is only able to jump to neighboring cells but the way to the insect is free — he can get there by jumping left 5 times. In the third sample, the grasshopper can't make a single jump. In the fourth sample, the grasshopper can only jump to the cells with odd indices, thus he won't be able to reach the insect.
```python n, k = map(int, input().split()) s = input() g, t = s.index('G'), s.index('T') if (abs(g - t)) % k == 0: for i in range(min(g, t), max(g, t), k): if s[i] == '#': print('NO') exit() print('YES') else: print('NO') ```
3
509
A
Maximum in Table
PROGRAMMING
800
[ "brute force", "implementation" ]
null
null
An *n*<=×<=*n* table *a* is defined as follows: - The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1. These conditions define all the values in the table. You are given a number *n*. You need to determine the maximum value in the *n*<=×<=*n* table defined by the rules above.
The only line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=10) — the number of rows and columns of the table.
Print a single line containing a positive integer *m* — the maximum value in the table.
[ "1\n", "5\n" ]
[ "1", "70" ]
In the second test the rows of the table look as follows:
0
[ { "input": "1", "output": "1" }, { "input": "5", "output": "70" }, { "input": "2", "output": "2" }, { "input": "3", "output": "6" }, { "input": "4", "output": "20" }, { "input": "6", "output": "252" }, { "input": "7", "output": "924" }, { "input": "9", "output": "12870" }, { "input": "10", "output": "48620" }, { "input": "8", "output": "3432" } ]
1,649,005,540
2,147,483,647
Python 3
OK
TESTS
10
31
0
a=int(input()) b=[0, 1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620] print(b[a])
Title: Maximum in Table Time Limit: None seconds Memory Limit: None megabytes Problem Description: An *n*<=×<=*n* table *a* is defined as follows: - The first row and the first column contain ones, that is: *a**i*,<=1<==<=*a*1,<=*i*<==<=1 for all *i*<==<=1,<=2,<=...,<=*n*. - Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula *a**i*,<=*j*<==<=*a**i*<=-<=1,<=*j*<=+<=*a**i*,<=*j*<=-<=1. These conditions define all the values in the table. You are given a number *n*. You need to determine the maximum value in the *n*<=×<=*n* table defined by the rules above. Input Specification: The only line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=10) — the number of rows and columns of the table. Output Specification: Print a single line containing a positive integer *m* — the maximum value in the table. Demo Input: ['1\n', '5\n'] Demo Output: ['1', '70'] Note: In the second test the rows of the table look as follows:
```python a=int(input()) b=[0, 1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620] print(b[a]) ```
3
127
A
Wasted Time
PROGRAMMING
900
[ "geometry" ]
null
null
Mr. Scrooge, a very busy man, decided to count the time he wastes on all sorts of useless stuff to evaluate the lost profit. He has already counted the time he wastes sleeping and eating. And now Mr. Scrooge wants to count the time he has wasted signing papers. Mr. Scrooge's signature can be represented as a polyline *A*1*A*2... *A**n*. Scrooge signs like that: first it places a pen at the point *A*1, then draws a segment from point *A*1 to point *A*2, then he draws a segment from point *A*2 to point *A*3 and so on to point *A**n*, where he stops signing and takes the pen off the paper. At that the resulting line can intersect with itself and partially repeat itself but Scrooge pays no attention to it and never changes his signing style. As Scrooge makes the signature, he never takes the pen off the paper and his writing speed is constant — 50 millimeters per second. Scrooge signed exactly *k* papers throughout his life and all those signatures look the same. Find the total time Scrooge wasted signing the papers.
The first line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=1000). Each of the following *n* lines contains the coordinates of the polyline's endpoints. The *i*-th one contains coordinates of the point *A**i* — integers *x**i* and *y**i*, separated by a space. All points *A**i* are different. The absolute value of all coordinates does not exceed 20. The coordinates are measured in millimeters.
Print one real number — the total time Scrooges wastes on signing the papers in seconds. The absolute or relative error should not exceed 10<=-<=6.
[ "2 1\n0 0\n10 0\n", "5 10\n3 1\n-5 6\n-2 -1\n3 2\n10 0\n", "6 10\n5 0\n4 0\n6 0\n3 0\n7 0\n2 0\n" ]
[ "0.200000000", "6.032163204", "3.000000000" ]
none
500
[ { "input": "2 1\n0 0\n10 0", "output": "0.200000000" }, { "input": "5 10\n3 1\n-5 6\n-2 -1\n3 2\n10 0", "output": "6.032163204" }, { "input": "6 10\n5 0\n4 0\n6 0\n3 0\n7 0\n2 0", "output": "3.000000000" }, { "input": "10 95\n-20 -5\n2 -8\n14 13\n10 3\n17 11\n13 -12\n-6 11\n14 -15\n-13 14\n19 8", "output": "429.309294877" }, { "input": "30 1000\n4 -13\n14 13\n-14 -16\n-9 18\n17 11\n2 -8\n2 15\n8 -1\n-9 13\n8 -12\n-2 20\n11 -12\n19 8\n9 -15\n-20 -5\n-18 20\n-13 14\n-12 -17\n-4 3\n13 -12\n11 -10\n18 7\n-6 11\n10 13\n10 3\n6 -14\n-1 10\n14 -15\n2 11\n-8 10", "output": "13629.282573522" }, { "input": "2 1\n-20 -10\n-10 -6", "output": "0.215406592" }, { "input": "2 13\n13 -10\n-3 -2", "output": "4.651021393" }, { "input": "2 21\n13 8\n14 10", "output": "0.939148551" }, { "input": "2 75\n-3 12\n1 12", "output": "6.000000000" }, { "input": "2 466\n10 16\n-6 -3", "output": "231.503997374" }, { "input": "2 999\n6 16\n-17 -14", "output": "755.286284531" }, { "input": "2 1000\n-17 -14\n-14 -8", "output": "134.164078650" }, { "input": "3 384\n-4 -19\n-17 -2\n3 4", "output": "324.722285390" }, { "input": "5 566\n-11 8\n2 -7\n7 0\n-7 -9\n-7 5", "output": "668.956254495" }, { "input": "7 495\n-10 -13\n-9 -5\n4 9\n8 13\n-4 2\n2 10\n-18 15", "output": "789.212495576" }, { "input": "10 958\n7 13\n20 19\n12 -7\n10 -10\n-13 -15\n-10 -7\n20 -5\n-11 19\n-7 3\n-4 18", "output": "3415.618464093" }, { "input": "13 445\n-15 16\n-8 -14\n8 7\n4 15\n8 -13\n15 -11\n-12 -4\n2 -13\n-5 0\n-20 -14\n-8 -7\n-10 -18\n18 -5", "output": "2113.552527680" }, { "input": "18 388\n11 -8\n13 10\n18 -17\n-15 3\n-13 -15\n20 -7\n1 -10\n-13 -12\n-12 -15\n-17 -8\n1 -2\n3 -20\n-8 -9\n15 -13\n-19 -6\n17 3\n-17 2\n6 6", "output": "2999.497312668" }, { "input": "25 258\n-5 -3\n-18 -14\n12 3\n6 11\n4 2\n-19 -3\n19 -7\n-15 19\n-19 -12\n-11 -10\n-5 17\n10 15\n-4 1\n-3 -20\n6 16\n18 -19\n11 -19\n-17 10\n-17 17\n-2 -17\n-3 -9\n18 13\n14 8\n-2 -5\n-11 4", "output": "2797.756635934" }, { "input": "29 848\n11 -10\n-19 1\n18 18\n19 -19\n0 -5\n16 10\n-20 -14\n7 15\n6 8\n-15 -16\n9 3\n16 -20\n-12 12\n18 -1\n-11 14\n18 10\n11 -20\n-20 -16\n-1 11\n13 10\n-6 13\n-7 -10\n-11 -10\n-10 3\n15 -13\n-4 11\n-13 -11\n-11 -17\n11 -5", "output": "12766.080247922" }, { "input": "36 3\n-11 20\n-11 13\n-17 9\n15 9\n-6 9\n-1 11\n12 -11\n16 -10\n-20 7\n-18 6\n-15 -2\n20 -20\n16 4\n-20 -8\n-12 -15\n-13 -6\n-9 -4\n0 -10\n8 -1\n1 4\n5 8\n8 -15\n16 -12\n19 1\n0 -4\n13 -4\n17 -13\n-7 11\n14 9\n-14 -9\n5 -8\n11 -8\n-17 -5\n1 -3\n-16 -17\n2 -3", "output": "36.467924851" }, { "input": "48 447\n14 9\n9 -17\n-17 11\n-14 14\n19 -8\n-14 -17\n-7 10\n-6 -11\n-9 -19\n19 10\n-4 2\n-5 16\n20 9\n-10 20\n-7 -17\n14 -16\n-2 -10\n-18 -17\n14 12\n-6 -19\n5 -18\n-3 2\n-3 10\n-5 5\n13 -12\n10 -18\n10 -12\n-2 4\n7 -15\n-5 -5\n11 14\n11 10\n-6 -9\n13 -4\n13 9\n6 12\n-13 17\n-9 -12\n14 -19\n10 12\n-15 8\n-1 -11\n19 8\n11 20\n-9 -3\n16 1\n-14 19\n8 -4", "output": "9495.010556306" }, { "input": "50 284\n-17 -13\n7 12\n-13 0\n13 1\n14 6\n14 -9\n-5 -1\n0 -10\n12 -3\n-14 6\n-8 10\n-16 17\n0 -1\n4 -9\n2 6\n1 8\n-8 -14\n3 9\n1 -15\n-4 -19\n-7 -20\n18 10\n3 -11\n10 16\n2 -6\n-9 19\n-3 -1\n20 9\n-12 -5\n-10 -2\n16 -7\n-16 -18\n-2 17\n2 8\n7 -15\n4 1\n6 -17\n19 9\n-10 -20\n5 2\n10 -2\n3 7\n20 0\n8 -14\n-16 -1\n-20 7\n20 -19\n17 18\n-11 -18\n-16 14", "output": "6087.366930474" }, { "input": "57 373\n18 3\n-4 -1\n18 5\n-7 -15\n-6 -10\n-19 1\n20 15\n15 4\n-1 -2\n13 -14\n0 12\n10 3\n-16 -17\n-14 -9\n-11 -10\n17 19\n-2 6\n-12 -15\n10 20\n16 7\n9 -1\n4 13\n8 -2\n-1 -16\n-3 8\n14 11\n-12 3\n-5 -6\n3 4\n5 7\n-9 9\n11 4\n-19 10\n-7 4\n-20 -12\n10 16\n13 11\n13 -11\n7 -1\n17 18\n-19 7\n14 13\n5 -1\n-7 6\n-1 -6\n6 20\n-16 2\n4 17\n16 -11\n-4 -20\n19 -18\n17 16\n-14 -8\n3 2\n-6 -16\n10 -10\n-13 -11", "output": "8929.162822862" }, { "input": "60 662\n15 17\n-2 -19\n-4 -17\n10 0\n15 10\n-8 -14\n14 9\n-15 20\n6 5\n-9 0\n-13 20\n13 -2\n10 9\n7 5\n4 18\n-10 1\n6 -15\n15 -16\n6 13\n4 -6\n2 5\n18 19\n8 3\n-7 14\n-12 -20\n14 19\n-15 0\n-2 -12\n9 18\n14 4\n2 -20\n3 0\n20 9\n-5 11\n-11 1\n2 -19\n-14 -4\n18 6\n16 16\n15 3\n-1 -5\n9 20\n12 -8\n-1 10\n-4 -9\n3 6\n3 -12\n14 -10\n-8 10\n-18 6\n14 -2\n-14 -12\n-10 -7\n10 -6\n14 1\n6 14\n15 19\n4 14\n3 -14\n-9 -13", "output": "16314.207721932" }, { "input": "61 764\n-9 15\n11 -8\n-6 -7\n-13 -19\n16 -16\n-5 -1\n20 -19\n-14 -1\n-11 4\n7 -2\n-3 2\n-14 -17\n15 18\n20 15\n-13 -2\n15 8\n3 13\n19 -10\n2 -6\n15 -3\n-12 11\n4 -16\n-14 20\n0 2\n11 -7\n-6 -11\n16 7\n8 -3\n16 -10\n-3 9\n9 5\n4 -1\n-17 9\n14 -4\n8 6\n-19 12\n10 -17\n-5 7\n7 -3\n5 3\n6 -14\n9 9\n-16 -19\n11 -16\n-17 15\n8 5\n16 -19\n-7 10\n14 -15\n15 19\n-20 -16\n6 -2\n-4 6\n7 -15\n1 -8\n20 -17\n3 7\n10 12\n10 -11\n-19 10\n0 -11", "output": "22153.369189802" } ]
1,607,237,715
2,147,483,647
Python 3
OK
TESTS
42
248
0
import math n, k = map(int, input().split()) x, y = map(int, input().split()) length = 0 for i in range(n-1): c, d = map(int, input().split()) length+=(math.sqrt((c-x)**2+(d-y)**2)) x = c y = d print((length/50)*k)
Title: Wasted Time Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mr. Scrooge, a very busy man, decided to count the time he wastes on all sorts of useless stuff to evaluate the lost profit. He has already counted the time he wastes sleeping and eating. And now Mr. Scrooge wants to count the time he has wasted signing papers. Mr. Scrooge's signature can be represented as a polyline *A*1*A*2... *A**n*. Scrooge signs like that: first it places a pen at the point *A*1, then draws a segment from point *A*1 to point *A*2, then he draws a segment from point *A*2 to point *A*3 and so on to point *A**n*, where he stops signing and takes the pen off the paper. At that the resulting line can intersect with itself and partially repeat itself but Scrooge pays no attention to it and never changes his signing style. As Scrooge makes the signature, he never takes the pen off the paper and his writing speed is constant — 50 millimeters per second. Scrooge signed exactly *k* papers throughout his life and all those signatures look the same. Find the total time Scrooge wasted signing the papers. Input Specification: The first line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=1000). Each of the following *n* lines contains the coordinates of the polyline's endpoints. The *i*-th one contains coordinates of the point *A**i* — integers *x**i* and *y**i*, separated by a space. All points *A**i* are different. The absolute value of all coordinates does not exceed 20. The coordinates are measured in millimeters. Output Specification: Print one real number — the total time Scrooges wastes on signing the papers in seconds. The absolute or relative error should not exceed 10<=-<=6. Demo Input: ['2 1\n0 0\n10 0\n', '5 10\n3 1\n-5 6\n-2 -1\n3 2\n10 0\n', '6 10\n5 0\n4 0\n6 0\n3 0\n7 0\n2 0\n'] Demo Output: ['0.200000000', '6.032163204', '3.000000000'] Note: none
```python import math n, k = map(int, input().split()) x, y = map(int, input().split()) length = 0 for i in range(n-1): c, d = map(int, input().split()) length+=(math.sqrt((c-x)**2+(d-y)**2)) x = c y = d print((length/50)*k) ```
3
190
D
Non-Secret Cypher
PROGRAMMING
1,900
[ "two pointers" ]
null
null
Berland starts to seize the initiative on the war with Flatland. To drive the enemy from their native land, the berlanders need to know exactly how many more flatland soldiers are left in the enemy's reserve. Fortunately, the scouts captured an enemy in the morning, who had a secret encrypted message with the information the berlanders needed so much. The captured enemy had an array of positive integers. Berland intelligence have long been aware of the flatland code: to convey the message, which contained a number *m*, the enemies use an array of integers *a*. The number of its subarrays, in which there are at least *k* equal numbers, equals *m*. The number *k* has long been known in the Berland army so General Touristov has once again asked Corporal Vasya to perform a simple task: to decipher the flatlanders' message. Help Vasya, given an array of integers *a* and number *k*, find the number of subarrays of the array of numbers *a*, which has at least *k* equal numbers. Subarray *a*[*i*... *j*] (1<=≤<=*i*<=≤<=*j*<=≤<=*n*) of array *a*<==<=(*a*1,<=*a*2,<=...,<=*a**n*) is an array, made from its consecutive elements, starting from the *i*-th one and ending with the *j*-th one: *a*[*i*... *j*]<==<=(*a**i*,<=*a**i*<=+<=1,<=...,<=*a**j*).
The first line contains two space-separated integers *n*, *k* (1<=≤<=*k*<=≤<=*n*<=≤<=4·105), showing how many numbers an array has and how many equal numbers the subarrays are required to have, correspondingly. The second line contains *n* space-separated integers *a**i* (1<=≤<=*a**i*<=≤<=109) — elements of the array.
Print the single number — the number of such subarrays of array *a*, that they have at least *k* equal integers. Please do not use the %lld specifier to read or write 64-bit integers in С++. In is preferred to use the cin, cout streams or the %I64d specifier.
[ "4 2\n1 2 1 2\n", "5 3\n1 2 1 1 3\n", "3 1\n1 1 1\n" ]
[ "3", "2", "6" ]
In the first sample are three subarrays, containing at least two equal numbers: (1,2,1), (2,1,2) and (1,2,1,2). In the second sample are two subarrays, containing three equal numbers: (1,2,1,1,3) and (1,2,1,1). In the third sample any subarray contains at least one 1 number. Overall they are 6: (1), (1), (1), (1,1), (1,1) and (1,1,1).
2,000
[ { "input": "4 2\n1 2 1 2", "output": "3" }, { "input": "5 3\n1 2 1 1 3", "output": "2" }, { "input": "3 1\n1 1 1", "output": "6" }, { "input": "20 2\n6 7 2 4 6 8 4 3 10 5 3 5 7 9 1 2 8 1 9 10", "output": "131" }, { "input": "63 2\n1 2 1 2 4 5 1 1 1 1 1 2 3 1 2 3 3 1 1 3 1 1 1 1 2 1 1 6 3 2 1 1 1 1 2 2 3 2 1 1 1 2 1 4 2 1 2 3 2 1 1 1 1 2 4 3 4 2 5 1 1 2 1", "output": "1882" }, { "input": "63 5\n76826 79919 83599 93821 79919 46132 46132 46132 79919 76826 79919 79919 76826 79919 79919 76826 76826 46132 76826 40347 79919 46132 76826 83599 79919 79919 46132 46132 46132 83599 83599 79919 46132 83599 93821 76826 81314 79919 79919 83599 76826 76826 76826 76826 46132 76826 46132 79919 76826 83599 79919 40347 76826 46132 46132 93821 76826 79919 46132 83599 93821 46132 46132", "output": "1356" }, { "input": "6 3\n6 6 4 4 6 2", "output": "2" }, { "input": "100 1\n5 2 5 1 1 4 1 5 4 5 5 5 4 4 1 3 2 3 1 5 1 4 2 4 5 5 5 2 1 3 2 5 5 4 2 1 3 2 2 2 4 4 4 2 1 1 5 4 2 5 3 4 5 5 5 3 1 3 5 4 1 4 5 2 3 2 5 3 5 1 4 2 2 3 2 4 4 3 2 3 5 3 1 3 4 1 5 4 2 5 4 3 1 4 3 2 1 5 2 5", "output": "5050" }, { "input": "1 1\n5", "output": "1" }, { "input": "2 1\n42 1000000000", "output": "3" }, { "input": "2 2\n193 193", "output": "1" }, { "input": "2 2\n97 197", "output": "0" } ]
1,677,493,340
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
60
0
def get_max_number_of_subarrays_with_k_equal_numbers( target_array: list, array_len, k: int ) -> int: r = 0 hash_map = {} j = 0 for i in range(array_len): if target_array[i] not in hash_map: hash_map[target_array[i]] = 0 hash_map[target_array[i]] += 1 if hash_map[target_array[i]] == k: r += array_len - i while hash_map[target_array[j]] == k: hash_map[target_array[j]] -= 1 return r def main(): n, k = [int(i) for i in input().split()] a = [int(i) for i in input().split()] print(get_max_number_of_subarrays_with_k_equal_numbers(a, n, k)) main()
Title: Non-Secret Cypher Time Limit: None seconds Memory Limit: None megabytes Problem Description: Berland starts to seize the initiative on the war with Flatland. To drive the enemy from their native land, the berlanders need to know exactly how many more flatland soldiers are left in the enemy's reserve. Fortunately, the scouts captured an enemy in the morning, who had a secret encrypted message with the information the berlanders needed so much. The captured enemy had an array of positive integers. Berland intelligence have long been aware of the flatland code: to convey the message, which contained a number *m*, the enemies use an array of integers *a*. The number of its subarrays, in which there are at least *k* equal numbers, equals *m*. The number *k* has long been known in the Berland army so General Touristov has once again asked Corporal Vasya to perform a simple task: to decipher the flatlanders' message. Help Vasya, given an array of integers *a* and number *k*, find the number of subarrays of the array of numbers *a*, which has at least *k* equal numbers. Subarray *a*[*i*... *j*] (1<=≤<=*i*<=≤<=*j*<=≤<=*n*) of array *a*<==<=(*a*1,<=*a*2,<=...,<=*a**n*) is an array, made from its consecutive elements, starting from the *i*-th one and ending with the *j*-th one: *a*[*i*... *j*]<==<=(*a**i*,<=*a**i*<=+<=1,<=...,<=*a**j*). Input Specification: The first line contains two space-separated integers *n*, *k* (1<=≤<=*k*<=≤<=*n*<=≤<=4·105), showing how many numbers an array has and how many equal numbers the subarrays are required to have, correspondingly. The second line contains *n* space-separated integers *a**i* (1<=≤<=*a**i*<=≤<=109) — elements of the array. Output Specification: Print the single number — the number of such subarrays of array *a*, that they have at least *k* equal integers. Please do not use the %lld specifier to read or write 64-bit integers in С++. In is preferred to use the cin, cout streams or the %I64d specifier. Demo Input: ['4 2\n1 2 1 2\n', '5 3\n1 2 1 1 3\n', '3 1\n1 1 1\n'] Demo Output: ['3', '2', '6'] Note: In the first sample are three subarrays, containing at least two equal numbers: (1,2,1), (2,1,2) and (1,2,1,2). In the second sample are two subarrays, containing three equal numbers: (1,2,1,1,3) and (1,2,1,1). In the third sample any subarray contains at least one 1 number. Overall they are 6: (1), (1), (1), (1,1), (1,1) and (1,1,1).
