Datasets:

Modalities:
Image
Text
Formats:
webdataset
ArXiv:
Libraries:
Datasets
WebDataset
License:
horizon171852 commited on
Commit
1dbd9e1
·
verified ·
1 Parent(s): ededc99

Update README

Browse files
README.md CHANGED
@@ -1,55 +1,178 @@
1
- ---
2
- license: unknown
3
- ---
4
-
5
- # SceneMaker Dataset
6
-
7
- ## 数据集描述
8
-
9
- SceneMaker 是一个基于 Objaverse 3D 场景渲染数据集。该数据集为每个场景提供了多视角的渲染图像,包括 RGB、深度图和分割图。
10
-
11
- ## 数据集结构
12
-
13
- ### 场景组成
14
-
15
- 每个场景(由 UUID 标识)包含以下元素:
16
-
17
- - **主体物体**:来自 Objaverse 的原始物体
18
- - **额外物体**:四个随机选择的物体,以任意位置摆放
19
- - **环境元素**:
20
- - 地板(ground plane)
21
- - 环境贴图(environment map)
22
-
23
- ### 视角与渲染
24
-
25
- - **视角数量**:每个场景包含 20 个不同的视角
26
- - **渲染类型**:每个视角提供三种类型的图像:
27
- - **RGB**:彩色渲染图像
28
- - **Depth**:深度图
29
- - **Seg**:分割图(语义分割或实例分割)
30
-
31
- ## 数据来源
32
-
33
- 本数据集基于 [Objaverse](https://objaverse.allenai.org/) 数据集构建。
34
-
35
- ## 使用说明
36
-
37
- 数据集中的每个场景以 UUID 命名,包含多视角渲染结果。每个视角的图像文件命名格式为:
38
- - `{view_id}_rgb.png` - RGB 图像
39
- - `{view_id}_depth.png` - 深度图
40
- - `{view_id}_seg.png` - 分割图
41
-
42
- 其中 `view_id` 为视角编号(0-19)。
43
-
44
- ## 引用
45
-
46
- 如果您使用了本数据集,请引用 Objaverse:
47
-
48
- ```bibtex
49
- @article{objaverse2023,
50
- title={Objaverse: A Universe of Annotated 3D Objects},
51
- author={Deitke, Matt and Schwenk, Dustin and Salvador, Jordi and Weihs, Luca and Michel, Oscar and VanderBilt, Eli and Schmidt, Ludwig and Ehsani, Kiana and Farhadi, Ali and Kembhavi, Aniruddha and others},
52
- journal={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
53
- year={2023}
54
- }
55
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+ <img src="assets/SceneMaker_logo.png" width="500" alt="SceneMaker Logo"/>
3
+ </div>
4
+
5
+ <br>
6
+
7
+ # SceneMaker Dataset
8
+
9
+ **Yukai Shi<sup>1,3</sup>**, **Weiyu Li<sup>2,4</sup>**, **Zihao Wang<sup>4</sup>**, **Hongyang Li<sup>3</sup>**, **Xingyu Chen<sup>3</sup>**, **Ping Tan<sup>2,4</sup>**, **Lei Zhang<sup>3</sup>**
10
+
11
+ <sup>1</sup> Tsinghua University &nbsp;&nbsp;
12
+ <sup>2</sup> HKUST &nbsp;&nbsp;
13
+ <sup>3</sup> IDEA Research &nbsp;&nbsp;
14
+ <sup>4</sup> LightIllusions
15
+
16
+ <div align="center">
17
+
18
+
19
+ [![Paper](https://img.shields.io/badge/ArXiv-Paper-brown)](https://arxiv.org/abs/2512.10957)
20
+ [![Project Page](https://img.shields.io/badge/🌐-Project%20Page-blue)](https://idea-research.github.io/SceneMaker/)
21
+ [![Datasets](https://img.shields.io/badge/🤗-Datasets-yellow.svg)](https://huggingface.co/datasets/LightillusionsLab/SceneMaker)
22
+ [![Code](https://img.shields.io/badge/GitHub-Code-black.svg)](https://github.com/IDEA-Research/SceneMaker)
23
+
24
+ </div>
25
+
26
+ SceneMaker dataset is a 3D scene dataset for open-world scenarios from paper [SceneMaker](https://arxiv.org/abs/2512.10957). This dataset is based on the [Objaverse](https://objaverse.allenai.org/) dataset, where 3D objects are randomly selected and placed in a physically plausible manner to construct 3D scenes. Each scene contains multi-view camera intrinsics and extrinsics, along with rendered images including RGB, depth maps, and segmentation maps.
