Datasets:
metadata
license: apache-2.0
task_categories:
- multiple-choice
- visual-question-answering
language:
- en
size_categories:
- n<1K
configs:
- config_name: benchmark
data_files:
- split: test
path: dataset.json
paperswithcode_id: mapeval-visual
tags:
- geospatial
MapEval-Visual
This dataset was introduced in MapEval
Example
Query
I am presently visiting Mount Royal Park . Could you please inform me about the nearby historical landmark?
Options
- Circle Stone
- Secret pool
- Maison William Caldwell Cottingham
- Poste de cavalerie du Service de police de la Ville de Montreal
Correct Option
- Circle Stone
Prerequisite
Download the Vdata.zip and extract in the working directory. This directory contains all the images.
Usage
from datasets import load_dataset
import PIL.Image
# Load dataset
ds = load_dataset("MapEval/MapEval-Visual", name="benchmark")
for item in ds["test"]:
# Start with a clear task description
prompt = (
"You are a highly intelligent assistant. "
"Based on the given image, answer the multiple-choice question by selecting the correct option.\n\n"
"Question:\n" + item["question"] + "\n\n"
"Options:\n"
)
# List the options more clearly
for i, option in enumerate(item["options"], start=1):
prompt += f"{i}. {option}\n"
# Add a concluding sentence to encourage selection of the answer
prompt += "\nSelect the best option by choosing its number."
# Load image from Vdata/ directory
img = PIL.Image.open(item["context"])
# Use the prompt as needed
print([prompt, img]) # Replace with your processing logic
Citation
If you use this dataset, please cite the original paper:
@article{dihan2024mapeval,
title={MapEval: A Map-Based Evaluation of Geo-Spatial Reasoning in Foundation Models},
author={Dihan, Mahir Labib and Hassan, Md Tanvir and Parvez, Md Tanvir and Hasan, Md Hasebul and Alam, Md Almash and Cheema, Muhammad Aamir and Ali, Mohammed Eunus and Parvez, Md Rizwan},
journal={arXiv preprint arXiv:2501.00316},
year={2024}
}