```python def get_max_number_of_subarrays_with_k_equal_numbers( target_array: list, array_len, k: int ) -> int: r = 0 hash_map = {} j = 0 for i in range(array_len): if target_array[i] not in hash_map: hash_map[target_array[i]] = 0 hash_map[target_array[i]] += 1 if hash_map[target_array[i]] == k: r += array_len - i while hash_map[target_array[j]] == k: hash_map[target_array[j]] -= 1 return r def main(): n, k = [int(i) for i in input().split()] a = [int(i) for i in input().split()] print(get_max_number_of_subarrays_with_k_equal_numbers(a, n, k)) main() ```
0
0
none
none
none
0
[ "none" ]
null
null
For a given positive integer *n* denote its *k*-rounding as the minimum positive integer *x*, such that *x* ends with *k* or more zeros in base 10 and is divisible by *n*. For example, 4-rounding of 375 is 375·80<==<=30000. 30000 is the minimum integer such that it ends with 4 or more zeros and is divisible by 375. Write a program that will perform the *k*-rounding of *n*.
The only line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=109, 0<=≤<=*k*<=≤<=8).
Print the *k*-rounding of *n*.
[ "375 4\n", "10000 1\n", "38101 0\n", "123456789 8\n" ]
[ "30000\n", "10000\n", "38101\n", "12345678900000000\n" ]
none
0
[ { "input": "375 4", "output": "30000" }, { "input": "10000 1", "output": "10000" }, { "input": "38101 0", "output": "38101" }, { "input": "123456789 8", "output": "12345678900000000" }, { "input": "1 0", "output": "1" }, { "input": "2 0", "output": "2" }, { "input": "100 0", "output": "100" }, { "input": "1000000000 0", "output": "1000000000" }, { "input": "160 2", "output": "800" }, { "input": "3 0", "output": "3" }, { "input": "10 0", "output": "10" }, { "input": "1 1", "output": "10" }, { "input": "2 1", "output": "10" }, { "input": "3 1", "output": "30" }, { "input": "4 1", "output": "20" }, { "input": "5 1", "output": "10" }, { "input": "6 1", "output": "30" }, { "input": "7 1", "output": "70" }, { "input": "8 1", "output": "40" }, { "input": "9 1", "output": "90" }, { "input": "10 1", "output": "10" }, { "input": "11 1", "output": "110" }, { "input": "12 1", "output": "60" }, { "input": "16 2", "output": "400" }, { "input": "2 2", "output": "100" }, { "input": "1 2", "output": "100" }, { "input": "5 2", "output": "100" }, { "input": "15 2", "output": "300" }, { "input": "36 2", "output": "900" }, { "input": "1 8", "output": "100000000" }, { "input": "8 8", "output": "100000000" }, { "input": "96 8", "output": "300000000" }, { "input": "175 8", "output": "700000000" }, { "input": "9999995 8", "output": "199999900000000" }, { "input": "999999999 8", "output": "99999999900000000" }, { "input": "12345678 8", "output": "617283900000000" }, { "input": "78125 8", "output": "100000000" }, { "input": "390625 8", "output": "100000000" }, { "input": "1953125 8", "output": "500000000" }, { "input": "9765625 8", "output": "2500000000" }, { "input": "68359375 8", "output": "17500000000" }, { "input": "268435456 8", "output": "104857600000000" }, { "input": "125829120 8", "output": "9830400000000" }, { "input": "128000 8", "output": "400000000" }, { "input": "300000 8", "output": "300000000" }, { "input": "3711871 8", "output": "371187100000000" }, { "input": "55555 8", "output": "1111100000000" }, { "input": "222222222 8", "output": "11111111100000000" }, { "input": "479001600 8", "output": "7484400000000" }, { "input": "655360001 7", "output": "6553600010000000" }, { "input": "655360001 8", "output": "65536000100000000" }, { "input": "1000000000 1", "output": "1000000000" }, { "input": "1000000000 7", "output": "1000000000" }, { "input": "1000000000 8", "output": "1000000000" }, { "input": "100000000 8", "output": "100000000" }, { "input": "10000000 8", "output": "100000000" }, { "input": "1000000 8", "output": "100000000" }, { "input": "10000009 8", "output": "1000000900000000" }, { "input": "10000005 8", "output": "200000100000000" }, { "input": "10000002 8", "output": "500000100000000" }, { "input": "999999997 8", "output": "99999999700000000" }, { "input": "999999997 7", "output": "9999999970000000" }, { "input": "999999995 8", "output": "19999999900000000" }, { "input": "123 8", "output": "12300000000" }, { "input": "24 2", "output": "600" }, { "input": "16 4", "output": "10000" }, { "input": "123456787 8", "output": "12345678700000000" }, { "input": "100000000 8", "output": "100000000" }, { "input": "7 1", "output": "70" }, { "input": "101 1", "output": "1010" }, { "input": "50 2", "output": "100" }, { "input": "999999818 1", "output": "4999999090" }, { "input": "2 1", "output": "10" }, { "input": "123 1", "output": "1230" }, { "input": "16 1", "output": "80" }, { "input": "1 1", "output": "10" }, { "input": "1000000000 8", "output": "1000000000" }, { "input": "15304 6", "output": "1913000000" }, { "input": "3 8", "output": "300000000" }, { "input": "4 2", "output": "100" }, { "input": "100000 7", "output": "10000000" }, { "input": "5 8", "output": "100000000" }, { "input": "16724 6", "output": "4181000000" }, { "input": "999999999 1", "output": "9999999990" }, { "input": "999999990 8", "output": "9999999900000000" }, { "input": "999999999 8", "output": "99999999900000000" }, { "input": "100000 1", "output": "100000" }, { "input": "8 3", "output": "1000" }, { "input": "16768 6", "output": "262000000" }, { "input": "123456789 1", "output": "1234567890" }, { "input": "2 8", "output": "100000000" }, { "input": "999999937 8", "output": "99999993700000000" }, { "input": "5 1", "output": "10" }, { "input": "2000000 7", "output": "10000000" }, { "input": "1999998 2", "output": "99999900" }, { "input": "125 3", "output": "1000" } ]
1,505,654,044
543
Python 3
OK
TESTS
96
62
5,529,600
n, k = map(int, input().split()) a = n del2 = 0 del5 = 0 while n % 2 == 0 and del2 < k: del2 += 1 n //= 2 while n % 5 == 0 and del5 < k: del5 += 1 n //= 5 print(a * 2**(k-del2) * 5**(k-del5))
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: For a given positive integer *n* denote its *k*-rounding as the minimum positive integer *x*, such that *x* ends with *k* or more zeros in base 10 and is divisible by *n*. For example, 4-rounding of 375 is 375·80<==<=30000. 30000 is the minimum integer such that it ends with 4 or more zeros and is divisible by 375. Write a program that will perform the *k*-rounding of *n*. Input Specification: The only line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=109, 0<=≤<=*k*<=≤<=8). Output Specification: Print the *k*-rounding of *n*. Demo Input: ['375 4\n', '10000 1\n', '38101 0\n', '123456789 8\n'] Demo Output: ['30000\n', '10000\n', '38101\n', '12345678900000000\n'] Note: none
```python n, k = map(int, input().split()) a = n del2 = 0 del5 = 0 while n % 2 == 0 and del2 < k: del2 += 1 n //= 2 while n % 5 == 0 and del5 < k: del5 += 1 n //= 5 print(a * 2**(k-del2) * 5**(k-del5)) ```
3
327
A
Flipping Game
PROGRAMMING
1,200
[ "brute force", "dp", "implementation" ]
null
null
Iahub got bored, so he invented a game to be played on paper. He writes *n* integers *a*1,<=*a*2,<=...,<=*a**n*. Each of those integers can be either 0 or 1. He's allowed to do exactly one move: he chooses two indices *i* and *j* (1<=≤<=*i*<=≤<=*j*<=≤<=*n*) and flips all values *a**k* for which their positions are in range [*i*,<=*j*] (that is *i*<=≤<=*k*<=≤<=*j*). Flip the value of *x* means to apply operation *x*<==<=1 - *x*. The goal of the game is that after exactly one move to obtain the maximum number of ones. Write a program to solve the little game of Iahub.
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=100). In the second line of the input there are *n* integers: *a*1,<=*a*2,<=...,<=*a**n*. It is guaranteed that each of those *n* values is either 0 or 1.
Print an integer — the maximal number of 1s that can be obtained after exactly one move.
[ "5\n1 0 0 1 0\n", "4\n1 0 0 1\n" ]
[ "4\n", "4\n" ]
In the first case, flip the segment from 2 to 5 (*i* = 2, *j* = 5). That flip changes the sequence, it becomes: [1 1 1 0 1]. So, it contains four ones. There is no way to make the whole sequence equal to [1 1 1 1 1]. In the second case, flipping only the second and the third element (*i* = 2, *j* = 3) will turn all numbers into 1.
500
[ { "input": "5\n1 0 0 1 0", "output": "4" }, { "input": "4\n1 0 0 1", "output": "4" }, { "input": "1\n1", "output": "0" }, { "input": "1\n0", "output": "1" }, { "input": "8\n1 0 0 0 1 0 0 0", "output": "7" }, { "input": "18\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "18" }, { "input": "23\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "22" }, { "input": "100\n0 1 0 1 1 1 0 1 0 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1", "output": "70" }, { "input": "100\n0 1 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1 1", "output": "60" }, { "input": "18\n0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0", "output": "11" }, { "input": "25\n0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1 0 0 1 1 0 1", "output": "18" }, { "input": "55\n0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 1", "output": "36" }, { "input": "75\n1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0", "output": "44" }, { "input": "100\n0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1", "output": "61" }, { "input": "100\n0 0 0 1 0 0 0 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0", "output": "61" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "100" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "99" }, { "input": "100\n0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0 0 1 0", "output": "61" }, { "input": "100\n0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1", "output": "59" }, { "input": "99\n1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1", "output": "61" }, { "input": "2\n1 1", "output": "1" } ]
1,654,242,817
2,147,483,647
PyPy 3-64
OK
TESTS
21
92
0
n,l,c,a,m = int(input()),list(map(int,input().split())),0,0,-1 for i in range (0, n): c += l[i] == 1 a += (l[i] == 0) - (l[i] == 1) m = max(m, a) a *= a > 0 print(m + c)
Title: Flipping Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Iahub got bored, so he invented a game to be played on paper. He writes *n* integers *a*1,<=*a*2,<=...,<=*a**n*. Each of those integers can be either 0 or 1. He's allowed to do exactly one move: he chooses two indices *i* and *j* (1<=≤<=*i*<=≤<=*j*<=≤<=*n*) and flips all values *a**k* for which their positions are in range [*i*,<=*j*] (that is *i*<=≤<=*k*<=≤<=*j*). Flip the value of *x* means to apply operation *x*<==<=1 - *x*. The goal of the game is that after exactly one move to obtain the maximum number of ones. Write a program to solve the little game of Iahub. Input Specification: The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=100). In the second line of the input there are *n* integers: *a*1,<=*a*2,<=...,<=*a**n*. It is guaranteed that each of those *n* values is either 0 or 1. Output Specification: Print an integer — the maximal number of 1s that can be obtained after exactly one move. Demo Input: ['5\n1 0 0 1 0\n', '4\n1 0 0 1\n'] Demo Output: ['4\n', '4\n'] Note: In the first case, flip the segment from 2 to 5 (*i* = 2, *j* = 5). That flip changes the sequence, it becomes: [1 1 1 0 1]. So, it contains four ones. There is no way to make the whole sequence equal to [1 1 1 1 1]. In the second case, flipping only the second and the third element (*i* = 2, *j* = 3) will turn all numbers into 1.
```python n,l,c,a,m = int(input()),list(map(int,input().split())),0,0,-1 for i in range (0, n): c += l[i] == 1 a += (l[i] == 0) - (l[i] == 1) m = max(m, a) a *= a > 0 print(m + c) ```
3
58
A
Chat room
PROGRAMMING
1,000
[ "greedy", "strings" ]
A. Chat room
1
256
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
If Vasya managed to say hello, print "YES", otherwise print "NO".
[ "ahhellllloou\n", "hlelo\n" ]
[ "YES\n", "NO\n" ]
none
500
[ { "input": "ahhellllloou", "output": "YES" }, { "input": "hlelo", "output": "NO" }, { "input": "helhcludoo", "output": "YES" }, { "input": "hehwelloho", "output": "YES" }, { "input": "pnnepelqomhhheollvlo", "output": "YES" }, { "input": "tymbzjyqhymedasloqbq", "output": "NO" }, { "input": "yehluhlkwo", "output": "NO" }, { "input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello", "output": "YES" }, { "input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq", "output": "YES" }, { "input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi", "output": "YES" }, { "input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo", "output": "YES" }, { "input": "lqllcolohwflhfhlnaow", "output": "NO" }, { "input": "heheeellollvoo", "output": "YES" }, { "input": "hellooo", "output": "YES" }, { "input": "o", "output": "NO" }, { "input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv", "output": "YES" }, { "input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk", "output": "YES" }, { "input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry", "output": "NO" }, { "input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq", "output": "NO" }, { "input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi", "output": "YES" }, { "input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm", "output": "YES" }, { "input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac", "output": "NO" }, { "input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok", "output": "YES" }, { "input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz", "output": "YES" }, { "input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb", "output": "YES" }, { "input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla", "output": "YES" }, { "input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz", "output": "YES" }, { "input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti", "output": "YES" }, { "input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli", "output": "YES" }, { "input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo", "output": "YES" }, { "input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk", "output": "NO" }, { "input": "loee", "output": "NO" }, { "input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo", "output": "NO" }, { "input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi", "output": "YES" }, { "input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv", "output": "NO" }, { "input": "hello", "output": "YES" }, { "input": "oohell", "output": "NO" }, { "input": "hell", "output": "NO" }, { "input": "eloellohoelo", "output": "NO" }, { "input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo", "output": "YES" } ]
1,564,142,172
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
108
0
s = input() s = list(s) index1 = s.index('h') index2 = s.index('e') index3 = s.index('l') s.remove('l') index4 = s.index('l') index5 = s.index('o') if index1 < index2 < index3 <= index4 < index5: print('YES') else: print('NO')
Title: Chat room Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*. Input Specification: The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters. Output Specification: If Vasya managed to say hello, print "YES", otherwise print "NO". Demo Input: ['ahhellllloou\n', 'hlelo\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python s = input() s = list(s) index1 = s.index('h') index2 = s.index('e') index3 = s.index('l') s.remove('l') index4 = s.index('l') index5 = s.index('o') if index1 < index2 < index3 <= index4 < index5: print('YES') else: print('NO') ```
0
787
A
The Monster
PROGRAMMING
1,200
[ "brute force", "math", "number theory" ]
null
null
A monster is chasing after Rick and Morty on another planet. They're so frightened that sometimes they scream. More accurately, Rick screams at times *b*,<=*b*<=+<=*a*,<=*b*<=+<=2*a*,<=*b*<=+<=3*a*,<=... and Morty screams at times *d*,<=*d*<=+<=*c*,<=*d*<=+<=2*c*,<=*d*<=+<=3*c*,<=.... The Monster will catch them if at any point they scream at the same time, so it wants to know when it will catch them (the first time they scream at the same time) or that they will never scream at the same time.
The first line of input contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100). The second line contains two integers *c* and *d* (1<=≤<=*c*,<=*d*<=≤<=100).
Print the first time Rick and Morty will scream at the same time, or <=-<=1 if they will never scream at the same time.
[ "20 2\n9 19\n", "2 1\n16 12\n" ]
[ "82\n", "-1\n" ]
In the first sample testcase, Rick's 5th scream and Morty's 8th time are at time 82. In the second sample testcase, all Rick's screams will be at odd times and Morty's will be at even times, so they will never scream at the same time.