27
+
28
+ <!-- caption -->
29
+ ## 📖 Dataset Description
30
+
31
+ Each scene (identified by UUID) contains the following elements:
32
+ - **Main Objects**: 2-5 original objects from Objaverse, represented by 20,480 point clouds extracted from meshes with corresponding normal directions
33
+ - **Environment Elements**:
34
+ - Ground plane
35
+ - Environment map
36
+ - **Number of Views**: Each scene contains 20 different viewpoints
37
+ - **Rendering Types**: Each viewpoint provides three types of images:
38
+ - **RGB**: Color-rendered scene images
39
+ - **Depth**: Scene depth maps
40
+ - **Seg**: Segmentation maps for each object
41
+
42
+
43
+ <div align="center">
44
+ <img src="assets/dataset_samples.png" width="800" alt="Dataset Samples"/>
45
+ </div>
46
+
47
+ *Sample scenes from the SceneMaker dataset showing RGB images, depth maps, and segmentation masks*
48
+
49
+
50
+ <!-- structure -->
51
+ ## 📁 Dataset Structure
52
+
53
+ After extraction, the dataset has the following structure:
54
+
55
+ ```
56
+ dataset/
57
+ ├── 000-001.tar.gz to 000-159.tar.gz # Split archives containing scene render results
58
+ ├── geometry/ # Folder containing object geometry data
59
+ │ └── geometry.tar.part_* # Split archives of 3D object meshes/point clouds
60
+
61
+ └── [After extraction]
62
+ ├── 000-000/ # Folder for archive 000-000
63
+ │ ├── {scene_uuid_1}.json # Scene configuration (object count, IDs, poses, scene size)
64
+ │ ├── {scene_uuid_2}.json # Scene configuration for another scene
65
+ │ ├── ...
66
+ │ ├── {scene_uuid_1}/ # Scene folder (identified by UUID)
67
+ │ │ ├── 0_rgb.png # RGB render from view 0
68
+ │ │ ├── 0_depth.png # Depth map from view 0
69
+ │ │ ├── 0_seg.png # Segmentation map from view 0
70
+ │ │ ├── 1_rgb.png # RGB render from view 1
71
+ │ │ ├── 1_depth.png # Depth map from view 1
72
+ │ │ ├── 1_seg.png # Segmentation map from view 1
73
+ │ │ ├── ... # Views 2-18
74
+ │ │ ├── 19_rgb.png # RGB render from view 19
75
+ │ │ ├── 19_depth.png # Depth map from view 19
76
+ │ │ ├── 19_seg.png # Segmentation map from view 19
77
+ │ │ └── metadata.json # Rendering information for each view (camera intrinsics/extrinsics)
78
+ │ │
79
+ │ ├── {scene_uuid_2}/ # Another scene in 000-000
80
+ │ │ └── ...
81
+ │ └── ...
82
+
83
+ ├── 000-001/ # Similar structure as 000-000
84
+ ├── ... # Folders 000-002 to 000-158
85
+ ├── 000-159/ # Similar structure as 000-000
86
+
87
+ └── geometry/ # Extracted object geometries
88
+ ├── geometry.json # Index of all object UUIDs and their file paths
89
+ └── sample/ # Object point clouds with normals in npz format
90
+ ├── 000-000/ # Objects from scenes in 000-000
91
+ │ ├── {object_uuid_1}.npz # Point cloud and normals for object 1
92
+ │ ├── {object_uuid_2}.npz # Point cloud and normals for object 2
93
+ │ └── ...
