Leyo commited on
Commit
d95880c
·
1 Parent(s): 6b77c21

Create TGIF.py

Browse files
Files changed (1) hide show
  1. TGIF.py +101 -0
TGIF.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Lint as: python3
2
+ """TGIF: A New Dataset and Benchmark on Animated GIF Description"""
3
+
4
+
5
+ import os
6
+ import csv
7
+ import datasets
8
+
9
+
10
+ _CITATION = """
11
+ @InProceedings{tgif-cvpr2016,
12
+ author = {Li, Yuncheng and Song, Yale and Cao, Liangliang and Tetreault, Joel and Goldberg, Larry and Jaimes, Alejandro and Luo, Jiebo},
13
+ title = "{TGIF: A New Dataset and Benchmark on Animated GIF Description}",
14
+ booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
15
+ month = {June},
16
+ year = {2016}
17
+ }
18
+ """
19
+
20
+ _DESCRIPTION = """\
21
+ The Tumblr GIF (TGIF) dataset contains 100K animated GIFs and 120K sentences describing visual content of the animated GIFs.
22
+ The animated GIFs have been collected from Tumblr, from randomly selected posts published between May and June of 2015.
23
+ We provide the URLs of animated GIFs in this release. The sentences are collected via crowdsourcing, with a carefully designed
24
+ annotationinterface that ensures high quality dataset. We provide one sentence per animated GIF for the training and validation splits,
25
+ and three sentences per GIF for the test split. The dataset shall be used to evaluate animated GIF/video description techniques.
26
+ """
27
+
28
+ _URL_BASE = "http://raingo.github.io/TGIF-Release/"
29
+
30
+ _DL_URL = "https://github.com/raingo/TGIF-Release/archive/master.zip"
31
+
32
+ class TGIFConfig(datasets.BuilderConfig):
33
+ """BuilderConfig for TGIF."""
34
+
35
+ def __init__(self, **kwargs):
36
+ super(TGIFConfig, self).__init__(version=datasets.Version("2.1.0", ""), **kwargs)
37
+
38
+ class TGIF(datasets.GeneratorBasedBuilder):
39
+
40
+ DEFAULT_CONFIG_NAME = "all"
41
+ BUILDER_CONFIGS = [
42
+ TGIFConfig(name="all", description="All the TGIF dataset"),
43
+ ]
44
+
45
+ def _info(self):
46
+ return datasets.DatasetInfo(
47
+ description=_DESCRIPTION,
48
+ features=datasets.Features(
49
+ {
50
+ "video_id": datasets.Value("string"),
51
+ "caption": datasets.features.Sequence(datasets.Value("string"))
52
+ }
53
+ ),
54
+ supervised_keys=None,
55
+ homepage=_URL_BASE,
56
+ citation=_CITATION,
57
+ )
58
+
59
+ def _split_generators(self, dl_manager):
60
+ archive_path = dl_manager.download(_DL_URL) + "data/"
61
+ # (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
62
+ local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
63
+ train_splits = [
64
+ datasets.SplitGenerator(
65
+ name="train",
66
+ gen_kwargs={
67
+ "local_extracted_archive": local_extracted_archive.get("train"),
68
+ "files": dl_manager.iter_archive(archive_path["train"]),
69
+ },
70
+ )
71
+ ]
72
+ dev_splits = [
73
+ datasets.SplitGenerator(
74
+ name=datasets.Split.VALIDATION,
75
+ gen_kwargs={
76
+ "local_extracted_archive": local_extracted_archive.get("dev"),
77
+ "files": dl_manager.iter_archive(archive_path["dev"]),
78
+ },
79
+ )
80
+ ]
81
+ test_splits = [
82
+ datasets.SplitGenerator(
83
+ name=datasets.Split.TEST,
84
+ gen_kwargs={
85
+ "local_extracted_archive": local_extracted_archive.get("test"),
86
+ "files": dl_manager.iter_archive(archive_path["test"]),
87
+ },
88
+ )
89
+ ]
90
+ return train_splits + dev_splits + test_splits
91
+
92
+ def _generate_examples(self, files, local_extracted_archive):
93
+ """This function returns the examples."""
94
+
95
+ with open(os.path.join(files, "tgif-v1.0.tsv"), encoding="utf-8") as tsv_file:
96
+ tsv_reader = csv.reader(tsv_file, delimiter="\t", quotechar='"' )
97
+ for idx, (video_link, text) in enumerate(tsv_reader):
98
+ yield idx, {
99
+ "video_id": video_link,
100
+ "caption": text,
101
+ }