500
[ { "input": "20 2\n9 19", "output": "82" }, { "input": "2 1\n16 12", "output": "-1" }, { "input": "39 52\n88 78", "output": "1222" }, { "input": "59 96\n34 48", "output": "1748" }, { "input": "87 37\n91 29", "output": "211" }, { "input": "11 81\n49 7", "output": "301" }, { "input": "39 21\n95 89", "output": "3414" }, { "input": "59 70\n48 54", "output": "1014" }, { "input": "87 22\n98 32", "output": "718" }, { "input": "15 63\n51 13", "output": "-1" }, { "input": "39 7\n97 91", "output": "1255" }, { "input": "18 18\n71 71", "output": "1278" }, { "input": "46 71\n16 49", "output": "209" }, { "input": "70 11\n74 27", "output": "2321" }, { "input": "94 55\n20 96", "output": "-1" }, { "input": "18 4\n77 78", "output": "1156" }, { "input": "46 44\n23 55", "output": "-1" }, { "input": "74 88\n77 37", "output": "1346" }, { "input": "94 37\n34 7", "output": "789" }, { "input": "22 81\n80 88", "output": "-1" }, { "input": "46 30\n34 62", "output": "674" }, { "input": "40 4\n81 40", "output": "364" }, { "input": "69 48\n39 9", "output": "48" }, { "input": "89 93\n84 87", "output": "5967" }, { "input": "17 45\n42 65", "output": "317" }, { "input": "41 85\n95 46", "output": "331" }, { "input": "69 30\n41 16", "output": "1410" }, { "input": "93 74\n99 93", "output": "-1" }, { "input": "17 19\n44 75", "output": "427" }, { "input": "45 63\n98 53", "output": "3483" }, { "input": "69 11\n48 34", "output": "-1" }, { "input": "55 94\n3 96", "output": "204" }, { "input": "100 100\n100 100", "output": "100" }, { "input": "1 1\n1 1", "output": "1" }, { "input": "1 1\n1 100", "output": "100" }, { "input": "1 100\n100 1", "output": "101" }, { "input": "98 1\n99 100", "output": "9703" }, { "input": "98 1\n99 2", "output": "9605" }, { "input": "97 2\n99 100", "output": "4852" }, { "input": "3 3\n3 1", "output": "-1" }, { "input": "3 2\n7 2", "output": "2" }, { "input": "2 3\n2 5", "output": "5" }, { "input": "2 3\n2 3", "output": "3" }, { "input": "100 3\n100 5", "output": "-1" }, { "input": "6 10\n12 14", "output": "-1" }, { "input": "4 2\n4 4", "output": "-1" }, { "input": "2 3\n2 2", "output": "-1" }, { "input": "2 3\n4 99", "output": "99" }, { "input": "1 5\n1 5", "output": "5" }, { "input": "1 100\n3 1", "output": "100" }, { "input": "2 2\n2 1", "output": "-1" }, { "input": "2 10\n6 20", "output": "20" }, { "input": "2 2\n2 10", "output": "10" }, { "input": "3 7\n3 6", "output": "-1" }, { "input": "1 100\n1 100", "output": "100" }, { "input": "7 25\n39 85", "output": "319" }, { "input": "84 82\n38 6", "output": "82" }, { "input": "7 7\n7 14", "output": "14" } ]
1,645,109,897
2,147,483,647
Python 3
OK
TESTS
58
62
0
ab = list(map(int, input().split())) a = ab[0] b = ab[1] cd = list(map(int, input().split())) c = cd[0] d = cd[1] num_list = [] if b == d: print(b) elif a >= c: for i in range(max((d - b), 0)//a + c + 1): num_list.append(a * i + b) for i in num_list: if (i - d) % c == 0 and i - d >= 0: print(i) break if num_list.index(i) == len(num_list) - 1: print(-1) break elif a < c: for i in range(max((b - d), 0)//c + a + 1): num_list.append(c * i + d) for i in num_list: if (i - b) % a == 0 and i - b >= 0: print(i) break if num_list.index(i) == len(num_list) - 1: print(-1) break
Title: The Monster Time Limit: None seconds Memory Limit: None megabytes Problem Description: A monster is chasing after Rick and Morty on another planet. They're so frightened that sometimes they scream. More accurately, Rick screams at times *b*,<=*b*<=+<=*a*,<=*b*<=+<=2*a*,<=*b*<=+<=3*a*,<=... and Morty screams at times *d*,<=*d*<=+<=*c*,<=*d*<=+<=2*c*,<=*d*<=+<=3*c*,<=.... The Monster will catch them if at any point they scream at the same time, so it wants to know when it will catch them (the first time they scream at the same time) or that they will never scream at the same time. Input Specification: The first line of input contains two integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100). The second line contains two integers *c* and *d* (1<=≤<=*c*,<=*d*<=≤<=100). Output Specification: Print the first time Rick and Morty will scream at the same time, or <=-<=1 if they will never scream at the same time. Demo Input: ['20 2\n9 19\n', '2 1\n16 12\n'] Demo Output: ['82\n', '-1\n'] Note: In the first sample testcase, Rick's 5th scream and Morty's 8th time are at time 82. In the second sample testcase, all Rick's screams will be at odd times and Morty's will be at even times, so they will never scream at the same time.
```python ab = list(map(int, input().split())) a = ab[0] b = ab[1] cd = list(map(int, input().split())) c = cd[0] d = cd[1] num_list = [] if b == d: print(b) elif a >= c: for i in range(max((d - b), 0)//a + c + 1): num_list.append(a * i + b) for i in num_list: if (i - d) % c == 0 and i - d >= 0: print(i) break if num_list.index(i) == len(num_list) - 1: print(-1) break elif a < c: for i in range(max((b - d), 0)//c + a + 1): num_list.append(c * i + d) for i in num_list: if (i - b) % a == 0 and i - b >= 0: print(i) break if num_list.index(i) == len(num_list) - 1: print(-1) break ```
3
845
B
Luba And The Ticket
PROGRAMMING
1,600
[ "brute force", "greedy", "implementation" ]
null
null
Luba has a ticket consisting of 6 digits. In one move she can choose digit in any position and replace it with arbitrary digit. She wants to know the minimum number of digits she needs to replace in order to make the ticket lucky. The ticket is considered lucky if the sum of first three digits equals to the sum of last three digits.
You are given a string consisting of 6 characters (all characters are digits from 0 to 9) — this string denotes Luba's ticket. The ticket can start with the digit 0.
Print one number — the minimum possible number of digits Luba needs to replace to make the ticket lucky.
[ "000000\n", "123456\n", "111000\n" ]
[ "0\n", "2\n", "1\n" ]
In the first example the ticket is already lucky, so the answer is 0. In the second example Luba can replace 4 and 5 with zeroes, and the ticket will become lucky. It's easy to see that at least two replacements are required. In the third example Luba can replace any zero with 3. It's easy to see that at least one replacement is required.
0
[ { "input": "000000", "output": "0" }, { "input": "123456", "output": "2" }, { "input": "111000", "output": "1" }, { "input": "120111", "output": "0" }, { "input": "999999", "output": "0" }, { "input": "199880", "output": "1" }, { "input": "899889", "output": "1" }, { "input": "899888", "output": "1" }, { "input": "505777", "output": "2" }, { "input": "999000", "output": "3" }, { "input": "989010", "output": "3" }, { "input": "651894", "output": "1" }, { "input": "858022", "output": "2" }, { "input": "103452", "output": "1" }, { "input": "999801", "output": "2" }, { "input": "999990", "output": "1" }, { "input": "697742", "output": "1" }, { "input": "242367", "output": "2" }, { "input": "099999", "output": "1" }, { "input": "198999", "output": "1" }, { "input": "023680", "output": "1" }, { "input": "999911", "output": "2" }, { "input": "000990", "output": "2" }, { "input": "117099", "output": "1" }, { "input": "990999", "output": "1" }, { "input": "000111", "output": "1" }, { "input": "000444", "output": "2" }, { "input": "202597", "output": "2" }, { "input": "000333", "output": "1" }, { "input": "030039", "output": "1" }, { "input": "000009", "output": "1" }, { "input": "006456", "output": "1" }, { "input": "022995", "output": "3" }, { "input": "999198", "output": "1" }, { "input": "223456", "output": "2" }, { "input": "333665", "output": "2" }, { "input": "123986", "output": "2" }, { "input": "599257", "output": "1" }, { "input": "101488", "output": "3" }, { "input": "111399", "output": "2" }, { "input": "369009", "output": "1" }, { "input": "024887", "output": "2" }, { "input": "314347", "output": "1" }, { "input": "145892", "output": "1" }, { "input": "321933", "output": "1" }, { "input": "100172", "output": "1" }, { "input": "222455", "output": "2" }, { "input": "317596", "output": "1" }, { "input": "979245", "output": "2" }, { "input": "000018", "output": "1" }, { "input": "101389", "output": "2" }, { "input": "123985", "output": "2" }, { "input": "900000", "output": "1" }, { "input": "132069", "output": "1" }, { "input": "949256", "output": "1" }, { "input": "123996", "output": "2" }, { "input": "034988", "output": "2" }, { "input": "320869", "output": "2" }, { "input": "089753", "output": "1" }, { "input": "335667", "output": "2" }, { "input": "868580", "output": "1" }, { "input": "958031", "output": "2" }, { "input": "117999", "output": "2" }, { "input": "000001", "output": "1" }, { "input": "213986", "output": "2" }, { "input": "123987", "output": "3" }, { "input": "111993", "output": "2" }, { "input": "642479", "output": "1" }, { "input": "033788", "output": "2" }, { "input": "766100", "output": "2" }, { "input": "012561", "output": "1" }, { "input": "111695", "output": "2" }, { "input": "123689", "output": "2" }, { "input": "944234", "output": "1" }, { "input": "154999", "output": "2" }, { "input": "333945", "output": "1" }, { "input": "371130", "output": "1" }, { "input": "977330", "output": "2" }, { "input": "777544", "output": "2" }, { "input": "111965", "output": "2" }, { "input": "988430", "output": "2" }, { "input": "123789", "output": "3" }, { "input": "111956", "output": "2" }, { "input": "444776", "output": "2" }, { "input": "001019", "output": "1" }, { "input": "011299", "output": "2" }, { "input": "011389", "output": "2" }, { "input": "999333", "output": "2" }, { "input": "126999", "output": "2" }, { "input": "744438", "output": "0" }, { "input": "588121", "output": "3" }, { "input": "698213", "output": "2" }, { "input": "652858", "output": "1" }, { "input": "989304", "output": "3" }, { "input": "888213", "output": "3" }, { "input": "969503", "output": "2" }, { "input": "988034", "output": "2" }, { "input": "889444", "output": "2" }, { "input": "990900", "output": "1" }, { "input": "301679", "output": "2" }, { "input": "434946", "output": "1" }, { "input": "191578", "output": "2" }, { "input": "118000", "output": "2" }, { "input": "636915", "output": "0" }, { "input": "811010", "output": "1" }, { "input": "822569", "output": "1" }, { "input": "122669", "output": "2" }, { "input": "010339", "output": "2" }, { "input": "213698", "output": "2" }, { "input": "895130", "output": "2" }, { "input": "000900", "output": "1" }, { "input": "191000", "output": "2" }, { "input": "001000", "output": "1" }, { "input": "080189", "output": "2" }, { "input": "990000", "output": "2" }, { "input": "201984", "output": "2" }, { "input": "002667", "output": "2" }, { "input": "877542", "output": "2" }, { "input": "301697", "output": "2" }, { "input": "211597", "output": "2" }, { "input": "420337", "output": "1" }, { "input": "024768", "output": "2" }, { "input": "878033", "output": "2" }, { "input": "788024", "output": "2" }, { "input": "023869", "output": "2" }, { "input": "466341", "output": "1" }, { "input": "696327", "output": "1" }, { "input": "779114", "output": "2" }, { "input": "858643", "output": "1" }, { "input": "011488", "output": "3" }, { "input": "003669", "output": "2" }, { "input": "202877", "output": "3" }, { "input": "738000", "output": "2" }, { "input": "567235", "output": "2" }, { "input": "887321", "output": "3" }, { "input": "401779", "output": "2" }, { "input": "989473", "output": "2" }, { "input": "004977", "output": "3" }, { "input": "023778", "output": "2" }, { "input": "809116", "output": "1" }, { "input": "042762", "output": "1" }, { "input": "777445", "output": "2" }, { "input": "769302", "output": "2" }, { "input": "023977", "output": "2" }, { "input": "990131", "output": "2" } ]
1,511,636,222
2,147,483,647
Python 3
OK
TESTS
145
77
5,529,600
# get input and split into 2 arrays num = input() p1 = [int(x) for x in num[:3]] p2 = [int(x) for x in num[3:]] # p1 is array with lesser sum and p2 with greater sum temp = p1[::] if sum(p1) < sum(p2) else p2[::] p2 = p2 if sum(p2) >= sum(p1) else p1[::] p1 = temp _min = 0 # add to p1 or remove of p2, so the difference go to zero or change signal. while sum(p1) < sum(p2): if 9-min(p1) > max(p2): p1[p1.index(min(p1))] = 9 else: p2[p2.index(max(p2))] = 0 _min += 1 print(_min)
Title: Luba And The Ticket Time Limit: None seconds Memory Limit: None megabytes Problem Description: Luba has a ticket consisting of 6 digits. In one move she can choose digit in any position and replace it with arbitrary digit. She wants to know the minimum number of digits she needs to replace in order to make the ticket lucky. The ticket is considered lucky if the sum of first three digits equals to the sum of last three digits. Input Specification: You are given a string consisting of 6 characters (all characters are digits from 0 to 9) — this string denotes Luba's ticket. The ticket can start with the digit 0. Output Specification: Print one number — the minimum possible number of digits Luba needs to replace to make the ticket lucky. Demo Input: ['000000\n', '123456\n', '111000\n'] Demo Output: ['0\n', '2\n', '1\n'] Note: In the first example the ticket is already lucky, so the answer is 0. In the second example Luba can replace 4 and 5 with zeroes, and the ticket will become lucky. It's easy to see that at least two replacements are required. In the third example Luba can replace any zero with 3. It's easy to see that at least one replacement is required.
```python # get input and split into 2 arrays num = input() p1 = [int(x) for x in num[:3]] p2 = [int(x) for x in num[3:]] # p1 is array with lesser sum and p2 with greater sum temp = p1[::] if sum(p1) < sum(p2) else p2[::] p2 = p2 if sum(p2) >= sum(p1) else p1[::] p1 = temp _min = 0 # add to p1 or remove of p2, so the difference go to zero or change signal. while sum(p1) < sum(p2): if 9-min(p1) > max(p2): p1[p1.index(min(p1))] = 9 else: p2[p2.index(max(p2))] = 0 _min += 1 print(_min) ```
3
803
A
Maximal Binary Matrix
PROGRAMMING
1,400
[ "constructive algorithms" ]
null
null
You are given matrix with *n* rows and *n* columns filled with zeroes. You should put *k* ones in it in such a way that the resulting matrix is symmetrical with respect to the main diagonal (the diagonal that goes from the top left to the bottom right corner) and is lexicographically maximal. One matrix is lexicographically greater than the other if the first different number in the first different row from the top in the first matrix is greater than the corresponding number in the second one. If there exists no such matrix then output -1.
The first line consists of two numbers *n* and *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=106).
If the answer exists then output resulting matrix. Otherwise output -1.
[ "2 1\n", "3 2\n", "2 5\n" ]
[ "1 0 \n0 0 \n", "1 0 0 \n0 1 0 \n0 0 0 \n", "-1\n" ]
none
0