94
+ ├── 000-001/ # Similar structure
95
+ ├── ... # Folders 000-002 to 000-158
96
+ └── 000-159/ # Similar structure
97
+ ```
98
+
99
+ ### 📋 File Descriptions
100
+
101
+ - 📝 **Scene Configuration Files** (`{scene_uuid}.json`): JSON files in each numbered folder containing:
102
+ - Object count: Number of objects in the scene
103
+ - Object IDs: List of object UUID identifiers
104
+ - Object poses: Translation, rotation, and scale for each object
105
+ - Scene size: Bounding box dimensions of the scene
106
+ - 📂 **Scene Folders** (`{scene_uuid}/`): Each folder represents one scene with a unique UUID identifier
107
+ - 🖼️ **RGB Images** (`*_rgb.png`): Color-rendered images of the scene from different viewpoints (512×512)
108
+ - 📏 **Depth Maps** (`*_depth.png`): Depth information for each pixel with range 0-20, stored as 16-bit PNG
109
+ - 🎨 **Segmentation Maps** (`*_seg.png`): Instance segmentation masks where each object is represented by an integer starting from 0, following the order of objects in the corresponding `{scene_uuid}.json` file
110
+ - 📊 **Metadata** (`metadata.json`): Rendering information for each view, including camera intrinsics and extrinsics for all 20 views
111
+ - 🗂️ **Geometry Index** (`geometry/geometry.json`): Index file mapping all object UUIDs to their corresponding file paths
112
+ - ☁️ **Object Point Clouds** (`geometry/sample/*/*.npz`): NPZ files containing object point clouds (20,480 points × 6 dimensions), where the first 3 dimensions are XYZ coordinates and the last 3 dimensions are normal vectors, organized by archive number
113
+
114
+ ### Scene Examples
115
+
116
+ <div align="center">
117
+ <img src="assets/scene_example_1.png" width="400" alt="Scene Example 1"/>
118
+ <img src="assets/scene_example_2.png" width="400" alt="Scene Example 2"/>
119
+ </div>
120
+
121
+ *Examples of generated 3D scenes with multiple objects from Objaverse*
122
+
123
+ <div align="center">
124
+ <img src="assets/pointcloud_example.png" width="500" alt="Point Cloud Visualization"/>
125
+ </div>
126
+
127
+ *Visualization of object point clouds with normal vectors (20,480 points per object)*
128
+
129
+
130
+ <!-- usage -->
131
+ ## 🚀 Usage Instructions
132
+ ### Extract the render results of scenes
133
+
134
+ ```bash
135
+ tar -xzvf 000-*.tar.gz
136
+ ```
137
+
138
+ ### Extract the object geometry in the scenes
139
+ ```bash
140
+ cd geometry
141
+ cat geometry.tar.part_* | tar -xv
142
+ ```
143
+
144
+ Or merge them first, then extract:
145
+
146
+ ```bash
147
+ cd geometry
148
+ cat geometry.tar.part_* > geometry.tar
149
+ tar -xvf geometry.tar
150
+ rm geometry.tar # Optional: remove the merged file after extraction
151
+ ```
152
+
153
+
154
+
155
+
156
+ ### File Naming Convention
157
+
158
+ Each scene in the dataset is named by UUID and contains multi-view rendering results. Both scenes and objects are uniquely identified by their UUID values. When using this dataset, please update the file paths to match your dataset root directory.
159
+
160
+ ## 📚 Citation
161
+
162
+ If you use this dataset, please cite the SceneMaker and Objaverse datasets:
163
+
164
+ ```bibtex
165
+ @article{shi2025scenemaker,
166
+ title={SceneMaker: Open-set 3D Scene Generation with Decoupled De-occlusion and Pose Estimation Model},
167
+ author={Shi, Yukai and Li, Weiyu and Wang, Zihao and Li, Hongyang and Chen, Xingyu and Tan, Ping and Zhang, Lei},
168
+ journal={arXiv preprint arXiv:2512.10957},
169
+ year={2025}
170
+ }
171
+
172
+ @article{objaverse2023,
173
+ title={Objaverse: A Universe of Annotated 3D Objects},
174
+ author={Deitke, Matt and Schwenk, Dustin and Salvador, Jordi and Weihs, Luca and Michel, Oscar and VanderBilt, Eli and Schmidt, Ludwig and Ehsani, Kiana and Farhadi, Ali and Kembhavi, Aniruddha and others},
175
+ journal={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
176
+ year={2023}
177
+ }
178
+ ```
assets/SceneMaker_logo.png ADDED

Git LFS Details

  • SHA256: 7f263c2b27f1e8246b7b6d886e7f3ff77900214ed2ccfad92d3251df9e25a73c
  • Pointer size: 132 Bytes
  • Size of remote file: 3.03 MB
assets/dataset_samples.png ADDED

Git LFS Details

  • SHA256: 6834b7dcf17aacc7693190ad6bde518c7de479ac5ee6db291b8cd6688bc69b35
  • Pointer size: 132 Bytes
  • Size of remote file: 2.98 MB