Datasets:
File size: 4,281 Bytes
d95880c 6d26ce9 d95880c 6d26ce9 d95880c 49f1c4a d95880c 49f1c4a d95880c 6d26ce9 58f4bcf d95880c 6d26ce9 d95880c 49f1c4a 6d26ce9 49f1c4a d95880c 49f1c4a 6d26ce9 49f1c4a d95880c 49f1c4a 6d26ce9 49f1c4a d95880c 6d26ce9 d95880c 8a08000 6d26ce9 66fe09e 6d26ce9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
# Lint as: python3
"""TGIF: A New Dataset and Benchmark on Animated GIF Description"""
import csv
import datasets
import os
_CITATION = """
@InProceedings{tgif-cvpr2016,
author = {Li, Yuncheng and Song, Yale and Cao, Liangliang and Tetreault, Joel and Goldberg, Larry and Jaimes, Alejandro and Luo, Jiebo},
title = "{TGIF: A New Dataset and Benchmark on Animated GIF Description}",
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2016}
}
"""
_DESCRIPTION = """\
The Tumblr GIF (TGIF) dataset contains 100K animated GIFs and 120K sentences describing visual content of the animated GIFs.
The animated GIFs have been collected from Tumblr, from randomly selected posts published between May and June of 2015.
We provide the URLs of animated GIFs in this release. The sentences are collected via crowdsourcing, with a carefully designed
annotationinterface that ensures high quality dataset. We provide one sentence per animated GIF for the training and validation splits,
and three sentences per GIF for the test split. The dataset shall be used to evaluate animated GIF/video description techniques.
"""
_URL_BASE = "http://raingo.github.io/TGIF-Release/"
_DL_URL = "https://github.com/raingo/TGIF-Release/archive/master.zip"
class TGIFConfig(datasets.BuilderConfig):
"""BuilderConfig for TGIF."""
def __init__(self, **kwargs):
super(TGIFConfig, self).__init__(
version=datasets.Version("2.1.0", ""), **kwargs)
class TGIF(datasets.GeneratorBasedBuilder):
DEFAULT_CONFIG_NAME = "all"
BUILDER_CONFIGS = [
TGIFConfig(name="all", description="All the TGIF dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"path": datasets.Value("string"),
"captions": datasets.features.Sequence(datasets.Value("string"))
}
),
supervised_keys=None,
homepage=_URL_BASE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
archive_path = dl_manager.download_and_extract(_DL_URL)
archive_data_path = archive_path + "data/splits/"
infos_file = archive_path + "data/tgif-v1.0.tsv"
train_splits = [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"split_links_file": os.path.join(archive_data_path, "train.txt"),
"infos_file": infos_file
},
)
]
dev_splits = [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"split_links_file": os.path.join(archive_data_path, "dev.txt"),
"infos_file": infos_file
},
)
]
test_splits = [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"split_links_file": os.path.join(archive_data_path, "test.txt"),
"infos_file": infos_file
},
)
]
return train_splits + dev_splits + test_splits
def _generate_examples(self, split_links_file, infos_file):
"""This function returns the examples."""
dict = {}
split_links_file = "/content/TGIF-Release-master/data/splits/test.txt"
with open(split_links_file,encoding = "utf-8") as txt_file:
for line in txt_file:
line = line[0:-1]
dict[line] = []
infos_file = "/content/TGIF-Release-master/data/tgif-v1.0.tsv"
with open(infos_file, encoding="utf-8") as tsv_file:
tsv_reader = csv.reader(tsv_file, delimiter="\t", quotechar='"' )
for idx, (video_link, text) in enumerate(tsv_reader):
try:
dict[video_link].append(text)
except Exception:
pass
yield idx, {
"path": video_link,
"captions": text,
} |