[ { "input": "2 1", "output": "1 0 \n0 0 " }, { "input": "3 2", "output": "1 0 0 \n0 1 0 \n0 0 0 " }, { "input": "2 5", "output": "-1" }, { "input": "1 0", "output": "0 " }, { "input": "1 1", "output": "1 " }, { "input": "20 398", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1..." }, { "input": "20 401", "output": "-1" }, { "input": "100 3574", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..." }, { "input": "100 10000", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..." }, { "input": "100 10001", "output": "-1" }, { "input": "2 3", "output": "1 1 \n1 0 " }, { "input": "4 5", "output": "1 1 1 0 \n1 0 0 0 \n1 0 0 0 \n0 0 0 0 " }, { "input": "5 6", "output": "1 1 1 0 0 \n1 1 0 0 0 \n1 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 " }, { "input": "5 24", "output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 0 " }, { "input": "2 0", "output": "0 0 \n0 0 " }, { "input": "3 5", "output": "1 1 1 \n1 0 0 \n1 0 0 " }, { "input": "3 3", "output": "1 1 0 \n1 0 0 \n0 0 0 " }, { "input": "5 10", "output": "1 1 1 1 1 \n1 1 0 0 0 \n1 0 0 0 0 \n1 0 0 0 0 \n1 0 0 0 0 " }, { "input": "3 4", "output": "1 1 0 \n1 1 0 \n0 0 0 " }, { "input": "4 3", "output": "1 1 0 0 \n1 0 0 0 \n0 0 0 0 \n0 0 0 0 " }, { "input": "1 1000000", "output": "-1" }, { "input": "3 6", "output": "1 1 1 \n1 1 0 \n1 0 0 " }, { "input": "1 2", "output": "-1" }, { "input": "1 0", "output": "0 " }, { "input": "1 1", "output": "1 " }, { "input": "1 2", "output": "-1" }, { "input": "1 3", "output": "-1" }, { "input": "1 4", "output": "-1" }, { "input": "1 5", "output": "-1" }, { "input": "1 6", "output": "-1" }, { "input": "1 7", "output": "-1" }, { "input": "1 8", "output": "-1" }, { "input": "1 9", "output": "-1" }, { "input": "1 10", "output": "-1" }, { "input": "1 11", "output": "-1" }, { "input": "1 12", "output": "-1" }, { "input": "1 13", "output": "-1" }, { "input": "1 14", "output": "-1" }, { "input": "1 15", "output": "-1" }, { "input": "1 16", "output": "-1" }, { "input": "1 17", "output": "-1" }, { "input": "1 18", "output": "-1" }, { "input": "1 19", "output": "-1" }, { "input": "1 20", "output": "-1" }, { "input": "1 21", "output": "-1" }, { "input": "1 22", "output": "-1" }, { "input": "1 23", "output": "-1" }, { "input": "1 24", "output": "-1" }, { "input": "1 25", "output": "-1" }, { "input": "1 26", "output": "-1" }, { "input": "2 0", "output": "0 0 \n0 0 " }, { "input": "2 1", "output": "1 0 \n0 0 " }, { "input": "2 2", "output": "1 0 \n0 1 " }, { "input": "2 3", "output": "1 1 \n1 0 " }, { "input": "2 4", "output": "1 1 \n1 1 " }, { "input": "2 5", "output": "-1" }, { "input": "2 6", "output": "-1" }, { "input": "2 7", "output": "-1" }, { "input": "2 8", "output": "-1" }, { "input": "2 9", "output": "-1" }, { "input": "2 10", "output": "-1" }, { "input": "2 11", "output": "-1" }, { "input": "2 12", "output": "-1" }, { "input": "2 13", "output": "-1" }, { "input": "2 14", "output": "-1" }, { "input": "2 15", "output": "-1" }, { "input": "2 16", "output": "-1" }, { "input": "2 17", "output": "-1" }, { "input": "2 18", "output": "-1" }, { "input": "2 19", "output": "-1" }, { "input": "2 20", "output": "-1" }, { "input": "2 21", "output": "-1" }, { "input": "2 22", "output": "-1" }, { "input": "2 23", "output": "-1" }, { "input": "2 24", "output": "-1" }, { "input": "2 25", "output": "-1" }, { "input": "2 26", "output": "-1" }, { "input": "3 0", "output": "0 0 0 \n0 0 0 \n0 0 0 " }, { "input": "3 1", "output": "1 0 0 \n0 0 0 \n0 0 0 " }, { "input": "3 2", "output": "1 0 0 \n0 1 0 \n0 0 0 " }, { "input": "3 3", "output": "1 1 0 \n1 0 0 \n0 0 0 " }, { "input": "3 4", "output": "1 1 0 \n1 1 0 \n0 0 0 " }, { "input": "3 5", "output": "1 1 1 \n1 0 0 \n1 0 0 " }, { "input": "3 6", "output": "1 1 1 \n1 1 0 \n1 0 0 " }, { "input": "3 7", "output": "1 1 1 \n1 1 0 \n1 0 1 " }, { "input": "3 8", "output": "1 1 1 \n1 1 1 \n1 1 0 " }, { "input": "3 9", "output": "1 1 1 \n1 1 1 \n1 1 1 " }, { "input": "3 10", "output": "-1" }, { "input": "3 11", "output": "-1" }, { "input": "3 12", "output": "-1" }, { "input": "3 13", "output": "-1" }, { "input": "3 14", "output": "-1" }, { "input": "3 15", "output": "-1" }, { "input": "3 16", "output": "-1" }, { "input": "3 17", "output": "-1" }, { "input": "3 18", "output": "-1" }, { "input": "3 19", "output": "-1" }, { "input": "3 20", "output": "-1" }, { "input": "3 21", "output": "-1" }, { "input": "3 22", "output": "-1" }, { "input": "3 23", "output": "-1" }, { "input": "3 24", "output": "-1" }, { "input": "3 25", "output": "-1" }, { "input": "3 26", "output": "-1" }, { "input": "4 0", "output": "0 0 0 0 \n0 0 0 0 \n0 0 0 0 \n0 0 0 0 " }, { "input": "4 1", "output": "1 0 0 0 \n0 0 0 0 \n0 0 0 0 \n0 0 0 0 " }, { "input": "4 2", "output": "1 0 0 0 \n0 1 0 0 \n0 0 0 0 \n0 0 0 0 " }, { "input": "4 3", "output": "1 1 0 0 \n1 0 0 0 \n0 0 0 0 \n0 0 0 0 " }, { "input": "4 4", "output": "1 1 0 0 \n1 1 0 0 \n0 0 0 0 \n0 0 0 0 " }, { "input": "4 5", "output": "1 1 1 0 \n1 0 0 0 \n1 0 0 0 \n0 0 0 0 " }, { "input": "4 6", "output": "1 1 1 0 \n1 1 0 0 \n1 0 0 0 \n0 0 0 0 " }, { "input": "4 7", "output": "1 1 1 1 \n1 0 0 0 \n1 0 0 0 \n1 0 0 0 " }, { "input": "4 8", "output": "1 1 1 1 \n1 1 0 0 \n1 0 0 0 \n1 0 0 0 " }, { "input": "4 9", "output": "1 1 1 1 \n1 1 0 0 \n1 0 1 0 \n1 0 0 0 " }, { "input": "4 10", "output": "1 1 1 1 \n1 1 1 0 \n1 1 0 0 \n1 0 0 0 " }, { "input": "4 11", "output": "1 1 1 1 \n1 1 1 0 \n1 1 1 0 \n1 0 0 0 " }, { "input": "4 12", "output": "1 1 1 1 \n1 1 1 1 \n1 1 0 0 \n1 1 0 0 " }, { "input": "4 13", "output": "1 1 1 1 \n1 1 1 1 \n1 1 1 0 \n1 1 0 0 " }, { "input": "4 14", "output": "1 1 1 1 \n1 1 1 1 \n1 1 1 0 \n1 1 0 1 " }, { "input": "4 15", "output": "1 1 1 1 \n1 1 1 1 \n1 1 1 1 \n1 1 1 0 " }, { "input": "4 16", "output": "1 1 1 1 \n1 1 1 1 \n1 1 1 1 \n1 1 1 1 " }, { "input": "4 17", "output": "-1" }, { "input": "4 18", "output": "-1" }, { "input": "4 19", "output": "-1" }, { "input": "4 20", "output": "-1" }, { "input": "4 21", "output": "-1" }, { "input": "4 22", "output": "-1" }, { "input": "4 23", "output": "-1" }, { "input": "4 24", "output": "-1" }, { "input": "4 25", "output": "-1" }, { "input": "4 26", "output": "-1" }, { "input": "5 0", "output": "0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 " }, { "input": "5 1", "output": "1 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 " }, { "input": "5 2", "output": "1 0 0 0 0 \n0 1 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 " }, { "input": "5 3", "output": "1 1 0 0 0 \n1 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 " }, { "input": "5 4", "output": "1 1 0 0 0 \n1 1 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 " }, { "input": "5 5", "output": "1 1 1 0 0 \n1 0 0 0 0 \n1 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 " }, { "input": "5 6", "output": "1 1 1 0 0 \n1 1 0 0 0 \n1 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 " }, { "input": "5 7", "output": "1 1 1 1 0 \n1 0 0 0 0 \n1 0 0 0 0 \n1 0 0 0 0 \n0 0 0 0 0 " }, { "input": "5 8", "output": "1 1 1 1 0 \n1 1 0 0 0 \n1 0 0 0 0 \n1 0 0 0 0 \n0 0 0 0 0 " }, { "input": "5 9", "output": "1 1 1 1 1 \n1 0 0 0 0 \n1 0 0 0 0 \n1 0 0 0 0 \n1 0 0 0 0 " }, { "input": "5 10", "output": "1 1 1 1 1 \n1 1 0 0 0 \n1 0 0 0 0 \n1 0 0 0 0 \n1 0 0 0 0 " }, { "input": "5 11", "output": "1 1 1 1 1 \n1 1 0 0 0 \n1 0 1 0 0 \n1 0 0 0 0 \n1 0 0 0 0 " }, { "input": "5 12", "output": "1 1 1 1 1 \n1 1 1 0 0 \n1 1 0 0 0 \n1 0 0 0 0 \n1 0 0 0 0 " }, { "input": "5 13", "output": "1 1 1 1 1 \n1 1 1 0 0 \n1 1 1 0 0 \n1 0 0 0 0 \n1 0 0 0 0 " }, { "input": "5 14", "output": "1 1 1 1 1 \n1 1 1 1 0 \n1 1 0 0 0 \n1 1 0 0 0 \n1 0 0 0 0 " }, { "input": "5 15", "output": "1 1 1 1 1 \n1 1 1 1 0 \n1 1 1 0 0 \n1 1 0 0 0 \n1 0 0 0 0 " }, { "input": "5 16", "output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 0 0 0 \n1 1 0 0 0 \n1 1 0 0 0 " }, { "input": "5 17", "output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 0 0 \n1 1 0 0 0 \n1 1 0 0 0 " }, { "input": "5 18", "output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 0 0 \n1 1 0 1 0 \n1 1 0 0 0 " }, { "input": "5 19", "output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 0 \n1 1 1 0 0 \n1 1 0 0 0 " }, { "input": "5 20", "output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 0 \n1 1 1 1 0 \n1 1 0 0 0 " }, { "input": "5 21", "output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 0 0 \n1 1 1 0 0 " }, { "input": "5 22", "output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 0 \n1 1 1 0 0 " }, { "input": "5 23", "output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 0 \n1 1 1 0 1 " }, { "input": "5 24", "output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 0 " }, { "input": "5 25", "output": "1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 1 \n1 1 1 1 1 " }, { "input": "5 26", "output": "-1" }, { "input": "100 0", "output": "0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..." }, { "input": "100 1", "output": "1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..." }, { "input": "100 2", "output": "1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..." }, { "input": "100 3", "output": "1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..." }, { "input": "100 99", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..." }, { "input": "100 100", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..." }, { "input": "100 101", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..." }, { "input": "100 9999", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..." }, { "input": "100 10000", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1..." }, { "input": "100 10001", "output": "-1" } ]
1,698,129,713
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
31
0
n,m=map(int,input().split()) mat=[] for i in range(0,n): l=[] for j in range(0,n): l.append(0) mat.append(l) if m>n*n: print(-1) else: mat[0][0]=1 x=0 y=1 m-=1 while(m>0): if x==y: mat[x][y]=1 y+=1 m-=1 else: if m>=2: m-=2 mat[x][y]=1 mat[y][x]=1 else: mat[x+1][x+1]=1 m-=1 if y>=n: x+=1 y=x for i in range(0,n): for j in range(0,n): print(mat[i][j],end=" ") print()
Title: Maximal Binary Matrix Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given matrix with *n* rows and *n* columns filled with zeroes. You should put *k* ones in it in such a way that the resulting matrix is symmetrical with respect to the main diagonal (the diagonal that goes from the top left to the bottom right corner) and is lexicographically maximal. One matrix is lexicographically greater than the other if the first different number in the first different row from the top in the first matrix is greater than the corresponding number in the second one. If there exists no such matrix then output -1. Input Specification: The first line consists of two numbers *n* and *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=106). Output Specification: If the answer exists then output resulting matrix. Otherwise output -1. Demo Input: ['2 1\n', '3 2\n', '2 5\n'] Demo Output: ['1 0 \n0 0 \n', '1 0 0 \n0 1 0 \n0 0 0 \n', '-1\n'] Note: none
```python n,m=map(int,input().split()) mat=[] for i in range(0,n): l=[] for j in range(0,n): l.append(0) mat.append(l) if m>n*n: print(-1) else: mat[0][0]=1 x=0 y=1 m-=1 while(m>0): if x==y: mat[x][y]=1 y+=1 m-=1 else: if m>=2: m-=2 mat[x][y]=1 mat[y][x]=1 else: mat[x+1][x+1]=1 m-=1 if y>=n: x+=1 y=x for i in range(0,n): for j in range(0,n): print(mat[i][j],end=" ") print() ```
0
837
A
Text Volume
PROGRAMMING
800
[ "implementation" ]
null
null
You are given a text of single-space separated words, consisting of small and capital Latin letters. Volume of the word is number of capital letters in the word. Volume of the text is maximum volume of all words in the text. Calculate the volume of the given text.
The first line contains one integer number *n* (1<=≤<=*n*<=≤<=200) — length of the text. The second line contains text of single-space separated words *s*1,<=*s*2,<=...,<=*s**i*, consisting only of small and capital Latin letters.
Print one integer number — volume of text.
[ "7\nNonZERO\n", "24\nthis is zero answer text\n", "24\nHarbour Space University\n" ]
[ "5\n", "0\n", "1\n" ]
In the first example there is only one word, there are 5 capital letters in it. In the second example all of the words contain 0 capital letters.
0
[ { "input": "7\nNonZERO", "output": "5" }, { "input": "24\nthis is zero answer text", "output": "0" }, { "input": "24\nHarbour Space University", "output": "1" }, { "input": "2\nWM", "output": "2" }, { "input": "200\nLBmJKQLCKUgtTxMoDsEerwvLOXsxASSydOqWyULsRcjMYDWdDCgaDvBfATIWPVSXlbcCLHPYahhxMEYUiaxoCebghJqvmRnaNHYTKLeOiaLDnATPZAOgSNfBzaxLymTGjfzvTegbXsAthTxyDTcmBUkqyGlVGZhoazQzVSoKbTFcCRvYsgSCwjGMxBfWEwMHuagTBxkz", "output": "105" }, { "input": "199\no A r v H e J q k J k v w Q F p O R y R Z o a K R L Z E H t X y X N y y p b x B m r R S q i A x V S u i c L y M n N X c C W Z m S j e w C w T r I S X T D F l w o k f t X u n W w p Z r A k I Y E h s g", "output": "1" }, { "input": "200\nhCyIdivIiISmmYIsCLbpKcTyHaOgTUQEwnQACXnrLdHAVFLtvliTEMlzBVzTesQbhXmcqvwPDeojglBMIjOXANfyQxCSjOJyO SIqOTnRzVzseGIDDYNtrwIusScWSuEhPyEmgQIVEzXofRptjeMzzhtUQxJgcUWILUhEaaRmYRBVsjoqgmyPIKwSajdlNPccOOtWrez", "output": "50" }, { "input": "1\ne", "output": "0" }, { "input": "1\nA", "output": "1" }, { "input": "200\nABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ KLMNOPRSTU KLMNOPRSTU KLMNOPRSTU VWXYZABCDE KLMNOPRSTU KLMNOPRSTU KLMNOPRSTU KLMNOPRSTU KZ", "output": "10" }, { "input": "200\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "200" }, { "input": "200\nffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff", "output": "0" }, { "input": "24\nHarbour Space UniversitY", "output": "2" }, { "input": "5\naA AA", "output": "2" }, { "input": "10\nas AS ASDA", "output": "4" }, { "input": "10\nas AS ASDZ", "output": "4" }, { "input": "3\na A", "output": "1" }, { "input": "24\nHarbour space UniversitY", "output": "2" }, { "input": "10\nas AS ASAa", "output": "3" }, { "input": "15\naAb ABCDFGRHTJS", "output": "11" }, { "input": "53\nsdfAZEZR AZE dfdf dsdRFGSDF ZZDZSD dfsd ERBGF dsfsdfR", "output": "6" }, { "input": "10\nABC ABc AB", "output": "3" }, { "input": "10\nA c de CDE", "output": "3" }, { "input": "4\nA AB", "output": "2" }, { "input": "18\nHARbour Space UNIV", "output": "4" }, { "input": "13\na b c d e f A", "output": "1" }, { "input": "6\nA B CA", "output": "2" }, { "input": "4\naa A", "output": "1" }, { "input": "3\nA a", "output": "1" } ]
1,502,704,425
2,147,483,647
Python 3
OK
TESTS
29
62
4,608,000
def calculate(word): result = 0 for char in word: result += 1 if char.isupper() else 0 return result n = input() words = input().split() screams = [calculate(word) for word in words] print(max(screams))
Title: Text Volume Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a text of single-space separated words, consisting of small and capital Latin letters. Volume of the word is number of capital letters in the word. Volume of the text is maximum volume of all words in the text. Calculate the volume of the given text. Input Specification: The first line contains one integer number *n* (1<=≤<=*n*<=≤<=200) — length of the text. The second line contains text of single-space separated words *s*1,<=*s*2,<=...,<=*s**i*, consisting only of small and capital Latin letters. Output Specification: Print one integer number — volume of text. Demo Input: ['7\nNonZERO\n', '24\nthis is zero answer text\n', '24\nHarbour Space University\n'] Demo Output: ['5\n', '0\n', '1\n'] Note: In the first example there is only one word, there are 5 capital letters in it. In the second example all of the words contain 0 capital letters.
```python def calculate(word): result = 0 for char in word: result += 1 if char.isupper() else 0 return result n = input() words = input().split() screams = [calculate(word) for word in words] print(max(screams)) ```
3
50
C
Happy Farm 5
PROGRAMMING
2,000
[ "geometry" ]
C. Happy Farm 5
2
256
The Happy Farm 5 creators decided to invent the mechanism of cow grazing. The cows in the game are very slow and they move very slowly, it can even be considered that they stand still. However, carnivores should always be chased off them. For that a young player Vasya decided to make the shepherd run round the cows along one and the same closed path. It is very important that the cows stayed strictly inside the area limited by the path, as otherwise some cows will sooner or later be eaten. To be absolutely sure in the cows' safety, Vasya wants the path completion time to be minimum. The new game is launched for different devices, including mobile phones. That's why the developers decided to quit using the arithmetics with the floating decimal point and use only the arithmetics of integers. The cows and the shepherd in the game are represented as points on the plane with integer coordinates. The playing time is modeled by the turns. During every turn the shepherd can either stay where he stands or step in one of eight directions: horizontally, vertically, or diagonally. As the coordinates should always remain integer, then the length of a horizontal and vertical step is equal to 1, and the length of a diagonal step is equal to . The cows do not move. You have to minimize the number of moves the shepherd needs to run round the whole herd.
The first line contains an integer *N* which represents the number of cows in the herd (1<=≤<=*N*<=≤<=105). Each of the next *N* lines contains two integers *X**i* and *Y**i* which represent the coordinates of one cow of (|*X**i*|,<=|*Y**i*|<=≤<=106). Several cows can stand on one point.
Print the single number — the minimum number of moves in the sought path.
[ "4\n1 1\n5 1\n5 3\n1 3\n" ]
[ "16\n" ]
Picture for the example test: The coordinate grid is painted grey, the coordinates axes are painted black, the cows are painted red and the sought route is painted green.
1,500
[ { "input": "4\n1 1\n5 1\n5 3\n1 3", "output": "16" }, { "input": "3\n0 0\n5 0\n0 5", "output": "19" }, { "input": "5\n0 0\n7 7\n7 5\n5 7\n1 1", "output": "22" }, { "input": "5\n1 0\n-1 0\n1 0\n-1 0\n0 0", "output": "8" }, { "input": "9\n1 0\n-1 0\n1 0\n-1 0\n0 0\n1 1\n-1 -1\n1 -1\n-1 1", "output": "12" }, { "input": "5\n-10 10\n-10 -10\n10 -10\n9 8\n1 2", "output": "81" }, { "input": "1\n7 -10", "output": "4" }, { "input": "3\n7 -10\n7 -10\n7 -10", "output": "4" }, { "input": "2\n-10 0\n-10 7", "output": "18" }, { "input": "5\n-10 0\n-10 7\n-10 0\n-10 7\n-10 0", "output": "18" }, { "input": "11\n0 0\n3 0\n1 0\n2 0\n1 0\n5 0\n3 0\n10 0\n6 0\n-1 0\n2 0", "output": "26" }, { "input": "10\n1 0\n1 -3\n1 5\n1 -2\n1 5\n1 -2\n1 -2\n1 -2\n1 -2\n1 -2", "output": "20" }, { "input": "6\n1 0\n2 1\n10 9\n-1 -2\n2 1\n-1 -2", "output": "26" }, { "input": "6\n5 0\n0 5\n10 -5\n-5 10\n2 3\n3 2", "output": "34" }, { "input": "3\n0 0\n2 0\n0 2", "output": "10" }, { "input": "3\n0 0\n1 0\n0 2", "output": "9" }, { "input": "3\n0 0\n2 0\n0 1", "output": "9" }, { "input": "3\n0 0\n2 1\n0 2", "output": "10" }, { "input": "3\n0 0\n2 0\n1 2", "output": "10" }, { "input": "3\n0 0\n2 1\n1 2", "output": "9" }, { "input": "3\n0 0\n3 1\n2 3", "output": "12" }, { "input": "3\n10 0\n0 20\n33 30", "output": "87" }, { "input": "4\n0 2\n2 0\n3 5\n5 3", "output": "14" }, { "input": "5\n0 2\n2 0\n3 5\n5 3\n6 3", "output": "16" }, { "input": "8\n0 2\n3 0\n5 3\n2 5\n2 2\n3 3\n2 2\n2 2", "output": "16" }, { "input": "4\n0 3\n3 0\n5 3\n2 5", "output": "15" }, { "input": "10\n2 0\n1 1\n0 2\n4 0\n0 4\n3 8\n5 8\n7 8\n8 7\n8 4", "output": "26" }, { "input": "4\n-1000000 -1000000\n1000000 1000000\n-1000000 1000000\n1000000 -1000000", "output": "8000004" }, { "input": "4\n-1000000 -999993\n999991 999997\n-999998 999996\n999994 -1000000", "output": "7999973" }, { "input": "11\n-1000000 -999993\n999991 999997\n1 3\n1 3\n0 0\n-999998 999996\n-1 3\n4 5\n-999998 999996\n6 7\n999994 -1000000", "output": "7999973" }, { "input": "2\n-1000000 -1000000\n999999 999999", "output": "4000002" }, { "input": "2\n-1000000 -1000000\n999999 1000000", "output": "4000004" }, { "input": "3\n1 -1\n-1 -1\n-1 1", "output": "10" }, { "input": "3\n2 2\n1 -2\n0 2", "output": "14" }, { "input": "3\n1 -1\n1 2\n-2 -2", "output": "14" }, { "input": "3\n0 2\n-1 1\n2 -1", "output": "11" }, { "input": "3\n2 1\n1 2\n-2 0", "output": "12" }, { "input": "3\n0 2\n2 1\n2 1", "output": "8" }, { "input": "3\n1 1\n0 2\n0 -1", "output": "10" }, { "input": "4\n-1 -2\n2 -1\n-1 -1\n-1 0", "output": "12" }, { "input": "4\n2 1\n1 1\n-1 2\n-2 -2", "output": "15" }, { "input": "4\n1 2\n0 1\n0 3\n-1 -3", "output": "16" }, { "input": "4\n1 -1\n0 -2\n0 1\n-1 0", "output": "10" }, { "input": "5\n-2 2\n2 -3\n2 3\n2 1\n2 -3", "output": "19" }, { "input": "5\n-3 -3\n-3 3\n1 0\n-2 2\n0 -1", "output": "18" }, { "input": "6\n2 -1\n-2 1\n-1 -1\n0 2\n2 -2\n-2 0", "output": "15" }, { "input": "8\n3 -1\n1 -1\n0 2\n-2 -2\n1 -2\n1 -2\n3 2\n3 2", "output": "19" }, { "input": "20\n9 0\n11 6\n13 4\n7 3\n9 0\n10 4\n11 4\n11 2\n9 0\n9 1\n9 0\n10 4\n13 4\n10 6\n10 6\n9 0\n9 1\n10 2\n10 4\n12 3", "output": "17" }, { "input": "30\n-4 0\n-4 0\n-5 2\n-1 3\n-3 3\n-3 4\n-1 2\n-3 3\n-2 4\n-4 0\n-1 -1\n-2 2\n-2 2\n-5 1\n-1 3\n-1 -1\n-5 1\n-1 -1\n-3 1\n-3 0\n-5 2\n-2 -1\n-4 0\n-1 4\n-5 2\n-1 -1\n-1 3\n-4 1\n-3 4\n-3 -1", "output": "18" }, { "input": "40\n6 -14\n12 -13\n13 -16\n12 -13\n12 -13\n7 -13\n13 -16\n11 -15\n6 -14\n5 -14\n13 -14\n8 -17\n9 -13\n10 -10\n6 -13\n6 -15\n7 -12\n10 -11\n14 -14\n12 -12\n6 -14\n6 -14\n9 -15\n12 -13\n5 -14\n13 -16\n7 -12\n11 -17\n12 -13\n14 -14\n10 -11\n10 -18\n6 -15\n9 -14\n10 -14\n15 -15\n8 -13\n13 -15\n8 -17\n13 -13", "output": "24" }, { "input": "50\n-10 4\n5 4\n-4 4\n0 4\n-11 2\n-10 6\n-3 2\n-2 -3\n-2 -5\n5 -4\n0 -3\n5 -4\n-13 3\n-9 3\n1 -4\n-1 3\n0 5\n-7 2\n-9 5\n0 4\n4 5\n-2 -5\n4 4\n-9 1\n-9 6\n3 -2\n2 -4\n-10 6\n-2 -3\n-7 2\n2 5\n-2 6\n-2 6\n2 5\n2 -4\n5 2\n-5 -2\n4 4\n2 -4\n2 -4\n5 3\n5 1\n3 -1\n-10 4\n4 -5\n-4 2\n-5 -2\n-2 2\n-1 4\n3 5", "output": "48" }, { "input": "60\n22 -7\n25 -2\n21 5\n21 2\n26 1\n19 1\n21 0\n21 2\n29 -5\n18 -3\n27 -3\n29 -5\n23 -4\n29 -5\n22 0\n19 -1\n23 0\n21 -5\n24 -1\n21 -4\n19 1\n24 3\n19 3\n25 -7\n24 -3\n30 -5\n24 -3\n27 -7\n20 -5\n16 -1\n25 -5\n19 -3\n18 -1\n17 -1\n19 1\n18 2\n28 -5\n24 0\n25 2\n22 1\n29 -5\n22 -1\n19 1\n28 -2\n29 -2\n22 -4\n21 0\n22 -4\n21 -5\n19 3\n22 -1\n21 5\n27 -4\n30 -3\n30 -5\n22 3\n19 2\n26 -1\n23 3\n22 -4", "output": "35" }, { "input": "20\n-118 -4\n-114 -8\n-86 40\n-77 38\n-128 24\n-114 -8\n-107 24\n-63 15\n-114 -8\n-138 34\n-136 53\n-116 37\n-62 14\n-116 37\n-112 10\n-146 25\n-83 42\n-62 14\n-107 11\n-138 34", "output": "200" }, { "input": "30\n220065 650176\n-85645 309146\n245761 474510\n297068 761230\n39280 454823\n65372 166746\n316557 488319\n220065 650176\n245761 474510\n65372 166746\n-8475 -14722\n327177 312018\n371695 397843\n343097 243895\n-113462 117273\n-8189 440841\n327177 312018\n-171241 288713\n-147691 268033\n265028 425605\n208512 456240\n97333 6791\n-109657 297156\n-109657 297156\n-176591 87288\n-120815 31512\n120019 546293\n3773 19061\n161901 442125\n-50681 429871", "output": "1727359" }, { "input": "50\n139 201\n115 37\n206 8\n115 37\n167 201\n189 1\n167 201\n141 201\n141 201\n115 37\n78 81\n167 201\n126 201\n78 91\n103 186\n208 169\n85 67\n208 153\n78 97\n208 89\n126 26\n141 201\n208 42\n166 41\n78 124\n156 1\n181 201\n78 129\n208 169\n208 52\n78 85\n128 201\n167 201\n208 23\n100 52\n148 4\n116 199\n208 122\n173 201\n167 201\n153 1\n176 1\n170 194\n78 132\n206 8\n208 23\n208 67\n208 116\n78 161\n142 160", "output": "515" }, { "input": "60\n-20 179\n-68 0\n-110 68\n-22 177\n47 140\n-49 -4\n-106 38\n-23 22\n20 193\n47 173\n-23 22\n-100 32\n-97 29\n47 124\n-49 -4\n20 193\n-20 179\n-50 149\n-59 -7\n4 193\n-23 22\n-97 29\n-23 22\n-66 133\n47 167\n-61 138\n-49 -4\n-91 108\n-110 84\n47 166\n-110 77\n-99 100\n-23 22\n-59 -7\n47 128\n46 91\n9 193\n-110 86\n-49 -4\n8 193\n2 47\n-35 164\n-100 32\n47 114\n-56 -7\n47 148\n14 193\n20 65\n47 171\n47 171\n-110 53\n47 93\n20 65\n-35 164\n-50 149\n-25 174\n9 193\n47 150\n-49 -4\n-110 44", "output": "446" }, { "input": "54\n-2 0\n-2 0\n3 -3\n-3 -6\n-5 -5\n-1 -4\n2 5\n-4 2\n2 5\n-5 5\n5 3\n3 1\n-2 1\n4 4\n-4 4\n-3 2\n-5 -4\n2 4\n4 2\n-2 1\n4 -1\n5 4\n-2 1\n-5 5\n-3 -1\n-4 -1\n1 -4\n-2 -2\n3 -3\n2 6\n-5 3\n-1 4\n5 -1\n2 -4\n2 -2\n1 4\n-5 5\n0 4\n-5 3\n-4 -2\n3 -2\n3 -1\n-4 -1\n5 5\n4 5\n3 -3\n1 2\n2 5\n-2 -4\n-5 5\n-4 1\n2 4\n-3 -4\n1 6", "output": "40" }, { "input": "35\n3 -3\n1 4\n-3 -3\n2 -2\n0 -1\n-1 -1\n2 5\n0 -1\n1 3\n-3 -5\n1 -1\n3 5\n1 -3\n3 -5\n-1 3\n2 -3\n1 -1\n-3 5\n-3 -2\n2 -2\n1 -6\n-3 5\n-1 1\n1 -3\n1 4\n3 4\n-1 -1\n0 -5\n3 -2\n-3 -4\n3 6\n1 4\n-2 1\n2 -3\n2 -6", "output": "37" }, { "input": "43\n-1 2\n2 -3\n-2 0\n2 -1\n0 1\n0 0\n1 -3\n0 -2\n0 2\n2 0\n-1 2\n2 -3\n1 2\n1 0\n1 -3\n-2 -3\n2 -3\n-2 0\n0 -3\n1 -2\n-2 -3\n1 1\n2 -3\n2 1\n-1 -3\n1 2\n1 -3\n-1 2\n0 1\n0 -1\n0 -3\n2 1\n1 0\n-2 -3\n0 -2\n1 1\n-2 2\n-2 -3\n-2 3\n-1 0\n1 -1\n2 2\n-1 -2", "output": "23" }, { "input": "61\n0 -5\n0 3\n0 -1\n0 -4\n0 6\n0 -1\n0 -3\n0 6\n0 5\n0 -5\n0 1\n0 2\n0 5\n0 -3\n0 1\n0 -6\n0 -3\n0 3\n0 -3\n0 -5\n0 2\n0 1\n0 5\n0 3\n0 -2\n0 -2\n0 -3\n0 -6\n0 -4\n0 -2\n0 0\n0 -1\n0 -5\n0 -6\n0 6\n0 0\n0 -5\n0 1\n0 2\n0 -2\n0 -5\n0 6\n0 -3\n0 4\n0 5\n0 2\n0 -6\n0 -3\n0 2\n0 1\n0 -2\n0 -4\n0 -2\n0 4\n0 -1\n0 6\n0 0\n0 -1\n0 -3\n0 -4\n0 -3", "output": "28" }, { "input": "57\n-8 0\n-2 0\n-2 0\n-7 0\n-8 0\n0 0\n8 0\n8 0\n3 0\n-2 0\n-3 0\n6 0\n-7 0\n-9 0\n-2 0\n-4 0\n-8 0\n0 0\n6 0\n7 0\n3 0\n0 0\n9 0\n0 0\n-9 0\n3 0\n8 0\n0 0\n6 0\n-4 0\n8 0\n10 0\n-7 0\n3 0\n-1 0\n8 0\n3 0\n1 0\n6 0\n3 0\n-8 0\n4 0\n-8 0\n-2 0\n1 0\n6 0\n7 0\n-6 0\n-2 0\n-2 0\n-8 0\n-8 0\n2 0\n0 0\n10 0\n4 0\n-8 0", "output": "42" } ]
1,672,675,805
2,147,483,647
Python 3
OK
TESTS
75
748
0
n=int(input()) mh=sh=-10**7 ml=sl=10**7 for i in range(n): a,b=map(int,input().split()) m=a+b s=a-b mh=max(mh,m) ml=min(ml,m) sh=max(sh,s) sl=min(sl,s) print(mh-ml+sh-sl+4)
Title: Happy Farm 5 Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The Happy Farm 5 creators decided to invent the mechanism of cow grazing. The cows in the game are very slow and they move very slowly, it can even be considered that they stand still. However, carnivores should always be chased off them. For that a young player Vasya decided to make the shepherd run round the cows along one and the same closed path. It is very important that the cows stayed strictly inside the area limited by the path, as otherwise some cows will sooner or later be eaten. To be absolutely sure in the cows' safety, Vasya wants the path completion time to be minimum. The new game is launched for different devices, including mobile phones. That's why the developers decided to quit using the arithmetics with the floating decimal point and use only the arithmetics of integers. The cows and the shepherd in the game are represented as points on the plane with integer coordinates. The playing time is modeled by the turns. During every turn the shepherd can either stay where he stands or step in one of eight directions: horizontally, vertically, or diagonally. As the coordinates should always remain integer, then the length of a horizontal and vertical step is equal to 1, and the length of a diagonal step is equal to . The cows do not move. You have to minimize the number of moves the shepherd needs to run round the whole herd. Input Specification: The first line contains an integer *N* which represents the number of cows in the herd (1<=≤<=*N*<=≤<=105). Each of the next *N* lines contains two integers *X**i* and *Y**i* which represent the coordinates of one cow of (|*X**i*|,<=|*Y**i*|<=≤<=106). Several cows can stand on one point. Output Specification: Print the single number — the minimum number of moves in the sought path. Demo Input: ['4\n1 1\n5 1\n5 3\n1 3\n'] Demo Output: ['16\n'] Note: Picture for the example test: The coordinate grid is painted grey, the coordinates axes are painted black, the cows are painted red and the sought route is painted green.
```python n=int(input()) mh=sh=-10**7 ml=sl=10**7 for i in range(n): a,b=map(int,input().split()) m=a+b s=a-b mh=max(mh,m) ml=min(ml,m) sh=max(sh,s) sl=min(sl,s) print(mh-ml+sh-sl+4) ```
3.813
41
A
Translation
PROGRAMMING
800
[ "implementation", "strings" ]
A. Translation
2
256
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
[ "code\nedoc\n", "abb\naba\n", "code\ncode\n" ]
[ "YES\n", "NO\n", "NO\n" ]
none
500
[ { "input": "code\nedoc", "output": "YES" }, { "input": "abb\naba", "output": "NO" }, { "input": "code\ncode", "output": "NO" }, { "input": "abacaba\nabacaba", "output": "YES" }, { "input": "q\nq", "output": "YES" }, { "input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk", "output": "NO" }, { "input": "z\na", "output": "NO" }, { "input": "asd\ndsa", "output": "YES" }, { "input": "abcdef\nfecdba", "output": "NO" }, { "input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu", "output": "NO" }, { "input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf", "output": "NO" }, { "input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp", "output": "NO" }, { "input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb", "output": "NO" }, { "input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom", "output": "NO" }, { "input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh", "output": "NO" }, { "input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy", "output": "NO" }, { "input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko", "output": "NO" }, { "input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv", "output": "NO" }, { "input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd", "output": "NO" }, { "input": "w\nw", "output": "YES" }, { "input": "vz\nzv", "output": "YES" }, { "input": "ry\nyr", "output": "YES" }, { "input": "xou\nuox", "output": "YES" }, { "input": "axg\ngax", "output": "NO" }, { "input": "zdsl\nlsdz", "output": "YES" }, { "input": "kudl\nldku", "output": "NO" }, { "input": "zzlzwnqlcl\nlclqnwzlzz", "output": "YES" }, { "input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv", "output": "YES" }, { "input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar", "output": "NO" }, { "input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn", "output": "YES" }, { "input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum", "output": "YES" }, { "input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv", "output": "YES" }, { "input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm", "output": "NO" }, { "input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd", "output": "NO" }, { "input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg", "output": "YES" }, { "input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis", "output": "YES" }, { "input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy", "output": "NO" }, { "input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw", "output": "YES" }, { "input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi", "output": "YES" }, { "input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib", "output": "YES" } ]
1,514,874,881
2,147,483,647
Python 3
OK
TESTS
40
154
5,632,000
s=input();t=input();print(["NO","YES"][s[::-1]==t])
Title: Translation Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly. Input Specification: The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols. Output Specification: If the word *t* is a word *s*, written reversely, print YES, otherwise print NO. Demo Input: ['code\nedoc\n', 'abb\naba\n', 'code\ncode\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n'] Note: none
```python s=input();t=input();print(["NO","YES"][s[::-1]==t]) ```
3.95101
761
A
Dasha and Stairs
PROGRAMMING
1,000
[ "brute force", "constructive algorithms", "implementation", "math" ]
null
null
On her way to programming school tiger Dasha faced her first test — a huge staircase! The steps were numbered from one to infinity. As we know, tigers are very fond of all striped things, it is possible that it has something to do with their color. So on some interval of her way she calculated two values — the number of steps with even and odd numbers. You need to check whether there is an interval of steps from the *l*-th to the *r*-th (1<=≤<=*l*<=≤<=*r*), for which values that Dasha has found are correct.
In the only line you are given two integers *a*, *b* (0<=≤<=*a*,<=*b*<=≤<=100) — the number of even and odd steps, accordingly.
In the only line print "YES", if the interval of steps described above exists, and "NO" otherwise.
[ "2 3\n", "3 1\n" ]
[ "YES\n", "NO\n" ]
In the first example one of suitable intervals is from 1 to 5. The interval contains two even steps — 2 and 4, and three odd: 1, 3 and 5.
500
[ { "input": "2 3", "output": "YES" }, { "input": "3 1", "output": "NO" }, { "input": "5 4", "output": "YES" }, { "input": "9 9", "output": "YES" }, { "input": "85 95", "output": "NO" }, { "input": "0 1", "output": "YES" }, { "input": "89 25", "output": "NO" }, { "input": "74 73", "output": "YES" }, { "input": "62 39", "output": "NO" }, { "input": "57 57", "output": "YES" }, { "input": "100 99", "output": "YES" }, { "input": "0 0", "output": "NO" }, { "input": "98 100", "output": "NO" }, { "input": "99 100", "output": "YES" }, { "input": "1 0", "output": "YES" }, { "input": "100 0", "output": "NO" }, { "input": "0 100", "output": "NO" }, { "input": "100 98", "output": "NO" }, { "input": "100 100", "output": "YES" }, { "input": "0 5", "output": "NO" }, { "input": "2 2", "output": "YES" } ]
1,485,877,866
4,566
Python 3
OK
TESTS
21
62
4,608,000
a,b = input().split() c = int(a) - int(b) if int(a)+int(b) != 0 and (c == 1 or c == 0 or c == -1): print("YES") else: print("NO")
Title: Dasha and Stairs Time Limit: None seconds Memory Limit: None megabytes Problem Description: On her way to programming school tiger Dasha faced her first test — a huge staircase! The steps were numbered from one to infinity. As we know, tigers are very fond of all striped things, it is possible that it has something to do with their color. So on some interval of her way she calculated two values — the number of steps with even and odd numbers. You need to check whether there is an interval of steps from the *l*-th to the *r*-th (1<=≤<=*l*<=≤<=*r*), for which values that Dasha has found are correct. Input Specification: In the only line you are given two integers *a*, *b* (0<=≤<=*a*,<=*b*<=≤<=100) — the number of even and odd steps, accordingly. Output Specification: In the only line print "YES", if the interval of steps described above exists, and "NO" otherwise. Demo Input: ['2 3\n', '3 1\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first example one of suitable intervals is from 1 to 5. The interval contains two even steps — 2 and 4, and three odd: 1, 3 and 5.
```python a,b = input().split() c = int(a) - int(b) if int(a)+int(b) != 0 and (c == 1 or c == 0 or c == -1): print("YES") else: print("NO") ```
3
939
A
Love Triangle
PROGRAMMING
800
[ "graphs" ]
null
null
As you could know there are no male planes nor female planes. However, each plane on Earth likes some other plane. There are *n* planes on Earth, numbered from 1 to *n*, and the plane with number *i* likes the plane with number *f**i*, where 1<=≤<=*f**i*<=≤<=*n* and *f**i*<=≠<=*i*. We call a love triangle a situation in which plane *A* likes plane *B*, plane *B* likes plane *C* and plane *C* likes plane *A*. Find out if there is any love triangle on Earth.
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=5000) — the number of planes. The second line contains *n* integers *f*1,<=*f*2,<=...,<=*f**n* (1<=≤<=*f**i*<=≤<=*n*, *f**i*<=≠<=*i*), meaning that the *i*-th plane likes the *f**i*-th.
Output «YES» if there is a love triangle consisting of planes on Earth. Otherwise, output «NO». You can output any letter in lower case or in upper case.
[ "5\n2 4 5 1 3\n", "5\n5 5 5 5 1\n" ]
[ "YES\n", "NO\n" ]
In first example plane 2 likes plane 4, plane 4 likes plane 1, plane 1 likes plane 2 and that is a love triangle. In second example there are no love triangles.
500
[ { "input": "5\n2 4 5 1 3", "output": "YES" }, { "input": "5\n5 5 5 5 1", "output": "NO" }, { "input": "3\n3 1 2", "output": "YES" }, { "input": "10\n4 10 9 5 3 1 5 10 6 4", "output": "NO" }, { "input": "10\n5 5 4 9 10 9 9 5 3 1", "output": "YES" }, { "input": "100\n50 40 60 87 39 58 44 84 46 68 16 57 77 87 92 95 42 31 74 15 36 84 30 3 47 15 87 90 76 66 6 63 74 19 40 49 6 84 41 9 77 34 7 12 11 73 58 24 81 14 81 29 65 100 1 85 64 32 38 4 54 67 32 81 80 7 100 71 29 80 4 52 47 7 78 56 52 75 81 37 16 41 27 28 58 60 62 47 29 40 37 14 59 91 12 54 25 58 12 43", "output": "NO" }, { "input": "100\n25 6 46 37 87 99 70 31 46 12 94 40 87 56 28 8 94 39 13 12 67 13 71 39 83 48 40 14 62 41 16 71 20 41 83 41 68 98 23 82 62 83 62 35 49 22 31 21 66 98 54 39 34 52 11 28 47 89 25 44 68 36 91 46 82 86 88 48 27 93 7 9 53 36 16 100 84 84 44 25 58 66 16 46 72 21 91 78 4 17 44 17 47 67 93 89 75 44 56 50", "output": "YES" }, { "input": "2\n2 1", "output": "NO" }, { "input": "3\n2 3 1", "output": "YES" }, { "input": "5\n2 1 4 5 3", "output": "YES" }, { "input": "5\n5 4 5 5 2", "output": "YES" } ]
1,637,360,380
2,147,483,647
Python 3
OK
TESTS
16
46
0
n=int(input()) L=list(map(int,input().split())) #print(L[0],L[L[L[L[0]-1]-1]-1]) flage=0 for i in range(n): if L[i]==L[L[L[L[i]-1]-1]-1]: flage=1 break if flage==1: print('YES') else: print('NO')
Title: Love Triangle Time Limit: None seconds Memory Limit: None megabytes Problem Description: As you could know there are no male planes nor female planes. However, each plane on Earth likes some other plane. There are *n* planes on Earth, numbered from 1 to *n*, and the plane with number *i* likes the plane with number *f**i*, where 1<=≤<=*f**i*<=≤<=*n* and *f**i*<=≠<=*i*. We call a love triangle a situation in which plane *A* likes plane *B*, plane *B* likes plane *C* and plane *C* likes plane *A*. Find out if there is any love triangle on Earth. Input Specification: The first line contains a single integer *n* (2<=≤<=*n*<=≤<=5000) — the number of planes. The second line contains *n* integers *f*1,<=*f*2,<=...,<=*f**n* (1<=≤<=*f**i*<=≤<=*n*, *f**i*<=≠<=*i*), meaning that the *i*-th plane likes the *f**i*-th. Output Specification: Output «YES» if there is a love triangle consisting of planes on Earth. Otherwise, output «NO». You can output any letter in lower case or in upper case. Demo Input: ['5\n2 4 5 1 3\n', '5\n5 5 5 5 1\n'] Demo Output: ['YES\n', 'NO\n'] Note: In first example plane 2 likes plane 4, plane 4 likes plane 1, plane 1 likes plane 2 and that is a love triangle. In second example there are no love triangles.
```python n=int(input()) L=list(map(int,input().split())) #print(L[0],L[L[L[L[0]-1]-1]-1]) flage=0 for i in range(n): if L[i]==L[L[L[L[i]-1]-1]-1]: flage=1 break if flage==1: print('YES') else: print('NO') ```
3
841
B
Godsend
PROGRAMMING
1,100
[ "games", "math" ]
null
null
Leha somehow found an array consisting of *n* integers. Looking at it, he came up with a task. Two players play the game on the array. Players move one by one. The first player can choose for his move a subsegment of non-zero length with an odd sum of numbers and remove it from the array, after that the remaining parts are glued together into one array and the game continues. The second player can choose a subsegment of non-zero length with an even sum and remove it. Loses the one who can not make a move. Who will win if both play optimally?
First line of input data contains single integer *n* (1<=≤<=*n*<=≤<=106) — length of the array. Next line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=109).
Output answer in single line. "First", if first player wins, and "Second" otherwise (without quotes).
[ "4\n1 3 2 3\n", "2\n2 2\n" ]
[ "First\n", "Second\n" ]
In first sample first player remove whole array in one move and win. In second sample first player can't make a move and lose.
1,000
[ { "input": "4\n1 3 2 3", "output": "First" }, { "input": "2\n2 2", "output": "Second" }, { "input": "4\n2 4 6 8", "output": "Second" }, { "input": "5\n1 1 1 1 1", "output": "First" }, { "input": "4\n720074544 345031254 849487632 80870826", "output": "Second" }, { "input": "1\n0", "output": "Second" }, { "input": "1\n999999999", "output": "First" }, { "input": "2\n1 999999999", "output": "First" }, { "input": "4\n3 3 4 4", "output": "First" }, { "input": "2\n1 2", "output": "First" }, { "input": "8\n2 2 2 1 1 2 2 2", "output": "First" }, { "input": "5\n3 3 2 2 2", "output": "First" }, { "input": "4\n0 1 1 0", "output": "First" }, { "input": "3\n1 2 2", "output": "First" }, { "input": "6\n2 2 1 1 4 2", "output": "First" }, { "input": "8\n2 2 2 3 3 2 2 2", "output": "First" }, { "input": "4\n2 3 3 4", "output": "First" }, { "input": "10\n2 2 2 2 3 1 2 2 2 2", "output": "First" }, { "input": "6\n2 2 1 1 2 2", "output": "First" }, { "input": "3\n1 1 2", "output": "First" }, { "input": "6\n2 4 3 3 4 6", "output": "First" }, { "input": "6\n4 4 3 3 4 4", "output": "First" }, { "input": "4\n1 1 2 2", "output": "First" }, { "input": "4\n1 3 5 7", "output": "First" }, { "input": "4\n2 1 1 2", "output": "First" }, { "input": "4\n1 3 3 2", "output": "First" }, { "input": "5\n3 2 2 2 2", "output": "First" }, { "input": "3\n2 1 1", "output": "First" }, { "input": "4\n1000000000 1000000000 1000000000 99999999", "output": "First" }, { "input": "4\n2 2 1 1", "output": "First" }, { "input": "5\n2 3 2 3 2", "output": "First" }, { "input": "1\n1", "output": "First" }, { "input": "4\n1000000000 1000000000 1000000000 1", "output": "First" }, { "input": "5\n2 2 2 1 1", "output": "First" }, { "input": "6\n2 1 1 1 1 2", "output": "First" }, { "input": "6\n1 2 2 2 2 1", "output": "First" }, { "input": "11\n2 2 2 2 2 1 2 2 2 2 2", "output": "First" }, { "input": "5\n1 3 2 2 2", "output": "First" }, { "input": "3\n2 3 2", "output": "First" }, { "input": "2\n1 1", "output": "First" }, { "input": "5\n4 4 4 3 3", "output": "First" }, { "input": "5\n3 3 4 4 4", "output": "First" }, { "input": "1\n2", "output": "Second" } ]
1,630,599,597
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
6
2,000
76,697,600
def recommend_optimal_move(arr, role): remember_start = -1 remember_end = -1 max_steps = 0 if role == True: for i in range(len(arr)): sum = 0 once = True if len(arr)-i < max_steps: break for j in range(i, len(arr)): sum += arr[j] if once: start = j once = False if sum % 2 != 0: end = j+1 steps = end - start if max_steps < steps: max_steps = steps remember_start = start remember_end = end else: for i in range(len(arr)): sum = 0 once = True if len(arr)-i < max_steps: break for j in range(i, len(arr)): sum += arr[j] if once: start = j once = False if sum % 2 == 0: end = j+1 steps = end - start if max_steps < steps: max_steps = steps remember_start = start remember_end = end return remember_start, remember_end def main(): # input n = int(input()) arr = [int(i) for i in input().split()] # proccessing turn = True while True: move = recommend_optimal_move(arr, turn) if move == (-1, -1): break arr = arr[:move[0]] + arr[move[1]:] turn = not turn # output if not turn: print('First') else: print('Second') if __name__=='__main__': main()
Title: Godsend Time Limit: None seconds Memory Limit: None megabytes Problem Description: Leha somehow found an array consisting of *n* integers. Looking at it, he came up with a task. Two players play the game on the array. Players move one by one. The first player can choose for his move a subsegment of non-zero length with an odd sum of numbers and remove it from the array, after that the remaining parts are glued together into one array and the game continues. The second player can choose a subsegment of non-zero length with an even sum and remove it. Loses the one who can not make a move. Who will win if both play optimally? Input Specification: First line of input data contains single integer *n* (1<=≤<=*n*<=≤<=106) — length of the array. Next line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=109). Output Specification: Output answer in single line. "First", if first player wins, and "Second" otherwise (without quotes). Demo Input: ['4\n1 3 2 3\n', '2\n2 2\n'] Demo Output: ['First\n', 'Second\n'] Note: In first sample first player remove whole array in one move and win. In second sample first player can't make a move and lose.
```python def recommend_optimal_move(arr, role): remember_start = -1 remember_end = -1 max_steps = 0 if role == True: for i in range(len(arr)): sum = 0 once = True if len(arr)-i < max_steps: break for j in range(i, len(arr)): sum += arr[j] if once: start = j once = False if sum % 2 != 0: end = j+1 steps = end - start if max_steps < steps: max_steps = steps remember_start = start remember_end = end else: for i in range(len(arr)): sum = 0 once = True if len(arr)-i < max_steps: break for j in range(i, len(arr)): sum += arr[j] if once: start = j once = False if sum % 2 == 0: end = j+1 steps = end - start if max_steps < steps: max_steps = steps remember_start = start remember_end = end return remember_start, remember_end def main(): # input n = int(input()) arr = [int(i) for i in input().split()] # proccessing turn = True while True: move = recommend_optimal_move(arr, turn) if move == (-1, -1): break arr = arr[:move[0]] + arr[move[1]:] turn = not turn # output if not turn: print('First') else: print('Second') if __name__=='__main__': main() ```
0
120
A
Elevator
PROGRAMMING
1,000
[ "brute force", "implementation", "math" ]
null
null
A sky scraper with 1000 floors has been built in the city of N. It has modern superfast elevators to help to travel from one floor to another. Each elevator has two doors, the front one and the back one. If one goes in through the front door, he goes out through the back one and vice versa. The elevator has two rails numbered with numbers 1 and 2. Rail 1 is located to the left of the entrance to the front door (or correspondingly, to the right of the entrance to the back door). Rail 2 is located opposite it, to the right of the entrance to the front door and to the left of the entrance to the back door. We know that each person in the city of N holds at a rail with the strongest hand. One day a VIP person visited the city and of course, he took a look at the skyscraper and took a ride in the elevator. We know the door through which he entered and the rail he was holding at. Now we need to determine as soon as possible whether he is left-handed or right-handed.
The first line indicates the door through which the very important person entered the elevator. It contains "front" if the person enters the elevator through the front door and "back" if he entered the elevator through the back door. The second line contains integer *a* (1<=≤<=*a*<=≤<=2) which denotes the number of the rail at which the person was holding.
Print character "R" if the VIP is right-handed or "L" if he is left-handed.
[ "front\n1\n" ]
[ "L\n" ]
none
0
[ { "input": "front\n1", "output": "L" }, { "input": "back\n1", "output": "R" }, { "input": "front\n2", "output": "R" }, { "input": "back\n2", "output": "L" } ]
1,665,626,068
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
60
0
location, rail = input(), int(input()) if location == 'front': print('L' if rail == 1 else 'R') elif location == 'back': print('R' if rail == 1 else 'L')
Title: Elevator Time Limit: None seconds Memory Limit: None megabytes Problem Description: A sky scraper with 1000 floors has been built in the city of N. It has modern superfast elevators to help to travel from one floor to another. Each elevator has two doors, the front one and the back one. If one goes in through the front door, he goes out through the back one and vice versa. The elevator has two rails numbered with numbers 1 and 2. Rail 1 is located to the left of the entrance to the front door (or correspondingly, to the right of the entrance to the back door). Rail 2 is located opposite it, to the right of the entrance to the front door and to the left of the entrance to the back door. We know that each person in the city of N holds at a rail with the strongest hand. One day a VIP person visited the city and of course, he took a look at the skyscraper and took a ride in the elevator. We know the door through which he entered and the rail he was holding at. Now we need to determine as soon as possible whether he is left-handed or right-handed. Input Specification: The first line indicates the door through which the very important person entered the elevator. It contains "front" if the person enters the elevator through the front door and "back" if he entered the elevator through the back door. The second line contains integer *a* (1<=≤<=*a*<=≤<=2) which denotes the number of the rail at which the person was holding. Output Specification: Print character "R" if the VIP is right-handed or "L" if he is left-handed. Demo Input: ['front\n1\n'] Demo Output: ['L\n'] Note: none
```python location, rail = input(), int(input()) if location == 'front': print('L' if rail == 1 else 'R') elif location == 'back': print('R' if rail == 1 else 'L') ```
-1
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,672,419,875
2,147,483,647
PyPy 3
OK
TESTS
35
278
0
me,nu=map(int,input().split()) print(me*nu//2)
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python me,nu=map(int,input().split()) print(me*nu//2) ```
3.9305
679
A
Bear and Prime 100
PROGRAMMING
1,400
[ "constructive algorithms", "interactive", "math" ]
null
null
This is an interactive problem. In the output section below you will see the information about flushing the output. Bear Limak thinks of some hidden number — an integer from interval [2,<=100]. Your task is to say if the hidden number is prime or composite. Integer *x*<=&gt;<=1 is called prime if it has exactly two distinct divisors, 1 and *x*. If integer *x*<=&gt;<=1 is not prime, it's called composite. You can ask up to 20 queries about divisors of the hidden number. In each query you should print an integer from interval [2,<=100]. The system will answer "yes" if your integer is a divisor of the hidden number. Otherwise, the answer will be "no". For example, if the hidden number is 14 then the system will answer "yes" only if you print 2, 7 or 14. When you are done asking queries, print "prime" or "composite" and terminate your program. You will get the Wrong Answer verdict if you ask more than 20 queries, or if you print an integer not from the range [2,<=100]. Also, you will get the Wrong Answer verdict if the printed answer isn't correct. You will get the Idleness Limit Exceeded verdict if you don't print anything (but you should) or if you forget about flushing the output (more info below).
After each query you should read one string from the input. It will be "yes" if the printed integer is a divisor of the hidden number, and "no" otherwise.
Up to 20 times you can ask a query — print an integer from interval [2,<=100] in one line. You have to both print the end-of-line character and flush the output. After flushing you should read a response from the input. In any moment you can print the answer "prime" or "composite" (without the quotes). After that, flush the output and terminate your program. To flush you can use (just after printing an integer and end-of-line): - fflush(stdout) in C++; - System.out.flush() in Java; - stdout.flush() in Python; - flush(output) in Pascal; - See the documentation for other languages. Hacking. To hack someone, as the input you should print the hidden number — one integer from the interval [2,<=100]. Of course, his/her solution won't be able to read the hidden number from the input.
[ "yes\nno\nyes\n", "no\nyes\nno\nno\nno\n" ]
[ "2\n80\n5\ncomposite\n", "58\n59\n78\n78\n2\nprime\n" ]
The hidden number in the first query is 30. In a table below you can see a better form of the provided example of the communication process. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ea790051c34ea7d2761cd9b096412ca7c647a173.png" style="max-width: 100.0%;max-height: 100.0%;"/> The hidden number is divisible by both 2 and 5. Thus, it must be composite. Note that it isn't necessary to know the exact value of the hidden number. In this test, the hidden number is 30. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/35c6952617fa94ec3e0ea8e63aa1c3c49b3ba420.png" style="max-width: 100.0%;max-height: 100.0%;"/> 59 is a divisor of the hidden number. In the interval [2, 100] there is only one number with this divisor. The hidden number must be 59, which is prime. Note that the answer is known even after the second query and you could print it then and terminate. Though, it isn't forbidden to ask unnecessary queries (unless you exceed the limit of 20 queries).
750
[ { "input": "30", "output": "composite 4" }, { "input": "59", "output": "prime 15" }, { "input": "2", "output": "prime 16" }, { "input": "7", "output": "prime 16" }, { "input": "9", "output": "composite 3" }, { "input": "13", "output": "prime 15" }, { "input": "55", "output": "composite 6" }, { "input": "89", "output": "prime 15" }, { "input": "3", "output": "prime 16" }, { "input": "4", "output": "composite 2" }, { "input": "6", "output": "composite 4" }, { "input": "8", "output": "composite 2" }, { "input": "11", "output": "prime 15" }, { "input": "12", "output": "composite 2" }, { "input": "25", "output": "composite 4" }, { "input": "36", "output": "composite 2" }, { "input": "46", "output": "composite 10" }, { "input": "47", "output": "prime 15" }, { "input": "49", "output": "composite 5" }, { "input": "51", "output": "composite 8" }, { "input": "53", "output": "prime 15" }, { "input": "59", "output": "prime 15" }, { "input": "64", "output": "composite 2" }, { "input": "81", "output": "composite 3" }, { "input": "91", "output": "composite 7" }, { "input": "93", "output": "composite 12" }, { "input": "94", "output": "composite 16" }, { "input": "95", "output": "composite 9" }, { "input": "96", "output": "composite 2" }, { "input": "97", "output": "prime 15" }, { "input": "99", "output": "composite 3" }, { "input": "100", "output": "composite 2" }, { "input": "26", "output": "composite 7" }, { "input": "94", "output": "composite 16" }, { "input": "25", "output": "composite 4" }, { "input": "46", "output": "composite 10" }, { "input": "49", "output": "composite 5" }, { "input": "82", "output": "composite 14" }, { "input": "87", "output": "composite 11" }, { "input": "85", "output": "composite 8" }, { "input": "74", "output": "composite 13" }, { "input": "86", "output": "composite 15" }, { "input": "93", "output": "composite 12" }, { "input": "58", "output": "composite 11" }, { "input": "47", "output": "prime 15" }, { "input": "22", "output": "composite 6" }, { "input": "23", "output": "prime 15" }, { "input": "62", "output": "composite 12" }, { "input": "38", "output": "composite 9" }, { "input": "91", "output": "composite 7" }, { "input": "34", "output": "composite 8" }, { "input": "95", "output": "composite 9" }, { "input": "4", "output": "composite 2" }, { "input": "16", "output": "composite 2" }, { "input": "96", "output": "composite 2" }, { "input": "69", "output": "composite 10" }, { "input": "65", "output": "composite 7" }, { "input": "6", "output": "composite 4" }, { "input": "18", "output": "composite 4" } ]
1,465,461,148
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
sq=[4,9,25,49] pr=[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47] def yes(i): print i s=raw_input() return len(s)==3 def fun(): for i in sq: if yes(i)==1: return 0 m=0 for i in pr: if yes(i)==1: m+=1 if m>=2: return 0 return 1 if fun(): print 'prime' else: print 'composite' stdout.flush()
Title: Bear and Prime 100 Time Limit: None seconds Memory Limit: None megabytes Problem Description: This is an interactive problem. In the output section below you will see the information about flushing the output. Bear Limak thinks of some hidden number — an integer from interval [2,<=100]. Your task is to say if the hidden number is prime or composite. Integer *x*<=&gt;<=1 is called prime if it has exactly two distinct divisors, 1 and *x*. If integer *x*<=&gt;<=1 is not prime, it's called composite. You can ask up to 20 queries about divisors of the hidden number. In each query you should print an integer from interval [2,<=100]. The system will answer "yes" if your integer is a divisor of the hidden number. Otherwise, the answer will be "no". For example, if the hidden number is 14 then the system will answer "yes" only if you print 2, 7 or 14. When you are done asking queries, print "prime" or "composite" and terminate your program. You will get the Wrong Answer verdict if you ask more than 20 queries, or if you print an integer not from the range [2,<=100]. Also, you will get the Wrong Answer verdict if the printed answer isn't correct. You will get the Idleness Limit Exceeded verdict if you don't print anything (but you should) or if you forget about flushing the output (more info below). Input Specification: After each query you should read one string from the input. It will be "yes" if the printed integer is a divisor of the hidden number, and "no" otherwise. Output Specification: Up to 20 times you can ask a query — print an integer from interval [2,<=100] in one line. You have to both print the end-of-line character and flush the output. After flushing you should read a response from the input. In any moment you can print the answer "prime" or "composite" (without the quotes). After that, flush the output and terminate your program. To flush you can use (just after printing an integer and end-of-line): - fflush(stdout) in C++; - System.out.flush() in Java; - stdout.flush() in Python; - flush(output) in Pascal; - See the documentation for other languages. Hacking. To hack someone, as the input you should print the hidden number — one integer from the interval [2,<=100]. Of course, his/her solution won't be able to read the hidden number from the input. Demo Input: ['yes\nno\nyes\n', 'no\nyes\nno\nno\nno\n'] Demo Output: ['2\n80\n5\ncomposite\n', '58\n59\n78\n78\n2\nprime\n'] Note: The hidden number in the first query is 30. In a table below you can see a better form of the provided example of the communication process. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ea790051c34ea7d2761cd9b096412ca7c647a173.png" style="max-width: 100.0%;max-height: 100.0%;"/> The hidden number is divisible by both 2 and 5. Thus, it must be composite. Note that it isn't necessary to know the exact value of the hidden number. In this test, the hidden number is 30. <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/35c6952617fa94ec3e0ea8e63aa1c3c49b3ba420.png" style="max-width: 100.0%;max-height: 100.0%;"/> 59 is a divisor of the hidden number. In the interval [2, 100] there is only one number with this divisor. The hidden number must be 59, which is prime. Note that the answer is known even after the second query and you could print it then and terminate. Though, it isn't forbidden to ask unnecessary queries (unless you exceed the limit of 20 queries).
```python sq=[4,9,25,49] pr=[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47] def yes(i): print i s=raw_input() return len(s)==3 def fun(): for i in sq: if yes(i)==1: return 0 m=0 for i in pr: if yes(i)==1: m+=1 if m>=2: return 0 return 1 if fun(): print 'prime' else: print 'composite' stdout.flush() ```
-1
653
B
Bear and Compressing
PROGRAMMING
1,300
[ "brute force", "dfs and similar", "dp", "strings" ]
null
null
Limak is a little polar bear. Polar bears hate long strings and thus they like to compress them. You should also know that Limak is so young that he knows only first six letters of the English alphabet: 'a', 'b', 'c', 'd', 'e' and 'f'. You are given a set of *q* possible operations. Limak can perform them in any order, any operation may be applied any number of times. The *i*-th operation is described by a string *a**i* of length two and a string *b**i* of length one. No two of *q* possible operations have the same string *a**i*. When Limak has a string *s* he can perform the *i*-th operation on *s* if the first two letters of *s* match a two-letter string *a**i*. Performing the *i*-th operation removes first two letters of *s* and inserts there a string *b**i*. See the notes section for further clarification. You may note that performing an operation decreases the length of a string *s* exactly by 1. Also, for some sets of operations there may be a string that cannot be compressed any further, because the first two letters don't match any *a**i*. Limak wants to start with a string of length *n* and perform *n*<=-<=1 operations to finally get a one-letter string "a". In how many ways can he choose the starting string to be able to get "a"? Remember that Limak can use only letters he knows.
The first line contains two integers *n* and *q* (2<=≤<=*n*<=≤<=6, 1<=≤<=*q*<=≤<=36) — the length of the initial string and the number of available operations. The next *q* lines describe the possible operations. The *i*-th of them contains two strings *a**i* and *b**i* (|*a**i*|<==<=2,<=|*b**i*|<==<=1). It's guaranteed that *a**i*<=≠<=*a**j* for *i*<=≠<=*j* and that all *a**i* and *b**i* consist of only first six lowercase English letters.
Print the number of strings of length *n* that Limak will be able to transform to string "a" by applying only operations given in the input.
[ "3 5\nab a\ncc c\nca a\nee c\nff d\n", "2 8\naf e\ndc d\ncc f\nbc b\nda b\neb a\nbb b\nff c\n", "6 2\nbb a\nba a\n" ]
[ "4\n", "1\n", "0\n" ]
In the first sample, we count initial strings of length 3 from which Limak can get a required string "a". There are 4 such strings: "abb", "cab", "cca", "eea". The first one Limak can compress using operation 1 two times (changing "ab" to a single "a"). The first operation would change "abb" to "ab" and the second operation would change "ab" to "a". Other three strings may be compressed as follows: - "cab" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "ab" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "a" - "cca" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "ca" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "a" - "eea" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "ca" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "a" In the second sample, the only correct initial string is "eb" because it can be immediately compressed to "a".
1,000
[ { "input": "3 5\nab a\ncc c\nca a\nee c\nff d", "output": "4" }, { "input": "2 8\naf e\ndc d\ncc f\nbc b\nda b\neb a\nbb b\nff c", "output": "1" }, { "input": "6 2\nbb a\nba a", "output": "0" }, { "input": "2 5\nfe b\nbb a\naf b\nfd b\nbf c", "output": "1" }, { "input": "3 4\neb b\nbd a\ncd d\nbb b", "output": "2" }, { "input": "3 36\nab b\nbb a\naf c\nbd b\ncd a\nff c\nce a\nae a\ncb a\nba a\nad d\ndb a\nbf a\nbe a\ncc b\ndc a\nbc a\nca e\naa e\nec b\nac e\ned b\ndf d\nfa b\nea a\nef b\nee a\nda c\ncf a\nfe d\ndd f\nde a\neb f\nfd a\nfc a\nfb a", "output": "86" }, { "input": "4 20\naf a\nad a\nac a\nbe a\nbc a\naa a\nab a\nbb a\neb a\nbd a\nbf a\ndc a\nea a\ncf a\ncd a\ncb a\nee a\nca a\nba a\nce a", "output": "500" }, { "input": "6 4\nca a\nbe f\nad a\ncf a", "output": "3" }, { "input": "2 15\nbc c\nbd a\nab b\nca a\ndf b\naa c\nae b\nac c\ncd a\nba e\nad d\nbb d\ned a\nfa a\nbf b", "output": "5" }, { "input": "2 36\nad a\nae f\nac a\naa a\ncb b\nde e\nbe a\nea d\ncd b\nab a\nbf a\nba d\ncc c\ndc a\naf a\nca e\nda c\nbb c\nee b\nbd a\ned b\ndf b\nfd c\ndb d\nbc a\ncf d\nff d\ndd a\neb c\nce a\nfa c\nfe b\nec c\nef b\nfb a\nfc a", "output": "14" }, { "input": "3 20\nca a\nbf d\nac a\nad b\neb a\naf a\nbe c\nbd a\ncb a\ncd c\nce b\nbc c\nbb a\ndd f\ndc e\ncf e\nfc e\naa d\nba c\nae d", "output": "29" }, { "input": "4 35\nae f\nad d\naa a\neb d\nfb a\nce b\naf c\nfe c\nca a\nab a\nbd d\nbc a\nbe a\nbb f\nba c\ncb a\ncd a\nac c\ncc b\nbf b\ndb a\nfa a\ned b\nea a\nee d\nec a\ncf d\ndd a\nfc a\ndf a\nff a\ndc b\nef d\nde e\nda b", "output": "529" }, { "input": "5 10\nba a\nbb c\nad a\nac c\nbc b\nfa b\nab b\nbe a\nbf a\naa b", "output": "184" }, { "input": "5 20\nbd a\nac a\nad a\ncc a\naf a\nbe a\nbb a\ncb a\nca a\nab a\nbc a\nae a\ndb a\naa a\nbf a\nde a\nba a\ncf a\nda a\ned a", "output": "4320" }, { "input": "5 20\naf f\nae f\naa f\nbd f\nfc f\ndd f\nba f\nac f\nbe f\neb f\nad f\ncb f\nce f\ncf f\nbc f\nca f\nde f\nab f\nbf f\ncc f", "output": "0" }, { "input": "5 36\nac a\ncc c\nae f\nca a\nba a\nbe c\ndc e\nbc a\naa a\nad d\naf b\ncd c\ndf c\nbf b\nfb e\nef a\nbb b\nbd a\nce b\nab b\ndb c\nda b\ncf d\nfd c\nfa a\ncb c\nfe a\nea a\nfc e\ndd d\nde a\neb a\nec a\ned d\nee c\nff a", "output": "2694" }, { "input": "6 1\nbf a", "output": "0" }, { "input": "6 5\naa b\nad d\nba b\ndc d\nac a", "output": "1" }, { "input": "6 15\nad b\ncb b\naf b\nae c\nbc e\nbd a\nac a\nda b\nab c\ncc d\nce f\ndc b\nca a\nba c\nbb a", "output": "744" }, { "input": "6 15\naf a\nae a\nbc a\ncc a\nbe a\nff a\nab a\nbd a\nce a\nad a\ndb a\nee a\nba a\nda a\naa a", "output": "9375" }, { "input": "6 15\nab b\nbd b\nae b\ncd b\nac b\nba b\ndc b\nbc b\nbb b\nbf b\nef b\naa b\ndd b\ncf b\nfc b", "output": "0" }, { "input": "6 24\nab b\ncb b\naf a\nde c\ndb c\nad b\nca c\nbe c\nda e\nbb a\nbf a\nae a\nbc c\nba a\naa a\ncc f\ndc a\nac b\ncf c\ndd b\ndf a\ncd d\nbd d\neb b", "output": "7993" }, { "input": "6 35\ndc c\nba b\nae e\nab a\naa b\nbb a\nbe b\ndb b\naf b\ncd b\nde b\ncf d\nac b\neb a\ndd a\nce b\nad c\ncc a\ncb c\nbc a\nbd b\ndf d\nea e\nfe c\nbf a\nfc a\nef d\nec b\nda c\ned b\nca a\nff a\nee b\nfb b\nfa e", "output": "15434" }, { "input": "6 36\nbf f\nbb d\nff f\nac a\nad c\nbd e\ndd a\naa c\nab a\nba b\naf a\nda c\nce f\nea c\nde a\nca f\ndc f\nec b\ncc a\nae b\nbe b\nbc c\nee e\ncb b\nfb a\ncd d\ndb a\nef a\ncf d\neb c\ndf b\nfd a\ned a\nfe c\nfa b\nfc a", "output": "15314" }, { "input": "6 1\naa a", "output": "1" }, { "input": "6 1\nbb a", "output": "0" }, { "input": "6 1\nba a", "output": "0" }, { "input": "6 1\nab a", "output": "1" }, { "input": "6 36\nac a\naf a\ndb a\nab a\ncb a\nef a\nad a\nbd a\nfe a\nde a\nbe a\nbb a\naa a\nae a\ndf a\nbc a\nbf a\nce a\nba a\nfd a\ndc a\neb a\ncd a\nca a\nee a\ncc a\ncf a\ndd a\nda a\nec a\nfc a\nfa a\nea a\ned a\nff a\nfb a", "output": "46656" }, { "input": "6 36\naf f\nbd f\nba f\nbf f\nac f\nbe f\nbc f\nef f\naa f\neb f\nab f\nae f\nda f\ndc f\ncd f\nea f\ncb f\nad f\nbb f\ncc f\nce f\ndf f\nfa f\ncf f\ned f\nfe f\nfd f\nee f\ndb f\nde f\ndd f\nca f\nfb f\nec f\nff f\nfc f", "output": "0" }, { "input": "6 36\naa a\nab f\nac a\nad b\nae c\naf d\nba f\nbb a\nbc b\nbd c\nbe d\nbf e\nca f\ncb a\ncc b\ncd c\nce d\ncf e\nda f\ndb a\ndc b\ndd c\nde d\ndf e\nea f\neb a\nec b\ned c\nee d\nef e\nfa f\nfb a\nfc b\nfd c\nfe d\nff e", "output": "9331" }, { "input": "5 5\nab a\ncc c\nca a\nee c\nff d", "output": "8" } ]
1,591,344,332
2,147,483,647
Python 3
OK
TESTS
32
1,778
6,246,400
from itertools import product def bear_and_compressing(): n, q = input().split() n, q = int(n), int(q) o = [] j = [] for _ in range(q): o.append(list(input())) s = list(product('abcdef', repeat=n)) for i in s: j.append(list(i)) for _ in range(n): for i in j: for x in o: try: if i[0] == x[0] and i[1] == x[1]: i.pop(0) i[0] = x[3] except IndexError: continue count = j.count(['a']) print(count) if __name__ == '__main__': bear_and_compressing()
Title: Bear and Compressing Time Limit: None seconds Memory Limit: None megabytes Problem Description: Limak is a little polar bear. Polar bears hate long strings and thus they like to compress them. You should also know that Limak is so young that he knows only first six letters of the English alphabet: 'a', 'b', 'c', 'd', 'e' and 'f'. You are given a set of *q* possible operations. Limak can perform them in any order, any operation may be applied any number of times. The *i*-th operation is described by a string *a**i* of length two and a string *b**i* of length one. No two of *q* possible operations have the same string *a**i*. When Limak has a string *s* he can perform the *i*-th operation on *s* if the first two letters of *s* match a two-letter string *a**i*. Performing the *i*-th operation removes first two letters of *s* and inserts there a string *b**i*. See the notes section for further clarification. You may note that performing an operation decreases the length of a string *s* exactly by 1. Also, for some sets of operations there may be a string that cannot be compressed any further, because the first two letters don't match any *a**i*. Limak wants to start with a string of length *n* and perform *n*<=-<=1 operations to finally get a one-letter string "a". In how many ways can he choose the starting string to be able to get "a"? Remember that Limak can use only letters he knows. Input Specification: The first line contains two integers *n* and *q* (2<=≤<=*n*<=≤<=6, 1<=≤<=*q*<=≤<=36) — the length of the initial string and the number of available operations. The next *q* lines describe the possible operations. The *i*-th of them contains two strings *a**i* and *b**i* (|*a**i*|<==<=2,<=|*b**i*|<==<=1). It's guaranteed that *a**i*<=≠<=*a**j* for *i*<=≠<=*j* and that all *a**i* and *b**i* consist of only first six lowercase English letters. Output Specification: Print the number of strings of length *n* that Limak will be able to transform to string "a" by applying only operations given in the input. Demo Input: ['3 5\nab a\ncc c\nca a\nee c\nff d\n', '2 8\naf e\ndc d\ncc f\nbc b\nda b\neb a\nbb b\nff c\n', '6 2\nbb a\nba a\n'] Demo Output: ['4\n', '1\n', '0\n'] Note: In the first sample, we count initial strings of length 3 from which Limak can get a required string "a". There are 4 such strings: "abb", "cab", "cca", "eea". The first one Limak can compress using operation 1 two times (changing "ab" to a single "a"). The first operation would change "abb" to "ab" and the second operation would change "ab" to "a". Other three strings may be compressed as follows: - "cab" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "ab" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "a" - "cca" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "ca" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "a" - "eea" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "ca" <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> "a" In the second sample, the only correct initial string is "eb" because it can be immediately compressed to "a".
```python from itertools import product def bear_and_compressing(): n, q = input().split() n, q = int(n), int(q) o = [] j = [] for _ in range(q): o.append(list(input())) s = list(product('abcdef', repeat=n)) for i in s: j.append(list(i)) for _ in range(n): for i in j: for x in o: try: if i[0] == x[0] and i[1] == x[1]: i.pop(0) i[0] = x[3] except IndexError: continue count = j.count(['a']) print(count) if __name__ == '__main__': bear_and_compressing() ```
3
9
A
Die Roll
PROGRAMMING
800
[ "math", "probabilities" ]
A. Die Roll
1
64
Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place. But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams. Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania. It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.
The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls.
Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1».
[ "4 2\n" ]
[ "1/2\n" ]
Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
0
[ { "input": "4 2", "output": "1/2" }, { "input": "1 1", "output": "1/1" }, { "input": "1 2", "output": "5/6" }, { "input": "1 3", "output": "2/3" }, { "input": "1 4", "output": "1/2" }, { "input": "1 5", "output": "1/3" }, { "input": "1 6", "output": "1/6" }, { "input": "2 1", "output": "5/6" }, { "input": "2 2", "output": "5/6" }, { "input": "2 3", "output": "2/3" }, { "input": "2 4", "output": "1/2" }, { "input": "2 5", "output": "1/3" }, { "input": "2 6", "output": "1/6" }, { "input": "3 1", "output": "2/3" }, { "input": "3 2", "output": "2/3" }, { "input": "3 3", "output": "2/3" }, { "input": "3 4", "output": "1/2" }, { "input": "3 5", "output": "1/3" }, { "input": "3 6", "output": "1/6" }, { "input": "4 1", "output": "1/2" }, { "input": "4 3", "output": "1/2" }, { "input": "4 4", "output": "1/2" }, { "input": "4 5", "output": "1/3" }, { "input": "4 6", "output": "1/6" }, { "input": "5 1", "output": "1/3" }, { "input": "5 2", "output": "1/3" }, { "input": "5 3", "output": "1/3" }, { "input": "5 4", "output": "1/3" }, { "input": "5 5", "output": "1/3" }, { "input": "5 6", "output": "1/6" }, { "input": "6 1", "output": "1/6" }, { "input": "6 2", "output": "1/6" }, { "input": "6 3", "output": "1/6" }, { "input": "6 4", "output": "1/6" }, { "input": "6 5", "output": "1/6" }, { "input": "6 6", "output": "1/6" } ]
1,614,682,518
2,147,483,647
Python 3
OK
TESTS
36
124
307,200
y,w = [int(x) for x in input().split()] import math dice = [1,2,3,4,5,6] x = dice.index(max(y,w)) new = dice[x:] i = len(new) if i==6: print("1/1") elif i==0: print("0/1") else: g = math.gcd(i,6) print("{}/{}".format(str(i//g),str(6//g)))
Title: Die Roll Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place. But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams. Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania. It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win. Input Specification: The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls. Output Specification: Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1». Demo Input: ['4 2\n'] Demo Output: ['1/2\n'] Note: Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
```python y,w = [int(x) for x in input().split()] import math dice = [1,2,3,4,5,6] x = dice.index(max(y,w)) new = dice[x:] i = len(new) if i==6: print("1/1") elif i==0: print("0/1") else: g = math.gcd(i,6) print("{}/{}".format(str(i//g),str(6//g))) ```
3.935711
447
B
DZY Loves Strings
PROGRAMMING
1,000
[ "greedy", "implementation" ]
null
null
DZY loves collecting special strings which only contain lowercase letters. For each lowercase letter *c* DZY knows its value *w**c*. For each special string *s*<==<=*s*1*s*2... *s*|*s*| (|*s*| is the length of the string) he represents its value with a function *f*(*s*), where Now DZY has a string *s*. He wants to insert *k* lowercase letters into this string in order to get the largest possible value of the resulting string. Can you help him calculate the largest possible value he could get?
The first line contains a single string *s* (1<=≤<=|*s*|<=≤<=103). The second line contains a single integer *k* (0<=≤<=*k*<=≤<=103). The third line contains twenty-six integers from *w**a* to *w**z*. Each such number is non-negative and doesn't exceed 1000.
Print a single integer — the largest possible value of the resulting string DZY could get.
[ "abc\n3\n1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n" ]
[ "41\n" ]
In the test sample DZY can obtain "abcbbc", *value* = 1·1 + 2·2 + 3·2 + 4·2 + 5·2 + 6·2 = 41.
1,000
[ { "input": "abc\n3\n1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "41" }, { "input": "mmzhr\n3\n443 497 867 471 195 670 453 413 579 466 553 881 847 642 269 996 666 702 487 209 257 741 974 133 519 453", "output": "29978" }, { "input": "ajeeseerqnpaujubmajpibxrccazaawetywxmifzehojf\n23\n359 813 772 413 733 654 33 87 890 433 395 311 801 852 376 148 914 420 636 695 583 733 664 394 407 314", "output": "1762894" }, { "input": "uahngxejpomhbsebcxvelfsojbaouynnlsogjyvktpwwtcyddkcdqcqs\n34\n530 709 150 660 947 830 487 142 208 276 885 542 138 214 76 184 273 753 30 195 722 236 82 691 572 585", "output": "2960349" }, { "input": "xnzeqmouqyzvblcidmhbkqmtusszuczadpooslqxegldanwopilmdwzbczvrwgnwaireykwpugvpnpafbxlyggkgawghysufuegvmzvpgcqyjkoadcreaguzepbendwnowsuekxxivkziibxvxfoilofxcgnxvfefyezfhevfvtetsuhwtyxdlkccdkvqjl\n282\n170 117 627 886 751 147 414 187 150 960 410 70 576 681 641 729 798 877 611 108 772 643 683 166 305 933", "output": "99140444" }, { "input": "pplkqmluhfympkjfjnfdkwrkpumgdmbkfbbldpepicbbmdgafttpopzdxsevlqbtywzkoxyviglbbxsohycbdqksrhlumsldiwzjmednbkcjishkiekfrchzuztkcxnvuykhuenqojrmzaxlaoxnljnvqgnabtmcftisaazzgbmubmpsorygyusmeonrhrgphnfhlaxrvyhuxsnnezjxmdoklpquzpvjbxgbywppmegzxknhfzyygrmejleesoqfwheulmqhonqaukyuejtwxskjldplripyihbfpookxkuehiwqthbfafyrgmykuxglpplozycgydyecqkgfjljfqvigqhuxssqqtfanwszduwbsoytnrtgc\n464\n838 95 473 955 690 84 436 19 179 437 674 626 377 365 781 4 733 776 462 203 119 256 381 668 855 686", "output": "301124161" }, { "input": "qkautnuilwlhjsldfcuwhiqtgtoihifszlyvfaygrnivzgvwthkrzzdtfjcirrjjlrmjtbjlzmjeqmuffsjorjyggzefwgvmblvotvzffnwjhqxorpowzdcnfksdibezdtfjjxfozaghieksbmowrbeehuxlesmvqjsphlvauxiijm\n98\n121 622 0 691 616 959 838 161 581 862 876 830 267 812 598 106 337 73 588 323 999 17 522 399 657 495", "output": "30125295" }, { "input": "tghyxqfmhz\n8\n191 893 426 203 780 326 148 259 182 140 847 636 778 97 167 773 219 891 758 993 695 603 223 779 368 165", "output": "136422" }, { "input": "nyawbfjxnxjiyhwkydaruozobpphgjqdpfdqzezcsoyvurnapu\n30\n65 682 543 533 990 148 815 821 315 916 632 771 332 513 472 864 12 73 548 687 660 572 507 192 226 348", "output": "2578628" }, { "input": "pylrnkrbcjgoytvdnhmlvnkknijkdgdhworlvtwuonrkhrilkewcnofodaumgvnsisxooswgrgtvdeauyxhkipfoxrrtysuepjcf\n60\n894 206 704 179 272 337 413 828 119 182 330 46 440 102 250 191 242 539 678 783 843 431 612 567 33 338", "output": "9168707" }, { "input": "vhjnkrxbyhjhnjrxvwxmhxwoxttbtqosfxtcuvhfjlkyfspeypthsdkkwnqdpxdlnxsgtzvkrgqosgfjrwetqbxgoarkjhrjbspzgblsapifltkfxbfdbxqwoohlgyzijmiwnpmveybyzvasoctxsmgjehpyysmqblwnmkappbecklqjfmxhlyceordroflnposohfplrvijxbwvqdtvzhobtrumiujnyrfbwthvciinuveoizkccelxtaveiiagryqnyvsgfnipnavrtmdqlcnldepocbpzmqnarkdvykds\n276\n364 244 798 82 582 9 309 950 286 547 892 371 569 159 705 975 740 845 655 179 130 993 255 552 882 657", "output": "144901921" }, { "input": "gsaddmezrnttfalbwlqbnedumvikplfosw\n12\n290 850 872 361 483 895 152 118 974 619 701 154 899 285 328 712 669 984 407 340 851 775 324 892 554 860", "output": "809931" }, { "input": "a\n0\n5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "5" }, { "input": "lol\n3\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "21" } ]
1,587,867,824
2,147,483,647
PyPy 3
OK
TESTS
24
218
2,355,200
from string import ascii_lowercase def main(): s = input() k = int(input()) w = list(map(int,input().split())) func = dict(zip(ascii_lowercase,w)) z = max(w) score = 0 j = 1 for i in s: score += func[i]*j j += 1 score += ((len(s)*k + (k*(k+1))//2)*z) print(score) if __name__ == '__main__': main()
Title: DZY Loves Strings Time Limit: None seconds Memory Limit: None megabytes Problem Description: DZY loves collecting special strings which only contain lowercase letters. For each lowercase letter *c* DZY knows its value *w**c*. For each special string *s*<==<=*s*1*s*2... *s*|*s*| (|*s*| is the length of the string) he represents its value with a function *f*(*s*), where Now DZY has a string *s*. He wants to insert *k* lowercase letters into this string in order to get the largest possible value of the resulting string. Can you help him calculate the largest possible value he could get? Input Specification: The first line contains a single string *s* (1<=≤<=|*s*|<=≤<=103). The second line contains a single integer *k* (0<=≤<=*k*<=≤<=103). The third line contains twenty-six integers from *w**a* to *w**z*. Each such number is non-negative and doesn't exceed 1000. Output Specification: Print a single integer — the largest possible value of the resulting string DZY could get. Demo Input: ['abc\n3\n1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n'] Demo Output: ['41\n'] Note: In the test sample DZY can obtain "abcbbc", *value* = 1·1 + 2·2 + 3·2 + 4·2 + 5·2 + 6·2 = 41.
```python from string import ascii_lowercase def main(): s = input() k = int(input()) w = list(map(int,input().split())) func = dict(zip(ascii_lowercase,w)) z = max(w) score = 0 j = 1 for i in s: score += func[i]*j j += 1 score += ((len(s)*k + (k*(k+1))//2)*z) print(score) if __name__ == '__main__': main() ```
3
721
B
Passwords
PROGRAMMING
1,100
[ "implementation", "math", "sortings", "strings" ]
null
null
Vanya is managed to enter his favourite site Codehorses. Vanya uses *n* distinct passwords for sites at all, however he can't remember which one exactly he specified during Codehorses registration. Vanya will enter passwords in order of non-decreasing their lengths, and he will enter passwords of same length in arbitrary order. Just when Vanya will have entered the correct password, he is immediately authorized on the site. Vanya will not enter any password twice. Entering any passwords takes one second for Vanya. But if Vanya will enter wrong password *k* times, then he is able to make the next try only 5 seconds after that. Vanya makes each try immediately, that is, at each moment when Vanya is able to enter password, he is doing that. Determine how many seconds will Vanya need to enter Codehorses in the best case for him (if he spends minimum possible number of second) and in the worst case (if he spends maximum possible amount of seconds).
The first line of the input contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=100) — the number of Vanya's passwords and the number of failed tries, after which the access to the site is blocked for 5 seconds. The next *n* lines contains passwords, one per line — pairwise distinct non-empty strings consisting of latin letters and digits. Each password length does not exceed 100 characters. The last line of the input contains the Vanya's Codehorses password. It is guaranteed that the Vanya's Codehorses password is equal to some of his *n* passwords.
Print two integers — time (in seconds), Vanya needs to be authorized to Codehorses in the best case for him and in the worst case respectively.
[ "5 2\ncba\nabc\nbb1\nabC\nABC\nabc\n", "4 100\n11\n22\n1\n2\n22\n" ]
[ "1 15\n", "3 4\n" ]
Consider the first sample case. As soon as all passwords have the same length, Vanya can enter the right password at the first try as well as at the last try. If he enters it at the first try, he spends exactly 1 second. Thus in the best case the answer is 1. If, at the other hand, he enters it at the last try, he enters another 4 passwords before. He spends 2 seconds to enter first 2 passwords, then he waits 5 seconds as soon as he made 2 wrong tries. Then he spends 2 more seconds to enter 2 wrong passwords, again waits 5 seconds and, finally, enters the correct password spending 1 more second. In summary in the worst case he is able to be authorized in 15 seconds. Consider the second sample case. There is no way of entering passwords and get the access to the site blocked. As soon as the required password has length of 2, Vanya enters all passwords of length 1 anyway, spending 2 seconds for that. Then, in the best case, he immediately enters the correct password and the answer for the best case is 3, but in the worst case he enters wrong password of length 2 and only then the right one, spending 4 seconds at all.
1,000
[ { "input": "5 2\ncba\nabc\nbb1\nabC\nABC\nabc", "output": "1 15" }, { "input": "4 100\n11\n22\n1\n2\n22", "output": "3 4" }, { "input": "1 1\na1\na1", "output": "1 1" }, { "input": "1 100\na1\na1", "output": "1 1" }, { "input": "2 1\nabc\nAbc\nAbc", "output": "1 7" }, { "input": "2 2\nabc\nAbc\nabc", "output": "1 2" }, { "input": "2 1\nab\nabc\nab", "output": "1 1" }, { "input": "2 2\nab\nabc\nab", "output": "1 1" }, { "input": "2 1\nab\nabc\nabc", "output": "7 7" }, { "input": "2 2\nab\nabc\nabc", "output": "2 2" }, { "input": "10 3\nOIbV1igi\no\nZS\nQM\n9woLzI\nWreboD\nQ7yl\nA5Rb\nS9Lno72TkP\nfT97o\no", "output": "1 1" }, { "input": "10 3\nHJZNMsT\nLaPcH2C\nlrhqIO\n9cxw\noTC1XwjW\nGHL9Ul6\nUyIs\nPuzwgR4ZKa\nyIByoKR5\nd3QA\nPuzwgR4ZKa", "output": "25 25" }, { "input": "20 5\nvSyC787KlIL8kZ2Uv5sw\nWKWOP\n7i8J3E8EByIq\nNW2VyGweL\nmyR2sRNu\nmXusPP0\nf4jgGxra\n4wHRzRhOCpEt\npPz9kybGb\nOtSpePCRoG5nkjZ2VxRy\nwHYsSttWbJkg\nKBOP9\nQfiOiFyHPPsw3GHo8J8\nxB8\nqCpehZEeEhdq\niOLjICK6\nQ91\nHmCsfMGTFKoFFnv238c\nJKjhg\ngkEUh\nKBOP9", "output": "3 11" }, { "input": "15 2\nw6S9WyU\nMVh\nkgUhQHW\nhGQNOF\nUuym\n7rGQA\nBM8vLPRB\n9E\nDs32U\no\nz1aV2C5T\n8\nzSXjrqQ\n1FO\n3kIt\nBM8vLPRB", "output": "44 50" }, { "input": "20 2\ni\n5Rp6\nE4vsr\nSY\nORXx\nh13C\nk6tzC\ne\nN\nKQf4C\nWZcdL\ndiA3v\n0InQT\nuJkAr\nGCamp\nBuIRd\nY\nM\nxZYx7\n0a5A\nWZcdL", "output": "36 65" }, { "input": "20 2\naWLQ6\nSgQ9r\nHcPdj\n2BNaO\n3TjNb\nnvwFM\nqsKt7\nFnb6N\nLoc0p\njxuLq\nBKAjf\nEKgZB\nBfOSa\nsMIvr\nuIWcR\nIura3\nLAqSf\ntXq3G\n8rQ8I\n8otAO\nsMIvr", "output": "1 65" }, { "input": "20 15\n0ZpQugVlN7\nm0SlKGnohN\nRFXTqhNGcn\n1qm2ZbB\nQXtJWdf78P\nbc2vH\nP21dty2Z1P\nm2c71LFhCk\n23EuP1Dvh3\nanwri5RhQN\n55v6HYv288\n1u5uKOjM5r\n6vg0GC1\nDAPYiA3ns1\nUZaaJ3Gmnk\nwB44x7V4Zi\n4hgB2oyU8P\npYFQpy8gGK\ndbz\nBv\n55v6HYv288", "output": "6 25" }, { "input": "3 1\na\nb\naa\naa", "output": "13 13" }, { "input": "6 3\nab\nac\nad\nabc\nabd\nabe\nabc", "output": "9 11" }, { "input": "4 2\n1\n2\n11\n22\n22", "output": "8 9" }, { "input": "2 1\n1\n12\n12", "output": "7 7" }, { "input": "3 1\nab\nabc\nabd\nabc", "output": "7 13" }, { "input": "2 1\na\nab\nab", "output": "7 7" }, { "input": "5 2\na\nb\nc\nab\naa\naa", "output": "9 15" }, { "input": "6 1\n1\n2\n11\n22\n111\n2222\n22", "output": "13 19" }, { "input": "3 1\n1\n2\n11\n11", "output": "13 13" }, { "input": "10 4\na\nb\nc\nd\ne\nf\nab\ncd\nac\nad\nac", "output": "12 20" }, { "input": "4 2\na\nb\nc\nd\na", "output": "1 9" }, { "input": "4 1\n1\n2\n3\n4\n4", "output": "1 19" }, { "input": "5 1\na\nb\nc\nd\nef\nef", "output": "25 25" }, { "input": "6 4\n1\n2\n22\n33\n44\n555\n555", "output": "11 11" }, { "input": "5 2\na\nb\nc\nd\nab\nab", "output": "15 15" }, { "input": "6 2\n1\n2\n3\n4\n5\n23\n23", "output": "16 16" }, { "input": "4 2\na\nb\naa\nbb\naa", "output": "8 9" }, { "input": "5 4\na\nbb\ncc\ndd\nee\nbb", "output": "2 10" }, { "input": "4 1\na\nb\nc\nab\nab", "output": "19 19" }, { "input": "7 100\na\nb\nc\nd\ne\ng\nab\nab", "output": "7 7" }, { "input": "6 1\na\nb\nc\nd\ne\naa\naa", "output": "31 31" }, { "input": "4 1\na\nas\nasd\nasde\nasde", "output": "19 19" }, { "input": "5 2\n1\n2\n3\n11\n22\n22", "output": "9 15" }, { "input": "10 2\na\nb\nc\nd\nee\nff\ngg\nhh\nii\njj\nii", "output": "15 30" }, { "input": "3 1\na\nab\nbc\nab", "output": "7 13" }, { "input": "6 4\na\nb\nc\nbb\nbc\ncc\ncc", "output": "4 11" } ]
1,590,430,412
2,147,483,647
Python 3
OK
TESTS
66
124
307,200
a = input().split(" ") n = int(a[0]) k = int(a[1]) a = [] for i in range(n): a.append(len(input())) a.sort() tar = len(input()) res_min = 0 res_max = 0 for i in range(n): if a[i] == tar and (i == 0 or a[i-1] != tar): t = i + 1 res_min = t if (t % k == 0): res_min += (t // k - 1) * 5 else: res_min += (t // k) * 5 if a[i] == tar and (i == n - 1 or a[i + 1] > tar): t = i + 1 res_max = t if (t % k == 0): res_max += (t // k - 1) * 5 else: res_max += (t // k) * 5 print(res_min, res_max)
Title: Passwords Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vanya is managed to enter his favourite site Codehorses. Vanya uses *n* distinct passwords for sites at all, however he can't remember which one exactly he specified during Codehorses registration. Vanya will enter passwords in order of non-decreasing their lengths, and he will enter passwords of same length in arbitrary order. Just when Vanya will have entered the correct password, he is immediately authorized on the site. Vanya will not enter any password twice. Entering any passwords takes one second for Vanya. But if Vanya will enter wrong password *k* times, then he is able to make the next try only 5 seconds after that. Vanya makes each try immediately, that is, at each moment when Vanya is able to enter password, he is doing that. Determine how many seconds will Vanya need to enter Codehorses in the best case for him (if he spends minimum possible number of second) and in the worst case (if he spends maximum possible amount of seconds). Input Specification: The first line of the input contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=100) — the number of Vanya's passwords and the number of failed tries, after which the access to the site is blocked for 5 seconds. The next *n* lines contains passwords, one per line — pairwise distinct non-empty strings consisting of latin letters and digits. Each password length does not exceed 100 characters. The last line of the input contains the Vanya's Codehorses password. It is guaranteed that the Vanya's Codehorses password is equal to some of his *n* passwords. Output Specification: Print two integers — time (in seconds), Vanya needs to be authorized to Codehorses in the best case for him and in the worst case respectively. Demo Input: ['5 2\ncba\nabc\nbb1\nabC\nABC\nabc\n', '4 100\n11\n22\n1\n2\n22\n'] Demo Output: ['1 15\n', '3 4\n'] Note: Consider the first sample case. As soon as all passwords have the same length, Vanya can enter the right password at the first try as well as at the last try. If he enters it at the first try, he spends exactly 1 second. Thus in the best case the answer is 1. If, at the other hand, he enters it at the last try, he enters another 4 passwords before. He spends 2 seconds to enter first 2 passwords, then he waits 5 seconds as soon as he made 2 wrong tries. Then he spends 2 more seconds to enter 2 wrong passwords, again waits 5 seconds and, finally, enters the correct password spending 1 more second. In summary in the worst case he is able to be authorized in 15 seconds. Consider the second sample case. There is no way of entering passwords and get the access to the site blocked. As soon as the required password has length of 2, Vanya enters all passwords of length 1 anyway, spending 2 seconds for that. Then, in the best case, he immediately enters the correct password and the answer for the best case is 3, but in the worst case he enters wrong password of length 2 and only then the right one, spending 4 seconds at all.
```python a = input().split(" ") n = int(a[0]) k = int(a[1]) a = [] for i in range(n): a.append(len(input())) a.sort() tar = len(input()) res_min = 0 res_max = 0 for i in range(n): if a[i] == tar and (i == 0 or a[i-1] != tar): t = i + 1 res_min = t if (t % k == 0): res_min += (t // k - 1) * 5 else: res_min += (t // k) * 5 if a[i] == tar and (i == n - 1 or a[i + 1] > tar): t = i + 1 res_max = t if (t % k == 0): res_max += (t // k - 1) * 5 else: res_max += (t // k) * 5 print(res_min, res_max) ```
3
4
A
Watermelon
PROGRAMMING
800
[ "brute force", "math" ]
A. Watermelon
1
64
One hot summer day Pete and his friend Billy decided to buy a watermelon. They chose the biggest and the ripest one, in their opinion. After that the watermelon was weighed, and the scales showed *w* kilos. They rushed home, dying of thirst, and decided to divide the berry, however they faced a hard problem. Pete and Billy are great fans of even numbers, that's why they want to divide the watermelon in such a way that each of the two parts weighs even number of kilos, at the same time it is not obligatory that the parts are equal. The boys are extremely tired and want to start their meal as soon as possible, that's why you should help them and find out, if they can divide the watermelon in the way they want. For sure, each of them should get a part of positive weight.
The first (and the only) input line contains integer number *w* (1<=≤<=*w*<=≤<=100) — the weight of the watermelon bought by the boys.
Print YES, if the boys can divide the watermelon into two parts, each of them weighing even number of kilos; and NO in the opposite case.
[ "8\n" ]
[ "YES\n" ]
For example, the boys can divide the watermelon into two parts of 2 and 6 kilos respectively (another variant — two parts of 4 and 4 kilos).
0
[ { "input": "8", "output": "YES" }, { "input": "5", "output": "NO" }, { "input": "4", "output": "YES" }, { "input": "3", "output": "NO" }, { "input": "2", "output": "NO" }, { "input": "1", "output": "NO" }, { "input": "7", "output": "NO" }, { "input": "6", "output": "YES" }, { "input": "10", "output": "YES" }, { "input": "9", "output": "NO" }, { "input": "53", "output": "NO" }, { "input": "77", "output": "NO" }, { "input": "32", "output": "YES" }, { "input": "44", "output": "YES" }, { "input": "98", "output": "YES" }, { "input": "99", "output": "NO" }, { "input": "90", "output": "YES" }, { "input": "67", "output": "NO" }, { "input": "100", "output": "YES" }, { "input": "88", "output": "YES" } ]
1,694,887,273
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
7
62
0
watermellon = int(input()) if watermellon>=4: x=watermellon/2 if x%2== 0 : print ("Yes") else: print("NO") else: print("No")
Title: Watermelon Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: One hot summer day Pete and his friend Billy decided to buy a watermelon. They chose the biggest and the ripest one, in their opinion. After that the watermelon was weighed, and the scales showed *w* kilos. They rushed home, dying of thirst, and decided to divide the berry, however they faced a hard problem. Pete and Billy are great fans of even numbers, that's why they want to divide the watermelon in such a way that each of the two parts weighs even number of kilos, at the same time it is not obligatory that the parts are equal. The boys are extremely tired and want to start their meal as soon as possible, that's why you should help them and find out, if they can divide the watermelon in the way they want. For sure, each of them should get a part of positive weight. Input Specification: The first (and the only) input line contains integer number *w* (1<=≤<=*w*<=≤<=100) — the weight of the watermelon bought by the boys. Output Specification: Print YES, if the boys can divide the watermelon into two parts, each of them weighing even number of kilos; and NO in the opposite case. Demo Input: ['8\n'] Demo Output: ['YES\n'] Note: For example, the boys can divide the watermelon into two parts of 2 and 6 kilos respectively (another variant — two parts of 4 and 4 kilos).
```python watermellon = int(input()) if watermellon>=4: x=watermellon/2 if x%2== 0 : print ("Yes") else: print("NO") else: print("No") ```
0